Science.gov

Sample records for 13-stage dekati low-pressure

  1. Comparison of coal ash particle size distributions from Berner, and Dekati low pressure impactors

    SciTech Connect

    Wang, C.M.; Seames, W.S.; Gadgil, M.; Hrdlicka, J.; Fix, G.

    2007-12-15

    This article presents the differential mass size distributions of coal combustion particulate matter (PM) determined with the Berner low-pressure impactor (BLPI, Hauke Model 25-410.015) and a newer generation of low pressure impactor, the Dekati low-pressure impactor (DLPI, Dekati Ltd Model 6281). The collection characteristics of the BLPI and DLPI are compared and cutoff diameters are calculated. Samples were collected in the post-combustion zone of a 19 kW vertical downflow combustor from two coal types. Both BLPI and DLPI represent a tri-modal distribution and give statistically similar characterizations of the coal ash particle size distribution. Distributions generated from DLPI data have higher fractions of submicron particles compared to those generated from BLPI data. The DLPI's two additional stages may provide greater resolution in the submicron region than the BLPI.

  2. Low-pressure

    SciTech Connect

    Baker, Richard; Kniep, Jay; Hao, Pingjiao; Chan, Chi Cheng; Nguyen, Vincent; Huang, Ivy; Amo, Karl; Freeman, Brice; Fulton, Don; Ly, Jennifer; Lipscomb, Glenn; Lou, Yuecun; Gogar, Ravikumar

    2015-01-29

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  3. Low-pressure, chemical vapor deposition polysilicon

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.; Crotty, G. C.

    1986-01-01

    The low-pressure chemical vapor deposition (LPCVD) of polycrystalline silicon was investigted. The physical system was described, as was the controlling process parameters and requirements for producing films for use as an integral portion of the solar cell contact system.

  4. New developments in low pressure SMC

    SciTech Connect

    Atkins, K.E.; Seats, R.L.; Reid, C.G.; Behar, G.

    1996-11-01

    The composites industry has expressed a keen desire for a molding material with the properties of Sheet Molding Compound (SMC) and the ability to mold at low pressures. Opportunities exist in Class A, zero shrink, low shrink pigmentable, and structural applications. Clearly, the ability to achieve SMC properties and production rates in shorter run applications in relatively inexpensive tooling is intuitively attractive. The historical problem with SMC under low pressure situations has been the difficulty in consistently controlling the chemical thickening process at low levels and achieving a dry, tack free, easily handled compound with no resin separation. In recent years developments have been made for low pressure SMC which does not contain an earth oxide thickening agent but relies on a crystalline polyester physical thickening. However, this approach requires modification of standard SMC and in-plant environmental protection equipment. The resulting compound is also tacky and difficult to handle. Developmental efforts have produced an approach to low pressure SMC that will produce molding compounds on standard SMC equipment with a wide process latitude for thickener control. The resultant compound is dry and easily handled and has a stable viscosity for several weeks. Formulations for Class A surface, inner reinforcement and pigmentable materials will be presented. Also approaches to low temperature cure with these materials will be outlined.

  5. Low-Pressure-Drop Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Thornborrow, John

    1994-01-01

    Flapper valve remains open under normal flow conditions but closes upon sudden increases to high rate of flow and remains closed until reset. Valve is fluid/mechanical analog of electrical fuse or circuit breaker. Low-pressure-drop shutoff valve contains flapper machined from cylindrical surface. During normal flow conditions, flapper presents small cross section to flow. (Useful in stopping loss of fluid through leaks in cooling systems.)

  6. Low Pressure Nuclear Thermal Rocket (LPNTR) concept

    NASA Technical Reports Server (NTRS)

    Ramsthaler, J. H.

    1991-01-01

    A background and a description of the low pressure nuclear thermal system are presented. Performance, mission analysis, development, critical issues, and some conclusions are discussed. The following subject areas are covered: LPNTR's inherent advantages in critical NTR requirement; reactor trade studies; reference LPNTR; internal configuration and flow of preliminary LPNTR; particle bed fuel assembly; preliminary LPNTR neutronic study results; multiple LPNTR engine concept; tank and engine configuration for mission analysis; LPNTR reliability potential; LPNTR development program; and LPNTR program costs.

  7. Multi-element analysis by inductively coupled plasma optical emission spectrometry of airborne particulate matter collected with a low-pressure cascade impactor.

    PubMed

    Robache, A; Mathé, F; Galloo, J C; Guillermo, R

    2000-10-01

    A method was developed for the elemental analysis of size segregated particles ranging from 0.03 to 10 microns. Sampling and analysis problems are discussed in this paper. Particles were collected with a Dekati low-pressure cascade impactor. PTFE filters coated with oleic acid were used as substrate. Particles were microwave digested in closed vessels. The optimum digestion mixture was composed of HNO3 (1 mL), HF (50 microL) and H2O (1 mL). The optimal power setting and digestion time were studied in order to achieve an efficient digestion. A ca. 35 min microwave digestion cycle at a 650 W maximum power allowed complete digestion of the samples. Special emphasis was placed on the pressure in the closed vessels to avoid sample losses. Solution samples were analysed by inductively coupled plasma optical emission spectrometry using an ultrasonic nebuliser for 18 elements (Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, S, Sr, Ti, V, Zn). This procedure was tested with NIST Standard Reference Material 1648 Urban Particulate. Recoveries for certified elements ranged from 95 to 105% except for Al (90%). The influence of cascade impactor materials was investigated with 44 field samples. Strong artefacts due to contamination were shown for analysis at environmental concentrations of Al, Cr, Mn and Ni.

  8. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1989-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer-generated graphical representation. The fields obtained with a radially scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters of 3/16 inch to 1-1/2 inches I.D. (4.76 mm to 38.1 mm). The N(2) mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  9. Condensation of liquid metals under low pressures

    SciTech Connect

    Elafify, M.M.

    1988-01-01

    The Direct Simulation Monte Carlo (DSMC) method is used to study one-dimensional condensation phenomena for a pure vapor or vapor/gas mixture. The results are fitted to an interpolation formula describing the condensation mass flux to provide a usable engineering correlation. For pure vapor, the DSMC results are compared with the available experimental data for condensation of mercury under low pressure. Results are compared also with some of the theoretical models. The comparison shows that the DSMC method is able to detect the qualitative behavior of the condensation mass flux, although it overestimates the mass flux by 20-30%. Compared with other introduced theoretical models, the DSMC method has the most-consistent representation of the qualitative behavior of the condensation mass flux. The method was also used to represent condensation in the presence of a noncondensable gas. A formal proof for choosing collision partners was introduced and applied in the case of condensation in the presence of a noncondensable gas. The method is applied to condensation of mercury in the presence of different monatomic noncondensable gases at different partial pressures.

  10. Property of THGEM in Low-Pressure Deuterium for a Low-Pressure Gaseous Active Target

    NASA Astrophysics Data System (ADS)

    Lee, CheongSoo; Ota, Shinsuke; Tokieda, Hiroshi; Kojima, Reiko; Watanabe, Yuni; Saiseau, Raphael; Uesaka, Tomohiro

    A low-pressure gaseous active target called CNS Active Target (CAT) has been developed for a deuteron inelastic scattering off exotic nuclei. The CAT consists of a combination of Gas Electron Multiplier (GEM) and Time Projection Chamber (TPC) as a vertex tracker, and Si detectors as a total kinetic energy detector for a high momentum recoil particles. In order to operate CAT in low-pressure deuterium, a 400 µm-thick Thick Gas Electron Multiplier (THGEM) is used for the amplification of the TPC in low-pressure deuterium gas to achieve a gas gain of 104 at 0.4-atm. We used a triple THGEM configuration at 0.18-0.5 atm deuterium gas and the effective gas gain of more than 104 was achieved at 0.4-atm. In addition, a long-term stability at 0.4-atm deuterium was also investigated and a relaxation time of about 2-hours was observed, which is significantly shorter than our previous study.

  11. General view of low pressure compressor (unit #3) with compressor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of low pressure compressor (unit #3) with compressor in foreground and engines in background. High pressure stage is on left, low pressure stage is on right. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  12. Low pressure cooling seal system for a gas turbine engine

    SciTech Connect

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  13. 22. Fire Protection Water Pump (low pressure), view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Fire Protection Water Pump (low pressure), view to the southwest. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  14. 14. Generator Fire Protection for Unit 5 (low pressure), view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Generator Fire Protection for Unit 5 (low pressure), view to the southeast. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  15. Detail view of steam chest for low pressure stage of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of steam chest for low pressure stage of unit 40. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  16. DETAIL VIEW OF STEAM CHEST FOR LOW PRESSURE STAGE ENGINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF STEAM CHEST FOR LOW PRESSURE STAGE ENGINE OF UNIT #3. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  17. Detail view of steam chest for low pressure stage engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of steam chest for low pressure stage engine of unit 43. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  18. “Anomalous” collisionality in low-pressure plasmas

    SciTech Connect

    Lafleur, T.; Chabert, P.; Booth, J. P.; Turner, M. M.

    2013-12-15

    Based on a theoretical argument from fundamental kinetic theory, by way of simple worked examples, and through the use of particle-in-cell simulations of capacitively coupled plasmas, we demonstrate that conventional methods for calculating the momentum transfer collision frequency in low-pressure plasmas can be seriously erroneous. This potentially plays an important and previously unconsidered role in many low-pressure discharges, and at least in part provides a possible explanation for anomalous behaviour often encountered in these plasmas.

  19. 20. VIEW OF LOW PRESSURE PUMPING EQUIPMENT ON THE SECOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF LOW PRESSURE PUMPING EQUIPMENT ON THE SECOND FLOOR OF BUILDING 707. THE EQUIPMENT MAINTAINS PROPER COOLANT PRESSURE IN MACHINES. (5/70) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  20. Properties of microwave plasma torch operating at a low pressure

    SciTech Connect

    Cho, Soon C.; Uhm, Han S.; Hong, Yong C.; Kim, Jae H.

    2008-10-15

    A microwave plasma torch system is attached to a low-pressure chamber in this study. The electric field induced in a quartz discharge tube by microwave radiation breaks down the gas at a sufficiently low pressure, igniting the plasma, which is continuously sustained by the microwave radiation. The plasma profile at a very low pressure is shown to be asymmetric with higher density on the incoming side of the microwaves. The gas temperature at the bright spot of the torch plasma measured via the optical emission from hydroxide radicals is shown to increase drastically upon high-pressure operation as the microwave power increases. The electron density at the torch flame is measured by recording the Stark broadening of the hydrogen Balmer beta line. The plasma density increases as the microwave power increases. The typical argon plasma density of a plasma torch powered at 500 W under a pressure of 150 Torr is on the order of 10{sup 14}/cm{sup 3}. The electron temperature in the argon torch plasma was estimated to be 1.5 eV, thereby effectively exciting the molecules in the torch gas. Disintegration of nitrogen fluoride (NF{sub 3}) indicates that a microwave plasma torch operating at a low pressure can efficiently generate an abundant amount of chemical radicals.

  1. LOW PRESSURE ULTRAVIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS

    EPA Science Inventory

    Cysts of Giardia muris were inactivated using a low pressure ultravolet (UV) light source. Cyst viability was detemined by both in vitro excystation and animal infectivity. Cyst doeses were counted using a flow cytometer for the animal infectivity experiments. Using in vitro excy...

  2. LOW PRESSURE ULTRAVEIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS

    EPA Science Inventory

    Cysts of Giardia muris were inactivated using a low pressure ultravolet (UV) light source. Cyst viability was detemined by both in vitro excystation and animal infectivity. Cyst doeses were counted using a flow cytometer for the animal infectivity experiments. Using in vitro excy...

  3. Self-aligning, low-pressure sealing poppet valve

    NASA Technical Reports Server (NTRS)

    Gonzalez, R.; Bratfisch, W. A.

    1972-01-01

    Design and characteristics of poppet valve operated by very low differential pressures to control fluid flow are described. Valve is used to control flow of petroleum, chemical, and aircraft hydraulics where low leakage rates and activation at low pressures are required.

  4. North-South Migration of West Coast Low Pressure Centers

    ERIC Educational Resources Information Center

    McIntosh, C. Barron

    1974-01-01

    Monthly maps of low pressure centers are presented here to attempt a concrete representation that may help students to understand the seasonal change from dry months to wet months along the mid-latitude west coast as a seasonal north-south migration of factors controlling rain and drought. (Author/JH)

  5. General interior view of pumphouse looking north. Low pressure compressor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General interior view of pumphouse looking north. Low pressure compressor (unit 45) is partially visible in left foreground. As shown from far end, 40, 41 and 42. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  6. A low pressure filter system for new containment concepts

    SciTech Connect

    Dillmann, H.G.; Pasler, H.

    1995-02-01

    It is demonstrated that after severe accidents the decay heat can be removed in a passive mode in a convective flow, i.e. without needing a fan. The filter components with sufficiently low pressure drop values which are required for this purpose will be described and the results indicated.

  7. Automated gas transfer systems for low pressure operations

    SciTech Connect

    Baker, R.W.; Hoseus, N.L.

    1988-01-22

    The introduction of new components and the modification of commercially available hardware have been instrumental in the automation of low pressure gas transfer systems. The benefits from the automation have been faster sample operation, increased precision and a safer environment for the operator.

  8. Heat transfer by condensation of low pressure metal vapors.

    NASA Technical Reports Server (NTRS)

    Huang, Y. S.; Lyman, F. A.; Lick, W. J.

    1972-01-01

    The film condensation of low pressure metal vapors on isothermal vertical flat plates or tubes is considered. The liquid film is treated as a thin layer in which the acceleration and pressure forces are negligible and across which the temperature distribution is linear. The average behavior of the vapor is found from the linearized one-dimensional vapor flow equations. In order to calculate the rate of condensation, a consistent distribution function for the vapor particles at the liquid-vapor interface is necessary and is determined. The result of the analysis is a set of algebraic equations from which one can predict the condensation rate of low pressure metal vapors. A large but continuous temperature decrease in the vapor is predicted and calculated.

  9. Ion optical effects in a low pressure rf plasma

    SciTech Connect

    Oechsner, Hans; Paulus, Hubert

    2013-11-15

    Ion optical effects in low pressure gas discharges are introduced as a novel input into low pressure plasma technology. They are based on appropriate geometrical plasma confinements which enable a control of the shape of internal density and potential distributions and, hence, the ion motion in the plasma bulk. Such effects are exemplified for an electron cyclotron wave resonance plasma in Ar at 1–5 × 10{sup −3} millibars. The geometry of the plasma chamber is modified by a conical and a cylindrical insert. Computer simulations display spherical plasma density contours to be formed around the conical confinement. This effects an increase of the ratio of the ion currents into the conical and the cylindrical inserts which depends on the fourth power of the plasma electron temperature. A quantitative understanding of this behavior is presented. As another essential result, the shape of the internal plasma contours is found to be independent of the pressure controlled plasma parameters.

  10. Energy Efficient Engine Low Pressure Subsystem Flow Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Lynn, Sean R.; Heidegger, Nathan J.; Delaney, Robert A.

    1998-01-01

    The objective of this project is to provide the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). The analyses were performed using three-dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off-design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component aero/mechanical interactions that previously were unknown to the designer until after hardware testing.

  11. Evaluation of worn SSME low pressure liquid oxygen turbopump bearing

    NASA Technical Reports Server (NTRS)

    Dufrane, K. F.; Kannel, J. W.

    1978-01-01

    The larger of two ball bearings used to support the rotor of the low pressure liquid oxygen turbopump in each of the shuttle main engines was analyzed to identify the cause of severe internal wear. The actual operating loads were calculated along with their direction and length of time at each load based on the size and location of the race contact paths. It is suggested that the engine component design be modified to reduce bearing stress and enhance lubrication.

  12. Development of the Low-Pressure Hydride/Dehydride Process

    SciTech Connect

    Rueben L. Gutierrez

    2001-04-01

    The low-pressure hydride/dehydride process was developed from the need to recover thin-film coatings of plutonium metal from the inner walls of an isotope separation chamber located at Los Alamos and to improve the safety operation of a hydride recovery process using hydrogen at a pressure of 0.7 atm at Rocky Flats. This process is now the heart of the Advanced Recovery and Integrated Extraction System (ARIES) project.

  13. Low-pressure overdriven experiments in PBX-9502

    SciTech Connect

    Jensen, Brian J; Byers, Mark E

    2009-01-01

    Symmetric impact experiments were performed on PBX 9502 to obtain Hugoniot data in the low-pressure, overdriven regime. An explosive plane wave lens (P300 with comp-B booster) was used to launch an aluminum flyer plate (4 to 4.5 km/s) into an aluminum target backed by the PBX 9502 samples and a LiF window. Photonic Doppler velocimetry (PDV) was used to obtain the shock transit time through the PBX 9502 samples and wave profile data at the PBX 9502/LiF interface. Past experimental result in the overdriven regime, utilizing a rotating mirror streak camera, revealed a well-defined high-pressure Hugoniot. In contrast, the low-pressure (overdriven) data exhibited significant scatter likely due to non-steady wave effects associated with the thin PBX 9502 samples (3-5 mm) used in the experiments. The objective of the current work was to obtain Hugoniot data in the low-pressure, overdriven regime for PBX 9502 using recently developed diagnostics along with thicker samples (5-10mm) to decrease the uncertainty and scatter in the Hugoniot data.

  14. Bulk characterization of pharmaceutical powders by low-pressure compression.

    PubMed

    Sørensen, Arne Hagsten; Sonnergaard, Jørn Møller; Hovgaard, Lars

    2005-01-01

    Low-pressure compression of pharmaceutical powders using small amounts of sample (50 mg) was evaluated as an alternative to traditional bulk powder characterization by tapping volumetry. Material parameters were extrapolated directly from the compression data and by fitting with the Walker, the Kawakita, and the Log-Exp compression models. The compression-derived material parameters were compared to the poured and tapped density and the Compressibility Index determined by tapping. The repeatability of the compression-derived parameters was generally high, supporting their potential for characterization purposes. Significant correlation was demonstrated between several of the compression and tapping-derived parameters. The discriminative power of the low-pressure compression test was discussed using the compressed density at 0.2 MPa, correlated with the tapped density, and the relative Walker coefficient, correlated with the Compressibility Index, as examples. The compressed density at 0.2 MPa and the relative Walker coefficient demonstrated excellent discriminative power, superior to the discriminative power of the correlated tapping derived parameters. The low-pressure compression test was concluded to provide a cost-effective and sensitive alternative to traditional tapping volumetry.

  15. Dynamic response of a collidant impacting a low pressure airbag

    NASA Astrophysics Data System (ADS)

    Dreher, Peter A.

    There are many uses of low pressure airbags, both military and commercial. Many of these applications have been hampered by inadequate and inaccurate modeling tools. This dissertation contains the derivation of a four degree-of-freedom system of differential equations from physical laws of mass and energy conservation, force equilibrium, and the Ideal Gas Law. Kinematic equations were derived to model a cylindrical airbag as a single control volume impacted by a parallelepiped collidant. An efficient numerical procedure was devised to solve the simplified system of equations in a manner amenable to discovering design trends. The largest public airbag experiment, both in scale and scope, was designed and built to collect data on low-pressure airbag responses, otherwise unavailable in the literature. The experimental results were compared to computational simulations to validate the simplified numerical model. Experimental response trends are presented that will aid airbag designers. The two objectives of using a low pressure airbag to demonstrate the feasibility to (1) accelerate a munition to 15 feet per second velocity from a bomb bay, and (2) decelerate humans hitting trucks below the human tolerance level of 50 G's, were both met.

  16. Low pressure growth of cubic boron nitride films

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  17. Low pressure stagnation flow reactor with a flow barrier

    DOEpatents

    Vosen, Steven R.

    2001-01-01

    A flow barrier disposed at the periphery of a workpiece for achieving uniform reaction across the surface of the workpiece, such as a semiconductor wafer, in a stagnation flow reactor operating under the conditions of a low pressure or low flow rate. The flow barrier is preferably in the shape of annulus and can include within the annular structure passages or flow channels for directing a secondary flow of gas substantially at the surface of a semiconductor workpiece. The flow barrier can be constructed of any material which is chemically inert to reactive gases flowing over the surface of the semiconductor workpiece.

  18. Lattuce growth and water use in closed, low pressure environment

    NASA Astrophysics Data System (ADS)

    Fowler, P.; Rygalov, V.; Wheeler, R.; Bucklin, R.; Schumacher, N.

    Lettuce (Lactuca sativa L.) cv. Waldmann's Green plants were grown in a clear, hemispherical enclosure at a reduced atmospheric pressure to study the potential for using low pressure greenhouses on planetary missions. The atmosphere was maintained at 25 kPa total pressure, with ˜20 kPa of N_2, ˜5 kPa of O_2, and between 0.1 and 0.2 kPa of CO_2, supplied by CO_2 injection and a feed-back control system. A closed water cycle was maintained inside the low pressure greenhouse by recycling condensed humidity back to the plants, and only adding external water to offset water vapor leakage and uptake in the plant tissue. All plants were grown in a granular, arcillite medium (calcined clay chips), with nutrients supplied by adding time-release fertilizer (Osmocote 20-20-20). Plants were harvested after 45 days, averaging 237 g fresh mass, and 23.7 g dry mass. No obvious adverse effects were noted on the plants, with the exception of some minor "tip-burn" injury to some leaves. Additional studies are planned to compare growth and water flux (evapotranspiration) rates at higher pressures. Preliminary results suggest that water fluxes should be lower at the higher pressures provided equal vapor pressure deficits can be maintained. The results suggest that vegetative crops such as lettuce should grow well at reduced pressures if adequate water, nutrients, and CO_2 are provided.

  19. Characterization of Low-Pressure Cold-Sprayed Aluminum Coatings

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Ito, K.; Ichimura, K.; Ichikawa, Y.; Ohno, S.; Onda, N.

    2008-12-01

    Aluminum alloys are widely used as materials for engineering components of automobiles and airplanes because of their light weight and high corrosion resistance. However, cracks may develop sometimes in aluminum components, which have to be repaired by welding. It is difficult to weld aluminum components due to its high specific thermal conductivity and high coefficient of thermal expansion. The low-pressure cold-spray technique can be used instead of welding for repairing cracks. However, the effects of surface conditions on particle deposition and the mechanical properties of cold-sprayed coatings have not been investigated thus far. In this study, the effect of surface conditions focusing on active newly formed surface on aluminum particle deposition is studied and the mechanical properties of low-pressure cold-sprayed aluminum coatings are investigated by four-point bending tests. It is found that for efficient particle deposition it was necessary to obtain active newly formed surface of the substrate and particle surfaces by several impingements because the existence of inactive native oxide films has an adverse effect on the deposition. Furthermore, the strength of a cold-sprayed specimen is found to be higher than that of a cold-rolled specimen under compressive loading.

  20. Performance assessment of low pressure nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harrold P., Jr.; Doughty, Glen E.

    1993-01-01

    An increase in Isp for nuclear thermal propulsion systems is desirable for reducing the propellant requirements and cost of future applications, such as the Mars Transfer Vehicle. Several previous design studies have suggested that the Isp could be increased substantially with hydrogen dissociation/recombination. Hydrogen molecules (H2), at high temperatures and low pressures, will dissociate to monatomic hydrogen (H). The reverse process (i.e., formation of H2 from H) is exothermic. The exothermic energy in a nozzle increases the kinetic energy and therefore, increases the Isp. The low pressure nuclear thermal propulsion system (LPNTP) system is expected to maximize the hydrogen dissociation/recombination and Isp by operating at high chamber temperatures and low chamber pressures. The process involves hydrogen flow through a high temperature, low pressure fission reactor, and out a nozzle. The high temperature (approximately 3000 K) of the hydrogen in the reactor is limited by the temperature limits of the reactor material. The minimum chamber pressure is about 1 atm because lower pressures decrease the engines thrust to weight ratio below acceptable limits. This study assumes that hydrogen leaves the reactor and enters the nozzle at the 3000 K equilibrium dissociation level. Hydrogen dissociation in the reactor does not affect LPNTP performance like dissociation in traditional chemical propulsion systems, because energy from the reactor resupplies energy lost due to hydrogen dissociation. Recombination takes place in the nozzle due primarily to a drop in temperature as the Mach number increases. However, as the Mach number increases beyond the nozzle throat, the static pressure and density of the flow decreases and minimizes the recombination. The ideal LPNTP Isp at 3000 K and 10 psia is 1160 seconds due to the added energy from fast recombination rates. The actual Isp depends on the finite kinetic reaction rates which affect the amount of monatomic hydrogen

  1. 49 CFR 192.623 - Maximum and minimum allowable operating pressure; Low-pressure distribution systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the...

  2. Atomic Processes and Diagnostics of Low Pressure Krypton Plasma

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajesh; Goyal, Dipti; Gangwar, Reetesh; Stafford, Luc

    2015-03-01

    Optical emission spectroscopy along with suitable collisional-radiative (CR) model is used in plasma diagnostics. Importance of reliable cross-sections for various atomic processes is shown for low pressure argon plasma. In the present work, radially-averaged Kr emission lines from the 2pi --> 1sj were recorded as a function of pressure from 1 to 50mTorr. We have developed a CR model using our fine-structure relativistic-distorted wave cross sections. The various processes considered are electron-impact excitation, ionization and their reverse processes. The required rate coefficients have been calculated from these cross-sections assuming Maxwellian energy distribution. Electron temperature obtained from the CR model is found to be in good agreement with the probe measurements. Work is supported by IAEA Vienna, DAE-BRNS Mumbai and CSIR, New Delhi.

  3. Electron heating in low pressure capacitive discharges revisited

    SciTech Connect

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2014-12-15

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account.

  4. A Wireless and Passive Low-Pressure Sensor

    PubMed Central

    Nicolay, Pascal; Lenzhofer, Martin

    2014-01-01

    This paper will discuss the results obtained with a first prototype of a completely passive and wireless low pressure sensor. The device is a heat conductivity gauge, based on a wireless and passive SAW temperature sensor. The required heating energy is applied to the sensor using inductive coupling. The prototype was successfully tested in a vacuum chamber. Its equilibrium temperature changed drastically and in a reproducible way when pressure steps were applied. However, the response time was very long. A model is provided to account for the sensor's behavior. It is then used to show that the response time could be strongly improved using basic design improvements. Further possible improvements are discussed. PMID:24549249

  5. Modeling of Low Pressure Compaction and Mesoscale Localization

    NASA Astrophysics Data System (ADS)

    Roessig, Keith M.; Gonthier, Keith A.; Klomfass, Arno

    2004-07-01

    The compaction, ignition and deflagration of granular HMX have been widely studied. The bulk pressure within strong compaction waves is typically well above the HMX yield strength resulting in almost complete material consolidation. As such, bulk pressure dependent burn models can reasonably predict ignition and combustion for strong waves. However, long duration, low amplitude bulk pressure waves are much more difficult to characterize as stress fluctuations become increasingly important for ignition. Continuum models have recently been used to better predict ignition based on thermalization of bulk dissipated energy at the grain scale, but they typically do not account for the influence of mesoscale structure on the low pressure loading response. This work experimentally examines the influence of initial grain size on both the bulk quasistatic and dynamic loading behavior of granular HMX.

  6. Numerical study of low pressure nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Kim, Suk C.; Stubbs, Robert M.

    1992-01-01

    The flowfields and performance of low pressure nuclear thermal rockets, which use hydrogen as a propellant, are studied by solving the Navier-Stokes equations and the species equations. A finite-rate chemistry model is used in the species equations, and the turbulence is simulated by the Baldwin-Lomax turbulence model with a modified van Driest's damping constant. The calculated results for the chamber temperatures of 3200 K and 4000 K with a chamber pressure range of 0.1 atm to 6 atm are presented as contours, centerline variations, and exit profiles. The performance values from the present calculations, such as the vacuum specific impulse and thrust, are compared with those from the 1D, inviscid equilibrium and frozen flow code.

  7. Relatively high plasma density in low pressure inductive discharges

    SciTech Connect

    Kang, Hyun-Ju; Kim, Yu-Sin; Chung, Chin-Wook

    2015-09-15

    Electron energy probability functions (EEPFs) were measured in a low pressure argon inductive discharge. As radio frequency (RF) power increases, discharge mode is changed from E-mode (capacitively coupled) to H-mode (inductively coupled) and the EEPFs evolve from a bi-Maxwellian distribution to a Maxwellian distribution. It is found that the plasma densities at low RF powers (<30 W) are much higher than the density predicted from the slope of the densities at high powers. Because high portion of high energy electrons of the bi-Maxwellian distribution lowers the collisional energy loss and low electron temperature of low energy electrons reduces particle loss rate at low powers. Therefore, the energy loss of plasma decreases and electron densities become higher at low powers.

  8. Low-Pressure Turbine Separation Control: Comparison With Experimental Data

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.

    2002-01-01

    The present work details a computational study, using the Glenn HT code, that analyzes the use of vortex generator jets (VGJs) to control separation on a low-pressure turbine (LPT) blade at low Reynolds numbers. The computational results are also compared with the experimental data for steady VGJs. It is found that the code determines the proper location of the separation point on the suction surface of the baseline blade (without any VGJ) for Reynolds numbers of 50,000 or less. Also, the code finds that the separated region on the suction surface of the blade vanishes with the use of VGJs. However, the separated region and the wake characteristics are not well predicted. The wake width is generally over-predicted while the wake depth is under-predicted.

  9. Experimental measurements in a highly loaded low pressure turbine stage

    NASA Astrophysics Data System (ADS)

    Schmitz, John Thomas

    The performance and detailed flow physics of a transonic, low-pressure turbine (LPT) stage with design Zw=1.35, DeltahT/ U2 = 2.8, φ = 0.78, and eta = 90.5% has been investigated experimentally. Recent developments in boundary layer transition modeling were utilized in the aerodynamic design of the stage. Measurements were acquired in a recently developed, high-speed turbine facility constructed to investigate the effects that Reynolds number, nozzle exit flow, freestream turbulence, vane-blade spacing, and rim seal flows have on the loss generating mechanisms of a highly loaded LPT stage. Flow control techniques were applied at the stage inlet with the intent of reducing a source of stage losses. A research dissertation designed to provide understanding of the loss mechanisms that reduce the effectiveness of the Notre Dame Highly Loaded Turbine Stage 01 (ND-HiLT01) is described.

  10. Spatio-temporal characteristics of Trichel pulse at low pressure

    SciTech Connect

    He, Shoujie; Jing, Ha

    2014-01-15

    Trichel pulses are investigated using a needle-to-plane electrode geometry at low pressure. The evolution of current and voltage, the spatio-temporal discharge images of Trichel pulse are measured. The rising time and duration time in a pulse are about 10 μs and several tens of microseconds, respectively. One period of pulse can be divided into three stages: the stage preceding cathode breakdown, cathode glow formation, and discharge decaying process. Besides a cathode glow and a dark space, an anode glow is also observed. The emission spectra mainly originate from the C{sup 3}Π{sub u} → B{sup 3}Π{sub g} transition for nitrogen. In addition, the capacitances in parallel connected with the discharge cell have important influence on the pulsing frequency.

  11. Very low pressure high power impulse triggered magnetron sputtering

    SciTech Connect

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  12. Wall thinning criteria for low temperature-low pressure piping

    SciTech Connect

    Mertz, G.E.

    1993-01-01

    This acceptance criteria is intended to prevent gross rupture or rapidly propagating failure during normal and abnormal operating conditions. Pitting may be present in the carbon steel piping. While the acceptance criteria have provisions to preclude gross rupture through a pitted region, they do not protect against throughwall pit growth and subsequent leakage. Potential leakage through a pit in low pressure piping is less than the post-DBE design basis leakage. Both the uniform thinning and LTA criteria protect against leakage, since their potential for leakage is larger. The acceptance criteria protects against gross rupture due to general wall thinning, local wall thinning (LTA's), pitting, and fracture through weld defects. General wall thinning calculations are based on the restart criteria, SEP-24. LTA criteria for hoop stresses are based on ASME Code Case N-480 [open quotes]Examination Requirements for Pipe Wall Thinning Due to Single Phase Erosion and Corrosion[close quotes]. The LTA criteria for axial stress is based on an effective average thickness concept, which prevents plastic collapse of a locally thinned pipe. Limits on pit density, based on an effective cross section concept, are used to prevent gross rupture through a group of pits. The CEGB R-6 failure assessment diagram is used in the fracture evaluation, along with postulated weld defects. This criteria is intended for low temperature, low pressure piping systems. Corrosion and/or weld defects increase the peak stresses during normal operation and may lead to a reduction in fatigue life. Piping systems subject to significant thermal or mechanical fatigue will require additional analysis which is beyond the scope of this document.

  13. Low-pressure hydrogen plasmas explored using a global model

    NASA Astrophysics Data System (ADS)

    Samuell, Cameron M.; Corr, Cormac S.

    2016-02-01

    Low-pressure hydrogen plasmas have found applications in a variety of technology areas including fusion, neutral beam injection and material processing applications. To better understand these discharges, a global model is developed to predict the behaviour of electrons, ground-state atomic and molecular hydrogen, three positive ion species (H+, \\text{H}2+ , and \\text{H}3+ ), a single negative ion species (H-), and fourteen vibrationally excited states of molecular hydrogen ({{\\text{H}}2}≤ft(\\upsilon =1\\right. -14)). The model is validated by comparison with experimental results from a planar inductively coupled GEC reference cell and subsequently applied to the MAGPIE linear helicon reactor. The MAGPIE reactor is investigated for a range of pressures from 1 to 100 mTorr and powers up to 5 kW. With increasing power between 50 W and 5 kW at 10 mTorr the density of all charged species increases as well as the dissociative fraction while the electron temperature remains almost constant at around 3 eV. For gas pressures from 1-100 mTorr at an input power of 1 kW, the electron density remains almost constant, the electron temperature and dissociative fraction decreases, while \\text{H}3+ density increases in density and also dominates amongst ion species. Across these power and pressure scans, electronegativity remains approximately constant at around 2.5%. The power and pressure determines the dominant ion species in the plasma with \\text{H}3+ observed to dominate at high pressures and low powers whereas H+ tends to be dominant at low pressures and high powers. A sensitivity analysis is used to demonstrate how experimental parameters (power, pressure, reactor wall material, geometry etc) influence individual species’ density as well as the electron temperature. Physical reactor changes including the length, radius and wall recombination coefficient are found to have the largest influence on outputs obtained from the model.

  14. Analytical parametric investigation of low pressure ratio fan noise

    NASA Technical Reports Server (NTRS)

    Metzger, F. B.; Hanson, D. B.; Menthe, R. W.; Towle, G. B.

    1973-01-01

    The results of an analytical study are reported which shows the effect of various physical and operating parameters on noise produced by low pressure ratio propulsive fans operating at subsonic top speeds. Acoustical duct lining effects are included in the study. The concepts used to develop the noise theory used in the study, as well as the correlation between the theory and model test results are also presented. It is shown that good correlation has been established between theory and experiment. Using the theory, it is shown that good aerodynamic design, maximum acceptable fan solidity, low tip speed operation and use of few blades and vanes leads to the lowest noise levels. Typical results of the study indicate that a fan operating at 1.2 fan pressure ratio and 700 ft/second tip speed with 12 blades and 7 vanes and including modest acoustic treatment on the duct wall would produce levels allowing a 100,000 lb. STOL aircraft to meet a noise level objective of 95 PNdB at 500 ft at takeoff.

  15. Low pressure plasma diagnostics by cars and other techniques

    SciTech Connect

    Hata, N. )

    1989-01-01

    Within the past several years, intensive research activities relating amorphous-silicon technology have stimulated plasma-chemical-vapor-deposition (plasma-CVD) diagnostics by laser-spectroscopic techniques. Among them, coherent anti-Stokes Raman spectroscopy (CARS) has attracted much attention because of its great success in combustion diagnostics, and has been employed for low-pressure-plasma studies. Gas-phase species such as SiH{sub 4}, H{sub 2}, Si{sub 2}H{sub 6}, SiH{sub 2}, and GeH{sub 4} have been detected, time dependences of their concentration and spatial profiles of their concentration and rotational temperature have been determined, and the gas-phase mechanisms have been discussed. This talk will employ those results as examples, and discuss (1) the potential of CARS for gas-phase analysis in CVD (including (i) what species are monitored, (ii) what information is obtained, and (iii) what are the advantages and limitations), and (2) some other diagnostic techniques that provide additional information for better understandings of CVD mechanisms.

  16. "Politically-Incorrect" Electron Behavior in Low Pressure RF Discharges

    NASA Astrophysics Data System (ADS)

    Godyak, Valery; Kolobov, Vladimir

    1996-10-01

    The main interaction of plasma electrons with electromagnetic fields for bounded plasma of an rf discharge occurs in the vicinity of its boundaries (in the rf sheath of a capacitive rf discharge and in the skin layer of an inductive one). On the other hand, due to plasma inhomogeneity, a dc ambipolar field is always present in the bounded plasma. in low pressure discharges the ambipolar potential well captures low energy electrons within the discharge center while high energy electrons freely overcome the ambipolar potential and reach the plasma boundaries where heating takes place. Being segregated in space, low energy electrons are discriminated from participation in the heating process. When Coulomb interaction between low and high energy electron groups is weak, their temperatures appear to be essentially different ( a low energy peak on the EEDF). In this presentation we present theoretical and experimental evidence of such an apartheid in the low and high energy electron populations of the EEDF in rf discharge and we outline discharge conditions where such abnormal EEDF behavior is possible.

  17. Observing and Studying Extreme Low Pressure Events with Altimetry

    PubMed Central

    Carrère, Loren; Mertz, Françoise; Dorandeu, Joel; Quilfen, Yves; Patoux, Jerome

    2009-01-01

    The ability of altimetry to detect extreme low pressure events and the relationship between sea level pressure and sea level anomalies during extra-tropical depressions have been investigated. Specific altimeter treatments have been developed for tropical cyclones and applied to obtain a relevant along-track sea surface height (SSH) signal: the case of tropical cyclone Isabel is presented here. The S- and C-band measurements are used because they are less impacted by rain than the Ku-band, and new sea state bias (SSB) and wet troposphere corrections are proposed. More accurate strong altimeter wind speeds are computed thanks to the Young algorithm. Ocean signals not related to atmospheric pressure can be removed with accuracy, even within a Near Real Time context, by removing the maps of sea level anomaly (SLA) provided by SSALTO/Duacs. In the case of Extra-Tropical Depressions, the classical altimeter processing can be used. Ocean signal not related to atmospheric pressure is along-track filtered. The sea level pressure (SLP)-SLA relationship is investigated for the North Atlantic, North Pacific and Indian oceans; three regression models are proposed allowing restoring an altimeter SLP with a mean error of 5 hPa if compared to ECMWF or buoys SLP. The analysis of barotropic simulation outputs points out the regional variability of the SLP/Model Sea Level relationship and the wind effects. PMID:22573955

  18. Thermodynamic analysis of cascade microcryocoolers with low pressure ratios

    SciTech Connect

    Radebaugh, Ray

    2014-01-29

    The vapor-compression cycle for refrigeration near ambient temperature achieves high efficiency because the isenthalpic expansion of the condensed liquid is a rather efficient process. However, temperatures are limited to about 200 K with a single-stage system. Temperatures down to 77 K are possible with many stages. In the case of microcryocoolers using microcompressors, pressure ratios are usually limited to about 6 or less. As a result, even more stages are required to reach 77 K. If the microcompressors can be fabricated with low-cost wafer-level techniques, then the use of many stages with separate compressors may become a viable option for achieving temperatures of 77 K with high efficiency. We analyze the ideal thermodynamic efficiency of a cascade Joule-Thomson system for various temperatures down to 77 K and with low pressure ratios. About nine stages are required for 77 K, but fewer stages are also analyzed for operation at higher temperatures. For 77 K, an ideal second-law efficiency of 83 % of Carnot is possible with perfect recuperative heat exchangers and 65 % of Carnot is possible with no recuperative heat exchangers. The results are compared with calculated efficiencies in mixed-refrigerant cryocoolers over the range of 77 K to 200 K. Refrigeration at intermediate temperatures is also available. The use of single-component fluids in each of the stages is expected to eliminate the problem of pulsating flow and temperature oscillations experienced in microcryocoolers using mixed refrigerants.

  19. Performance assessment of low pressure nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, H. P., Jr.; Doughty, G. E.

    1993-01-01

    A low pressure nuclear thermal propulsion (LPNTP) system, which takes advantage of hydrogen dissociation/recombination, was proposed as a means of increasing engine specific impulse (Isp). The effect of hydrogen dissociation/recombination on LPNTP Isp is examined. A two-dimensional computer model was used to show that the optimum chamber pressure is approximately 100 psia (at a chamber temperature of 3,000 K), with an Isp approximately 15 s higher than at 1,000 psia. At high chamber temperatures and low chamber pressures, the increase in Isp is due to both lower average molecular weights caused by dissociation and added kinetic energy from monatomic hydrogen recombination. Monatomic hydrogen recombination increases the Isp more then hydrogen dissociation. Variations in the mole fraction of monatomic hydrogen are similar to variations in static pressure along the axial nozzle position. Most recombination occurs close to the nozzle throat. Practical variations in nozzle geometry have minimal impact on recombination. Other models which can simulate a wider range of nozzle designs should be used in the future. The uncertainty of the hydrogen kinetic reaction rates at high temperatures (approximately 3,000 K) affects the accuracy of the analysis and should be verified with simple bench tests.

  20. Downhole steam generator using low pressure fuel and air supply

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  1. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  2. Low pressure characteristics of the multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter; Oberrath, Jens

    2014-10-01

    The term ``Active plasma resonance spectroscopy'' (APRS) denotes a class of related techniques which utilize, for diagnostic purposes, the natural ability of plasmas to resonate on or near the electron plasma frequency ωpe. The basic idea dates back to the early days of discharge physics but has recently found renewed interest as an approach to industry-compatible plasma diagnostics: A radio frequent signal (in the GHz range) is coupled into the plasma via an antenna or probe, the spectral response is recorded (with the same or another antenna or probe), and a mathematical model is used to determine plasma parameters like the electron density or the electron temperature. When the method is applied to low pressure plasmas (of a few Pa and lower), kinetic effects must be accounted for in the mathematical model. This contribution studies a particular realization of the APRS scheme, the geometrically and electrically symmetric Multipole Resonance Probe (MRP). It is shown that the resonances of the MRP exhibit a residual damping in the limit p --> 0 which cannot be explained by Ohmic dissipation but only by kinetic effects. Supported by the German Federal Ministry of Education and Research (BMBF) in the framework of the PluTO project.

  3. Longitudinal discharge pumped low-pressure XeCl laser

    SciTech Connect

    Fedorov, A I

    2013-10-31

    We have studied output parameters of a XeCl and a N{sub 2} laser pumped by a longitudinal discharge with automatic spark UV preionisation. The output parameters of a low-pressure (30 Torr) XeCl laser operating with Ar, Ne and He as buffer gases or with no buffer gas have been optimised for the first time. The laser generated 5-ns FWHM pulses with an average power of 0.5 mW and output energy of 0.15 mJ. Under longitudinal discharge pumping, an output energy per unit volume of 1.8 J L{sup -1} atm{sup -1} was reached using helium as a buffer gas. With argon-containing and buffer-free mixtures, it was 1.5 J L{sup -1} atm{sup -1}. The N{sub 2} laser generated 2.5-ns FWHM pulses with an average power of 0.35 mW and output energy of 0.05 mJ. (lasers)

  4. Low-pressure microwave plasma sterilization of polyethylene terephthalate bottles.

    PubMed

    Deilmann, Michael; Halfmann, Helmut; Bibinov, Nikita; Wunderlich, Joachim; Awakowicz, Peter

    2008-10-01

    A low-pressure microwave plasma reactor was developed for sterilization of polyethylene terephthalate (PET) bottles. In contrast to the established method using aseptic filling machines based on toxic sterilants, here a microwave plasma is ignited inside a bottle by using a gas mixture of nitrogen, oxygen, and hydrogen. To that effect, a reactor setup was developed based on a Plasmaline antenna allowing for plasma ignition inside three-dimensional packages. A treatment time below 5 s is provided for a reduction of 10(5) and 10(4) CFU of Bacillus atrophaeus and Aspergillus niger, respectively, verified by means of a count reduction test. The sterilization results obtained by means of this challenge test are in accordance with requirements for aseptic packaging machines as defined by the U.S. Food and Drug Administration and the German Engineering Federation. The plasma sterilization process developed here for aseptic filling of beverages is a dry process that avoids residues and the use of maximum allowable concentrations of established sterilants, e.g., hydrogen peroxide.

  5. A DSMC Study of Low Pressure Argon Discharge

    NASA Astrophysics Data System (ADS)

    Hash, David; Meyyappan, M.

    1997-10-01

    Work toward a self-consistent plasma simulation using the DSMC method for examination of the flowfields of low-pressure high density plasma reactors is presented. Presently, DSMC simulations for these applications involve either treating the electrons as a fluid or imposing experimentally determined values for the electron number density profile. In either approach, the electrons themselves are not physically simulated. Self-consistent plasma DSMC simulations have been conducted for aerospace applications but at a severe computational cost due in part to the scalar architectures on which the codes were employed. The present work attempts to conduct such simulations at a more reasonable cost using a plasma version of the object-oriented parallel Cornell DSMC code, MONACO, on an IBM SP-2. Due the availability of experimental data, the GEC reference cell is chosen to conduct preliminary investigations. An argon discharge is examined thus affording a simple chemistry set with eight gas-phase reactions and five species: Ar, Ar^+, Ar^*, Ar_2, and e where Ar^* is a metastable.

  6. A DSMC Study of Low Pressure Argon Discharge

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Work toward a self-consistent plasma simulation using the DSMC (Direct Simulation Monte Carlo) method for examination of the flowfields of low-pressure high density plasma reactors is presented. Presently, DSMC simulations for these applications involve either treating the electrons as a fluid or imposing experimentally determined values for the electron number density profile. In either approach, the electrons themselves are not physically simulated. Self-consistent plasma DSMC simulations have been conducted for aerospace applications but at a severe computational cost due in part to the scalar architectures on which the codes were employed. The present work attempts to conduct such simulations at a more reasonable cost using a plasma version of the object-oriented parallel Cornell DSMC code, MONACO, on an IBM SP-2. Due to availability of experimental data, the GEC reference cell is chosen to conduct preliminary investigations. An argon discharge is chosen to conduct preliminary investigations. An argon discharge is examined thus affording a simple chemistry set with eight gas-phase reactions and five species: Ar, Ar(+), Ar(*), Ar(sub 2), and e where Ar(*) is a metastable.

  7. Fuel Cells Utilizing Oxygen From Air at Low Pressures

    NASA Technical Reports Server (NTRS)

    Cisar, Alan; Boyer, Chris; Greenwald, Charles

    2006-01-01

    A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.

  8. Treatment of Acute Low Pressure Pulmonary Edema in Dogs

    PubMed Central

    Prewitt, R. M.; McCarthy, J.; Wood, L. D. H.

    1981-01-01

    Severe pulmonary edema sometimes develops despite normal pulmonary capillary wedge pressure (Ppw). The equation describing net transvascular flux of lung liquid predicts decreased edema when hydrostatic pressure is reduced or when colloid osmotic pressure is increased in the pulmonary vessels. We tested these predictions in a model of pulmonary capillary leak produced in 35 dogs by intravenous oleic acid. 1 h later, the dogs were divided into five equal groups and treated for 4 h in different ways: (a) not treated, to serve as the control group (Ppw = 11.1 mm Hg); (b) given albumin to increase colloid osmotic pressure by 5 mm Hg (Ppw = 10.6 mm Hg); (c) ventilated with 10 cm H2O positive end-expiratory pressure (Peep) (transmural Ppw = 10.4 mm Hg); (d) phlebotomized to reduce Ppw to 6 mm Hg; (e) infused with nitroprusside, which also reduced Ppw to 6 mm Hg. Phlebotomy and nitroprusside reduced the edema in excised lungs by 50% (P< 0.001), but Peep and albumin did not affect the edema. Pulmonary shunt decreased on Peep and increased on nitroprusside, and lung compliance was not different among the treatment groups, demonstrating that these variables are poor indicators of changes in edema. Cardiac output decreased during the treatment period in all but the nitroprusside group, where Ppw decreased and cardiac output did not. We conclude that canine oleic acid pulmonary edema is reduced by small reductions in hydrostatic pressure, but not by increased colloid osmotic pressure, because the vascular permeability to liquid and protein is increased. These results suggest that low pressure pulmonary edema may be reduced by seeking the lowest Ppw consistent with adequate cardiac output enhanced by vasoactive agents like nitroprusside. Further, colloid infusions and Peep are not helpful in reducing edema, so they may be used in the lowest amount that provides adequate circulating volume and arterial O2 saturation on nontoxic inspired O2. Until these therapeutic principles

  9. Low pressure granulites from the Bohemian Massif, Upper Austria

    NASA Astrophysics Data System (ADS)

    Sorger, Dominik; Daghighi, Donia; Simic, Katica; Pichler, Ruth; Schwaiger, Christian; Hauzenberger, Christoph; Linner, Manfred; Iglseder, Christoph

    2014-05-01

    Low pressure granulite facies rocks are commonly found in the Bohemian Massif in Upper Austria. They belong to the Moldanubian Unit and were metamorphosed during the last stage of the Variscan orogeny. The investigated granulites from the Donau valley (west of Linz), Lichtenberg (northwest of Linz), Sauwald (south of the river Danube) and Bad Leonfelden zone comprise mainly migmatic paragneisses. Most of these rocks underwent high degrees of melting forming meta- and diatexites (''Perlgneise)''. Al-rich metapelites with partly cm-sized garnet porphyroblasts, which are suitable for precise PT and PT-path determinations, can be found in some localities of this unit. In this study samples taken along the Danube valley between Linz and Wilhering, from Lichtenberg and from Bad Leonfelden (north of Linz) were sampled and investigated petrographically in detail. Since garnets are rare and usually consumed by cordierite, a sample with large garnets was investigated in detail. A chemical zoning profile across the c. 1cm large garnet displayed elevated Ca contents (Xgrs=0.06) in the central part which decreased discontinuously towards the rim to Xgrs=0.02. Almandine, pyrope and spessartine components do not show any pronounced zoning pattern. Most of the smaller garnet grains in other samples are also homogeneous in composition with a slight Xalm increase and Xprp decrease at the rims, typical for retrograde diffusional zoning. The cordierite-garnet-sillimanite-granulites as well as some mafic granulites were used for geothermobarometry. Metamorphic conditions of around 770°C to 850°C and 0.5-0.6 GPa could be obtained, which are similar to the values obtained by Tropper et al. (2006). P. Tropper I. Deibl F. Finger R. Kaindl (2006). P-T-t evolution of spinel-cordierite-garnet gneisses from the Sauwald Zone (Southern Bohemian Massif, Upper Austria): is there evidence for two independent late-Variscan low-P / high-T events in the Moldanubian Unit? Int J Earth Sci (Geol

  10. How low can you go? Low pressure drop laboratory design

    SciTech Connect

    Weale, John; Rumsey, Peter; Sartor, Dale; Lock, Lee Eng

    2001-12-01

    Laboratory buildings are characterized by the production of potentially hazardous fumes within the occupied space. The primary objective of a laboratory ventilation system is to isolate and protect the occupants from the fumes, as well as provide minimum outside air at a comfortable temperature. Fume removal results in the need for a large volume of conditioned make-up air, typically a significantly greater volume than required for space temperature conditioning purposes. The high quantity of exhaust naturally results in a once through system, which is also often required by codes that prohibit any recirculation in a laboratory space. The high costs associated with high airflow systems are magnified by the 24 hours a day, 356 days a year ventilation operation often seen in laboratory situations. All too often, the common design approach taken to laboratory mechanical systems results in a traditional office ventilation system upsized to meet a laboratory's requirements. Recognizing the unique aspects of laboratory requirements and operation is essential to optimizing the mechanical system. Figure 1 shows a breakdown of a laboratory building's electricity use, based on a DOE 2 model of a baseline laboratory building design for Montana State University (Bozeman, MT). In laboratory buildings, the largest and easiest target for energy use reduction is usually the ventilation energy. At about 50 percent of the buildings total electricity usage, a 15 percent reduction in the power required by the ventilation system would save more energy than eliminating all lighting energy. As the largest component of a laboratory's energy consumption, the ventilation system is the first target to reduce the energy bill. Significantly improving the standard design efficiency of a ventilation system requires a lower air pressure drop system on both the supply and exhaust system. Implementing low-pressure drop design strategies from the early stages of the design process will result in

  11. Potential conservation opportunities from the use of low-pressure irrigation in the Pacific Northwest region

    SciTech Connect

    Harrer, B.J.; Lezberg, A.J.

    1984-12-01

    Four types of low-pressure irrigation technologies were examined in reference to their energy-savings potential and their costs per kWh of savings. Various conversion alternatives were selected for analysis from among the technologies of low-pressure single spray systems, low-pressure spray booms, furrow drop-tubes, and low-pressure impact sprinklers. A summary of the conversion alternatives that were analyzed and the major results for each alternative is presented. The energy-savings input parameters selected for use in this analysis were generally in the low range of available estimates and the cost input parameters were generally in the high range of available estimates.

  12. The NASA Low-Pressure Turbine Flow Physics Program

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.

    1998-01-01

    An overview of the NASA Lewis Low-Pressure Turbine (LPT) Flow Physics Program will be presented. The program was established in response to the aero-engine industry's need for improved LPT efficiency and designs. Modern jet engines have four to seven LPT stages, significantly contributing to engine weight. In addition, there is a significant efficiency degradation between takeoff and cruise conditions, of up to 2 points. Reducing the weight and part count of the LPT and minimizing the efficiency degradation will translate into fuel savings. Accurate prediction methods of LPT flows and losses are needed to accomplish those improvements. The flow in LPT passages is at low Reynolds number, and is dominated by interplay of three basic mechanisms: transition, separation and wake interaction. The affecting parameters traditionally considered are Reynolds number, freestream turbulence intensity, wake frequency parameter, and the pressure distribution (loading). Three-dimensional effects and additional parameters, particularly turbulence characteristics like length scales, spectra and other statistics, as well as wake turbulence intensity and properties also play a role. The flow of most interest is on the suction surface, where large losses are generated as the flow tends to separate at the low Reynolds numbers. Ignoring wakes, a common flow scenario, there is laminar separation, followed by transition on the separation bubble and turbulent reattachment. If transition starts earlier the separation will be eliminated and the boundary layer will be attached leading to the well known bypass transition issues. In contrast, transition over a separation bubble is closer to free shear layer transition and was not investigated as well, particularly in the turbine environment. Unsteadiness created by wakes complicates the picture. Wakes induce earlier transition, and the calmed regions trailing the induced turbulent spots can delay or eliminate separation via shear stress

  13. Evaluation of Low-Pressure Cold Plasma for Disinfection of ISS Grown Produce and Metal Instruments

    NASA Technical Reports Server (NTRS)

    Hummerick, Mary E.; Hintze, Paul E.; Maloney, Philip R.; Spencer, Lashelle E.; Coutts, Janelle L.; Franco, Carolina

    2016-01-01

    Low pressure cold plasma, using breathing air as the plasma gas, has been shown to be effective at precision cleaning aerospace hardware at Kennedy Space Center.Both atmospheric and low pressure plasmas are relatively new technologies being investigated for disinfecting agricultural commodities and medical instruments.

  14. Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors

    NASA Technical Reports Server (NTRS)

    Seda, Jorge F. (Inventor); Dunbar, Lawrence W. (Inventor); Gliebe, Philip R. (Inventor); Szucs, Peter N. (Inventor); Brauer, John C. (Inventor); Johnson, James E. (Inventor); Moniz, Thomas (Inventor); Steinmetz, Gregory T. (Inventor)

    2003-01-01

    An aircraft gas turbine engine assembly includes an inter-turbine frame axially located between high and low pressure turbines. Low pressure turbine has counter rotating low pressure inner and outer rotors with low pressure inner and outer shafts which are at least in part rotatably disposed co-axially within a high pressure rotor. Inter-turbine frame includes radially spaced apart radially outer first and inner second structural rings disposed co-axially about a centerline and connected by a plurality of circumferentially spaced apart struts. Forward and aft sump members having forward and aft central bores are fixedly joined to axially spaced apart forward and aft portions of the inter-turbine frame. Low pressure inner and outer rotors are rotatably supported by a second turbine frame bearing mounted in aft central bore of aft sump member. A mount for connecting the engine to an aircraft is located on first structural ring.

  15. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    PubMed

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  16. Energy efficient engine low-pressure compressor component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Michael, C. J.; Halle, J. E.

    1981-01-01

    The aerodynamic and mechanical design description of the low pressure compressor component of the Energy Efficient Engine were used. The component was designed to meet the requirements of the Flight Propulsion System while maintaining a low cost approach in providing a low pressure compressor design for the Integrated Core/Low Spool test required in the Energy Efficient Engine Program. The resulting low pressure compressor component design meets or exceeds all design goals with the exception of surge margin. In addition, the expense of hardware fabrication for the Integrated Core/Low Spool test has been minimized through the use of existing minor part hardware.

  17. Use of thermodynamic properties of metal-gas systems as low-pressure standards

    NASA Technical Reports Server (NTRS)

    Lundin, C. E.

    1970-01-01

    Modified version of Sievert's apparatus accurately calibrates low pressure measuring instruments. Metal-gas system is composed of hydrogen in two-phase equilibrium with erbium to obtain reproducible hydrogen pressures.

  18. A fast low-pressure transport route to large black phosphorus single crystals

    SciTech Connect

    Nilges, Tom Kersting, Marcel; Pfeifer, Thorben

    2008-08-15

    Black phosphorus, a promising candidate for lithium battery electrodes, can be prepared by a low-pressure transport reaction route representing the first effective and scalable access to this element modification. Crystal sizes larger than 1 cm were obtained at low-pressure conditions in silica ampoules. X-ray phase analyses, EDX, ICP-MS and optical microscopy were applied to characterize the resulting black phosphorus. The present method drastically improves the traditional preparation ways like mercury catalysis, bismuth-flux or high-pressure techniques and represents an easy, non-toxic, fast and highly efficient method to achieve black phosphorus. In contrast to a previously reported low-pressure route the present transport reaction allows an up-scaling to higher masses of starting materials, a larger black phosphorus yield and faster reaction time under retention of the high product crystallinity. - Graphical abstract: A low-pressure transport reaction route representing the first effective and scalable access to black phosphorus.

  19. Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars

    NASA Astrophysics Data System (ADS)

    Mickol, R. L.; Kral, T. A.

    2016-09-01

    The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species (Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar - 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days - 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.

  20. Growth and mitochondrial respiration of mungbeans (Phaseolus aureus Roxb.) germinated at low pressure

    NASA Technical Reports Server (NTRS)

    Musgrave, M. E.; Gerth, W. A.; Scheld, H. W.; Strain, B. R.

    1988-01-01

    Mungbean (Phaseolus aureus Roxb.) seedlings were grown hypobarically to assess the effects of low pressure (21-24 kilopascals) on growth and mitochondrial respiration. Control seedlings grown at ambient pressure (101 kilopascals) were provided amounts of O2 equivalent to those provided experimental seedlings at reduced pressure to factor out responses to O2 concentration and to total pressure. Respiration was assayed using washed mitochondria, and was found to respond only to O2 concentration. Regardless of total pressure, seedlings grown at 2 millimoles O2 per liter had higher state 3 respiration rates and decreased percentages of alternative respiration compared to ambient (8.4 millimoles O2 per liter) controls. In contrast, seedling growth responded to total pressure but not to O2 concentration. Seedlings were significantly larger when grown under low pressure. While low O2 (2 millimoles O2 per liter) diminished growth at ambient pressure, growth at low pressure in the same oxygen concentration was enhanced. Respiratory development and growth of mungbean seedlings under low pressure is unimpaired whether oxygen or air is used as the chamber gas, and further, low pressure can improve growth under conditions of poor aeration.

  1. Treatment of refractory low-pressure hydrocephalus with an active pumping negative-pressure shunt system.

    PubMed

    Kalani, M Yashar S; Turner, Jay D; Nakaji, Peter

    2013-03-01

    Low-pressure hydrocephalus is a rare type of hydrocephalus characterized by negative intracranial pressure (ICP) and ventriculomegaly. Given the shortcomings of available methods to treat refractory low-pressure hydrocephalus, we set out to develop a new system for evacuation of cerebrospinal fluid (CSF) from the ventricular system where existing shunt systems do not produce the necessary gradient for CSF drainage. We retrospectively reviewed the charts of two patients with the diagnosis of negative-pressure hydrocephalus refractory to traditional treatments. We combined a traditional low-pressure, non-siphoning valve with a pumping chamber placed distal to the valve to create a system that could be actively pumped to remove excess CSF. Treatment of negative-pressure hydrocephalus requires the establishment of a lower ventricular drainage pressure than the drainage pressure in the subarachnoid space. In refractory cases, we propose the use of this active negative-pressure pumping system.

  2. Thin and Dense Ceramic Coatings by Plasma Spraying at Very Low Pressure

    NASA Astrophysics Data System (ADS)

    Mauer, Georg; Vaßen, Robert; Stöver, Detlev

    2010-01-01

    The very low pressure plasma spray (VLPPS) process operates at a pressure range of approximately 100 Pa. At this pressure, the plasma jet interaction with the surrounding atmosphere is very weak. Thus, the plasma velocity is almost constant over a large distance from the nozzle exit. Furthermore, at these low pressures the collision frequency is distinctly reduced and the mean free path is strongly increased. As a consequence, at low pressure the specific enthalpy of the plasma is substantially higher, but at lower density. These particular plasma characteristics offer enhanced possibilities to spray thin and dense ceramics compared to conventional processes which operate in the pressure range between 5 and 20 kPa. This paper presents some examples of gas-tight and electrically insulating coatings with low thicknesses <50 μm for solid oxide fuel cell applications. Furthermore, plasma spraying of oxygen conducting membrane materials such as perovskites is discussed.

  3. Experimental and Numerical Investigation of Losses in Low-Pressure Turbine Blade Rows

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Lake, James P.; King, Paul I.; Ashpis, David E.

    2000-01-01

    Experimental data and numerical simulations of low-pressure turbines have shown that unsteady blade row interactions and separation can have a significant impact on the turbine efficiency. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Several recent studies have revealed that the performance of low-pressure turbine blades is a strong function of the Reynolds number. In the current investigation, experiments and simulations have been performed to study the behavior of a low-pressure turbine blade at several Reynolds numbers. Both the predicted and experimental results indicate increased cascade losses as the Reynolds number is reduced to the values associated with aircraft cruise conditions. In addition, both sets of data show that tripping the boundary layer helps reduce the losses at lower Reynolds numbers. Overall, the predicted aerodynamic and performance results exhibit fair agreement with experimental data.

  4. Low Pressure Seeder Development for PIV in Large Scale Open Loop Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Schmit, Ryan

    2010-11-01

    A low pressure seeding techniques have been developed for Particle Image Velocimetry (PIV) in large scale wind tunnel facilities was performed at the Subsonic Aerodynamic Research Laboratory (SARL) facility at Wright-Patterson Air Force Base. The SARL facility is an open loop tunnel with a 7 by 10 foot octagonal test section that has 56% optical access and the Mach number varies from 0.2 to 0.5. A low pressure seeder sprayer was designed and tested in the inlet of the wind tunnel. The seeder sprayer was designed to produce an even and uniform distribution of seed while reducing the seeders influence in the test section. ViCount Compact 5000 using Smoke Oil 180 was using as the seeding material. The results show that this low pressure seeder does produce streaky seeding but excellent PIV images are produced.

  5. Low-pressure airlift fermenter for single cell protein production: II. Continuous culture of Pichia yeast

    SciTech Connect

    Chen, N.Y.; Srinivasan, S.; Leavitt, R.I.; Coty, V.F.; Kondis, E.F.

    1987-03-01

    Experiments using Pichia yeast grown on n-paraffins have been conducted in laboratory 10-l airlift fermenters and in a 640-l module of commercial scale. Results confirmed the design concept with low-pressure air. However, in the absence of mass transport constraints, the build up of toxic factors in the fermenter appeared to a major variable limiting cell productivity. Foaming in the large fermenter also presented a serious problem, which must be solved before low-pressure airlift fermenters become practical. 14 references.

  6. Germination of white radish, buckwheat and qing-geng-cai under low pressure in closed environment.

    PubMed

    Hinokuchi, Tsutomu; Oshima, Satoshi; Hashimoto, Hirofumi

    2004-11-01

    In order to cultivate plants under low pressure in closed environment, the germination rate of seeds of white radish was investigated under low pressure, low oxygen partial pressure and condition of pure oxygen. The result of these experiments showed that the germination rate was affected by the oxygen partial pressure. From this fact, it is possible to lower the total pressure by using only the pure oxygen in germination. Furthermore, the germination rates of seeds of buckwheat and qing-geng-cai were also investigated in pure oxygen for the comparison. Consequently, though tendency in germination rate of white radish was similar to qing-geng-cai, it was different from buckwheat.

  7. On the mechanism of low-pressure imprint lithography: capillarity vs viscous flow.

    PubMed

    Khang, Dahl-Young; Lee, Hong H

    2008-05-20

    Dominant mechanisms in low-pressure imprint lithography processes have been identified for the regimes that are definable in terms of applied pressure, temperature, and mold material characteristics. Capillarity is found to be the dominant mechanism at high temperature and low pressure when stiff, hard molds are used. In the case of flexible thin-film ( approximately 20 microm) molds, both the capillarity and the viscous flow are involved. Both mechanisms are operative in the initial stage of the imprinting, but the capillarity takes over as time progresses.

  8. Generalization of low pressure, gas-liquid, metastable sound speed to high pressures

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.

    1981-01-01

    A theory is developed for isentropic metastable sound propagation in high pressure gas-liquid mixtures. Without simplification, it also correctly predicts the minimum speed for low pressure air-water measurements where other authors are forced to postulate isothermal propagation. This is accomplished by a mixture heat capacity ratio which automatically adjusts from its single phase values to approximately the isothermal value of unity needed for the minimum speed. Computations are made for the pure components parahydrogen and nitrogen, with emphasis on the latter. With simplifying assumptions, the theory reduces to a well known approximate formula limited to low pressure.

  9. Study of Low Reynolds Number Effects on the Losses in Low-Pressure Turbine Blade Rows

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Ashpis, David E.

    1998-01-01

    Experimental data from jet-engine tests have indicated that unsteady blade row interactions and separation can have a significant impact on the efficiency of low-pressure turbine stages. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Several recent studies have revealed that Reynolds number effects may contribute to the lower efficiencies at cruise conditions. In the current study numerical experiments have been performed to study the models available for low Reynolds number flows, and to quantify the Reynolds number dependence of low-pressure turbine cascades and stages. The predicted aerodynamic results exhibit good agreement with design data.

  10. Detection of localized hot electrons in low-pressure large-area microwave discharges

    NASA Astrophysics Data System (ADS)

    Terebessy, Tibor; Kando, Masashi; Kudela, Jozef

    2000-10-01

    A localized hot-electron region was observed in low-pressure (<3 mTorr) large-area microwave discharges. The region appears in the vicinity of the waveguiding plasma-dielectric interface in the place of critical plasma density. The existence of localized hot electrons is explained on the basis of transit time heating in the resonantly enhanced electric field. The phenomenon provides experimental evidence that the plasma resonance region plays an active role in heating mechanism in low-pressure microwave discharges.

  11. Two-Dimensional Plasma Density Distributions in Low-Pressure Gas Discharges

    SciTech Connect

    Berlin, E.V.; Dvinin, S.A.; Mikheev, V.V.; Omarov, M.O.; Sviridkina, V. S.

    2004-12-15

    The plasma density distribution in a two-dimensional nonuniform positive column of a low-pressure gas discharge is studied in the hydrodynamic approximation with allowance for ion inertia. Exact solutions are derived for discharges in a rectangular and a cylindrical chamber. Asymptotic solutions near the coordinate origin and near the critical surface are considered. It is shown that, for potential plasma flows, the flow velocity component normal to the plasma boundary is equal to the ion acoustic velocity. The results obtained can be used to analyze the processes occurring in low-pressure plasmochemical reactors.

  12. 49 CFR 192.623 - Maximum and minimum allowable operating pressure; Low-pressure distribution systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum and minimum allowable operating pressure; Low-pressure distribution systems. 192.623 Section 192.623 Transportation Other Regulations Relating... SAFETY STANDARDS Operations § 192.623 Maximum and minimum allowable operating pressure;...

  13. Support arrangement for optimizing a low pressure steam turbine inner cylinder structural performance

    SciTech Connect

    Groenendaal, J.C. Jr.; Anemone, J.J.

    1992-07-28

    This patent describes low pressure steam turbine apparatus having inner and outer cylinders, the outer cylinder having a support shelf, and inner cylinder support means for providing flexible support of the inner cylinder on the outer cylinder. It comprises: a horizontal joint flange and at least one support foot integrally connected thereto which projects substantially radially outward form the horizontal joint flange.

  14. Effect of Relative Humidity and Product Moisture on Efficacy of Low Pressure Treatments Against Indianmeal Moth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low pressure treatment in flexible PVC containers is a potential alternative to chemical fumigants for California tree nuts. Laboratory studies investigated the effect of relative humidity and product moisture on weight loss and mortality of diapausing and non-diapausing larvae of the Indianmeal mo...

  15. Review of recent developments and applications in low-pressure (vacuum outlet) gas chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of low pressure (LP) vacuum outlet gas chromatography (GC) was introduced more than 50 years ago, but it was not until the 2000s that its theoretical applicability to fast analysis of GC-amenable chemicals was realized. In practice, LPGC is implemented by placing the outlet of a short, ...

  16. Gray water recycle: Effect of pretreatment technologies on low pressure reverse osmosis treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gray water can be a valuable source of water when properly treated to reduce the risks associated with chemical and microbial contamination to acceptable levels for the intended reuse application. In this study, the treatment of gray water using low pressure reverse osmosis (RO) filtration after pre...

  17. Engine having a high pressure hydraulic system and low pressure lubricating system

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

  18. Using the EMD method to determine fault criterion for medium-low pressure gas regulators

    NASA Astrophysics Data System (ADS)

    Hao, Xuejun; Liu, Qiang; Yang, Guobin; Du, Yi

    2015-11-01

    By extracting the outlet pressure data of gas regulators, this paper uses the EMD toolbox of the MATLAB software, which can perform data decomposition and the Hilbert-Huang Transform to find the rules with fault data. Eventually, the medium-low pressure gas regulator fault criterion can be established.

  19. Spectroscopy of alloying and low-pressure elements with the thermionic diode

    NASA Astrophysics Data System (ADS)

    Niemax, K.; Weber, K.-H.

    1985-04-01

    We describe a simple modification of the thermionic heat-pipe diode which allows to study spectroscopically alloying and low-pressure elements. The function and the potential of the modified diode is demonstrated by measuring Doppler-free two-photon lines in gallium, indium and thallium.

  20. The beauty of frost: nano-sulfur assembly via low pressure vapour deposition.

    PubMed

    Wang, Yu; Chen, Lu; Scudiero, Louis; Zhong, Wei-Hong

    2015-11-14

    A low pressure vapour deposition (LPVD) technique is proposed as an environmentally friendly, cost-effective and versatile strategy for fabrication of sulfur nanomaterials. By controlling the characteristics of the deposit substrate for the LPVD, various sulfur-based nanomaterials have been obtained through a substrate-induced self-assembly process.

  1. Shrinkage behavior of low profile unsaturated polyester resins at low temperature and low pressure

    SciTech Connect

    Wen Li; Lee, L.J.

    1996-12-31

    In order to achieve excellent surface quality and dimension control of molded polymer composites, low profile additives (LPA) are widely used in low shrinkage unsaturated polyester (UPE) molding compound. Although the detailed LPA mechanism is still a subject of controversy, it is now generally agreed that the most important factor for the low profile behavior is the strong phase separation between LPA and UPE resin during curing. Among the extensive studies of LPA mechanism, most of the work focused on the reaction at high temperatures, since LPAs found most of their applications in high temperature and high pressure processes like sheet molding compound (SMC) and bulk molding compound (BMC). Recently, because of the growing interests of new processes such as low pressure SMC and vacuum infusion resin transfer molding, low shrinkage molding compound with the ability to be processed at low temperature and low pressure have attracted considerable attention from the composite industry. Therefore, further understanding of the low profile mechanism at low temperature and low pressure cure is necessary. Moreover, the relatively long reaction time at low temperature cure provides an opportunity to decouple the factors such as phase separation and microvoid formation, which occur almost at the same time in high temperature cure. The objective of this study is to determine LPA performance as well as to provide a better understanding of low profile mechanism at low temperature and low pressure.

  2. An Engine Research Program Focused on Low Pressure Turbine Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Wyzykowski, John; Chiapetta, Santo; Adamczyk, John

    2002-01-01

    A comprehensive test program was performed in the Propulsion Systems Laboratory at the NASA Glenn Research Center, Cleveland Ohio using a highly instrumented Pratt and Whitney Canada PW 545 turbofan engine. A key objective of this program was the development of a high-altitude database on small, high-bypass ratio engine performance and operability. In particular, the program documents the impact of altitude (Reynolds Number) on the aero-performance of the low-pressure turbine (fan turbine). A second objective was to assess the ability of a state-of-the-art CFD code to predict the effect of Reynolds number on the efficiency of the low-pressure turbine. CFD simulation performed prior and after the engine tests will be presented and discussed. Key findings are the ability of a state-of-the art CFD code to accurately predict the impact of Reynolds Number on the efficiency and flow capacity of the low-pressure turbine. In addition the CFD simulations showed the turbulent intensity exiting the low-pressure turbine to be high (9%). The level is consistent with measurements taken within an engine.

  3. SEPARATION OF HAZARDOUS ORGANICS BY LOW PRESSURE REVERSE OSMOSIS MEMBRANES - PHASE II FINAL REPORT

    EPA Science Inventory

    Extensive experimental studies showed that thin-film, composite membranes can be used effectively for the separation of selected hazardous organic compounds. This waste treatment technique offers definite advantages in terms of high solute separations at low pressures (<2MPa) and...

  4. ASSESSING THE EFFECTIVENESS OF LOW PRESSURE ULTRAVIOLET LIGHT FOR INACTIVATING HELICOBACTER PYLORI

    EPA Science Inventory

    Three strains of Helicobacter pylori were exposed to ultraviolet (UV) light from a low-pressure source to determine log inactivation versus applied fluence. Results indicate that H. pylori is readily inactivated at UV fluences typically used in water treatment r...

  5. High- and low-pressure pneumotachometers measure respiration rates accurately in adverse environments

    NASA Technical Reports Server (NTRS)

    Fagot, R. J.; Mc Donald, R. T.; Roman, J. A.

    1968-01-01

    Respiration-rate transducers in the form of pneumotachometers measure respiration rates of pilots operating high performance research aircraft. In each low pressure or high pressure oxygen system a sensor is placed in series with the pilots oxygen supply line to detect gas flow accompanying respiration.

  6. Interplay between lattice dynamics and the low-pressure phase of simple cubic polonium

    NASA Astrophysics Data System (ADS)

    Zaoui, A.; Belabbes, A.; Ahuja, R.; Ferhat, M.

    2011-04-01

    Low-pressure structural properties of simple cubic polonium are explored through first-principles density-functional theory based relativistic total energy calculations using pseudopotentials and plane-wave basis set, as well as linear-response theory. We have found that Po undergoes structural phase transition at low pressure near 2 GPa, where the element transforms from simple cubic to a mixture of two trigonal phases namely, hR1 (α=86°) and hR2 (α=97.9°) structures. The lattice dynamics calculations provide strong support for the observed phase transition, and show the dynamical stability (instability) of the hR2 (hR1) phase.

  7. Low Pressure Experimental Simulation of Electrical Discharges Above and Inside a Cloud

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1996-01-01

    A low pressure laboratory experiment to generate sporadic electrical discharges in either a particulate dielectric or air, representing a competing path of preferred electrical breakdown, was investigated. At high pressures, discharges occurred inside the dielectric particulate; at low pressures, discharges occurred outside the dielectric particulate; at a transition pressure regime, which depends on conductivity of the dielectric particulate, discharges were simultaneously generated in both particulate dielectric and air. Unique use of a particulate dielectric was critical for sporadic discharges at lower pressures which were not identical in character to discharges without the particulate dielectric. Application of these experimental results to the field of atmospheric electricity and simulation of the above-cloud type discharges that have recently been documented, called jets and sprites, are discussed.

  8. Heat pump employing optimal refrigerant compressor for low pressure ratio applications

    DOEpatents

    Ecker, Amir L.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

  9. Properties of a low-pressure inductive RF discharge I: Experiment

    SciTech Connect

    Aleksandrov, A. F.; Vavilin, K. V.; Kral'kina, E. A.; Pavlov, V. B.; Rukhadze, A. A.

    2007-09-15

    Results are presented from experimental studies of low-pressure inductive RF discharges (including those with a capacitive component) employed in plasma technology. It is shown that both the RF power absorbed in the plasma and the electron density depend nonmonotonically on the external magnetic field. Discharge disruptions occurring at critical values of the magnetic field and the spatial redistribution and hysteresis of the plasma parameters were observed when varying the magnetic field and RF generator power. The parameters of the plasma of low-pressure (0.5-5 mTorr) inductive RF discharges were investigated, and the discharge properties related to the redistribution of the RF generator power between the plasma and the discharge external circuit were revealed. The experiments were performed with both conventional unmagnetized inductive plasma sources and plasma sources with a magnetic field.

  10. Energetic Ion Beam Production by a Low-Pressure Plasma Focus Discharge

    SciTech Connect

    Lim, L. K.; Yap, S. L.; Wong, C. S.

    2011-03-30

    Energetic ion beam emissions in a 3 kJ Mather type plasma focus operating at low-pressure regime are investigated. Deuterium gas is used and the discharge is operated in a low-pressure regime of below 1 mbar. Formation of the current sheath during the breakdown phase at the back wall is assisted by a set delayed trigger pulse. Energetic and intense ion beams with good reproducibility have been obtained for the operating pressure ranging from 0.05 mbar to 0.5 mbar. Deuteron beam is determined by time resolved measurement by making use of three biased ion collectors placed at the end on direction. The average energies of deuteron beams are resolved by using time-of flight method. Correlation between the ion emissions and the current sheath dynamics is also discussed.

  11. Study of Boundary Layer Development in a Two-Stage Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Ashpis, David E.; Halstead, David E.; Wisler, David C.

    1999-01-01

    Experimental data from jet-engine tests have indicated that unsteady blade row interactions and separation can have a significant impact on the efficiency of low-pressure turbine stages. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Several recent studies have revealed that Reynolds number effects may contribute to the lower efficiencies at cruise conditions. In the current study numerical simulations have been performed to study the boundary layer development in a two-stage low-pressure turbine, and to evaluate the transition models available for low Reynolds number flows in turbomachinery. The results of the simulations have been compared with experimental data, including airfoil loadings and integral boundary layer quantities. The predicted unsteady results display similar trends to the experimental data, but significantly overestimate the amplitude of the unsteadiness. The time-averaged results show close agreement with the experimental data.

  12. Low-pressure sustainment of surface-wave microwave plasma with modified microwave coupler

    NASA Astrophysics Data System (ADS)

    Sasai, Kensuke; Suzuki, Haruka; Toyoda, Hirotaka

    2016-01-01

    Sustainment of long-scale surface-wave plasma (SWP) at pressures below 1 Pa is investigated for the application of the SWP as an assisting plasma source for roll-to-roll sputter deposition. A modified microwave coupler (MMC) for easier surface-wave propagation is proposed, on the basis of the concept of the power direction alignment of the slot antenna and surface-wave propagation. The superiority of the MMC-SWP over conventional SWPs is shown at a sustainment pressure as low as 0.6 Pa and an electron density as high as 3 × 1017 m-3. A polymer film is treated with the MMC-SWP at a low pressure of 0.6 Pa, and surface modification at a low pressure is proved using Ar plasma. These results show the availability of the MMC-SWP as the surface treatment plasma source that is compatible with sputter deposition in the same processing chamber.

  13. Low-pressure airlift fermenter for single cell protein production. I. Design and oxygen transfer studies

    SciTech Connect

    Chen, N.Y.; Kondis, E.F.; Srinivasan, S.

    1987-03-01

    The energy consumption of a fermenter constitutes a major part of the operating expense of a single cell protein process. A low-pressure airlift fermenter was designed to reduce this cost. In this new design, the fermenter broth is kept below 120 cm in depth, and air alone is employed to fulfil the need of supplying oxygen, and cooling and agitating the broth. The use of low-pressure air from air blowers instead of air compressors lowers the capital cost of air delivery and reduces the energy consumption in the fermenter section to below 1 kWh/kg protein, a saving of over 70% as compared to a conventional stirred tank fermenter. It also eliminates the investment of mechanical agitators, heat exchangers, and air compressors. Sulfite oxidation studies confirmed the design concepts. 30 references.

  14. Mixing unmixables: Unexpected formation of Li-Cs alloys at low pressure

    PubMed Central

    Desgreniers, Serge; Tse, John S.; Matsuoka, Takahiro; Ohishi, Yasuo; Tse, Justin J.

    2015-01-01

    Contrary to the empirical Miedema and Hume-Rothery rules and a recent theoretical prediction, we report experimental evidence on the formation of Li-Cs alloys at very low pressure (>0.1 GPa). We also succeeded in synthesizing a pure nonstoichiometric and ordered crystalline phase from an approximately equimolar mixture and resolved its structure using the maximum entropy method. The new alloy has a primitive cubic cell with the Li atom situated in the center and the Cs at the corners. This structure is stable to at least 10 GPa and has an anomalously high coefficient of thermal expansion at low pressure. Analysis of the valence charge density shows that electrons are donated from Cs to the Li “p”-orbitals, resulting in a rare formal oxidation state of −1 for Li. The observation indicates the diversity in the bonding of the seeming simple group I Li element. PMID:26601304

  15. Alkyl ammonium cation stabilized biocidal polyiodides with adaptable high density and low pressure.

    PubMed

    He, Chunlin; Parrish, Damon A; Shreeve, Jean'ne M

    2014-05-26

    The effective application of biocidal species requires building the active moiety into a molecular back bone that can be delivered and decomposed on demand under conditions of low pressure and prolonged high-temperature detonation. The goal is to destroy storage facilities and their contents while utilizing the biocidal products arising from the released energy to destroy any remaining harmful airborne agents. Decomposition of carefully selected iodine-rich compounds can produce large amounts of the very active biocides, hydroiodic acid (HI) and iodine (I2). Polyiodide anions, namely, I3(-), I5(-), which are excellent sources of such biocides, can be stabilized through interactions with large, symmetric cations, such as alkyl ammonium salts. We have designed and synthesized suitable compounds of adaptable high density up to 3.33 g cm(-3) that are low-pressure polyiodides with various alkyl ammonium cations, deliverable iodine contents of which range between 58.0-90.9%.

  16. Finite Element Modeling and Analysis of Powder Stream in Low Pressure Cold Spray Process

    NASA Astrophysics Data System (ADS)

    Goyal, Tarun; Walia, Ravinderjit Singh; Sharma, Prince; Sidhu, Tejinder Singh

    2016-07-01

    Low pressure cold gas dynamic spray (LPCGDS) is a coating process that utilize low pressure gas (5-10 bars instead of 25-30 bars) and the radial injection of powder instead of axial injection with the particle range (1-50 μm). In the LPCGDS process, pressurized compressed gas is accelerated to the critical velocity, which depends on length of the divergent section of nozzle, the propellant gas and particle characteristics, and the diameters ratio of the inlet and outer diameters. This paper presents finite element modeling (FEM) of powder stream in supersonic nozzle wherein adiabatic gas flow and expansion of gas occurs in uniform manner and the same is used to evaluate the resultant temperature and velocity contours during coating process. FEM analyses were performed using commercial finite volume package, ANSYS CFD FLUENT. The results are helpful to predict the characteristics of powder stream at the exit of the supersonic nozzle.

  17. Exploring the limits: A low-pressure, low-temperature Haber-Bosch process

    NASA Astrophysics Data System (ADS)

    Vojvodic, Aleksandra; Medford, Andrew James; Studt, Felix; Abild-Pedersen, Frank; Khan, Tuhin Suvra; Bligaard, T.; Nørskov, J. K.

    2014-04-01

    The Haber-Bosch process for ammonia synthesis has been suggested to be the most important invention of the 20th century, and called the ‘Bellwether reaction in heterogeneous catalysis’. We examine the catalyst requirements for a new low-pressure, low-temperature synthesis process. We show that the absence of such a process for conventional transition metal catalysts can be understood as a consequence of a scaling relation between the activation energy for N2 dissociation and N adsorption energy found at the surface of these materials. A better catalyst cannot obey this scaling relation. We define the ideal scaling relation characterizing the most active catalyst possible, and show that it is theoretically possible to have a low pressure, low-temperature Haber-Bosch process. The challenge is to find new classes of catalyst materials with properties approaching the ideal, and we discuss the possibility that transition metal compounds have such properties.

  18. Energy efficient engine: Low-pressure turbine subsonic cascade component development and integration program

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Kopper, F. C.; Knudsen, L. K.; Yustinich, J. B.

    1982-01-01

    A subsonic cascade test program was conducted to provide technical data for optimizing the blade and vane airfoil designs for the Energy Efficient Engine Low-Pressure Turbine component. The program consisted of three parts. The first involved an evaluation of the low-chamber inlet guide vane. The second, was an evaluation of two candidate aerodynamic loading philosophies for the fourth blade root section. The third part consisted of an evaluation of three candidate airfoil geometries for the fourth blade mean section. The performance of each candidate airfoil was evaluated in a linear cascade configuration. The overall results of this study indicate that the aft-loaded airfoil designs resulted in lower losses which substantiated Pratt & Whitney Aircraft's design philosophy for the Energy Efficient Engine low-pressure turbine component.

  19. Instantaneous and efficient surface wave excitation of a low pressure gas or gases

    DOEpatents

    Levy, Donald J.; Berman, Samuel M.

    1988-01-01

    A system for instantaneously ionizing and continuously delivering energy in the form of surface waves to a low pressure gas or mixture of low pressure gases, comprising a source of rf energy, a discharge container, (such as a fluorescent lamp discharge tube), an rf shield, and a coupling device responsive to rf energy from the source to couple rf energy directly and efficiently to the gas or mixture of gases to ionize at least a portion of the gas or gases and to provide energy to the gas or gases in the form of surface waves. The majority of the rf power is transferred to the gas or gases near the inner surface of the discharge container to efficiently transfer rf energy as excitation energy for at least one of the gases. The most important use of the invention is to provide more efficient fluorescent and/or ultraviolet lamps.

  20. Study of the low-pressure plasma effect on polypropylene nonwovens

    SciTech Connect

    Lopez, R.; Pascual, M.; Calvo, O.

    2010-06-02

    In this work we have used low-pressure plasma with a gas based on methane and oxygen mixture to improve wettability and durability of a PP nonwoven fabrics. The obtained results show good durability with the use of methane-oxygen plasma mixture gas. The effects of the plasma are similar to a plasmapolymerization process but in this case we obtain hydrophilic properties with high durability. The surface does not suffer important changes and the roughness of the material remains constant.

  1. Growth Enhancement of Radish Sprouts Induced by Low Pressure O2 Radio Frequency Discharge Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-01-01

    We studied growth enhancement of radish sprouts (Raphanus sativus L.) induced by low pressure O2 radio frequency (RF) discharge plasma irradiation. The average length of radish sprouts cultivated for 7 days after O2 plasma irradiation is 30-60% greater than that without irradiation. O2 plasma irradiation does not affect seed germination. The experimental results reveal that oxygen related radicals strongly enhance growth, whereas ions and photons do not.

  2. Life modeling of atmospheric and low pressure plasma-sprayed thermal-barrier coating

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Argarwal, P.; Duderstadt, E. C.

    1984-01-01

    The cycles-to-failure vs cycle duration data for three different thermal barrier coating systems, which consist of atmospheric pressure plasma-sprayed ZrO2-8 percent Y2O3 over similarly deposited or low pressure plasma sprayed Ni-base alloys, are presently analyzed by means of the Miller (1980) oxidation-based life model. Specimens were tested at 1100 C for heating cycle lengths of 1, 6, and 20 h, yielding results supporting the model's value.

  3. Cryogenic EBSD on ice: preserving a stable surface in a low pressure SEM.

    PubMed

    Weikusat, I; DE Winter, D A M; Pennock, G M; Hayles, M; Schneijdenberg, C T W M; Drury, M R

    2011-06-01

    Naturally deformed ice contains subgrains with characteristic geometries that have recently been identified in etched surfaces using high-resolution light microscopy (LM). The probable slip systems responsible for these subgrain boundary types can be determined using electron backscattered diffraction (EBSD), providing the etch features imaged with reflected LM can be retained during EBSD data acquisition in a scanning electron microscope (SEM). Retention of the etch features requires that the ice surface is stable. Depending on the pressure and temperature, sublimation of ice can occur. The equilibrium temperature for a low pressure SEM operating at 1 × 10(-6) hPa is about -112°C and operating at higher temperatures causes sublimation. Although charging of uncoated ice samples is reduced by sublimation, important information contained in the etch features are removed as the surface sublimes. We developed a method for collecting EBSD data on stable ice surfaces in a low pressure SEM. We found that operating at temperatures of <-112°C reduced sublimation so that the original etch surface features were retained. Charging, which occurred at low pressures (<1.5 × 10(-6) to 2.8 × 10(-5) hPa) was reduced by defocusing the beam. At very low pressures (<1.5 × 10(-6) hPa) the spatial resolution with a defocused beam at 10 kV was about 3 μm in the x-direction at -150°C and 0.5 μm at -120°C, because at higher temperature charging was less and only a small defocus was needed to compensate it. Angular resolution was better than 0.7° after orientation averaging. Excellent agreement was obtained between LM etch features and EBSD mapped microstructures. First results are shown, which indicate subgrain boundary types comprised of basal (tilt and twist) and nonbasal dislocations (tilt boundaries).

  4. Performance of low-pressure-ratio fan stage at two off-design blade setting angles

    NASA Technical Reports Server (NTRS)

    Kovich, G.; Tysl, E. R.; Moore, R. D.

    1977-01-01

    The overall and blade-element performance of a low pressure ratio, low tip speed fan stage at design speed is presented for tow off-design rotor blade angle settings. The rotor design tip speed is 243.8 m/sec and weight flow per unit annulus area is 175.8 kg/sec. Design weight flow and pressure ratio are 29.9 kg/sec and 1.151, respectively.

  5. Unimolecular decomposition reactions at low-pressure: A comparison of competitive methods

    NASA Technical Reports Server (NTRS)

    Adams, G. F.

    1980-01-01

    The lack of a simple rate coefficient expression to describe the pressure and temperature dependence hampers chemical modeling of flame systems. Recently developed simplified models to describe unimolecular processes include the calculation of rate constants for thermal unimolecular reactions and recombinations at the low pressure limit, at the high pressure limit and in the intermediate fall-off region. Comparison between two different applications of Troe's simplified model and a comparison between the simplified model and the classic RRKM theory are described.

  6. Downhole steam generator using low-pressure fuel and air supply

    DOEpatents

    Fox, R.L.

    1981-01-07

    For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

  7. Modelling Of Generation And Growth Of Nanoparticles In Low-Pressure Plasmas

    SciTech Connect

    Gordiets, B. F.

    2008-09-07

    Theoretical kinetic models of generation and growth of clusters and nanoparticles in low-pressure plasma are briefly rewired. The relatively simple kinetic model is discussed more detail. Simple formulas and equations are given for monomer density; cluster dimension distribution; critical cluster dimension; rate of particle production; particle density and average dimension as well as plasma characteristics. The analytical formula is also obtained for the time delay of the measured LIPEE signal in the 'Laser Induced Particle Explosive Evaporation' experimental method.

  8. Low pressure arc discharge lamp apparatus with magnetic field generating means

    DOEpatents

    Grossman, M.W.; George, W.A.; Maya, J.

    1987-10-06

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

  9. Observation of Quartz Cathode-Luminescence in a Low Pressure Plasma Discharge

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    Intense, steady-state cathode-luminescence has been observed from exposure of quartz powder to a low pressure rf-excited argon plasma discharge. The emission spectra (400 to 850 nm) associated with the powder luminescence were documented as a function of bias voltage using a spectrometer. The emission was broad-band, essentially washing out the line spectra features of the argon plasma discharge.

  10. Hardening of the surface plasma jet high-frequency induction discharge of low pressure

    NASA Astrophysics Data System (ADS)

    Kashapov, N. F.; Sharifullin, S. N.

    2015-06-01

    The work presents results of research on the hardening surfaces of the products and increase their roughness class of plasma jet of high-frequency induction discharge of low pressure. It is shown that such processing allows to clear at the same time a surface of all types of pollution, to remove a defective layer after its machining, to receive a uniform microstructure, to raise a roughness class on 2 - 3 units.

  11. Low pressure arc discharge lamp apparatus with magnetic field generating means

    DOEpatents

    Grossman, Mark W.; George, William A.; Maya, Jakob

    1987-01-01

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25.degree. C.

  12. The CF6 Jet Engine Performance Improvement - Low Pressure Turbine Active Clearance Control

    NASA Technical Reports Server (NTRS)

    Beck, B. D.; Fasching, W. A.

    1982-01-01

    A low pressure turbine (LPT) active clearance control (ACC) cooling system was developed to reduce the fuel consumption of current CF6-50 turbofan engines for wide bodied commercial aircraft. The program performance improvement goal of 0.3% delta sfc was determined to be achievable with an improved impingement cooling system. The technology enables the design of an optimized manifold and piping system which is capable of a performance gain of 0.45% delta sfc.

  13. Performance of a 13-Stage Development Compressor for the J40-WE-24 Engine at Equivalent Speeds from 30 to 112 Percent of Design

    NASA Technical Reports Server (NTRS)

    Hatch, James E.; Lucas, James G.; Finger, Harold B.

    1953-01-01

    The performance of a 13-stage development comressor for the J40-WE-24 engine has been determined at equivalent speeds from 30 to 112 percent of design. The design total-pressure ratio of 6.0 and the design weight flow of 164 pounds per second were not attained, An analysis was conducted to determine the reasons for the poor performance at the design and over-design speed. The analysis indicated that most of the difficulty could be attributed to the fact that the first stage was overcompromised to favor part-speed performance,

  14. Capacitive micromachined ultrasonic transducer for ultra-low pressure measurement: Theoretical study

    NASA Astrophysics Data System (ADS)

    Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Akhbari, Sina; Ding, Jianjun; Zhao, Yihe; Zhao, Yulong; Lin, Liwei

    2015-12-01

    Ultra-low pressure measurement is necessary in many areas, such as high-vacuum environment monitoring, process control and biomedical applications. This paper presents a novel approach for ultra-low pressure measurement where capacitive micromachined ultrasonic transducers (CMUTs) are used as the sensing elements. The working principle is based on the resonant frequency shift of the membrane under the applied pressure. The membranes of the biased CMUTs can produce a larger resonant frequency shift than the diaphragms with no DC bias in the state-of-the-art resonant pressure sensors, which contributes to pressure sensitivity improvement. The theoretical analysis and finite element method (FEM) simulation were employed to study the relationship between the resonant frequency and the pressure. The results demonstrated excellent capability of the CMUTs for ultra-low pressure measurement. It is shown that the resonant frequency of the CMUT varies linearly with the applied pressure. A sensitivity of more than 6.33 ppm/Pa (68 kHz/kPa) was obtained within a pressure range of 0 to 100 Pa when the CMUTs were biased at a DC voltage of 90% of the collapse voltage. It was also demonstrated that the pressure sensitivity can be adjusted by the DC bias voltage. In addition, the effects of air damping and ambient temperature on the resonant frequency were also studied. The effect of air damping is negligible for the pressures below 1000 Pa. To eliminate the temperature effect on the resonant frequency, a temperature compensating method was proposed.

  15. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    PubMed

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  16. Synthesis of Fullerenes in Low Pressure Benzene/Oxygen Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hebgen, Peter; Howard, Jack B.

    1999-01-01

    The interest in fullerenes is strongly increasing since their discovery by Kroto et al. in 1985 as products of the evaporation of carbon into inert gas at low pressure. Due to their all carbon closed-shell structure, fullerenes have many exceptional physical and chemical properties and a large potential for applications such as superconductors, sensors, catalysts, optical and electronic devices, polymers, high energy fuels, and biological and medical materials. This list is still growing, because the research on fullerenes is still at an early stage. Fullerenes can be formed not only in a system containing only carbon and an inert gas, but also in premixed hydrocarbon flames under reduced pressure and fuel rich conditions. The highest yields of fullerenes in flames are obtained under conditions of substantial soot formation. There is a need for more information on the yields of fullerenes under different conditions in order to understand the mechanisms of their formation and to enable the design of practical combustion systems for large-scale fullerene production. Little work has been reported on the formation of fullerenes in diffusion flames. In order to explore the yields of fullerenes and the effect of low pressure in diffusion flames, therefore we constructed and used a low pressure diffusion flame burner in this study.

  17. Numerical Simulations of Steady and Unsteady Transition in Low-Pressure Turbine Blade Rows

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel

    1998-01-01

    Transition plays an important role in the prediction of losses and performance in low-pressure turbines. The transition location on a turbine blade may vary significantly because of the wakes from upstream blade rows, and intermittent flow separation can also affect the transition process in an unsteady flow environment. In the present investigation, an unsteady Navier-Stokes analysis is used to predict transition in a low-pressure turbine cascade and a low-pressure turbine stage. The numerical flow analysis is third-order spatially accurate and second-order temporally accurate, and the equations of motion are integrated using an implicit time-marching procedure. The Baldwin-Lomax and k-epsilon turbulence models, in conjunction with several algebraic transition models, have been used to predict the location of transition. Predicted results include unsteady blade loadings, time-histories of the pressure, transition locations and boundary layer quantities, as well as performance quantities and comparisons with the available experimental/design data.

  18. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas...

  19. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas...

  20. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas...

  1. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas...

  2. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas...

  3. Military Curriculum Materials for Vocational and Technical Education. Welding High and Low Pressure Lines, 3-26.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This short course in welding high and low pressure lines was adapted from military curriculum materials for use in vocational education. The course is designed to teach safety requirements for work with high and low pressure pipelines; pipe welding requirements and specifications; special pipeline repair welding applications; layout of pipe…

  4. Low pressure and time storage influences on the electrets stability of HDPE composite films

    NASA Astrophysics Data System (ADS)

    Yovcheva, T.; Viraneva, A.; Galikhanov, M.

    2014-12-01

    The influence of both low pressure and time storage on the surface potential decay of high density polyethylene (HDPE) composite films with different weight concentrations of the zeolite particles - 0 wt.%, 2 wt.% and 6 wt.% were studied. The samples were charged in a corona discharge by means of a corona triode system for ' minute under room conditions. Positive or negative 5kV voltage was applied to the corona electrode and 1 kV voltage of the same polarity as that of the corona electrode was applied to the grid. After charging, the electret surface potential was measured by the method of the vibrating electrode with compensation. Two groups of tests were performed. In the first group after charging, the electrets were placed into a vacuum chamber where the pressure was reduced step by step in the range from 1000 mbar to 0.1 mbar. At each step the samples were stored for 1 minute. Then the electrets were removed from the vacuum chamber, the surface potential was measured again and the normalized surface potential was calculated. It was established that the low pressure had led to the surface potential decay of the electrets. The influence of the low pressure was analyzed by the equation that describes processes of desorption from the electret surface accompanied with surface diffusion. In the second group after charging, the electret surface potential was measured with the time of storage for two months. The experimental results obtained show a significant change in the electret behaviour of the composite films after the incorporation of zeolite particles with different concentration into the HDPE matrix. It was established that the surface potential decay depends on the corona polarity and the particle concentration.

  5. Energy distribution of electron flux at electrodes in a low pressure capacitively coupled plasma

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid; Dorf, Leonid; Kenney, Jason; Collins, Ken

    2013-01-01

    A one-dimensional particle-in-cell (PIC) model is used to examine the energy distribution of electron flux at electrodes [labeled ge(ɛ,t), where ɛ is energy and t is time] in a low pressure 60 MHz capacitively coupled Ar discharge. The effect of gas pressure and an auxiliary DC voltage on ge(ɛ,t) is also investigated. It is found that the electrons only leave the plasma for a short time period during the radio-frequency (RF) cycle when the sheath collapses at the electrode. Furthermore, majority of the exiting electrons have energies below 10 eV with a distribution ge(ɛ,t) that is narrow in both energy and time. At relatively high pressures (≥4.67 Pa for the conditions considered), the relationship between the time-average distribution ge(ɛ) and electron temperature in the plasma (Te) can be easily established. Below 4.67 Pa, kinetic effects become important, making it difficult to interpret ge(ɛ) in terms of Te. At low pressures, ge(ɛ,t) is found to broaden in both energy and time except for a narrow pressure range around 1.2 Pa where the distribution narrows temporally. These low pressure kinetic phenomena are observed when the electrons can be accelerated by expanding sheaths to speeds that allow them to traverse the inter-electrode distance quickly (<1.5 RF cycles for conditions considered) and when electrons undergo few collisions during this excursion. The mean energy of exiting electrons increases with decreasing gas pressure, especially below 1.0 Pa, due to higher Te and secondary electrons retaining a larger fraction of the energy they gained during initial sheath acceleration. For the relatively small DC voltages examined (|Vdc|/Vrf ≤ 0.15), the application of a negative DC voltage on an electrode decreases the electron flux there but has a weak impact on the ge profile.

  6. Diagnostics of a steady-state low-pressure hollow cathode arc in argon

    SciTech Connect

    Bessenrodt-Weberpals, M.; Brockhaus, A.; Jauernik, P.; Kempkens, H.; Nieswand, C.; Uhlenbusch, J.

    1986-08-01

    In a steady-state low-pressure hollow cathode arc (HCA) stabilized by a longitudinal magnetic field, the spatial distribution of the argon plasma parameters are investigated. Densities, temperatures, velocities, and fluctuations of electrons, ions, and neutrals are measured by various local methods such as Thomson and Rayleigh scattering and laser-induced fluorescence(LIF). The experimental results are supported by a theoretical treatment of the plasma using a two-fluid model which gives a good description of the dynamics of HCA's.

  7. Palladium-Catalyzed Alkoxycarbonylation of Unactivated Secondary Alkyl Bromides at Low Pressure.

    PubMed

    Sargent, Brendon T; Alexanian, Erik J

    2016-06-22

    Catalytic carbonylations of organohalides are important C-C bond formations in chemical synthesis. Carbonylations of unactivated alkyl halides remain a challenge and currently require the use of alkyl iodides under harsh conditions and high pressures of CO. Herein we report a palladium-catalyzed alkoxycarbonylation of secondary alkyl bromides that proceeds at low pressure (2 atm CO) under mild conditions. Preliminary mechanistic studies are consistent with a hybrid organometallic-radical process. These reactions efficiently deliver esters from unactivated alkyl bromides across a diverse range of substrates and represent the first catalytic carbonylations of alkyl bromides with carbon monoxide.

  8. Track studies in water vapor using a low-pressure cloud chamber. II. Microdosimetric measurements.

    PubMed

    Stonell, G P; Marshall, M; Simmons, J A

    1993-12-01

    A low-pressure cloud chamber has been adapted to operate with pure water vapor. Photographs were obtained of tracks arising from the passage of ionizing radiation. The sources used were low-energy X rays, 242Cm alpha particles, and low-energy protons. Distributions of lineal energy, radial distances around an ion track, and interdroplet distances were measured and compared with the predictions of Monte Carlo calculations. After allowing for diffusion and the limitations of the geometry of the system, the measured and calculated distributions were found to be in good agreement.

  9. Material uniformity of CdZnTe grown by low-pressure bridgman

    NASA Astrophysics Data System (ADS)

    Greaves, C. M.; Brunett, B. A.; Van Scyoc, J. M.; Schlesinger, T. E.; James, R. B.

    2001-02-01

    We have employed Low-Temperature Photoluminescence (LTPL) and Room-Temperature Photoluminescence Mapping (RTPLM) to explore the crystalline quality and material uniformity of Cadmium Zinc Telluride (CZT) radiation detector material grown by the Low-Pressure Bridgman (LPB) technique. We report on the differences in crystalline quality and uniformity of material supplied by eV Products Inc. and IMARAD Imaging Systems Ltd. In addition, we have examined the general detector response of the material supplied by IMARAD. We report on the uniformity of the detector response and the temperature dependence of this response when used as a detector.

  10. Low-pressure RF plasma and corona decolourisation of indigo dyed denim fabrics

    NASA Astrophysics Data System (ADS)

    Radetic, M.; Puac, N.; Jovancic, P.; Saponjic, Z.; Petrovic, Z. Lj.

    2008-07-01

    This study was aimed to investigate the influence of low-pressure RF plasma (gas, treatment time and power) and atmospheric pressure corona (number of passages and power) parameters on decolourisation of indigo dyed denim fabrics. CIEL*a*b* colourimetric system was used for determination of colour difference between untreated and differently plasma treated denim fabrics. The morphology of plasma treated fibres was assessed by SEM analysis. The results showed that decolourisation was highly affected by plasma parameters and desired "worn look" effects could be designed by adequate control of plasma processing.

  11. Insects at low pressure: applications to artificial ecosystems and implications for global windborne distribution

    NASA Technical Reports Server (NTRS)

    Cockell, C.; Catling, D.; Waites, H.

    1999-01-01

    Insects have a number of potential roles in closed-loop life support systems. In this study we examined the tolerance of a range of insect orders and life stages to drops in atmospheric pressure using a terrestrial atmosphere. We found that all insects studied could tolerate pressures down to 100 mb. No effects on insect respiration were noted down to 500 mb. Pressure toleration was not dependent on body volume. Our studies demonstrate that insects are compatible with plants in low-pressure artificial and closed-loop ecosystems. The results also have implications for arthropod colonization and global distribution on Earth.

  12. Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.; Kartuzova, Olga

    2010-01-01

    Motivation - Higher loading on Low-Pressure Turbine (LPT) airfoils: Reduce airfoil count, weight, cost. Increase efficiency, and Limited by suction side separation. Growing understanding of transition, separation, wake effects: Improved models. Take advantage of wakes. Higher lift airfoils in use. Further loading increases may require flow control: Passive: trips, dimples, etc. Active: plasma actuators, vortex generator jets (VGJs). Can increased loading offset higher losses on high lift airfoils. Objectives: Advance knowledge of boundary layer separation and transition under LPT conditions. Demonstrate, improve understanding of separation control with pulsed VGJs. Produce detailed experimental data base. Test and develop computational models.

  13. Research on modes of plasma generation in low-pressure discharge for themal radiation processes

    NASA Astrophysics Data System (ADS)

    Koval, T. V.; Lopatin, I. V.; Hung, Nguyen Bao

    2015-04-01

    In this work a theoretical research on modes of low-pressure glow discharge generation and its parameters in a large area hollow cathode are carried out. The relations describing the dependence of the burning voltage on the gas pressure and the geometry of the system were obtained. It is shown that it is possible to adjust the ion current density and burning voltage by external current injection independently of the surface area and material of the processed parts. This work also carries out a numerical study of the influence of plasma parameters on the heating of processed parts. Theoretical results are compared with experimental data.

  14. A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames

    SciTech Connect

    Andrew McIlroy; Toby D. Hain; Hope A. Michelsen; Terrill A. Cool

    2000-12-15

    The oxidation of dimethyl ether (DME) is studied in low-pressure flames using new molecular beam mass spectrometer and laser diagnostics. Two 30.0-Torr, premixed DME/oxygen/argon flames are investigated with stoichiometries of 0.98 and 1.20. The height above burner profiles of nine stable species and two radicals are measured. These results are compared to the detailed chemical reaction mechanism of Curran and coworkers. Generally good agreement is found between the model and data. The largest discrepancies are found for the methyl radical profiles where the model predicts qualitatively different trends in the methyl concentration with stoichiometry than observed in the experiment.

  15. Energy efficient engine: Turbine intermediate case and low-pressure turbine component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thulin, R. D.; Howe, D. C.

    1982-01-01

    A four stage, low pressure turbine component has been designed to power the fan and low pressure compressor system in the Energy Efficient Engine. Designs for a turbine intermediate case and an exit guide vane assembly also have been established. The components incorporate numerous technology features to enhance efficiency, durability, and performance retention. These designs reflect a positive step towards improving engine fuel efficiency on a component level. The aerodynamic and thermal/mechanical designs of the intermediate case and low pressure turbine components are presented and described. An overview of the predicted performance of the various component designs is given.

  16. Quantitative and sensitive analysis of CN molecules using laser induced low pressure He plasma

    NASA Astrophysics Data System (ADS)

    Pardede, Marincan; Hedwig, Rinda; Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah; Jobiliong, Eric; Suyanto, Hery; Marpaung, Alion Mangasi; Suliyanti, Maria Margaretha; Ramli, Muliadi; Tjia, May On; Lie, Tjung Jie; Lie, Zener Sukra; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2015-03-01

    We report the results of experimental study on CN 388.3 nm and C I 247.8 nm emission characteristics using 40 mJ laser irradiation with He and N2 ambient gases. The results obtained with N2 ambient gas show undesirable interference effect between the native CN emission and the emission of CN molecules arising from the recombination of native C ablated from the sample with the N dissociated from the ambient gas. This problem is overcome by the use of He ambient gas at low pressure of 2 kPa, which also offers the additional advantages of cleaner and stronger emission lines. The result of applying this favorable experimental condition to emission spectrochemical measurement of milk sample having various protein concentrations is shown to yield a close to linear calibration curve with near zero extrapolated intercept. Additionally, a low detection limit of 5 μg/g is found in this experiment, making it potentially applicable for quantitative and sensitive CN analysis. The visibility of laser induced breakdown spectroscopy with low pressure He gas is also demonstrated by the result of its application to spectrochemical analysis of fossil samples. Furthermore, with the use of CO2 ambient gas at 600 Pa mimicking the Mars atmosphere, this technique also shows promising applications to exploration in Mars.

  17. Weak interactions between water and clathrate-forming gases at low pressures

    DOE PAGES

    Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; Kay, Bruce D.; Smith, R. Scott

    2015-07-17

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10–1 mbar methane or 10–5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10–5 mbar methane does not alter their morphology, suggesting that the presence ofmore » the Pt(111) surface is not a strong driver for hydrate formation. This weak water–gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. As a result, similar desorption temperatures were observed for desorption from amorphous solid water.« less

  18. Weak interactions between water and clathrate-forming gases at low pressures

    SciTech Connect

    Thurmer, Konrad; Yuan, Chunqing; Kimmel, Gregory A.; Kay, Bruce D.; Smith, R. Scott

    2015-11-01

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10-1 mbar methane or 10-5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10-5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water-gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~43 K and isobutane desorbs near ~100 K. Similar desorption temperatures were observed for desorption from amorphous solid water.

  19. Sterilization of beehive material with a double inductively coupled low pressure plasma

    NASA Astrophysics Data System (ADS)

    Priehn, M.; Denis, B.; Aumeier, P.; Kirchner, W. H.; Awakowicz, P.; Leichert, L. I.

    2016-09-01

    American Foulbrood is a severe, notifiable disease of the honey bee. It is caused by infection of bee larvae with spores of the gram-positive bacterium Paenibacillus larvae. Spores of this organism are found in high numbers in an infected hive and are highly resistant to physical and chemical inactivation methods. The procedures to rehabilitate affected apiaries often result in the destruction of beehive material. In this study we assess the suitability of a double inductively coupled low pressure plasma as a non-destructive, yet effective alternative inactivation method for bacterial spores of the model organism Bacillus subtilis on beehive material. Plasma treatment was able to effectively remove spores from wax, which, under protocols currently established in veterinary practice, normally is destroyed by ignition or autoclaved for sterilization. Spores were removed from wooden surfaces with efficacies significantly higher than methods currently used in veterinary practice, such as scorching by flame treatment. In addition, we were able to non-destructively remove spores from the highly delicate honeycomb wax structures, potentially making treatment of beehive material with double inductively coupled low pressure plasma part of a fast and reliable method to rehabilitate infected bee colonies with the potential to re-use honeycombs.

  20. DNA combing on low-pressure oxygen plasma modified polysilsesquioxane substrates for single-molecule studies

    PubMed Central

    Sriram, K. K.; Chang, Chun-Ling; Rajesh Kumar, U.; Chou, Chia-Fu

    2014-01-01

    Molecular combing and flow-induced stretching are the most commonly used methods to immobilize and stretch DNA molecules. While both approaches require functionalization steps for the substrate surface and the molecules, conventionally the former does not take advantage of, as the latter, the versatility of microfluidics regarding robustness, buffer exchange capability, and molecule manipulation using external forces for single molecule studies. Here, we demonstrate a simple one-step combing process involving only low-pressure oxygen (O2) plasma modified polysilsesquioxane (PSQ) polymer layer to facilitate both room temperature microfluidic device bonding and immobilization of stretched single DNA molecules without molecular functionalization step. Atomic force microscopy and Kelvin probe force microscopy experiments revealed a significant increase in surface roughness and surface potential on low-pressure O2 plasma treated PSQ, in contrast to that with high-pressure O2 plasma treatment, which are proposed to be responsible for enabling effective DNA immobilization. We further demonstrate the use of our platform to observe DNA-RNA polymerase complexes and cancer drug cisplatin induced DNA condensation using wide-field fluorescence imaging. PMID:25332730

  1. RAPID ASSOCIATION REACTIONS AT LOW PRESSURE: IMPACT ON THE FORMATION OF HYDROCARBONS ON TITAN

    SciTech Connect

    Vuitton, V.; Klippenstein, S. J. E-mail: yelle@lpl.arizona.edu E-mail: sjk@anl.gov

    2012-01-01

    Photochemical models of Titan's atmosphere predict that three-body association reactions are the main production route for several major hydrocarbons. The kinetic rate constants of these reactions strongly depend on density and are therefore only important in Titan's lower atmosphere. However, radiative association reactions do not depend on pressure. The possible existence of large rates at low density suggests that association reactions could significantly affect the chemistry of Titan's upper atmosphere and better constraints for them are required. The kinetic parameters of these reactions are extremely difficult to constrain by experimental measurements as the low pressure of Titan's upper atmosphere cannot be reproduced in the laboratory. However, in the recent years, theoretical calculations of kinetics parameters have become more and more reliable. We therefore calculated several radical-radical and radical-molecule association reaction rates using transition state theory. The calculations indicate that association reactions are fast even at low pressure for adducts having as few as four C atoms. These drastic changes have however only moderate consequences for Titan's composition. Locally, mole fractions can vary by as much as one order of magnitude but the column-integrated production and condensation rates of hydrocarbons change only by a factor of a few. We discuss the impact of these results for the organic chemistry. It would be very interesting to check the impact of these new rate constants on other environments, such as giant and extrasolar planets as well as the interstellar medium.

  2. Quantitative and sensitive analysis of CN molecules using laser induced low pressure He plasma

    SciTech Connect

    Pardede, Marincan; Hedwig, Rinda; Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah; Ramli, Muliadi; Jobiliong, Eric; Suyanto, Hery; Marpaung, Alion Mangasi; Suliyanti, Maria Margaretha; Tjia, May On

    2015-03-21

    We report the results of experimental study on CN 388.3 nm and C I 247.8 nm emission characteristics using 40 mJ laser irradiation with He and N{sub 2} ambient gases. The results obtained with N{sub 2} ambient gas show undesirable interference effect between the native CN emission and the emission of CN molecules arising from the recombination of native C ablated from the sample with the N dissociated from the ambient gas. This problem is overcome by the use of He ambient gas at low pressure of 2 kPa, which also offers the additional advantages of cleaner and stronger emission lines. The result of applying this favorable experimental condition to emission spectrochemical measurement of milk sample having various protein concentrations is shown to yield a close to linear calibration curve with near zero extrapolated intercept. Additionally, a low detection limit of 5 μg/g is found in this experiment, making it potentially applicable for quantitative and sensitive CN analysis. The visibility of laser induced breakdown spectroscopy with low pressure He gas is also demonstrated by the result of its application to spectrochemical analysis of fossil samples. Furthermore, with the use of CO{sub 2} ambient gas at 600 Pa mimicking the Mars atmosphere, this technique also shows promising applications to exploration in Mars.

  3. PIV Measurements of Separation and Transition in a Low Pressure Turbine Blade Cascade Model

    NASA Astrophysics Data System (ADS)

    Hollon, Brian; Jacob, Jamey

    2001-11-01

    The flow around a low pressure turbine blade cascade has been investigated with PIV. The purpose of these experiments is to study in detail the flow characteristics within the regions of transition and separation over the suction side of a low pressure turbine blade. The locations of separation, transition, and reattachment, as well as the size of the separation bubble, are studied for a range of Re from 3\\cdot10^4 to 3\\cdot10^5, Free Stream Turbulence Intensities (FSTI) from ~0.5% to ~10%, and exit angle 93^circ to 97^circ. The experiments were conducted in a cascade consisting of 6 PAK-B turbine blades in a low-speed wind tunnel. PIV measurements were acquired in and around the region of separation enabling the determination of important flow characteristics such as skin friction and vorticity in the separation region, and the steadiness of the reversed flow may also be observed. In addition to the PIV study, a smoke-wire technique was employed for flow visualization from Re=3\\cdot10^4 to 9\\cdot10^4, and pressure taps at mid-span along the suction surface of the center blade were used to obtain pressure measurements at 24 stations. The locations of separation and transition have been surmised from the smoke-wire images and the pressure measurements and are presented along with the PIV results.

  4. The aerodynamic design and performance of the NASA/GE E3 low pressure turbine

    NASA Technical Reports Server (NTRS)

    Cherry, D. G.; Dengler, R. P.

    1984-01-01

    The aerodynamic design and scaled rig test results of the low pressure turbine (LPT) component for the NASA/General Electric Energy Efficient Engine (E3) are presented. The low pressure turbine is a highly loaded five-stage design featuring high outer wall slope, controlled vortex aerodynamics, low stage flow coefficient, and reduced clearances. An assessment of its performance has been made based on a series of scaled air turbine tests which were divided into two phases: Block I (March through August, 1979) and Block II (June through September, 1981). Results from the Block II five-stage test, summarized in the paper, indicate that the E3 LPT will attain an efficiency level of 91.5 percent at the Mach 0.8/35,000 ft. max. climb altitude design point. This is relative to program goals of 91.1 percent for the E3 demonstrator engine and 91.7 percent for a fully developed flight propulsion system LPT.

  5. Controlling VUV photon fluxes in low-pressure inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Tian, Peng; Kushner, Mark J.

    2015-06-01

    Low-pressure (a few to hundreds of millitorrs) inductively coupled plasmas (ICPs), as typically used in microelectronics fabrication, often produce vacuum-ultraviolet (VUV) photon fluxes onto surfaces comparable to or exceeding the magnitude of ion fluxes. These VUV photon fluxes are desirable in applications such as sterilization of medical equipment but are unwanted in many materials fabrication processes due to damage to the devices by the high-energy photons. Under specific conditions, VUV fluxes may stimulate etching or synergistically combine with ion fluxes to modify polymeric materials. In this regard, it is desirable to control the magnitude of VUV fluxes or the ratio of VUV fluxes to those of other reactive species, such as ions, or to discretely control the VUV spectrum. In this paper, we discuss results from a computational investigation of VUV fluxes from low-pressure ICPs sustained in rare gas mixtures. The control of VUV fluxes through the use of pressure, pulsed power, and gas mixture is discussed. We found that the ratio, β, of VUV photon to ion fluxes onto surfaces generally increases with increasing pressure. When using pulsed plasmas, the instantaneous value of β can vary by a factor of 4 or more during the pulse cycle due to the VUV flux more closely following the pulsed power.

  6. Kinetic mechanism for low-pressure oxygen/methane ignition and combustion

    NASA Astrophysics Data System (ADS)

    Slavinskaya, N. A.; Wiegand, M.; Starcke, J. H.; Riedel, U.; Haidn, O. J.; Suslov, D.

    2013-03-01

    It is known that during a launch of a rocket, the interaction of the exhaust gases of rocket engines with the atmosphere causes a local depletion of the ozone layer. In order to study these chemical processes in detail, a chemical reaction mechanism of the methane oxidation appropriate for high- and low-pressure conditions and a chemical reactor network to reproduce operating conditions in rocket engines and in the environment have been developed. An earlier developed detailed chemical kinetic model for the high-pressure CH4/O2 combustion has been improved for the low pressure and low temperature methane combustion and augmented with a submodel for NOx formation. The main model improvements are related to the pressure depending reactions. The model has been validated for operating conditions of 0.02 < p < 100 atm, 300 < T < 1800 K and 0.5 < Φ < 3.0. The network of chemical reactors available in CHEMICAL WORKBENCH software has been successfully developed to simulate chemical processes in the convergent divergent rocket nozzle and in the exhaust-jet. Simulations performed have shown that the exhaust gases of a methane/oxygen propelled liquid rocket engine contain high amounts of active radicals, which can influence the formation of nitrogen compounds and consume ozone in the atmosphere.

  7. Weak interactions between water and clathrate-forming gases at low pressures

    SciTech Connect

    Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; Kay, Bruce D.; Smith, R. Scott

    2015-07-17

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10–1 mbar methane or 10–5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10–5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water–gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. As a result, similar desorption temperatures were observed for desorption from amorphous solid water.

  8. Low-pressure clathrate-hydrate formation in amorphous astrophysical ice analogs

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Allamandola, L. J.; Sandford, S.; Hudgins, D.; Freund, F.

    1991-01-01

    In modeling cometary ice, the properties of clathrate hydrates were used to explain anomalous gas release at large radial distances from the Sun, and the retention of particular gas inventories at elevated temperatures. Clathrates may also have been important early in solar system history. However, there has never been a reasonable mechanism proposed for clathrate formation under the low pressures typical of these environments. For the first time, it was shown that clathrate hydrates can be formed by warming and annealing amorphous mixed molecular ices at low pressures. The complex microstructures which occur as a result of clathrate formation from the solid state may provide an explanation for a variety of unexplained phenomena. The vacuum and imaging systems of an Hitachi H-500H Analytical Electron Microscope was modified to study mixed molecular ices at temperatures between 12 and 373 K. The resulting ices are characterized by low-electron dose Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED). The implications of these results for the mechanical and gas release properties of comets are discussed. Laboratory IR data from similar ices are presented which suggest the possibility of remotely observing and identifying clathrates in astrophysical objects.

  9. Microwave air plasmas in capillaries at low pressure I. Self-consistent modeling

    NASA Astrophysics Data System (ADS)

    Coche, P.; Guerra, V.; Alves, L. L.

    2016-06-01

    This work presents the self-consistent modeling of micro-plasmas generated in dry air using microwaves (2.45 GHz excitation frequency), within capillaries (<1 mm inner radius) at low pressure (300 Pa). The model couples the system of rate balance equations for the most relevant neutral and charged species of the plasma to the homogeneous electron Boltzmann equation. The maintenance electric field is self-consistently calculated adopting a transport theory for low to intermediate pressures, taking into account the presence of O- ions in addition to several positive ions, the dominant species being O{}2+ , NO+ and O+ . The low-pressure small-radius conditions considered yield very-intense reduced electric fields (˜600-1500 Td), coherent with species losses controlled by transport and wall recombination, and kinetic mechanisms strongly dependent on electron-impact collisions. The charged-particle transport losses are strongly influenced by the presence of the negative ion, despite its low-density (˜10% of the electron density). For electron densities in the range (1-≤ft. 4\\right)× {{10}12} cm-3, the system exhibits high dissociation degrees for O2 (˜20-70%, depending on the working conditions, in contrast with the  ˜0.1% dissociation obtained for N2), a high concentration of O2(a) (˜1014 cm-3) and NO(X) (5× {{10}14} cm-3) and low ozone production (<{{10}-3}% ).

  10. Utilization of Low-Pressure Plasma to Inactivate Bacterial Spores on Stainless Steel Screws

    PubMed Central

    Stapelmann, Katharina; Fiebrandt, Marcel; Raguse, Marina; Awakowicz, Peter; Reitz, Günther

    2013-01-01

    Abstract A special focus area of planetary protection is the monitoring, control, and reduction of microbial contaminations that are detected on spacecraft components and hardware during and after assembly. In this study, wild-type spores of Bacillus pumilus SAFR-032 (a persistent spacecraft assembly facility isolate) and the laboratory model organism B. subtilis 168 were used to study the effects of low-pressure plasma, with hydrogen alone and in combination with oxygen and evaporated hydrogen peroxide as a process gas, on spore survival, which was determined by a colony formation assay. Spores of B. pumilus SAFR-032 and B. subtilis 168 were deposited with an aseptic technique onto the surface of stainless steel screws to simulate a spore-contaminated spacecraft hardware component, and were subsequently exposed to different plasmas and hydrogen peroxide conditions in a very high frequency capacitively coupled plasma reactor (VHF-CCP) to reduce the spore burden. Spores of the spacecraft isolate B. pumilus SAFR-032 were significantly more resistant to plasma treatment than spores of B. subtilis 168. The use of low-pressure plasma with an additional treatment of evaporated hydrogen peroxide also led to an enhanced spore inactivation that surpassed either single treatment when applied alone, which indicates the potential application of this method as a fast and suitable way to reduce spore-contaminated spacecraft hardware components for planetary protection purposes. Key Words: Bacillus spores—Contamination—Spacecraft hardware—Plasma sterilization—Planetary protection. Astrobiology 13, 597–606. PMID:23768085

  11. Utilization of low-pressure plasma to inactivate bacterial spores on stainless steel screws.

    PubMed

    Stapelmann, Katharina; Fiebrandt, Marcel; Raguse, Marina; Awakowicz, Peter; Reitz, Günther; Moeller, Ralf

    2013-07-01

    A special focus area of planetary protection is the monitoring, control, and reduction of microbial contaminations that are detected on spacecraft components and hardware during and after assembly. In this study, wild-type spores of Bacillus pumilus SAFR-032 (a persistent spacecraft assembly facility isolate) and the laboratory model organism B. subtilis 168 were used to study the effects of low-pressure plasma, with hydrogen alone and in combination with oxygen and evaporated hydrogen peroxide as a process gas, on spore survival, which was determined by a colony formation assay. Spores of B. pumilus SAFR-032 and B. subtilis 168 were deposited with an aseptic technique onto the surface of stainless steel screws to simulate a spore-contaminated spacecraft hardware component, and were subsequently exposed to different plasmas and hydrogen peroxide conditions in a very high frequency capacitively coupled plasma reactor (VHF-CCP) to reduce the spore burden. Spores of the spacecraft isolate B. pumilus SAFR-032 were significantly more resistant to plasma treatment than spores of B. subtilis 168. The use of low-pressure plasma with an additional treatment of evaporated hydrogen peroxide also led to an enhanced spore inactivation that surpassed either single treatment when applied alone, which indicates the potential application of this method as a fast and suitable way to reduce spore-contaminated spacecraft hardware components for planetary protection purposes.

  12. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    SciTech Connect

    Vasilyak, L. M.; Vasiliev, A. I. Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu.; Kudryavtsev, N. N.

    2011-12-15

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  13. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes.

    PubMed

    Sanches, Sandra; Barreto Crespo, Maria T; Pereira, Vanessa J

    2010-03-01

    This study reports the efficiency of low pressure UV photolysis for the degradation of pesticides identified as priority pollutants by the European Water Framework Directive 2000/60/EC. Direct low pressure UV photolysis and advanced oxidation processes (using hydrogen peroxide and titanium dioxide) experiments were conducted in laboratory grade water, surface water, and groundwater. LP direct photolysis using a high UV fluence (1500 mJ/cm(2)) was found to be extremely efficient to accomplish the degradation of all pesticides except isoproturon, whereas photolysis using hydrogen peroxide and titanium dioxide did not significantly enhance their removal. In all matrices tested the experimental photolysis of the pesticides followed the same trend: isoproturon degradation was negligible, alachlor, pentachlorophenol, and atrazine showed similar degradation rate constants, whereas diuron and chlorfenvinphos were highly removed. The degradation trend observed for the selected compounds followed the decadic molar absorption coefficients order with exception of isoproturon probably due to its extremely low quantum yield. Similar direct photolysis rate constants were obtained for each pesticide in the different matrices tested, showing that the water components did not significantly impact degradation. Extremely similar photolysis rate constants were also obtained in surface water for individual compounds when compared to mixtures. The model fluence and time-based rate constants reported were very similar to the direct photolysis experimental results obtained, while overestimating the advanced oxidation results. This model was used to predict how degradation of isoproturon, the most resilient compound, could be improved.

  14. In situ CF3 Detection in Low Pressure Inductive Discharges by Fourier Transform Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    The detection of CF(x) (x=1-3) radicals in low pressure discharges using source gases such as CF4 and CHF3 is of importance to the understanding of their chemical structure and relevance in plasma based etching processes. These radicals are known to contribute to the formation of fluorocarbon polymer films, which affect the selectivity and anisotropy of etching. In this study, we present preliminary results of the quantitative measurement of trifluoromethyl radicals, CF3, in low pressure discharges. The discharge studied here is an inductively (transformer) coupled plasma (ICP) source in the GEC reference cell, operating on pure CF4 at pressures ranging from 10 - 100 mTorr, This plasma source generates higher electron number densities at lower operating pressures than obtainable with the parallel-plate capacitively coupled version of the GEC reference cell. Also, this expanded operating regime is more relevant to new generations of industrial plasma reactors being used by the microelectronics industry. Fourier transform infrared (FTIR) spectroscopy is employed to observe the absorption band of CF3 radicals in the electronic ground state X2Al in the region of 1233-1270/cm. The spectrometer is equipped with a high sensitivity HgCdTe (MCT) detector and has a fixed resolution of 0.125/cm. The CF3 concentrations are measured for a range of operating pressures and discharge power levels.

  15. Potential of nanofiltration and low pressure reverse osmosis in the removal of phosphorus for aquaculture.

    PubMed

    Leo, C P; Yahya, M Z; Kamal, S N M; Ahmad, A L; Mohammad, A W

    2013-01-01

    Aquaculture activities in developing countries have raised deep concern about nutrient pollution, especially excess phosphorus in wastewater, which leads to eutrophication. NF, NF90, NF450 and XLE membranes were studied to forecast the potential of nanofiltration and low pressure reverse osmosis in the removal of phosphorus from aquaculture wastewater. Cross-sectional morphology, water contact angle, water permeability and zeta potential of these membranes were first examined. Membrane with higher porosity and greater hydrophilicity showed better permeability. Membrane samples also commonly exhibited high zeta potential value in the polyphosphate-rich solution. All the selected membranes removed more than 90% of polyphosphate from the concentrated feed (75 mg/L) at 12 bar. The separation performance of XLE membrane was well maintained at 94.6% even at low pressure. At low feed concentration, more than 70.0% of phosphorus rejection was achieved using XLE membrane. The formation of intermolecular bonds between polyphosphate and the acquired membranes probably had improved the removal of polyphosphate at high feed concentration. XLE membrane was further tested and its rejection of polyphosphate reduced with the decline of pH and the addition of ammonium nitrate.

  16. Weak interactions between water and clathrate-forming gases at low pressures

    NASA Astrophysics Data System (ADS)

    Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; Kay, Bruce D.; Scott Smith, R.

    2015-11-01

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10- 1 mbar methane or 10- 5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10- 5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water-gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. Similar desorption temperatures were observed for desorption from amorphous solid water.

  17. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  18. The effect of discharge chamber geometry on the ignition of low-pressure rf capacitive discharges

    SciTech Connect

    Lisovskiy, V.; Martins, S.; Landry, K.; Douai, D.; Booth, J.-P.; Cassagne, V.; Yegorenkov, V.

    2005-09-15

    This paper reports measured and calculated breakdown curves in several gases of rf capacitive discharges excited at 13.56 MHz in chambers of three different geometries: parallel plates surrounded by a dielectric cylinder ('symmetric parallel plate'), parallel plates surrounded by a grounded metallic cylinder ('asymmetric parallel plate'), and parallel plates inside a much larger grounded metallic chamber ('large chamber'). The breakdown curves for the symmetric chamber have a multivalued section at low pressure. For the asymmetric chamber the breakdown curves are shifted to lower pressures and rf voltages, but the multivalued feature is still present. At higher pressures the breakdown voltages are much lower than for the symmetric geometry. For the large chamber geometry the multivalued behavior is not observed. The breakdown curves were also calculated using a numerical model based on fluid equations, giving results that are in satisfactory agreement with the measurements.

  19. Performance and control study of a low-pressure-ratio turbojet engine for a drone aircraft

    NASA Technical Reports Server (NTRS)

    Seldner, K.; Geyser, L. C.; Gold, H.; Walker, D.; Burgner, G.

    1972-01-01

    The results of analog and digital computer studies of a low-pressure-ratio turbojet engine system for use in a drone vehicle are presented. The turbojet engine consists of a four-stage axial compressor, single-stage turbine, and a fixed area exhaust nozzle. Three simplified fuel schedules and a generalized parameter fuel control for the engine system are presented and evaluated. The evaluation is based on the performance of each schedule or control during engine acceleration from a windmill start at Mach 0.8 and 6100 meters to 100 percent corrected speed. It was found that, because of the higher acceleration margin permitted by the control, the generalized parameter control exhibited the best dynamic performance.

  20. Fractionation of pyroxene-phyric MORB at low pressure: An experimental study

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Bryan, W. B.

    1983-12-01

    One-atmosphere melting experiments are used to assess the role of clinopyroxene in producing the compositional variations observed in mid-ocean-ridge basalts (MORBs) from the North Atlantic. Analog models of natural glasses and associated phenocrysts show that several possible parental magmas may undergo low pressure fractional crystallization involving olivine and spinel, followed by plagioclase, and then by augite. The phenocryst phase assemblages in natural deep-sea basalts are closely correlated with the major element compositions of their associated quenched glasses, and the projections of these glasses on the Oliv-Cpx-Qtz pseudoternary correspond to the 1-atmosphere phase boundaries and reaction points defined by laboratory experiments. Comparison of natural phenocryst's with experimental phases indicates that the augites preserved in moderately fractionated MORB from the FAMOUS area may have formed at or near the ocean floor and need not be relics of high pressure processes.

  1. Comparison measurements of low-pressure between a laser refractometer and ultrasonic manometer

    NASA Astrophysics Data System (ADS)

    Egan, Patrick F.; Stone, Jack A.; Ricker, Jacob E.; Hendricks, Jay H.

    2016-05-01

    We have developed a new low-pressure sensor which is based on the measurement of (nitrogen) gas refractivity inside a Fabry-Perot cavity. We compare pressure determinations via this laser refractometer to that of well-established ultrasonic manometers throughout the range 100 Pa to 180 000 Pa. The refractometer demonstrates 10-6 ṡ p reproducibility for p > 100 Pa, and this precision outperforms a manometer. We also claim the refractometer has an expanded uncertainty of U(pFP) = [(2.0 mPa)2 + (8.8 × 10-6 ṡ p)2]1/2, as realized through the properties of nitrogen gas; we argue that a transfer of the pascal to p < 1 kPa using a laser refractometer is more accurate than the current primary realization.

  2. H2 adsorption on multiwalled carbon nanotubes at low temperatures and low pressures

    NASA Astrophysics Data System (ADS)

    Xu, F.; Barberio, M.; Vasta, R.; Barone, P.; Bonanno, A.; Pirronello, V.

    2008-11-01

    We present an experimental study on H2 adsorption on multiwalled carbon nanotubes (MWCNTs) at low temperatures (12-30 K) and low pressures (2×10-5Torr) using the temperature programmed desorption technique. Our results show that the molecular hydrogen uptake increases nearly exponentially from 6×10-9wt.% at 24.5 K to 2×10-7wt.% at 12.5 K and that the desorption kinetics is of the first order. Comparative measurements indicate that MWCNTs have an adsorption capacity about two orders higher than that of activated carbon (charcoal) making them a possible candidate as hydrogen cryosorber for eventual applications in accelerators and synchrotrons.

  3. Discrete element simulation of powder compaction in cold uniaxial pressing with low pressure

    NASA Astrophysics Data System (ADS)

    Rojek, Jerzy; Nosewicz, Szymon; Jurczak, Kamila; Chmielewski, Marcin; Bochenek, Kamil; Pietrzak, Katarzyna

    2016-11-01

    This paper presents numerical studies of powder compaction in cold uniaxial pressing. The powder compaction in this work is considered as an initial stage of a hot pressing process so it is realized with relatively low pressure (up to 50 MPa). Hence the attention has been focused on the densification mechanisms at this range of pressure and models suitable for these conditions. The discrete element method employing spherical particles has been used in the numerical studies. Numerical simulations have been performed for two different contact models—the elastic Hertz-Mindlin-Deresiewicz model and the plastic Storåkers model. Numerical results have been compared with the results of laboratory tests of the die compaction of the NiAl powder. Comparisons have shown that the discrete element method is capable to represent properly the densification mechanisms by the particle rearrangement and particle deformation.

  4. Monte Carlo Simulation of Laser-Ablated Particle Splitting Dynamic in a Low Pressure Inert Gas

    NASA Astrophysics Data System (ADS)

    Ding, Xuecheng; Zhang, Zicai; Liang, Weihua; Chu, Lizhi; Deng, Zechao; Wang, Yinglong

    2016-06-01

    A Monte Carlo simulation method with an instantaneous density dependent mean-free-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a low pressure inert gas. The ablated-particle density and velocity distributions are analyzed. The force distributions acting on the ablated particles are investigated. The influence of the substrate on the ablated-particle velocity distribution and the force distribution acting on the ablated particles are discussed. The Monte Carlo simulation results approximately agree with the experimental data at the pressure of 8 Pa to 17 Pa. This is helpful to investigate the gas phase nucleation and growth mechanism of nanoparticles. supported by the Natural Science Foundation of Hebei Province, China (No. A2015201166) and the Natural Science Foundation of Hebei University, China (No. 2013-252)

  5. On designing low pressure loss working spaces for a planar Stirling micromachine

    NASA Astrophysics Data System (ADS)

    Hachey, M.-A.; Léveillé, É.; Fréchette, L. G.; Formosa, F.

    2015-12-01

    In this paper, research was undertaken with the objective to design low pressure loss working spaces for a Stirling cycle micro heat engine operating from low temperature waste heat. This planar free-piston heat engine is anticipated to operate at the kHz level with mm3 displacement. Given the resonant nature of the free-piston configuration, the complexity of its working gas’ flow geometry and its projected high operating frequency, flow analysis is relatively complex. Design considerations were thus based on fast prototyping and experimentation. Results show that geometrical features, such as a sharp 90° corner between the regenerator and working spaces, are strong contributors to pressure losses. This research culminated into a promising revised working space configuration for engine start-up, as it considerably reduced total pressure losses, more than 80% at Re = 700, from the original design.

  6. Separation of hazardous organics by low-pressure reverse-osmosis membranes. Phase 2 final report

    SciTech Connect

    Bhattacharyya, D.; Williams, M.E.

    1991-09-01

    Extensive experimental studies showed that thin-film, composite membranes can be used effectively for the separation of selected hazardous organic compounds. This waste treatment technique offers definite advantages in terms of high solute separations at low pressures (<2MPa) and broad pH operating range, and the use of charged membranes would allow the selective separation of some organics from feeds containing high salt concentrations. In addition, feed pre-ozonation of selected organics provided significant improvement in flux and rejection characteristics for both charged and uncharged membranes because of the formation of ionizable organic acid intermediates during the ozonation that did not interact as strongly with the membrane. The overall ozonation/membrane process effectively produced permeate water of high quality while it minimized the volume of waste that must be further treated.

  7. Wastewater disinfection by low-pressure UV and ozone: a design approach based on water quality.

    PubMed

    Savoye, P; Janex, M L; Lazarova, V

    2001-01-01

    Disinfection processes are known to be very sensitive to wastewater quality. This paper discusses the parameters that impact the UV light (UV) and ozone disinfection processes and the related mechanisms based on literature review. Low-pressure UV and ozone technologies were investigated on effluents that covered a wide range of water quality. The results are given in terms of design doses required to meet three major disinfection standards. Both processes were found eligible for the majority of effluents tested. Although cost-effectiveness is usually considered more favourable to UV, the ozone alternative should be examined in cases such as the disinfection of low-quality effluents or large treatment plants. Ozonation was also found capable of meeting the stringent Title 22 standard with no coagulation at a dose of 10 mg/l.

  8. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.

    PubMed

    Sun, Wanqi; Liang, Miao; Li, Zhen; Shu, Jinian; Yang, Bo; Xu, Ce; Zou, Yao

    2016-08-15

    On-spot monitoring of threat agents needs high sensitive instrument. In this study, a low-pressure photoionization mass spectrometer (LPPI-MS) was employed to detect trace amounts of vapor-phase explosives and chemical warfare agent mimetics under ambient conditions. Under 10-s detection time, the limits of detection of 2,4-dinitrotoluene, nitrotoluene, nitrobenzene, and dimethyl methyl phosphonate were 30, 0.5, 4, and 1 parts per trillion by volume, respectively. As compared to those obtained previously with PI mass spectrometric techniques, an improvement of 3-4 orders of magnitude was achieved. This study indicates that LPPI-MS will open new opportunities for the sensitive detection of explosives and chemical warfare agents.

  9. Low pressure mediated enhancement of nanoparticle and macromolecule loading into porous silicon structures.

    PubMed

    Leonard, Fransisca; Margulis-Goshen, Katrin; Liu, Xuewu; Srinivasan, Srimeenakshi; Magdassi, Shlomo; Godin, Biana

    2014-01-01

    Ensuring drug loading efficiency and consistency is one of the most critical stages in engineering drug delivery vectors based on porous materials. Here we propose a technique to significantly enhance the efficiency of loading by employing simple and widely available methods: applying low pressure with and without centrifugation. Our results point toward the advantages the proposed method over the passive loading, especially where the size difference of loaded materials and the pore size of the porous silicon particles is smaller, an increase up to 20-fold can be observed. The technique described in the study can be used for efficient and reproducible loading of porous materials with therapeutic molecules, nanoparticles and contrast imaging agents for biomedical application.

  10. A search for chemical laser action in low pressure metal vapor flames. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zwillenberg, M. L.

    1975-01-01

    Optical emissions were studied from low pressure (approximately 1 torr) dilute diffusion flames of Ca and Mg vapor with O2, N2O and mixtures of CCl4 and O2. The Ca flames with O2 and N2O revealed high vibrational excitation of the product CaO molecule (up to v=30). The flames with CCl4 revealed extreme nonequilibrium metal atom electronic excitation, up to the metal atom ionization limit (6.1 eV for Ca, 7.6 eV for Mg). The metal atom excited electronic state populations did not follow a Boltzmann distribution, but the excitation rates ('pumping rate') were found to obey an Arrhenius-type expression, with the electronic excitation energy playing the role of activation energy and a temperature of about 5000 K for triplet excited states and 2500 K for singlets (vs. approximately 500 K translational temperature).

  11. Cross sections and transport of O- in H2O vapour at low pressures

    NASA Astrophysics Data System (ADS)

    Stojanović, Vladimir; Raspopović, Zoran; Marić, Dragana; Petrović, Zoran Lj.

    2015-03-01

    The transport properties of O- ions in water vapour drifting in DC fields were obtained by using the Monte Carlo simulation technique with the scattering cross section sets assessed on the basis of Denpoh and Nanbu's technique and available experimental data. A swarm method is applied to determine recommended cross section set. For the first time in this work we present the transport parameters for the conditions of low to moderate reduced electric fields E/ N ( N is gas density) accounting for the effect of non-conservative collisions. The data are applicable in the limit of low pressures where cluster formation does not affect the transport or may be applied at higher pressures together with a model of cluster formation kinetics.

  12. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    NASA Astrophysics Data System (ADS)

    Rossi, F.; Kylián, O.; Rauscher, H.; Hasiwa, M.; Gilliland, D.

    2009-11-01

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O2 mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  13. Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Cohen, R. E.

    2016-08-01

    We studied the low-pressure (0-10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P21/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P21/c phase transition occurs at 2.1(1) GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.

  14. Formation processes of nanometer sized particles in low pressure Ar/CH{sub 4} rf plasmas

    SciTech Connect

    Beckers, J.; Vacaresse, G. D. G. J.; Stoffels, W. W.

    2008-09-07

    In this paper, formation and growth processes of nanometer and micrometer sized dust particles in low pressure Ar/CH{sub 4} rf (13.56 MHz) plasmas are investigated as function of temperature in the range 25-100 deg. C. During experiments the pressure was typically 0.8 mbar and the forward power to the plasma was {approx}70 Watt. Measuring the fundamental voltage, current and phase angle together with their harmonics (up to the fourth) gives a good method to monitor the creation and growth of these dust particles in time. Furthermore, laser light scattering measurements are performed to give information about the dust particle density. It has been shown that dust particle formation in these conditions depends greatly on temperature.

  15. Removal of C.I. Reactive Red 2 by low pressure UV/chlorine advanced oxidation.

    PubMed

    Wu, Qianyuan; Li, Yue; Wang, Wenlong; Wang, Ting; Hu, Hongying

    2016-03-01

    Azo dyes are commonly found as pollutants in wastewater from the textile industry, and can cause environmental problems because of their color and toxicity. The removal of a typical azo dye named C.I. Reactive Red 2 (RR2) during low pressure ultraviolet (UV)/chlorine oxidation was investigated in this study. UV irradiation at 254nm and addition of free chlorine provided much higher removal rates of RR2 and color than UV irradiation or chlorination alone. Increasing the free chlorine dose enhanced the removal efficiency of RR2 and color by UV/chlorine oxidation. Experiments performed with nitrobenzene (NB) or benzoic acid (BA) as scavengers showed that radicals (especially OH) formed during UV/chlorine oxidation are important in the RR2 removal. Addition of HCO3(-) and Cl(-) to the RR2 solution did not inhibit the removal of RR2 during UV/chlorine oxidation. PMID:26969069

  16. Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing.

    PubMed

    Li, Yanbo; Cooper, Jason K; Buonsanti, Raffaella; Giannini, Cinzia; Liu, Yi; Toma, Francesca M; Sharp, Ian D

    2015-02-01

    A new method for achieving high efficiency planar CH3NH3I3-xClx perovskite photovoltaics, based on a low pressure, reduced temperature vapor annealing is demonstrated. Heterojunction devices based on this hybrid halide perovskite exhibit a top PCE of 16.8%, reduced J-V hysteresis, and highly repeatable performance without need for a mesoporous or nanocrystalline metal oxide layer. Our findings demonstrate that large hysteresis is not an inherent feature of planar heterojunctions, and that efficient charge extraction can be achieved with uniform halide perovskite materials with desired composition. X-ray diffraction, valence band spectroscopy, and transient absorption measurements of these thin films reveal that structural modifications induced by chlorine clearly dominate over chemical and electronic doping effects, without affecting the Fermi level or photocarrier lifetime in the material.

  17. Low Pressure Plasma Sprayed Overlay Coatings for GRCop-84 Combustion Chamber Liners for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Barrett, C.; Ghosn, L. J.; Lerch, B.; Robinson,; Thorn, G.

    2005-01-01

    An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as combustor chamber liners and nozzle ramps in NASA s future generations of reusable launch vehicles (RLVs). However, past experience has shown that unprotected copper alloys undergo an environmental attack called "blanching" in rocket engines using liquid hydrogen as fuel and liquid oxygen as the oxidizer. Potential for sulfidation attack of the liners in hydrocarbon-fueled engines is also of concern. Protective overlay coatings alloys are being developed for GRCop-84. The development of this coatings technology has involved a combination of modeling, coatings development and characterization, and process optimization. Coatings have been low pressure plasma sprayed on GRCop-84 substrates of various geometries and shapes. Microstructural, mechanical property data and thermophysical results on the coated substrates are presented and discussed.

  18. Growth Characteristics of Carbon Nanotubes on Oxidized Catalyst under Low-Pressure Condition

    NASA Astrophysics Data System (ADS)

    Sawaguchi, Daiki; Sato, Hideki; Hata, Koichi; Miyake, Hideto; Iida, Kazuo; Hiramatsu, Kazumasa

    2012-01-01

    Low-pressure alcohol catalytic chemical vapor deposition (LP-ACCVD), which is an ACCVD method at a lower pressure (<1 Pa) than that in the conventional method, has been attracting much interest because it enables the low-temperature growth of single-wall carbon nanotubes (CNTs). However, the growth rate of CNTs by LP-ACCVD is markedly low owing to its low growth pressure. To alleviate this problem, we have examined the influence of the catalyst preparation and CVD conditions on the properties of CNTs grown by LP-ACCVD. It has been found that the oxidation of catalyst enhances the growth of CNTs by LP-ACCVD. Furthermore, the low flow rate of the ethanol enhances the growth yield of CNTs at lower growth temperature, which is understood to be the result of sufficient gas heating on the substrate.

  19. Low pressure mediated enhancement of nanoparticle and macromolecule loading into porous silicon structures

    PubMed Central

    Leonard, Fransisca; Margulis-Goshen, Katrin; Liu, Xuewu; Srinivasan, Srimeenakshi; Magdassi, Shlomo; Godin, Biana

    2014-01-01

    Ensuring drug loading efficiency and consistency is one of the most critical stages in engineering drug delivery vectors based on porous materials. Here we propose a technique to significantly enhance the efficiency of loading by employing simple and widely available methods: applying low pressure with and without centrifugation. Our results point toward the advantages the proposed method over the passive loading, especially where the size difference of loaded materials and the pore size of the porous silicon particles is smaller, an increase up to 20-fold can be observed. The technique described in the study can be used for efficient and reproducible loading of porous materials with therapeutic molecules, nanoparticles and contrast imaging agents for biomedical application. PMID:25485265

  20. Evaluation of a 40 to 1 scale model of a low pressure engine

    NASA Technical Reports Server (NTRS)

    Cooper, C. E., Jr.; Thoenes, J.

    1972-01-01

    An evaluation of a scale model of a low pressure rocket engine which is used for secondary injection studies was conducted. Specific objectives of the evaluation were to: (1) assess the test conditions required for full scale simulations; (2) recommend fluids to be used for both primary and secondary flows; and (3) recommend possible modifications to be made to the scale model and its test facility to achieve the highest possible degree of simulation. A discussion of the theoretical and empirical scaling laws which must be observed to apply scale model test data to full scale systems is included. A technique by which the side forces due to secondary injection can be analytically estimated is presented.

  1. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media

    DOEpatents

    McLellan, Edward J.

    1983-01-01

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode (1) and cathode (2) to below breakdown voltage using a dc voltage source (3). An array of resistors (4) or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit (5) producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO.sub.2 laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  2. Low-pressure argon adsorption assessment of micropore connectivities in activated carbons.

    PubMed

    Zimny, T; Villieras, F; Finqueneisel, G; Cossarutto, L; Weber, J V

    2006-01-01

    Low-pressure argon adsorption has been used to study the energetic distribution of microporous activated carbons differing by their burn-off. The collected isotherms were analyzed using the derivative isotherm summation method. Some oscillations on the experimental curves for very low partial pressures were detected. The results are analyzed and discussed according to the literature and could be attributed to local overheating caused by spontaneous mass transfer of argon through constrictions between former pores and the new opening pore or deadend pores. We used the dynamic character of the experimental method and mainly the discrepancy of the quasi-equilibrium state to deduce key parameters related to the porosity topology. PMID:16112680

  3. Dynamics of cathode spots in low-pressure arc plasma removing oxide layer on steel surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Z. L.; Yang, K.; Liu, H. X.; Zhang, Y. C.; Li, H.; Zhu, X. D.

    2016-03-01

    The dynamics of cathode spots has been investigated in low-pressure arc plasma for removing oxide layer on low carbon steel surfaces. The motion of cathode spots was observed with a high speed camera, and the arc voltage was analyzed by fast Fourier transform. The spots move on clean steel surface as a random walk, and the low-frequency components dominated the voltage waveform. However, the spots on steel surfaces with oxide layer tend to burn on the rim of the eroded area formed in the previous arcing, and the low-frequency components decrease correspondingly. The "color" of the colored random noise for arc voltage varies from the approximate brown noise for clean steel surface to pink noise for thick oxide layer, where the edge effect of boundary is considered to play a significant role.

  4. Computational fluid dynamics analysis of a steam power plant low-pressure turbine downward exhaust hood

    SciTech Connect

    Tindell, R.H.; Alston, T.M.; Sarro, C.A.; Stegmann, G.C.; Gray, L.; Davids, J.

    1996-01-01

    Computational fluid dynamics (CFD) methods are applied to the analysis of a low-pressure turbine exhaust hood at a typical steam power generating station. A Navier-Stokes solver, capable of modeling all the viscous terms, in a Reynolds-averaged formulation, was used. The work had two major goals. The first was to develop a comprehensive understanding of the complex three-dimensional flow fields that exist in the exhaust hood at representative operating conditions. The second was to evaluate the relative benefits of a flow guide modification to optimize performance at a selected operating condition. Also, the influence of simulated turbine discharge characteristics, relative to uniform hood entrance conditions, was evaluated. The calculations show several interesting and possibly unique results. They support use of an integrated approach to the design of turbine exhaust stage blading and hood geometry for optimum efficiency.

  5. Characterization of the large area plane-symmetric low-pressure DC glow discharge

    NASA Astrophysics Data System (ADS)

    Avtaeva, S.; Gorokhovsky, V.; Myers, S.; Robertson, S.; Shunko, E.; Zembower, Z.

    2016-10-01

    Electron density and temperature as well as nitrogen dissociation degree in the low-pressure (10-50 mTorr) large area plane-symmetric DC glow discharge in Ar-N2 mixtures are studied by probes and spectral methods. Electron density measured by a hairpin probe is in good agreement with that derived from the intensity ratio of the N2 2nd positive system bands IC , 1 - 3/IC , 0 - 2 and from the intensity ratio of argon ions and atom lines IArII/IArI, while Langmuir probe data provides slightly higher values of electron density. Electron density in the low-pressure DC glow discharge varies with the discharge conditions in the limits of 108-1010 cm- 3. The concept of electron temperature can be used in low-pressure glow discharges with reservations. The intensity ratio of (0-0) vibrational bands of N2 1st negative and 2nd positive systems I391.4/I337.1 exhibits the electron temperature of 1.5-2.5 eV when argon fraction in the mixture is higher than nitrogen fraction and this ratio quickly increases with nitrogen fraction up to 10 eV in pure nitrogen. The electron temperature calculated from Langmuir probe I-V characteristics assuming a Maxwellian EEDF, gives Te 0.3-0.4 eV. In-depth analysis of the EEDF using the second derivative of Langmuir probe I-V characteristics shows that in a low-pressure glow discharge the EEDF is non-Maxwellian. The EEDF has two populations of electrons: the main background non-Maxwellian population of "cold" electrons with the mean electron energy of 0.3-0.4 eV and the small Maxwellian population of "hot" electrons with the mean electron energy of 1.0-2.5 eV. Estimations show that with electron temperature lower than 1 eV the rate of the direct electron impact ionization of N2 is low and the main mechanism of N2 ionization becomes most likely Penning and associative ionization. In this case, assumptions of the intensity ratio IN2+ , 391/IN2 , 337 method are violated. In the glow discharge, N2 dissociation degree reaches about 7% with the argon

  6. Experimental testing of cooling by low pressure adsorption in a zeolite

    SciTech Connect

    Redman, C.M.

    1985-01-01

    A small scale facility was designed, constructed, and utilized to test the use of zeolite adsorption of water vapor to augment chill storage in ice for conventional space cooling. The facility uses solar-derived energy, for the heat source and evaporatively chilled water for the heat sump. The product cooling uses sublimation of ice instead of melting. The ZCAT facility utilizes a heat pumping technique in which a water vapor adsorbent functions as the compressor and condenser. The design was based on use of 13X zeolite as the adsorber because of its high adsorbence at low pressures. However, it has been determined that other materials such as silica gel should give superior performance. While zeolite 13X holds more water in the pressure and temperature ranges of interest, silica gel cycles more water and has less residue water. Both points are very important in the design of an efficient and cost effective system.

  7. The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor

    SciTech Connect

    Pourali, N.; Foroutan, G.

    2015-10-15

    A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which in turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.

  8. Low-pressure microwave plasma nucleation and deposition of diamond films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.; Rich, D. H.

    1992-01-01

    Low-pressure microwave plasma nucleation and deposition of diamond films were investigated in the pressure range 10-mtorr to 10 torr, at substrate temperatures 400-750 C and with CH4 and O2 concentrations in H2 plasma of 2-15 percent and 2-10 percent, respectively. The experiments were performed in a microwave plasma system consisting of a microwave plasma chamber, a downstream deposition chamber, and an RF induction heated sample stage. Scanning electron microscopy of diamond films deposited at 600 C with 5 percent CH4 and 5 percent O2 in H2 plasmas showed high-quality well faceted crystallites of 1/2 micron size. Cathodoluminescence measurements of these films showed very few nitrogen impurities and no detectable silicon impurities.

  9. A 2-D Self-Consistent DSMC Model for Chemically Reacting Low Pressure Plasma Reactors

    SciTech Connect

    Bartel, Timothy J.; Economou, Demetre; Johannes, Justine E.

    1999-06-17

    This paper will focus on the methodology of using a 2D plasma Direct Simulation Monte Carlo technique to simulate the species transport in an inductively coupled, low pressure, chemically reacting plasma system. The pressure in these systems is typically less than 20 mtorr with plasma densities of approximately 10{sup 17} {number_sign}/m{sup 3} and an ionization level of only 0.1%. This low ionization level tightly couples the neutral, ion, and electron chemistries and interactions in a system where the flow is subsonic. We present our strategy and compare simulation results to experimental data for Cl{sub 2} in a Gaseous Electronics Conference (GEC) reference cell modified with an inductive coil.

  10. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    DOEpatents

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  11. Effect of geometrical focusing on femtosecond laser filamentation with low pressure

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Jia, Wei; Fan, Chengyu

    2016-03-01

    The influence of geometrical focusing on the filamentation of femtosecond laser pulses at various low pressures (<1 atm) in air has been numerically demonstrated. The main peculiarities, such as filamentation dynamics, spatial-temporal evolution and supercontinuum generation manipulated by external geometrical focusing in the low atmospheric pressure regime, are analyzed by numerically solving a spatial-temporal equation for femtosecond laser pulse propagation in air. The results show that those important characteristics are more sensitive to the focal length than the variation of atmospheric pressure. It indicates that suitable design of the focal length will result in further amplitude uniformity and a lack of temporal aberrations in the compressed pulse. This theoretical modelling of pulse shaping optimization is a step to realization of high-energy femtosecond pulse delivery from the Earth's surface to altitudes of several kilometers up into the atmosphere.

  12. Experimental radial motion to orbital motion transition in cylindrical Langmuir probes in low pressure plasmas

    NASA Astrophysics Data System (ADS)

    Díaz-Cabrera, J. M.; Ballesteros, J.; Fernández Palop, J. I.; Tejero-del-Caz, A.

    2015-04-01

    This article shows a transition in the behavior of the positive ions movement around a cylindrical Langmuir probe which we have experimentally observed in a low pressure plasma. In the case of helium plasma, depending on the plasma conditions, the ion current collected by the probe behaves as predicted by a radial motion theory, by an orbital motion theory, or by none of them when the transition between the two behaviors takes place. In the case of argon and neon plasmas, the ion current is well described by radial motion theories. The knowledge of the positive ions behavior is essential to diagnose the plasma parameters by using the ion saturation zone of the current-voltage characteristic curve. The use of this zone is one of the less intrusive in probe plasma diagnostics methods providing local information about the plasma parameters, since the charge drained from the plasma is very low.

  13. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.

    PubMed

    Sun, Wanqi; Liang, Miao; Li, Zhen; Shu, Jinian; Yang, Bo; Xu, Ce; Zou, Yao

    2016-08-15

    On-spot monitoring of threat agents needs high sensitive instrument. In this study, a low-pressure photoionization mass spectrometer (LPPI-MS) was employed to detect trace amounts of vapor-phase explosives and chemical warfare agent mimetics under ambient conditions. Under 10-s detection time, the limits of detection of 2,4-dinitrotoluene, nitrotoluene, nitrobenzene, and dimethyl methyl phosphonate were 30, 0.5, 4, and 1 parts per trillion by volume, respectively. As compared to those obtained previously with PI mass spectrometric techniques, an improvement of 3-4 orders of magnitude was achieved. This study indicates that LPPI-MS will open new opportunities for the sensitive detection of explosives and chemical warfare agents. PMID:27260452

  14. Performance test of the low-pressure thin window multi-wire chamber

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Wei; Lu, Chen-Gui; Duan, Li-Min; Ma, Long; Hu, Rong-Jiang; Yang, He-Run; Ma, Peng; Gan, Zai-Guo

    2014-02-01

    A flow gas low-pressure multi-wire proportional chamber (LPMWPC) with an active area of 180 mm × 80 mm has been developed for the flying time test of the recoil nuclei on super heavy nuclear experiments. The LPMWPC detector can be operated in single as well as double step operational modes. In the case of double step operational mode with a high gas amplification factor, signals from α-particles reside well above the electronic noise. The gas leakage rate and time resolution obtained from the α 239Pu source are shown and discussed at the condition of 3 mbar Isobutane gas. It was shown that the time resolution was better than 2.9 ns at the best work condition, and the detecting efficiency was larger than 98% at the low energy α particles. So the LPMWPC is fit to measure the flying time in the super heavy nuclear fragments experiment.

  15. Low-pressure reservoir drilled with air/N[sub 2] in a closed system

    SciTech Connect

    Teichrob, R.R. )

    1994-03-21

    Ignition tests on simulated produced fluids helped determine the ideal air/nitrogen mixture for an underbalanced drilling operation that used a closed surface system to process return fluids. The low-pressure, heavy-oil target reservoir required underbalanced drilling to minimize formation damage. Underbalanced or near-balanced drilling can improve production from pressure-depleted reservoirs by reducing the chance of formation damage from drilling fluid losses. Underbalanced drilling technology currently available includes the use of gas injection through parasite strings or through drilling tubulars. No one (to the author's knowledge) has combined concentric-string commingled gas injection with through-drilling-tubular commingled gas injection. The paper describes lab work, test results, surface returns, downhole design, operations, and field results.

  16. Abnormal heating of low-energy electrons in low-pressure capacitively coupled discharges.

    PubMed

    Park, G Y; You, S J; Iza, F; Lee, J K

    2007-02-23

    In low-pressure capacitively coupled plasmas, high-energy electrons are collisionlessly heated by large rf fields in the sheaths while low-energy electrons are confined in the bulk plasma by the ambipolar potential. Low-energy electrons are typically inefficiently heated due to their low collisionality and the weak rf electric field present in the bulk. It is shown, however, that as a result of the nonlinear interaction between the electron motion and the weak rf field present in the bulk, low-energy electrons can be efficiently heated. Electrons in the bulk that bounce inside the electrostatic potential well with a frequency equal to the rf excitation frequency are efficiently heated by the coherent interaction with the rf field. This resonant collisionless heating can be very efficient and manifest itself as a plateau in the electron energy probability function.

  17. Unsteady flows in a two-dimensional linear cascade with low-pressure turbine blades

    NASA Astrophysics Data System (ADS)

    Murawski, Christopher Gabriel

    Experimental studies of unsteady flow phenomena in a low pressure turbine linear cascade are presented. Turbine engine flow passages contain numerous loss mechanisms. The loss mechanisms investigated in this study are low Reynolds number and freestream turbulence effects, secondary flows and wake interactions. Also, a method is implemented which decreases the profile losses due to low Reynolds number effects. The results are presented in three segments. First, the effects of Reynolds number and freestream turbulence intensity on the low-pressure turbine cascade blade are investigated. The condition of the blade's boundary layer is the leading factor controlling the level of profile loss. The losses from the airfoil decrease as the Reynolds number and freestream turbulence increase due to a decrease in the size of the separation zone on the suction side of the turbine airfoil. Boundary layer separation occurs on the suction surface of the turbine. Changes to this region are achieved when attaching different length tail sets to the turbine airfoils which alters the axial chord of each blade. A clear improvement on suction side boundary layer behavior at low Reynolds numbers was seen when the tail extensions were shorter than about 9% of axial chord. Finally, the effect wake disturbance frequency on the secondary flow vortex structure in a turbine cascade is studied. Cylinders are traversed across the front of the blade row to simulate turbine blade disturbances. The response of the secondary flow structure to the movement of the wake generator shuttle with zero, one and multiple wake generator rods are presented. Multiple wake disturbance frequencies are varied from 12 Hz to 52 Hz. Multiple wake disturbance frequency below the axial chord flow frequency enable the secondary flow vortex structure to re-establish itself between each wake disturbance event. Axial chord flow frequency is defined as the axial velocity in the cascade divided by the axial chord length of

  18. Graphite thermometry in a low-pressure contact aureole, Halifax, Nova Scotia

    NASA Astrophysics Data System (ADS)

    Hilchie, L. J.; Jamieson, R. A.

    2014-11-01

    Intrusion of the late Devonian South Mountain Batholith, southern Nova Scotia, produced a low-pressure contact metamorphic aureole in its metasedimentary host rocks. The effects of contact metamorphism are particularly well developed in pelitic rocks of the Halifax Group on the eastern margin of the batholith. Contact metamorphic isograds and mineral assemblages suggest low-pressure metamorphism, with P-T conditions at the contact estimated at 2.5-3.0 kbar and ca. 650 °C. In this study, Raman spectroscopy of carbonaceous material (RSCM) was used to obtain temperatures from graphite, which is common throughout the contact aureole. Temperature estimates range from ca. 360 °C just outside the cordierite-in isograd to ca. 640 °C in the sillimanite-K-feldspar zone near the contact, the latter consistent with the temperature estimated from the corresponding silicate mineral assemblage. Three different RSCM calibrations produced very similar results except at the high-temperature end of the observed range. A thermal profile constructed from the RSCM data was used to constrain a 2D numerical model for post-intrusion conductive cooling of the batholith along its eastern margin. Comparison of RSCM vs model thermal profiles suggest that observed differences between the thermal structure of the inner and outer aureole were controlled by the subsurface geometry of the pluton contact. The model predicts that peak temperatures in country rocks within 1 km of the contact were reached within 50 ka of intrusion, but that the outer part of the aureole took 250-500 ka to reach peak temperatures. The results confirm the utility of RSCM thermometry for acquiring temperature data over a range of metamorphic grades.

  19. DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW

    SciTech Connect

    BUTCHER,T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  20. Wall thinning criteria for low temperature-low pressure piping. Task 91-030-1

    SciTech Connect

    Mertz, G.E.

    1993-01-01

    This acceptance criteria is intended to prevent gross rupture or rapidly propagating failure during normal and abnormal operating conditions. Pitting may be present in the carbon steel piping. While the acceptance criteria have provisions to preclude gross rupture through a pitted region, they do not protect against throughwall pit growth and subsequent leakage. Potential leakage through a pit in low pressure piping is less than the post-DBE design basis leakage. Both the uniform thinning and LTA criteria protect against leakage, since their potential for leakage is larger. The acceptance criteria protects against gross rupture due to general wall thinning, local wall thinning (LTA`s), pitting, and fracture through weld defects. General wall thinning calculations are based on the restart criteria, SEP-24. LTA criteria for hoop stresses are based on ASME Code Case N-480 {open_quotes}Examination Requirements for Pipe Wall Thinning Due to Single Phase Erosion and Corrosion{close_quotes}. The LTA criteria for axial stress is based on an effective average thickness concept, which prevents plastic collapse of a locally thinned pipe. Limits on pit density, based on an effective cross section concept, are used to prevent gross rupture through a group of pits. The CEGB R-6 failure assessment diagram is used in the fracture evaluation, along with postulated weld defects. This criteria is intended for low temperature, low pressure piping systems. Corrosion and/or weld defects increase the peak stresses during normal operation and may lead to a reduction in fatigue life. Piping systems subject to significant thermal or mechanical fatigue will require additional analysis which is beyond the scope of this document.

  1. Measurements in a Transitional Boundary Layer Under Low-Pressure Turbine Airfoil Conditions

    NASA Technical Reports Server (NTRS)

    Simon, Terrence W.; Qiu, Songgang; Yuan, Kebiao; Ashpis, David (Technical Monitor); Simon, Fred (Technical Monitor)

    2000-01-01

    This report presents the results of an experimental study of transition from laminar to turbulent flow in boundary layers or in shear layers over separation zones on a convex-curved surface which simulates the suction surface of a low-pressure turbine airfoil. Flows with various free-stream turbulence intensity (FSTI) values (0.5%, 2.5% and 10%), and various Reynolds numbers (50,000, 100,000 200,000 and 300,000) are investigated. Reynold numbers in the present study are based on suction surface length and passage exit mean velocity. Flow separation followed by transition within the separated flow region is observed for the lower-Re cases at each of the FSTI levels. At the highest Reynolds numbers and at elevated FSn, transition of the attached boundary layer begins before separation, and the separation zone is small. Transition proceeds in the shear layer over the separation bubble. For both the transitional boundary layer and the transitional shear layer, mean velocity, turbulence intensity and intermittency (the fraction of the time the flow is turbulent) distributions are presented. The present data are compared to published distribution models for bypass transition, intermittency distribution through transition, transition start position, and transition length. A model developed for transition of separated flows is shown to adequately predict the location of the beginning of transition, for these cases, and a model developed for transitional boundary layer flows seems to adequately predict the path of intermittency through transition when the transition start and end are known. These results are useful for the design of low-pressure turbine stages which are known to operate under conditions replicated by these tests.

  2. Controlling secondary flows in very highly-loaded low-pressure turbine cascades

    NASA Astrophysics Data System (ADS)

    Knezevici, Daniel C.

    This thesis documents experimental and computational results of a research program investigating the aerodynamic losses generated by extremely highly loaded low-pressure turbine blades, with particular focus on the three-dimensional flow near the endwall. The study identifies the physical mechanisms associated with loss generation and documents changes in the flow field that result from the application of passive flow control techniques. The experimental study was conducted in Carleton University's low-speed, linear cascade wind tunnel. Quantitative results include seven-hole pneumatic probe pressure measurements downstream of the cascade to assess blade row losses, as well as detailed measurements within the blade passage to track the development of flow structures. Qualitative results in the form of oil surface flow visualization on the endwall and blade suction surface are used to assist in the interpretation of the physics. The complementary computational studies were performed using Reynolds-averaged Navier-Stokes (RANS) simulations, providing detailed resolution of the various vortical structures comprising the endwall flow. The work examined two passive flow control techniques for mitigating endwall loss. The techniques were applied to very high-lift, low-pressure turbine airfoils with the goal of expanding the design space. The airfoils and both flow control techniques were designed by Pratt & Whitney Aircraft (PWA) using proprietary tools. It was found that endwall loss could be significantly reduced and the mechanisms of loss reduction were identified. The loss measurements have allowed plausible limits to be defined for a high-lift replacement of the baseline airfoil used in the study.

  3. Particle modelling of magnetically confined oxygen plasma in low pressure radio frequency discharge

    SciTech Connect

    Benyoucef, Djilali; Yousfi, Mohammed

    2015-01-15

    The main objective of this paper is the modelling and simulation of a radio frequency (RF) discharge in oxygen at low pressure and at room temperature, including the effect of crossed electric and magnetic fields for generation and confinement of oxygen plasma. The particle model takes into account one axial dimension along the electric field axis and three velocity components during the Monte Carlo treatment of the collisions between charged particles and background gas. The simulation by this developed code allows us not only to determine the electrodynamics characteristics of the RF discharge, but also to obtain kinetics and energetic description of reactive oxygen plasma at low pressure. These information are very important for the control of the deep reactive-ion etching technology of the silicon to manufacture capacitors with high density and for the deposition thick insulating films or thick metal to manufacture micro-coils. The simulation conditions are as follows: RF peak voltage of 200 V, frequency of 13.56 MHz, crossed magnetic field varying from 0 to 50 Gauss, and oxygen pressure of 13.8 Pa. In the presence of magnetic field, the results show an increase of the plasma density, a decrease of the electron mean energy, and also a reduction of the ratio between electron density and positive ion density. Finally in order to validate, the results are successfully compared with measurements already carried out in the literature. The conditions of comparison are from 100 to 300 V of the peak voltage at 13.56 MHz under a pressure of 13.8 Pa and a gap distance of 2.5 cm.

  4. Particle modelling of magnetically confined oxygen plasma in low pressure radio frequency discharge

    NASA Astrophysics Data System (ADS)

    Benyoucef, Djilali; Yousfi, Mohammed

    2015-01-01

    The main objective of this paper is the modelling and simulation of a radio frequency (RF) discharge in oxygen at low pressure and at room temperature, including the effect of crossed electric and magnetic fields for generation and confinement of oxygen plasma. The particle model takes into account one axial dimension along the electric field axis and three velocity components during the Monte Carlo treatment of the collisions between charged particles and background gas. The simulation by this developed code allows us not only to determine the electrodynamics characteristics of the RF discharge, but also to obtain kinetics and energetic description of reactive oxygen plasma at low pressure. These information are very important for the control of the deep reactive-ion etching technology of the silicon to manufacture capacitors with high density and for the deposition thick insulating films or thick metal to manufacture micro-coils. The simulation conditions are as follows: RF peak voltage of 200 V, frequency of 13.56 MHz, crossed magnetic field varying from 0 to 50 Gauss, and oxygen pressure of 13.8 Pa. In the presence of magnetic field, the results show an increase of the plasma density, a decrease of the electron mean energy, and also a reduction of the ratio between electron density and positive ion density. Finally in order to validate, the results are successfully compared with measurements already carried out in the literature. The conditions of comparison are from 100 to 300 V of the peak voltage at 13.56 MHz under a pressure of 13.8 Pa and a gap distance of 2.5 cm.

  5. PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O{sub 2} Plasma

    SciTech Connect

    Bera, Kallol; Rauf, Shahid; Collins, Ken

    2011-05-20

    Low pressure capacitively coupled plasmas are extensively used for advanced microelectronic device fabrication. Due to long electron mean free path and large bias voltages in this regime, kinetic effects play an important role in the dynamics of low pressure discharges. To take account of the kinetic effects, a one-dimensional hybrid plasma model has been developed that couples the Particle-In-Cell (PIC) technique for charged species and a fluid method for neutral species. The PIC model uses the Monte Carlo Collision (MCC) method to account for collision processes. The fluid model for neutral species takes into account species transport in the plasma, chemical reactions, and surface processes. An electronegative O{sub 2} plasma is simulated for a range of pressures (10-300 mTorr) and rf voltages (200-600 V) at 60 MHz. Our model for the O{sub 2} plasma considers electrons, O{sub 2}{sup +}, O{sup -}, O, and O*. The reaction mechanism includes electron impact dissociation, ionization, dissociative attachment and ion-ion recombination. Computational results are compared to our previous simulations for an electropositive Ar discharge. The electrons primarily absorb power from the external power supply at the sheath edge during sheath expansion. Energetic beam electrons are generated at the sheath edge during electron heating, which are responsible for plasma production and sustenance through collisions. The negative ions are found to be confined in the bulk plasma due to the potential well. The ratio of negative ions to electrons increases with increase in pressure and decrease in rf voltage. The spatial profiles of charged and neutral species in the plasma are found to primarily depend on species sources due to collisional processes.

  6. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  7. Ultrasonic nebulization extraction/low pressure photoionization mass spectrometry for direct analysis of chemicals in matrices.

    PubMed

    Liu, Chengyuan; Zhu, Yanan; Zhou, Zhongyue; Yang, Jiuzhong; Qi, Fei; Pan, Yang

    2015-09-01

    A novel ultrasonic nebulization extraction/low-pressure photoionization (UNE-LPPI) system has been designed and employed for the rapid mass spectrometric analysis of chemicals in matrices. An ultrasonic nebulizer was used to extract the chemicals in solid sample and nebulize the solvent in the nebulization cell. Aerosols formed by ultrasonic were evaporated by passing through a transferring tube, and desolvated chemicals were ionized by the emitted light (10.6 eV) from a Krypton discharge lamp at low pressure (∼68 Pa). First, a series of semi/non-volatile compounds with different polarities, such as polycyclic aromatic hydrocarbons (PAHs), amino acids, dipeptides, drugs, nucleic acids, alkaloids, and steroids were used to test the system. Then, the quantification capability of UNE-LPPI was checked with: 1) pure chemicals, such as 9,10-phenanthrenequinone and 1,4-naphthoquinone dissolved in solvent; 2) soil powder spiked with different amounts of phenanthrene and pyrene. For pure chemicals, the correlation coefficient (R(2)) for the standard curve of 9,10-phenanthrenequinone in the range of 3 ng-20 μg mL(-1) was 0.9922, and the measured limits of detection (LOD) was 1 ng ml(-1). In the case of soil powder, linear relationships for phenanthrene and pyrene from 10 to 400 ng mg(-1) were obtained with correlation coefficients of 0.9889 and 0.9893, respectively. At last, the feasibility of UNE-LPPI for the detection of chemicals in real matrices such as tablets and biological tissues (tea, Citrus aurantium peel and sage (Salvia officinalis) leaf) were successfully demonstrated. PMID:26388379

  8. Comparative mortality of diapausing and nondiapausing larvae of Plodia interpunctella (Lepidoptera: Pyralidae) exposed to monoterpenoids and low pressure.

    PubMed

    Mbata, George N; Pascual-Villalobos, Marie J; Payton, Mark E

    2012-04-01

    Monoterpenoids and low pressure have each been demonstrated to cause mortality of stored-product insect pests. The current report investigated the prospects of integrating the two methods in the management of diapausing and nondiapausing larvae of Plodia interpunctella (Hübner). In a separate experiment, the larvae were exposed to 35.5 mmHg in Erlenmeyer flasks at 19 and 28 degrees C for times ranging from 30 min to 96 h. Another set of experiments was conducted to investigate the toxicity of exposing P. interpunctella larvae to monoterpenoids including E-anethole, estragole, S-carvone, linalool, L-fenchone, geraniol, gamma-terpinene, and DL-camphor alone or in combination with low pressure (50 mmHg). Lethal times (LT) determined by subjecting time-mortality data to probit analyses were shortened to half when both diapausing and nondiapausing larvae were exposed to low pressure at 28 degrees C compared with 19 degrees C. Exposure of diapausing larvae to a monoterpenoid alone, with the exception of DL-camphor and estragole, at a concentration of 66.7 microl/1L of volume required > 30 h to generate 99% mortality at 19.0 +/- 0.8 degrees C. However, the LT99 values for diapausing and nondiapausing larvae exposed to combinations of DL-camphor or estragole and low pressure were considerably shortened. Combinations involving the rest of the monoterpenoids investigated and low pressure did not generate LT99 that were shorter than those of the control, which was low pressure only. These results suggest that integrating low pressure with DL-camphor or estragole could be a new method for the control of diapausing larvae of P. interpunctella at cooler temperatures.

  9. A comparison of low-pressure and supercharged operation of polymer electrolyte membrane fuel cell systems for aircraft applications

    NASA Astrophysics Data System (ADS)

    Werner, C.; Preiß, G.; Gores, F.; Griebenow, M.; Heitmann, S.

    2016-08-01

    Multifunctional fuel cell systems are competitive solutions aboard future generations of civil aircraft concerning energy consumption, environmental issues, and safety reasons. The present study compares low-pressure and supercharged operation of polymer electrolyte membrane fuel cells with respect to performance and efficiency criteria. This is motivated by the challenge of pressure-dependent fuel cell operation aboard aircraft with cabin pressure varying with operating altitude. Experimental investigations of low-pressure fuel cell operation use model-based design of experiments and are complemented by numerical investigations concerning supercharged fuel cell operation. It is demonstrated that a low-pressure operation is feasible with the fuel cell device under test, but that its range of stable operation changes between both operating modes. Including an external compressor, it can be shown that the power demand for supercharging the fuel cell is about the same as the loss in power output of the fuel cell due to low-pressure operation. Furthermore, the supercharged fuel cell operation appears to be more sensitive with respect to variations in the considered independent operating parameters load requirement, cathode stoichiometric ratio, and cooling temperature. The results indicate that a pressure-dependent self-humidification control might be able to exploit the potential of low-pressure fuel cell operation for aircraft applications to the best advantage.

  10. Bulk characterization of pharmaceutical powders by low-pressure compression II: effect of method settings and particle size.

    PubMed

    Sørensen, Arne Hagsten; Sonnergaard, Jørn Møller; Hovgaard, Lars

    2006-01-01

    The aim of the present study was to investigate the effect of punch and die diameter, sample size, compression speed, and particle size on two low-pressure compression-derived parameters; the compressed density and the Walker w parameter. The excellent repeatability of the low-pressure compression method allowed small effects of variations in punch and die diameter and sample size to be demonstrated on a high significance level. Changing the compression speed, however, did not cause a significant effect in the compressed density, whereas a decrease in w was seen. The effect of particle size was studied by compressing and tapping different grades of calcium carbonate, lactose, and microcrystalline cellulose. The low-pressure compression-derived parameters were compared to tapped densities and to Compressibility Indexes obtained by tapping volumetry. Even though the relationship between particle size and the low-pressure compression-derived parameters appeared to be more complicated, a similar trend was observed. It was concluded that the low-pressure compression method provides a useful alternative to the more sample-consuming methods providing flow-related information.

  11. Method to Remove Particulate Matter from Dusty Gases at Low Pressures

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Clements, J. Sid

    2012-01-01

    Future human exploration of Mars will rely on local Martian resources to reduce the mass, cost, and risk of space exploration launched from Earth. NASA's In Situ Resource Utilization (ISRU) Project seeks to produce mission consumables from local Martian resources, such as atmospheric gas. The Martian atmosphere, however, contains dust particles in the 2-to-10 -micrometer range. These dust particles must be removed before the Martian atmospheric gas can be processed. The low pressure of the Martian atmosphere, at 5 to 10 mbars, prevents the development of large voltages required for a standard electrostatic precipitator. If the voltage is increased too much, the corona transitions into a glow/streamer discharge unsuitable for the operation of a precipitator. If the voltage is not large enough, the dust particles are not sufficiently charged and the field is not strong enough to drive the particles to the collector. A method using electrostatic fields has been developed to collect dust from gaseous environments at low pressures, specifically carbon dioxide at pressures around 5 to 10 mbars. This method, commonly known as electrostatic precipitation, is a mature technology in air at one atmosphere. In this case, the high voltages required for the method to work can easily be achieved. However, in carbon dioxide at low pressures, such as those found on Mars, large voltages are not possible. The innovation reported here consists of two concentric cylindrical electrodes set at specific potential difference that generate an electric field that produces a corona capable of imparting an electrostatic charge to the incoming dust particles. The strength of the field is carefully balanced so as to produce a stable charging corona at 5 to 10 mbars, and is also capable of imparting a force to the particles that drives them to the collecting electrode. There are only two possible ways that dust can be removed from Martian atmospheric gas intakes: with this electrostatic

  12. Physical Insights, Steady Aerodynamic Effects, and a Design Tool for Low-Pressure Turbine Flutter

    NASA Astrophysics Data System (ADS)

    Waite, Joshua Joseph

    The successful, efficient, and safe turbine design requires a thorough understanding of the underlying physical phenomena. This research investigates the physical understanding and parameters highly correlated to flutter, an aeroelastic instability prevalent among low pressure turbine (LPT) blades in both aircraft engines and power turbines. The modern way of determining whether a certain cascade of LPT blades is susceptible to flutter is through time-expensive computational fluid dynamics (CFD) codes. These codes converge to solution satisfying the Eulerian conservation equations subject to the boundary conditions of a nodal domain consisting fluid and solid wall particles. Most detailed CFD codes are accompanied by cryptic turbulence models, meticulous grid constructions, and elegant boundary condition enforcements all with one goal in mind: determine the sign (and therefore stability) of the aerodynamic damping. The main question being asked by the aeroelastician, "is it positive or negative?'' This type of thought-process eventually gives rise to a black-box effect, leaving physical understanding behind. Therefore, the first part of this research aims to understand and reveal the physics behind LPT flutter in addition to several related topics including acoustic resonance effects. A percentage of this initial numerical investigation is completed using an influence coefficient approach to study the variation the work-per-cycle contributions of neighboring cascade blades to a reference airfoil. The second part of this research introduces new discoveries regarding the relationship between steady aerodynamic loading and negative aerodynamic damping. Using validated CFD codes as computational wind tunnels, a multitude of low-pressure turbine flutter parameters, such as reduced frequency, mode shape, and interblade phase angle, will be scrutinized across various airfoil geometries and steady operating conditions to reach new design guidelines regarding the influence

  13. Microwave air plasmas in capillaries at low pressure II. Experimental investigation

    NASA Astrophysics Data System (ADS)

    Stancu, G. D.; Leroy, O.; Coche, P.; Gadonna, K.; Guerra, V.; Minea, T.; Alves, L. L.

    2016-11-01

    This work presents an experimental study of microwave (2.45 GHz excitation frequency) micro-plasmas, generated in dry air (N2 80%: O2 20%) within a small radius silica capillary (345 µm inner radius) at low pressure (300 Pa) and low powers (80–130 W). Experimental diagnostics are performed using optical emission spectroscopy calibrated in absolute intensity. Axial-resolved measurements (50 µm spatial resolution) of atomic transitions N(3p4S)  →  N(3s4P) O(3p5P)  →  O(3s5S) and molecular transitions N2(C,v‧)  →  N2(B,v″) \\text{N}2+ (B,v‧)  →  \\text{N}2+ (X,v″) allow us to obtain, as a function of the coupled power, the absolute densities of N(3p4S), O(3p5P), N2(C), N2(B) and \\text{N}2+ (B), as well as the gas (rotational) temperature (700–1000 K), the vibrational temperature of N2(C,v) (7000–10 000 K) and the excitation temperatures of N2(C) and N2(B) (11 000 K). The analysis of the H β line-width gives an upper limiting value of 1013 cm‑3 for the electron density; its axial variation (4  ×  1011–6  ×  1012 cm‑3) being estimated by solving the wave electrodynamics equations for the present geometry, plasma length and electron–neutral collision frequency. The experimental results were compared with the results from a 0D model, presented in companion paper I [1], which couples the system of rate balance equations for the dominant neutral and charged plasma species to the homogeneous two-term electron Boltzmann equation, taking the measured gas temperature and the estimated electron density as input parameters. Good qualitative agreement is found between the measurements and calculations of the local species densities for various powers and axial positions. The dissociation degree of oxygen is found above 10%. Moreover, both the measurements and calculations show evidence of the non-equilibrium behavior of low-temperature plasmas, with vibrational and excitation

  14. Safety, tolerability, and efficacy of endoscopic low-pressure liquid nitrogen spray cryotherapy in the esophagus.

    PubMed

    Greenwald, Bruce D; Dumot, John A; Horwhat, J David; Lightdale, Charles J; Abrams, Julian A

    2010-01-01

    Endoscopic cryotherapy is a new technique for ablation of esophageal dysplasia and neoplasia. Preliminary studies have shown it to be safe and effective for this indication. The objective of this study is to characterize safety, tolerability, and efficacy of low-pressure liquid nitrogen endoscopic spray cryotherapy ablation in a large cohort across multiple study sites. Parallel prospective treatment studies at four tertiary care academic medical centers in the U.S. assessed spray cryotherapy in patients with Barrett's esophagus with or without dysplasia, early stage esophageal cancer, and severe squamous dysplasia who underwent cryotherapy ablation of the esophagus. All patients were contacted between 1 and 10 days after treatment to assess for side effects and complications of treatment. The main outcome measurement was the incidence of serious adverse events and side effects from treatment. Complete response for high-grade dysplasia (HGD) (CR-HGD), all dysplasia (CR-D), intestinal metaplasia (CR-IM) and cancer (CR-C) were assessed in patients completing therapy during the study period. A total of 77 patients were treated for Barrett's high-grade dysplasia (58.4%), intramucosal carcinoma (16.9%), invasive carcinoma (13%), Barrett's esophagus without dysplasia (9.1%), and severe squamous dysplasia (2.6%). Twenty-two patients (28.6%) reported no side effects throughout treatment. In 323 procedures, the most common complaint was chest pain (17.6%) followed by dysphagia (13.3%), odynophagia (12.1%), and sore throat (9.6%). The mean duration of any symptoms was 3.6 days. No side effects were reported in 48% of the procedures (155/323). Symptoms did not correlate with age, gender, diagnosis, or to treatment early versus late in the patient's or site's experience. Logit analysis showed that symptoms were greater in those with a Barrett's segment of 6 cm or longer. Gastric perforation occurred in one patient with Marfan's syndrome. Esophageal stricture developed in three

  15. Heat and mass transfer of a low-pressure Mars greenhouse: Simulation and experimental analysis

    NASA Astrophysics Data System (ADS)

    Hublitz, Inka

    Biological life support systems based on plant growth offer the advantage of producing fresh food for the crew during a long surface stay on Mars. Greenhouses on Mars are also used for air and water regeneration and waste treatment. A major challenge in developing a Mars greenhouse is its interaction with the thin and cold Mars environment. Operating a Mars greenhouse at low interior pressure reduces the pressure differential across the structure and therefore saves structural mass as well as reduces leakage. Experiments were conducted to analyze the heating requirements as well as the temperature and humidity distribution within a small-scale greenhouse that was placed in a chamber simulating the temperatures, pressure and light conditions on Mars. Lettuce plants were successfully grown inside of the Mars greenhouse for up to seven days. The greenhouse atmosphere parameters, including temperature, total pressure, oxygen and carbon dioxide concentration were controlled tightly; radiation level, relative humidity and plant evapo-transpiration rates were measured. A vertical stratification of temperature and humidity across the greenhouse atmosphere was observed. Condensation formed on the inside of the greenhouse when the shell temperature dropped below the dew-point. During the night cycles frost built up on the greenhouse base plate and the lower part of the shell. Heat loss increased significantly during the night cycle. Due to the placement of the heating system and the fan blowing warm air directly on the upper greenhouse shell, condensation above the plants was avoided and therefore the photosynthetically active radiation at plant level was kept constant. Plant growth was not affected by the temperature stratification due to the tight temperature control of the warmer upper section of the greenhouse, where the lettuce plants were placed. A steady state and a transient heat transfer model of the low pressure greenhouse were developed for the day and the night

  16. Safety, tolerability, and efficacy of endoscopic low-pressure liquid nitrogen spray cryotherapy in the esophagus

    PubMed Central

    Greenwald, Bruce D.; Dumot, John A.; Horwhat, J. David; Lightdale, Charles J.; Abrams, Julian A.

    2011-01-01

    SUMMARY Endoscopic cryotherapy is a new technique for ablation of esophageal dysplasia and neoplasia. Preliminary studies have shown it to be safe and effective for this indication. The objective of this study is to characterize safety, tolerability, and efficacy of low-pressure liquid nitrogen endoscopic spray cryotherapy ablation in a large cohort across multiple study sites. Parallel prospective treatment studies at four tertiary care academic medical centers in the U.S. assessed spray cryotherapy in patients with Barrett’s esophagus with or without dysplasia, early stage esophageal cancer, and severe squamous dysplasia who underwent cryotherapy ablation of the esophagus. All patients were contacted between 1 and 10 days after treatment to assess for side effects and complications of treatment. The main outcome measurement was the incidence of serious adverse events and side effects from treatment. Complete response for high-grade dysplasia (HGD) (CR-HGD), all dysplasia (CR-D), intestinal metaplasia (CR-IM) and cancer (CR-C) were assessed in patients completing therapy during the study period. A total of 77 patients were treated for Barrett’s high-grade dysplasia (58.4%), intramucosal carcinoma (16.9%), invasive carcinoma (13%), Barrett’s esophagus without dysplasia (9.1%), and severe squamous dysplasia (2.6%). Twenty-two patients (28.6%) reported no side effects throughout treatment. In 323 procedures, the most common complaint was chest pain (17.6%) followed by dysphagia (13.3%), odynophagia (12.1%), and sore throat (9.6%). The mean duration of any symptoms was 3.6 days. No side effects were reported in 48% of the procedures (155/323). Symptoms did not correlate with age, gender, diagnosis, or to treatment early versus late in the patient’s or site’s experience. Logit analysis showed that symptoms were greater in those with a Barrett’s segment of 6 cm or longer. Gastric perforation occurred in one patient with Marfan’s syndrome. Esophageal

  17. Improving the conversion efficiency of Cu2ZnSnS4 solar cell by low pressure sulfurization

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Su, Zhenghua; Zhao, Lianbo; Yan, Chang; Liu, Fangyang; Cui, Hongtao; Hao, Xiaojing; Liu, Yexiang

    2014-04-01

    Cu2ZnSnS4 thin films have been prepared by the sol-gel sulfurization method on Mo-coated substrates, and the comparative studies between the atmospheric pressure sulfurization and low pressure sulfurization was carried out. The Cu2ZnSnS4 film sulfurized at low pressure exhibits larger grain size, thinner MoS2 layer, and free of SnS secondary phase, but more ZnS on surface. The device efficiency of 4.1% using Cu2ZnSnS4 absorber from atmospheric pressure sulfurization is improved to 5.7% using that from low pressure sulfurization via the boost of open-circuit and fill factor.

  18. Development of low-pressure multi-wire drift chambers for high-resolution spectroscopy with radioactive isotope beams

    NASA Astrophysics Data System (ADS)

    Miya, H.; Ota, S.; Fujii, T.; Kawase, S.; Kubota, Y.; Lee, C. S.; Matsubara, H.; Miki, K.; Saito, A.; Michimasa, S.; Uesaka, T.; Sakai, H.; Shimoura, S.

    2013-12-01

    Low-pressure multi-wire drift chambers have been developed to track high-intensity radioactive isotope beams at the energies of around 200 MeV/nucleon. In order to minimize the effect of multiple scattering by radioactive isotope beam, the thickness of the detectors were minimized by using isobutane gas at low pressure (10 kPa). The performance of the position resolution, the tracking efficiency, and the beam intensity capability were evaluated as a function of atomic number and applied voltage. As a result, an overall position resolution of 300 μm was achieved for radioactive isotope beams with an intensity of 1 MHz. The details of the design specifications and performances of the low-pressure multi-wire drift chambers are described.

  19. Two dimensional analysis of low pressure flows in the annulus region between two concentric cylinders.

    PubMed

    Al-Kouz, Wael; Alshare, Aiman; Alkhalidi, Ammar; Kiwan, Suhil

    2016-01-01

    A numerical simulation of the steady two-dimensional laminar natural convection heat transfer for the gaseous low-pressure flows in the annulus region between two concentric horizontal cylinders is carried out. This type of flow occurs in "evacuated" solar collectors and in the receivers of the solar parabolic trough collectors. A finite volume code is used to solve the coupled set of governing equations. Boussinesq approximation is utilized to model the buoyancy effect. A correlation for the thermal conductivity ratio (k r = k eff/k) in terms of Knudsen number and the modified Rayleigh number is proposed for Prandtl number (Pr = 0.701). It is found that as Knudsen number increases then the thermal conductivity ratio decreases for a given Rayleigh number. Also, it is shown that the thermal conductivity ratio k r increases as Rayleigh number increases. It appears that there is no consistent trend for varying the dimensionless gap spacing between the inner and the outer cylinder ([Formula: see text]) on the thermal conductivity ratio (k r) for the considered spacing range.

  20. Purification of sulforaphane from Brassica oleracea seed meal using low-pressure column chromatography.

    PubMed

    Liang, Hao; Yuan, Qipeng; Xiao, Qian

    2005-12-15

    Sulforaphane is an isothiocyanate that is present naturally in widely consumed Brassica oleracea vegetables and has been shown to block the formation of tumors. The contents of sulforaphane in five groups of B. oleracea seeds (broccoli, Brussels sprouts, cabbage, cauliflower and kale) were determined by RP-HPLC using linear gradient of acetonitrile in water. A new low-cost method to isolate and purify natural sulforaphane from B. oleracea seed meal was described in this work. Crude sulforaphane was first separated from B. oleracea seed meal by using immiscible solvent extraction with ethyl acetate, 10% ethanol and hexane, and the crude sulforaphane was used as raw materials to prepare high purity sulforaphane by low-pressure column chromatography of silica gel (200-300 mesh) with different eluents and elution modes. Compared with these different elution methods, the gradient elution was preferable to the isocratic elution for reducing the elution time and the eluent consumption and increasing the purity of sulforaphane product. The purity and recovery of sulforaphane were more than 90% in gradient elution.

  1. Diamond synthesis from carbon nanofibers at low temperature and low pressure.

    PubMed

    Luo, Chengzhi; Qi, Xiang; Pan, Chunxu; Yang, Wenge

    2015-01-01

    In this article, we report a new route to synthesize diamond by converting "solid" carbon nanofibers with a Spark Plasma Sintering system under low temperature and pressure (even at atmospheric pressure). Well-crystallized diamond crystals are obtained at the tips of the carbon nanofibers after sintering at 1500 °C and atmospheric pressure. Combining with scanning electron microscopy, transmission electron microscopy, electron-energy loss spectroscopy and Raman spectroscopy observations, we propose the conversion mechanism as follows: the disorder "solid" carbon nanofibers→well crystallined carbon nanofibers→bent graphitic sheets→onion-liked rings→diamond single crystal→the bigger congregated diamond crystal. It is believed that the plasma generated by low-voltage, vacuum spark, via a pulsed DC in Spark Plasma Sintering process, plays a critical role in the low temperature and low pressure diamond formation. This Spark Plasma Sintering process may provide a new route for diamond synthesis in an economical way to a large scale. PMID:26351089

  2. Removal of endocrine disrupting chemicals (EDCs) using low pressure reverse osmosis membrane (LPROM).

    PubMed

    Razak, A R A; Ujang, Z; Ozaki, H

    2007-01-01

    Endocrine disrupting chemicals (EDCs) are the focus of current environmental issues, as they can cause adverse health effects to animals and human, subsequent to endocrine function. The objective of this study was to remove a specific compound of EDCs (i.e. pentachlorophenol, C(6)OCL(5)Na, molecular weight of 288 g/mol) using low pressure reverse osmosis membrane (LPROM). A cross flow module of LPROM was used to observe the effects of operating parameters, i.e. pH, operating pressure and temperature. The design of the experiment was based on MINITAB(TM) software, and the analysis of results was conducted by factorial analysis. It was found that the rejection of pentachlorophenol was higher than 80% at a recovery rate of 60 to 70%. The rejection was subjected to increase with the increase of pH. The flux was observed to be increased with the increase of operating pressure and temperature. This study also investigated the interaction effects between operating parameters involved.

  3. Experimental Investigation on Electromagnetic Attenuation by Low Pressure Radio-Frequency Plasma for Cavity Structure

    NASA Astrophysics Data System (ADS)

    He, Xiang; Zhang, Yachun; Chen, Jianping; Chen, Yudong; Zeng, Xiaojun; Yao, Hong; Tang, Chunmei

    2016-01-01

    This paper reports on an experiment designed to test electromagnetic (EM) attenuation by radio-frequency (RF) plasma for cavity structures. A plasma reactor, in the shape of a hollow cylinder, filled with argon gas at low pressure, driven by a RF power source, was produced by wave-transmitting material. The detailed attenuations of EM waves were investigated under different conditions: the incident frequency is 1-4 GHz, the RF power supply is 13.56 MHz and 1.6-3 kW, and the argon pressure is 75-200 Pa. The experimental results indicate that 5-15 dB return loss can be obtained. From a first estimation, the electron density in the experiment is approximately (1.5-2.2) × 1016 m-3 and the collision frequency is about 11-30 GHz. The return loss of EM waves was calculated using a finite-difference time-domain (FDTD) method and it was found that it has a similar development with measurement. It can be confirmed that RF plasma is useful in the stealth of cavity structures such as jet-engine inlet. supported by National Natural Science Foundation of China (No. 51107033) and the Fundamental Research Funds for the Central Universities of China (No. 2013B33614)

  4. Low-pressure cesium and potassium diode pumped alkali lasers: pros and cons

    NASA Astrophysics Data System (ADS)

    Zhdanov, Boris V.; Rotondaro, Matthew D.; Shaffer, Michael K.; Knize, Randall J.

    2016-02-01

    This paper presents the results of our experiments on a comparative study of cesium and potassium diode pumped alkali lasers (DPALs) aimed to determine which of these two lasers has more potential to scale to high powers. For both lasers, we have chosen a "low-pressure DPAL approach," which uses buffer gas pressure of about 1 atm for spin-orbit mixing of the excited states of alkali atoms to provide population inversion in the gain medium. The goal of this study was to determine power-limiting effects, which affect the performance of these DPALs, and find out how these limiting effects can be mitigated. We studied the performance of both lasers in CW and pulsed modes using both static and flowing gain medium and pump with different pulse duration. We observed output power degradation in time from the initial value to the level corresponding to the CW mode of operation. As a result of this study, some essential positive and negative features of both DPALs were revealed, which should be taken into account for power-scaling experiments.

  5. Deuterium analysis in zircaloy using ps laser-induced low pressure plasma

    SciTech Connect

    Marpaung, Alion Mangasi; Lie, Zener Sukra; Niki, Hideaki; Kagawa, Kiichiro; Fukumoto, Ken-ichi; Ramli, Muliadi; Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Hedwig, Rinda; Tjia, May On; Pardede, Marincan; Suliyanti, Maria Margaretha; Jobiliong, Eric; Kurniawan, Koo Hendrik

    2011-09-15

    An experimental study on picosecond laser induced plasma spectroscopy of a zircaloy sample with low-pressure surrounding helium gas has been carried out to demonstrate its potential applicability to three-dimensional quantitative micro-analysis of deuterium impurities in zircaloy. This was achieved by adopting the optimal experimental condition ascertained in this study, which is specified as 7 mJ laser energy, 1.3 kPa helium pressure, and 50 {mu}s measurement window, and which was found to result in consistent D emission enhancement. Employing these operational parameters, a linear calibration line exhibiting a zero intercept was obtained from zircaloy-4 samples doped with various concentrations of D impurity, regarded as surrogates for H impurity. An additional measurement also yielded a detection limit of about 10 {mu}g/g for D impurity, well below the acceptable threshold of damaging H concentration in zircaloy. Each of these measurements was found to produce a crater size of only 25 {mu}m in diameter, promising its application for performing less-destructive measurements. The result of this study has thus paved the way for conducting a further experiment with hydrogen-doped zircaloy samples and the further technical development of a three-dimensional quantitative micro-analysis of detrimental hydrogen impurity in zircaloy vessels used in nuclear power plants.

  6. Low-Pressure Condensation Nucleus Counter: Instrumental Characterization and Stratospheric Measurements

    NASA Astrophysics Data System (ADS)

    Weigel, R.; Curtius, J.; Dreiling, V.; Borrmann, S.

    2003-04-01

    Aerosol particles of the upper troposphere (UT) and lower stratosphere (LS) influence climate, cloud formation, the atmospheric sulfur cycle, and heterogeneous chemistry. In situ measurements of the aerosol number concentration yield important information on atmospheric transport (e.g. stratosphere-troposphere exchange), pollution events (e.g. aircraft exhaust), and aerosol formation (e.g. homogeneous nucleation). A low-pressure Condensation Nucleus Counter (CNC) has been built for automatic operation aboard the Russian M-55 high-altitude research aircraft (max. altitude: 22 km). It was characterized in laboratory studies and UT/LS measurements were performed. The CNC is modelled on the continuous-flow University of Minnesota/Denver University CNC [Wilson et al., 1983]. It has two independent measurement channels. One of the channels can be heated to 200°C to distinguish between non-volatile and total aerosol particle number. The instrument has been calibrated and characterized in laboratory studies. Data resulting from several UT/LS flights during measurement campaigns originating from Forli, Italy, and Kiruna, Sweden, will be discussed. Aerosol data representing ambient background aerosol as well as aerosol from aircraft pollution will be presented. Wilson J.C., Blackshear E.D., Hyun J.H., The Function and Response of an Improved Stratospheric Condensation Nucleus Counter, J. Geophys. Res., 88, 6781-6785, 1983.

  7. Thermodynamics of methane adsorption on copper HKUST-1 at low pressure

    SciTech Connect

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-11

    Metal–organic frameworks (MOFs) can be engineered as natural gas storage materials by tuning the pore structures and surface properties. Here we report the direct measurement of CH₄ adsorption enthalpy on a paddlewheel MOF (Cu HKUST-1) using gas adsorption calorimetry at 25 °C at low pressures (below 1 bar). In this pressure region, the CH₄–CH₄ intermolecular interactions are minimized and the energetics solely reflects the CH₄–MOF interactions. Our results suggest moderately exothermic physisorption with an enthalpy of -21.1 ± 1.1 kJ/mol CH₄ independent of coverage. The calorimetric investigation complements previous computational and crystallographic studies by providing zero coverage enthalpies of CH₄ adsorption. The analysis of the new and literature data suggests that in initial stages of adsorption the CH₄–HKUST-1 interaction tends to be more sensitive to the pore dimension than to the guest polarizability, suggesting a less specific chemical binding role for the open Cu site.

  8. Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium.

    PubMed

    Ding, Shiyuan; Yang, Yu; Huang, Haiou; Liu, Hengchen; Hou, Li-an

    2015-08-30

    The objective of this study was to identify the removal mechanisms of radionuclides by reverse osmosis (RO) membranes under conditions relevant to full-scale water treatment. For this purpose, the effects of feed solution chemistry on the removal of Cs and Sr by a low pressure RO system was investigated by systematically varying membrane surface charge, ionic composition, and organic matter concentrations. The results showed that the effects of solution chemistry on the filtration of Cs and Sr were related to their hydrated ionic radius, resulting in the predominance of the Donnan's effect and electrostatic interactions, respectively. Consequently, the rejection of Cs increased more pronouncedly than Sr with the increases of feed concentration. Due to the Donnan's effect, different anions decreased the rejection of Cs to different extents in accordance to the order of anions' radii as SO4(2-)>Cl(-)>NO3(-)>F(-). The variations in Sr rejection were influenced by the electrostatic interactions between Sr(2+) and the membrane. In addition, humic acid (HA) lowered the rejection of Cs and caused significant membrane flux decline, but did not change the rejection of Sr. Sr also aggravated HA fouling of the membrane.

  9. Uniform Thermal Nanoimprinting at Low Pressure by Improved Heat Transfer Using Hydrofluoroethers

    NASA Astrophysics Data System (ADS)

    Mekaru, Harutaka; Hiroshima, Hiroshi

    2013-06-01

    We propose a low-pressure process of thermal nanoimprinting by improved heat transfer. In poly(ethylene terephthalate) (PET; Tg=75 °C), poly(methyl methacrylate) (PMMA; Tg=105 °C), and polycarbonate (PC; Tg=150 °C), in which fine pattern transfer can be performed at 12.9 MPa, if the imprinting pressure is reduced to one-third, poor transfer occurs at the edges of the patterned area, and the uniformity of the entire patterned area degrades. However, it turned out that moldability can be improved significantly by introducing hydrofluoroether (HFE) between the mold and the surface of thermoplastic sheets. A dispensing method using a pipette was chosen to introduce HFE, and three types of HFE liquid, namely, Novec 7100 (bp=61 °C), Novec 7200 (bp=76 °C), and Novec 7300 (bp=98 °C), were tested. It was confirmed that the uniformity was greatly improved by combinations of PET and Novec 7100, PMMA and Novec 7200, and PC and Novec 7300. The heat of the mold spread efficiently onto the surface of thermoplastics via the HFE liquid, and it seems to result in the same effect as a preliminary heating process before the mold comes into contact with the thermoplastic sheet.

  10. Atomic Oxygen Density Measurements in a Low Pressure Textile Processing Plasma

    NASA Astrophysics Data System (ADS)

    Gomez, S.; Steen, P. G.; Graham, W. G.

    1999-10-01

    There is increasing interest in plasma processing of textile materials. Here the effect of textile materials on low pressure oxygen plasmas has been investigated. In particular laser induced fluorescence (LIF) measurements of the atomic oxygen density with and without textile samples are presented. Polypropylene and polyester samples were placed on the lower electrode of an inductively coupled Gaseous Electronic Conference (GEC) reactor. This had to be operated at low power and hence in the capacitive mode to avoid toasting the material. Operation with a bare stainless steel electrode and one loaded with the sample materials is contrasted by comparing spatially resolved LIF measurements of atomic oxygen under a wide range of pressures and powers, from a few Pa to 133 Pa, and from 10 to 300 W. Atomic oxygen densities with samples present are around one third lower than those without samples, and in both cases the atomic oxygen density increases linearly with gas pressure. Previous optical emission spectroscopy (OES) measurements indicate that plasma interaction with the substrate commences a few seconds after plasma turn on. Similar trends are observed with time resolved LIF measurements of the atomic oxygen.

  11. Crater effects on H and D emission from laser induced low-pressure helium plasma

    SciTech Connect

    Pardede, Marincan; Lie, Tjung Jie; Kurniawan, Koo Hendrik; Maruyama, Tadashi; Kagawa, Kiichiro; Tjia, May On

    2009-09-15

    An experimental study has been performed on the effects of crater depth on the hydrogen and deuterium emission intensities measured from laser plasmas generated in low-pressure helium ambient gas from zircaloy-4 samples doped with different H and D impurity concentrations as well as a standard brass sample for comparison. The results show that aside from emission of the host atom, the emission intensities of other ablated atoms of significantly smaller masses as well as that of the He atom generally exhibit relatively rapid initial decline with increasing crater depth. This trend was found to have its origin in the decreasing laser power density arriving at the crater bottom and thereby weakened the shock wave generated in the crater. As the crater deepened, the declining trend of the intensity appeared to level off as a result of compensation of the decreasing laser power density by the enhanced plasma confinement at increasing crater depth. Meanwhile, the result also reveals the significant contribution of the He-assisted excitation process to the doped hydrogen and deuterium emission intensities, leading to similar crater-depth dependent variation patterns in contrast to that associated with the surface water, with growing dominance of this common feature at the later stage of the plasma expansion. Therefore, a carefully chosen set of gate delay and gate width which are properly adapted to the crater-depth dependent behavior of the emission intensity may produce the desired intrinsic emission data for quantitative depth profiling of H impurity trapped inside the zircaloy wall.

  12. Conceptual design of a low-pressure micro-resistojet based on a sublimating solid propellant

    NASA Astrophysics Data System (ADS)

    Cervone, Angelo; Mancas, Alexandru; Zandbergen, Barry

    2015-03-01

    In the current and future trend towards smaller satellite missions, the development of a simple and reliable propulsion system with performance and characteristics in line with the typical requirements of nano-satellites and CubeSats plays a crucial role for enhancing the capabilities of this type of missions. This paper describes the design of a micro-resistojet using water stored in the frozen state (ice) as propellant, operating under sublimation conditions at low pressure. The low operating pressure allows for using the vapor pressure of ice as the only method of propellant feeding, thereby allowing for extremely low thrust and electric power usage. The results of an extensive set of numerical simulations for optimizing the thruster geometry in terms of power ratio and specific impulse produced are discussed. In addition, the design of the complete propulsion system is described. It makes use of a limited number of moving parts and two power sources, one in the thruster to increase the propellant temperature and one in the tank to maintain the propellant storage conditions. Results show that the proposed design represents an alternative option capable of meeting the typical requirements of small satellite missions by means of an intrinsically green propellant such as water, with the pressure inside the system never exceeding 600 Pa. Optimization results showed an optimum thrust to power ratio in range 0.2-1.2 mN/W for an expansion slot aspect ratio of 2.5.

  13. Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Hultgren, Lennart .

    2000-01-01

    Detailed velocity measurements were made along a flat plate subject to the same dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil. Reynolds numbers based on wetted plate length and nominal exit velocity were varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low and high inlet free-stream turbulence intensities (0.2% and 7%) were set using passive grids. The location of boundary-layer separation does not depend strongly on the free-stream turbulence level or Reynolds number, as long as the boundary layer remains non-turbulent prior to separation. Strong acceleration prevents transition on the upstream part of the plate in all cases. Both free-stream turbulence and Reynolds number have strong effects on transition in the adverse pressure gradient region. Under low free-stream turbulence conditions transition is induced by instability waves in the shear layer of the separation bubble. Reattachment generally occurs at the transition start. At Re = 50,000 the separation bubble does not close before the trailing edge of the modeled airfoil. At higher Re, transition moves upstream, and the boundary layer reattaches. With high free-stream turbulence levels, transition appears to occur in a bypass mode, similar to that in attached boundary layers. Transition moves upstream, resulting in shorter separation regions. At Re above 200,000, transition begins before separation. Mean velocity, turbulence and intermittency profiles are presented.

  14. Experimental investigations of driving frequency effect in low-pressure capacitively coupled oxygen discharges

    SciTech Connect

    Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu; Gao, Fei; Wang, You-Nian

    2015-04-14

    The effect of driving frequency on the electron density is investigated in low-pressure capacitively coupled oxygen plasmas by utilizing a floating hairpin probe. The power absorbed by the plasma is investigated and it is found that the power lost in the matching network can reach 50% or higher under certain conditions. The effect of driving frequency on the electron density is studied from two aspects, i.e., constant absorbed power and electrode voltage. In the former case, the electron density increases with the driving frequency increasing from 13.56 to 40.68 MHz and slightly changes depending on the gas pressures with the frequency further increasing to 100 MHz. In the latter case, the electron density rapidly increases when the driving frequency increases from 13.56 to 40.68 MHz, and then decreases with the frequency further increasing to 100 MHz. The electron series resonance is observed at 40.68 MHz and can be attributed to the higher electron density. And the standing wave effect also plays an important role in increasing electron density at 100 MHz and 2.6 Pa.

  15. Multifunctional Low-Pressure Turbine for Core Noise Reduction, Improved Efficiency, and Nitrogen Oxide (NOx) Reduction

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Shyam, Vikram; Rigby, David L.

    2013-01-01

    This work studied the feasibility of using Helmholtz resonator cavities embedded in low-pressure-turbine (LPT) airfoils to (1) reduce core noise by damping acoustic modes; (2) use the synthetic jets produced by the liner hole acoustic oscillations to improve engine efficiency by maintaining turbulent attached flow in the LPT at low-Reynolds-number cruise conditions; and (3) reduce engine nitrogen oxide emissions by lining the internal cavities with materials capable of catalytic conversion. Flat plates with embedded Helmholtz resonators, designed to resonate at either 3000 or at 400 Hz, were simulated using computational fluid dynamics. The simulations were conducted for two inlet Mach numbers, 0.25 and 0.5, corresponding to Reynolds numbers of 90 000 and 164 000 based on the effective chordwise distance to the resonator orifice. The results of this study are (1) the region of acoustic treatment may be large enough to have a benefit; (2) the jets may not possess sufficient strength to reduce flow separation (based on prior work by researchers in the flow control area); and (3) the additional catalytic surface area is not exposed to a high velocity, so it probably does not have any benefit.

  16. Numerical Simulations of Low Pressure Inductively Coupled Plasmas in Geometrically Complex Reactors

    NASA Astrophysics Data System (ADS)

    Yu, Ben; Wu, Hanming; Krishnan, Anantha

    1996-10-01

    A two-dimensional fluid model has been developed for simulation of low pressure inductively coupled plasma (ICP) reactors. The model obtains solutions for the plasma density, electron temperature, and electric field for the given operating conditions. The physical phenomena and processes such as ambipolar diffusion, thermal diffusion, quasi-neutrality, ionization, inductive Joule heating, and excitations are considered in the model. A significant feature of the model is its capability of handling complex geometries that are often encountered in industrial reactors. Complex reactor geometries are modeled by a body-fitted-coordinate (BFC) formulation. A series of numerical experiments have been conducted using the model to study effects of various parameters such as chamber pressure, size of the wafer, position of the inductive coil, and the power input into the plasma. Different reactor geometries such as the GEC ICP reference cell and the belljar reactor have been simulated. The results of the parametric experiments are presented to show certain systematic trends in performance parameters such as uniformity and processing rates. The ICP model has been coupled to a computational fluid dynamics (CFD) code (capable of 3D simulations) that obtains the flow and pressure distribution inside the chamber. The ICP model will use pressure predictions (from the CFD model) to compute the local ionization rates. Chemical source/sink terms from the plasma dissociation model will be used by the CFD code to account for local reactant depletion effects.

  17. Energy efficient engine. Low pressure turbine test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Cherry, D. G.; Gay, C. H.; Lenahan, D. T.

    1982-01-01

    The low pressure turbine for the energy efficient engine is a five-stage configuration with moderate aerodynamic loading incorporating advanced features of decambered airfoils and extended blade overlaps at platforms and shrouds. Mechanical integrity of 18,000 hours on flowpath components and 36,000 hours on all other components is achieved along with no aeromechanical instabilities within the steady-state operating range. Selection of a large number (156) of stage 4 blades, together with an increased stage 4 vane-to-blade gap, assists in achieving FAR 36 acoustic goals. Active clearance control (ACC) of gaps at blade tips and interstage seals is achieved by fan air cooling judiciously applied at responsive locations on the casing. This ACC system is a major improvement in preventing deterioration of the 0.0381 cm (0.015 in.) clearances required to meet the integrated-core/low-spool turbine efficiency goal of 91.1% and the light propulsion system efficiency goal of 91.7%.

  18. Ablative material testing for low-pressure, low-cost rocket engines

    NASA Technical Reports Server (NTRS)

    Richter, G. Paul; Smith, Timothy D.

    1995-01-01

    The results of an experimental evaluation of ablative materials suitable for the production of light weight, low cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compositions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal chamber pressure of 1138 kPa (165 psi) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approximately 2456 K (4420 R). Two high-density composition materials exhibited high erosion resistance, while two low-density compositions exhibited approximately 6-75 times lower average erosion resistance. The results compare favorably with previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket engines.

  19. Diamond synthesis from carbon nanofibers at low temperature and low pressure

    NASA Astrophysics Data System (ADS)

    Luo, Chengzhi; Qi, Xiang; Pan, Chunxu; Yang, Wenge

    2015-09-01

    In this article, we report a new route to synthesize diamond by converting “solid” carbon nanofibers with a Spark Plasma Sintering system under low temperature and pressure (even at atmospheric pressure). Well-crystallized diamond crystals are obtained at the tips of the carbon nanofibers after sintering at 1500 °C and atmospheric pressure. Combining with scanning electron microscopy, transmission electron microscopy, electron-energy loss spectroscopy and Raman spectroscopy observations, we propose the conversion mechanism as follows: the disorder “solid” carbon nanofibers → well crystallined carbon nanofibers → bent graphitic sheets → onion-liked rings → diamond single crystal → the bigger congregated diamond crystal. It is believed that the plasma generated by low-voltage, vacuum spark, via a pulsed DC in Spark Plasma Sintering process, plays a critical role in the low temperature and low pressure diamond formation. This Spark Plasma Sintering process may provide a new route for diamond synthesis in an economical way to a large scale.

  20. Reactivation of Giardia lamblia cysts after exposure to low-pressure UV irradiation.

    PubMed

    Shin, Gwy-Am; Linden, Karl G

    2015-07-01

    In this study, we determined the repair capabilities of Giardia lamblia cysts when they were exposed to low-pressure (LP) UV and then 4 different repair conditions. A UV collimated beam apparatus was used to expose shallow suspensions of G. lamblia cysts in buffered reagent water (PBS, pH 7.2) to various doses of LP UV irradiation. After UV irradiation, samples were exposed to 4 repair conditions (light and dark repair conditions with 2 temperatures (25 °C and 37 °C) for each condition). The inactivation of G. lamblia cysts by LP UV was very extensive (∼ 5 log10) even with a low dose of LP UV (1 mJ/cm(2)). More importantly, there was significant restoration of infectivity in G. lamblia cysts when they were exposed to a low dose of LP UV and then to all the repair conditions tested. Overall, the results of this study indicate that G. lamblia cysts do have the ability to repair their UV-damaged DNA when they are exposed to low doses of LP UV irradiation. This is the first study to report the presence of repair in UV-irradiated G. lamblia cysts.

  1. Track studies in water vapor using a low-pressure cloud chamber. I. Macroscopic measurements.

    PubMed

    Stonell, G P; Marshall, M; Simmons, J A

    1993-12-01

    Techniques have been developed to operate a low-pressure cloud chamber with pure water vapor. Photographs have been obtained of the tracks arising in this medium from the passage of ionizing radiation. The sources used were low-energy X rays, 242Cm alpha particles, and low-energy protons. Track lengths of the electrons were similar to those found previously in tissue-equivalent gas. W values of 35.6 +/- 0.4 and 32.6 +/- 0.6 eV per ion pair for carbon and aluminum X rays also compare closely with those in tissue-equivalent gas, but are somewhat higher than the predictions of Monte Carlo calculations. Differential w values were obtained: for alpha particles of energy 5.3 MeV the value was 33.0 +/- 3.0 eV per ion pair; for protons of energy 390, 230, and 85 keV the values were 30.6 +/- 1.9, 31.9 +/- 2.0, and 33.6 +/- 3.4 eV per ion pair. The energy losses of protons in water vapor were measured in a second (dummy) chamber used for energy calibration. Results support Janni's values of stopping power for protons in the energy range 40-480 keV.

  2. Experimental calculations of droplet diffusion in a low-pressure cloud chamber.

    PubMed

    Briden, P E; Holt, P D; Simmons, J A

    1994-11-01

    A low-pressure cloud chamber was used for several years to display the tracks created by the passage of ionizing particles through vapors of interest. The spatial distributions of the ions that were formed were of special interest, but the accuracy with which these distributions could be determined was reduced by the presence of diffusion. This meant that the droplets, when photographed, had moved significantly away from the point of creation of the parent ion. In the present investigation photographs obtained by previous workers have been analyzed in an attempt to quantify the extent to which the droplets had diffused. The results suggest that the diffusion, when converted to standard density (1000 kg/m3), was independent of the pressure inside the cloud chamber and the mixture used. It could be represented by a one-dimensional root-mean-square diffusion distance whose value was calculated to be 2.42 +/- 0.04 nm. Values for the diffusion of thermalized electrons (< approximately 4 eV) before capture to form negative ions were also calculated. They appeared to lie in the range 3.5-5.0 nm, and were again independent of the pressure and nature of the mixture. The magnitude of the diffusion was large enough to mask any measurable prediffusion structure for a distance in the region of 10 nm radially around the track path of the alpha-particle and proton tracks analyzed.

  3. Electron energy probability function and L-p similarity in low pressure inductively coupled bounded plasma

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudeep; Chatterjee, Sanghamitro; Charles, Christine; Boswell, Roderick

    2015-02-01

    Particle-In-Cell (PIC) simulations are carried out to investigate the effect of discharge length (L) and pressure (p) on Electron Energy Probability Function (EEPF) in a low pressure radio frequency (rf) inductively coupled plasma at 13.56 MHz. It is found that for both cases of varying L (0.1 - 0.5 m) and p (1 - 10 mTorr), the EEPF is a bi-Maxwellian with a step in the bounded direction (x) and in the symmetric unbounded directions (y, z) the EEPF are a Maxwellian with a hot tail. The plasma space potential decreases with increase in both L and p, the trapped electrons having energies in the range 0 to 20 eV. In a conventional discharge bounded in all directions, we infer that L and p are similarity parameters for low energy electrons trapped in the bulk plasma that have energies below the plasma space potential (eVp). The simulation results are consistent with a particle balance model.

  4. [Experimental study on closed plasma discharging under low pressure and spectroscopic diagnosis].

    PubMed

    Lin, Min; Xu, Hao-jun; Su, Chen; Liang, Hua

    2014-06-01

    Closed plasma can overcome difficulties of maintaining plasma and excessive energy consumption in open environment. For plasma stealth technology, a closed plasma generator was designed. Using microsecond pulse generator and argon as working gas, discharge experiments were carried out under low pressure environment. The emission spectrum of Ar at different position in discharge chamber was measured. By using collisional-radiative modal (CRM), the distribution of plasma parameters was studied. At a given electron temperature and density with specified discharge parameters, corresponding population distribution could be obtained by CRM. By comparing the line ratio of argon 2p levels acquired from CRM with the line ratio from spectrum measured, the plasma parameters were confirmed after obtaining the minimum difference value. Using the line ratio of argon 2p9 to 2p1 from CRM while the range of electron density was 1-5 eV, the calculating error was analyzed. The results reveal that, the electron density of the closed plasma reaches a magnitude of 10(11) cm(-3) and shows a gradient distribution with small variational amplitude, and the distribution is beneficial to the application of plasma stealth.

  5. Pulsed Discharge Effects on Bacteria Inactivation in Low-Pressure Radio-Frequency Oxygen Plasma

    NASA Astrophysics Data System (ADS)

    Vicoveanu, Dragos; Ohtsu, Yasunori; Fujita, Hiroharu

    2008-02-01

    The sporicidal effects of low-pressure radio frequency (RF) discharges in oxygen, produced by the application of continuous and pulsed RF power, were evaluated. For all cases, the survival curves showed a biphasic evolution. The maximum efficiency for bacteria sterilization was obtained when the RF power was injected in the continuous wave mode, while in the pulsed mode the lowest treatment temperature was ensured. The inactivation rates were calculated from the microorganism survival curves and their dependencies on the pulse characteristics (i.e., pulse frequency and duty cycle) were compared with those of the plasma parameters. The results indicated that the inactivation rate corresponding to the first phase of the survival curves is related to the time-averaged intensity of the light emission by the excited neutral atoms in the pulsed plasma, whereas the inactivation rate calculated from the second slope of the survival curves and the time-averaged plasma density have similar behaviors, when the pulse parameters were modified.

  6. Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine

    SciTech Connect

    Baumgard, Kirby; Triana, Antonio; Johnson, John; Yang, Song; Premchand, Kiran

    2006-01-30

    The goal of the project was to demonstrate that low pressure loop EGR incorporating a diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF) can be applied to an off-highway engine to meet Tier 3 (Task I) and Interim Tier 4 (Task II) off-road emissions standards. Task I data was collected using a John Deere 8.1 liter engine modified with a low pressure loop EGR system. The engine and EGR system was optimized and final data over the ISO 8178 eight mode test indicated the NOx emissions were less than 4 g/kWh and the PM was less than 0.02 g/kWh which means the engine met the Tier 3 off-road standard. Considerable experimental data was collected and used by Michigan Tech University to develop and calibrate the MTU-Filter 1D DPF model. The MTU-Filter 1D DPF code predicts the particulate mass evolution (deposition and oxidation) in the diesel particulate filter (DPF) during simultaneous loading and during thermal and NO{sub 2}-assisted regeneration conditions. It also predicts the pressure drop across the DPF, the flow and temperature fields, the solid filtration efficiency and the particle number distribution downstream of the DPF. A DOC model was also used to predict the NO{sub 2} upstream of the DPF. The DPF model was calibrated to the experimental data at temperatures from 230 C to 550 C, and volumetric flow rates from 9 to 39 actual m{sup 3}/min. Model predictions of the solid particulate mass deposited in the DPF after each loading and regeneration case were in agreement within +/-10g (or +/-10%) of experimental measurements at the majority of the engine operating conditions. The activation temperatures obtained from the model calibration are in good agreement with values reported in the literature and gave good results in the model calibration by using constant pre-exponential factors throughout the entire range of conditions evaluated. The average clean filter permeability was 2.372 x 10{sup -13} m{sup 2}. Estimates of the solid particulate mass

  7. Operation of a THGEM-based detector in low-pressure Helium

    NASA Astrophysics Data System (ADS)

    Cortesi, M.; Yurkon, J.; Stolz, A.

    2015-02-01

    In view of a possible application as a charge-particle track readout for an Active Target Time Projection Chamber (AT-TPC), the operating properties of THick Gaseous Electron Multipliers (THGEM) in pure low-pressure Helium were investigated. This paper includes the effective gain dependence on pressure for different detector configurations (single-, double-, triple-cascade setup), long-term gain stability and energy resolution from tracks of 5.5 MeV alpha particles. Stable operational conditions and maximum detector gains of 104-107 have been achieved in pure Helium at pressure ranging from 100 torr up to 760 torr. Energy resolution of 6.65% (FWHM) for 690 keV of energy deposited by 5.5 MeV alpha particles at 350 torr was measured. The expected energy resolution for the full track is around 2.4% (FWHM). These results, together with the robustness of THGEM electrodes against spark damage, make THGEM structures highly competitive compared to other technologies considered for TPC applications in an active target operating with pure noble gases, requiring a high dynamic range and a wide operating pressure range down to few hundred torr.

  8. A large-volume microwave plasma source based on parallel rectangular waveguides at low pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Zhang, Guixin; Wang, Shumin; Wang, Liming

    2011-02-01

    A large-volume microwave plasma with good stability, uniformity and high density is directly generated and sustained. A microwave cavity is assembled by upper and lower metal plates and two adjacently parallel rectangular waveguides with axial slots regularly positioned on their inner wide side. Microwave energy is coupled into the plasma chamber shaped by quartz glass to enclose the space of working gas at low pressures. The geometrical properties of the source and the existing modes of the electric field are determined and optimized by a numerical simulation without a plasma. The calculated field patterns are in agreement with the observed experimental results. Argon, helium, nitrogen and air are used to produce a plasma for pressures ranging from 1000 to 2000 Pa and microwave powers above 800 W. The electron density is measured with a Mach-Zehnder interferometer to be on the order of 1014 cm-3 and the electron temperature is obtained using atomic emission spectrometry to be in the range 2222-2264 K at a pressure of 2000 Pa at different microwave powers. It can be seen from the interferograms at different microwave powers that the distribution of the plasma electron density is stable and uniform.

  9. Destruction of methane in low-pressure, electrodeless radio frequency plasma on quartz walls

    NASA Astrophysics Data System (ADS)

    Mozetic, Miran; Vesel, Alenka; Alegre, Daniel; Tabares, Francisco L.

    2011-09-01

    The destruction of methane in a low pressure, electrodeless radiofrequency discharge was studied by mass spectrometry. Plasmas were created in a quartz tube with the inner diameter of 3.6 cm. A coil with 6 turns was fixed onto the tube and connected to radio frequency (RF) generator via a matching network. Methane flows between 1.16 and 3.30 mbar.l/s and various RF powers up to 1200 W were used. Depending on gas flow and RF power, the discharge was either in E or H mode. The evolution of different hydrocarbon species versus discharge power was measured systematically by a differentially pumped mass spectrometer. No carbon deposit on the quartz walls was seen during the scans. The results showed that the destruction of methane depended on the flow rate as well as the discharge power and was accomplished already in the E mode. Well-pronounced maxima in the formation of both ethane and acetylene were observed at low gas flow rates. The observed products from radical recombination evolved with plasma conditions, and their contribution to the global carbon balance strongly decreased at high power-per-particle density. The functionality of secondary hydrocarbon formation with respect to the experimental parameters has been analyzed and a simple kinetic model is proposed in order to account for the observed trends.

  10. Production and Study of Titan's Aerosols Analogues with A RF Low Pressure Plasma Discharge

    SciTech Connect

    Szopa, C.; Cernogora, G.; Correia, J.J.; Boufendi, L.; Jolly, A.

    2005-10-31

    The atmosphere of Titan, the biggest satellite of Saturn, contains aerosols produced by the organic chemistry induced by the photochemistry of N2 and CH4, the major gaseous atmospheric compounds. In spite of their importance for the properties of the Titan's atmosphere, and for organic chemistry, only few direct information are available about them because of the limitations of the observational techniques, and their processes of formation and growth are not understood. In order to bring answers to these questions, we developed a new type of laboratory simulation to produce analogues of Titan's aerosols (known as tholins) with a low pressure Radio Frequency plasma discharge. The main originality of this experiment (named PAMPRE) comes from its ability to produce particles in volume, as they are maintained in levitation by electrostatic forces compensating gravity, whereas the other experiments produce tholins on the reactors walls or a substrate. We initiated our investigations by a study of the properties of the produced particles as a function of the plasma operating conditions (i.e. amount of CH4 in N2, injected RF power, pressure, and gas flow). We here present the results of this study.

  11. Comparing geophysical measurements to theoretical estimates for soil mixtures at low pressures

    SciTech Connect

    Wildenschild, D; Berge, P A; Berryman, K G; Bonner, B P; Roberts, J J

    1999-01-15

    The authors obtained good estimates of measured velocities of sand-peat samples at low pressures by using a theoretical method, the self-consistent theory of Berryman (1980), using sand and porous peat to represent the microstructure of the mixture. They were unable to obtain useful estimates with several other theoretical approaches, because the properties of the quartz, air and peat components of the samples vary over several orders of magnitude. Methods that are useful for consolidated rock cannot be applied directly to unconsolidated materials. Instead, careful consideration of microstructure is necessary to adapt the methods successfully. Future work includes comparison of the measured velocity values to additional theoretical estimates, investigation of Vp/Vs ratios and wave amplitudes, as well as modeling of dry and saturated sand-clay mixtures (e.g., Bonner et al., 1997, 1998). The results suggest that field data can be interpreted by comparing laboratory measurements of soil velocities to theoretical estimates of velocities in order to establish a systematic method for predicting velocities for a full range of sand-organic material mixtures at various pressures. Once the theoretical relationship is obtained, it can be used to estimate the soil composition at various depths from field measurements of seismic velocities. Additional refining of the method for relating velocities to soil characteristics is useful for development inversion algorithms.

  12. Simulation study of nanoparticle coating in a low pressure plasma reactor

    SciTech Connect

    Pourali, N.; Foroutan, G.

    2015-02-15

    A self-consistent combination of plasma fluid model, nanoparticle heating model, and surface deposition model is used to investigate the coating of nanosize particles by amorphous carbon layers in a low pressure plasma reactor. The numerical results show that, owing to the net heat release in the surface reactions, the particle temperature increases and its equilibrium value remains always 50 K above the background gas temperature. The deposition rate decreases with increasing of the particle temperature and the corresponding time scale is of the order of 10 ms. The deposition rate is also strongly affected by the change in plasma parameters. When the electron temperature is increased, the deposition rate first increases due to the enhanced ion and radical generation, shows a maximum and then declines as the particle temperature rises above the gas temperature. An enhancement in the background gas pressure and/or temperature leads to a reduction in the deposition rate, which can be explained in terms of the enhanced etching by atomic hydrogen and particle heating by the background gas.

  13. A preliminary stage configuration for a low pressure nuclear thermal rocket (LPNTR)

    SciTech Connect

    Leyse, C.F.; Madsen, W.W.; Neuman, J.E.; Ramsthaler, J.H.; Schnitzler, B.G.

    1990-01-01

    A low pressure nuclear thermal rocket (LPNTR) is configured to meet the requirements of a nuclear stage for manned Mars exploration. Safety, reliability and performance are given equal consideration in selecting the stage configuration. Preliminary trade studies are conducted to size the engine thrust and determine the thrust chamber pressure. A weight breakdown and mechanical configuration for the selected LPNTR concept are defined. A seven engine stage configuration is selected which gives a two engine out capability and eliminates the need for engine gimbaling. The stage can be ground assembled and launched as a unit including tankage for trans Earth injection and Earth orbital capture. The tankage is configured to eliminate the need for an inert shield. The small engine will be cheaper to develop than a single engine providing full thrust, and will be compatible with stages for Earth orbital, Lunar and deep space missions. Mission analyses are presented with engine operation in a high thrust mode and in a dual range high thrust-low thrust mode. Mass savings over a reference NERVA stage are projected to be 45--55% for the high thrust operating mode and 50--60% for the dual range mode. Potential exists for further increases in performance by optimizing the thrust chamber/nozzle design. 6 refs., 10 figs., 5 tabs.

  14. Ablative material testing for low-pressure, low-cost rocket engines

    NASA Astrophysics Data System (ADS)

    Richter, G. Paul; Smith, Timothy D.

    1995-10-01

    The results of an experimental evaluation of ablative materials suitable for the production of light weight, low cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compositions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal chamber pressure of 1138 kPa (165 psi) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approximately 2456 K (4420 R). Two high-density composition materials exhibited high erosion resistance, while two low-density compositions exhibited approximately 6-75 times lower average erosion resistance. The results compare favorably with previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket engines.

  15. Experimental Investigation of Boundary Layer Behavior in a Simulated Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Sohn, Ki-Hyeon; Shyne, Rickey J.; DeWitt, Kenneth J.

    1998-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT blade onto a flat plate. The experiments were carried out at Reynolds numbers of 100,000 and 250,000 with three levels of freestream turbulence. The main emphasis in this paper is placed on flow field surveys performed at a Reynolds number of 100,000 with levels of freestream turbulence ranging from 0.8% to 3%. Smoke-wire flow visualization data was used to confirm that the boundary layer was separated and formed a bubble. The transition process over the separated flow region is observed to be similar to a laminar free shear layer flow with the formation of a large coherent eddy structure. For each condition, the locations defining the separation bubble were determined by careful examination of pressure and mean velocity profile data. Transition onset location and length determined from intermittency profiles decrease as freestream turbulence levels increase. Additionally, the length and height of the laminar separation bubbles were observed to be inversely proportional to the levels of freestream turbulence.

  16. Experimental Investigation of Boundary Layer Behavior in a Simulated Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Shyne, Rickey J.; Sohn, Ki-Hyeon; DeWitt, Kenneth J.

    1999-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the y pressure distribution of an actual LPT blade onto a flat plate. The experiments were carried out at Reynolds numbers of 100,000 and 250,000 with three levels of freestream turbulence. The main emphasis in this paper is placed on flow field surveys performed at a y Reynolds number of 100,000 with levels of freestream turbulence ranging from 0.8% to 3%. Smoke-wire flow visualization data was used to confirm that the boundary layer was separated and formed a bubble. The transition process over the separated flow region is observed to be similar to a laminar free shear layer flow with the formation of a large coherent eddy structure. For each condition, the locations defining the separation bubble were determined by careful examination of pressure and mean velocity profile data. Transition onset location and length determined from intermittency profiles decrease as freestream turbulence levels increase. Additionally, the length and height of the laminar separation bubbles were observed to be inversely proportional to the levels of freestream turbulence.

  17. Inter-annual Variability of Monsoon Low Pressure Systems in Reanalysis and Climate model Simulation

    NASA Astrophysics Data System (ADS)

    Praveen, V.; Sandeep, S.; Ravindran, A. M.

    2014-12-01

    Monsoon Low Pressure Systems (LPS) play an important role in the Indian summer monsoon by bringing rainfall to the interior parts of Indian subcontinent. The detection and tracking of this weakly structured north north-west propagating system in reanalysis products and climate model simulations are challenging compared to the tropical and extra tropical cyclones. A robust method to objectively identify and track the LPS, which mimics the conventional LPS tracking technique, is presented. The algorithm showed its robustness in detecting and tracking LPS in ERA and MERRA reanalysis products. The algorithm fairly well captured inter-annual variability in ERA/MERRA LPSs against observations from Indian Meteorological Department (IMD). An analysis of the LPS in historical CMPI5 model simulation reveal, the models' skill in simulating a realistic mean monsoon precipitation and its relation to the LPS activity. Further, this inter-model variability in the LPS is found to be linked to the mid-tropospheric stability over the Bay of Bengal region.

  18. Compressible DNS study of separation bubbles for flow past a low pressure turbine blade

    NASA Astrophysics Data System (ADS)

    Ranjan, Rajesh; Deshpande, Suresh; Narasimha, Roddam

    2014-11-01

    A representative low pressure turbine blade T106A is subjected to a direct numerical simulation (DNS) study for low Reynolds Number (Re = 51831 based on inflow velocity and axial chord) and angle of incidence (45.5 deg from the axial chord). The DNS code used here solves the compressible Navier-Stokes equations and uses a semi-kinetic energy preserving scheme. A hybrid grid is used for the computational domain, with a very fine wall-bounded boundary layer grid near the surface of the blade and an unstructured grid for rest of the domain. Total grid size for the current simulation is around 160 million. In the mean flow, a long but shallow separation bubble is found near the trailing edge. However, the instantaneous flow reveals a train of bubbles at this location. These instantaneous bubbles continually break and merge in time. The presence of these separation bubbles make the flow very complicated, as the bubbles are responsible for tripping the otherwise laminar flow to a transitional state. Skin friction and heat transfer co-efficient are also computed over the blade to understand the effect of these bubbles on parameters of engineering importance. Supported by a GATET funded project on DNS of turbomachinery blading. The Param Yuva-II at CDAC was utilized for the simulations.

  19. Efficacy of hybrid adsorption/membrane pretreatment for low pressure membrane.

    PubMed

    Malczewska, B; Benjamin, M M

    2016-08-01

    Fouling by natural organic matter (NOM) is a major obstacle when water from natural sources is treated using low-pressure membranes. Prior research by our group has demonstrated that passing natural water through a thin, pre-deposited layer of heated aluminum oxide particles (HAOPs) can remove substantial amounts of NOM from the feed and thereby reduce the fouling rate of downstream membranes. The work reported here explored the technical efficacy of such a pretreatment process under more challenging (and therefore realistic) conditions than reported earlier. Several analytical techniques were applied to the feed and permeate in an attempt to identify the key fouling components. The results demonstrate that a HAOPs layer can be pre-deposited on a stainless steel mesh and then be readily washed off at the end of a filtration cycle with very little irreversible fouling due to residual NOM or HAOPs left on the mesh. In addition, the pretreatment step removes enough foulant to allow a downstream UF membrane to operate at significantly higher fluxes than when conventional pretreatment is applied. HAOPs pretreatment also reduced the formation of chlorinated and brominated trihalomethanes (THM4) by more than 67% and of haloacetic acids (HAA9) by 64%-88% in simulated distribution system (SDS) tests. PMID:27174606

  20. Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS) in low pressure flames

    SciTech Connect

    Scherer, J.J.; Rakestraw, D.J.

    1996-12-31

    The authors have employed Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS) as a diagnostic tool for combustion chemistry studies. High resolution rovibrational absorption spectra have been obtained in low pressure laminar flames in the mid-infrared employing a pulsed single mode optical parametric oscillator (OPO) laser system. The high sensitivity and generality of IR-CRLAS for combustion studies is demonstrated in a variety of flames and is shown to be robust even in sooting environments with high temperature gradients. The ability to obtain spatially resolved data is also demonstrated in one dimensional laminar flame studies. These preliminary results indicate the potential of IR-CRLAS as a combustion diagnostic which is capable of obtaining absolute concentrations of reactants, intermediates, and products simultaneously within a narrow spectral region. In this demonstration, two information rich mid-infrared spectral regions (1.6 and 3-4 microns) have been probed at Doppler-limited resolution with an effective laser bandwidth of < 0.007 cm{sup -1}.

  1. Progress on Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Azzari, Phillip; Duke-Tinson, Omar; Frank, John; Karama, Jackson; Hopson, Jordan; Paolino, Richard; Sandri, Eva; Sherman, Justin; Wright, Erin; Turk, Jeremy

    2015-11-01

    The small Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Lab (CGAPL), continues to progress toward utilizing the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T) [1] of helicons, for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas (~ 20 - 30 ns) induced by an RF frequency in the 10 to 70 MHz range. HPX is constructing RF field corrected Langmuir probe raw data will be collected and used to measure the plasma's density, temperature, and potentially the structure and behavior during experiments. Our 2.5 J YAG laser Thomson Scattering system backed by a 32-channel Data Acquisition (DAQ) system is capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the Thomson Scattering, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15.

  2. Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Azzari, Phillip; Crilly, Paul; Duke-Tinson, Omar; Karama, Jackson; Paolino, Richard; Schlank, Carter; Sherman, Justin

    2014-10-01

    The small Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Lab (CGAPL), continues to progress toward utilizing the reputed high densities (10 cm-3 and higher) at low pressure (.01 T) of helicons, for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range. We employ a 400 to 1000 Gauss electromagnet that promotes energy conservation in the plasma via external energy production in the magnetic field facilitated by decreased inertial effects, in order to reach the Helicon Mode. HPX is completing construction of triple and mach particle probes, magnetic probes, and is designing a single point 300 W Thompson Scattering system backed by a 32-channel Data Acquisition (DAQ) system capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the optical, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY13.

  3. Progress in Development of Low Pressure High Density Plasmas on a Small Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Lopez, M.; Nolan, S.; Page, E. L.; Schlank, C.; Sherman, J.; Stutzman, B. S.; Zuniga, J.

    2012-10-01

    At the Coast Guard Academy Plasma Lab (CGAPL), a small Helicon Plasma Experiment (HPX) is being developed to utilize the reputed high densities (10^13 cm-3 and higher) at low pressure (.01 T) [1], for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range and employs an electromagnet to provide the external energy in the plasma's magnetic field to transition from the H-Mode to the Helicon Mode. An acceleration coil, currently under construction, will place the plasma in the vacuum chamber for optical and particle probing. With the initial construction phase complete and first plasmas attained, HPX is constructing triple and mach particle probes, magnetic probes, and a single point 300 W Thompson Scattering system backed by a 32-channel DAQ system capable 12 bits of sampling precision at 2 MS/s for plasma property investigations. Progress on the development of the RF coupling system, magnetic coils, and qualitative observations from the optical and electric diagnostics are to be reported. [4pt] [1] K. Toki, et al., Thin Solid Films 506-507 (2005).

  4. Progress on Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, R. W.; Duke-Tinson, O.; Nolan, S.; Page, E. J.; Lopez, M.; Karama, J.; Paolino, R. N.; Schlank, C.; Sherman, J.; Stutzman, B. S.; Crilly, P. B.

    2013-10-01

    At the Coast Guard Academy Plasma Lab (CGAPL), a small Helicon Plasma Experiment (HPX) is being developed to utilize the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T), for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range. We employ a 400 to 1000 Gauss electromagnet that promotes energy conservation in the plasma via external energy production in the magnetic field facilitated by decreased inertial effects, in order to reach the Helicon Mode. With the initial construction phase complete and repeatable plasmas attained, HPX is constructing triple and mach particle probes, magnetic probes, and a single point 300 W Thompson Scattering system backed by a 32-channel Data Acquisition (DAQ) system capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the optical, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY12.

  5. High-voltage nanosecond pulses in a low-pressure radio-frequency discharge.

    PubMed

    Pustylnik, M Y; Hou, L; Ivlev, A V; Vasilyak, L M; Couëdel, L; Thomas, H M; Morfill, G E; Fortov, V E

    2013-06-01

    An influence of a high-voltage (3-17 kV) 20 ns pulse on a weakly-ionized low-pressure (0.1-10 Pa) capacitively coupled radiofrequency (RF) argon plasma is studied experimentally. The plasma evolution after pulse exhibits two characteristic regimes: a bright flash, occurring within 100 ns after the pulse (when the discharge emission increases by 2-3 orders of magnitude over the steady-state level), and a dark phase, lasting a few hundreds μs (when the intensity of the discharge emission drops significantly below the steady-state level). The electron density increases during the flash and remains very large at the dark phase. 1D3V particle-in-cell simulations qualitatively reproduce both regimes and allow for detailed analysis of the underlying mechanisms. It is found that the high-voltage nanosecond pulse is capable of removing a significant fraction of plasma electrons out of the discharge gap, and that the flash is the result of the excitation of gas atoms, triggered by residual electrons accelerated in the electric field of immobile bulk ions. The secondary emission from the electrodes due to vacuum UV radiation plays an important role at this stage. High-density plasma generated during the flash provides efficient screening of the RF field (which sustains the steady-state plasma). This leads to the electron cooling and, hence, onset of the dark phase.

  6. Endoscopic third ventriculostomy as adjunctive therapy in the treatment of low-pressure hydrocephalus in adults

    PubMed Central

    Foster, Kimberly A.; Deibert, Christopher P.; Choi, Phillip A.; Gardner, Paul A.; Tyler-Kabara, Elizabeth C.; Engh, Johnathan A.

    2016-01-01

    Background: Treatment of low-pressure hydrocephalus (LPH) may require prolonged external ventricular drainage (EVD) at sub-zero pressures to reverse ventriculomegaly. Endoscopic third ventriculostomy (ETV) has been used in the treatment of noncommunicating hydrocephalus; however, indications for ETV are expanding. Methods: Patients with the diagnosis of LPH as defined by the Pang and Altschuler criteria who underwent sub-zero drainage treatment over an 8-year period were included. Patients were divided into two cohorts based on whether or not ETV was employed during their treatment. Time from EVD placement to internalization of shunt was recorded for both groups; time from ETV to placement of shunt was recorded for the patients undergoing ETV. Results: Sixteen adult patients with LPH were managed with sub-zero drainage method. Ten (62.5%) patients did not undergo ETV and the average time from first ventriculostomy to shunting was 73 days (range 14–257 days). Six (37.5%) patients underwent ETV during the course of their treatment; average time from initial ventriculostomy to shunt was 114 days (range 0–236 days) (P = 0.16). Time from development of LPH to ETV ranged from 28 days to 6.5 months. In the ETV group, of the 4 patients who underwent shunting, the average time to shunting following ETV was 15.25 days. Conclusions: ETV can be used successfully in the management of refractory LPH to decrease the duration of EVD. PMID:27069743

  7. Synthetic Vortex Generator Jets Used to Control Separation on Low-Pressure Turbine Airfoils

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Volino, Ralph J.

    2005-01-01

    Low-pressure turbine (LPT) airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and lower cost by reducing the number of airfoils in an engine. When the adverse pressure gradient on the suction side of these airfoils becomes strong enough, the boundary layer will separate. Separation bubbles, particularly those that fail to reattach, can result in a significant loss of lift and a subsequent degradation of engine efficiency. The problem is particularly relevant in aircraft engines. Airfoils optimized to produce maximum power under takeoff conditions may still experience boundary layer separation at cruise conditions because of the thinner air and lower Reynolds numbers at altitude. Component efficiency can drop significantly between takeoff and cruise conditions. The decrease is about 2 percent in large commercial transport engines, and it could be as large as 7 percent in smaller engines operating at higher altitudes. Therefore, it is very beneficial to eliminate, or at least reduce, the separation bubble.

  8. Thermodynamics of Methane Adsorption on Copper HKUST-1 at Low Pressure.

    PubMed

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-07-01

    Metal-organic frameworks (MOFs) can be engineered as natural gas storage materials by tuning the pore structures and surface properties. Here we report the direct measurement of CH4 adsorption enthalpy on a paddlewheel MOF (Cu HKUST-1) using gas adsorption calorimetry at 25 °C at low pressures (below 1 bar). In this pressure region, the CH4-CH4 intermolecular interactions are minimized and the energetics solely reflects the CH4-MOF interactions. Our results suggest moderately exothermic physisorption with an enthalpy of -21.1 ± 1.1 kJ/mol CH4 independent of coverage. This calorimetric investigation complements previous computational and crystallographic studies by providing zero coverage enthalpies of CH4 adsorption. The analysis of the new and literature data suggests that in initial stages of adsorption the CH4-HKUST-1 interaction tends to be more sensitive to the pore dimension than to the guest polarizability, suggesting a less specific chemical binding role for the open Cu site. PMID:26266715

  9. Characterization of Yttria-Stabilized Zirconia Coatings Deposited by Low-Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    He, Peng-jiang; Yin, Shuo; Song, Chen; Lapostolle, Frédéric; Liao, Han-lin

    2016-02-01

    The research presented here aimed to apply plasma spraying at a low pressure of 100 Pa for fabricating the columnar structure or dense coatings. These coatings with different structures were elaborated from the vapor condensation and molten droplets, respectively, using the agglomerated YSZ powders and a relatively low power commercial F4-VB torch. It was shown that the crystallite size of coating deposited from the vapor condensation at a spraying distance of 200 mm was reduced to 17.1 nm from 43.7 nm of the feedstock. Observations indicated that a thin columnar structured coating was produced out of the line of sight of projection. In the line of sight of projection, the hybrid structured coating was obtained. The relatively dense coating was fabricated using a specifically designed extended nozzle. Investigations by means of optical emission spectroscopy were performed to analyze the nature of the plasma jet with YSZ powders. The Vickers microhardness was also conducted. It was found that the relatively dense coating showed a higher value in comparison to the hybrid structure coating, up to 1273 ± 56 Hv100g.

  10. Experimental investigations of driving frequency effect in low-pressure capacitively coupled oxygen discharges

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu; Gao, Fei; Wang, You-Nian

    2015-04-01

    The effect of driving frequency on the electron density is investigated in low-pressure capacitively coupled oxygen plasmas by utilizing a floating hairpin probe. The power absorbed by the plasma is investigated and it is found that the power lost in the matching network can reach 50% or higher under certain conditions. The effect of driving frequency on the electron density is studied from two aspects, i.e., constant absorbed power and electrode voltage. In the former case, the electron density increases with the driving frequency increasing from 13.56 to 40.68 MHz and slightly changes depending on the gas pressures with the frequency further increasing to 100 MHz. In the latter case, the electron density rapidly increases when the driving frequency increases from 13.56 to 40.68 MHz, and then decreases with the frequency further increasing to 100 MHz. The electron series resonance is observed at 40.68 MHz and can be attributed to the higher electron density. And the standing wave effect also plays an important role in increasing electron density at 100 MHz and 2.6 Pa.

  11. Analysis based on global model of nitrogen plasma produced by pulsed microwave at low pressure

    SciTech Connect

    Qiu, Feng; Yan, Eryan Meng, Fanbao; Ma, Hongge; Liu, Minghai

    2015-07-15

    This paper analyzes certain evolution processes in nitrogen plasmas discharged using pulsed microwaves at low pressure. Comparing the results obtained from the global model incorporating diffusion and the microwave transmission method, the temporal variation of the electron density is analyzed. With a discharge pressure of 300 Pa, the results obtained from experiments and the global model calculation show that when the discharge begins the electron density in the plasma rises quickly, to a level above the critical density corresponding to the discharge microwave frequency, but falls slowly when the discharge microwave pulse is turned off. The results from the global model also show that the electron temperature increases rapidly to a peak, then decays after the electron density reaches the critical density, and finally decreases quickly to room temperature when the discharge microwave pulse is turned off. In the global model, the electron density increases because the high electron temperature induces a high ionization rate. The decay of the electron density mainly comes from diffusion effect.

  12. Low pressure catalytic co-conversion of biogenic waste (rapeseed cake) and vegetable oil.

    PubMed

    Giannakopoulou, Kanellina; Lukas, Michael; Vasiliev, Aleksey; Brunner, Christoph; Schnitzer, Hans

    2010-05-01

    Zeolite catalysts of three types (H-ZSM-5, Fe-ZSM-5 and H-Beta) were tested in the catalytic co-conversion of rapeseed cake and safflower oil into bio-fuel. This low pressure process was carried out at the temperatures of 350 and 400 degrees Celsius. The yields and compositions of the product mixtures depended on the catalyst nature and the process temperatures. The produced organic phases consisted mainly of hydrocarbons, fatty acids and nitriles. This mixture possessed improved characteristics (e.g. heating value, water content, density, viscosity, pH) compared with the bio-oils, making possible its application as a bio-fuel. The most effective catalyst, providing the highest yield of organic liquid phase, was the highly acidic/wide-pore H-Beta zeolite. The products obtained on this catalyst demonstrated the highest degree of deoxygenation and the higher HHV (Higher Heating Value). The aqueous liquid phase contained water-soluble carboxylic acids, phenols and heterocyclic compounds. PMID:20060714

  13. Low-pressure hydrocracking of coal-derived Fischer-Tropsch waxes to diesel

    SciTech Connect

    Dieter Leckel

    2007-06-15

    Coal-derived low-temperature Fischer-Tropsch (LTFT) wax was hydrocracked at pressures of 3.5-7.0 MPa using silica-alumina-supported sulfided NiW/NiMo and an unsulfided noble metal catalyst, modified with MoO{sub 3}. A low-pressure operation at 3.5 MPa produced a highly isomerized diesel, having low cloud points (from -12 to -28{sup o}C) combined with high cetane numbers (69-73). These properties together with the extremely low sulfur ({lt}5 ppm) and aromatic ({lt}0.5%) contents place coal/liquid (CTL) derived distillates as highly valuable blending components to achieve Eurograde diesel specifications. The upgrading of coal-based LTFT waxes through hydrocracking to high-quality diesel fuel blend components in combination with commercial-feasible coal-integrated gasification combined cycle (coal-IGCC) CO{sub 2} capture and storage schemes should make CTL technology more attractive. 28 refs., 7 figs., 8 tabs.

  14. Thermodynamics of methane adsorption on copper HKUST-1 at low pressure

    DOE PAGES

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-11

    Metal–organic frameworks (MOFs) can be engineered as natural gas storage materials by tuning the pore structures and surface properties. Here we report the direct measurement of CH₄ adsorption enthalpy on a paddlewheel MOF (Cu HKUST-1) using gas adsorption calorimetry at 25 °C at low pressures (below 1 bar). In this pressure region, the CH₄–CH₄ intermolecular interactions are minimized and the energetics solely reflects the CH₄–MOF interactions. Our results suggest moderately exothermic physisorption with an enthalpy of -21.1 ± 1.1 kJ/mol CH₄ independent of coverage. The calorimetric investigation complements previous computational and crystallographic studies by providing zero coverage enthalpies of CH₄more » adsorption. The analysis of the new and literature data suggests that in initial stages of adsorption the CH₄–HKUST-1 interaction tends to be more sensitive to the pore dimension than to the guest polarizability, suggesting a less specific chemical binding role for the open Cu site.« less

  15. Low pressure fractionation in arc volcanoes: an example from Augustine Volcano, Alaska

    SciTech Connect

    Daley, E.E.; Swanson, S.E.

    1985-01-01

    Augustine Volcano, situated between the Cook and Katmai segments of the Eastern Aleutian Volcanic Arc, has erupted 5 times since its discovery in 1778. Eruptions are characterized by early vent-clearing eruptions with accompanying pyroclastic flows followed by dome-building and more pyroclastic flows. Bulk rock chemistry of historic and prehistoric lavas shows little variability. The lavas are calc-alkaline, low to medium K, porphyritic acid andesites, rare basalt, and minor dacite pumice. FeO*/MgO averages 1.6 over this silica range. Plagioclase phenocrysts show complicated zoning patterns, but olivine, orthopyroxene, and clinopyroxene phenocrysts show little compositional variation. Hornblende, where present, is ubiquitously oxidized and was clearly out of equilibrium during the last stages of fractionation. Evolved liquid compositions of vitriophyric domes are rhyolitic, and of pumices are slightly less evolved suggesting that individual eruptions become more fractionated with time. Comparison of glass compositions with experimental results is consistent with low pressure fractionation of a relatively dry silicate melt. Disequilibrium of amphiboles and the evolved nature of glasses indicate that shallow level fractionation plays a significant role in the evolution of Augustine magmas. This model is consistent with a shallow magma chamber inferred from geophysical models of the Augustine system and also with its simple, predictable eruption pattern.

  16. NOM fractionation and fouling of low-pressure membranes in microgranular adsorptive filtration.

    PubMed

    Cai, Zhenxiao; Benjamin, Mark M

    2011-10-15

    Membrane fouling by natural organic matter (NOM) was investigated in microgranular adsorptive filtration (μGAF) systems, in which a thin layer of adsorbent is predeposited on low-pressure membranes. The adsorbents tested included heated aluminum oxide particles (HAOPs), ion exchange (IX) resin, and powdered activated carbon (PAC). Size exclusion chromatography (SEC) separated the NOM into four apparent MW fractions with significant UV₂₅₄. HAOPs and the IX resin performed almost identically with respect to removal of these fractions, and differently from PAC. However, while HAOPs and PAC reduced fouling substantially, IX resin did not, indicating that fouling could not be attributed to the NOM fractions detected by SEC. Rather, the key foulants appear to comprise a very small fraction of the NOM with almost no UV₂₅₄ absorbance. Alginate, a strongly fouling surrogate for natural polysaccharides, is adsorbed effectively by HAOPs, but not by IX resin or PAC, suggesting that polysaccharides sometimes play a key role in membrane fouling by NOM. PMID:21905711

  17. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces. PMID:26083007

  18. Non-fluorous polymers with very high solubility in supercritical CO2 down to low pressures

    PubMed

    Sarbu; Styranec; Beckman

    2000-05-11

    Liquid and supercritical carbon dioxide have attracted much interest as environmentally benign solvents, but their practical use has been limited by the need for high CO2 pressures to dissolve even small amounts of polar, amphiphilic, organometallic, or high-molecular-mass compounds. So-called 'CO2-philes' efficiently transport insoluble or poorly soluble materials into CO2 solvent, resulting in the development of a broad range of CO2-based processes, including homogeneous and heterogeneous polymerization, extraction of proteins and metals, and homogeneous catalysis. But as the most effective CO2-philes are expensive fluorocarbons, such as poly(perfluoroether), the commercialization of otherwise promising CO2-based processes has met with only limited success. Here we show that copolymers can act as efficient, non-fluorous CO2-philes if their constituent monomers are chosen to optimize the balance between the enthalpy and entropy of solute-copolymer and copolymer-copolymer interactions. Guided by heuristic rules regarding these interactions, we have used inexpensive propylene and CO2 to synthesize a series of poly(ether-carbonate) copolymers that readily dissolve in CO2 at low pressures. Even though non-fluorous polymers are generally assumed to be CO2-phobic, we expect that our design principles can be used to create a wide range of non-fluorous CO2-philes from low-cost raw materials, thus rendering a variety of CO2-based processes economically favourable, particularly in cases where recycling of CO2-philes is difficult.

  19. W delta doping in Si(1 0 0) using ultraclean low-pressure CVD

    NASA Astrophysics Data System (ADS)

    Kanaya, Toshiyuki; Sakuraba, Masao; Murota, Junichi

    2003-05-01

    W delta doping in Si epitaxial growth by WF 6 and SiH 4 reaction has been investigated using an ultraclean cold-wall low-pressure chemical vapor deposition (CVD) system. Atomic-layer order W deposition is performed on wet-cleaned Si(1 0 0) substrate at 100 °C using WF 6 and SiH 4. Si epitaxial growth is achieved by SiH 4 reaction at 480 °C on 4×10 13 cm -2 W deposited Si(1 0 0), however, it is found that almost all the deposited W atoms segregate on the deposited Si film. It is also found that such segregation is suppressed by the atomic-order W diffusion into Si(1 0 0) substrate by the heat treatment at 520 °C before the Si deposition. In the case of the Si film deposited on the 1.3×10 14 cm -2 W diffused Si, the reflection high-energy electron diffraction (RHEED) pattern indicates the crystallinity and the roughness degrade. In the case of the Si film deposited on the 5×10 13 cm -2 W diffused Si, the RHEED pattern shows streaks with Kikuchi lines. As a result, the W delta doping in the Si epitaxial growth is achieved, in which the W concentration is as high as 6×10 20 cm -3 and the incorporated W atoms is confined within 2 nm-thick region.

  20. Two dimensional analysis of low pressure flows in the annulus region between two concentric cylinders.

    PubMed

    Al-Kouz, Wael; Alshare, Aiman; Alkhalidi, Ammar; Kiwan, Suhil

    2016-01-01

    A numerical simulation of the steady two-dimensional laminar natural convection heat transfer for the gaseous low-pressure flows in the annulus region between two concentric horizontal cylinders is carried out. This type of flow occurs in "evacuated" solar collectors and in the receivers of the solar parabolic trough collectors. A finite volume code is used to solve the coupled set of governing equations. Boussinesq approximation is utilized to model the buoyancy effect. A correlation for the thermal conductivity ratio (k r = k eff/k) in terms of Knudsen number and the modified Rayleigh number is proposed for Prandtl number (Pr = 0.701). It is found that as Knudsen number increases then the thermal conductivity ratio decreases for a given Rayleigh number. Also, it is shown that the thermal conductivity ratio k r increases as Rayleigh number increases. It appears that there is no consistent trend for varying the dimensionless gap spacing between the inner and the outer cylinder ([Formula: see text]) on the thermal conductivity ratio (k r) for the considered spacing range. PMID:27186493

  1. Design and Application of a High Sensitivity Piezoresistive Pressure Sensor for Low Pressure Conditions

    PubMed Central

    Yu, Huiyang; Huang, Jianqiu

    2015-01-01

    In this paper, a pressure sensor for low pressure detection (0.5 kPa–40 kPa) is proposed. In one structure (No. 1), the silicon membrane is partly etched to form a crossed beam on its top for stress concentration. An aluminum layer is also deposited as part of the beam. Four piezoresistors are fabricated. Two are located at the two ends of the beam. The other two are located at the membrane periphery. Four piezoresistors connect into a Wheatstone bridge. To demonstrate the stress concentrate effect of this structure, two other structures were designed and fabricated. One is a flat membrane structure (No. 2), the other is a structure with the aluminum beam, but without etched silicon (No. 3). The measurement results of these three structures show that the No.1 structure has the highest sensitivity, which is about 3.8 times that of the No. 2 structure and 2.7 times that of the No. 3 structure. They also show that the residual stress in the beam has some backside effect on the sensor performance. PMID:26371001

  2. Diagnostics of surface wave driven low pressure plasmas based on indium monoiodide-argon system

    NASA Astrophysics Data System (ADS)

    Ögün, C. M.; Kaiser, C.; Kling, R.; Heering, W.

    2015-06-01

    Indium monoiodide is proposed as a suitable alternative to hazardous mercury, i.e. the emitting component inside the compact fluorescent lamps (CFL), with comparable luminous efficacy. Indium monoiodide-argon low pressure lamps are electrodelessly driven with surface waves, which are launched and coupled into the lamp by the ‘surfatron’, a microwave coupler optimized for an efficient operation at a frequency of 2.45 GHz. A non intrusive diagnostic method based on spatially resolved optical emission spectroscopy is employed to characterize the plasma parameters. The line emission coefficients of the plasma are derived by means of Abel’s inversion from the measured spectral radiance data. The characteristic plasma parameters, e.g. electron temperature and density are determined by comparing the experimentally obtained line emission coefficients with simulated ones from a collisional-radiative model. Additionally, a method to determine the absolute plasma efficiency via irradiance measurements without any goniometric setup is presented. In this way, the relationship between the plasma efficiency and the plasma parameters can be investigated systematically for different operating configurations, e.g. electrical input power, buffer gas pressure and cold spot temperature. The performance of indium monoiodide-argon plasma is compared with that of conventional CFLs.

  3. Numerical simulation of turbulent flow in the throttle of the MBIR reactor's low-pressure chamber

    NASA Astrophysics Data System (ADS)

    Yarunichev, V. A.; Orlova, E. E.; Lemekhov, Yu. V.; Shpanskii, V. A.

    2015-08-01

    This work in devoted to numerical calculation of turbulent flow in a labyrinth-type throttle. A system of such throttles is installed at the inlet to the MBIR reactor's low-pressure chamber and serves for setting up the required pressure difference and coolant flow rate. MBIR is a multipurpose fourthgeneration fast-neutron research reactor intended for investigating new kinds of nuclear fuel, structural materials, and coolants. The aim of this work is to develop a verified procedure for carrying out 3D calculation of the throttle using CFD modeling techniques. The investigations on determining the throttle hydraulic friction coefficient were carried out in the range of Reynolds numbers Re = 52000-136000. The reactor coolant (liquid sodium) was modeled by tap water. The calculations were carried out using high-Reynolds-number turbulence models with the near-wall functions k-ɛ and RNG k-ɛ, where k is the turbulent pulsation kinetic energy and ɛ is the turbulence kinetic energy dissipation rate. The obtained results have shown that the calculated value of hydraulic friction coefficient differs from its experimental value by no more than 10%. The developed procedure can be applied in determining the hydraulic friction coefficient of a modified labyrinth throttle design. The use of such calculation will make it possible to predict an experiment with the preset accuracy.

  4. Design and Application of a High Sensitivity Piezoresistive Pressure Sensor for Low Pressure Conditions.

    PubMed

    Yu, Huiyang; Huang, Jianqiu

    2015-09-08

    In this paper, a pressure sensor for low pressure detection (0.5 kPa-40 kPa) is proposed. In one structure (No. 1), the silicon membrane is partly etched to form a crossed beam on its top for stress concentration. An aluminum layer is also deposited as part of the beam. Four piezoresistors are fabricated. Two are located at the two ends of the beam. The other two are located at the membrane periphery. Four piezoresistors connect into a Wheatstone bridge. To demonstrate the stress concentrate effect of this structure, two other structures were designed and fabricated. One is a flat membrane structure (No. 2), the other is a structure with the aluminum beam, but without etched silicon (No. 3). The measurement results of these three structures show that the No.1 structure has the highest sensitivity, which is about 3.8 times that of the No. 2 structure and 2.7 times that of the No. 3 structure. They also show that the residual stress in the beam has some backside effect on the sensor performance.

  5. Review of recent developments and applications in low-pressure (vacuum outlet) gas chromatography.

    PubMed

    Sapozhnikova, Yelena; Lehotay, Steven J

    2015-10-29

    The concept of low pressure (LP) vacuum outlet gas chromatography (GC) was introduced more than 50 years ago, but it was not until the 2000s that its theoretical applicability to fast analysis of GC-amenable chemicals was realized. In practice, LPGC is implemented by placing the outlet of a short, wide (typically 10-15 m, 0.53 mm inner diameter) analytical column under vacuum conditions, which speeds the separation by reducing viscosity of the carrier gas, thereby leading to a higher optimal flow rate for the most separation efficiency. To keep the inlet at normal operating pressures, the analytical column is commonly coupled to a short, narrow uncoated restriction capillary that also acts as a guard column. The faster separations in LPGC usually result in worse separation efficiency relative to conventional GC, but selective detection usually overcomes this drawback. Mass spectrometry (MS) provides highly selective and sensitive universal detection, and nearly all GC-MS instruments provide vacuum outlet conditions for implementation of LPGC-MS(/MS) without need for adaptations. In addition to higher sample throughput, LPGC provides other benefits, including lower detection limits, less chance of analyte degradation, reduced peak tailing, increased sample loadability, and more ruggedness without overly narrow peaks that would necessitate excessively fast data acquisition rates. This critical review summarizes recent developments in the application of LPGC with MS and other detectors in the analysis of pesticides, environmental contaminants, explosives, phytosterols, and other semi-volatile compounds. PMID:26547491

  6. Evaluation of HFC-245ca for commercial use in low pressure chillers. Final report, Volume I

    SciTech Connect

    Keuper, E.F.

    1996-03-01

    Federal regulations banned the production of CFC-11 on January 1, 1996. HCFC-123, the only commercial alternative, will be limited to service applications after January 1, 2020 and will be eliminated from production on January 1, 2030. HFC-245ca has been identified as a potential replacement for CFC-11 in retrofit applications and for HCFC-123 in new chillers, but the marginal flammability of HFC-245ca is a major obstacle to its commercial use as a refrigerant in the United States. This report assesses the commercial viability of HFC-245ca based on its experimental performance in a direct drive low pressure centrifugal chiller exclusive of its flammability characteristics. Three different impeller diameters were tested in the chiller, with all impellers having identical discharge blade angles. Experimental work included tests in a 200 ton 3 stage direct drive chiller with 3 impeller sets properly sized for each of three refrigerants, CFC-11, HCFC-123, and HFC-245ca. The commercial viability assessment focused on both retrofit and new product performance and cost.

  7. Kinetic interpretation of resonance phenomena in low pressure capacitively coupled radio frequency plasmas

    NASA Astrophysics Data System (ADS)

    Wilczek, Sebastian; Trieschmann, Jan; Eremin, Denis; Brinkmann, Ralf Peter; Schulze, Julian; Schuengel, Edmund; Derzsi, Aranka; Korolov, Ihor; Hartmann, Peter; Donkó, Zoltán; Mussenbrock, Thomas

    2016-06-01

    Low pressure capacitive radio frequency (RF) plasmas are often described by equivalent circuit models based on fluid approaches that predict the self-excitation of resonances, e.g., high frequency oscillations of the total current in asymmetric discharges, but do not provide a kinetic interpretation of these effects. In fact, they leave important questions open: How is current continuity ensured in the presence of energetic electron beams generated by the expanding sheaths that lead to a local enhancement of the conduction current propagating through the bulk? How do the beam electrons interact with cold bulk electrons? What is the kinetic origin of resonance phenomena? Based on kinetic simulations, we find that the energetic beam electrons interact with cold bulk electrons (modulated on a timescale of the inverse local electron plasma frequency) via a time dependent electric field outside the sheaths. This electric field is caused by the electron beam itself, which leaves behind a positive space charge, that attracts cold bulk electrons towards the expanding sheath. The resulting displacement current ensures current continuity by locally compensating the enhancement of the conduction current. The backflow of cold electrons and their interaction with the nonlinear plasma sheath cause the generation of multiple electron beams during one phase of sheath expansion and contribute to a strongly non-sinusoidal RF current. These kinetic mechanisms are the basis for a fundamental understanding of the electron power absorption dynamics and resonance phenomena in such plasmas, which are found to occur in discharges of different symmetries including perfectly symmetric plasmas.

  8. Low-Pressure Microwave Excited Microplasmas as Sources of VUV Photons and Metastable Excited Atoms: Modeling

    NASA Astrophysics Data System (ADS)

    Kushner, Mark; Cooley, James; Xue, Jun; Urdhal, Randall

    2011-10-01

    Low pressure plasmas sustained in rare gases and rare gas mixtures can be efficient sources of VUV light from resonant optical transitions. Many applications would benefit from having small, inexpensive sources of plasma produced VUV light. To address this need, microwave wave excited microplasma sources in rare gases operating at pressures of <10 Torr are being developed. The microplasmas are sustained in ceramic cavities having cross sectional dimensions of <=1 mm, excited by a split-ring resonator antenna operated at 2.45 GHz. Power deposition is a few W. Hybrid computer modeling of microplasmas sustained in Ar has been performed to develop scaling laws for increasing the efficiency of VUV light production. The model includes a Monte Carlo simulation for the electron energy distribution and for radiation transport. Results from those studies will be discussed for plasma densities, electron energy distributions, VUV light production and excited state densities as a function of power, pressure and aspect ratio of the microplasma cavities. Modeling results will be compared to laser absorption spectroscopy of Ar excited state densities. Work supported by Agilent Technologies.

  9. Low-Pressure UV Inactivation and DNA Repair Potential of Cryptosporidium parvum Oocysts

    PubMed Central

    Shin, Gwy-Am; Linden, Karl G.; Arrowood, Michael J.; Sobsey, Mark D.

    2001-01-01

    Because Cryptosporidium parvum oocysts are very resistant to conventional water treatment processes, including chemical disinfection, we determined the kinetics and extent of their inactivation by monochromatic, low-pressure (LP), mercury vapor lamp UV radiation and their subsequent potential for DNA repair of UV damage. A UV collimated-beam apparatus was used to expose suspensions of purified C. parvum oocysts in phosphate-buffered saline, pH 7.3, at 25°C to various doses of monochromatic LP UV. C. parvum infectivity reductions were rapid, approximately first order, and at a dose of 3 mJ/cm2 (=30 J/m2), the reduction reached the cell culture assay detection limit of ∼3 log10. At UV doses of 1.2 and 3 mJ/cm2, the log10 reductions of C. parvum oocyst infectivity were not significantly different for control oocysts and those exposed to dark or light repair conditions for UV-induced DNA damage. These results indicate that C. parvum oocysts are very sensitive to inactivation by low doses of monochromatic LP UV radiation and that there is no phenotypic evidence of either light or dark repair of UV-induced DNA damage. PMID:11425717

  10. Investigation of Low-Pressure Ultraviolet Radiation on Inactivation of Rhabitidae Nematode from Water

    PubMed Central

    DEHGHANI, Mohammad Hadi; JAHED, Gholam-Reza; ZAREI, Ahmad

    2013-01-01

    Background: Rhabditidae is a family of free-living nematodes. Free living nematodes due to their active movement and resistance to chlorination, do not remove in conventional water treatment processes thus can be entered to distribution systems and cause adverse health effects. Ultraviolet radiation (UV) can be used as a method of inactivating for these organisms. This cross sectional study was done to investigate the efficiency of ultraviolet lamp in the inactivation of free living nematode in water. Methods: The effects of radation time, turbidity, pH and temperature were invistigated in this study. Ultraviolet lamp used in this study was a 11 W lamp and intensity of this lamp was 24 μw / cm2. Results: Radiation time required to achieve 100% efficiency for larvae nematode and adults was 9 and 10 minutes respectively. There was a significant correlation between the increase in radiation time, temperature rise and turbidity reduction with inactivation efficiency of lamp (P<0.001). Increase of turbidity up 25 NTU decreased inactivation efficiency of larvae and adult nematodes from 100% to 66% and 100% to 64% respectively. Change in pH range from 6 to 9 did not affect the efficiency of inactivation. With increasing temperature inactivation rate increased. Also the effect of the lamp on inactivation of larvae nematod was mor than adults. Conclusions: It seems that with requiring the favorable conditions low-pressure ultraviolet radiation systems can be used for disinfection of water containing Rhabitidae nematode. PMID:23641409

  11. Diamond synthesis from carbon nanofibers at low temperature and low pressure.

    PubMed

    Luo, Chengzhi; Qi, Xiang; Pan, Chunxu; Yang, Wenge

    2015-09-09

    In this article, we report a new route to synthesize diamond by converting "solid" carbon nanofibers with a Spark Plasma Sintering system under low temperature and pressure (even at atmospheric pressure). Well-crystallized diamond crystals are obtained at the tips of the carbon nanofibers after sintering at 1500 °C and atmospheric pressure. Combining with scanning electron microscopy, transmission electron microscopy, electron-energy loss spectroscopy and Raman spectroscopy observations, we propose the conversion mechanism as follows: the disorder "solid" carbon nanofibers→well crystallined carbon nanofibers→bent graphitic sheets→onion-liked rings→diamond single crystal→the bigger congregated diamond crystal. It is believed that the plasma generated by low-voltage, vacuum spark, via a pulsed DC in Spark Plasma Sintering process, plays a critical role in the low temperature and low pressure diamond formation. This Spark Plasma Sintering process may provide a new route for diamond synthesis in an economical way to a large scale.

  12. The deterministic prediction of failure of low pressure steam turbine disks

    SciTech Connect

    Liu, Chun; Macdonald, D.D.

    1993-05-01

    Localized corrosion phenomena, including pitting corrosion, stress corrosion cracking, and corrosion fatigue, are the principal causes of corrosion-induced damage in electric power generating facilities and typically result in more than 50% of the unscheduled outages. Prediction of damage, so that repairs and inspections can be made during scheduled outages, could have an enormous impact on the economics of electric power generation. To date, prediction of corrosion damage has been made on the basis of empirical/statistical methods that have proven to be insufficiently robust and accurate to form the basis for the desired inspection/repair protocol. In this paper, we describe a deterministic method for predicting localized corrosion damage. We have used the method to illustrate how pitting corrosion initiates stress corrosion cracking (SCC) for low pressure steam turbine disks downstream of the Wilson line, where a thin condensed liquid layer exists on the steel disk surfaces. Our calculations show that the SCC initiation and propagation are sensitive to the oxygen content of the steam, the environment in the thin liquid condensed layer, and the stresses that the disk experiences in service.

  13. Low-pressure systems and extreme precipitation in central India: sensitivity to temperature changes

    NASA Astrophysics Data System (ADS)

    Sørland, Silje Lund; Sorteberg, Asgeir

    2016-07-01

    Extreme rainfall events in the central Indian region are often related to the passage of synoptic scale monsoon low-pressure systems (LPS). This study uses the surrogate climate change method on ten monsoon LPS cases connected to observed extreme rainfall events, to investigate how sensitive the precipitation and runoff are to an idealized warmer and moister atmosphere. The ten cases are simulated with three different initial and lateral boundary conditions: the unperturbed control run, and two sets of perturbed runs where the atmospheric temperature is increased uniformly throughout the atmosphere, the specific humidity increased according to Clausius Clapeyron's relation, but the large-scale flow is unchanged. The difference between the control and perturbed simulations are mainly due to the imposed warming and feedback influencing the synoptic flow. The mean precipitation change with warming in the central Indian region is 18-20 %/K, with largest changes at the end of the LPS tracks. The LPS in the warmer runs are bringing more moisture further inland that is released as precipitation. In the perturbed runs the precipitation rate is increasing at all percentiles, and there is more frequent rainfall with very heavy intensities. This leads to a shift in which category that contributes most to the total precipitation: more of the precipitation is coming from the category with very heavy intensities. The runoff changes are similar to the precipitation changes, except the response in intensity of very heavy runoff, which is around twice the change in intensity of very heavy precipitation.

  14. Precipitation response of monsoon low-pressure systems to an idealized uniform temperature increase

    NASA Astrophysics Data System (ADS)

    Sørland, Silje Lund; Sorteberg, Asgeir; Liu, Changhai; Rasmussen, Roy

    2016-06-01

    The monsoon low-pressure systems (LPSs) are one of the most rain-bearing synoptic-scale systems developing during the Indian monsoon. We have performed high-resolution, convection-permitting experiments of 10 LPS cases with the Weather Research and Forecasting regional model, to investigate the effect of an idealized uniform temperature increase on the LPS intensification and precipitation. Perturbed runs follow a surrogate climate change approach, in which a uniform temperature perturbation is specified, but the large-scale flow and relative humidity are unchanged. The differences between control and perturbed simulations are therefore mainly due to the imposed warming and moisture changes and their feedbacks to the synoptic-scale flow. Results show that the LPS precipitation increases by 13%/K, twice the imposed moisture increase, which is on the same order as the Clausius-Clapeyron relation. This large precipitation increase is attributed to the feedbacks in vertical velocity and atmospheric stability, which together account for the high sensitivity. In the perturbed simulations the LPSs have higher propagation speeds and are more intense. The storms intensification to the uniform temperature perturbation can be interpreted in terms of the conditional instability of second kind mechanism where the condensational heating increases along with low-level convergence and vertical velocity in response to temperature and moisture increases. As a result, the surface low deepens.

  15. Rejection of organic compounds by ultra-low pressure reverse osmosis membrane.

    PubMed

    Ozaki, Hiroaki; Li, Huafang

    2002-01-01

    The introduction of ultra-low pressure reverse osmosis (ULPRO) membrane has widened the horizon of reverse osmosis (RO) in purification of surface water and wastewater as well as desalination of brackish water. The ULPRO membrane chemistry can provide a high water flux at low operating pressure, while maintaining a very good salt and organics rejection. This paper deals with the investigation on the rejection of low molecular weight organic compounds by ULPRO membrane. Laboratory scale experiments were carried out at a pressure of 3 kg/cm2 with a feed flow rate of 1.20 l/min. The rejection of undissociated organic compounds did not show a close relationship with the feed pH. The percentage removal of undissociated organic compounds increased linearly with the molecular weight as well as with the molecular width. The removal efficiency can be predicted by these relationships. But neither molecular weight nor molecular width can be considered as an absolute factor for rejection. The feed pH also influenced the removal efficiency of dissociated organic compounds. The efficiency decreased linearly with the increase in the dissociation constant.

  16. Vapors and Droplets Mixture Deposition of Metallic Coatings by Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Vautherin, B.; Planche, M.-P.; Bolot, R.; Quet, A.; Bianchi, L.; Montavon, G.

    2014-04-01

    In recent years, the very low pressure plasma-spraying (VLPPS) process has been intensely developed and implemented to manufacture thin, dense and finely structured ceramic coatings for various applications, such as Y2O3 for diffusion barriers, among other examples. This paper aims at presenting developments carried out on metallic coatings. Aluminum was chosen as a demonstrative material due to its "moderate" vaporization enthalpy (i.e., 38.23 KJ cm-3) compared to the one of copper (i.e., 55.33 KJ cm-3), cobalt (i.e., 75.03 KJ cm-3), or even tantalum (i.e., 87.18 KJ cm-3). The objective of this work is primarily to better understand the behavior of a solid precursor injected into the plasma jet leading to the formation of vapors and to better control the factors affecting the coating structure. Nearly dense aluminum coatings were successfully deposited by VLPPS at 100 Pa with an intermediate power plasma torch (i.e., Sulzer Metco F4 type gun with maximum power of 45 kW). Optical emission spectroscopy (OES) was implemented to study and analyze the vapor behavior into the plasma jet. Simplified CFD modeling allowed better understanding of some of the thermo-physical mechanisms. The effect of powder-size distribution, substrate temperature and spray distance were studied. The phase composition and microstructural features of the coatings were characterized by XRD and SEM. Moreover, Vickers microhardness measurements were implemented.

  17. Concept for a Low Pressure Gas Fill in a Direct Drive IFE Target Chamber

    NASA Astrophysics Data System (ADS)

    Natta, Saswathi; Aristova, Maria; Gentile, Charles

    2009-11-01

    A concept using a low pressure nobel gas has been advanced for attenuating the interaction of (post detonation) He ions on first wall components. In this configuration approximately 1 torr of Ar gas is introduced into the target chamber for the purpose of interacting with energetic He ions before they impinge on first wall surfaces. As a result, effluent processing systems must be designed to take into account a high Ar gas load. Therefore, a two-stage cryopumping system will be configured in line with an array of turbomolecular drag pumps to remove Ar from the effluent gas stream. After exiting the reaction chamber, effluent will pass through the first cryopump stage, at liquid nitrogen temperature (77 K), which will remove argon as well as any trace contaminants from the gas stream. The remaining effluent, consisting of H and He, will pass through the second cryopumping stage, at liquid He temperature (4.2 K), to remove H isotopes from the gas stream. This poster will discuss specific concepts for efficient plasma exhaust processing.

  18. [Experimental study on closed plasma discharging under low pressure and spectroscopic diagnosis].

    PubMed

    Lin, Min; Xu, Hao-jun; Su, Chen; Liang, Hua

    2014-06-01

    Closed plasma can overcome difficulties of maintaining plasma and excessive energy consumption in open environment. For plasma stealth technology, a closed plasma generator was designed. Using microsecond pulse generator and argon as working gas, discharge experiments were carried out under low pressure environment. The emission spectrum of Ar at different position in discharge chamber was measured. By using collisional-radiative modal (CRM), the distribution of plasma parameters was studied. At a given electron temperature and density with specified discharge parameters, corresponding population distribution could be obtained by CRM. By comparing the line ratio of argon 2p levels acquired from CRM with the line ratio from spectrum measured, the plasma parameters were confirmed after obtaining the minimum difference value. Using the line ratio of argon 2p9 to 2p1 from CRM while the range of electron density was 1-5 eV, the calculating error was analyzed. The results reveal that, the electron density of the closed plasma reaches a magnitude of 10(11) cm(-3) and shows a gradient distribution with small variational amplitude, and the distribution is beneficial to the application of plasma stealth. PMID:25358170

  19. NASA/GE Energy Efficient Engine low pressure turbine scaled test vehicle performance report

    NASA Technical Reports Server (NTRS)

    Bridgeman, M. J.; Cherry, D. G.; Pedersen, J.

    1983-01-01

    The low pressure turbine for the NASA/General Electric Energy Efficient Engine is a highly loaded five-stage design featuring high outer wall slope, controlled vortex aerodynamics, low stage flow coefficient, and reduced clearances. An assessment of the performance of the LPT has been made based on a series of scaled air-turbine tests divided into two phases: Block 1 and Block 2. The transition duct and the first two stages of the turbine were evaluated during the Block 1 phase from March through August 1979. The full five-stage scale model, representing the final integrated core/low spool (ICLS) design and incorporating redesigns of stages 1 and 2 based on Block 1 data analysis, was tested as Block 2 in June through September 1981. Results from the scaled air-turbine tests, reviewed herein, indicate that the five-stage turbine designed for the ICLS application will attain an efficiency level of 91.5 percent at the Mach 0.8/10.67-km (35,000-ft), max-climb design point. This is relative to program goals of 91.1 percent for the ICLS and 91.7 percent for the flight propulsion system (FPS).

  20. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  1. Low pressure catalytic co-conversion of biogenic waste (rapeseed cake) and vegetable oil.

    PubMed

    Giannakopoulou, Kanellina; Lukas, Michael; Vasiliev, Aleksey; Brunner, Christoph; Schnitzer, Hans

    2010-05-01

    Zeolite catalysts of three types (H-ZSM-5, Fe-ZSM-5 and H-Beta) were tested in the catalytic co-conversion of rapeseed cake and safflower oil into bio-fuel. This low pressure process was carried out at the temperatures of 350 and 400 degrees Celsius. The yields and compositions of the product mixtures depended on the catalyst nature and the process temperatures. The produced organic phases consisted mainly of hydrocarbons, fatty acids and nitriles. This mixture possessed improved characteristics (e.g. heating value, water content, density, viscosity, pH) compared with the bio-oils, making possible its application as a bio-fuel. The most effective catalyst, providing the highest yield of organic liquid phase, was the highly acidic/wide-pore H-Beta zeolite. The products obtained on this catalyst demonstrated the highest degree of deoxygenation and the higher HHV (Higher Heating Value). The aqueous liquid phase contained water-soluble carboxylic acids, phenols and heterocyclic compounds.

  2. Computer Modeling of an Ion Trap Mass Analyzer, Part I: Low Pressure Regime.

    PubMed

    Nikolić, Dragan; Madzunkov, Stojan M; Darrach, Murray R

    2015-12-01

    We present the multi-particle simulation program suite Computational Ion Trap Analyzer (CITA) designed to calculate the ion trajectories within a Paul quadrupole ion trap developed by the Jet Propulsion Laboratory (JPL). CITA uses an analytical expression of the electrodynamic field, employing up to six terms in multipole expansion and a modified velocity-Verlet method to numerically calculate ion trajectories. The computer code is multithreaded and designed to run on shared-memory architectures. CITA yields near real-time simulations with full propagation of 26 particles per second per core. As a consequence, a realistic numbers of trapped ions (100+ million) can be used and their trajectories modeled, yielding a representative prediction of mass spectrometer analysis of trace gas species. When the model is compared with experimental results conducted at low pressures using the conventional quadrupole and dipole excitation modes, there is an excellent agreement with the observed peak shapes. Owing to the program's efficiency, CITA has been used to explore regions of trapping stability that are of interest to experimental research. These results are expected to facilitate a fast and reliable modeling of ion dynamics in miniature quadrupole ion trap and improve the interpretation of observed mass spectra. Graphical Abstract ᅟ. PMID:26286456

  3. Review of recent developments and applications in low-pressure (vacuum outlet) gas chromatography.

    PubMed

    Sapozhnikova, Yelena; Lehotay, Steven J

    2015-10-29

    The concept of low pressure (LP) vacuum outlet gas chromatography (GC) was introduced more than 50 years ago, but it was not until the 2000s that its theoretical applicability to fast analysis of GC-amenable chemicals was realized. In practice, LPGC is implemented by placing the outlet of a short, wide (typically 10-15 m, 0.53 mm inner diameter) analytical column under vacuum conditions, which speeds the separation by reducing viscosity of the carrier gas, thereby leading to a higher optimal flow rate for the most separation efficiency. To keep the inlet at normal operating pressures, the analytical column is commonly coupled to a short, narrow uncoated restriction capillary that also acts as a guard column. The faster separations in LPGC usually result in worse separation efficiency relative to conventional GC, but selective detection usually overcomes this drawback. Mass spectrometry (MS) provides highly selective and sensitive universal detection, and nearly all GC-MS instruments provide vacuum outlet conditions for implementation of LPGC-MS(/MS) without need for adaptations. In addition to higher sample throughput, LPGC provides other benefits, including lower detection limits, less chance of analyte degradation, reduced peak tailing, increased sample loadability, and more ruggedness without overly narrow peaks that would necessitate excessively fast data acquisition rates. This critical review summarizes recent developments in the application of LPGC with MS and other detectors in the analysis of pesticides, environmental contaminants, explosives, phytosterols, and other semi-volatile compounds.

  4. Computer Modeling of an Ion Trap Mass Analyzer, Part I: Low Pressure Regime

    NASA Astrophysics Data System (ADS)

    Nikolić, Dragan; Madzunkov, Stojan M.; Darrach, Murray R.

    2015-12-01

    We present the multi-particle simulation program suite Computational Ion Trap Analyzer (CITA) designed to calculate the ion trajectories within a Paul quadrupole ion trap developed by the Jet Propulsion Laboratory (JPL). CITA uses an analytical expression of the electrodynamic field, employing up to six terms in multipole expansion and a modified velocity-Verlet method to numerically calculate ion trajectories. The computer code is multithreaded and designed to run on shared-memory architectures. CITA yields near real-time simulations with full propagation of 26 particles per second per core. As a consequence, a realistic numbers of trapped ions (100+ million) can be used and their trajectories modeled, yielding a representative prediction of mass spectrometer analysis of trace gas species. When the model is compared with experimental results conducted at low pressures using the conventional quadrupole and dipole excitation modes, there is an excellent agreement with the observed peak shapes. Owing to the program's efficiency, CITA has been used to explore regions of trapping stability that are of interest to experimental research. These results are expected to facilitate a fast and reliable modeling of ion dynamics in miniature quadrupole ion trap and improve the interpretation of observed mass spectra.

  5. Studies on hydrogen plasma and dust charging in low-pressure filament discharge

    SciTech Connect

    Kakati, B. Kalita, D.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2014-08-15

    The effect of working gas pressure and dust charging on electron energy probability function has been studied for hydrogen plasma in a multi-dipole dusty plasma device. A cylindrical Langmuir probe is used to evaluate the plasma parameters and electron energy probability function (EEPF) for different working pressures. For lower energy range (below 10 eV), the EEPF follows a bi-Maxwellian shape at very low pressure (6 × 10{sup −5} mbar), while elevating the working pressure up to ∼2 × 10{sup −3} mbar, the shape of the EEPF transforms into a single Maxwellian. Some dip structures are observed at high energy range (ε > 10 eV) in the EEPF of hydrogen plasma at all the working conditions. In presence of dust particles, it is observed that the shape of the EEPF changes due to the redistribution of the high and low-energy electron populations. Finally, the effect of working pressure on charge accumulation on dust particles is studied with the help of a Faraday cup and electrometer. From the observations, a strong influence of working pressure on plasma parameters, EEPF and dust charging is observed.

  6. Diamond synthesis from carbon nanofibers at low temperature and low pressure

    PubMed Central

    Luo, Chengzhi; Qi, Xiang; Pan, Chunxu; Yang, Wenge

    2015-01-01

    In this article, we report a new route to synthesize diamond by converting “solid” carbon nanofibers with a Spark Plasma Sintering system under low temperature and pressure (even at atmospheric pressure). Well-crystallized diamond crystals are obtained at the tips of the carbon nanofibers after sintering at 1500 °C and atmospheric pressure. Combining with scanning electron microscopy, transmission electron microscopy, electron-energy loss spectroscopy and Raman spectroscopy observations, we propose the conversion mechanism as follows: the disorder “solid” carbon nanofibers → well crystallined carbon nanofibers → bent graphitic sheets → onion-liked rings → diamond single crystal → the bigger congregated diamond crystal. It is believed that the plasma generated by low-voltage, vacuum spark, via a pulsed DC in Spark Plasma Sintering process, plays a critical role in the low temperature and low pressure diamond formation. This Spark Plasma Sintering process may provide a new route for diamond synthesis in an economical way to a large scale. PMID:26351089

  7. Simplified Configuration for the Combustor of an oil Burner using a low Pressure, high flow air-atomizing Nozzle

    SciTech Connect

    Butcher, Thomas; Celebi, Yusuf; Fisher, Leonard

    1998-09-28

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion oil resulting in a minimum emission of pollutants. The inventors have devised a fuel burner that uses a low pressure air atomizing nozzle. The improved fuel burner does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design.

  8. Optical emission spectroscopy for simultaneous measurement of plasma electron density and temperature in a low-pressure microwave induced plasma

    SciTech Connect

    Konjevic, N.; Jovicevic, S.; Ivkovic, M.

    2009-10-15

    The simple optical emission spectroscopy technique for diagnostics of low pressure microwave induced plasma (MIP) in hydrogen or in MIP seeded with hydrogen is described and tested. This technique uses the Boltzmann plot of relative line intensities along Balmer spectral series in conjunction with the criterion for partial local thermodynamic equilibrium for low electron density (N{sub e}) plasma diagnostics. The proposed technique is tested in a low pressure MIP discharge for simultaneous determination of electron density N{sub e} (10{sup 17}-10{sup 18} m{sup -3}) and temperature T{sub e}.

  9. Reynolds-Averaged Navier-Stokes Studies of Low Reynolds Number Effects on the Losses in a Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.

    1996-01-01

    Experimental data from jet-engine tests have indicated that unsteady blade-row interaction effects can have a significant impact on the efficiency of low-pressure turbine stages. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Preliminary studies indicate that Reynolds number effects may contribute to the lower efficiencies at cruise conditions. In the current study, numerical experiments have been performed to quantify the Reynolds number dependence of unsteady wake/separation bubble interaction on the performance of a low-pressure turbine.

  10. Study of dust re-suspension at low pressure in a dedicated wind-tunnel

    NASA Astrophysics Data System (ADS)

    Rondeau, Anthony; Sabroux, Jean-Christophe; Chassefière, Eric

    2015-04-01

    The atmosphere of several telluric planets or satellites are dusty. Such is the case of Earth, Venus, Mars and Titan, each bearing different aeolian processes linked principally to the kinematic viscosity of the near-surface atmosphere. Studies of the Martian atmosphere are particularly relevant for the understanding of the dust re-suspension phenomena at low pressure (7 mbar). It turns out that operation of fusion reactors of the tokamak design produces significant amount of dust through the erosion of plasma-facing components. Such dust is a key issue, both regarding the performance and the safety of a fusion reactor such as ITER, under construction in Cadarache, France. Indeed, to evaluate the explosion risk in the ITER fusion reactor, it is essential to quantify the re-suspended dust fraction as a function of the dust inventory that can be potentially mobilized during a loss of vacuum accident (LOVA), with air or water vapour ingress. A complete accident sequence will encompass dust re-suspension from near-vacuum up to atmospheric pressure. Here, we present experimental results of particles re-suspension fractions measured at 1000, 600 and 300 mbar in the IRSN BISE (BlowIng facility for airborne releaSE) wind tunnel. Both dust monolayer deposits and multilayer deposits were investigated. In order to obtain experimental re-suspension data of dust monolayer deposits, we used an optical microscope allowing to measure the re-suspended particles fraction by size intervals of 1 µm. The deposits were made up of tungsten particles on a tungsten surface (an ubiquitous plasma facing component) and alumina particles on a glass plate, as a surrogate. A comparison of the results with the so-called Rock'nRoll dust re-suspension model (Reeks and Hall, 2001) is presented and discussed. The multilayer deposits were made in a vacuum sedimentation chamber allowing to obtain uniform deposits in terms of thickness. The re-suspension experimental data of such deposits were obtained

  11. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets: Experimental Data Archive

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important. This is the supplemental CD-ROM

  12. Experimental and numerical study of chemiluminescent species in low-pressure flames

    NASA Astrophysics Data System (ADS)

    Kathrotia, T.; Riedel, U.; Seipel, A.; Moshammer, K.; Brockhinke, A.

    2012-06-01

    Chemiluminescence has been observed since the beginning of spectroscopy, nevertheless, important facts still remain unknown. Especially, reaction pathways leading to chemiluminescent species such as OH∗, CH∗, C2^{*}, and CO2^{*} are still under debate and cannot be modeled with standard codes for flame simulation. In several cases, even the source species of spectral features observed in flames are unknown. In recent years, there has been renewed interest in chemiluminescence, since it has been shown that this radiation can be used to determine flame parameters such as stoichiometry and heat release under some conditions. In this work, we present a reaction mechanism which predicts the OH∗, CH∗ (in A- and B-state), and C2^{*} emission strength in lean to fuel-rich stoichiometries. Measurements have been performed in a set of low-pressure flames which have already been well characterized by other methods. The flame front is resolved in these measurements, which allows a comparison of shape and position of the observed chemiluminescence with the respective simulated concentrations. To study the effects of varying fuels, methane flame diluted in hydrogen are measured as well. The 14 investigated premixed methane-oxygen-argon and methane-hydrogen-oxygen-argon flames span a wide parameter field of fuel stoichiometry ( ϕ=0.5 to 1.6) and hydrogen content (H2 vol%=0 to 50). The relative comparison of measured and simulated excited species concentrations shows good agreement. The detailed and reliable modeling for several chemiluminescent species permits correlating heat release with all of these emissions under a large set of flame conditions. It appears from the present study that the normally used product of formaldehyde and OH concentration may be less well suited for such a prediction in the flames under investigation.

  13. Electrical Breakdown In Nitrogen At Low Pressure - Physical Processes And Statistics

    NASA Astrophysics Data System (ADS)

    Gocic, S.

    2010-07-01

    The results of investigation of the electrical breakdown in nitrogen, obtained in combined approach based on measuring of the current-voltage characteristic, modeling of basic physical processes and statistical analysis of the breakdown time delay are presented in this report. Measurement of the current-voltage characteristics with additional monitoring of spatial and temporal distribution of the emission from discharge provides information concerned on development of different regime of low-pressure gas discharge and on processes of the electrical breakdown and discharge maintenance. The presented model of the gas discharge includes the kinetics of mains constituents of the nitrogen plasma, charged particles, vibrationally manifold of molecular ground state, molecular singlet and triplet states and nitrogen atoms. The model is applied in case of a homogenous electric field, at electric field to gas density ratio E/N of 1000 Td (1Td = 10^-17 Vcm^2). The obtained results show that the main mechanism of a nitrogen atoms production in this case is the molecular dissociation in a direct electron impact, while influence of highly excited vibrationall states can be neglected. Also, two new distributions of the statistical time delay of electrical breakdown in nitrogen, the Gaussian and Gauss-exponential ones, are presented. Distributions are theoretically founded on binomial distribution for the occurrence of initiating electrons and described by using analytical and numerical models. Moreover, the correlation coefficient between the statistical and formative time delay of electrical breakdown in nitrogen is de- termined. Starting from bivariate normal (Gaussian) distribution of two random variables, the analytical distribution of the electrical breakdown time delay is theoretically founded on correlation of the dependent statistical and formative time delay. Gaussian density dis- tribution of the electrical breakdown time delay goes to Gaussian of the formative time or

  14. Removal of aqueous nC60 fullerene from water by low pressure membrane filtration.

    PubMed

    Floris, R; Nijmeijer, K; Cornelissen, E R

    2016-03-15

    The potential environmental and health risks of engineered nanoparticles such as buckminsterfullerene C60 in water require their removal during the production of drinking water. We present a study focusing on (i) the removal mechanism and (ii) the elucidation of the role of the membrane pore size during removal of nC60 fullerene nanoparticle suspensions in dead-end microfiltration and ultrafiltration mimicking separation in real industrial water treatment plants. Membranes were selected with pore sizes ranging from 18 nm to 500 nm to determine the significance of the nC60 to membrane pore size ratio and the adsorption affinity between nC60 and membrane material during filtration. Experiments were carried out with a dead-end bench-scale system operated at constant flux conditions including a hydraulic backwash cleaning procedure. nC60 nanoparticles can be efficiently removed by low pressure membrane technology with smaller and, unexpectedly, also by mostly similar or larger pores than the particle size, although the nC60 filtration behaviour appeared to be different. The nC60 size to membrane pore size ratio and the ratio of the cake-layer deposition resistance to the clean membrane resistance, both play an important role on the nC60 filtration behaviour and on the efficiency of the backwash procedure recovering the initial membrane filtration conditions. These results become specifically significant in the context of drinking water production, for which they provide relevant information for an accurate selection between membrane processes and operational parameters for the removal of nC60 in the drinking water treatment.

  15. Compressible DNS of transitional and turbulent flow in a low pressure turbine cascade

    NASA Astrophysics Data System (ADS)

    Ranjan, Rajesh; Deshpande, Suresh; Narasimha, Roddam

    2015-11-01

    Direct numerical simulation (DNS) of flow in a low pressure turbine cascade at high incidence is performed using a new in-house code ANUROOP. This code solves compressible Navier-Stokes equations in conservative form using finite volume technique and uses kinetic-energy consistent scheme for the flux calculations. ANUROOP is capable of handling flow past complex geometries using hybrid grid approach (separate grid topologies for the boundary layer and rest of the blade passage). This approach offers much more control in mesh spacing and distribution compared to elliptic grid technique, which is used in many previous studies. Also, in contrast to previous studies, focus of the current work is mainly on the boundary layer flow. The flow remains laminar on the pressure side of the blade, but separates in the aft region of the suction side leading to transition. Separation bubbles formed at this region are transient in nature and we notice multiple bubbles merging and breaking in time. In the mean flow however, only one bubble is seen. Velocity profiles very near to the leading edge of the suction side suggest strong curvature effect. Higher-order boundary layer theory that includes effect of curvature is found to be necessary to characterize the flow in this region. Also, the grid convergence study reveals interesting aspects of numerics vital for accurate simulation of this kind of complex flows. We would like to thank the Gas Turbine Enabling Technology (GATET) Program for funding this project. We also thank C-DAC, Pune and CSIR-4PI, Bangalore for providing computational resources.

  16. Glow Discharge Plasma Demonstrated for Separation Control in the Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Ashpis, David e.; Hultgren, Lennart S.

    2004-01-01

    Flow separation in the low-pressure turbine (LPT) is a major barrier that limits further improvements of aerodynamic designs of turbine airfoils. The separation is responsible for performance degradation, and it prevents the design of highly loaded airfoils. The separation can be delayed, reduced, or eliminated completely if flow control techniques are used. Successful flow control technology will enable breakthrough improvements in gas turbine performance and design. The focus of this research project was the development and experimental demonstration of active separation control using glow discharge plasma (GDP) actuators in flow conditions simulating the LPT. The separation delay was shown to be successful, laying the foundation for further development of the technologies to practical application in the LPT. In a fluid mechanics context, the term "flow control" means a technology by which a very small input results in a very large effect on the flow. In this project, the interest is to eliminate or delay flow separation on LPT airfoils by using an active flow control approach, in which disturbances are dynamically inserted into the flow, they interact with the flow, and they delay separation. The disturbances can be inserted using a localized, externally powered, actuating device, examples are acoustic, pneumatic, or mechanical devices that generate vibrations, flow oscillations, or pulses. A variety of flow control devices have been demonstrated in recent years in the context of the external aerodynamics of aircraft wings and airframes, where the incoming flow is quiescent or of a very low turbulence level. However, the flow conditions in the LPT are significantly different because there are high levels of disturbances in the incoming flow that are characterized by high free-stream turbulence intensity. In addition, the Reynolds number, which characterizes the viscous forces in the flow and is related to the flow speed, is very low in the LPT passages.

  17. Final Report: Comparison of the primary (national) standards of low-pressure gas flow

    NASA Astrophysics Data System (ADS)

    Benková, Miroslava; Makovnik, Stefan; Mickan, Bodo

    2015-01-01

    The EURAMET.M.FF-K6 comparison was organized for the purpose of determination of the degree of equivalence of the primary (national) standards for low-pressure gas flow measurement over the range (2 to 100) m3/h and was performed simultaneously with CCM.FF-K6.2011 with the same transfer standard. A rotary gas meter G65 was used as a transfer standard. The measurements were provided by prescribed reference conditions. Fifteen laboratories from EURAMET participated in this key comparison - SMU, Slovakia; PTB, Germany; CEM, Spain; LNE-LADG, France; VSL, Netherlands; CMI, Czech Republic; BEV, Austria; MKEH, Hungary; GUM Poland; SP, Sweden; METAS, Switzerland; DMDM, Serbia; TUBITAK-UME, Turkey; EIM, Greece; IMBiH, Bosnia-Herzegovina. The EURAMET.M.FF-K6 is linked to the CCM.FF-K6.2011 by correcting the results of three linking laboratories (Slovakia SMU, Germany PTB and France LNE LADG). This correction provides an estimate of what would have been the result from the EURAMET.M-FF-K6 participants, if they had actually participated in CCM.FF-K6.2011. According to the evaluation 93.7 % of the results were consistent with KCRV, 3.4 % of the results were in the warning level and 2.9 % of the results were inconsistent. The results of this comparison can be used for review of the CMC tables. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma

    NASA Astrophysics Data System (ADS)

    Lebedev, Yu A.

    2015-10-01

    Microwave discharges (MD) are widely used as a source of non-equilibrium low pressure plasma for different applications. This paper reviews the methods of microwave plasma generation at pressures from 10-2 approximately to 30 kPa with centimeter-millimeter wavelength microwaves on the basis of scientific publications since 1950 up to the present. The review consists of 16 sections. A general look at MDs and their application is given in the introduction, together with a description of a typical block-schema of the microwave plasma generator, classification of MD, and attractive features of MD. Sections 2-12 describe the different methods of microwave plasma generators on the basis of cavity and waveguide discharges, surface and slow wave discharges, discharges with distributed energy input, initiated and surface discharges, discharges in wave beams, discharges with stochastically jumping phases of microwaves, discharges in an external magnetic field and discharges with a combination of microwave field and dc and RF fields. These methods provide the possibility of producing nonequilibriun high density plasma in small and large chambers for many applications. Plasma chemical activity of nonequilibrium microwave plasma is analyzed in section 13. A short consideration of the history and status of the problem is given. The main areas of microwave plasma application are briefly described in section 14. Non-uniformity is the inherent property of the majority of electrical discharges and MDs are no exception. Peculiarities of physical-chemical processes in strongly non-uniform MDs are demonstrated placing high emphasis on the influence of small noble gas additions to the main plasma gas (section 15). The review is illustrated by 80 figures. The list of references contains 350 scientific publications.

  19. Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Sohn, Ki Hyeon; DeWitt, Kenneth J.

    2007-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000, and 250,000 with four levels of freestream turbulence ranging from 1 to 4 percent. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000, and 100,000. Spectral data show no evidence of Kelvin-Helmholtz of Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transition flows over the separation bubble of certain conditions. Transition onset and end locations and length determined from intermittency profiles decreased as Reynolds number and freestream turbulence levels increase.

  20. Experimental Study of the Effects of Periodic Unsteady Wakes on Flow Separation in Low Pressure Turbines

    NASA Technical Reports Server (NTRS)

    Ozturk, Burak; Schobeiri, Meinhard T.

    2009-01-01

    The present study, which is the first of a series of investigations of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary layer flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed on a large-scale, high-subsonic unsteady turbine cascade research facility with an integrated wake generator and test section unit. Blade Pak B geometry was used in the cascade. The wakes were generated by continuously moving cylindrical bars device. Boundary layer investigations were performed using hot wire anemometry at Reynolds number of 110,000, based on the blade suction surface length and the exit velocity, for one steady and two unsteady inlet flow conditions, with the corresponding passing frequencies, wake velocities, and turbulence intensities. The reduced frequencies cover the entire operation range of LP-turbines. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re = 50,000, 75,000, 100,000, 110,000, and 125,000. For each Reynolds number, surface pressure measurements are carried out at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extension of the separation zone as well as its behavior under unsteady wake flow. The results, presented in ensemble-averaged and contour plot forms, help to understand the physics of the separation phenomenon under periodic unsteady wake flow.

  1. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important.

  2. Experimental Studies of Low-Pressure Turbine Flows and Flow Control

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.

    2012-01-01

    This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies.

  3. Removal of aqueous nC60 fullerene from water by low pressure membrane filtration.

    PubMed

    Floris, R; Nijmeijer, K; Cornelissen, E R

    2016-03-15

    The potential environmental and health risks of engineered nanoparticles such as buckminsterfullerene C60 in water require their removal during the production of drinking water. We present a study focusing on (i) the removal mechanism and (ii) the elucidation of the role of the membrane pore size during removal of nC60 fullerene nanoparticle suspensions in dead-end microfiltration and ultrafiltration mimicking separation in real industrial water treatment plants. Membranes were selected with pore sizes ranging from 18 nm to 500 nm to determine the significance of the nC60 to membrane pore size ratio and the adsorption affinity between nC60 and membrane material during filtration. Experiments were carried out with a dead-end bench-scale system operated at constant flux conditions including a hydraulic backwash cleaning procedure. nC60 nanoparticles can be efficiently removed by low pressure membrane technology with smaller and, unexpectedly, also by mostly similar or larger pores than the particle size, although the nC60 filtration behaviour appeared to be different. The nC60 size to membrane pore size ratio and the ratio of the cake-layer deposition resistance to the clean membrane resistance, both play an important role on the nC60 filtration behaviour and on the efficiency of the backwash procedure recovering the initial membrane filtration conditions. These results become specifically significant in the context of drinking water production, for which they provide relevant information for an accurate selection between membrane processes and operational parameters for the removal of nC60 in the drinking water treatment. PMID:26773485

  4. Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Sohn, Ki Hyeon; DeWitt, Kenneth J.

    1998-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000 and 250,000 with four levels of freestream turbulence ranging from 1% to 4%. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000 and 100,000. Spectral data show no evidence of Kelvin-Helmholtz or Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transitional flows over the separation bubble for certain conditions. Transition onset and end locations and length determined from intermittency profiles decrease as Reynolds number and freestream turbulence levels increase.

  5. Low-pressure flashing mechanisms in iso-octane liquid jets

    NASA Astrophysics Data System (ADS)

    Vieira, M. M.; Simões-Moreira, J. R.

    This paper examines a flashing liquid regime that takes place at very high ratios of injection to discharge pressures in flow restrictions. Typically, the flashing phenomenon has been observed in laboratory experiments where a liquid flows through a short nozzle into a low-pressure chamber at a pressure value considerably lower than the liquid saturation pressure at the injection temperature. By using two visualization techniques, the schlieren and the back-lighting methods, it was possible to identify some compressible phenomena associated with the liquid flashing process from the nozzle exit section. The schlieren method was used to capture the image of a shock-wave structure surrounding a liquid core from which the phase change takes place, and the optical technique allowed us to observe the central liquid core itself. The work corroborates previous physical descriptions of flashing liquid jets to explain an observed choking behaviour as well as the presence of shock waves. According to the present analysis, flashing takes place on the surface of the liquid core through an evaporation wave process, which results from a sudden liquid evaporation in a discontinuous process. Downstream of the evaporation discontinuity, the two-phase flow reaches very high velocities, up to the local sonic speed that typically occurs at high expansion conditions, as inferred from experiments and the physical model. That sonic state is also a point of maximum mass flow rate and it is known as the Chapman Jouguet condition. The freshly sonic two-phase flow expands freely to increasing supersonic velocities and eventually terminates the expansion process through a shock-wave structure. This paper presents experimental results at several test conditions with iso-octane.

  6. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    NASA Astrophysics Data System (ADS)

    de Vries, N.; Palomares, J. M.; Iordanova, E. I.; van Veldhuizen, E. M.; van der Mullen, J. J. A. M.

    2008-10-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, ne, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, Te, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the ne values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 ± 0.5) × 1019 m-3, whereas the ne value (2 ± 0.5) × 1019 m-3 obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high (~1020 m-3). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the Te values obtained with TS are equal to 13 400 ± 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  7. A new model for the V-Cone meter in low pressure wet gas metering

    NASA Astrophysics Data System (ADS)

    He, Denghui; Bai, Bofeng; Xu, Yong; Li, Xing

    2012-12-01

    Wet gas metering with differential pressure (DP) devices (e.g. the orifice plate, the Venturi and the V-Cone) has gained increasing interest in the oil and gas industry. Many investigations have been performed and several models have been proposed. Among the DP devices, the V-Cone flow meter has received increasing attention owing to its remarkable performance characteristics, including high accuracy, excellent repeatability, wide turndowns, shorter straight length and stable signals. In this work, we developed a new method for predicting the gas flow rate in low pressure wet gas flow using a V-Cone flow meter with the diameter ratio of 0.55. The experimental fluid was air and tap water. The test pressure ranged from 0.10 to 0.48 MPa, and the gas and liquid mass flow rates ranged from 100 to 500 N m3 h-1 and from 0.030 to 0.358 m3 h-1, respectively. Thus, the Lockhart-Martinelli parameter, XLM, was up to 0.158 and the gas volume fraction ranged from 98.94% to 100%. A dimensionless parameter, K, was proposed in this work and defined as the two-phase flow coefficient of the flow meter. The results indicated that the K linearly increased with the Lockhart-Martinelli parameter. In addition, the K increased with the gas densiometric Froude number and decreased with the operating pressure when other parameters were kept constant. On the basis of the two-phase flow coefficient, a new wet gas model was developed and compared with seven popular wet gas models. It was found that with the V-Cone flow meter and under the present experimental conditions the new model produced a more accurate prediction of the wet gas than other models. The research approach to obtaining the model can also be used in the studies on other DP devices and thus will benefit the design of wet gas meters.

  8. Ice-melt rates during volcanic eruptions within water-drained, low-pressure subglacial cavities

    NASA Astrophysics Data System (ADS)

    Woodcock, D. C.; Lane, S. J.; Gilbert, J. S.

    2016-02-01

    Subglacial volcanism generates proximal and distal hazards including large-scale flooding and increased levels of explosivity. Direct observation of subglacial volcanic processes is infeasible; therefore, we model heat transfer mechanisms during subglacial eruptions under conditions where cavities have become depressurized by connection to the atmosphere. We consider basaltic eruptions in a water-drained, low-pressure subglacial cavity, including the case when an eruption jet develops. Such drained cavities may develop on sloping terrain, where ice may be relatively shallow and where gravity drainage of meltwater will be promoted. We quantify, for the first time, the heat fluxes to the ice cavity surface that result from steam condensation during free convection at atmospheric pressure and from direct and indirect radiative heat transfer from an eruption jet. Our calculations indicate that the direct radiative heat flux from a lava fountain (a "dry" end-member eruption jet) to ice is c. 25 kW m-2 and is a minor component. The dominant heat transfer mechanism involves free convection of steam within the cavity; we estimate the resulting condensation heat flux to be c. 250 kW m-2. Absorption of radiation from a lava fountain by steam enhances convection, but the increase in condensing heat flux is modest at c. 25 kW m-2. Overall, heat fluxes to the ice cavity surface are likely to be no greater than c. 300 kW m-2. These are comparable with heat fluxes obtained by single phase convection of water in a subglacial cavity but much less than those obtained by two-phase convection.

  9. GABAA receptors expression pattern in rat brain following low pressure distension of the stomach.

    PubMed

    Sabbatini, M; Molinari, C; Grossini, E; Piffanelli, V; Mary, D A S G; Vacca, G; Cannas, M

    2008-03-18

    It is known that gastric mechanoreceptor stimuli are widely integrated into neuronal circuits that involve visceral nuclei of hindbrain as well as several central brain areas. GABAergic neurons are widely represented in hindbrain nuclei controlling gastric motor functions, but limited information is available specifically about GABA(A)-responding neurons in brain visceral areas. The present investigation was designed to determine the central sensory neuronal pathways and their GABA(A)-alpha1 and -alpha3 receptor presenting neurons that respond to gastric mechanoreceptor stimulation within the entire rat brain. Low pressure gastric distension was used to deliver physiological mechanical stimuli in anesthetized rats, and different protocols of gastric distension were performed to mimic different stimulation patterns with and without sectioning vagal and/or splanchnic afferent nerves. Mapping of activated neurons was investigated using double colorimetric immunohistochemistry for GABA(A)-alpha1 or -alpha3 subunits and c-Fos. Following stomach distension, neurons expressing GABA(A) receptors with alpha1 or alpha3 subunits were detected. Low frequency gastric distension induced c-Fos expression in nucleus tractus solitarii (NTS) only, whereas in the high frequency gastric distension c-Fos positive nuclei were found in lateral reticular nucleus and in NTS in addition to some forebrain areas. In contrast, during the tonic-rapid gastric distension the neuronal activation was found in hindbrain, midbrain and forebrain areas. Moreover different protocols of gastric stimulation activated diverse patterns of neurons presenting GABA(A)-alpha1 or -alpha3 receptors within responding brain nuclei, which may indicate a probable functional significance of differential expression of GABA(A)-responding neurons. The same protocol of gastric distension performed in vagotomized rats has confirmed the primary role of the vagus in the response of activation of gastric brain areas, whereas

  10. A Computational Fluid Dynamics Study of Transitional Flows in Low-Pressure Turbines under a Wide Range of Operating Conditions

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.; Volino, R. J.; Corke, T. C.; Thomas, F. O.; Huang, J.; Lake, J. P.; King, P. I.

    2007-01-01

    A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub p) with the intermittency factor, gamma. Turbulent quantities are predicted using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions.

  11. Assessing the effectiveness of low-pressure ultraviolet light for inactivating Mycobacterium avium complex (MAC) micro-organisms

    EPA Science Inventory

    Aims: To assess low-pressure ultraviolet light (LP-UV) inactivation kinetics of Mycobacterium avium complex (MAC) strains in a water matrix using collimated beam apparatus. Methods and Results: Strains of M. avium (n = 3) and Mycobacterium intracellulare (n = 2) were exposed t...

  12. SEPARATION OF HAZARDOUS ORGANICS BY LOW PRESSURE MEMBRANES: TREATMENT OF SOIL-WASH RINSE-WATER LEACHATES

    EPA Science Inventory

    Soil washing is a promising technology for treating contaminated soils. In the present work, low-pressure, thin-film composite membranes were evaluated to treat the soil-wash leachates so that the treated water could be recycled back to the soil washing step. Experiments were don...

  13. Millimeter-size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition.

    PubMed

    Chen, Shanshan; Ji, Hengxing; Chou, Harry; Li, Qiongyu; Li, Hongyang; Suk, Ji Won; Piner, Richard; Liao, Lei; Cai, Weiwei; Ruoff, Rodney S

    2013-04-11

    Millimeter-size single-crystal monolayer graphene is synthesized on polycrystalline Cu foil by a method that involves suppressing loss by evaporation of the Cu at high temperature under low pressure. This significantly diminishes the number of graphene domains, and large single crystal domains up to ∼2 mm in size are grown. PMID:23386288

  14. A radial differential mobility analyzer for the size-classification of gas-phase synthesized nanoparticles at low pressures

    NASA Astrophysics Data System (ADS)

    Nanda, K. K.; Kruis, F. E.

    2014-07-01

    Differential mobility analyzers (DMAs) are commonly used to generate monodisperse nanoparticle aerosols. Commercial DMAs operate at quasi-atmospheric pressures and are therefore not designed to be vacuum-tight. In certain particle synthesis methods, the use of a vacuum-compatible DMA is a requirement as a process step for producing high-purity metallic particles. A vacuum-tight radial DMA (RDMA) has been developed and tested at low pressures. Its performance has been evaluated by using a commercial NANO-DMA as the reference. The performance of this low-pressure RDMA (LP-RDMA) in terms of the width of its transfer function is found to be comparable with that of other NANO-DMAs at atmospheric pressure and is almost independent of the pressure down to 30 mbar. It is shown that LP-RDMA can be used for the classification of nanometer-sized particles (5-20 nm) under low pressure condition (30 mbar) and has been successfully applied to nanoparticles produced by ablating FeNi at low pressures.

  15. Interplanetary Magnetic Field Polarity and the Size of Low-Pressure Troughs Near 180{degrees}W Longitude.

    PubMed

    Wilcox, J M; Duffy, P B; Schatten, K H; Svalgaard, L; Scherrer, P H; Roberts, W O; Olson, R H

    1979-04-01

    When the interplanetary magnetic field is directed away from the sun, the area of wintertime low-pressure (300-millibar) troughs near 180 degrees W longitude is significantly larger than when the field is toward the sun. This relation persists during most of the winters of 1951 to 1973.

  16. Millimeter-size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition.

    PubMed

    Chen, Shanshan; Ji, Hengxing; Chou, Harry; Li, Qiongyu; Li, Hongyang; Suk, Ji Won; Piner, Richard; Liao, Lei; Cai, Weiwei; Ruoff, Rodney S

    2013-04-11

    Millimeter-size single-crystal monolayer graphene is synthesized on polycrystalline Cu foil by a method that involves suppressing loss by evaporation of the Cu at high temperature under low pressure. This significantly diminishes the number of graphene domains, and large single crystal domains up to ∼2 mm in size are grown.

  17. Report on the calibration of two spinning-rotor gauges for the BIPM very low pressure intercomparison

    NASA Astrophysics Data System (ADS)

    Redgrave, F.; Nash, P. J.

    1987-01-01

    Calibrations were carried out as part of an intercomparison of very low pressure standards. The transfer standards supplied consisted of two spinning-rotor gage balls and fingers. The intercomparison was performed using argon as the test gas. Additional calibrations were carried out using hydrogen.

  18. Turbulent transition behavior in a separated and attached-flow low pressure turbine passage

    NASA Astrophysics Data System (ADS)

    Memory, Curtis L.

    Various time accurate numerical simulations were conducted on the aft-loaded L1A low pressure turbine airfoil operating at Reynolds numbers presenting with fully-stalled, non-reattaching laminar separation. The numerical solver TURBO was modified from its annular gas turbine simulation configuration to conduct simulations based on a linear cascade wind tunnel facility. Simulation results for the fully separated flow fields revealed various turbulent decay mechanisms. Separated shear layer decay, in the form of vortices forming between the shear layer and the blade wall, was shown to agree with experimental particle image velocimetry (PIV) data in terms of decay vortex size and core vorticity levels. These vortical structures eventually mix into a large recirculation zone which dominates the blade wake. Turbulent wake ex- tent and time-averaged velocity distributions agreed with PIV data. Steady-blowing vortex generating jet (VGJ) flow control was then applied to the flow fields. VGJ-induced streamwise vorticity was only present at blowing ratios above 1.5. VGJs actuated at the point of flow separation on the blade wall were more effective than those actuated downstream, within the separation zone. Pulsed-blowing VGJs at the upstream blade wall position were then actuated at various pulsing frequencies, duty cycles, and blowing ratios. These condition variations yielded differing levels of separation zone mitigation. Pulsed VGJs were shown to be more effective than steady blowing VGJs at conditions of high blowing ratio, high frequency, or high duty cycle, where blowing ratio had the highest level of influence on pulsed jet efficacy. The characteristic "calm zone" following the end of a given VGJ pulse was observed in simulations exhibiting high levels of separation zone mitigation. Numerical velocity fields near the blade wall during this calm zone was shown to be similar to velocity fields observed in PIV data. Instantaneous numerical vorticity fields indicated

  19. Tracking inorganic foulants irreversibly accumulated on low-pressure membranes for treating surface water.

    PubMed

    Yamamura, Hiroshi; Kimura, Katsuki; Higuchi, Kumiko; Watanabe, Yoshimasa; Ding, Qing; Hafuka, Akira

    2015-12-15

    While low-pressure membrane filtration processes (i.e., microfiltration and ultrafiltration) can offer precise filtration than sand filtration, they pose the problem of reduced efficiency due to membrane fouling. Although many studies have examined membrane fouling by organic substances, there is still not enough data available concerning membrane fouling by inorganic substances. The present research investigated changes in the amounts of inorganic components deposited on the surface of membrane filters over time using membrane specimens sampled thirteen times at arbitrary time intervals during pilot testing in order to determine the mechanism by which irreversible fouling by inorganic substances progresses. The experiments showed that the inorganic components that primarily contribute to irreversible fouling vary as filtration continues. It was discovered that, in the initial stage of operation, the main membrane-fouling substance was iron, whereas the primary membrane-fouling substances when operation finished were manganese, calcium, and silica. The amount of iron accumulated on the membrane increased up to the thirtieth day of operation, after which it reached a steady state. After the accumulation of iron became static, subsequent accumulation of manganese was observed. The fact that the removal rates of these inorganic components also increased gradually shows that the size of the exclusion pores of the membrane filter narrows as operation continues. Studying particle size distributions of inorganic components contained in source water revealed that while many iron particles are approximately the same size as membrane pores, the fraction of manganese particles slightly smaller than the pores in diameter was large. From these results, it is surmised that iron particles approximately the same size as the pores block them soon after the start of operation, and as the membrane pores narrow with the development of fouling, they become further blocked by manganese

  20. Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels

    SciTech Connect

    Christopher J. Pope; James A. Miller

    2000-12-13

    A modeling study of benzene and phenyl radical formation is performed for three low-pressure premixed laminar flat flames having an unsaturated C{sub 2} or C{sub 3} hydrocarbon fuel (acetylene, ethylene, and propene). Predictions using three published detailed elementary-step chemical kinetics mechanisms are tested against MBMS species profile data for all three flames. The differences between the three mechanisms predictive capabilities are explored, with an emphasis on benzene formation pathways. A new chemical kinetics mechanism is created combining features of all three published mechanisms. Included in the mechanism are several novel benzene formation reactions involving combinations of radicals such as C{sub 2}H+C{sub 4}H{sub 5}, and C{sub 5}H{sub 3}+CH{sub 3}. Reactions forming fulvene (a benzene isomer) are included, such as C{sub 3}H{sub 3}+C{sub 3}H{sub 5},as well as fulvene-to-benzene reactions. Predictions using the new mechanism show virtually all of the benzene and phenyl radical to be formed by reactions of either C{sub 3}H{sub 3}+C{sub 3}H{sub 3} or C{sub 3}H{sub 3}+C{sub 3}H{sub 5}, with the relative importance being strongly dependent upon the fuel. C{sub 5}H{sub 3}+CH{sub 3} plays a minor role in fulvene formation in the acetylene flame. The C{sub 2}H{sub x}+C{sub 4}H{sub 4} reactions do not contribute noticeably to benzene or phenyl radical formation in these flames, sometimes being a major decomposition channel for either fulvene or phenyl radical. The formation pathways for C{sub 3}H{sub 3} and C{sub 3}H{sub 5}are delineated for the three flames; while the key reactions differ from flame to flame, CH{sub 2}+C{sub 2}H{sub 2} {Longleftrightarrow} C{sub 3}H{sub 3}+H is important for all three flames.

  1. Numerical modeling of transition to turbulence in low-pressure axial gas turbines

    NASA Astrophysics Data System (ADS)

    Flitan, Horia Constantin

    2002-09-01

    Experimental data from modern turbofan engines indicate that the low-pressure turbine stages experience a significant drop in efficiency as the aircraft reaches its cruise conditions at high altitude. Under these circumstances, the low Reynolds number flow allows the apparition of a boundary layer which is no longer turbulent but transitional in nature. A further decrease in velocity may lead to the separation of the highly unstable laminar portion accompanied by a dramatic growth in aerodynamic losses. The methods for numerically simulating the transitional flows occurring over turbine blades were reviewed. Two large categories were identified as suitable for numerical implementation into a fully-implicit, finite-difference, Navier-Stokes code. The first involved a Baldwin-Lomax turbulence model corrected for attached flow transition with an intermittency factor distribution. The general expression of Solomon, Walker and Gostelow was added to the code, in parallel with the zero-pressure gradient form of Narasimha, used for reference. In both cases transition inception is detected with the Abu-Ghannam Shaw correlation. Whenever laminar separation takes place, Robert's correlation for short bubble transition is activated. The second category comprised the two-equation, low Reynolds number turbulence models of Chien and Launder-Sharma. They have a certain ability to predict bypass transition and seem to better comprehend the physics of wake-induced transition. For the approximate factorization solution algorithm, the implicit part of the Launder-Sharma system was expressed in an original form. Also, the Kato-Launder correction was added to be used as an option. Numerical investigations of attached flow bypass transition and separated flow short bubble transitions were performed on two cascade geometries. The Abu-Ghannam Shaw criterion proved to be inaccurate for curved surfaces. The Solomon, Walker Gostelow distribution did not perform better than Narasimha

  2. On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

    NASA Technical Reports Server (NTRS)

    Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.

    2005-01-01

    The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the

  3. Ultra high efficiency/low pressure supercritical fluid chromatography with superficially porous particles for triglyceride separation.

    PubMed

    Lesellier, E; Latos, A; de Oliveira, A Lopes

    2014-01-31

    This paper reports the development of the separation of vegetable oil triglycerides (TG) in supercritical chromatography (SFC), using superficially porous particles (SPPs). The SPP, having a small diameter (2-3μm), provide a higher theoretical plate number (N), which allows to improve separation of critical pairs of compounds. However, compared to fully porous particles of larger diameter (5μm), the pressure drop is also increased. Fortunately, supercritical fluids have a low viscosity, which allows coupling several columns to achieve high N values, while maintaining flow rate above 1ml/min, ensuring a ultra high efficiency (UHE) at low pressure (LP) (below 40MPa), with regards to the one reached with liquid and sub-two micron particles (around 100MPa). The use of two detector systems (UV and ELSD) connected in series to the UHE-LP-SFC system provides complementary responses, due to their specific detection principles. Working in a first part with three coupled Kinetex C18 columns (45cm total length), the effect of modifier nature and percentage were studied with two reference oils, argan and rapeseed, chosen for their different and well-known TG composition. The analytical method was developed from previous studies performed with fully porous particles (FPP). Optimized conditions with three Kinetex were as follows: 17°C, 12% of ACN/MeOH (90/10; v/v). With these conditions, and by using an increased length of Kinetex C18 column (60cm), another additional column was selected from ten different commercial SPP C18 bonded phases, by applying a Derringer function on varied parameters: theoretical plate number (TPN), separation index (SI) for critical pairs of peaks (the peaks of compounds difficult to separate due to subtle structural differences), the analysis duration, and the total peak number. This function normalizes the values of any parameters, between 0 and 1, from the worst value to the better, allowing to take account of various parameters in the final

  4. On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

    NASA Technical Reports Server (NTRS)

    Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.

    2003-01-01

    The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flowconditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the

  5. Ultra high efficiency/low pressure supercritical fluid chromatography with superficially porous particles for triglyceride separation.

    PubMed

    Lesellier, E; Latos, A; de Oliveira, A Lopes

    2014-01-31

    This paper reports the development of the separation of vegetable oil triglycerides (TG) in supercritical chromatography (SFC), using superficially porous particles (SPPs). The SPP, having a small diameter (2-3μm), provide a higher theoretical plate number (N), which allows to improve separation of critical pairs of compounds. However, compared to fully porous particles of larger diameter (5μm), the pressure drop is also increased. Fortunately, supercritical fluids have a low viscosity, which allows coupling several columns to achieve high N values, while maintaining flow rate above 1ml/min, ensuring a ultra high efficiency (UHE) at low pressure (LP) (below 40MPa), with regards to the one reached with liquid and sub-two micron particles (around 100MPa). The use of two detector systems (UV and ELSD) connected in series to the UHE-LP-SFC system provides complementary responses, due to their specific detection principles. Working in a first part with three coupled Kinetex C18 columns (45cm total length), the effect of modifier nature and percentage were studied with two reference oils, argan and rapeseed, chosen for their different and well-known TG composition. The analytical method was developed from previous studies performed with fully porous particles (FPP). Optimized conditions with three Kinetex were as follows: 17°C, 12% of ACN/MeOH (90/10; v/v). With these conditions, and by using an increased length of Kinetex C18 column (60cm), another additional column was selected from ten different commercial SPP C18 bonded phases, by applying a Derringer function on varied parameters: theoretical plate number (TPN), separation index (SI) for critical pairs of peaks (the peaks of compounds difficult to separate due to subtle structural differences), the analysis duration, and the total peak number. This function normalizes the values of any parameters, between 0 and 1, from the worst value to the better, allowing to take account of various parameters in the final

  6. Investigation of the DSMC Approach for Ion/neutral Species in Modeling Low Pressure Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Deng, Hao; Li, Z.; Levin, D.; Gochberg, L.

    2011-05-01

    Low pressure plasma reactors are important tools for ionized metal physical vapor deposition (IMPVD), a semiconductor plasma processing technology that is increasingly being applied to deposit Cu seed layers on semiconductor surfaces of trenches and vias with the high aspect ratio (e.g., >5:1). A large fraction of ionized atoms produced by the IMPVD process leads to an anisotropic deposition flux towards the substrate, a feature which is critical for attaining a void-free and uniform fill. Modeling such devices is challenging due to their high plasma density, reactive environment, but low gas pressure. A modular code developed by the Computational Optical and Discharge Physics Group, the Hybrid Plasma Equipment Model (HPEM), has been successfully applied to the numerical investigations of IMPVD by modeling a hollow cathode magnetron (HCM) device. However, as the development of semiconductor devices progresses towards the lower pressure regime (e.g., <5 mTorr), the breakdown of the continuum assumption limits the application of the fluid model in HPEM and suggests the incorporation of the kinetic method, such as the direct simulation Monte Carlo (DSMC), in the plasma simulation. The DSMC method, which solves the Boltzmann equation of transport, has been successfully applied in modeling micro-fluidic flows in MEMS devices with low Reynolds numbers, a feature shared with the HCM. Modeling of the basic physical and chemical processes for ion/neutral species in plasma have been developed and implemented in DSMC, which include ion particle motion due to the Lorentz force, electron impact reactions, charge exchange reactions, and charge recombination at the surface. The heating of neutrals due to collisions with ions and the heating of ions due to the electrostatic field will be shown to be captured by the DSMC simulations. In this work, DSMC calculations were coupled with the modules from HPEM so that the plasma can be self-consistently solved. Differences in the Ar

  7. "Virtual IED sensor" at an rf-biased electrode in low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Bogdanova, M. A.; Lopaev, D. V.; Zyryanov, S. M.; Rakhimov, A. T.

    2016-07-01

    Energy distribution and the flux of the ions coming on a surface are considered as the key-parameters in anisotropic plasma etching. Since direct ion energy distribution (IED) measurements at the treated surface during plasma processing are often hardly possible, there is an opportunity for virtual ones. This work is devoted to the possibility of such indirect IED and ion flux measurements at an rf-biased electrode in low-pressure rf plasma by using a "virtual IED sensor" which represents "in-situ" IED calculations on the absolute scale in accordance with a plasma sheath model containing a set of measurable external parameters. The "virtual IED sensor" should also involve some external calibration procedure. Applicability and accuracy of the "virtual IED sensor" are validated for a dual-frequency reactive ion etching (RIE) inductively coupled plasma (ICP) reactor with a capacitively coupled rf-biased electrode. The validation is carried out for heavy (Ar) and light (H2) gases under different discharge conditions (different ICP powers, rf-bias frequencies, and voltages). An EQP mass-spectrometer and an rf-compensated Langmuir probe (LP) are used to characterize plasma, while an rf-compensated retarded field energy analyzer (RFEA) is applied to measure IED and ion flux at the rf-biased electrode. Besides, the pulsed selfbias method is used as an external calibration procedure for ion flux estimating at the rf-biased electrode. It is shown that pulsed selfbias method allows calibrating the IED absolute scale quite accurately. It is also shown that the "virtual IED sensor" based on the simplest collisionless sheath model allows reproducing well enough the experimental IEDs at the pressures when the sheath thickness s is less than the ion mean free path λi (s < λi). At higher pressure (when s > λi), the difference between calculated and experimental IEDs due to ion collisions in the sheath is observed in the low energy range. The effect of electron impact ionization

  8. Advanced Research on the Electrode Area of a Low Pressure Hg-Ar Discharge Lamp

    NASA Astrophysics Data System (ADS)

    Shi, Jianou

    The phenomenon of electrical discharge in low pressure Hg-Ar vapor has been under continuous investigation since it was first discovered. Because much work has been done in the positive column, it is, therefore, that the electrode area of the lamp is the main focus of this thesis. To simulate the interface phenomena on a electrode surface, samples, with optically smooth tungsten-barium interfaces were fired in a high vacuum furnace at different temperatures. Measurements were made using surface characterization techniques. It is found that no Ba_3WO _6 is formed on the surface as previously reported in the powder mixing experiments, and the interface consists mainly of BaWO_4. It was discovered in the early 1950's that vaporization of the barium from the cathode in a fluorescent lamp could be reduced tremendously with the addition of 5% of ZrO _2 to the coating mix. However, the reason for this is poorly understood. A possible explanation has been found, and number of tests have been completed to simulate the formation of BaZO_3 under different lamp operating conditions. The measurements and simulation of barium atom and ion number densities are presented. Barium emitted from the electrode surface has a strong interaction with the local plasma. The number density distributions depend mainly on the discharge conditions. A Monte Carlo computer simulation for the barium ion number density is described and the results from the simulation compared to the experimental results obtained by absorption method. It is clear that the ion distribution and phosphor contamination in the electrode area are two closely related issues. XPS is used to measure the chemical composition on the phosphor surface of the lamp. A discussion of calibration methods and the possible compounds forming on the phosphors is then presented. A number of questions have been raised concerning the safety of the lamp and its affects on health related to radiation generated in the electrode area. Typically

  9. Investigation of the DSMC Approach for Ion/neutral Species in Modeling Low Pressure Plasma Reactor

    SciTech Connect

    Deng Hao; Li, Z.; Levin, D.; Gochberg, L.

    2011-05-20

    Low pressure plasma reactors are important tools for ionized metal physical vapor deposition (IMPVD), a semiconductor plasma processing technology that is increasingly being applied to deposit Cu seed layers on semiconductor surfaces of trenches and vias with the high aspect ratio (e.g., >5:1). A large fraction of ionized atoms produced by the IMPVD process leads to an anisotropic deposition flux towards the substrate, a feature which is critical for attaining a void-free and uniform fill. Modeling such devices is challenging due to their high plasma density, reactive environment, but low gas pressure. A modular code developed by the Computational Optical and Discharge Physics Group, the Hybrid Plasma Equipment Model (HPEM), has been successfully applied to the numerical investigations of IMPVD by modeling a hollow cathode magnetron (HCM) device. However, as the development of semiconductor devices progresses towards the lower pressure regime (e.g., <5 mTorr), the breakdown of the continuum assumption limits the application of the fluid model in HPEM and suggests the incorporation of the kinetic method, such as the direct simulation Monte Carlo (DSMC), in the plasma simulation.The DSMC method, which solves the Boltzmann equation of transport, has been successfully applied in modeling micro-fluidic flows in MEMS devices with low Reynolds numbers, a feature shared with the HCM. Modeling of the basic physical and chemical processes for ion/neutral species in plasma have been developed and implemented in DSMC, which include ion particle motion due to the Lorentz force, electron impact reactions, charge exchange reactions, and charge recombination at the surface. The heating of neutrals due to collisions with ions and the heating of ions due to the electrostatic field will be shown to be captured by the DSMC simulations. In this work, DSMC calculations were coupled with the modules from HPEM so that the plasma can be self-consistently solved. Differences in the Ar

  10. Modeling the Rapid Boil-Off of a Cryogenic Liquid When Injected into a Low Pressure Cavity

    NASA Technical Reports Server (NTRS)

    Lira, Eric

    2016-01-01

    Many launch vehicle cryogenic applications require the modeling of injecting a cryogenic liquid into a low pressure cavity. The difficulty of such analyses lies in accurately predicting the heat transfer coefficient between the cold liquid and a warm wall in a low pressure environment. The heat transfer coefficient and the behavior of the liquid is highly dependent on the mass flow rate into the cavity, the cavity wall temperature and the cavity volume. Testing was performed to correlate the modeling performed using Thermal Desktop and Sinda Fluint Thermal and Fluids Analysis Software. This presentation shall describe a methodology to model the cryogenic process using Sinda Fluint, a description of the cryogenic test set up, a description of the test procedure and how the model was correlated to match the test results.

  11. Thermal Shock Properties of Yttria-Stabilized Zirconia Coatings Deposited Using Low-Energy Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Liao, Hanlin; Coddet, Christian

    2015-08-01

    Yttria-stabilized zirconia (YSZ) coatings have been frequently used as a thermal protective layer on the metal or alloy component surfaces. In the present study, ZrO2-7%Y2O3 thermal barrier coatings (TBCs) were successfully deposited by DC (direct current) plasma spray process under very low pressure conditions (less than 1 mbar) using low-energy plasma guns F4-VB and F100. The experiments were performed to evaluate the thermal shock resistance of different TBC specimens which were heated to 1373 K at a high-temperature cycling furnace and held for 0.5 h, followed by air cooling at room temperature for 0.2 h. For comparison, a corresponding atmospheric plasma spray (APS) counterpart was also elaborated to carry out the similar experiments. The results indicated that the very low pressure plasma spray (VLPPS) coatings displayed better thermal shock resistance. Moreover, the failure mechanism of the coatings was elucidated.

  12. Atomic hydrogen emission induced by TEA CO(2) laser bombardment on solid samples at low pressure and its analytical application.

    PubMed

    Idris, Nasrullah; Terai, Sumito; Lie, Tjung Jie; Kurniawan, Hendrik; Kobayashi, Takao; Maruyama, Tadashi; Kagawa, Kiichiro

    2005-01-01

    Hydrogen emission has been studied in laser plasmas by focusing a TEA CO(2) laser (10.6 microm, 500 mJ, 200 ns) on various types of samples, such as glass, quartz, black plastic sheet, and oil on copper plate sub-target. It was found that H(alpha) emission with a narrow spectral width occurs with high efficiency when the laser plasma is produced in the low-pressure region. On the contrary, the conventional well-known laser-induced breakdown spectroscopy (LIBS), which is usually carried out at atmospheric air pressure, cannot be applied to the analysis of hydrogen as an impurity. By combining low-pressure laser-induced plasma spectroscopy with laser surface cleaning, a preliminary quantitative analysis was made on zircaloy pipe samples intentionally doped with hydrogen. As a result, a good linear relationship was obtained between H(alpha) emission intensity and its concentration.

  13. [Change in the properties of titanium alloys exposed to a stream of high-frequency, low-pressure radiating plasma].

    PubMed

    Matukhnov, V M; Abdullin, I Sh; Altareva, G I; Zheltukhin, V S; Gerasev, G P

    1985-01-01

    The Nitrogen-Argon plasma of a high-frequency low-pressure discharge is proven to be very effective in machining pieces made of titanium alloys. The optimum operating modes are found that improve surface microhardness, reduce surface roughness, increase durability and endurance limits, and do not produce the effect on the residual stress. The operating modes have been tested with great success in machining microsurgical and ultrasonic surgical instruments.

  14. Low-pressure micro-strip gas chamber and a search for a high-efficiency secondary-electron emitter

    SciTech Connect

    Anderson, D.F.; Kwan, S.; Sbarra, C.

    1994-11-01

    The test beam performance of a low-pressure micro-strip gas chamber with a thick CsI secondary-electron emitting surface as the source of primary ionization is presented. A study of the secondary-electron yield of CsI and KCl coated surfaces are discussed, as well as a promising new technique, CsI-treated CVD diamond films.

  15. Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars.

    PubMed

    Nicholson, Wayne L; Krivushin, Kirill; Gilichinsky, David; Schuerger, Andrew C

    2013-01-01

    The ability of terrestrial microorganisms to grow in the near-surface environment of Mars is of importance to the search for life and protection of that planet from forward contamination by human and robotic exploration. Because most water on present-day Mars is frozen in the regolith, permafrosts are considered to be terrestrial analogs of the martian subsurface environment. Six bacterial isolates were obtained from a permafrost borehole in northeastern Siberia capable of growth under conditions of low temperature (0 °C), low pressure (7 mbar), and a CO(2)-enriched anoxic atmosphere. By 16S ribosomal DNA analysis, all six permafrost isolates were identified as species of the genus Carnobacterium, most closely related to C. inhibens (five isolates) and C. viridans (one isolate). Quantitative growth assays demonstrated that the six permafrost isolates, as well as nine type species of Carnobacterium (C. alterfunditum, C. divergens, C. funditum, C. gallinarum, C. inhibens, C. maltaromaticum, C. mobile, C. pleistocenium, and C. viridans) were all capable of growth under cold, low-pressure, anoxic conditions, thus extending the low-pressure extreme at which life can function.

  16. Evaluation of Very Low Pressure Sprinkler Irrigation and Reservoir Tillage for Efficient Use of Water and Energy : Final Report.

    SciTech Connect

    Kincaid, Dennis C.

    1987-03-01

    Two types of very low pressure devices were tested, spray nozzles and furrow drops (bubblers). For minimizing spray loss and maintaining uniformity, optimum conditions for spray heads are elevation about 6 feet, spacing 8 to 9 feet and pressure 15 to 20 psi. Use of furrow bubblers is not recommended for most regional conditions. Reservoir tillage with very low pressure systems reduces runoff on sloping fields while maintaining or slightly increasing yield. The total amount of water applied is slightly less because of reduction in spray loss. Effectiveness of reservoir tillage depends on the reservoir storing water until it infiltrates. Failure of the reservoirs during the season may result in increased runoff and erosion. Pressure regulators tested are adequate for their intended use. The uniformity of application using low pressure components was comparable to that of high pressure systems. Energy saving scan result from both low operating pressure and better application efficiency, but the relative importance of these two factors depends on individual circumstances. Payback times for some example systems are four years or less.

  17. Landau Damping and Anomalous Skin Effect in Low-pressure Gas Discharges: Self-consistent Treatment of Collisionless Heating

    SciTech Connect

    Igor D. Kaganovich; Oleg V. Polomarov; Constantine E. Theodosiou

    2004-01-30

    In low-pressure discharges, where the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially nonlocal. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the nonlocal conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, nonuniform, nearly collisionless plasmas of low-pressure discharges is reported. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. This system was applied to the calculation of collisionless heating in capacitively and inductively coupled plasmas. In particular, the importance of accounting for the nonuniform plasma density profile for computing the current density profile and the EEDF is demonstrated. The enhancement of collisionless heating due to the bounce resonance between the electron motion in the potential well and the external radio-frequency electric field is investigated. It is shown that a nonlinear and self-consistent treatment is necessary for the correct description of collisionless heating.

  18. Effects of the nozzle design on the properties of plasma jet and formation of YSZ coatings under low pressure conditions

    NASA Astrophysics Data System (ADS)

    Sun, Chengqi; Gao, Yang; Yang, Deming; Fu, Yingqing

    2016-06-01

    How to control the quality of the coatings has become a major problem during the plasma spraying. Because nozzle contour has a great influence on the characteristic of the plasma jet, two kinds of plasma torches equipped with a standard cylindrical nozzle and a converging-diverging nozzle are designed for low pressure plasma spraying(LPPS) and very low pressure plasma spraying(VLPPS). Yttria stabilized zirconia(YSZ) coatings are obtained in the reducing pressure environment. The properties of the plasma jet without or with powder injection are analyzed by optical emission spectroscopy, and the electron temperature is calculated based on the ratio of the relative intensity of two Ar I spectral lines. The results show that some of the YSZ powder can be vaporized in the low pressure enlarged plasma jet, and the long anode nozzle may improve the characteristics of the plasma jet. The coatings deposited by LPPS are mainly composed of the equiaxed grains and while the unmelted powder particles and large scalar pores appear in the coatings made by VLPPS. The long anode nozzle could improve the melting of the powders and deposition efficiency, and enhance the coatings' hardness. At the same time, the long anode nozzle could lead to a decrease in the overspray phenomenon. Through the comparison of the two different size's nozzle, the long anode is much more suitable for making the YSZ coatings.

  19. Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars

    PubMed Central

    Nicholson, Wayne L.; Krivushin, Kirill; Gilichinsky, David; Schuerger, Andrew C.

    2013-01-01

    The ability of terrestrial microorganisms to grow in the near-surface environment of Mars is of importance to the search for life and protection of that planet from forward contamination by human and robotic exploration. Because most water on present-day Mars is frozen in the regolith, permafrosts are considered to be terrestrial analogs of the martian subsurface environment. Six bacterial isolates were obtained from a permafrost borehole in northeastern Siberia capable of growth under conditions of low temperature (0 °C), low pressure (7 mbar), and a CO2-enriched anoxic atmosphere. By 16S ribosomal DNA analysis, all six permafrost isolates were identified as species of the genus Carnobacterium, most closely related to C. inhibens (five isolates) and C. viridans (one isolate). Quantitative growth assays demonstrated that the six permafrost isolates, as well as nine type species of Carnobacterium (C. alterfunditum, C. divergens, C. funditum, C. gallinarum, C. inhibens, C. maltaromaticum, C. mobile, C. pleistocenium, and C. viridans) were all capable of growth under cold, low-pressure, anoxic conditions, thus extending the low-pressure extreme at which life can function. PMID:23267097

  20. Graphene chemical vapor deposition at very low pressure: The impact of substrate surface self-diffusion in domain shape

    SciTech Connect

    Cunha, T. H. R.; Ek-Weis, J.; Lacerda, R. G.; Ferlauto, A. S.

    2014-08-18

    The initial stages of graphene chemical vapor deposition at very low pressures (<10{sup −5 }Torr) were investigated. The growth of large graphene domains (∼up to 100 μm) at very high rates (up to 3 μm{sup 2} s{sup −1}) has been achieved in a cold-wall reactor using a liquid carbon precursor. For high temperature growth (>900 °C), graphene grain shape and symmetry were found to depend on the underlying symmetry of the Cu crystal, whereas for lower temperatures (<900 °C), mostly rounded grains are observed. The temperature dependence of graphene nucleation density was determined, displaying two thermally activated regimes, with activation energy values of 6 ± 1 eV for temperatures ranging from 900 °C to 960 °C and 9 ± 1 eV for temperatures above 960 °C. The comparison of such dependence with the temperature dependence of Cu surface self-diffusion suggests that graphene growth at high temperatures and low pressures is strongly influenced by copper surface rearrangement. We propose a model that incorporates Cu surface self-diffusion as an essential process to explain the orientation correlation between graphene and Cu crystals, and which can clarify the difference generally observed between graphene domain shapes in atmospheric-pressure and low-pressure chemical vapor deposition.

  1. The Role Of Low-Pressure Fractination In The Petrogenesis Of The Kula Volcanic Province, Western Turkey

    NASA Astrophysics Data System (ADS)

    Kilinc, A. I.; Solpuker, U.

    2005-12-01

    Experimental data show that diversity of alkaline rocks in different tectonic environments is controlled by low-pressure fractionation of their magmas. In order to test this hypothesis we studied the alkaline rocks of the Kula Volcanic Province (KVP) in western Turkey. KVP experienced three episodes of volcanic activity (Burgaz Volcanism (1.1 ma), Elekcitepe Volcanism (0.3 ma) and Divlittepe Volcanism (0.03 ma)), which exposed the alkaline volcanic rocks of KVP to north of the Alasehir graben. An area of approximately 300 km2 exhibits a volcanic rock suite of basanites, phonotephrites, tephriphonolites and trachybasalts. Major, trace and REE modeling of the Quaternary alkaline volcanic rocks of the Kula Volcanic Province (KVP), show that chemical spectrum shown by the rocks is the result of low-pressure fractionation of parental magmas. Bulk compositions of the KVP rocks, when projected on the normative pseudoternary olivine - clinopyroxene - nepheline diagram, follow a path parallel to and just below of the experimentally derived 1 atmosphere cotectic. This further supports the conclusion that KVP rocks represent low-pressure fractionation of alkaline parental magmas of the KVP.

  2. Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars.

    PubMed

    Nicholson, Wayne L; Krivushin, Kirill; Gilichinsky, David; Schuerger, Andrew C

    2013-01-01

    The ability of terrestrial microorganisms to grow in the near-surface environment of Mars is of importance to the search for life and protection of that planet from forward contamination by human and robotic exploration. Because most water on present-day Mars is frozen in the regolith, permafrosts are considered to be terrestrial analogs of the martian subsurface environment. Six bacterial isolates were obtained from a permafrost borehole in northeastern Siberia capable of growth under conditions of low temperature (0 °C), low pressure (7 mbar), and a CO(2)-enriched anoxic atmosphere. By 16S ribosomal DNA analysis, all six permafrost isolates were identified as species of the genus Carnobacterium, most closely related to C. inhibens (five isolates) and C. viridans (one isolate). Quantitative growth assays demonstrated that the six permafrost isolates, as well as nine type species of Carnobacterium (C. alterfunditum, C. divergens, C. funditum, C. gallinarum, C. inhibens, C. maltaromaticum, C. mobile, C. pleistocenium, and C. viridans) were all capable of growth under cold, low-pressure, anoxic conditions, thus extending the low-pressure extreme at which life can function. PMID:23267097

  3. Surface chemistry and optical property of TiO{sub 2} thin films treated by low-pressure plasma

    SciTech Connect

    Dhayal, Marshal Jun, Jin; Gu, Hal Bon; Hee Park, Kyung

    2007-10-15

    The low temperature RF plasma treatment was used to control the surface chemistry and optical property of TiO{sub 2} thin films deposited by RF magnetron sputtering with a very good uniformity at 300 deg. C substrate heating temperature. The XRD pattern indicates the crystalline structure of the film could be associated to amorphous structure of TiO{sub 2} in thin film. The plasma treatment of TiO{sub 2} film can increase the proportion of Ti{sup 3+} in Ti2p and decrease in carbon atoms as alcohol/ether group in C1s at the surface. The optical transmittance of the film was enhanced by 50% after the plasma treatment. The surface structure and morphology remain the same for untreated and low-pressure plasma-treated films. Therefore, increase in the optical transmission could be due to change in surface chemistry and surface cleaning by plasma treatment. - Graphical abstract: The surface chemistry and surface states of TiO{sub 2} films was modified using low-pressure RF plasma treatment. The surface roughness and crystalline structure remain unchanged for low-pressure plasma-treated films. There was an increase in the Ti{sup 3+} surface states of Ti2p at the surface and this can be useful to increase the photocatalytic activities of TiO{sub 2} films. The proportion of carbon atoms as carboxyl group in C1s was also increased after plasma treatment. All the plasma-treated films show a higher optical transmittance when untreated and it was increased when the power was increased. The increase in the optical transmission could be due to surface cleaning of films by plasma treatment and possibly due to change in the surface chemistry.

  4. Particle modelling of low-pressure radio-frequency magnetron discharges including the effects of self-induced electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Benyoucef, D.; Yousfi, M.

    2014-08-01

    Modelling of radio-frequency (RF) magnetron discharges is performed using a particle-in-cell/Monte Carlo technique in the case of low-pressure argon gas at 4 mTorr and high external magnetic field in order to self-maintain the discharge and to generate an energetic quasi-ion beam required for cathode sputtering applications. An emphasis is made, for the first time in the literature in the case of low-pressure RF discharges, on the development of a particle model coupled with the full set of electromagnetic field equations. The aim is to analyse the effect on the RF plasma features of the plasma-induced magnetic field resulting from the coupling of the Maxwell-Ampere equation. We also analysed the effect of the electric field due to the time variation of magnetic field resulting from the coupling of the Maxwell-Faraday equation. For the present asymmetrical plasma reactor, the mean relative difference on, for instance, the ion density with and without the consideration of plasma-induced magnetic and electric fields due to the time variation of the magnetic field can reach about 2.5% in the region of the plasma bulk and about 10% in the lateral sheath. The effects of these two induced electromagnetic fields are in fact higher in the regions where the radial magnetic field generated by the external magnets belonging to the magnetron configuration is low. These non-negligible relative differences clearly show the importance of rigorously taking into account, beyond the usual Poisson's equation for the space charge electric field, the full set of electromagnetic Maxwell equations for a more accurate modelling of these low-pressure discharges, particularly when the total current density reaches a few mA cm-2.

  5. Modeling the Effects of Ice Accretion on the Low Pressure Compressor and the Overall Turbofan Engine System Performance

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Wright, William B.

    2011-01-01

    The focus of this study is on utilizing a mean line compressor flow analysis code coupled to an engine system thermodynamic code, to estimate the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper a temperature range in which engine icing would occur was assumed. This provided a mechanism to locate potential component icing sites and allow the computational tools to add blockages due to ice accretion in a parametric fashion. Ultimately the location and level of blockage due to icing would be provided by an ice accretion code. To proceed, an engine system modeling code and a mean line compressor flow analysis code were utilized to calculate the flow conditions in the fan-core and low pressure compressor and to identify potential locations within the compressor where ice may accrete. In this study, an "additional blockage" due to the accretion of ice on the metal surfaces, has been added to the baseline aerodynamic blockage due to boundary layer, as well as the blade metal blockage. Once the potential locations of ice accretion are identified, the levels of additional blockage due to accretion were parametrically varied to estimate the effects on the low pressure compressor blade row performance operating within the engine system environment. This study includes detailed analysis of compressor and engine performance during cruise and descent operating conditions at several altitudes within the notional flight trajectory. The purpose of this effort is to develop the computer codes to provide a predictive capability to forecast the onset of engine icing events, such that they could ultimately help in the avoidance of these events.

  6. Transport Equations Resolution By N-BEE Anti-Dissipative Scheme In 2D Model Of Low Pressure Glow Discharge

    SciTech Connect

    Kraloua, B.; Hennad, A.

    2008-09-23

    The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.

  7. NASA CF6 jet engine diagnostics program: Long-term CF6-6D low-pressure turbine deterioration

    NASA Technical Reports Server (NTRS)

    Smith, J. J.

    1979-01-01

    Back-to-back performance tests were run on seven airline low pressure turbine (LPT) modules and four new CF6-6D modules. Back-to-back test cell runs, in which an airline LPT module was directly compared to a new production module, were included. The resulting change, measured in fuel burn, equaled the level of LPT module deterioration. Three of the LPT modules were analytically inspected followed by a back-to-back test cell run to evaluate current refurbishment techniques.

  8. Kinetics of low pressure CVD growth of SiO2 on InP and Si

    NASA Technical Reports Server (NTRS)

    Iyer, R.; Lile, D. L.

    1988-01-01

    The kinetics of low pressure CVD growth of SiO2 from SiH4 and O2 has been investigated for the case of an indirect (remote) plasma process. Homogeneous (gas phase) and heterogeneous operating ranges have been experimentally identified. The process was shown to be consistent within the heterogeneous surface-reaction dominated range of operation. A kinetic rate equation is given for growth at 14 W RF power input and 400 mtorr total pressure on both InP and Si substrates. The process exhibits an activation energy of 8.4 + or - 0.6 kcal/mol.

  9. Performance of low-pressure-ratio low-tip-speed fan stage with blade tip solidity of 0.65

    NASA Technical Reports Server (NTRS)

    Kovich, G.; Steinke, R. J.

    1976-01-01

    The overall and blade-element performance of a low pressure ratio, low tip speed fan stage is presented over the stable operating range at rotative speeds from 90 to 120 percent of design speed. Stage peak efficiency of 0.927 was obtained at a weight flow of 32.4 kg/sec (190.31 kg/sec/sq m of annulus area) and a pressure ratio of 1.134. The stall margin at design speed and peak efficiency was 15.3 percent.

  10. Modernization of exhaust hood of low-pressure cylinder of a cogeneration turbine T-250/300-23.5

    NASA Astrophysics Data System (ADS)

    Solodov, V. G.; Khandrymailov, A. A.; Kultishev, A. Yu.; Stepanov, M. Yu.; Yamaltdinov, A. A.

    2015-12-01

    An option of modernization of an exhaust hood for a low-pressure cylinder of a T-250/300-23.5 series turbine is presented in order to increase its effectiveness in a wide regimes range. An influence of a number of design decisions on gas-dynamic and energy characteristics of an exhaust compartment is considered. The investigation is carried out by the numerical simulation of a viscous wet steam flow through the exhaust compartment consisting of a last stage and an exhaust hood. A comparison of the calculated and experimental data is presented.

  11. Vessel failure time for a low-pressure short-term station blackout in a BWR-4

    SciTech Connect

    Carbajo, J.J. )

    1993-01-01

    A low-pressure, short-term station blackout severe accident sequence has been analyzed using the MELCOR code, version 1.8.1, in a boiling water reactor (BWR)-4. This paper presents a sensitivity study evaluating the effect of several MELCOR input parameters on vessel failure time. Results using the MELCOR/CORBH package and the BWRSAR code are also presented and compared to the MELCOR results. These calculated vessel failure times are discussed, and a judgment is offered as to which is the most realistic.

  12. Note: High turn density magnetic coils with improved low pressure water cooling for use in atom optics

    NASA Astrophysics Data System (ADS)

    McKay Parry, Nicholas; Baker, Mark; Neely, Tyler; Carey, Thomas; Bell, Thomas; Rubinsztein-Dunlop, Halina

    2014-08-01

    We describe a magnetic coil design utilizing concentrically wound electro-magnetic insulating (EMI) foil (25.4 μm Kapton backing and 127 μm thick layers). The magnetic coils are easily configurable for different coil sizes, while providing large surfaces for low-pressure (0.12 bar) water cooling. The coils have turn densities of ˜5 mm-1 and achieve a maximum of 377 G at 2.1 kW driving power, measured at a distance 37.9 mm from the axial center of the coil. The coils achieve a steady-state temperature increase of 36.7°C/kW.

  13. Formation of a Boundary-Free Dust Cluster in a Low-Pressure Gas-Discharge Plasma

    SciTech Connect

    Usachev, A. D.; Zobnin, A. V.; Petrov, O. F.; Fortov, V. E.; Annaratone, B. M.

    2009-01-30

    An attraction between negatively charged micron-sized plastic particles was observed in the bulk of a low-pressure gas-discharge plasma under microgravity conditions. This attraction had led to the formation of a boundary-free dust cluster, containing one big central particle with a radius of about 6 {mu}m and about 30 1 {mu}m-sized particles situated on a sphere with a radius of 190 {mu}m and with the big particle in the center. The stability of this boundary-free dust cluster was possible due to its confinement by the plasma flux on the central dust particle.

  14. Transdermal immunization with low-pressure-gene-gun mediated chitosan-based DNA vaccines against Japanese encephalitis virus.

    PubMed

    Huang, Han-Ning; Li, Tsung-Lin; Chan, Yi-Lin; Chen, Chien-Lung; Wu, Chang-Jer

    2009-10-01

    DNA vaccine is a milestone in contemporary vaccine development. It has considerably offset many shortcomings in conventional vaccines. Although DNA vaccines applied through 'traditional' high-pressure gene guns generally elicit high titers of protective immunity, such a practice however requires enormous investment in daunting instruments that often discourage vaccines due to an inevitable pain-eliciting effect. In this study, we exploited a less expensive yet low-pressure-gene-gun that can alleviate such phobia of pain. DNA vaccines were prepared by using the associative feature of cationic chitosan and anionic DNAs. The optimized N/P ratio is 3. The formulized complex sizes to nano-scale. The vaccine complexes were tested in C3H/HeN mice. The expression of GFP reporter gene was observable and traceable in epidermis and spleen over 3 days. The expressions of GFP and the activation of dendritic cells (DCs) were evident and co-localized in hair follicles and epidermis. C3H/HeN mice immunized with the developed chitosan-JEV DNA vaccines can elicit desired JEV specific antibodies, whereby the mice maintained high survival rates against 50xLD(50) JEV challenge. The low-pressure-gene-gun mediated chitosan-based JEV DNA vaccines have proven to be convenient and efficacious, thereby with high capacity in deployment for future prophylaxis against JEV outbreaks.

  15. Online spectrophotometric determination of Fe(II) and Fe(III) by flow injection combined with low pressure ion chromatography

    NASA Astrophysics Data System (ADS)

    Chen, Shujuan; Li, Nan; Zhang, Xinshen; Yang, Dongjing; Jiang, Heimei

    2015-03-01

    A simple and new low pressure ion chromatography combined with flow injection spectrophotometric procedure for determining Fe(II) and Fe(III) was established. It is based on the selective adsorption of low pressure ion chromatography column to Fe(II) and Fe(III), the online reduction reaction of Fe(III) and the reaction of Fe(II) in sodium acetate with phenanthroline, resulting in an intense orange complex with a suitable absorption at 515 nm. Various chemical (such as the concentration of colour reagent, eluant and reductive agent) and instrumental parameters (reaction coil length, reductive coil length and wavelength) were studied and were optimized. Under the optimum conditions calibration graph of Fe(II)/Fe(III) was linear in the Fe(II)/Fe(III) range of 0.040-1.0 mg/L. The detection limit of Fe(III) and Fe(II) was respectively 3.09 and 1.55 μg/L, the relative standard deviation (n = 10) of Fe(II) and Fe(III) 1.89% and 1.90% for 0.5 mg/L of Fe(II) and Fe(III) respectively. About 2.5 samples in 1 h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of water samples.

  16. Online spectrophotometric determination of Fe(II) and Fe(III) by flow injection combined with low pressure ion chromatography.

    PubMed

    Chen, Shujuan; Li, Nan; Zhang, Xinshen; Yang, Dongjing; Jiang, Heimei

    2015-03-01

    A simple and new low pressure ion chromatography combined with flow injection spectrophotometric procedure for determining Fe(II) and Fe(III) was established. It is based on the selective adsorption of low pressure ion chromatography column to Fe(II) and Fe(III), the online reduction reaction of Fe(III) and the reaction of Fe(II) in sodium acetate with phenanthroline, resulting in an intense orange complex with a suitable absorption at 515nm. Various chemical (such as the concentration of colour reagent, eluant and reductive agent) and instrumental parameters (reaction coil length, reductive coil length and wavelength) were studied and were optimized. Under the optimum conditions calibration graph of Fe(II)/Fe(III) was linear in the Fe(II)/Fe(III) range of 0.040-1.0mg/L. The detection limit of Fe(III) and Fe(II) was respectively 3.09 and 1.55μg/L, the relative standard deviation (n=10) of Fe(II) and Fe(III) 1.89% and 1.90% for 0.5mg/L of Fe(II) and Fe(III) respectively. About 2.5 samples in 1h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of water samples.

  17. Effective inactivation of Saccharomyces cerevisiae in minimally processed Makgeolli using low-pressure homogenization-based pasteurization.

    PubMed

    Bak, Jin Seop

    2015-01-01

    In order to address the limitations associated with the inefficient pasteurization platform used to make Makgeolli, such as the presence of turbid colloidal dispersions in suspension, commercially available Makgeolli was minimally processed using a low-pressure homogenization-based pasteurization (LHBP) process. This continuous process demonstrates that promptly reducing the exposure time to excessive heat using either large molecules or insoluble particles can dramatically improve internal quality and decrease irreversible damage. Specifically, optimal homogenization increased concomitantly with physical parameters such as colloidal stability (65.0% of maximum and below 25-μm particles) following two repetitions at 25.0 MPa. However, biochemical parameters such as microbial population, acidity, and the presence of fermentable sugars rarely affected Makgeolli quality. Remarkably, there was a 4.5-log reduction in the number of Saccharomyces cerevisiae target cells at 53.5°C for 70 sec in optimally homogenized Makgeolli. This value was higher than the 37.7% measured from traditionally pasteurized Makgeolli. In contrast to the analytical similarity among homogenized Makgeollis, our objective quality evaluation demonstrated significant differences between pasteurized (or unpasteurized) Makgeolli and LHBP-treated Makgeolli. Low-pressure homogenization-based pasteurization, Makgeolli, minimal processing-preservation, Saccharomyces cerevisiae, suspension stability.

  18. Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, t , with the intermittency factor, y. Turbulent quantities are predicted by using Menter s two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.

  19. Low-pressure plasma enhanced immobilization of chitosan on low-density polyethylene for bio-medical applications

    NASA Astrophysics Data System (ADS)

    Pandiyaraj, K. Navaneetha; Ferraria, Ana Maria; Rego, Ana Maria Botelho do; Deshmukh, Rajendra. R.; Su, Pi-Guey; Halleluyah Mercy, Jr.; Halim, Ahmad Sukari

    2015-02-01

    With the aim of improving blood compatibility of low density polyethylene (LDPE) films, an effective low-pressure plasma technology was employed to functionalize the LDPE film surfaces through in-situ grafting of acrylic acid (AAc). Subsequently, the molecules of poly(ethylene glycol) (PEG) and chitosan (CHI) were immobilized on the surface of grafted LDPE films. The unmodified and modified LDPE films were analyzed using various characterization techniques such as contact angle, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS) to understand the changes in surface properties such as hydrophilicity, surface topography and chemical composition, respectively. Furthermore, LDPE films have been subjected to an ageing process to determine the durability of the plasma assisted surface modification. The blood compatibility of the surface modified LDPE films was confirmed by in vitro tests. It was found that surface modified LDPE films show better hydrophilic behavior compared with the unmodified one. FTIR and XPS results confirm the successful immobilization of CHI on the surface of LDPE films. LDPE films showed marked morphological changes after grafting of AAc, PEG and CHI which were confirmed through AFM imaging. The in vitro blood compatibility tests have clearly demonstrated that CHI immobilized LDPE films exhibit remarkable anti thrombogenic nature compared with other modified films. Surface modified LDPE films through low-pressure plasma technique could be adequate for biomedical implants such as artificial skin substrates, urethral catheters or cardiac stents, among others.

  20. Toxicity of propylene oxide at low pressure against life stages of four species of stored product insects.

    PubMed

    Isikber, Ali A; Navarro, Shlomo; Finkelman, Simcha; Rindner, Miriam; Azrieli, Avi; Dias, Refael

    2004-04-01

    The relative toxicity of propylene oxide (PPO) at a low pressure of 100 mm Hg to four species of stored product insect at 30 degrees C over a 4-h exposure period was investigated. PPO at 100 mm Hg was toxic to all four species tested: Tribolium castaneum (Herbst), Plodia interpunctella (Hübner), Ephestia cautella (Wlk.), and Oryzaephilus surinamensis (L.). There were differences in susceptibility between the life stages of the tested insect species. Mortality tests on all life stages of the insects resulted in LD99 values ranging from 4.7 to 26.1 mg/liter. The pupal stage of E. cautella, O. surinamensis, and T. castaneum was the most tolerant stage with LD99 values of 14.4, 26.1, and 25.7 mg/liter, respectively. For P. interpunctella, the egg stage was most tolerant, with a LD99 value of 15.3 mg/liter. Generally, PPO at 100 mm Hg was more toxic to P. interpunctella and E. cautella than to O. surinamensis and T. castaneum. A 99% mortality of all life stages of the tested species was achieved at a concentrations x time product of 104.4 mg h/liter. These findings indicate that a combination of PPO with low pressure can render the fumigant a potential alternative to methyl bromide for rapid disinfestation of commodities.

  1. Highly oriented NdFeCoB nanocrystalline magnets from partially disproportionated compacts by reactive deformation under low pressure

    SciTech Connect

    Zheng, Qing; Li, Jun; Liu, Ying Yu, Yunping; Lian, Lixian

    2014-05-07

    In the present investigation, we take advantage of the ultrafine grain size of NdFeCoB partially hydrogen-disproportionated phases, and prepare anisotropic nanocrystalline magnets with full density and homogenous microstructure and texture by reactive deformation under low pressure. Our results suggest that the pressure could properly promote an occurrence of desorption-recombination reaction due to a shorter-range rearrangement of the atoms, and the newly recombined Nd{sub 2}Fe{sub 14}B grains with fine grain size could undergo deformation immediately after the phase transformation, and then an obvious anisotropy and uniform alignment would be obtained. The maximum magnetic properties, (BH){sub max} = 25.8 MGOe, Br = 11.8 kG, H{sub cj} = 5.5 kOe, were obtained after being treated for 5 min at 820 °C in vacuum. The present study highlights the feasibility to prepare anisotropic nanocrystalline magnets with homogeneous microstructure and a strong (00l) texture of uniform grain size under low pressure.

  2. Thin Yttria-Stabilized Zirconia Coatings Deposited by Low-Energy Plasma Spraying Under Very Low Pressure Condition

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Zhang, Nannan; Sun, Fu; Bolot, Rodolphe; Planche, Marie-Pierre; Liao, Hanlin; Coddet, Christian

    2011-09-01

    In recent decades, very low pressure plasma spraying (VLPPS) technology (less than 10 mbar), as a next-generation coating process, has been extensively studied, because it can fully evaporate the materials to deposit dense, thin, and columnar grain coatings. This research aims at applying VLPPS with low-energy plasma source to melt or evaporate ceramic materials to develop high-quality thermal barrier coatings. Thin and homogeneous yttria-stabilized zirconia coatings were deposited successfully on a stainless steel substrate using low-power plasma spraying torch F100 (23 kW maximal) under very low pressure (1 mbar). The optical emission spectroscopy was used to analyze the properties of the plasma jet. The phase composition and the microstructure of the coatings were characterized by x-ray diffraction and scanning electron microscopy. The results showed that the YSZ powder was fully melted and partially evaporated, and the coatings had a hybrid microstructure that was combined with the condensation of the YSZ vapor and the melted particles. In addition, the porosity and microhardness of the coatings were evaluated.

  3. Coupled fluid-thermal analysis of low-pressure sublimation and condensation with application to freeze-drying

    NASA Astrophysics Data System (ADS)

    Ganguly, Arnab

    Freeze-drying is a low-pressure, low-temperature condensation pumping process widely used in the manufacture of bio-pharmaceuticals for removal of solvents by sublimation. The goal of the process is to provide a stable dosage form by removing the solvent in such a way that the sensitive molecular structure of the active substance is least disturbed. The vacuum environment presents unique challenges for understanding and controlling heat and mass transfer in the process. As a result, the design of equipment and associated processes has been largely empirical, slow and inefficient. A comprehensive simulation framework to predict both, process and equipment performance is critical to improve current practice. A part of the dissertation is aimed at performing coupled fluid-thermal analysis of low-pressure sublimation-condensation processes typical of freeze-drying technologies. Both, experimental and computational models are used to first understand the key heat transfer modes during the process. A modeling and computational framework, validated with experiments for analysis of sublimation, water-vapor flow and condensation in application to pharmaceutical freeze-drying is developed. Augmented with computational fluid dynamics modeling, the simulation framework presented here allows to predict for the first time, dynamic product/process conditions taking into consideration specifics of equipment design. Moreover, by applying the modeling framework to process design based on a design-space approach, it has demonstrated that there is a viable alternative to empiricism.

  4. Standoff Detection of Geological Samples of Metal, Rock, and Soil at Low Pressures Using Laser-Induced Breakdown Spectroscopy.

    PubMed

    Choi, Jae-Jun; Choi, Soo-Jin; Yoh, Jack J

    2016-09-01

    Categorized certified reference materials simulating metal, rock, soils, or dusts are used to demonstrate the standoff detection capability of laser-induced breakdown spectroscopy (LIBS) at severely low pressure conditions. A Q-switched Nd:YAG laser operating at 1064 nm with 17.2-50 mJ energy per pulse was used to obtain sample signals from a distance of 5.5 m; the detection sensitivity at pressures down to 0.01 torr was also analyzed. The signal intensity response to pressure changes is explained by the ionization energy and electronegativity of elements, and from the estimated full width half-maximum (FWHM) and electron density, the decrease in both background noise and line broadening makes it suitable for low pressure detection using the current standoff LIBS configuration. The univariate analyses further showed high correlation coefficients for geological samples. Therefore, the present work has extended the current state-of-the-art of standoff LIBS aimed at harsh environment detection.

  5. Modeling the Deterioration of Engine and Low Pressure Compressor Performance During a Roll Back Event Due to Ice Accretion

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip, C. E.; Jones, Scott M.

    2014-01-01

    The main focus of this study is to apply a computational tool for the flow analysis of the engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) of NASA Glenn Research Center. A data point was selected for analysis during which the engine experienced a full roll back event due to the ice accretion on the blades and flow path of the low pressure compressor. The computational tool consists of the Numerical Propulsion System Simulation (NPSS) engine system thermodynamic cycle code, and an Euler-based compressor flow analysis code, that has an ice particle melt estimation code with the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Decreasing the performance characteristics of the low pressure compressor (LPC) within the NPSS cycle analysis resulted in matching the overall engine performance parameters measured during testing at data points in short time intervals through the progression of the roll back event. Detailed analysis of the fan-core and LPC with the compressor flow analysis code simulated the effects of ice accretion by increasing the aerodynamic blockage and pressure losses through the low pressure compressor until achieving a match with the NPSS cycle analysis results, at each scan. With the additional blockages and losses in the LPC, the compressor flow analysis code results were able to numerically reproduce the performance that was determined by the NPSS cycle analysis, which was in agreement with the PSL engine test data. The compressor flow analysis indicated that the blockage due to ice accretion in the LPC exit guide vane stators caused the exit guide vane (EGV) to be nearly choked, significantly reducing the air flow rate into the core. This caused the LPC to eventually be in stall due to increasing levels of diffusion in the rotors and high incidence angles in the inlet guide vane (IGV) and EGV stators. The flow analysis indicating

  6. First occurrence of very low pressure ultra-high temperatures metamorphism in the Khondalite Belt, North China Craton.

    NASA Astrophysics Data System (ADS)

    Lobjoie, Cyril; Lin, Wei; Trap, Pierre; Goncalves, Philippe; Marquer, Didier

    2016-04-01

    This study report the first occurrence of very low pressure (<0.4GPa) ultra-high temperatures metamorphism within the Paleoproterozoic Khondalite Belt of the North China Craton. This high grade orogenic domain is mostly composed of garnet +/- spinel +/- sapphirine-bearing migmatites, numerous Grt-bearing granites and marbles. These rocks are intruded by numerous metric to kilometric mafic intrusions. Petrological analyses and phase equilibria diagram modeling were performed on garnet and spinel-bearing and olivine-bearing migmatites. Garnet and spinel-bearing migmatites show a quartz, ternary feldspar, garnet, biotite sillimanite and spinel main assemblage. Pseudosection diagram calculations give suprasolidus P-T conditions around ca. 0.7GPa for ca. 900°C that correspond to the peak temperature conditions. Thermometry using ternary feldspar thermometry gives temperatures estimations at ca. 950-1015°C for a pressure of 0.7GPa. The Olivine-bearing migmatite, located at the contact with a mafic intrusion, shows two main assemblages. The first assemblage that makes the rock matrix consists of a micrographic quartz and feldspar domains associated with biotite, sillimanite and spinel. The second assemblage appears within mm-scale pockets with a complex symplectitic texture. Careful investigation revealed that theses pockets formed after garnet pseudomorphosis, with the development of an Opx-Sp-Crd association. Within this assemblage, an olivine-cordierite and Opx-Crd-Bi-Qtz assemblage occurred as smaller pockets. The petrogenetic grid and pseudosection calculations made for this olivine-bearing migmatite give P-T conditions around 0.35GPa for ca. 950°C that correspond to the peak temperature conditions recorded by the olivine-cordierite assemblage. The succession of reactions with garnet pseudomorphosis into an Opx-Spl-Crd followed by the crystallization of an Ol-Crd assemblage is modelled in the petrogenetic grid calculation and correspond to an isobaric clockwise P

  7. Conceptual Design of Low Pressure, 300 degree K Fill System for Ignition Target Capsules with Micron Size Fill Tubes

    SciTech Connect

    Sanchez, J J

    2003-09-26

    A conceptual design for a low pressure, room temperature, fill system suitable for ignition target capsules is described. The fill system relies on the use of a 5-10 micron diameter fill tube connecting directly the target capsule to a DT fuel reservoir. The design uses a small reservoir to store the DT fuel at room temperature within the target assembly. A model of the design is developed and used to calculate reservoir size, layer thickness control, and control sensitivity. A procedure to fill the target in-situ after cooling the assembly to cryogenic temperatures using temperature control of the reservoir is also described. The effects of He3 generation and fuel contamination are also discussed.

  8. DNS of Flow in a Low-Pressure Turbine Cascade Using a Discontinuous-Galerkin Spectral-Element Method

    NASA Technical Reports Server (NTRS)

    Garai, Anirban; Diosady, Laslo Tibor; Murman, Scott; Madavan, Nateri

    2015-01-01

    A new computational capability under development for accurate and efficient high-fidelity direct numerical simulation (DNS) and large eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy-stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy and is implemented in a computationally efficient manner on a modern high performance computer architecture. A validation study using this method to perform DNS of flow in a low-pressure turbine airfoil cascade are presented. Preliminary results indicate that the method captures the main features of the flow. Discrepancies between the predicted results and the experiments are likely due to the effects of freestream turbulence not being included in the simulation and will be addressed in the final paper.

  9. An investigation into the role of metastable argon atoms in the afterglow plasma of a low pressure discharge

    NASA Astrophysics Data System (ADS)

    Strauss, J. A.; Ferreira, N. P.; Human, H. G. C.

    An investigation into the behaviour of metastable argon atoms in a low pressure (250 Pa) pulsed electrical discharge was undertaken in an effort to find the cause of the persisting emission from sputtered metal atoms in the afterglow of an atomic fluorimeter. Results obtained by time-resolved emission and absorption measurements of several argon and copper spectral lines indicate that low energy electrons in the afterglow are converted to high energy electrons via the recombination of electrons with argon ions and the subsequent collisions of pairs of metastable argon atoms. The high energy electrons excite the sputtered metal atoms to give rise to a slow decaying emission tail in the afterglow. A probable change in the electron energy distribution in the afterglow may also have an effect on the observed emission. This phenomenon may be reduced by the use of a suitable quenching gas.

  10. Measurement of vibrational populations in low-pressure hydrogen plasma by coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Pealat, M.; Taran, J. P. E.; Taillet, J.; Bacal, M.; Bruneteau, A. M.

    1981-04-01

    Vibrational populations in a low-pressure H2 plasma have been measured by coherent anti-Stokes Raman scattering (CARS). The plasma generator is described, and some particulars of the optical arrangement are given. The CARS system is a commercial spectrometer, whose original optical system has been slightly modified for this study, by eliminating the Polarex arrangement for the YAG laser oscillator and by adding a YAG amplifier stage. This has resulted in improved beam quality and enhanced peak power. For an electron density of 2 x 10 to the 11th cm to the 0.001 and a total pressure of 0.13 m bar, the rotational temperature was found to be 475 K. The populations of the vibrational states v equals 0, 1, and 2 have also been measured. Their distribution is non-Boltzmann. The influence of pressure and discharge parameters is discussed.

  11. The manufacture of replacement low pressure carrier casings and associated stationary guide vane blading through on site component sample measurement

    SciTech Connect

    Fraser, M.J.

    1996-12-31

    In today`s competitive utility market place, the manufacture of replacement components by alternate manufacturing has become an increasingly important available option for turbine operators seeking to achieve substantive cost and lead time reductions in spare part purchasing. Essential to this strategy--in the absence of a total redesign of the component(s) or their assemblies--is the provision or access to the selected alternate manufacture of the necessary sample parts. This paper details the manufacture by reverse engineering of 3 replacement low pressure carrier guide vane blade casings for a 60 MW steam turbine complete with their associated blading and ancillary parts where the necessary sample parts and assemblies could not be released from site due to outage constraints.

  12. Analysis of the low-pressure plasma pretreated polymer surface in terms of acid-base approach

    NASA Astrophysics Data System (ADS)

    Kraus, Eduard; Orf, Lukas; Baudrit, Benjamin; Heidemeyer, Peter; Bastian, Martin; Bonenberger, Ramona; Starostina, Irina; Stoyanov, Oleg

    2016-05-01

    We demonstrate the use of a modern wetting method for determining the acid-base properties of treated polymer surfaces for different plastics and adhesives. The effect of the surface treatment with low pressure plasma was evaluated from the viewpoint of acid-base approach with plastics polyoxymethylene (POM) and polyetheretherketone (PEEK). The correlations between the acid-base properties and the identified mechanical tensile strengths of adhesive bonded joints were evaluated and discussed. In the investigated range the determination coefficients for POM and PEEK were calculated to R2 = 0.93 and R2 = 0.97, respectively. These relatively high determination coefficients showed a good correlation between the mechanical strength and the acidity parameter ΔDshort for use in bonding technology for surface pretreatment of polymers with LPP.

  13. A propagation time difference evaluation for a clamp-on ultrasonic flowmeter for low-pressure gas

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Hiroshi; Sawayama, Toshiyuki; Nagamune, Kouki

    2016-07-01

    We have been studying the development of a clamp-on ultrasonic flowmeter for measuring the gas flow rate, especially at low-pressure gas such as atmospheric pressure. In this study, we evaluated the propagation time difference of ultrasonic wave for measuring the airflow at atmospheric pressure. We placed a pair of ultrasonic transducers outside a pipe and generated ultrasonic waves aslant to the flow direction. We observed the propagation time difference of the ultrasonic wave as a function of the gas flow velocity, and found that the difference was proportional to the gas flow. Therefore, it was shown that we were able to measure the atmospheric pressure gas flow rate with a clamp-on ultrasonic flowmeter. Moreover, we evaluated the dependency of ultrasonic wave intensity on gas pressure.

  14. Remote temperature measurements of a cold start-up on a low pressure steam turbine using phosphor thermography

    SciTech Connect

    Allison, S.W.; Beshears, D.L.; Cates, M.R.; Cunningham, G.T.; Puri, A.; Schuster, L.

    1995-12-31

    The feasibility of using a noncontact, optical method for temperature measurement based on thermographic phosphors was explored during the cold start-up of a low pressure turbine rotor at the TVA Cumberland Steam Plant. A simple optical system delivered low power laser light to a segment of the balance rim and balance weight holes which were coated with phosphor. From analysis of the laser induced fluorescence, temperatures ranging from 37C (99 F) to 121 C (250 F) were determined. There was no discernible condensation of steam on the viewing port optics. This transient temperature history at the exit end of the LP rotor may help to determine the root cause of a recent blade failure experienced in the L-0 blade row of a unit at this plant during an overspeed test.

  15. Production of Low-Pressure Planar Non-Magnetized Plasmas Sustained under a Dielectric-Free Metal-Plasma Interface

    NASA Astrophysics Data System (ADS)

    Morita, Shin; Nagatsu, Masaaki; Ghanashev, Ivan; Toyoda, Naoki; Sugai, Hideo

    1998-04-01

    Large-area Ar and CF4 non-magnetized plasmas were produced in an entirely metal (stainless steel) plasma chamber with a diameter of 220 mm by 2.45 GHz electromagnetic wave launched by slot antennas cut in the top circular metal lid. Dielectric (quartz) was used only for local vacuum sealing over the slot antennas, occupying less than 20% of the top metal area. At low pressure of 10 mTorr, overdense (>1011 cm-3) plasma was produced filling the whole chamber cross-section similarly to the known case of surface-wave plasmas produced below a large dielectric window covering 100% of the top chamber lid. The absence of this large dielectric suggests that this approach can be used for developing large-area non-magnetized plasma source with less impurities for thin-film processing.

  16. Development of a chromatographic low pressure flow injection system using amperometric detection: Application to the analysis of niacin in coffee.

    PubMed

    Santos, João Rodrigo; Rangel, António O S S

    2015-11-15

    In this work, an analytical flow system able to perform low pressure chromatography with amperometric detection is presented. As case study, the determination of niacin (vitamin B3) in coffee brewed samples was selected. The manifold comprised a 1.0 cm length monolithic column coated with didecyldimethylammonium bromide, a laboratory-made boron doped diamond electrode, and featured in-line ionic strength adjustment of the mobile phase. The figures of merit concerning the selected case study namely, detection limit, 7.90 × 10(-7) M, determination rate, ca. 10 samplesh(-1), mobile phase and ISA solution consumption, ca. 2.6 mL per analysis, and CV, below 5% for retention time and peak height, showed the competitiveness of this analytical strategy comparing to the described HPLC methods for niacin determination. The strategy displays a simple configuration, low cost, fast and easy assembling, foreseeing its use to general purpose applications.

  17. LIBS-based detection of geological samples at low pressures (<0.001 torr) for moon and asteroid exploration.

    SciTech Connect

    Harris, R. D.; Cremers, D. A.; Khoo, C.; Benelli, K. M.

    2005-01-01

    LIBS is under development for future use on surface probes to Mars. Under simulated Mars atmospheric composition and pressure (7 torr, predominately CO{sub 2}), LIBS has been shown useful for qualitative and quantitative analysis of geological samples at close and stand-off distances (19 m). Because of its many advantages compared to previously deployed and current in-use methods of elemental analysis (e.g. x-ray fluorescence, APXS), LIBS has potential for application to other planetary bodies. Of particular interest are the Moon and asteroids having very low ambient gas pressures at the surface. Because the laser plasma used by LIBS is sensitive to the surrounding atmosphere, it is important to determine analysis capabilities under these conditions. The results of a study of LIBS capabilities at low pressure is presented here for both in-situ and stand-off analysis.

  18. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    NASA Astrophysics Data System (ADS)

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-01

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  19. An experimental study of separation control on ultra-highly-loaded low pressure turbine blade by surface roughness

    NASA Astrophysics Data System (ADS)

    Sun, Shuang; Lei, Zhijun; Lu, Xingen; Zhao, Shengfeng; Zhu, Junqiang

    2015-06-01

    An experimental study is conducted to improve an aft-loaded ultra-high-lift low pressure turbine (LPT) blade at low Reynolds number (Re) in steady state. The objective is to investigate the effect of blade roughness on the performance of LPT blade. The roughness is used as a passive flow control method which is to reduce total pressure loss and expand LPT operating margin. The experiment is performed on a low-speed cascade facility. 3 roughness heights and 3 deposit positions are investigated in the experiment which forms a large test matrix. A three-hole probe is used to detect flow aerodynamic performance and a hotwire probe is used to detect the characteristic of suction boundary layer. Regional roughness can suppress separation loss and bring fairly low turbulent dissipation loss. Detailed surveys near the blade surface shows that the loss reduction is due to the disappearance of separation bubble from the early transition onset.

  20. Modelling of NO destruction in a low-pressure reactor by an Ar plasma jet: species abundances in the reactor

    NASA Astrophysics Data System (ADS)

    Kutasi, Kinga

    2011-03-01

    The destruction of NO molecules by an Ar plasma jet in a low-pressure (0.2 Torr) reactor is investigated by means of a 3D hydrodynamic model. The density distribution of species created through molecular kinetics triggered by the collision of Ar+ with NO is calculated, showing that in the case of the most abundant species a quasi-homogeneous density distribution builds up in a large part of the reactor. The conversion of NO into stable O2 and N2 molecules is followed under different plasma jet conditions and NO gas flows, and the effect of N2 addition on NO destruction is studied. It is shown that in the present system the reproduction of NO molecules on the surface through surface-assisted recombination of N and O atoms becomes impossible due to the fast disappearance of N atoms in the jet's inlet vicinity.

  1. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    SciTech Connect

    Gentile, C. A.; Blanchard, W. R.; Kozub, T. A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-14

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber

  2. Low pressure CO₂ hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO₂ interface

    DOE PAGES

    Yang, Xiaofang; Boscoboinik, J. Anibal; Kattel, Shyam; Senanayake, Sanjaya D.; Nie, Xiaowa; Graciani, Jesus; Rodriguez, Jose A.; Liu, Ping; Stacchiola, Dario J.; Chen, Jingguang G.

    2015-07-28

    Capture and recycling of CO₂ into valuable chemicals such as alcohols could help mitigate its emissions into the atmosphere. Due to its inert nature, the activation of CO₂ is a critical step in improving the overall reaction kinetics during its chemical conversion. Although pure gold is an inert noble metal and cannot catalyze hydrogenation reactions, it can be activated when deposited as nanoparticles on the appropriate oxide support. In this combined experimental and theoretical study, it is shown that an electronic polarization at the metal–oxide interface of Au nanoparticles anchored and stabilized on a CeOx/TiO₂ substrate generates active centers formore » CO₂ adsorption and its low pressure hydrogenation, leading to a higher selectivity toward methanol. In conclusion, this study illustrates the importance of localized electronic properties and structure in catalysis for achieving higher alcohol selectivity from CO₂ hydrogenation.« less

  3. Use of a low pressure helium/water vapor discharge as a mercury-free source of ultraviolet emission

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Shuaibov, Alexander; Shevera, Igor; Gritzak, Roksolana; Tsymbaliuk, Alexander

    2014-09-01

    This paper presents the results of study of the longitudinal low-pressure glow discharge in a helium/water mixture. This discharge is proposed for use as a mercury-free source of ultraviolet emission. The emission spectra in the ultraviolet range are recorded by a monochromator and analyzed. In order to interpret the experimental results, the numerical modeling is carried out using global model for 46 species and 577 plasma chemical reactions between them. This model allows us to define the main reactions responsible for the generation and quenching of the excited species, which emit in the ultraviolet range. The optimal conditions are found when the lines with wavelengths of 309 nm OH(A-X) and 150-190 nm OH(X-C,B) have the largest intensity.

  4. Effect of Reynolds number, turbulence level and periodic wake flow on heat transfer on low pressure turbine blades.

    PubMed

    Suslov, D; Schulz, A; Wittig, S

    2001-05-01

    The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.

  5. Influence of the cathode surface conditions on V-A characteristics in low-pressure nitrogen discharge

    NASA Astrophysics Data System (ADS)

    Gocić, S.; Škoro, N.; Marić, D.; Petrović, Z. Lj

    2014-06-01

    In this paper we demonstrate and analyse the influence of cathode surface inhomogeneities on the breakdown, volt-ampere (V-A) characteristics and the spatial structure of the low-pressure non-equilibrium discharges. The idea for this work came from the need to explain the non-typical V-A characteristics (positive slope of the characteristics in low-current regime of the discharge) that we observed in a parallel-plate, dc discharge in nitrogen. It was found that the cathode was locally conditioned by the discharge that operated in the constricted glow regime. Spatial inhomogeneity of the cathode surface strongly affected the subsequent operation in the breakdown-Townsend regime where discharge is supposed to be uniform.

  6. Operation of gas electron multiplier (GEM) with propane gas at low pressure and comparison with tissue-equivalent gas mixtures

    NASA Astrophysics Data System (ADS)

    De Nardo, L.; Farahmand, M.

    2016-05-01

    A Tissue-Equivalent Proportional Counter (TEPC), based on a single GEM foil of standard geometry, has been tested with pure propane gas at low pressure, in order to simulate a tissue site of about 1 μm equivalent size. In this work, the performance of GEM with propane gas at a pressure of 21 and 28 kPa will be presented. The effective gas gain was measured in various conditions using a 244Cm alpha source. The dependence of effective gain on the electric field strength along the GEM channel and in the drift and induction region was investigated. A maximum effective gain of about 5×103 has been reached. Results obtained in pure propane gas are compared with gas gain measurements in gas mixtures commonly employed in microdosimetry, that is propane and methane based Tissue-Equivalent gas mixtures.

  7. Note: High turn density magnetic coils with improved low pressure water cooling for use in atom optics

    SciTech Connect

    McKay Parry, Nicholas Neely, Tyler; Carey, Thomas; Bell, Thomas; Rubinsztein-Dunlop, Halina; Baker, Mark

    2014-08-15

    We describe a magnetic coil design utilizing concentrically wound electro-magnetic insulating (EMI) foil (25.4 μm Kapton backing and 127 μm thick layers). The magnetic coils are easily configurable for different coil sizes, while providing large surfaces for low-pressure (0.12 bar) water cooling. The coils have turn densities of ∼5 mm{sup −1} and achieve a maximum of 377 G at 2.1 kW driving power, measured at a distance 37.9 mm from the axial center of the coil. The coils achieve a steady-state temperature increase of 36.7°C/kW.

  8. Hydrogen-oxygen catalytic ignition and thruster investigation. Volume 1: Catalytic ignition and low pressure thruster evaluations

    NASA Technical Reports Server (NTRS)

    Johnson, R. J.

    1972-01-01

    An experimental and analytical program was conducted to evaluate catalytic igniter operational limits, igniter scaling criteria, and delivered performance of cooled, flightweight gaseous hydrogen-oxygen reaction control thrusters. Specific goals were to: (1) establish operating life and environmental effects for both Shell 405-ABSG and Engelhard MFSA catalysts, (2) provide generalized igniter design guidelines for high response without flashback, and (3) to determine overall performance of thrusters at chamber pressures of 15 and 300 psia (103 and 2068 kN/sq m) and thrust levels of 30 and 1500 lbf, respectively. The experimental results have demonstrated the feasibility of reliable, high response catalytic ignition and the effectiveness of ducted chamber cooling for a high performance flightweight thruster. This volume presents the results of the catalytic igniter and low pressure thruster evaluations are presented.

  9. Microstructure and Oxidation Resistance of NiCoCrAlYTa Coating by Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Liang, X.-H.; Zhou, K. S.; Liu, M.; Hong, R. J.; Deng, C. G.; Luo, S.; Chen, Z. K.

    The NiCoCrAlYTa coating was prepared on Ni-based single crystal super-alloys by low pressure plasma spraying (LPPS). The phases and microstructures for the coatings were characterized by X-ray diffraction and scanning electron microscopy, and the fracture toughness and micro-hardness for both coatings and substrate were also investigated. The relationship between coating properties and oxidation was analyzed. The result shows that elementary distribution of NiCoCrAlYTa coatings, which consists of γ-Ni, β-NiAl, γ'-Ni3Al, and CrCoTa phases, is much homogeneous. The composition changes with depth from the surface to substrate for the coatings. The micro-hardness of coatings is 350.8 HV0.3 and fracture toughness is 2.73 MPa m1/2. The oxidation resistance of coatings excelled than Ni-based single crystal super-alloys.

  10. An aircraft instrument design for in situ tropospheric OH measurements by laser induced fluorescence at low pressures

    NASA Technical Reports Server (NTRS)

    Brune, William H.; Stevens, Philip S.; Mather, James H.

    1993-01-01

    The hydroxyl radical (OH) is important for many processes involved in tropospheric chemistry. For instance, it initiates the photochemical degradation of gases that cause global climate change, such as methane and the chlorofluorocarbon substitutes (HCFCs). Because of its reactivity, its abundances are less than 0.1 pptv. Thus, OH has been very difficult to measure accurately, despite its importance. Techniques have evolved, however, so that good measurements of tropospheric OH abundances are now possible. One of these techniques that is adaptable to aircraft measurements is the laser induced fluorescence detection of the OH radical in a detection chamber at low pressures. The current ground-based instrument, which can be readily adapted to aircraft, can detect OH abundances of 1.4 x 10 exp 5 OH molecules/cu cm with S/N = 2 in 30 sec, and 5 x 10 exp 4/cu cm in 5 min.

  11. Physisorption of Ar, Kr, CH4, and N2 on 304 stainless steel at very low pressures.

    NASA Technical Reports Server (NTRS)

    Troy, M.; Wightman, J. P.

    1971-01-01

    Determination of physisorption isotherms of these gases on stainless steel by pressure change measurements in very low pressure cryogenic baths where a steel nipple was brought in contact with the test gas at 77 to 90 K in a sealed constant-volume system. The position of the nipple in the gas was changed in such a manner that gas adsorption on a 47.5 sq cm area of the steel surface could be measured. The Dubinin-Radushkevich (DR) equation (1947) was used for an empirical description of isotherms at different temperatures. The mean adsorption energies calculated from the DR plots were 1290, 1545, 1490 and 1903 cal/mol for Ar, Kr, CH4 and N2, respectively, being about 10% higher than the corresponding values on Pyrex.

  12. Low-pressure and atmospheric pressure plasma polymerized silica-like films as primers for adhesive bonding of aluminum

    NASA Astrophysics Data System (ADS)

    Gupta, Munish

    2007-12-01

    Plasma processes, including plasma etching and plasma polymerization, were investigated for the pretreatment of aluminum prior to structural adhesive bonding. Since native oxides of aluminum are unstable in the presence of moisture at elevated temperature, surface engineering processes must usually be applied to aluminum prior to adhesive bonding to produce oxides that are stable. Plasma processes are attractive for surface engineering since they take place in the gas phase and do not produce effluents that are difficult to dispose off. Reactive species that are generated in plasmas have relatively short lifetimes and form inert products. The objective of this work was to develop plasma etching and plasma polymerization as environmentally compatible processes for surface engineering of aluminum. Plasma polymerized silica-like films of thickness less than 200 nm were deposited on pretreated aluminum substrates using hexamethyldisiloxane (HMDSO) as the "monomer" and oxygen as a "co-reactant" in low-pressure RF-powered (13.6 MHz) reactor. Recently, plasma deposition at atmospheric pressure has become a promising technology because they do not require vacuum systems, can be applied to large objects with complex shapes, and adapted easily for continuous processing. Therefore, atmospheric pressure plasma processes were investigated and compared with their more traditional counterparts, low-pressure plasmas. Molecular structure and morphology of the plasma polymerized films were determined using surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The effectiveness of plasma etching and plasma polymerization as surface engineering processes for aluminum were probed by determining the initial strength and durability of aluminum/epoxy lap joints prepared from substrates that were plasma pretreated, coated with silica-like film, and

  13. Very low pressure plasma sprayed yttria-stabilized zirconia coating using a low-energy plasma gun

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Planche, Marie-Pierre; Liao, Hanlin; Coddet, Christian

    2011-12-01

    In the present study, a more economical low-energy plasma source was used to perform a very low pressure plasma-spray (VLPPS) process. The plasma-jet properties were analyzed by means of optical emission spectroscopy (OES). Moreover, yttria-stabilized zirconia coating (YSZ) was elaborated by a F100 low-power plasma gun under working pressure of 1 mbar, and the substrate specimens were partially shadowed by a baffle-plate during plasma spraying for obtaining different coating microstructures. Based on the SEM observation, a column-like grain coating was deposited by pure vapor deposition at the shadowed region, whereas, in the unshadowed region, the coating exhibited a binary microstructure which was formed by a mixed deposition of melted particles and evaporated particles. The mechanical properties of the coating were also well under investigation.

  14. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    SciTech Connect

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-27

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  15. The validity of the one-dimensional fluid model of electrical breakdown in synthetic air at low pressure

    NASA Astrophysics Data System (ADS)

    Jovanović, A. P.; Stankov, M. N.; Marković, V. Lj.; Stamenković, S. N.

    2013-12-01

    In this letter the validity of the fluid model used to simulate the electrical breakdown in air at low pressure is discussed. The new method for the determination of the ionization source term for the mixed gases is proposed. Paschen's curve obtained by the fluid model is compared to the available experimental data. The electron and ions density profiles calculated by the fluid model are presented. Based on Ohm's law, the current and voltage waveforms are calculated and compared to the ones measured by the oscilloscope in the synthetic-air filled tube with stainless-steel electrodes. It is shown that the one-dimensional fluid model can be used for modeling the electrical breakdown at pd values higher than Paschen's minimum and to determine stationary values of electron and ions densities.

  16. An Assessment of the Residual Stresses in Low Pressure Plasma Sprayed Coatings on an Advanced Copper Alloy

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.; Agarwal, A.; Lachtrupp, T. P.

    2002-01-01

    Modeling studies were conducted on low pressure plasma sprayed (LPPS) NiAl top coat applied to an advanced Cu-8(at.%)Cr-4%Nb alloy (GRCop-84) substrate using Ni as a bond coat. A thermal analysis suggested that the NiAl and Ni top and bond coats, respectively, would provide adequate thermal protection to the GRCop-84 substrate in a rocket engine operating under high heat flux conditions. Residual stress measurements were conducted at different depths from the free surface on coated and uncoated GRCop-84 specimens by x-ray diffraction. These data are compared with theoretically estimated values assessed by a finite element analysis simulating the development of these stresses as the coated substrate cools down from the plasma spraying temperature to room temperature.

  17. Note: High turn density magnetic coils with improved low pressure water cooling for use in atom optics.

    PubMed

    McKay Parry, Nicholas; Baker, Mark; Neely, Tyler; Carey, Thomas; Bell, Thomas; Rubinsztein-Dunlop, Halina

    2014-08-01

    We describe a magnetic coil design utilizing concentrically wound electro-magnetic insulating (EMI) foil (25.4 μm Kapton backing and 127 μm thick layers). The magnetic coils are easily configurable for different coil sizes, while providing large surfaces for low-pressure (0.12 bar) water cooling. The coils have turn densities of ~5 mm(-1) and achieve a maximum of 377 G at 2.1 kW driving power, measured at a distance 37.9 mm from the axial center of the coil. The coils achieve a steady-state temperature increase of 36.7°C/kW. PMID:25173328

  18. High versus low-pressure balloon inflation during multilinktrade mark stent implantation: acute and long-term angiographic results.

    PubMed

    Caixeta, A M; Brito, F S; Rati, M; Perin, M A; da Luz, P L; Ramires, J A; Ambrose, J A; Martinez, E E

    2000-08-01

    We compared the impact of low and high-pressure balloon inflation on acute and late angiographic results of Multilink stent. Low-pressure balloon inflation (9.5 +/- 1.9 atm) was used in 43 stents and high pressure (17.1 +/- 1.5 atm) in 44. A larger immediate luminal gain was achieved in stents with high-pressure balloon inflation (1.80 +/- 0.26 vs. 1.47 +/- 0.62; P = 0.002), resulting in a larger mean diameter in this group (2.71 +/- 0.37 vs. 2.48 +/- 0.47; P = 0.017). At follow-up, a larger luminal diameter was achieved in the high pressure group (1.93 +/- 0.72 vs. 1.45 +/- 0.66; P = 0.002) and a trend to a lower rate of angiographic restenosis (15% vs. 38%, P = 0.08).

  19. Photocatalytic abatement of NOx by C-TiO2/polymer composite coatings obtained by low pressure cold gas spraying

    NASA Astrophysics Data System (ADS)

    Robotti, M.; Dosta, S.; Fernández-Rodríguez, C.; Hernández-Rodríguez, M. J.; Cano, I. G.; Melián, E. Pulido; Guilemany, J. M.

    2016-01-01

    In the present work, we study the photocatalytic activity of carbon-modified TiO2 (C-TiO2)/polymer composite coatings obtained by low pressure cold gas spraying (LP-CGS). To produce the novel coatings, C-TiO2 was mixed with a ductile material, the polymer ECTFE, by means of a low energy ball milling (LEBM) process. The LEBM system permits the mechanical anchoring of small TiO2 aggregates around the large ductile polymeric particles. A well-bonded coating with good mechanical coupling was formed between the ball-milled mixture and the substrate. Photocatalytic tests showed that the LP-CGS nano-TiO2 coatings actively photodegraded NO and the by-product, NO2. Compared to commercial paint, the as-prepared coatings presented here enhanced photocatalytic performance.

  20. Effect of Reynolds number, turbulence level and periodic wake flow on heat transfer on low pressure turbine blades.

    PubMed

    Suslov, D; Schulz, A; Wittig, S

    2001-05-01

    The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade. PMID:11460633

  1. Interplanetary magnetic field polarity and the size of low-pressure troughs near 180 deg W longitude

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.; Duffy, P. B.; Schatten, K. H.; Svalgaard, L.; Scherrer, P. H.; Roberts, W. O.; Olson, R. H.

    1979-01-01

    The relationship between interplanetary magnetic field polarity and the area of low pressure (300 mbar) troughs near 180 deg W longitude is examined. For most of the winters from 1951 to 1973, the trough size, as indicated by the vorticity area index, is found to be significantly greater when the interplanetary magnetic field is directed away from the sun than when the field is directed towards the sun. This relationship is shown to hold for various combinations of winters and for most months within a winter, and be most pronounced at the time when polarity was determined. It is suggested that the phenomenon is caused by merging of interplanetary magnetic field lines, when polarity is directed away from the sun, with geomagnetic field lines in the Northern Hemisphere (where these measurements were made), allowing energetic particle fluxes to have access to the north polar region

  2. Characterization of magnetically confined low-pressure plasmas produced by an electromagnetic field in argon-acetylene mixtures

    NASA Astrophysics Data System (ADS)

    Makdessi, G. Al; Margot, J.; Clergereaux, R.

    2016-10-01

    Dust particles formation was investigated in magnetically confined low-pressure plasma produced in argon-acetylene mixtures. The plasma characteristics were measured in order to identify the species involved in the dust particles formation. Their dependence on the operating conditions including magnetic field intensity, acetylene fraction in the gas mixture and operating pressure was examined. In contrast with noble gases, in the presence of acetylene, the electron temperature increases with the magnetic field intensity, indicating additional charged particles losses in the plasma. Indeed, in these conditions, larger hydrocarbon ions are produced leading to the formation of dust particles in the plasma volume. The observed dependence of positive ion mass distribution and density and relative negative ion density on the operating parameters suggests that the dust particles are formed through different pathways, where negative and positive ions are both involved in the nucleation.

  3. Gemini: A hybrid plasma modelling capability for low pressure systems. User`s manual - V.1.7

    SciTech Connect

    Johannes, J.; Bartel, T.; Sears, D.; Payne, J.

    1996-10-01

    Gemini is the coupling of Icarus, the Sandia National Laboratories (SNL) 2-D Direct Simulation Monte Carlo (DMSC) code, to MPRES, the University of Houston 2-D finite element plasma reactor code. Thus, Gemini is not a stand alone code. The primary application of Gemini is the simulation of inductively coupled plasma reactors that operate at low pressures (< 10mtorr) where continuum formulations of the transport equations begin to break down. Plasma parameters (electron density (ne), electron temperature (Te) and electrostatic fields (Er and Ez)) are computed in MPRES and interpolated onto the DSMC grid. This allows transport of the neutrals and ions to be performed using the DSMC method while including electron impact reactions and field transport effects. A sample calculation including appropriate input files is given.

  4. Development of a Low Pressure, Air Atomized Oil Burner with High Atomizer Air Flow: Progress Report FY 1997

    SciTech Connect

    Butcher, T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5-8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or ''FAB'' has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a toroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the firing rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% O{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  5. Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model

    SciTech Connect

    Skeen, Scott A.; Yang, Bin; Jasper, Ahren W.; Pitz, William J.; Hansen, Nils

    2011-11-14

    The chemical compositions of three low-pressure premixed flames of methylcyclohexane (MCH) are investigated with the emphasis on the chemistry of MCH decomposition and the formation of aromatic species, including benzene and toluene. The flames are stabilized on a flat-flame (McKenna type) burner at equivalence ratios of φ = 1.0, 1.75, and 1.9 and at low pressures between 15 Torr (= 20 mbar) and 30 Torr (= 40 mbar). The complex chemistry of MCH consumption is illustrated in the experimental identification of several C7H12, C7H10, C6H12, and C6H10 isomers sampled from the flames as a function of distance from the burner. Three initiation steps for MCH consumption are discussed: ring-opening to heptenes and methyl-hexenes (isomerization), methyl radical loss yielding the cyclohexyl radical (dissociation), and H abstraction from MCH. Mole fraction profiles as a function of distance from the burner for the C7 species supplemented by theoretical calculations are presented, indicating that flame structures resulting in steeper temperature gradients and/or greater peak temperatures can lead to a relative increase in MCH consumption through the dissociation and isomerization channels. Trends observed among the stable C6 species as well as 1,3-pentadiene and isoprene also support this conclusion. Relatively large amounts of toluene and benzene are observed in the experiments, illustrating the importance of sequential H-abstraction steps from MCH to toluene and from cyclohexyl to benzene. Furthermore, modeled results using the detailed chemical model of Pitz et al. (Proc. Combust. Inst.2007, 31, 267–275) are also provided to illustrate the use of these data as a benchmark for the improvement or future development of a MCH mechanism.

  6. Addressing reverse osmosis fouling within water reclamation--a side-by-side comparison of low-pressure membrane pretreatments.

    PubMed

    Kent, Fraser C; Farahbakhsh, Khosrow

    2011-06-01

    A tertiary membrane filtration (TMF) pilot operating on secondary effluent and a membrane bioreactor (MBR) were setup in a side-by-side study as pretreatments for two identical reverse osmosis pilot systems. The water quality of the permeate from both low-pressure membrane pretreatment systems and the fouling rate of the reverse osmosis systems were compared to assess the capabilities of the two low-pressure membrane pretreatments to prevent organic fouling of the reverse osmosis systems. Both pretreatment pilots were setup using typical operating conditions (i.e., solids retention time and mixed-liquor suspended solids). A consistent difference in water quality and reverse osmosis performance was demonstrated during the 12-month study. The MBR permeate consistently had significantly lower total organic carbon (TOC) and chemical oxygen demand concentrations, but higher color and specific UV absorbance compared with the permeate from the TMF pretreatment. The pretreatment with the MBR gave an average reverse osmosis fouling rate over the entire study (0.27 Lmh/bar.month) that was less than half of the value found for the reverse osmosis with TMF pretreatment (0.60 Lmh/bar.month). A correlation of reverse osmosis feed TOC concentration with average reverse osmosis fouling rate also was established, independent of the pretreatment method used. Results from a cleaning analysis, energy dispersive spectroscopy, and fourier transformed infrared reflectometry confirmed that the foulants were primarily organic in nature. It is concluded that, for this type of application and setup, MBR systems present an advantage over tertiary membrane polishing of secondary effluent for reverse osmosis pretreatment.

  7. Improved outcome with novel device for low-pressure PTCA in de novo and in-stent lesions

    SciTech Connect

    Ischinger, Thomas A.; Solar, Ronald J.; Hitzke, Evelyn

    2003-03-01

    Purpose: Complex lesion morphology requiring the use of high pressure to effect lumen expansion and in-stent restenosis (ISR) remain two indications that challenge conventional PTCA balloons. We report on a new PTCA device that is designed to provide precise, low-pressure dilatation of both de novo and in-stent lesions. Methods: The FX miniRAIL catheter (FX) has an integral wire positioned external to a dilating balloon and a short, 12-mm guidewire lumen distal to the balloon. The balloon inflates against the guidewire and the external wire to prevent slippage and to introduce high focal longitudinal stresses at low inflation pressures. In this initial study, the FX was used in 37 lesions (25 de novo, 12 in-stent; vessel reference diameter=2.73{+-}0.49 mm) in 30 patients. A stepwise inflation protocol and QCA were used to determine the balloon pressure at which the stenosis was resolved (stenosis resolution pressure, SRP). Results: All lesions (100%) were easily reached, crossed and dilated without complication. The SRP was 4.5{+-}2.9 atm, and no balloon slippage was observed. Residual stenosis after FX was 26.39{+-}13.29%. Minor dissections (Types A and B) were observed in eight lesions (21.6%). Target lesion revascularization (TLR) and target vessel revascularization (TVR) at follow-up (8.1{+-}1.5 months) were 8.3% and 12.5%, respectively. Conclusion: The design of the FX is versatile and appears to provide for a safe, effective and improved low-pressure PTCA technique in de novo and in-stent lesions.

  8. Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model

    DOE PAGES

    Skeen, Scott A.; Yang, Bin; Jasper, Ahren W.; Pitz, William J.; Hansen, Nils

    2011-11-14

    The chemical compositions of three low-pressure premixed flames of methylcyclohexane (MCH) are investigated with the emphasis on the chemistry of MCH decomposition and the formation of aromatic species, including benzene and toluene. The flames are stabilized on a flat-flame (McKenna type) burner at equivalence ratios of φ = 1.0, 1.75, and 1.9 and at low pressures between 15 Torr (= 20 mbar) and 30 Torr (= 40 mbar). The complex chemistry of MCH consumption is illustrated in the experimental identification of several C7H12, C7H10, C6H12, and C6H10 isomers sampled from the flames as a function of distance from the burner.more » Three initiation steps for MCH consumption are discussed: ring-opening to heptenes and methyl-hexenes (isomerization), methyl radical loss yielding the cyclohexyl radical (dissociation), and H abstraction from MCH. Mole fraction profiles as a function of distance from the burner for the C7 species supplemented by theoretical calculations are presented, indicating that flame structures resulting in steeper temperature gradients and/or greater peak temperatures can lead to a relative increase in MCH consumption through the dissociation and isomerization channels. Trends observed among the stable C6 species as well as 1,3-pentadiene and isoprene also support this conclusion. Relatively large amounts of toluene and benzene are observed in the experiments, illustrating the importance of sequential H-abstraction steps from MCH to toluene and from cyclohexyl to benzene. Furthermore, modeled results using the detailed chemical model of Pitz et al. (Proc. Combust. Inst.2007, 31, 267–275) are also provided to illustrate the use of these data as a benchmark for the improvement or future development of a MCH mechanism.« less

  9. Numerical Investigation of the Interaction between Mainstream and Tip Shroud Leakage Flow in a 2-Stage Low Pressure Turbine

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Liu, Huoxing

    2014-06-01

    The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.

  10. CFD Study of the Hydrocarbon Boost Low-Pressure Inducer and Kicker in the Presence of a Circumferential Groove

    NASA Technical Reports Server (NTRS)

    Coker, Robert

    2011-01-01

    Results are presented of a computational fluid dynamics (CFD) study done in support of Marshall Space Flight Center's (MSFC) sub-scale water flow experiments of the Hydrocarbon Boost (HCB) Oxidizer Turbopump (OTP) being developed by the Air Force Research Laboratory (AFRL) and Aerojet. A circumferential groove may be added to the pump to reduce synchronous cavitation and subsequent bearing loads at a minimal performance cost. However, the energy may reappear as high order cavitation (HOC) that spans a relatively large frequency range. Thus, HOC may have implications for the full-scale OTP inducer in terms of reduced structural margin at higher mode frequencies. Simulations using the LOCI/Stream CFD program were conducted in order to explore the fluid dynamical impact of the groove on the low-pressure inducer and kicker. It was found that the circumferential groove has minimal head performance impact, but causes back-flowing high-swirl fluid to interact with the nearly-axial incoming fluid just above the inducer blades. The high-shear interface between the fluids is Kelvin-Helmholtz unstable, resulting in trains of low pressure regions or 'pearls' forming near the upstream edge of the groove. When the static pressure in these regions becomes low enough and they get cut by the blade leading edge, HOC is thought to occur. Although further work is required, the numerical models indicate that HOC will occur in the runbox of the AFRL/Aerojet HCB OTP. Comparisons to the ongoing water flow experiments will be discussed, as well as possible designs that may mitigate HOC while continuing to reduce synchronous cavitation. December 2011 MSS/LPS/SPS Joint Subcommittee Meeting ABSTRACT SUBMITTAL FORM

  11. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas

    SciTech Connect

    Lee, Young Wook; Lee, Hye Lan; Chung, T. H.

    2011-06-01

    This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N{sub 2}-Ar and O{sub 2}-Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N{sub 2}-Ar and O{sub 2}-Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N{sub 2}-Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O{sub 2} -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O{sub 2}-Ar discharges, the dissociation fraction of O{sub 2} molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.

  12. Turbofan engine with a low pressure turbine driven supercharger in a bypass duct operated by a fuel rich combustor and an afterburner

    NASA Technical Reports Server (NTRS)

    Bartos, James W. (Inventor)

    1999-01-01

    A multiple bypass turbofan engine includes a core Brayton Cycle gas generator with a fuel rich burning combustor and is provided with a variable supercharged bypass duct around the gas generator with a supercharging means in the supercharged bypass duct powered by a turbine not mechanically connected to the gas generator. The engine further includes a low pressure turbine driven forward fan upstream and forward of an aft fan and drivingly connected to a low pressure turbine by a low pressure shaft, the low pressure turbine being aft of and in serial flow communication with the core gas generator. A fan bypass duct is disposed radially outward of the core engine assembly and has first and second inlets disposed between the forward and aft fans. An inlet duct having an annular duct wall is disposed radially inward of the bypass duct and connects the second inlet to the bypass duct. A supercharger means for compressing air is drivingly connected to the low pressure turbine and is disposed in the inlet duct. A secondary combustor or augmentor is disposed in an exhaust duct downstream of and in fluid flow communication with the bypass duct and the gas generator.

  13. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    NASA Astrophysics Data System (ADS)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  14. Ethylene Decomposition Initiated by Ultraviolet Radiation from Low Pressure Mercury Lamps: Kinetics Model Prediction and Experimental Verification.

    NASA Astrophysics Data System (ADS)

    Jozwiak, Zbigniew Boguslaw

    1995-01-01

    Ethylene is an important auto-catalytic plant growth hormone. Removal of ethylene from the atmosphere surrounding ethylene-sensitive horticultural products may be very beneficial, allowing an extended period of storage and preventing or delaying the induction of disorders. Various ethylene removal techniques have been studied and put into practice. One technique is based on using low pressure mercury ultraviolet lamps as a source of photochemical energy to initiate chemical reactions that destroy ethylene. Although previous research showed that ethylene disappeared in experiments with mercury ultraviolet lamps, the reactions were not described and the actual cause of ethylene disappearance remained unknown. Proposed causes for this disappearance were the direct action of ultraviolet rays on ethylene, reaction of ethylene with ozone (which is formed when air or gas containing molecular oxygen is exposed to radiation emitted by this type of lamp), or reactions with atomic oxygen leading to formation of ozone. The objective of the present study was to determine the set of physical and chemical actions leading to the disappearance of ethylene from artificial storage atmosphere under conditions of ultraviolet irradiation. The goal was achieved by developing a static chemical model based on the physical properties of a commercially available ultraviolet lamp, the photochemistry of gases, and the kinetics of chemical reactions. The model was used to perform computer simulations predicting time dependent concentrations of chemical species included in the model. Development of the model was accompanied by the design of a reaction chamber used for experimental verification. The model provided a good prediction of the general behavior of the species involved in the chemistry under consideration; however the model predicted lower than measured rate of ethylene disappearance. Some reasons for the model -experiment disagreement are radiation intensity averaging, the experimental

  15. Characterization of Dust-Plasma Interactions In Non-Thermal Plasmas Under Low Pressure and the Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Bilik, Narula

    This dissertation research focuses on the experimental characterization of dust-plasma interactions at both low and atmospheric pressure. Its goal is to fill the knowledge gaps in (1) the fundamental research of low pressure dusty plasma electrons, which mainly relied on models with few experimental results; and (2) the nanoparticle synthesis process in atmospheric pressure uniform glow plasmas (APGDs), which is largely unexplored in spite of the economical advantage of APGDs in nanotechnology. The low pressure part of the dissertation research involves the development of a complete diagnostic process for an argon-siline capacitively-coupled RF plasma. The central part of the diagnostic process is the Langmuir probe measurement of the electron energy probability function (EEPF) in a dusty plasma, which has never been measured before. This is because the dust particles in the plasma cause severe probe surface contamination and consequently distort the measurement. This problem is solved by adding a solenoid-actuated shield structure to the Langmuir probe, which physically protects the Langmuir probe from the dust particle deposition to ensure reliable EEPF measurements. The dusty plasma EEPFs are characterized by lower electron density and higher electron temperature accompanied by a drop in the low energy electron population. The Langmuir probe measurement is complemented with other characterizations including the capacitive probe measurement, power measurement, and dust particle collection. The complete diagnostic process then gives a set of local plasma parameters as well as the details of the dust-electron interactions reflected in the EEPFs. This set of data serves as input for an analytical model of nanoparticle charging to yield the time evolution of nanoparticle size and charge in the dusty plasma. The atmospheric pressure part of the dissertation focuses on the design and development of an APGD for zinc oxide nanocrystal synthesis. One of the main

  16. Phlogopite-clinopyroxenite nodules from high-K magmas, Roccamonfina Volcano, Italy: evidence for a low-pressure metasomatic origin

    NASA Astrophysics Data System (ADS)

    Giannetti, Bernardino; Luhr, James F.

    1990-12-01

    Dense nodules containing phlogopite (Mg-number > 80), clinopyroxene, and vesicular glass with subordinate olivine and Cr-spinel are found at Roccamonfina Volcano in pyroclastic deposits of widely varying ages and compositions. Significantly, phlogopite has never been observed as a phenocryst in any volcanic rock at Roccamonfina. In the nodules, phlogopite shows a variety of reaction textures in relation to both clinopyroxene and olivine. Each of the major minerals and glass is compositionally homogeneous within a single nodule, and the suite as a whole shows systematic correlations of Mg-number among these phases. Clinopyroxene (En 40-47) and olivine (Fo 81-87) compositions closely match phenocryst compositions from basic lavas at Roccamonfina, but Cr-spinel compositions strongly diverge from those in Roccamonfina volcanic rocks. Sr and Nd isotopic compositions of whole-rock nodules and constituent minerals fall within the field for high-K series (HKS) volcanic rocks, although minor isotopic disequilibrium is noted among minerals of individual nodules. Euhedral crystals are enclosed by interstitial glass, indicating that the glasses represent residual melts and are not products of in-situ partial melting. Of analyzed glasses from five nodules, three are ne-normative and compositionally similar to HKS tephrite magma compositions, one is hy-normative and similar to low-K series (LKS) trachyandesites, and the other has larnite in the norm and is unlike any known volcanic rock. In addition to other more basic host rock types, phlogopite pyroxenites are found within voluminous pyroclastics ranging from leucite tephrites to highly evolved phonolites and trachytes. These rocks have strong depletions in Sr, Ba, and Eu, consistent with extensive fractionation in low-pressure magma chambers. Consequently the phlogopite pyroxenites are also constrained to have formed at low pressures. This interpretation conflicts with several previous hypotheses for the origin of similar

  17. Low Pressure Radio-Frequency Oxygen Plasma Induced Oxidation of Titanium – Surface Characteristics and Biological Effects

    PubMed Central

    Tseng, Wan-Yu; Hsu, Sheng-Hao; Huang, Chieh-Hsiun; Tu, Yu-Chieh; Tseng, Shao-Chin; Chen, Hsuen-Li; Chen, Min-Huey; Su, Wei-Fang; Lin, Li-Deh

    2013-01-01

    Objective This research was designed to investigate the effects of low pressure radio-frequency (RF) oxygen plasma treatment (OPT) on the surface of commercially pure titanium (CP-Ti) and Ti6Al4V. Surface topography, elemental composition, water contact angle, cell viability, and cell morphology were surveyed to evaluate the biocompatibility of titanium samples with different lengths of OP treating time. Materials and Methods CP-Ti and Ti6Al4V discs were both classified into 4 groups: untreated, treated with OP generated by using oxygen (99.98%) for 5, 10, and 30 min, respectively. After OPT on CP-Ti and Ti6Al4V samples, scanning probe microscopy, X-ray photoelectron spectrometry (XPS), and contact angle tests were conducted to determine the surface topography, elemental composition and hydrophilicity, respectively. The change of surface morphology was further studied using sputtered titanium on silicon wafers. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and F-actin immunofluorescence stain were performed to investigate the viability and spreading behavior of cultivated MG-63 cells on the samples. Results The surface roughness was most prominent after 5 min OPT in both CP-Ti and Ti6Al4V, and the surface morphology of sputtered Ti sharpened after the 5 min treatment. From the XPS results, the intensity of Ti°, Ti2+, and Ti3+ of the samples’ surface decreased indicating the oxidation of titanium after OPT. The water contact angles of both CP-Ti and Ti6Al4V were increased after 5 min OPT. The results of MTT assay demonstrated MG-63 cells proliferated best on the 5 min OP treated titanium sample. The F-actin immunofluorescence stain revealed the cultivated cell number of 5 min treated CP-Ti/Ti6Al4V was greater than other groups and most of the cultivated cells were spindle-shaped. Conclusions Low pressure RF oxygen plasma modified both the composition and the morphology of titanium samples’ surface. The CP-Ti/Ti6Al4V treated with 5 min

  18. Self-Consistent System of Equations for a Kinetic Description of the Low-Pressure Discharges Accounting for the Nonlocal and Collisionless Electron Dynamics

    SciTech Connect

    Igor D. Kaganovich; Oleg Polomarov

    2003-05-19

    In low-pressure discharges, when the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially non-local. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the non-local conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, non-uniform, nearly collisionless plasmas of low-pressure discharges is derived. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. The importance of accounting for the non-uniform plasma density profile on both the current density profile and the EEDF is demonstrated.

  19. Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-Maxwellian electron energy distributions

    SciTech Connect

    Huh, Sung-Ryul; Kim, Nam-Kyun; Jung, Bong-Ki; Chung, Kyoung-Jae; Hwang, Yong-Seok; Kim, Gon-Ho

    2015-03-15

    A global model was developed to investigate the densities of negative ions and the other species in a low-pressure inductively coupled hydrogen plasma with a bi-Maxwellian electron energy distribution. Compared to a Maxwellian plasma, bi-Maxwellian plasmas have higher populations of low-energy electrons and highly vibrationally excited hydrogen molecules that are generated efficiently by high-energy electrons. This leads to a higher reaction rate of the dissociative electron attachment responsible for negative ion production. The model indicated that the bi-Maxwellian electron energy distribution at low pressures is favorable for the creation of negative ions. In addition, the electron temperature, electron density, and negative ion density calculated using the model were compared with the experimental data. In the low-pressure regime, the model results of the bi-Maxwellian electron energy distributions agreed well quantitatively with the experimental measurements, unlike those of the assumed Maxwellian electron energy distributions that had discrepancies.

  20. Measuring OH and HO{sub 2} in the troposphere by laser-induced fluorescence at low pressure

    SciTech Connect

    Brune, W.H.; Stevens, P.S.; Mather, J.H.

    1995-10-01

    The hydroxyl radical OH oxidizes many trace gases in the atmosphere. It initiates and then participates in chemical reactions that lead to such phenomena as photochemical smog, acid rain, and stratospheric ozone depletion. Because OH is so reactive, its volume mixing ratio is less than 1 part per trillion volume (pptv) throughout the troposphere. Its close chemical cousin, the hydroperoxyl radical HO{sub 2}, participates in many reactions as well. The authors have developed an instrument capable of measuring OH and HO{sub 2} by laser-induced fluorescence in a detection chamber at low pressure. This prototype instrument is able to detect about 1.4 X 10{sup 5} molecules cm{sup {minus}3} (0.005 pptv) of OH at the ground in a signal integration time of 30 s with negligible interferences. The absolute uncertainty is a factor of 1.5. This instrument is now being adapted to aircraft use for measurements throughout the troposphere. 25 refs., 7 figs.

  1. Oxidation and Ablation Resistance of Low Pressure Plasma-Sprayed ZrB2-Si Composite Coating

    NASA Astrophysics Data System (ADS)

    Niu, Yaran; Wang, Hongyan; Huang, Liping; Li, Hong; Liu, Xuanyong; Zheng, Xuebin; Ding, Chuanxian

    2014-02-01

    In the present work, ZrB2-based coating containing Si additive was prepared by low pressure plasma spray process. The chemical composition and microstructure of the ZrB2-Si coating were characterized by XRD, EDS and SEM. The oxidation behavior of the coating was investigated in ambient air for different duration time. The ablation-resistant property of the coating was carried out using a plasma flame. The results obtained indicate that the ZrB2-Si composite coating exhibited compact lamellar microstructure with a porosity less than 5%. The silicon phase was uniformly distributed in the ZrB2 matrix. The composite coating presented excellent oxidation-resistance at high temperature of 1500 °C, which resulted from the formed continuous and dense glassy silicon oxide film on its surface. The ablation resistance of the ZrB2-Si coating has been proved to be excellent, which could withstand the plasma flame (above 2000 °C, atmosphere) for 10 min.

  2. Sensitive analysis of carbon, chromium and silicon in steel using picosecond laser induced low pressure helium plasma

    NASA Astrophysics Data System (ADS)

    Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Pardede, Marincan; Jobiliong, Eric; Hedwig, Rinda; Lie, Zener Sukra; Suyanto, Hery; Tjia, May On; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2015-12-01

    An experimental study has been performed on the gas pressure and laser energy dependent variations of plasma emission intensities in Ar, He and N2 ambient gases induced by picosecond (ps) Nd-YAG laser irradiation on low alloy steel (JSS) samples. The study is aimed to demonstrate distinct advantage of using low pressure He ambient gas in combination with ps laser for the sensitive ppm level detection of C, Si and Cr emission lines in the UV-VIS spectral region. The much shorter pulses of ps laser are chosen for the effective ablation at much lower energy and for the benefit of reducing the undesirable long heating of the sample surface. It is found that the C I 247.8 nm, Fe I 253.5 nm, and Si I 251.4 nm emission lines induced by the ps laser at 15 mJ are readily detected with He ambient gas of 2.6 kPA, featuring generally sharp spectral signals with very low background. The following experimental results using samples with various concentrations of C, Si and Cr impurities are shown to produce for each of those elements a linear calibration line with extrapolated zero intercept, demonstrating the applicability for their quantitative analyses, with a preliminary estimated detection limits of 20 μg/g, 15 μg/g, and 5 μg/g, for C, Si, and Cr, respectively. The possibility of applying the same setup for concentration depth profiling is also demonstrated.

  3. The effects of process parameters on yield and properties of iron nanoparticles from ferrocene in a low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Panchal, V.; Lahoti, G.; Bhandarkar, U.; Neergat, M.

    2011-08-01

    The effects of process parameters on iron nanoparticle formation and properties while using ferrocene as a precursor in a low-pressure capacitively coupled plasma are investigated. The L18 array of the Taguchi method, followed by the L4 array, is used with the notional objective of increasing the yield of nanoparticles. A study of the size, shape and composition of the particles (using transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, x-ray diffraction, CHON and inductively coupled plasma-atomic emission spectroscopy analysis) gives an insight into the role played by various process parameters. Pressure is the most critical parameter in increasing nanoparticle yield, whereas hydrogen flow plays a key role in determining the nanoparticle size and composition. Atomic hydrogen helps in removing amorphous carbon and reducing the nanoparticle size. RF power plays an important role in the dissociation of ferrocene thus also affecting the composition. Nanoparticles obtained using optimized conditions are a mixture of Fe3O4 and Fe2O3 with cluster size 25-40 nm in diameter that are further made up of 2-4 nm crystallites. Magnetic property measurements indicate that the nanoparticles are super-paramagnetic in nature.

  4. Metallurgical consideration on the calibration curve for binary alloy samples in low-pressure argon laser-induced plasma spectrometry.

    PubMed

    Sasaki, Yo; Shimada, Haruhiko; Wagatsuma, Kazuaki

    2011-01-01

    The composition dependence of the emission intensities was investigated in Cu-Ni as well as Ni-Zn binary alloy samples when a low-pressure argon laser-induced plasma was employed as the excitation source. The calibration curve in the Cu-Ni alloy system gave a linear relationship, implying that the selective evaporation of Cu or Ni atoms was caused less in those alloys having several chemical compositions. The Cu-Ni binary alloy has a solid solution phase all over the chemical compositions (all-proportional solid solution): Cu and Ni atoms form no intermetallic compounds but can occupy any positions of a face-centered cubic lattice without any particular interaction. This metallurgical structure would enable Cu and Ni atoms to be released from the sample surface individually, which means that the amount of ablation corresponds to the chemical composition of the alloy sample. For a comparison, a Ni-Zn binary alloy system was also investigated to find calibration curves yielding a nonlinear relationship, differing from those of the Cu-Ni alloy. The reason for this is that the Ni-Zn binary alloy has several metallurgical phases comprising different intermetallic compounds which would each vary the evaporation behavior of Zn. It should be paid attention in LIPS that the ablated composition after laser irradiation is sometimes different from the chemical composition, depending on the kinds of samples and their metallurgical structures.

  5. Minimization of short-term low-pressure membrane fouling using a magnetic ion exchange (MIEX(®)) resin.

    PubMed

    Jutaporn, Panitan; Singer, Philip C; Cory, Rose M; Coronell, Orlando

    2016-07-01

    Two challenges to low-pressure membrane (LPM) filtration are limited rejection of dissolved organic matter (DOM) and membrane fouling by DOM. The magnetic ion exchange resin MIEX(®) (Ixom Watercare Inc.) has been demonstrated to remove substantial amounts of DOM from many source waters, suggesting that MIEX can both reduce DOM content in membrane feed waters and minimize LPM fouling. We tested the effect of MIEX pretreatment on the reduction of short-term LPM fouling potential using feed waters varying in DOM concentration and composition. Four natural and two synthetic waters were studied and a polyvinylidene fluoride (PVDF) hollow-fiber ultrafiltration membrane was used in membrane fouling tests. To evaluate whether MIEX removes the fractions of DOM that cause LPM fouling, the DOM in raw, MIEX-treated, and membrane feed and backwash waters was characterized in terms of DOM concentration and composition. Results showed that: (i) the efficacy of MIEX to reduce LPM fouling varies broadly with source water; (ii) MIEX preferentially removes terrestrial DOM over microbial DOM; (iii) microbial DOM is a more important contributor to LPM fouling than terrestrial DOM, relative to their respective concentrations in source waters; and (iv) the fluorescence intensity of microbial DOM in source waters can be used as a quantitative indicator of the ability of MIEX to reduce their membrane fouling potential. Thus, when ion exchange resin processes are used for DOM removal towards membrane fouling reduction, it is advisable to use a resin that has been designed to effectively remove microbial DOM.

  6. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve.

    PubMed

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-05-20

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D(®) software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink(®) in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system.

  7. Acoustic performance of low pressure axial fan rotors with different blade chord length and radial load distribution

    NASA Astrophysics Data System (ADS)

    Carolus, Thomas

    The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.

  8. Development of a 3D Filling Model of Low-Pressure Die-Cast Aluminum Alloy Wheels

    NASA Astrophysics Data System (ADS)

    Duan, Jianglan; Maijer, Daan; Cockcroft, Steve; Reilly, Carl

    2013-12-01

    A two-phase computational fluid dynamics model of the low-pressure die-cast process for the production of A356 aluminum alloy wheels has been developed to predict the flow conditions during die filling. The filling model represents a 36-deg section of a production wheel, and was developed within the commercial finite-volume package, ANSYS CFX, assuming isothermal conditions. To fully understand the behavior of the free surface, a novel technique was developed to approximate the vent resistances as they impact on the development of a backpressure within the die cavity. The filling model was first validated against experimental data, and then was used to investigate the effects of venting conditions and pressure curves during die filling. It was found that vent resistance and vent location strongly affected die filling time, free surface topography, and air entrainment for a given pressure fill-curve. With regard to the pressure curve, the model revealed a strong relation between the pressure curve and the flow behavior in the hub, which is an area prone to defect formation.

  9. High temperature tensile and creep behaviour of low pressure plasma-sprayed Ni-Co-Cr-Al-Y coating alloy

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1986-01-01

    The high temperature tensile and creep behavior of low pressure plasma-sprayed plates of a typical Ni-Co-Cr-Al-Y alloy has been studied. From room temperature to 800 K, the Ni-Co-Cr-Al-Y alloy studied has nearly a constant low ductility and a high strength. At higher temperatures, it becomes weak and highly ductile. At and above 1123 K, the behavior is highly dependent on strain rate and exhibits classic superplastic characteristics with a high ductility at intermediate strain rates and a strain rate sensitivity of about 0.5. At either higher or lower strain rates, the ductility decreases and the strain rate sensitivities are about 0.2. In the superplastic deformation range, the activation energy for creep is 120 + or - 20 kJ/mol, suggesting a diffusion-aided grain boundary sliding mechanism. Outside the superplastic range, the activation energy for creep is calculated to be 290 + or - 20 kJ/mol.

  10. Experimental studies of the kinetics of the reaction of hydroxyl (OH) radicals with 3-methylfuran at low pressure

    NASA Astrophysics Data System (ADS)

    Liljegren, J. A.; Stevens, P. S.

    2011-12-01

    In addition to anthropogenic origins from fossil fuel combustion and biomass burning, 3-methylfuran is an atmospheric constituent of interest due to biogenic origins from the OH-initiated oxidation of isoprene. Although the yield of 3-methylfuran produced from the OH-initiated oxidation of isoprene is relatively small (approximately 5%), 3-methylfuran could contribute significantly to atmospheric chemistry due to the high emission rate of isoprene to the atmosphere. A knowledge of the rate constant for the reaction of OH radicals with 3-methylfuran under a variety of conditions is important for determining the overall impact of isoprene emissions on atmospheric chemistry. The rate constant for the reaction of OH with 3-methylfuran has been measured as a function of temperature at low pressure using discharge-flow techniques coupled with laser induced fluorescence detection of OH. These absolute measurements at room temperature will be compared to previous measurements using relative rate techniques. The measurements of the temperature dependence for this reaction are the first to be reported.

  11. Mass spectrometry of positive ions in capacitively coupled low pressure RF discharges in oxygen with water impurities

    NASA Astrophysics Data System (ADS)

    Stefanović, Ilija; Stojanović, Vladimir; Boulmer-Leborgne, Chantal; Lecas, Thomas; Kovacevic, Eva; Berndt, Johannes

    2016-07-01

    A capacitively coupled RF oxygen discharge is studied by means of mass spectroscopy. Mass spectra of neutral and positive species are measured in the mid plane between the electrodes at different distances between plasma and mass-spectrometer orifice. In the case of positive ions, as expected, the largest flux originates from \\text{O}2+ . However, a significant number of impurities are detected, especially for low input powers and larger distances. The most abundant positive ions (besides \\text{O}2+ ) are \\text{N}{{\\text{O}}+}, \\text{NO}2+ , {{\\text{H}}+}≤ft({{\\text{H}}2}\\text{O}\\right) , and {{\\text{H}}+}{{≤ft({{\\text{H}}2}\\text{O}\\right)}2} . In particular, for the case of hydrated hydronium ions {{\\text{H}}+}{{≤ft({{\\text{H}}2}\\text{O}\\right)}n} (n  =  1, 2) a surprisingly large flux (for low pressure plasma conditions) is detected. Another interesting fact concerns the {{\\text{H}}2}{{\\text{O}}+} ions. Despite the relatively high ammount of water impurities {{\\text{H}}2}{{\\text{O}}+} ions are present only in traces. The reaction mechanisms leading to the production of the observed ions, especially the hydrated hydronium ions are discussed.

  12. Characterization of low-pressure microwave and radio frequency discharges in oxygen applying optical emission spectroscopy and multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Styrnoll, Tim; Mitschker, Felix; Bienholz, Stefan; Nikita, Bibinov; Awakowicz, Peter

    2013-11-01

    Optical emission spectroscopy (OES) and multipole resonance probe (MRP) are adopted to characterize low-pressure microwave (MW) and radio frequency (RF) discharges in oxygen. In this context, both discharges are usually applied for the deposition of permeation barrier SiOx films on plastic foils or the inner surface of plastic bottles. For technological reasons the MW excitation is modulated and a continuous wave (cw) RF bias is used. The RF voltage produces a stationary low-density plasma, whereas the high-density MW discharge is pulsed. For the optimization of deposition process and the quality of the deposited barrier films, plasma conditions are characterized using OES and MRP. To simplify the comparison of applied diagnostics, both MW and RF discharges are studied separately in cw mode. The OES and MRP diagnostic methods complement each other and provide reliable information about electron density and electron temperature. In the MW case, electron density amounts to ne = (1.25 ± 0.26) × 1017 m-3, and kTe to 1.93 ± 0.20 eV, in the RF case ne = (6.8 ± 1.8)×1015 m-3 and kTe = 2.6 ± 0.35 eV. The corresponding gas temperatures are 760±40 K and 440±20 K.

  13. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve.

    PubMed

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-01-01

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D(®) software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink(®) in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system. PMID:27213398

  14. Hot Corrosion Behavior of Low-Pressure Cold-Sprayed CoNiCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, L. W.; Ning, X. J.; Lu, L.; Wang, Q. S.; Wang, L.

    2016-02-01

    CoNiCrAlY coatings were deposited by low-pressure cold spraying and pre-oxidized in a vacuum environment, and its hot corrosion behavior in pure Na2SO4 and 75 wt.% Na2SO4 + 25 wt.% NaCl salts was investigated. The pre-oxidation treatment resulted in the formation of a dense and continuous α-Al2O3 scale on the coating surface. After being corroded for 150 h at 900 °C, the pre-oxidized coating exhibited better corrosion resistance to both salts than the as-sprayed coating. The presence of preformed Al2O3 scale reduced the consumption rate of aluminum, by delaying the formation of internal oxides and sulfides and promoting the formation of a denser and more adherent Al2O3 scale. Moreover, we investigated the corrosion mechanism of cold-sprayed CoNiCrAlY coatings in the two salts and discussed the effect of the pre-oxidation treatment.

  15. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve

    PubMed Central

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-01-01

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D® software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink® in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system. PMID:27213398

  16. Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water.

    PubMed

    Sholtes, Kari A; Lowe, Kincaid; Walters, Glenn W; Sobsey, Mark D; Linden, Karl G; Casanova, Lisa M

    2016-09-01

    Ultraviolet (UV) light-emitting diodes (LEDs) emitting at 260 nm were evaluated to determine the inactivation kinetics of bacteria, viruses, and spores compared to low-pressure (LP) UV irradiation. Test microbes were Escherichia coli B, a non-enveloped virus (MS-2), and a bacterial spore (Bacillus atrophaeus). For LP UV, 4-log10 reduction doses were: E. coli B, 6.5 mJ/cm(2); MS-2, 59.3 mJ/cm(2); and B. atrophaeus, 30.0 mJ/cm(2). For UV LEDs, the 4-log10 reduction doses were E. coli B, 6.2 mJ/cm(2); MS-2, 58 mJ/cm(2); and B. atrophaeus, 18.7 mJ/cm(2). Microbial inactivation kinetics of the two UV technologies were not significantly different for E. coli B and MS-2, but were different for B. atrophaeus spores. UV LEDs at 260 nm are at least as effective for inactivating microbes in water as conventional LP UV sources and should undergo further development in treatment systems to disinfect drinking water. PMID:26888599

  17. Tailoring surface properties of polyethylene separator by low pressure 13.56 MHz RF oxygen plasma glow discharge

    NASA Astrophysics Data System (ADS)

    Li, Chun; Liang, Chia-Han; Huang, Chun

    2016-01-01

    Low-pressure plasma surface modification in a radio-frequency capacitively coupled glow discharge of oxygen gas was carried out to induce polar functional groups onto polyethylene membrane separator surfaces to enhance its hydrophilicity. The surface changes in surface free energy were monitored by static contact angle measurement. A significant increase in the surface energy of polyethylene membrane separators caused by the oxygen gas plasma modifications was observed. The static water contact angle of the plasma-modified membrane separator significantly decreased with the increase in treatment duration and plasma power. An obvious increase in the surface energy of the membrane separators owing to the oxidative effect of oxygen-gas-plasma modifications was also observed. Optical emission spectroscopy was carried out to analyze the chemical species generated by oxygen gas plasma surface modification. The variations in the surface morphology and chemical structure of the separators were confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). XPS showed significantly higher surface concentrations of oxygen functional groups in the oxygen-gas-plasma-modified polymeric separator surfaces than in the unmodified polymeric separator surface. The experimental results show the important role of chemical species in the interaction between oxygen gas plasmas and the separator surface, which can be controlled by surface modification to tailor the hydrophilicity of the separator.

  18. Thermal barrier coating life and isothermal oxidation of low-pressure plasma-sprayed bond coat alloys

    NASA Technical Reports Server (NTRS)

    Brindley, W. J.; Miller, R. A.

    1990-01-01

    The paper investigates the isothermal oxidation kinetics of Ni-35Cr-6Al-0.95Y, Ni-18Cr-12Al-0.3Y, and Ni-16Cr-6Al-0.3Y low-pressure plasma-sprayed bond coat alloys and examines the effect of these alloys on the thermal barrier coating (TBC) cyclic life. TBC life was examined by cycling substrates coated with the different bond coats and a ZrO2-7 wt pct Y2O3 TBC in an air-rich burner rig flame between 1150 C and room temperature. The oxidation kinetics of the three bond coat alloys was examined by isothermal oxidation of monolithic NJiCrAlY coupons at 1083 C. The Ni-35Cr-6Al-0.95Y alloy exhibits comparatively high isothermal oxidation weight gains and provides the longest TBC life, whereas the Ni-16Cr-6Al-0.3Y alloy had the lowest weight gains and provided the shortest TBC life. The results show that, although bond coat oxidation is known to have a strong detrimental effect on TBC life, it is not the only bond coat factor that determines TBC life.

  19. Application of low-pressure gas chromatography/tandem mass spectrometry to the determination of pesticide residues in tropical fruits.

    PubMed

    Martínez Vidal, José Luis; Fernández Moreno, José Luis; Arrebola Liébanas, Francisco Javier; Garrido Frenich, Antonia

    2007-01-01

    A multiresidue method has been developed for determining pesticide residues in the tropical fruits kiwi, custard apple, and mango. The intended purpose of the method is for regulatory analyses of commodities for pesticides that have established maximum residue limits. A fast and simple extraction method with cyclohexane-ethyl acetate (1 + 1, v/v) and a high-speed homogenizer was optimized. Pressurized liquid extraction was evaluated as an alternative automated extraction technique. The pesticide residues were determined by using low-pressure gas chromatography coupled to tandem mass spectrometry. The proposed methodology was validated for each matrix. Pesticide recoveries ranged from 70 to 110%, with repeatability relative standard deviations of < or = 18% at spiking levels of 12 and 50 microg/kg. The limits of quantitation were in the range of 0.03-6.17 microg/kg, and the limits of detection were between 0.01 and 3.75 microg/kg. Mango can be selected as a representative matrix for calibration on the basis of the results of a potential matrix effect study. The method was successfully applied to the determination of pesticide residues in real samples in Spain.

  20. Experimental and numerical investigations of electron density in low-pressure dual-frequency capacitively coupled oxygen discharges

    SciTech Connect

    Liu, Jia; Wen, De-Qi; Liu, Yong-Xin; Gao, Fei; Lu, Wen-Qi; Wang, You-Nian

    2013-11-15

    The electron density is measured in low-pressure dual-frequency (2/60 MHz) capacitively coupled oxygen discharges by utilizing a floating hairpin probe. The dependence of electron density at the discharge center on the high frequency (HF) power, low frequency (LF) power, and gas pressure are investigated in detail. A (1D) particle-in-cell/Monte Carlo method is developed to calculate the time-averaged electron density at the discharge center and the simulation results are compared with the experimental ones, and general agreements are achieved. With increasing HF power, the electron density linearly increases. The electron density exhibits different changes with the LF power at different HF powers. At low HF powers (e.g., 30 W in our experiment), the electron density increases with increasing LF power while the electron density decreases with increasing LF power at relatively high HF powers (e.g., 120 W in our experiment). With increasing gas pressure the electron density first increases rapidly to reach a maximum value and then decreases slowly due to the combined effect of the production process by the ionization and the loss processes including the surface and volume losses.

  1. On-line automated evaluation of lipid nanoparticles transdermal permeation using Franz diffusion cell and low-pressure chromatography.

    PubMed

    Alves, Ana Catarina; Ramos, Inês I; Nunes, Cláudia; Magalhães, Luís M; Sklenářová, Hana; Segundo, Marcela A; Lima, José L F C; Reis, Salette

    2016-01-01

    A low-pressure liquid chromatography system for the on-line quantification of caffeine loaded into lipid nanoparticles that permeates pig skin was developed. The apparatus includes a Franz diffusion cell with computer-controlled sampling that allows collection of acceptor solution with automatic compensation for sample withdrawing, and a C-18 reversed-phase monolithic column integrated in a typical Flow Injection Analysis (FIA) set-up where separation between caffeine and other matrix elements is performed before spectrophotometric quantification at 273 nm. Several parameters regarding chromatographic analysis (propulsion element, column length, mobile phase composition, and flow rate) were studied along with the establishment of the sampling procedure. Under the selected conditions (monolithic column Chromolith® RP-18 15 mm × 4.6 mm i.d., acetonitrile:water 10:90 (v/v), flow rate 0.45 mL min(-1)) a detection limit of 4 μM and RSD values for caffeine concentration <2% were achieved. High recovery values were obtained when Hepes buffer incubated as acceptor solution in presence of pig skin for 8 h was spiked with caffeine (103±5%). The developed system also accounts for low organic solvent consumption, low operating costs, low generation of waste and high sample throughput (24 h(-1)). Due to the real time automated sampling and high throughput, transdermal permeation profiles of nanoformulations can be established within a time frame seldom observed by conventional techniques.

  2. On-line automated evaluation of lipid nanoparticles transdermal permeation using Franz diffusion cell and low-pressure chromatography.

    PubMed

    Alves, Ana Catarina; Ramos, Inês I; Nunes, Cláudia; Magalhães, Luís M; Sklenářová, Hana; Segundo, Marcela A; Lima, José L F C; Reis, Salette

    2016-01-01

    A low-pressure liquid chromatography system for the on-line quantification of caffeine loaded into lipid nanoparticles that permeates pig skin was developed. The apparatus includes a Franz diffusion cell with computer-controlled sampling that allows collection of acceptor solution with automatic compensation for sample withdrawing, and a C-18 reversed-phase monolithic column integrated in a typical Flow Injection Analysis (FIA) set-up where separation between caffeine and other matrix elements is performed before spectrophotometric quantification at 273 nm. Several parameters regarding chromatographic analysis (propulsion element, column length, mobile phase composition, and flow rate) were studied along with the establishment of the sampling procedure. Under the selected conditions (monolithic column Chromolith® RP-18 15 mm × 4.6 mm i.d., acetonitrile:water 10:90 (v/v), flow rate 0.45 mL min(-1)) a detection limit of 4 μM and RSD values for caffeine concentration <2% were achieved. High recovery values were obtained when Hepes buffer incubated as acceptor solution in presence of pig skin for 8 h was spiked with caffeine (103±5%). The developed system also accounts for low organic solvent consumption, low operating costs, low generation of waste and high sample throughput (24 h(-1)). Due to the real time automated sampling and high throughput, transdermal permeation profiles of nanoformulations can be established within a time frame seldom observed by conventional techniques. PMID:26695277

  3. Numerical study of effect of secondary electron emission on discharge characteristics in low pressure capacitive RF argon discharge

    SciTech Connect

    Liu, Qian; Liu, Yue Samir, Tagra; Ma, Zhaoshuai

    2014-08-15

    Based on the drift and diffusion approximation theory, a 1D fluid model on capacitively coupled RF argon glow discharge at low pressure is established to study the effect of secondary electron emission (SEE) on the discharge characteristics. The model is numerically solved by using a finite difference method and the numerical results are obtained. The numerical results indicate that when the SEE coefficient is larger, the plasma density is higher and the time of reaching steady state is longer. It is also found that the cycle-averaged electric field, electric potential, and electron temperature change a little as the SEE coefficient is increased. Moreover, the discharge characteristics in some nonequilibrium discharge processes with different SEE coefficients have been compared. The analysis shows that when the SEE coefficient is varied from 0.01 to 0.3, the cycle-averaged electron net power absorption, electron heating rate, thermal convective term, electron energy dissipation, and ionization all have different degrees of growth. While the electron energy dissipation and ionization are quite special, there appear two peaks near each sheath region in the discharge with a relatively larger SEE coefficient. In this case, the discharge is certainly operated in a hybrid α-γ-mode.

  4. Spectrochemical analysis of powder using 355 nm Nd-YAG laser-induced low-pressure plasma.

    PubMed

    Lie, Zener S; Pardede, M; Hedwig, R; Suliyanti, M M; Kurniawan, Koo Hendrik; Munadi; Lee, Yong-Inn; Kagawa, Kiichiro; Hattori, Isamu; Tjia, May On

    2008-04-01

    The applicability of spectrochemical analysis of minute amounts of powder samples was investigated using an ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A large variety of chemical powder samples of different composition were employed in the experiment. These included a mixture of copper(II) sulfate pentahydrate, zinc sulfide, and chromium(III) sulfate n-hydrate powders, baby powder, cosmetic powders, gold films, zinc supplement tablet, and muds and soils from different areas. The powder samples were prepared by pulverizing the original samples to an average size of around 30 microm in order to trap them in the tiny micro holes created on the surface of the quartz subtarget. It was demonstrated that in all cases studied, good quality spectra were obtained with low background, free from undesirable contamination by the subtarget elements and featuring ppm sensitivity. A further measurement revealed a linear calibration curve with zero intercept. These results clearly show the potential application of this technique for practical qualitative and quantitative spectrochemical analysis of powder samples in various fields of study and investigation. PMID:18305928

  5. Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure

    NASA Astrophysics Data System (ADS)

    Hedwig, Rinda; Budi, Wahyu Setia; Abdulmadjid, Syahrun Nur; Pardede, Marincan; Suliyanti, Maria Margaretha; Lie, Tjung Jie; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2006-12-01

    The applicability of spectrochemical analysis for liquid and powder samples of minute amount in the form of thin film was investigated using ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A variety of organic samples such as commercial black ink usually used for stamp pad, ginseng extract, human blood, liquid milk and ginseng powder was prepared as film deposited on the surface of an appropriate hard substrate such as copper plate or glass slide. It was demonstrated that in all cases studied, good quality spectra were obtained with very low background and free from undesirable contamination by the substrate elements, featuring ppm or even sub-ppm sensitivity and worthy of application for quantitative analysis of organic samples. The proper preparation of the films was found to be crucial in achieving the high quality spectra. It was further shown that much inferior results were obtained when the atmospheric-pressure (101 kPa) operating condition of laser-induced breakdown spectroscopy or the fundamental wavelength of the Nd-YAG laser was employed due to the excessive or improper laser ablation process.

  6. Photocatalytic reaction characteristics of the titanium dioxide supported on the long phosphorescent phosphor by a low pressure chemical vapor deposition.

    PubMed

    Kim, Jung-Sik; Kim, Seung-Woo; Jung, Sang-Chul

    2014-10-01

    This study investigated the photocatalytic behavior of titanium dioxide (TiO2)-supported on the long phosphorescent materials. Nanocrystalline TiO2 was directly deposited on the plate of alkaline earth aluminate phosphor, CaAl2O4: Eu2+, Nd3+ by a low pressure chemical vapor deposition (LPCVD). Photocatalytic reaction performance was examined with the decomposition of benzene gas by using a gas chromatography (GC) system under ultraviolet and visible light (λ > 410 nm) irradiations. The LPCVD TiO2-coated phosphors showed active photocatalytic reaction under visible irradiation. The mechanism of the photocatalytic reactivity for the TiO,-coated phosphorescent phosphor was discussed in terms of the energy band structure and phosphorescence. The coupling of TiO2 with phosphor may result in energy band bending in the junction region, which makes the TiO, crystal at the interface to be photo-reactive under visible light irradiation. The fastest degradation of ben- zene gas occurred for the TiO,-coated phosphor prepared with 1 min deposition time (-150 nm thickness). The LPCVD TiO,-coated phosphor is also photo-reactive under darkness through the light photons emitted from the CaAl2O4 phosphor. In addition, the TiO2-coated phosphorescent phosphors were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  7. Population transfer and rapid passage effects in a low pressure gas using a continuous wave quantum cascade laser.

    PubMed

    McCormack, E A; Lowth, H S; Bell, M T; Weidmann, D; Ritchie, G A D

    2012-07-21

    A continuous wave quantum cascade laser (cw-QCL) operating at 10 μm has been used to record absorption spectra of low pressure samples of OCS in an astigmatic Herriott cell. As a result of the frequency chirp of the laser, the spectra show clearly the effects of rapid passage on the absorption line shape. At the low chirp rates that can be obtained with the cw-QCL, population transfer between rovibrational quantum states is predicted to be much more efficient than in typical pulsed QCL experiments. This optical pumping is investigated by solving the Maxwell Bloch equations to simulate the propagation of the laser radiation through an inhomogeneously broadened two-level system. The calculated absorption profiles show good quantitative agreement with those measured experimentally over a range of chirp rates and optical thicknesses. It is predicted that at a low chirp rate of 0.13 MHz ns(-1), the population transfer between rovibrational quantum states is 12%, considerably more than that obtained at the higher chirp rates utilised in pulsed QCL experiments.

  8. Photocatalytic reaction characteristics of the titanium dioxide supported on the long phosphorescent phosphor by a low pressure chemical vapor deposition.

    PubMed

    Kim, Jung-Sik; Kim, Seung-Woo; Jung, Sang-Chul

    2014-10-01

    This study investigated the photocatalytic behavior of titanium dioxide (TiO2)-supported on the long phosphorescent materials. Nanocrystalline TiO2 was directly deposited on the plate of alkaline earth aluminate phosphor, CaAl2O4: Eu2+, Nd3+ by a low pressure chemical vapor deposition (LPCVD). Photocatalytic reaction performance was examined with the decomposition of benzene gas by using a gas chromatography (GC) system under ultraviolet and visible light (λ > 410 nm) irradiations. The LPCVD TiO2-coated phosphors showed active photocatalytic reaction under visible irradiation. The mechanism of the photocatalytic reactivity for the TiO,-coated phosphorescent phosphor was discussed in terms of the energy band structure and phosphorescence. The coupling of TiO2 with phosphor may result in energy band bending in the junction region, which makes the TiO, crystal at the interface to be photo-reactive under visible light irradiation. The fastest degradation of ben- zene gas occurred for the TiO,-coated phosphor prepared with 1 min deposition time (-150 nm thickness). The LPCVD TiO,-coated phosphor is also photo-reactive under darkness through the light photons emitted from the CaAl2O4 phosphor. In addition, the TiO2-coated phosphorescent phosphors were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). PMID:25942860

  9. Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Sasaki, Shinichirou; Suzuki, Ken; Miura, Hideo

    2016-03-01

    Although many studies have reported the chemical vapor deposition (CVD) growth of large-area monolayer graphene from methane, synthesis of graphene using acetylene as the source gas has not been fully explored. In this study, the low-pressure CVD (LPCVD) growth of graphene from acetylene was systematically investigated. We succeeded in regulating the domain size, defects density, layer number and the sheet resistance of graphene by changing the acetylene flow rates. Scanning electron microscopy and Raman spectroscopy were employed to confirm the layer number, uniformity and quality of the graphene films. It is found that a low flow rate of acetylene (0.28 sccm) is required to form high-quality monolayer graphene in our system. On the other hand, the high acetylene flow rate (7 sccm) will induce the growth of the bilayer graphene domains with high defects density. On the basis of selected area electron diffraction (SAED) pattern, the as-grown monolayer graphene domains were analyzed to be polycrystal. We also discussed the relation between the sheet resistacne and defects density in graphene. Our results provide great insights into the understanding of the CVD growth of monolayer and bilayer graphene from acetylene.

  10. Free-stream turbulence effects on the boundary layer of a high-lift low-pressure-turbine blade

    NASA Astrophysics Data System (ADS)

    Simoni, D.; Ubaldi, M.; Zunino, P.; Ampellio, E.

    2016-06-01

    The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally investigated at low and high free-stream turbulence intensity conditions. Measurements have been carried out in order to analyze the boundary layer transition and separation processes at a low Reynolds number, under both steady and unsteady inflows. Static pressure distributions along the blade surfaces as well as total pressure distributions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions. Particle Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields. The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one). These measurements allow the identification of the Kelvin-Helmholtz large scale coherent structures shed as a consequence of the boundary layer laminar separation under steady inflow, as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks. A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state, thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows.

  11. Experimental evaluation of a mathematical model for predicting transfer efficiency of a high volume-low pressure air spray gun.

    PubMed

    Tan, Y M; Flynn, M R

    2000-10-01

    The transfer efficiency of a spray-painting gun is defined as the amount of coating applied to the workpiece divided by the amount sprayed. Characterizing this transfer process allows for accurate estimation of the overspray generation rate, which is important for determining a spray painter's exposure to airborne contaminants. This study presents an experimental evaluation of a mathematical model for predicting the transfer efficiency of a high volume-low pressure spray gun. The effects of gun-to-surface distance and nozzle pressure on the agreement between the transfer efficiency measurement and prediction were examined. Wind tunnel studies and non-volatile vacuum pump oil in place of commercial paint were used to determine transfer efficiency at nine gun-to-surface distances and four nozzle pressure levels. The mathematical model successfully predicts transfer efficiency within the uncertainty limits. The least squares regression between measured and predicted transfer efficiency has a slope of 0.83 and an intercept of 0.12 (R2 = 0.98). Two correction factors were determined to improve the mathematical model. At higher nozzle pressure settings, 6.5 psig and 5.5 psig, the correction factor is a function of both gun-to-surface distance and nozzle pressure level. At lower nozzle pressures, 4 psig and 2.75 psig, gun-to-surface distance slightly influences the correction factor, while nozzle pressure has no discernible effect. PMID:11036729

  12. Low-pressure effective fluorescence lifetimes and photo-physical rate constants of one- and two-ring aromatics

    NASA Astrophysics Data System (ADS)

    Benzler, Thorsten; Faust, Stephan; Dreier, Thomas; Schulz, Christof

    2015-12-01

    One- and two-ring aromatics such as toluene and naphthalene are frequently used molecular tracer species in laser-induced fluorescence (LIF) imaging diagnostics. Quantifying LIF signal intensities requires knowledge of the photo-physical processes that determine the fluorescence quantum yield. Collision-induced and intramolecular energy transfer processes in the excited electronic state closely interact under practical conditions. They can be separated through experiments at variable low pressures. Effective fluorescence lifetimes of gaseous toluene, 1,2,4-trimethylbenzene, anisole, naphthalene, and 1-methylnaphthalene diluted in CO2 were measured after picosecond laser excitation at 266 nm and time-resolved detection of fluorescence intensities. Measurements in an optically accessible externally heated cell between 296 and 475 K and 0.010-1 bar showed that effective fluorescence lifetimes generally decrease with temperature, while the influence of the bath-gas pressure depends on the respective target species and temperature. The results provide non-radiative and fluorescence rate constants and experimentally validate the effect of photo-induced cooling.

  13. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties

    NASA Astrophysics Data System (ADS)

    Krishnasamy Navaneetha, Pandiyaraj; Vengatasamy, Selvarajan; Rajendrasing, R. Deshmukh; Paramasivam, Yoganand; Suresh, Balasubramanian; Sundaram, Maruthamuthu

    2013-01-01

    The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE film surfaces, which was confirmed by T-peel and lap-shear tests.

  14. Influence of the excited states on the electron-energy distribution function in low-pressure microwave argon plasmas

    SciTech Connect

    Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.

    2005-07-01

    In this work the influence of the excited states on the electron-energy distribution function has been determined for an argon microwave discharge at low pressure. A collisional-radiative model of argon has been developed taking into account the most recent experimental and theoretical values of argon-electron-impact excitation cross sections. The model has been solved along with the electron Boltzmann equation in order to study the influence of the inelastic collisions from the argon excited states on the electron-energy distribution function. Results show that under certain conditions the excited states can play an important role in determining the shape of the distribution function and the mean kinetic energy of the electrons, deplecting the high-energy tail due to inelastic processes from the excited states, especially from the 4s excited configuration. It has been found that from the populations of the excited states an excitation temperature can be defined. This excitation temperature, which can be experimentally determined by optical emission spectroscopy, is lower than the electron kinetic temperature obtained from the electron-energy distribution function.

  15. Evidence for Skill Level Differences in the Thought Processes of Golfers During High and Low Pressure Situations.

    PubMed

    Whitehead, Amy E; Taylor, Jamie A; Polman, Remco C J

    2015-01-01

    Two studies examined differences in the cognition of golfers with differing levels of expertise in high and low pressure situations. In study 1, six high skill and six low skill golfers performed six holes of golf, while verbalizing their thoughts using Think Aloud (TA) protocol. Higher skilled golfers' cognitive processes centered more on planning in comparison to lower skilled golfers. Study 2 investigated whether thought processes of golfers changed in response to competitive pressure. Eight high skill and eight moderate skilled golfers, completed a practice round and a competition round whilst verbalizing thoughts using TA. To create pressure in the competition condition, participants were instructed that monetary prizes would be awarded to the top three performers and scores of all golfers would be published in a league table in the club house. When performing under competitive pressure, it was found that higher skilled golfers were more likely to verbalize technical rules compared to practice conditions, especially during putting performance. This shift in cognition toward more technical aspects of motor performance was strongly related to scores on the Decision Specific Reinvestment Scale, suggesting individuals with a higher propensity for reinvestment show the largest changes in cognition under pressure. From a practical perspective, TA can aid a player, coach or sport psychologist by allowing thought processes to be identified and investigate a performer's thoughts when faced with the pressure of a competition. PMID:26779085

  16. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights

    PubMed Central

    Rowse, Elizabeth G.; Harris, Stephen; Jones, Gareth

    2016-01-01

    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum ‘white’ light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these ‘light-intolerant’ bat species. PMID:27008274

  17. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    SciTech Connect

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing; Wang, Xinxin

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observed that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.

  18. Evidence for Skill Level Differences in the Thought Processes of Golfers During High and Low Pressure Situations

    PubMed Central

    Whitehead, Amy E.; Taylor, Jamie A.; Polman, Remco C. J.

    2016-01-01

    Two studies examined differences in the cognition of golfers with differing levels of expertise in high and low pressure situations. In study 1, six high skill and six low skill golfers performed six holes of golf, while verbalizing their thoughts using Think Aloud (TA) protocol. Higher skilled golfers’ cognitive processes centered more on planning in comparison to lower skilled golfers. Study 2 investigated whether thought processes of golfers changed in response to competitive pressure. Eight high skill and eight moderate skilled golfers, completed a practice round and a competition round whilst verbalizing thoughts using TA. To create pressure in the competition condition, participants were instructed that monetary prizes would be awarded to the top three performers and scores of all golfers would be published in a league table in the club house. When performing under competitive pressure, it was found that higher skilled golfers were more likely to verbalize technical rules compared to practice conditions, especially during putting performance. This shift in cognition toward more technical aspects of motor performance was strongly related to scores on the Decision Specific Reinvestment Scale, suggesting individuals with a higher propensity for reinvestment show the largest changes in cognition under pressure. From a practical perspective, TA can aid a player, coach or sport psychologist by allowing thought processes to be identified and investigate a performer’s thoughts when faced with the pressure of a competition. PMID:26779085

  19. Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water.

    PubMed

    Sholtes, Kari A; Lowe, Kincaid; Walters, Glenn W; Sobsey, Mark D; Linden, Karl G; Casanova, Lisa M

    2016-09-01

    Ultraviolet (UV) light-emitting diodes (LEDs) emitting at 260 nm were evaluated to determine the inactivation kinetics of bacteria, viruses, and spores compared to low-pressure (LP) UV irradiation. Test microbes were Escherichia coli B, a non-enveloped virus (MS-2), and a bacterial spore (Bacillus atrophaeus). For LP UV, 4-log10 reduction doses were: E. coli B, 6.5 mJ/cm(2); MS-2, 59.3 mJ/cm(2); and B. atrophaeus, 30.0 mJ/cm(2). For UV LEDs, the 4-log10 reduction doses were E. coli B, 6.2 mJ/cm(2); MS-2, 58 mJ/cm(2); and B. atrophaeus, 18.7 mJ/cm(2). Microbial inactivation kinetics of the two UV technologies were not significantly different for E. coli B and MS-2, but were different for B. atrophaeus spores. UV LEDs at 260 nm are at least as effective for inactivating microbes in water as conventional LP UV sources and should undergo further development in treatment systems to disinfect drinking water.

  20. Low-pressure clino- to high-pressure clino-enstatite phase transition: a phonon related mechanism

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Wentzcovitch, R.

    2008-12-01

    We have investigated by first principles the compressional behavior of low-pressure (LP) and high-pressure (HP) MgSiO3 clinoenstatite. We have carefully examined cell shapes, chain angles, and polyhedral volume responses, such as angle variances and quasi-elongations, under pressure at room temperature. We have observed opposite behavior of the tetrahedra in the S-rotated and O-rotated chains with pressure in the LP phase, with a slight increase (decrease) in angle variance and quasi-elongation in the former (latter). Inspection of zone center modes of both phases under pressure reveals a transition path that converts the S- rotated chain in the LP phase into the O-rotated chain in the HP phase. This conversion is related to a slight softening of an Ag "metastable" Raman mode under pressure. The thermodynamics of the transformation was also investigated. As in other polymorphic transitions in silicates, phase boundaries determined by the GGA and LDA functionals bracket experimentally measured boundaries with the GGA (LDA) overestimating (underestimating) the same trend that the transition pressure. The calculated Clapeyron slopes are similar and in close agreement with the experimentally determined values. Research supported by NSF/EAR 0635990 and NSF/ITR 0428774 (VLab). Computations were performed at the Minnesota Supercomputing Institute.