Science.gov

Sample records for 13-stage dekati low-pressure

  1. Evaluation of the Dekati mass monitor for the measurement of exhaust particle mass emissions.

    PubMed

    Mamakos, Athanasios; Ntziachristos, Leonidas; Samaras, Zissis

    2006-08-01

    The Dekati mass monitor (OMM) is an instrument which measures the mass concentration of airborne particles in real time by combining aerodynamic and mobility size particle classification. In this study, we evaluate the performance of the DMM by sampling exhaust from five engines and vehicles of different technologies in both steady-state and transient tests. DMM results are found higher than the filter-based particulate matter (PM) by 39 +/- 24% (range stands for +/- one standard deviation) for 62 diesel tests conducted in total and 3% and 14% higher, respectively, in two gasoline tests. To explore whether the difference occurs because of the different measurement principles of DMM and filter-based PM, the DMM operation is replicated over steady-state tests by combining an electrical low-pressure impactor (ELPI) and a scanning mobility particle sizer (SMPS). The correlation of ELPI and SMPS derived mass and filter-based PM is satisfactory (R2 = 0.95) with a mean deviation of 5 +/- 15%. For the same tests, the correlation of DMM with PM was also high (R2 = 0.95), but DMM exceeded PM by 44 +/- 23% on average. The comparison of ELPI and SMPS and DMM results reveals that the latter overestimates both the geometric mean diameter and especially the width of the particle mass-weighted size distribution. These findings demonstrate thatthe statistically significant difference between the DMM and the filter-based PM cannot just originate from the different measurement principles but also from the actual implementation of the combined aerodynamic-mobility measurement in the DMM. Optimizing the DMM will require changes in its design and/or the calculation algorithm to improve the resolution and width of the aerodynamic size distribution recorded.

  2. Low-pressure

    SciTech Connect

    Baker, Richard; Kniep, Jay; Hao, Pingjiao; Chan, Chi Cheng; Nguyen, Vincent; Huang, Ivy; Amo, Karl; Freeman, Brice; Fulton, Don; Ly, Jennifer; Lipscomb, Glenn; Lou, Yuecun; Gogar, Ravikumar

    2015-01-29

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  3. Low-pressure ion source

    SciTech Connect

    Bacon, F.M.; Brainard, J.P.; O'Hagan, J.B.; Walko, R.J.

    1982-10-27

    A low pressure ion source for a neutron source comprises a filament cathode and an anode ring. Approximately 150V is applied between the cathode and the anode. Other electrodes, including a heat shield, a reflector and an aperture plate with a focus electrode, are placed at intermediate potentials. Electrons from the filament drawn out by the plasma and eventually removed by the anode are contained in a magnetic field created by a magnet ring. Ions are formed by electron impact with deuterium or tritium and are extracted at the aperture in the focus electrode. The ion source will typically generate a 200 mA beam through a 1.25 cm/sup 2/ aperture for an arc current of 10A. For deuterium gas, the ion beam is over 50 percent D/sup +/ with less than 1% impurity. The current density profile across the aperture will typically be uniform to within 20%.

  4. Low-pressure, chemical vapor deposition polysilicon

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.; Crotty, G. C.

    1986-01-01

    The low-pressure chemical vapor deposition (LPCVD) of polycrystalline silicon was investigted. The physical system was described, as was the controlling process parameters and requirements for producing films for use as an integral portion of the solar cell contact system.

  5. Low Pressure Nuclear Thermal Rocket (LPNTR) concept

    NASA Technical Reports Server (NTRS)

    Ramsthaler, J. H.

    1991-01-01

    A background and a description of the low pressure nuclear thermal system are presented. Performance, mission analysis, development, critical issues, and some conclusions are discussed. The following subject areas are covered: LPNTR's inherent advantages in critical NTR requirement; reactor trade studies; reference LPNTR; internal configuration and flow of preliminary LPNTR; particle bed fuel assembly; preliminary LPNTR neutronic study results; multiple LPNTR engine concept; tank and engine configuration for mission analysis; LPNTR reliability potential; LPNTR development program; and LPNTR program costs.

  6. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1989-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer-generated graphical representation. The fields obtained with a radially scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters of 3/16 inch to 1-1/2 inches I.D. (4.76 mm to 38.1 mm). The N(2) mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  7. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1990-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer generated graphical representation. The fields obtained with a radically scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate, and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters to 3/16 to 1-1/2 inches I.D. (4.76 to 38.1 mm). The N2 mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  8. General view of low pressure compressor (unit #3) with compressor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of low pressure compressor (unit #3) with compressor in foreground and engines in background. High pressure stage is on left, low pressure stage is on right. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  9. 22. Fire Protection Water Pump (low pressure), view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Fire Protection Water Pump (low pressure), view to the southwest. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  10. 14. Generator Fire Protection for Unit 5 (low pressure), view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Generator Fire Protection for Unit 5 (low pressure), view to the southeast. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  11. Low pressure cooling seal system for a gas turbine engine

    DOEpatents

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  12. DETAIL VIEW OF STEAM CHEST FOR LOW PRESSURE STAGE ENGINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF STEAM CHEST FOR LOW PRESSURE STAGE ENGINE OF UNIT #3. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  13. Detail view of steam chest for low pressure stage of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of steam chest for low pressure stage of unit 40. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  14. Detail view of steam chest for low pressure stage engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of steam chest for low pressure stage engine of unit 43. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  15. Self-aligning, low-pressure sealing poppet valve

    NASA Technical Reports Server (NTRS)

    Gonzalez, R.; Bratfisch, W. A.

    1972-01-01

    Design and characteristics of poppet valve operated by very low differential pressures to control fluid flow are described. Valve is used to control flow of petroleum, chemical, and aircraft hydraulics where low leakage rates and activation at low pressures are required.

  16. 20. VIEW OF LOW PRESSURE PUMPING EQUIPMENT ON THE SECOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF LOW PRESSURE PUMPING EQUIPMENT ON THE SECOND FLOOR OF BUILDING 707. THE EQUIPMENT MAINTAINS PROPER COOLANT PRESSURE IN MACHINES. (5/70) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  17. A low pressure filter system for new containment concepts

    SciTech Connect

    Dillmann, H.G.; Pasler, H.

    1995-02-01

    It is demonstrated that after severe accidents the decay heat can be removed in a passive mode in a convective flow, i.e. without needing a fan. The filter components with sufficiently low pressure drop values which are required for this purpose will be described and the results indicated.

  18. General interior view of pumphouse looking north. Low pressure compressor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General interior view of pumphouse looking north. Low pressure compressor (unit 45) is partially visible in left foreground. As shown from far end, 40, 41 and 42. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  19. North-South Migration of West Coast Low Pressure Centers

    ERIC Educational Resources Information Center

    McIntosh, C. Barron

    1974-01-01

    Monthly maps of low pressure centers are presented here to attempt a concrete representation that may help students to understand the seasonal change from dry months to wet months along the mid-latitude west coast as a seasonal north-south migration of factors controlling rain and drought. (Author/JH)

  20. Performance of low-pressure thermionic converters is evaluated

    NASA Technical Reports Server (NTRS)

    Richards, H. K.

    1969-01-01

    Experiments, evaluating the performance of low-pressure thermionic converters, were conducted with cesium, potassium, and sodium-metal vapors. The results of the investigation are useful in the selection of favorable conditions for the design of thermionic reactor fuel elements, including RF output for special applications.

  1. Improved model for window breakdown at low pressure

    SciTech Connect

    Chang, C.; Chen, H. B.; Liu, G. Z.; Zhu, X. X.; Fang, J. Y.

    2009-03-15

    An improved global model is proposed to analyze high power microwave dielectric window breakdown at low pressure. The effect of ionization on the average momentum and energy of electrons is taken into account and a Maxwellian electron energy distribution function is adopted. The plasma energy flow and density loss to dielectric, and partially secondary electrons returning plasma to compensate the density loss, have been analytically considered. Space charge potential drop and the generalized Bohm criterion are deduced analytically. After considering the energy and density loss as well as the secondary electron compensation, the breakdown time by using numerical calculation under low pressure gets shorter compared with that under no wall loss condition. In other words, the dielectric surface breakdown time is lower than plasma volume breakdown time.

  2. Ion optical effects in a low pressure rf plasma

    SciTech Connect

    Oechsner, Hans; Paulus, Hubert

    2013-11-15

    Ion optical effects in low pressure gas discharges are introduced as a novel input into low pressure plasma technology. They are based on appropriate geometrical plasma confinements which enable a control of the shape of internal density and potential distributions and, hence, the ion motion in the plasma bulk. Such effects are exemplified for an electron cyclotron wave resonance plasma in Ar at 1–5 × 10{sup −3} millibars. The geometry of the plasma chamber is modified by a conical and a cylindrical insert. Computer simulations display spherical plasma density contours to be formed around the conical confinement. This effects an increase of the ratio of the ion currents into the conical and the cylindrical inserts which depends on the fourth power of the plasma electron temperature. A quantitative understanding of this behavior is presented. As another essential result, the shape of the internal plasma contours is found to be independent of the pressure controlled plasma parameters.

  3. Energy Efficient Engine Low Pressure Subsystem Flow Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Lynn, Sean R.; Heidegger, Nathan J.; Delaney, Robert A.

    1998-01-01

    The objective of this project is to provide the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). The analyses were performed using three-dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off-design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component aero/mechanical interactions that previously were unknown to the designer until after hardware testing.

  4. Energy Efficient Engine Low Pressure Subsystem Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Delaney, Robert A.; Lynn, Sean R.; Veres, Joseph P.

    1998-01-01

    The objective of this study was to demonstrate the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). Detailed analyses were performed using three- dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off- design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component acro/mechanical interactions that previously were unknown to the designer until after hardware testing.

  5. Method of gettering hydrogen under conditions of low pressure

    DOEpatents

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1983-01-01

    A ternary intermetallic compound having the formula Zr(V.sub.1-x Cr.sub.x).sub.2 where x is in the range of 0.01 to 0.90 is capable of reversibly sorbing hydrogen at temperatures ranging from room temperature to 200.degree. C., at pressures down to 10.sup.-6 Torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  6. Evaluation of worn SSME low pressure liquid oxygen turbopump bearing

    NASA Technical Reports Server (NTRS)

    Dufrane, K. F.; Kannel, J. W.

    1978-01-01

    The larger of two ball bearings used to support the rotor of the low pressure liquid oxygen turbopump in each of the shuttle main engines was analyzed to identify the cause of severe internal wear. The actual operating loads were calculated along with their direction and length of time at each load based on the size and location of the race contact paths. It is suggested that the engine component design be modified to reduce bearing stress and enhance lubrication.

  7. A low pressure bipolar nickel-hydrogen battery

    SciTech Connect

    Golben, M.; Nechev, K.; DaCosta, D.H.; Rosso, M.J.

    1997-12-01

    Ergenics is developing a low pressure high power rechargeable battery for electric vehicles and other large battery applications. The Hy-Stor{trademark} battery couples a bipolar nickel-hydrogen electrochemical system with the high energy storage density of metal hydride technology. In addition to its long cycle life, high specific power, and energy density, this battery offers safety and economic advantages over other rechargeable batteries. Results from preliminary testing of the first Hy-Stor battery are presented.

  8. Development of the Low-Pressure Hydride/Dehydride Process

    SciTech Connect

    Rueben L. Gutierrez

    2001-04-01

    The low-pressure hydride/dehydride process was developed from the need to recover thin-film coatings of plutonium metal from the inner walls of an isotope separation chamber located at Los Alamos and to improve the safety operation of a hydride recovery process using hydrogen at a pressure of 0.7 atm at Rocky Flats. This process is now the heart of the Advanced Recovery and Integrated Extraction System (ARIES) project.

  9. Low-pressure overdriven experiments in PBX-9502

    SciTech Connect

    Jensen, Brian J; Byers, Mark E

    2009-01-01

    Symmetric impact experiments were performed on PBX 9502 to obtain Hugoniot data in the low-pressure, overdriven regime. An explosive plane wave lens (P300 with comp-B booster) was used to launch an aluminum flyer plate (4 to 4.5 km/s) into an aluminum target backed by the PBX 9502 samples and a LiF window. Photonic Doppler velocimetry (PDV) was used to obtain the shock transit time through the PBX 9502 samples and wave profile data at the PBX 9502/LiF interface. Past experimental result in the overdriven regime, utilizing a rotating mirror streak camera, revealed a well-defined high-pressure Hugoniot. In contrast, the low-pressure (overdriven) data exhibited significant scatter likely due to non-steady wave effects associated with the thin PBX 9502 samples (3-5 mm) used in the experiments. The objective of the current work was to obtain Hugoniot data in the low-pressure, overdriven regime for PBX 9502 using recently developed diagnostics along with thicker samples (5-10mm) to decrease the uncertainty and scatter in the Hugoniot data.

  10. Low-Pressure Overdriven Experiments on PBX 9502

    NASA Astrophysics Data System (ADS)

    Jensen, B. J.; Byers, M.

    2009-12-01

    Symmetric impact experiments were performed on PBX 9502 to obtain Hugoniot data in thi low-pressure, overdriven regime. An explosive plane wave lens (P300 with comp-B booster) was used t( launch an aluminum flyer plate (4 to 4.5 km/s) into an aluminum target backed by the PBX 9502 sample and a LiF window. Photonic Doppler velocimetry (PDV) was used to obtain the shock transit time througl the PBX 9502 samples and wave profile data at the PBX 9502/LiF interface. Past experimental results ii the overdriven regime revealed a well-defined high-pressure Hugoniot, but the low-pressure (overdriven data exhibited significant scatter likely due to non-steady wave effects associated with the thin PBX 9502 samples (3-5 mm). The objective of the current work was to obtain Hugoniot data in the low-pressure overdriven regime for PBX 9502 using recently developed diagnostics along with thicker samples (5-10 mm to decrease the uncertainty and scatter in the Hugoniot data.

  11. Dynamic response of a collidant impacting a low pressure airbag

    NASA Astrophysics Data System (ADS)

    Dreher, Peter A.

    There are many uses of low pressure airbags, both military and commercial. Many of these applications have been hampered by inadequate and inaccurate modeling tools. This dissertation contains the derivation of a four degree-of-freedom system of differential equations from physical laws of mass and energy conservation, force equilibrium, and the Ideal Gas Law. Kinematic equations were derived to model a cylindrical airbag as a single control volume impacted by a parallelepiped collidant. An efficient numerical procedure was devised to solve the simplified system of equations in a manner amenable to discovering design trends. The largest public airbag experiment, both in scale and scope, was designed and built to collect data on low-pressure airbag responses, otherwise unavailable in the literature. The experimental results were compared to computational simulations to validate the simplified numerical model. Experimental response trends are presented that will aid airbag designers. The two objectives of using a low pressure airbag to demonstrate the feasibility to (1) accelerate a munition to 15 feet per second velocity from a bomb bay, and (2) decelerate humans hitting trucks below the human tolerance level of 50 G's, were both met.

  12. A wireless and passive low-pressure sensor.

    PubMed

    Nicolay, Pascal; Lenzhofer, Martin

    2014-02-17

    This paper will discuss the results obtained with a first prototype of a completely passive and wireless low pressure sensor. The device is a heat conductivity gauge, based on a wireless and passive SAW temperature sensor. The required heating energy is applied to the sensor using inductive coupling. The prototype was successfully tested in a vacuum chamber. Its equilibrium temperature changed drastically and in a reproducible way when pressure steps were applied. However, the response time was very long. A model is provided to account for the sensor's behavior. It is then used to show that the response time could be strongly improved using basic design improvements. Further possible improvements are discussed.

  13. Clinical and electrophysiological observations in patients with low pressure retinopathy.

    PubMed Central

    Russell, R W; Ikeda, H

    1986-01-01

    The clinical, angiographic, and electrophysiological features of seven patients with transient visual loss and low-pressure retinopathy are presented. Six of the patients also had symptoms of cerebral ischaemia. The commonest provoking feature was bright light. Angiography showed multiple extracranial occlusions involving both internal and external carotid arteries in addition to occlusion or stenosis on the contralateral side. Electroretinography showed delay in the recovery of the b wave in the affected eye after exposure to bright light. This appears to be a valuable test for the detection of minor degrees of ischaemic damage to the retina caused by insufficiency of the retinal and choroidal circulation. Images PMID:3756120

  14. Low pressure growth of cubic boron nitride films

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  15. Low pressure stagnation flow reactor with a flow barrier

    DOEpatents

    Vosen, Steven R.

    2001-01-01

    A flow barrier disposed at the periphery of a workpiece for achieving uniform reaction across the surface of the workpiece, such as a semiconductor wafer, in a stagnation flow reactor operating under the conditions of a low pressure or low flow rate. The flow barrier is preferably in the shape of annulus and can include within the annular structure passages or flow channels for directing a secondary flow of gas substantially at the surface of a semiconductor workpiece. The flow barrier can be constructed of any material which is chemically inert to reactive gases flowing over the surface of the semiconductor workpiece.

  16. Low pressure storage of natural gas on activated carbon

    NASA Astrophysics Data System (ADS)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  17. Protonation enhancement by dichloromethane doping in low-pressure photoionization

    NASA Astrophysics Data System (ADS)

    Shu, Jinian; Zou, Yao; Xu, Ce; Li, Zhen; Sun, Wanqi; Yang, Bo; Zhang, Haixu; Zhang, Peng; Ma, Pengkun

    2016-12-01

    Doping has been used to enhance the ionization efficiency of analytes in atmospheric pressure photoionization, which is based on charge exchange. Compounds with excellent ionization efficiencies are usually chosen as dopants. In this paper, we report a new phenomenon observed in low-pressure photoionization: Protonation enhancement by dichloromethane (CH2Cl2) doping. CH2Cl2 is not a common dopant due to its high ionization energy (11.33 eV). The low-pressure photoionization source was built using a krypton VUV lamp that emits photons with energies of 10.0 and 10.6 eV and was operated at ~500–1000 Pa. Protonation of water, methanol, ethanol, and acetaldehyde was respectively enhanced by 481.7 ± 122.4, 197.8 ± 18.8, 87.3 ± 7.8, and 93.5 ± 35.5 times after doping 291 ppmv CH2Cl2, meanwhile CH2Cl2 almost does not generate noticeable ions itself. This phenomenon has not been documented in the literature. A new protonation process involving in ion-pair and H-bond formations was proposed to expound the phenomenon. The observed phenomenon opens a new prospect for the improvement of the detection efficiency of VUV photoionization.

  18. Lattuce growth and water use in closed, low pressure environment

    NASA Astrophysics Data System (ADS)

    Fowler, P.; Rygalov, V.; Wheeler, R.; Bucklin, R.; Schumacher, N.

    Lettuce (Lactuca sativa L.) cv. Waldmann's Green plants were grown in a clear, hemispherical enclosure at a reduced atmospheric pressure to study the potential for using low pressure greenhouses on planetary missions. The atmosphere was maintained at 25 kPa total pressure, with ˜20 kPa of N_2, ˜5 kPa of O_2, and between 0.1 and 0.2 kPa of CO_2, supplied by CO_2 injection and a feed-back control system. A closed water cycle was maintained inside the low pressure greenhouse by recycling condensed humidity back to the plants, and only adding external water to offset water vapor leakage and uptake in the plant tissue. All plants were grown in a granular, arcillite medium (calcined clay chips), with nutrients supplied by adding time-release fertilizer (Osmocote 20-20-20). Plants were harvested after 45 days, averaging 237 g fresh mass, and 23.7 g dry mass. No obvious adverse effects were noted on the plants, with the exception of some minor "tip-burn" injury to some leaves. Additional studies are planned to compare growth and water flux (evapotranspiration) rates at higher pressures. Preliminary results suggest that water fluxes should be lower at the higher pressures provided equal vapor pressure deficits can be maintained. The results suggest that vegetative crops such as lettuce should grow well at reduced pressures if adequate water, nutrients, and CO_2 are provided.

  19. Protonation enhancement by dichloromethane doping in low-pressure photoionization

    PubMed Central

    Shu, Jinian; Zou, Yao; Xu, Ce; Li, Zhen; Sun, Wanqi; Yang, Bo; Zhang, Haixu; Zhang, Peng; Ma, Pengkun

    2016-01-01

    Doping has been used to enhance the ionization efficiency of analytes in atmospheric pressure photoionization, which is based on charge exchange. Compounds with excellent ionization efficiencies are usually chosen as dopants. In this paper, we report a new phenomenon observed in low-pressure photoionization: Protonation enhancement by dichloromethane (CH2Cl2) doping. CH2Cl2 is not a common dopant due to its high ionization energy (11.33 eV). The low-pressure photoionization source was built using a krypton VUV lamp that emits photons with energies of 10.0 and 10.6 eV and was operated at ~500–1000 Pa. Protonation of water, methanol, ethanol, and acetaldehyde was respectively enhanced by 481.7 ± 122.4, 197.8 ± 18.8, 87.3 ± 7.8, and 93.5 ± 35.5 times after doping 291 ppmv CH2Cl2, meanwhile CH2Cl2 almost does not generate noticeable ions itself. This phenomenon has not been documented in the literature. A new protonation process involving in ion-pair and H-bond formations was proposed to expound the phenomenon. The observed phenomenon opens a new prospect for the improvement of the detection efficiency of VUV photoionization. PMID:27905552

  20. Protonation enhancement by dichloromethane doping in low-pressure photoionization.

    PubMed

    Shu, Jinian; Zou, Yao; Xu, Ce; Li, Zhen; Sun, Wanqi; Yang, Bo; Zhang, Haixu; Zhang, Peng; Ma, Pengkun

    2016-12-01

    Doping has been used to enhance the ionization efficiency of analytes in atmospheric pressure photoionization, which is based on charge exchange. Compounds with excellent ionization efficiencies are usually chosen as dopants. In this paper, we report a new phenomenon observed in low-pressure photoionization: Protonation enhancement by dichloromethane (CH2Cl2) doping. CH2Cl2 is not a common dopant due to its high ionization energy (11.33 eV). The low-pressure photoionization source was built using a krypton VUV lamp that emits photons with energies of 10.0 and 10.6 eV and was operated at ~500-1000 Pa. Protonation of water, methanol, ethanol, and acetaldehyde was respectively enhanced by 481.7 ± 122.4, 197.8 ± 18.8, 87.3 ± 7.8, and 93.5 ± 35.5 times after doping 291 ppmv CH2Cl2, meanwhile CH2Cl2 almost does not generate noticeable ions itself. This phenomenon has not been documented in the literature. A new protonation process involving in ion-pair and H-bond formations was proposed to expound the phenomenon. The observed phenomenon opens a new prospect for the improvement of the detection efficiency of VUV photoionization.

  1. Performance assessment of low pressure nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harrold P., Jr.; Doughty, Glen E.

    1993-01-01

    An increase in Isp for nuclear thermal propulsion systems is desirable for reducing the propellant requirements and cost of future applications, such as the Mars Transfer Vehicle. Several previous design studies have suggested that the Isp could be increased substantially with hydrogen dissociation/recombination. Hydrogen molecules (H2), at high temperatures and low pressures, will dissociate to monatomic hydrogen (H). The reverse process (i.e., formation of H2 from H) is exothermic. The exothermic energy in a nozzle increases the kinetic energy and therefore, increases the Isp. The low pressure nuclear thermal propulsion system (LPNTP) system is expected to maximize the hydrogen dissociation/recombination and Isp by operating at high chamber temperatures and low chamber pressures. The process involves hydrogen flow through a high temperature, low pressure fission reactor, and out a nozzle. The high temperature (approximately 3000 K) of the hydrogen in the reactor is limited by the temperature limits of the reactor material. The minimum chamber pressure is about 1 atm because lower pressures decrease the engines thrust to weight ratio below acceptable limits. This study assumes that hydrogen leaves the reactor and enters the nozzle at the 3000 K equilibrium dissociation level. Hydrogen dissociation in the reactor does not affect LPNTP performance like dissociation in traditional chemical propulsion systems, because energy from the reactor resupplies energy lost due to hydrogen dissociation. Recombination takes place in the nozzle due primarily to a drop in temperature as the Mach number increases. However, as the Mach number increases beyond the nozzle throat, the static pressure and density of the flow decreases and minimizes the recombination. The ideal LPNTP Isp at 3000 K and 10 psia is 1160 seconds due to the added energy from fast recombination rates. The actual Isp depends on the finite kinetic reaction rates which affect the amount of monatomic hydrogen

  2. Low pressure regional metamorphism in the Mahneshan area, western Iran

    NASA Astrophysics Data System (ADS)

    Moazzen, M.; Droop, G. T. R.; Saki, A.

    2003-04-01

    LOW PRESSURE REGIONAL METAMORPHISM IN THE MAHNESHAN AREA, WESTERN IRAN M. Moazzen(1), G.T.R. Droop(2) and A. Saki(1) (1) Department of Geology, Tabriz University, 51664, Tabriz Iran, (2) Department of Earth Sciences, The University of Manchester, Manchester M13 9PL, UK moazzen@tabrizu.ac.ir/Fax:+98-411-3341244 The Mahneshan metamorphic complex is a part of the central Iran geological unit. Pelitic, calc-silicate and basic rocks have experienced polyphase deformation, metamorphism and partial melting producing a variety of mica schists, andalusite-staurolite-garnet schist, amphibolite and scapolite-, garnet- and phlogopite-bearing marbles. S-and I-type granitoids are spatially associated with the metamorphic rocks. Fossiliferous Cambrian sediments in the area are not metamorphosed, suggesting a Precambrian age for the metamorphism. Two main deformational phases D1 and D2 are recognised on the basis of field geology and micro-structural studies. The D1 deformational phase produced a slaty cleavage while D2 produced a crenulation cleavage, folding the D1 fabric. D2 was the major deformational phase in the area. Two metamorphic phases, M1 and M2, occurred during D1 and D2 respectively. M2 was stronger, causing moderate to high temperature/low pressure metamorphism and partial melting of the (semi)pelitic rocks. Conventional garnet-biotite thermometry yields temperatures of ca. 500°C for the andalusite-bearing pelites. Barometry of the pelitic rocks using petrogenetic grids and the GASP (garnet-aluminosilicate-quartz-plagioclase) barometer gives a pressure of ca. 3.5 kbar indicating low-pressure regional metamorphism. The data imply an average upper crustal geothermal gradient of ca. 40°/km. The S-type, garnet-bearing granitoids are believed to be products of partial melting of the (semi)pelitic rocks. Mineral parageneses and pressure-temperature estimates indicate a Buchan-type metamorphism during Precambrian of the Iranian crust. The intrusion of the I

  3. Numerical study of low pressure nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Kim, Suk C.; Stubbs, Robert M.

    1992-01-01

    The flowfields and performance of low pressure nuclear thermal rockets, which use hydrogen as a propellant, are studied by solving the Navier-Stokes equations and the species equations. A finite-rate chemistry model is used in the species equations, and the turbulence is simulated by the Baldwin-Lomax turbulence model with a modified van Driest's damping constant. The calculated results for the chamber temperatures of 3200 K and 4000 K with a chamber pressure range of 0.1 atm to 6 atm are presented as contours, centerline variations, and exit profiles. The performance values from the present calculations, such as the vacuum specific impulse and thrust, are compared with those from the 1D, inviscid equilibrium and frozen flow code.

  4. Relatively high plasma density in low pressure inductive discharges

    SciTech Connect

    Kang, Hyun-Ju; Kim, Yu-Sin; Chung, Chin-Wook

    2015-09-15

    Electron energy probability functions (EEPFs) were measured in a low pressure argon inductive discharge. As radio frequency (RF) power increases, discharge mode is changed from E-mode (capacitively coupled) to H-mode (inductively coupled) and the EEPFs evolve from a bi-Maxwellian distribution to a Maxwellian distribution. It is found that the plasma densities at low RF powers (<30 W) are much higher than the density predicted from the slope of the densities at high powers. Because high portion of high energy electrons of the bi-Maxwellian distribution lowers the collisional energy loss and low electron temperature of low energy electrons reduces particle loss rate at low powers. Therefore, the energy loss of plasma decreases and electron densities become higher at low powers.

  5. Application to low-pressure deposition of tungsten

    SciTech Connect

    Arora, R.; Pollard, R. )

    1991-05-01

    This paper reports on a mode for the simultaneous reaction kinetics and transport processes in chemical vapor deposition (CVD) reactors extended to treat deposition of materials that have a broad range of surface characteristics, e.g. sites with multiple dangling bonds and adsorbates with multiple bonding configurations. The model uses the nature of the surface to determine the elementary processes that can take place during growth. Rate constants for these processes are calculated from first principles using statistical thermodynamics, transition state theory, and bond dissociation enthalpies. In this way, deposition rates are determined without either assuming the reaction mechanism or arbitrarily choosing any kinetic parameter values. The utility of the approach is illustrated by modeling low-pressure CVD of tungsten from tungsten hexafluoride and hydrogen. The treatment considers 14 species and eight reactions in the gas together with 21 species and 65 processes at the surface.

  6. A Wireless and Passive Low-Pressure Sensor

    PubMed Central

    Nicolay, Pascal; Lenzhofer, Martin

    2014-01-01

    This paper will discuss the results obtained with a first prototype of a completely passive and wireless low pressure sensor. The device is a heat conductivity gauge, based on a wireless and passive SAW temperature sensor. The required heating energy is applied to the sensor using inductive coupling. The prototype was successfully tested in a vacuum chamber. Its equilibrium temperature changed drastically and in a reproducible way when pressure steps were applied. However, the response time was very long. A model is provided to account for the sensor's behavior. It is then used to show that the response time could be strongly improved using basic design improvements. Further possible improvements are discussed. PMID:24549249

  7. Very low pressure high power impulse triggered magnetron sputtering

    DOEpatents

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  8. Spatio-temporal characteristics of Trichel pulse at low pressure

    SciTech Connect

    He, Shoujie; Jing, Ha

    2014-01-15

    Trichel pulses are investigated using a needle-to-plane electrode geometry at low pressure. The evolution of current and voltage, the spatio-temporal discharge images of Trichel pulse are measured. The rising time and duration time in a pulse are about 10 μs and several tens of microseconds, respectively. One period of pulse can be divided into three stages: the stage preceding cathode breakdown, cathode glow formation, and discharge decaying process. Besides a cathode glow and a dark space, an anode glow is also observed. The emission spectra mainly originate from the C{sup 3}Π{sub u} → B{sup 3}Π{sub g} transition for nitrogen. In addition, the capacitances in parallel connected with the discharge cell have important influence on the pulsing frequency.

  9. Electron heating in low pressure capacitive discharges revisited

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2014-12-01

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account.

  10. Electron heating in low pressure capacitive discharges revisited

    SciTech Connect

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2014-12-15

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account.

  11. Low-Pressure Turbine Separation Control: Comparison With Experimental Data

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.

    2002-01-01

    The present work details a computational study, using the Glenn HT code, that analyzes the use of vortex generator jets (VGJs) to control separation on a low-pressure turbine (LPT) blade at low Reynolds numbers. The computational results are also compared with the experimental data for steady VGJs. It is found that the code determines the proper location of the separation point on the suction surface of the baseline blade (without any VGJ) for Reynolds numbers of 50,000 or less. Also, the code finds that the separated region on the suction surface of the blade vanishes with the use of VGJs. However, the separated region and the wake characteristics are not well predicted. The wake width is generally over-predicted while the wake depth is under-predicted.

  12. Oxidation rates of niobium and tantalum alloys at low pressures

    SciTech Connect

    DiStefano, J.R.; Hendricks, J.W. )

    1994-06-01

    Niobium and tantalum alloys have excellent properties for use in high-temperature, space-power applications, but must be protected from oxidation that would result from exposure to air in ground-evaluation tests. The oxygen-uptake/oxidation rates of three alloys, Nb-1Zr, PWC-11, and ASTAR-811C were measured at oxygen partial pressure of 10[sup [minus]6] and 10[sup [minus]7] torr at temperatures up to 1350 K. No visible oxide film was observed, and the oxidation rate was found to be linearly proportional to pressure and exponentially proportional to temperature. A thin molybdenum coating on Nb-1Zr was a barrier to low-pressure oxidation at 773 K. 13 refs., 6 figs., 7 tabs.

  13. Wall thinning criteria for low temperature-low pressure piping

    SciTech Connect

    Mertz, G.E.

    1993-01-01

    This acceptance criteria is intended to prevent gross rupture or rapidly propagating failure during normal and abnormal operating conditions. Pitting may be present in the carbon steel piping. While the acceptance criteria have provisions to preclude gross rupture through a pitted region, they do not protect against throughwall pit growth and subsequent leakage. Potential leakage through a pit in low pressure piping is less than the post-DBE design basis leakage. Both the uniform thinning and LTA criteria protect against leakage, since their potential for leakage is larger. The acceptance criteria protects against gross rupture due to general wall thinning, local wall thinning (LTA's), pitting, and fracture through weld defects. General wall thinning calculations are based on the restart criteria, SEP-24. LTA criteria for hoop stresses are based on ASME Code Case N-480 [open quotes]Examination Requirements for Pipe Wall Thinning Due to Single Phase Erosion and Corrosion[close quotes]. The LTA criteria for axial stress is based on an effective average thickness concept, which prevents plastic collapse of a locally thinned pipe. Limits on pit density, based on an effective cross section concept, are used to prevent gross rupture through a group of pits. The CEGB R-6 failure assessment diagram is used in the fracture evaluation, along with postulated weld defects. This criteria is intended for low temperature, low pressure piping systems. Corrosion and/or weld defects increase the peak stresses during normal operation and may lead to a reduction in fatigue life. Piping systems subject to significant thermal or mechanical fatigue will require additional analysis which is beyond the scope of this document.

  14. Partial discharge detection and analysis in low pressure environments

    NASA Astrophysics Data System (ADS)

    Liu, Xin

    Typical aerospace vehicles (aircraft and spacecraft) experience a wide range of operating pressures during ascending and returning to earth. Compared to the sea-level atmospheric pressure (760 Torr), the pressure at about 60 km altitude is 2 Torr. The performance of the electric power system components of the aerospace vehicles must remain reliable even under such sub-atmospheric operating conditions. It is well known that the dielectric strength of gaseous insulators, while the electrode arrangement remains unchanged, is pressure dependent. Therefore, characterization of the performance and behavior of the electrical insulation in flight vehicles in low-pressure environments is extremely important. Partial discharge testing is one of the practical methods for evaluating the integrity of electrical insulation in aerospace vehicles. This dissertation describes partial discharge (PD) measurements performed mainly with 60 Hz ac energization in air, argon and helium, for pressures between 2 and 760 Torr. Two main electrode arrangements were used. One was a needle-plane electrode arrangement with a Teflon insulating barrier. The other one was a twisted pair of insulated conductors taken from a standard aircraft wiring harness. The measurement results are presented in terms of typical PD current pulse waveforms and waveform analysis for both main electrode arrangements. The evaluation criteria are the waveform polarity, magnitude, shape, rise time, and phase angle (temporal location) relative to the source voltage. Two-variable histograms and statistical averages of the PD parameters are presented. The PD physical mechanisms are analyzed. For PD pattern recognition, both statistical methods (such as discharge parameter dot pattern representation, discharge parameter phase distribution, statistical operator calculations, and PD fingerprint development) and wavelet transform applications are investigated. The main conclusions of the dissertation include: (1) The PD current

  15. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    NASA Astrophysics Data System (ADS)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  16. Fragmentation of ions in a low pressure linear ion trap.

    PubMed

    Collings, Bruce A

    2007-08-01

    The efficiency of in-trap fragmentation in a low-pressure linear ion trap (LIT), using dipolar excitation, is dependent upon the choice of both the excitation q and the drive frequency of the quadrupole. In the work presented here, fragmentation efficiencies have been measured as a function of excitation q for drive frequencies of 816 kHz and 1.228 MHz. The experiments were carried out by fragmenting reserpine (609.23-->448.20 Th and 397.21-->365.19 Th transitions) and caffeine (195-->138 Th and 138-->110 Th transitions). The data showed that the onset of efficient fragmentation occurred at a lower Mathieu q for the LIT operated at 1.228 MHz when compared with the LIT operated at 816 kHz. A comparison of the fragmentation efficiency curves as a function of pseudo-potential well depth showed that the onset of fragmentation is independent of the drive frequency. In addition, a comparison of the fragmentation efficiency curves showed that all four of the precursor ions fragmented within a range of four V of pseudo-potential well depth. The choice of an appropriate excitation q can then be determined based upon a minimum pseudo-potential well depth, quadrupole field radius, drive frequency, and the mass of interest. Fragmentation efficiencies were also found to be significantly greater when using the higher drive frequency.

  17. "Politically-Incorrect" Electron Behavior in Low Pressure RF Discharges

    NASA Astrophysics Data System (ADS)

    Godyak, Valery; Kolobov, Vladimir

    1996-10-01

    The main interaction of plasma electrons with electromagnetic fields for bounded plasma of an rf discharge occurs in the vicinity of its boundaries (in the rf sheath of a capacitive rf discharge and in the skin layer of an inductive one). On the other hand, due to plasma inhomogeneity, a dc ambipolar field is always present in the bounded plasma. in low pressure discharges the ambipolar potential well captures low energy electrons within the discharge center while high energy electrons freely overcome the ambipolar potential and reach the plasma boundaries where heating takes place. Being segregated in space, low energy electrons are discriminated from participation in the heating process. When Coulomb interaction between low and high energy electron groups is weak, their temperatures appear to be essentially different ( a low energy peak on the EEDF). In this presentation we present theoretical and experimental evidence of such an apartheid in the low and high energy electron populations of the EEDF in rf discharge and we outline discharge conditions where such abnormal EEDF behavior is possible.

  18. Characteristics of Cylindrical Microwave Plasma Source at Low Pressure

    NASA Astrophysics Data System (ADS)

    Park, Seungil; Youn, S.; Kim, S. B.; Yoo, S. J.

    2016-10-01

    A microwave plasma source with a cylindrical resonance cavity has been proposed to generate the plasma at low pressure. This plasma source consists of magnetron, waveguide, antenna, and cavity. The microwave generating device is a commercial magnetron with 1 kW output power at the frequency of 2.45 GHz. The microwave is transmitted through the rectangular waveguide with the whistle shape, and coupled to the cavity by the slot antenna. The resonant mode of the cylindrical cavity is the TE111 mode. The operating pressure is between 0.1 Torr and 0.3 Torr with the Argon and nitrogen gas. The electron temperature and electron number density of argon plasma were measured with the optical emission spectroscopy measurement. And Ar1s5 metastable density was measured using tunable diode laser absorption spectroscopy (TDLAS). The plasma diagnostic results of a cylindrical microwave plasma source would be described in this study. This work was supported by R&D Program of ``Plasma Advanced Technology for Agriculture and Food (Plasma Farming)'' through the National Fusion Research Institute of Korea (NFRI) funded by the Government funds.

  19. Kinetic modeling study of toluene pyrolysis at low pressure

    SciTech Connect

    Zhang, Lidong; Cai, Jianghuai; Zhang, Taichang; Qi, Fei

    2010-09-15

    A detailed kinetic model, consisting of 137 species and 530 reactions, was developed to simulate toluene pyrolysis at low pressure within the temperature range from 1270 to 1870 K. The mole fraction profiles predicted for pyrolysis species up to phenanthrene were in good agreement with the experiment. The decomposition pathways of toluene and the growth pathways to polycyclic aromatic hydrocarbons (PAHs) were discussed from reaction flux analysis. Toluene decomposes through the reaction sequence C{sub 6}H{sub 5}CH{sub 3}{yields} C{sub 6}H{sub 5}CH{sub 2}{yields}C{sub 7}H{sub 6}{yields}c-C{sub 5}H{sub 5}{yields}C{sub 3}H{sub 3}, which also has a predominant contribution to the production of acetylene. Furthermore, sensitivity analysis showed that the primary decomposition reactions of toluene, C{sub 6}H{sub 5}CH{sub 3}=C{sub 6}H{sub 5}CH{sub 2}+H and C{sub 6}H{sub 5}CH{sub 3}=C{sub 6}H{sub 5}+CH{sub 3}, have great influences on the formation of small molecules, such as phenyl radical, benzyl radical, C2- and C3-species, which are critical to the formation of PAHs in the pyrolysis of toluene. (author)

  20. Downhole steam generator using low pressure fuel and air supply

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  1. Performance assessment of low pressure nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, H. P., Jr.; Doughty, G. E.

    1993-01-01

    A low pressure nuclear thermal propulsion (LPNTP) system, which takes advantage of hydrogen dissociation/recombination, was proposed as a means of increasing engine specific impulse (Isp). The effect of hydrogen dissociation/recombination on LPNTP Isp is examined. A two-dimensional computer model was used to show that the optimum chamber pressure is approximately 100 psia (at a chamber temperature of 3,000 K), with an Isp approximately 15 s higher than at 1,000 psia. At high chamber temperatures and low chamber pressures, the increase in Isp is due to both lower average molecular weights caused by dissociation and added kinetic energy from monatomic hydrogen recombination. Monatomic hydrogen recombination increases the Isp more then hydrogen dissociation. Variations in the mole fraction of monatomic hydrogen are similar to variations in static pressure along the axial nozzle position. Most recombination occurs close to the nozzle throat. Practical variations in nozzle geometry have minimal impact on recombination. Other models which can simulate a wider range of nozzle designs should be used in the future. The uncertainty of the hydrogen kinetic reaction rates at high temperatures (approximately 3,000 K) affects the accuracy of the analysis and should be verified with simple bench tests.

  2. Low pressure characteristics of the multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter; Oberrath, Jens

    2014-10-01

    The term ``Active plasma resonance spectroscopy'' (APRS) denotes a class of related techniques which utilize, for diagnostic purposes, the natural ability of plasmas to resonate on or near the electron plasma frequency ωpe. The basic idea dates back to the early days of discharge physics but has recently found renewed interest as an approach to industry-compatible plasma diagnostics: A radio frequent signal (in the GHz range) is coupled into the plasma via an antenna or probe, the spectral response is recorded (with the same or another antenna or probe), and a mathematical model is used to determine plasma parameters like the electron density or the electron temperature. When the method is applied to low pressure plasmas (of a few Pa and lower), kinetic effects must be accounted for in the mathematical model. This contribution studies a particular realization of the APRS scheme, the geometrically and electrically symmetric Multipole Resonance Probe (MRP). It is shown that the resonances of the MRP exhibit a residual damping in the limit p --> 0 which cannot be explained by Ohmic dissipation but only by kinetic effects. Supported by the German Federal Ministry of Education and Research (BMBF) in the framework of the PluTO project.

  3. Longitudinal discharge pumped low-pressure XeCl laser

    SciTech Connect

    Fedorov, A I

    2013-10-31

    We have studied output parameters of a XeCl and a N{sub 2} laser pumped by a longitudinal discharge with automatic spark UV preionisation. The output parameters of a low-pressure (30 Torr) XeCl laser operating with Ar, Ne and He as buffer gases or with no buffer gas have been optimised for the first time. The laser generated 5-ns FWHM pulses with an average power of 0.5 mW and output energy of 0.15 mJ. Under longitudinal discharge pumping, an output energy per unit volume of 1.8 J L{sup -1} atm{sup -1} was reached using helium as a buffer gas. With argon-containing and buffer-free mixtures, it was 1.5 J L{sup -1} atm{sup -1}. The N{sub 2} laser generated 2.5-ns FWHM pulses with an average power of 0.35 mW and output energy of 0.05 mJ. (lasers)

  4. Flow control in low pressure turbine blades using plasma actuators

    NASA Astrophysics Data System (ADS)

    Ramakumar, Karthik

    2005-11-01

    An experimental study of plasma flow control actuators for flow separation control in low pressure turbine (LPT) blades is presented. The actuator arrangement consists of two copper strips separated by a dielectric medium with an input voltage of approximately 5kV and a frequency input varying from 3-5 kHz, creating a region of plasma used for boundary layer flow control. The effect of varying waveform on control efficacy is investigated using sine, square and saw tooth waveforms. The impact of duty cycle and forcing frequency on both displacement and momentum thickness are also examined. Boundary layer measurements are carried out using PIV while measurements of the wake downstream are performed using a 7-hole probe for Reynolds number ranging from 30,000 to 50,000. Separation is fully controlled in most configurations and boundary layer parameters reveal that the actuator entrains the free-stream flow at the actuator location and creates a region of high turbulence, essentially behaving similar to an active boundary layer trip. A small region of reversed flow near the surface indicates the presence of cross-stream vortical structures. The use of plasma synthetic jet actuators flow LPT flow control is also discussed.

  5. Observing and Studying Extreme Low Pressure Events with Altimetry

    PubMed Central

    Carrère, Loren; Mertz, Françoise; Dorandeu, Joel; Quilfen, Yves; Patoux, Jerome

    2009-01-01

    The ability of altimetry to detect extreme low pressure events and the relationship between sea level pressure and sea level anomalies during extra-tropical depressions have been investigated. Specific altimeter treatments have been developed for tropical cyclones and applied to obtain a relevant along-track sea surface height (SSH) signal: the case of tropical cyclone Isabel is presented here. The S- and C-band measurements are used because they are less impacted by rain than the Ku-band, and new sea state bias (SSB) and wet troposphere corrections are proposed. More accurate strong altimeter wind speeds are computed thanks to the Young algorithm. Ocean signals not related to atmospheric pressure can be removed with accuracy, even within a Near Real Time context, by removing the maps of sea level anomaly (SLA) provided by SSALTO/Duacs. In the case of Extra-Tropical Depressions, the classical altimeter processing can be used. Ocean signal not related to atmospheric pressure is along-track filtered. The sea level pressure (SLP)-SLA relationship is investigated for the North Atlantic, North Pacific and Indian oceans; three regression models are proposed allowing restoring an altimeter SLP with a mean error of 5 hPa if compared to ECMWF or buoys SLP. The analysis of barotropic simulation outputs points out the regional variability of the SLP/Model Sea Level relationship and the wind effects. PMID:22573955

  6. Longitudinal discharge pumped low-pressure XeCl laser

    NASA Astrophysics Data System (ADS)

    Fedorov, A. I.

    2013-10-01

    We have studied output parameters of a XeCl and a N2 laser pumped by a longitudinal discharge with automatic spark UV preionisation. The output parameters of a low-pressure (30 Torr) XeCl laser operating with Ar, Ne and He as buffer gases or with no buffer gas have been optimised for the first time. The laser generated 5-ns FWHM pulses with an average power of 0.5 mW and output energy of 0.15 mJ. Under longitudinal discharge pumping, an output energy per unit volume of 1.8 J L-1 atm-1 was reached using helium as a buffer gas. With argon-containing and buffer-free mixtures, it was 1.5 J L-1 atm-1. The N2 laser generated 2.5-ns FWHM pulses with an average power of 0.35 mW and output energy of 0.05 mJ.

  7. A DSMC Study of Low Pressure Argon Discharge

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Work toward a self-consistent plasma simulation using the DSMC (Direct Simulation Monte Carlo) method for examination of the flowfields of low-pressure high density plasma reactors is presented. Presently, DSMC simulations for these applications involve either treating the electrons as a fluid or imposing experimentally determined values for the electron number density profile. In either approach, the electrons themselves are not physically simulated. Self-consistent plasma DSMC simulations have been conducted for aerospace applications but at a severe computational cost due in part to the scalar architectures on which the codes were employed. The present work attempts to conduct such simulations at a more reasonable cost using a plasma version of the object-oriented parallel Cornell DSMC code, MONACO, on an IBM SP-2. Due to availability of experimental data, the GEC reference cell is chosen to conduct preliminary investigations. An argon discharge is chosen to conduct preliminary investigations. An argon discharge is examined thus affording a simple chemistry set with eight gas-phase reactions and five species: Ar, Ar(+), Ar(*), Ar(sub 2), and e where Ar(*) is a metastable.

  8. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  9. Diamond film deposition using microwave plasmas under low pressures

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.; Rich, D. H.

    1991-01-01

    Microwave plasma depositions of diamond films have been investigated under low pressures of 10 mTorr to 10 Torr, at low substrate temperatures of 400 to 750 C, using high methane concentrations of 5 to 15 percent and oxygen concentrations of 5 to 10 percent in hydrogen plasmas. The deposition system consists of a microwave plasma chamber, a downstream deposition chamber, and a RF induction-heated sample stage. The deposition system can be operated in either high-pressure microwave or electron cyclotron resonance (ECR) modes by varying the sample stage position. Cathodoluminescence (CL) studies on diamond films deposited at 10 Torr pressure show that CL emissions at 430, 480, 510, 530, 560, 570 and 740 nm can be employed to characterize the quality of diamond films. High-quality, well-faceted diamond films have been deposited at 10 Torr and 600 C using 5 percent CH4 and 5 percent O2 in H2 plasmas; CL measurements on these films show very low N impurities and no detectable Si impurities. Diamond nucleation on SiC has been demonstrated by depositing well-faceted diamond crystallites on SiC-coated Si substrates.

  10. Nucleation in plasmas at high and low pressures

    SciTech Connect

    Kumar, A.S.; Garscadden, A.

    1994-12-31

    The nucleation processes occurring under both high-pressure and low-pressure plasma conditions have been studied and the significance of different processes for particle formation will be presented in detail. Particle nucleation and growth phenomena in plasmas are extremely important to a wide range of processes occurring under laboratory, atmospheric and astrophysical conditions. These include plasma-enhanced processing, cluster-growth mechanisms, synthesis of powders in plasma reactors, aerosol and cloud formation in planetary atmospheres, and formation of interstellar dust grains. Under most circumstances, particle formation occurs as a homogeneous nucleation process. However, at lower pressures in plasma or charged particle environments, the ions can act as condensation nuclei, and ion-induced nucleation becomes highly favored. The nucleation processes occurring under different plasma and laser vaporization conditions may be classified as in Table 1. Laser and arc vaporization processes result in high-pressure vapor sources depending mostly on the energy density striking the surface. Particle nucleation under these conditions occurs from the adiabatic expansion and cooling of the ejected vapor. The very high saturation ratios for materials like carbon and silicon under such conditions makes homogeneous nucleation the dominant mechanism for cluster and particle formations.

  11. Thermodynamic analysis of cascade microcryocoolers with low pressure ratios

    SciTech Connect

    Radebaugh, Ray

    2014-01-29

    The vapor-compression cycle for refrigeration near ambient temperature achieves high efficiency because the isenthalpic expansion of the condensed liquid is a rather efficient process. However, temperatures are limited to about 200 K with a single-stage system. Temperatures down to 77 K are possible with many stages. In the case of microcryocoolers using microcompressors, pressure ratios are usually limited to about 6 or less. As a result, even more stages are required to reach 77 K. If the microcompressors can be fabricated with low-cost wafer-level techniques, then the use of many stages with separate compressors may become a viable option for achieving temperatures of 77 K with high efficiency. We analyze the ideal thermodynamic efficiency of a cascade Joule-Thomson system for various temperatures down to 77 K and with low pressure ratios. About nine stages are required for 77 K, but fewer stages are also analyzed for operation at higher temperatures. For 77 K, an ideal second-law efficiency of 83 % of Carnot is possible with perfect recuperative heat exchangers and 65 % of Carnot is possible with no recuperative heat exchangers. The results are compared with calculated efficiencies in mixed-refrigerant cryocoolers over the range of 77 K to 200 K. Refrigeration at intermediate temperatures is also available. The use of single-component fluids in each of the stages is expected to eliminate the problem of pulsating flow and temperature oscillations experienced in microcryocoolers using mixed refrigerants.

  12. Fuel Cells Utilizing Oxygen From Air at Low Pressures

    NASA Technical Reports Server (NTRS)

    Cisar, Alan; Boyer, Chris; Greenwald, Charles

    2006-01-01

    A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.

  13. Comparison between low-pressure laboratory discharges and atmospheric sprites

    NASA Astrophysics Data System (ADS)

    Robledo-Martinez, A.; Garcia-Villarreal, A.; Sobral, H.

    2017-01-01

    The discharge of a charged dielectric in low-pressure air has characteristics that resemble some of the features of mesospheric discharges. The dielectric discharges in steps when the pressure of the surrounding air is gradually reduced from nearly atmospheric to 0.01 torr. The setup employed here decouples the discharge from the power supply, and, thanks to that, unique properties of the discharge manifest themselves. For example, in the pressure interval 10-100 torr streamers are emitted from the surface of the dielectric but when the pressure decreases to 2-16 torr these are replaced by spherically symmetrical discharges that we call peonies. These have interesting properties, like (a) they do not produce electrical field, (b) they remain static, and (c) their size increases with decreasing pressure. The peonies are a type of discharge that has not been reported before. They resemble sprite beads and are assumed to consist of large avalanches that do not lead to the formation of a streamer. At further lower pressures, in the interval 0.01-0.1 torr, diffuse volume discharges were observed that have some morphological similarities with sprite halos and the top of columnar sprites. The spectrographic measurements carried out show that the discharges have bands from the first and second positive systems in N2 as well as lines of N2+. Quenching of the first negative system of N2 was observed at 3 torr. In this work it was also observed how a cosmic ray can go on to trigger a discharge inside the experimentation chamber.

  14. Rotating spoke phenomena in low pressure E x B discharges

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny

    2012-10-01

    The rotating spoke is azimuthal plasma non-uniformity which has been observed in a variety of low pressure cross-field discharges of cylindrical geometry [1-3]. The spoke can appear in different modes ranging from m=1 to higher order modes which propagate in the direction perpendicular to electric and magnetic fields with velocities of much lower than ExB velocity [2,3]. Although spoke phenomena is known for more than four decades, physical mechanism responsible for triggering of the spoke is still not understood. Recent studies of Hall thrusters and Penning-type magnetized plasma discharges demonstrated that the spoke is directly responsible for the enhancement of the electron cross-field transport in these devices [1,4]. A combination of time-resolving plasma measurements, including high speed imaging and probes suggest that for partially ionized magnetized plasma discharges, the spoke instability is triggered by ionization mechanism [4]. These experimental results are supported by recent particle-in-cell simulations. The advancement in understanding of the spoke mechanism enabled us to develop and demonstrate effective methods of spoke control, including mode, velocity and direction of the spoke, and spoke suppression [5]. Among practical implications of these results is the ability to develop more effective methods of plasma confinement and uniformity for magnetically-enhanced discharges and more efficient magnetized plasma thrusters. In collaboration with M. Griswold, L. Ellison, N. J. Fisch, K. Matyash, R. Schneider and A. Smolyakov.[4pt] [1] S. Jaeger, Th. Pierre, C. Rebont, Phys. Plasmas 16, 022304 (2009)[0pt] [2] J. B. Parker, Y. Raitses, N. J. Fisch, Appl. Phys. Lett. 97, 091501 (2010)[0pt] [3] M. S. McDonald, A. D. Gallimore, IEEE Trans. Plasma Sci. 39, 2952 (2011)[0pt] [4] C. L. Ellison, Y. Raitses, N. J. Fisch, Phys. Plasmas 19, 013503 (2012)[0pt] [5] M. E. Griswold, C. L. Ellison, Y. Raitses, N. J. Fisch, Phys. Plasmas 19, 053506 (2012).

  15. Low Pressure Origin of High-Silica Rhyolites

    NASA Astrophysics Data System (ADS)

    Gualda, G. A.; Ghiorso, M. S.

    2011-12-01

    High-silica rhyolites and granites are common components of the continental crust. High-silica rhyolites appear as whole-rocks, glass inclusions and matrix glass; in homogeneous crystal-rich dacites, matrix glass is usually high-silica rhyolite (Fish Canyon Tuff), while in more evolved systems both whole-rocks and glass are high-silica rhyolite (Bishop Tuff). High-silica granites are typically aplites (Tuolomne Intrusive Suite), but also appear as larger discrete units in plutons (Spirit Mountain Batholith). Geobarometric evidence suggests low pressure (<300 MPa) crystallization of high-silica melts. But recent works (Thomas et al. 2010 - CMP 160:743-759) have appealed to quartz crystallization at high pressures (>500 MPa), suggesting a polybaric evolution. We use a combination of phase equilibria considerations, literature and database data to constrain the pressure under which high-silica rhyolite melts form and crystallize. Phase relations in the haplogranitic (Qz-Ab-Or) system are well-known from experiments. A first order feature is that the stability field of sanidine increases while that of quartz decreases - causing the quartz-sanidine cotectic to migrate towards the quartz apex - with decreasing pressure. The effect is that compositions of cotectic melts become more quartz-normative with decreasing pressure. Experiments suggest that the pressure effect is persistent in An and CO2-bearing systems. We retrieved from EarthChem 627 analyses of strictly metaluminous rhyolitic (in TAS classification diagram) glass. Compositions (anhydrous basis) binned in 1 wt. % SiO2 increments were projected onto the ternary (following Blundy & Cashman 2001 - CMP 140:631-650) and parallel the experimental cotectics. At low silica (70%), glass compositions cluster around the 1000 MPa eutectic; at high silica (76%), compositions are distributed between 200 and 300 MPa cotectics; at higher silica (78%), compositions are distributed along the 100 MPa cotectic. The correlation

  16. The NASA Low-Pressure Turbine Flow Physics Program

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.

    1998-01-01

    An overview of the NASA Lewis Low-Pressure Turbine (LPT) Flow Physics Program will be presented. The program was established in response to the aero-engine industry's need for improved LPT efficiency and designs. Modern jet engines have four to seven LPT stages, significantly contributing to engine weight. In addition, there is a significant efficiency degradation between takeoff and cruise conditions, of up to 2 points. Reducing the weight and part count of the LPT and minimizing the efficiency degradation will translate into fuel savings. Accurate prediction methods of LPT flows and losses are needed to accomplish those improvements. The flow in LPT passages is at low Reynolds number, and is dominated by interplay of three basic mechanisms: transition, separation and wake interaction. The affecting parameters traditionally considered are Reynolds number, freestream turbulence intensity, wake frequency parameter, and the pressure distribution (loading). Three-dimensional effects and additional parameters, particularly turbulence characteristics like length scales, spectra and other statistics, as well as wake turbulence intensity and properties also play a role. The flow of most interest is on the suction surface, where large losses are generated as the flow tends to separate at the low Reynolds numbers. Ignoring wakes, a common flow scenario, there is laminar separation, followed by transition on the separation bubble and turbulent reattachment. If transition starts earlier the separation will be eliminated and the boundary layer will be attached leading to the well known bypass transition issues. In contrast, transition over a separation bubble is closer to free shear layer transition and was not investigated as well, particularly in the turbine environment. Unsteadiness created by wakes complicates the picture. Wakes induce earlier transition, and the calmed regions trailing the induced turbulent spots can delay or eliminate separation via shear stress

  17. Investigation of Low-Pressure Turbine Endwall Flows: Simulations and Experiments (Postprint)

    DTIC Science & Technology

    2015-01-01

    AFRL-RQ-WP-TP-2015-0095 INVESTIGATION OF LOW-PRESSURE TURBINE ENDWALL FLOWS: SIMULATIONS AND EXPERIMENTS (POSTPRINT) R. Sondergaard...Turbomachinery Branch Turbine Engine Division A. Gross New Mexico State University JANUARY 2015 Approved for public release...Conference Proceedings Postprint 01 January 2015 – 01 January 2015 4. TITLE AND SUBTITLE INVESTIGATION OF LOW-PRESSURE TURBINE ENDWALL FLOWS: SIMULATIONS

  18. 49 CFR 192.623 - Maximum and minimum allowable operating pressure; Low-pressure distribution systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum and minimum allowable operating...

  19. Evaluation of Low-Pressure Cold Plasma for Disinfection of ISS Grown Produce and Metal Instruments

    NASA Technical Reports Server (NTRS)

    Hummerick, Mary E.; Hintze, Paul E.; Maloney, Philip R.; Spencer, Lashelle E.; Coutts, Janelle L.; Franco, Carolina

    2016-01-01

    Low pressure cold plasma, using breathing air as the plasma gas, has been shown to be effective at precision cleaning aerospace hardware at Kennedy Space Center.Both atmospheric and low pressure plasmas are relatively new technologies being investigated for disinfecting agricultural commodities and medical instruments.

  20. Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors

    NASA Technical Reports Server (NTRS)

    Seda, Jorge F. (Inventor); Dunbar, Lawrence W. (Inventor); Gliebe, Philip R. (Inventor); Szucs, Peter N. (Inventor); Brauer, John C. (Inventor); Johnson, James E. (Inventor); Moniz, Thomas (Inventor); Steinmetz, Gregory T. (Inventor)

    2003-01-01

    An aircraft gas turbine engine assembly includes an inter-turbine frame axially located between high and low pressure turbines. Low pressure turbine has counter rotating low pressure inner and outer rotors with low pressure inner and outer shafts which are at least in part rotatably disposed co-axially within a high pressure rotor. Inter-turbine frame includes radially spaced apart radially outer first and inner second structural rings disposed co-axially about a centerline and connected by a plurality of circumferentially spaced apart struts. Forward and aft sump members having forward and aft central bores are fixedly joined to axially spaced apart forward and aft portions of the inter-turbine frame. Low pressure inner and outer rotors are rotatably supported by a second turbine frame bearing mounted in aft central bore of aft sump member. A mount for connecting the engine to an aircraft is located on first structural ring.

  1. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    PubMed

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  2. Energy efficient engine low-pressure compressor component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Michael, C. J.; Halle, J. E.

    1981-01-01

    The aerodynamic and mechanical design description of the low pressure compressor component of the Energy Efficient Engine were used. The component was designed to meet the requirements of the Flight Propulsion System while maintaining a low cost approach in providing a low pressure compressor design for the Integrated Core/Low Spool test required in the Energy Efficient Engine Program. The resulting low pressure compressor component design meets or exceeds all design goals with the exception of surge margin. In addition, the expense of hardware fabrication for the Integrated Core/Low Spool test has been minimized through the use of existing minor part hardware.

  3. Isolated calcification of tricuspid valve with severe low pressure tricuspid regurgitation in an infant.

    PubMed

    Mittal, S R

    2013-12-01

    A three-month-old asymptomatic male infant was evaluated for a systolic murmur. Echocardiography revealed calcification of tricuspid leaflets with severe low pressure tricuspid regurgitation. Pulmonary artery flow was normal. There was no other congenital anomaly.

  4. A fast low-pressure transport route to large black phosphorus single crystals

    SciTech Connect

    Nilges, Tom Kersting, Marcel; Pfeifer, Thorben

    2008-08-15

    Black phosphorus, a promising candidate for lithium battery electrodes, can be prepared by a low-pressure transport reaction route representing the first effective and scalable access to this element modification. Crystal sizes larger than 1 cm were obtained at low-pressure conditions in silica ampoules. X-ray phase analyses, EDX, ICP-MS and optical microscopy were applied to characterize the resulting black phosphorus. The present method drastically improves the traditional preparation ways like mercury catalysis, bismuth-flux or high-pressure techniques and represents an easy, non-toxic, fast and highly efficient method to achieve black phosphorus. In contrast to a previously reported low-pressure route the present transport reaction allows an up-scaling to higher masses of starting materials, a larger black phosphorus yield and faster reaction time under retention of the high product crystallinity. - Graphical abstract: A low-pressure transport reaction route representing the first effective and scalable access to black phosphorus.

  5. Use of thermodynamic properties of metal-gas systems as low-pressure standards

    NASA Technical Reports Server (NTRS)

    Lundin, C. E.

    1970-01-01

    Modified version of Sievert's apparatus accurately calibrates low pressure measuring instruments. Metal-gas system is composed of hydrogen in two-phase equilibrium with erbium to obtain reproducible hydrogen pressures.

  6. High-speed, low-pressure gas chromatography-mass spectrometry for essential oil analysis.

    PubMed

    Poynter, Samuel D H; Shellie, Robert A

    2008-07-18

    Analysis of parsley and fennel essential oils was performed by using low-pressure gas chromatography-mass spectrometry (GC-MS). The low-pressure instrument configuration was achieved by fitting a GC-MS instrument with a 530microm I.D. capillary column and an appropriate capillary restrictor at the inlet of the column. Comparison of the performance of the low-pressure GC-MS setup was made with fast GC-MS using a narrow-bore capillary column. By comparing the two approaches side-by-side the benefits of low-pressure GC-MS for characterisation of moderately complex essential oils comprising less than 50 detectable components can be fully appreciated. Although efficiency is sacrificed, the improved sample capacity of the 530microm I.D. column leads to higher peak intensities and in-turn better mass spectral library matching thus providing highly satisfactory results.

  7. Low pressure drop airborne molecular contaminant filtration using open-channel networks

    NASA Astrophysics Data System (ADS)

    Dallas, Andrew J.; Ding, Lefei; Joriman, Jon; Zastera, Dustin; Seguin, Kevin; Empson, James

    2006-03-01

    Airborne molecular contamination (AMC) continues to play a very decisive role in the performance of many microelectronic devices and manufacturing processes. Currently, the state of the filtration industry is such that optimum filter life and removal efficiency for AMC is offered by granular filter beds. However, the attributes that make packed beds of adsorbents extremely efficient also impart issues related to elevated filter weight and pressure drop. Most of the low pressure drop AMC filters currently offered tend to be quiet costly and contaminant nonspecific. Many of these low pressure drop filters are simply pleated combinations of various adsorptive and reactive media. On the other hand, low pressure drop filters, such as those designed as open-channel networks (OCNs), can still offer good filter life and removal efficiency, with the additional benefits of significant reductions in overall filter weight and pressure drop. Equally important for many applications, the OCN filters can reconstruct the airflow so as to enhance the operation of a tool or process. For tool mount assemblies and full fan unit filters this can result in reduced fan and blower speeds, which subsequently can provide reduced vibration and energy costs. Additionally, these low pressure drop designs can provide a cost effective way of effectively removing AMC in full fab (or HVAC) filtration applications without significantly affecting air-handling requirements. Herein, we will present a new generation of low pressure drop OCN filters designed for AMC removal in a wide range of applications.

  8. Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars.

    PubMed

    Mickol, R L; Kral, T A

    2016-09-23

    The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species (Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar - 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days - 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.

  9. Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars

    NASA Astrophysics Data System (ADS)

    Mickol, R. L.; Kral, T. A.

    2016-09-01

    The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species (Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar - 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days - 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.

  10. Growth and mitochondrial respiration of mungbeans (Phaseolus aureus Roxb.) germinated at low pressure

    NASA Technical Reports Server (NTRS)

    Musgrave, M. E.; Gerth, W. A.; Scheld, H. W.; Strain, B. R.

    1988-01-01

    Mungbean (Phaseolus aureus Roxb.) seedlings were grown hypobarically to assess the effects of low pressure (21-24 kilopascals) on growth and mitochondrial respiration. Control seedlings grown at ambient pressure (101 kilopascals) were provided amounts of O2 equivalent to those provided experimental seedlings at reduced pressure to factor out responses to O2 concentration and to total pressure. Respiration was assayed using washed mitochondria, and was found to respond only to O2 concentration. Regardless of total pressure, seedlings grown at 2 millimoles O2 per liter had higher state 3 respiration rates and decreased percentages of alternative respiration compared to ambient (8.4 millimoles O2 per liter) controls. In contrast, seedling growth responded to total pressure but not to O2 concentration. Seedlings were significantly larger when grown under low pressure. While low O2 (2 millimoles O2 per liter) diminished growth at ambient pressure, growth at low pressure in the same oxygen concentration was enhanced. Respiratory development and growth of mungbean seedlings under low pressure is unimpaired whether oxygen or air is used as the chamber gas, and further, low pressure can improve growth under conditions of poor aeration.

  11. Experimental and Numerical Investigation of Losses in Low-Pressure Turbine Blade Rows

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Lake, James P.; King, Paul I.; Ashpis, David E.

    2000-01-01

    Experimental data and numerical simulations of low-pressure turbines have shown that unsteady blade row interactions and separation can have a significant impact on the turbine efficiency. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Several recent studies have revealed that the performance of low-pressure turbine blades is a strong function of the Reynolds number. In the current investigation, experiments and simulations have been performed to study the behavior of a low-pressure turbine blade at several Reynolds numbers. Both the predicted and experimental results indicate increased cascade losses as the Reynolds number is reduced to the values associated with aircraft cruise conditions. In addition, both sets of data show that tripping the boundary layer helps reduce the losses at lower Reynolds numbers. Overall, the predicted aerodynamic and performance results exhibit fair agreement with experimental data.

  12. Low pressure influence on the electrets stability of gamma irradiated PP and PET films

    NASA Astrophysics Data System (ADS)

    Viraneva, A.; Bodurov, I.; Yovcheva, T.

    2017-01-01

    The influence of low pressure on the surface potential decay of gamma irradiated polymer films of polypropylene (PP) and poly(ethylene terephtalate) (PET) were studied. Polymer film samples were subjected to integral irradiation doses (Ey = 1.25 MeV, 60Co source) of 5 kGy and 25 kGy accumulated in air at a dose rate of 0.26 Mrad/h. After irradiation, the samples were charged in a corona discharge by means of a corona triode system for 1 minute under room conditions. Positive or negative 5 kV voltages were applied to the corona electrode. Four different voltages of the same polarity as that of the corona electrode were applied to the grid. The electret surface potential V0 was measured by the method of the vibrating electrode with compensation. After charging the electrets were placed into a vacuum chamber as the pressure was reduced step by step in the range of 1000 mbar to 0.1 mbar. At each step the samples were stored for 1 minute and the surface potential V was measured again. Then values of the normalized surface potential V/V0 were calculated. Low pressure dependences of the normalized surface potential for positively and negatively charged PP and PET films were presented. It was established that the low pressure led to the surface potential decay of the electrets. The influence of low pressure was analyzed by the equation that describes processes of desorption from the electret surface accompanied with surface diffusion. The experimental results obtained show a significant change in the electret behaviour of the polimer films after gamma irradiation and storage at different low pressure. It was established that the surface potential decay depends on the corona polarity, gamma irradiation and the values of low pressure.

  13. DGA proves out as a low pressure gas sweetener in Saudi Arabia

    SciTech Connect

    Huval, M.; van de Venne, H.

    1981-08-17

    Aramco is successfully using diglycolamine (DGA) to treat low-pressure associated sour gases to 1/4 gr H/sub 2/S/100 SCF specifications. The DGA process meets the design criteria of (1) handling high acid-gas-content (up to 15%) feed gases, (2) sweetening at high temperatures (120/sup 0/-140/sup 0/F) and low pressures (120-180 psig), (3) removing both H/sub 2/S and CO/sub 2/ in a single step and (4) providing a Claus-plant feed suitable for the production of bright-yellow (rather than black) sulfur.

  14. Study of Low Reynolds Number Effects on the Losses in Low-Pressure Turbine Blade Rows

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Dorney, Daniel J.

    1998-01-01

    Experimental data from jet-engine tests have indicated that unsteady blade row interactions and separation can have a significant impact on the efficiency of low-pressure turbine stages. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Several recent studies have revealed that Reynolds number effects may contribute to the lower efficiencies at cruise conditions. In the current study numerical experiments have been performed to study the models available for low Reynolds number flows, and to quantify the Reynolds number dependence of low-pressure turbine cascades and stages. The predicted aerodynamic results exhibit good agreement with design data.

  15. Generalization of low pressure, gas-liquid, metastable sound speed to high pressures

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.

    1981-01-01

    A theory is developed for isentropic metastable sound propagation in high pressure gas-liquid mixtures. Without simplification, it also correctly predicts the minimum speed for low pressure air-water measurements where other authors are forced to postulate isothermal propagation. This is accomplished by a mixture heat capacity ratio which automatically adjusts from its single phase values to approximately the isothermal value of unity needed for the minimum speed. Computations are made for the pure components parahydrogen and nitrogen, with emphasis on the latter. With simplifying assumptions, the theory reduces to a well known approximate formula limited to low pressure.

  16. On the mechanism of low-pressure imprint lithography: capillarity vs viscous flow.

    PubMed

    Khang, Dahl-Young; Lee, Hong H

    2008-05-20

    Dominant mechanisms in low-pressure imprint lithography processes have been identified for the regimes that are definable in terms of applied pressure, temperature, and mold material characteristics. Capillarity is found to be the dominant mechanism at high temperature and low pressure when stiff, hard molds are used. In the case of flexible thin-film ( approximately 20 microm) molds, both the capillarity and the viscous flow are involved. Both mechanisms are operative in the initial stage of the imprinting, but the capillarity takes over as time progresses.

  17. ASSESSING THE EFFECTIVENESS OF LOW PRESSURE ULTRAVIOLET LIGHT FOR INACTIVATING HELICOBACTER PYLORI

    EPA Science Inventory

    Three strains of Helicobacter pylori were exposed to ultraviolet (UV) light from a low-pressure source to determine log inactivation versus applied fluence. Results indicate that H. pylori is readily inactivated at UV fluences typically used in water treatment r...

  18. Low-pressure membrane integrity tests for drinking water treatment: A review.

    PubMed

    Guo, H; Wyart, Y; Perot, J; Nauleau, F; Moulin, P

    2010-01-01

    Low-pressure membrane systems, including microfiltration (MF) and ultrafiltration (UF) membranes, are being increasingly used in drinking water treatments due to their high level of pathogen removal. However, the pathogen will pass through the membrane and contaminate the product if the membrane integrity is compromised. Therefore, an effective on-line integrity monitoring method for MF and UF membrane systems is essential to guarantee the regulatory requirements for pathogen removal. A lot of works on low-pressure membrane integrity tests have been conducted by many researchers. This paper provides a literature review about different low-pressure membrane integrity monitoring methods for the drinking water treatment, including direct methods (pressure-based tests, acoustic sensor test, liquid porosimetry, etc.) and indirect methods (particle counting, particle monitoring, turbidity monitoring, surrogate challenge tests). Additionally, some information about the operation of membrane integrity tests is presented here. It can be realized from this review that it remains urgent to develop an alternative on-line detection technique for a quick, accurate, simple, continuous and relatively inexpensive evaluation of low-pressure membrane integrity. To better satisfy regulatory requirements for drinking water treatments, the characteristic of this ideal membrane integrity test is proposed at the end of this paper.

  19. An Engine Research Program Focused on Low Pressure Turbine Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Wyzykowski, John; Chiapetta, Santo; Adamczyk, John

    2002-01-01

    A comprehensive test program was performed in the Propulsion Systems Laboratory at the NASA Glenn Research Center, Cleveland Ohio using a highly instrumented Pratt and Whitney Canada PW 545 turbofan engine. A key objective of this program was the development of a high-altitude database on small, high-bypass ratio engine performance and operability. In particular, the program documents the impact of altitude (Reynolds Number) on the aero-performance of the low-pressure turbine (fan turbine). A second objective was to assess the ability of a state-of-the-art CFD code to predict the effect of Reynolds number on the efficiency of the low-pressure turbine. CFD simulation performed prior and after the engine tests will be presented and discussed. Key findings are the ability of a state-of-the art CFD code to accurately predict the impact of Reynolds Number on the efficiency and flow capacity of the low-pressure turbine. In addition the CFD simulations showed the turbulent intensity exiting the low-pressure turbine to be high (9%). The level is consistent with measurements taken within an engine.

  20. An improved process for high nutrition of germinated brown rice production: Low-pressure plasma.

    PubMed

    Chen, Hua Han; Chang, Hung Chia; Chen, Yu Kuo; Hung, Chien Lun; Lin, Su Yi; Chen, Yi Sheng

    2016-01-15

    Brown rice was exposed to low-pressure plasma ranging from 1 to 3kV for 10min. Treatment of brown rice in low-pressure plasma increases the germination percentage, seedling length, and water uptake in laboratory germination tests. Of the various treatments, 3-kV plasma exposure for 10min yielded the best results. In germinating brown rice, α-amylase activity was significantly higher in treated groups than in controls. The higher enzyme activity in plasma-treated brown rice likely triggers the rapid germination and earlier vigor of the seedlings. Low-pressure plasma also increased gamma-aminobutyric acid (GABA) levels from ∼19 to ∼28mg/100g. In addition, a marked increase in the antioxidant activity of brown rice was observed with plasma treatments compared to controls. The main finding of this study indicates that low-pressure plasma is effective at enhancing the growth and GABA accumulation of germinated brown rice, which can supply high nutrition to consumer.

  1. 49 CFR 192.623 - Maximum and minimum allowable operating pressure; Low-pressure distribution systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum and minimum allowable operating pressure; Low-pressure distribution systems. 192.623 Section 192.623 Transportation Other Regulations Relating... SAFETY STANDARDS Operations § 192.623 Maximum and minimum allowable operating pressure;...

  2. Engine having a high pressure hydraulic system and low pressure lubricating system

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

  3. SEPARATION OF HAZARDOUS ORGANICS BY LOW PRESSURE REVERSE OSMOSIS MEMBRANES - PHASE II FINAL REPORT

    EPA Science Inventory

    Extensive experimental studies showed that thin-film, composite membranes can be used effectively for the separation of selected hazardous organic compounds. This waste treatment technique offers definite advantages in terms of high solute separations at low pressures (<2MPa) and...

  4. Review of recent developments and applications in low-pressure (vacuum outlet) gas chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of low pressure (LP) vacuum outlet gas chromatography (GC) was introduced more than 50 years ago, but it was not until the 2000s that its theoretical applicability to fast analysis of GC-amenable chemicals was realized. In practice, LPGC is implemented by placing the outlet of a short, ...

  5. Gray water recycle: Effect of pretreatment technologies on low pressure reverse osmosis treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gray water can be a valuable source of water when properly treated to reduce the risks associated with chemical and microbial contamination to acceptable levels for the intended reuse application. In this study, the treatment of gray water using low pressure reverse osmosis (RO) filtration after pre...

  6. Numerical Study of Active Flow Control for a Transitional Highly-Loaded Low-Pressure Turbine

    DTIC Science & Technology

    2008-02-01

    Count Using Vortex Generator Jet Separation Control,” ASME Paper GT-2002-30602, Jun. 2002. [16] Eulitz, F. and Engel , K., “Numerical Investigation of...Around a Low Pressure Turbine Blade,” Direct and Large-Eddy Simulation IV, ERCOFTAC Series Vol. 8 , edited by B. J. Guerts, R. Friedrich , and O

  7. High- and low-pressure pneumotachometers measure respiration rates accurately in adverse environments

    NASA Technical Reports Server (NTRS)

    Fagot, R. J.; Mc Donald, R. T.; Roman, J. A.

    1968-01-01

    Respiration-rate transducers in the form of pneumotachometers measure respiration rates of pilots operating high performance research aircraft. In each low pressure or high pressure oxygen system a sensor is placed in series with the pilots oxygen supply line to detect gas flow accompanying respiration.

  8. Low-Pressure Plasma Application for the Inactivation of the Seed-borne Pathogen Xanthomonas campestris.

    PubMed

    Nishioka, Terumi; Takai, Yuichiro; Mishima, Tomoko; Kawaradani, Mitsuo; Tanimoto, Hideo; Okada, Kiyotsugu; Misawa, Tatsuya; Kusakari, Shinichi

    2016-01-01

    The aim of this study was to investigate the effect of low-pressure plasma treatment on seed disinfection and the possible mechanisms underlying this effect. Seed-borne disease refers to plant diseases that are transmitted by seeds; seed disinfection is an important technique for prevention of such diseases. In this study, the effectiveness of low-pressure plasma treatment in the inactivation of the seed-borne plant pathogenic bacterium, Xanthomonas campestris, inoculated on cruciferous seeds, was evaluated. The highest inactivation effect was observed when the treatment voltage and argon gas flow rate were 5.5 kV and 0.5 L/min, respectively. The viable cell number of X. campestris was 6.6 log cfu/seed before plasma treatment, and decreased by 3.9 log after 5 min of treatment and by 6.6 log after 40 min. Ethidium monoazide treatment and quantitative real-time PCR results indicated that both the cell membrane and target DNA region were damaged following 5 min of plasma treatment. Although both heat and ozone were generated during the plasma treatment, the contribution of both factors to the inactivation of X. campestris was small by itself in our low-pressure plasma system. Overall, we have shown that our low-pressure plasma system has great applicability to controlling plant pathogenic bacterium contamination of seeds.

  9. Kinetic analysis of negative power deposition in inductive low pressure plasmas

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Mussenbrock, Thomas

    2017-02-01

    Negative power deposition in low pressure inductively coupled plasmas (ICPs) is investigated by means of an analytical model which couples Boltzmann’s equation and the quasi-stationary Maxwell’s equations. Exploiting standard Hilbert space methods an explicit solution for both, the electric field and the distribution function of the electrons for a bounded discharge configuration subject to an unsymmetrical excitation is found for the first time. The model is applied to a low pressure ICP discharge. In this context particularly the anomalous skin effect and the effect of phase mixing is discussed. The analytical solution is compared with results from electromagnetic full wave particle in cell simulations. Excellent agreement between the analytical and the numerical results is found.

  10. Power supply improvements for ballasts-low pressure mercury/argon discharge lamp for water purification

    NASA Astrophysics Data System (ADS)

    Bokhtache, A. Aissa; Zegaoui, A.; Djahbar, A.; Allouache, H.; Hemici, K.; Kessaissia, F. Z.; Bouchrit, M. S.; Aillerie, M.

    2017-02-01

    The low-pressure electrical discharges established in the mercury rare gas mixtures are the basis of many applications both in the field of lighting and for industrial applications. In order to select an efficient high frequency power supply (ECG -based PWM inverter), we present and discuss results obtained in the simulation of three kinds of power supplies delivering a 0.65 A - 50KHz sinusoidal current dedicated to power low pressure UV Mercury - Argon lamp used for effect germicide on water treatment thus allowing maximum UVC radiation at 253.7 nm. Three ballasts half-bridge configurations were compared with criteria based on resulting germicide efficiency, electrical yield and reliability, for example the quality of the sinusoidal current with reduced THD, and finally, we also considered in this analysis the final economic aspect.

  11. Interplay between lattice dynamics and the low-pressure phase of simple cubic polonium

    NASA Astrophysics Data System (ADS)

    Zaoui, A.; Belabbes, A.; Ahuja, R.; Ferhat, M.

    2011-04-01

    Low-pressure structural properties of simple cubic polonium are explored through first-principles density-functional theory based relativistic total energy calculations using pseudopotentials and plane-wave basis set, as well as linear-response theory. We have found that Po undergoes structural phase transition at low pressure near 2 GPa, where the element transforms from simple cubic to a mixture of two trigonal phases namely, hR1 (α=86°) and hR2 (α=97.9°) structures. The lattice dynamics calculations provide strong support for the observed phase transition, and show the dynamical stability (instability) of the hR2 (hR1) phase.

  12. Mixing unmixables: Unexpected formation of Li-Cs alloys at low pressure.

    PubMed

    Desgreniers, Serge; Tse, John S; Matsuoka, Takahiro; Ohishi, Yasuo; Tse, Justin J

    2015-10-01

    Contrary to the empirical Miedema and Hume-Rothery rules and a recent theoretical prediction, we report experimental evidence on the formation of Li-Cs alloys at very low pressure (>0.1 GPa). We also succeeded in synthesizing a pure nonstoichiometric and ordered crystalline phase from an approximately equimolar mixture and resolved its structure using the maximum entropy method. The new alloy has a primitive cubic cell with the Li atom situated in the center and the Cs at the corners. This structure is stable to at least 10 GPa and has an anomalously high coefficient of thermal expansion at low pressure. Analysis of the valence charge density shows that electrons are donated from Cs to the Li "p"-orbitals, resulting in a rare formal oxidation state of -1 for Li. The observation indicates the diversity in the bonding of the seeming simple group I Li element.

  13. Study of Boundary Layer Development in a Two-Stage Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Ashpis, David E.; Halstead, David E.; Wisler, David C.

    1999-01-01

    Experimental data from jet-engine tests have indicated that unsteady blade row interactions and separation can have a significant impact on the efficiency of low-pressure turbine stages. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Several recent studies have revealed that Reynolds number effects may contribute to the lower efficiencies at cruise conditions. In the current study numerical simulations have been performed to study the boundary layer development in a two-stage low-pressure turbine, and to evaluate the transition models available for low Reynolds number flows in turbomachinery. The results of the simulations have been compared with experimental data, including airfoil loadings and integral boundary layer quantities. The predicted unsteady results display similar trends to the experimental data, but significantly overestimate the amplitude of the unsteadiness. The time-averaged results show close agreement with the experimental data.

  14. Energetic Ion Beam Production by a Low-Pressure Plasma Focus Discharge

    SciTech Connect

    Lim, L. K.; Yap, S. L.; Wong, C. S.

    2011-03-30

    Energetic ion beam emissions in a 3 kJ Mather type plasma focus operating at low-pressure regime are investigated. Deuterium gas is used and the discharge is operated in a low-pressure regime of below 1 mbar. Formation of the current sheath during the breakdown phase at the back wall is assisted by a set delayed trigger pulse. Energetic and intense ion beams with good reproducibility have been obtained for the operating pressure ranging from 0.05 mbar to 0.5 mbar. Deuteron beam is determined by time resolved measurement by making use of three biased ion collectors placed at the end on direction. The average energies of deuteron beams are resolved by using time-of flight method. Correlation between the ion emissions and the current sheath dynamics is also discussed.

  15. Finite Element Modeling and Analysis of Powder Stream in Low Pressure Cold Spray Process

    NASA Astrophysics Data System (ADS)

    Goyal, Tarun; Walia, Ravinderjit Singh; Sharma, Prince; Sidhu, Tejinder Singh

    2016-07-01

    Low pressure cold gas dynamic spray (LPCGDS) is a coating process that utilize low pressure gas (5-10 bars instead of 25-30 bars) and the radial injection of powder instead of axial injection with the particle range (1-50 μm). In the LPCGDS process, pressurized compressed gas is accelerated to the critical velocity, which depends on length of the divergent section of nozzle, the propellant gas and particle characteristics, and the diameters ratio of the inlet and outer diameters. This paper presents finite element modeling (FEM) of powder stream in supersonic nozzle wherein adiabatic gas flow and expansion of gas occurs in uniform manner and the same is used to evaluate the resultant temperature and velocity contours during coating process. FEM analyses were performed using commercial finite volume package, ANSYS CFD FLUENT. The results are helpful to predict the characteristics of powder stream at the exit of the supersonic nozzle.

  16. Numerical Study of In-flight Particle Parameters in Low-Pressure Cold Spray Process

    NASA Astrophysics Data System (ADS)

    Ning, Xian-Jin; Wang, Quan-Sheng; Ma, Zhuang; Kim, Hyung-Jun

    2010-12-01

    A 2-D model of the low-pressure cold spray with a radial powder feeding was established using CFD software in this study. The flow field was simulated for both propellant gases of nitrogen and helium. To predict the in-flight particle velocity and temperature, discrete phase model was introduced to simulate the interaction of particle and the supersonic gas jet. The experimental velocity of copper powder with different sizes was used to validate the calculated one for low-pressure cold spray process. The results show that the computational model can provide a satisfactory prediction of the supersonic gas flow, which is consistent with the experimental Schlieren photos. It was found that similar velocity was obtained with the drag coefficient formula of Henderson and with that of Morsi and Alexander. As the shape factor was estimated, the reasonable prediction of velocity for non-spherical particle can be obtained, to compare with the experimental results.

  17. Low Pressure Experimental Simulation of Electrical Discharges Above and Inside a Cloud

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1996-01-01

    A low pressure laboratory experiment to generate sporadic electrical discharges in either a particulate dielectric or air, representing a competing path of preferred electrical breakdown, was investigated. At high pressures, discharges occurred inside the dielectric particulate; at low pressures, discharges occurred outside the dielectric particulate; at a transition pressure regime, which depends on conductivity of the dielectric particulate, discharges were simultaneously generated in both particulate dielectric and air. Unique use of a particulate dielectric was critical for sporadic discharges at lower pressures which were not identical in character to discharges without the particulate dielectric. Application of these experimental results to the field of atmospheric electricity and simulation of the above-cloud type discharges that have recently been documented, called jets and sprites, are discussed.

  18. Alkyl ammonium cation stabilized biocidal polyiodides with adaptable high density and low pressure.

    PubMed

    He, Chunlin; Parrish, Damon A; Shreeve, Jean'ne M

    2014-05-26

    The effective application of biocidal species requires building the active moiety into a molecular back bone that can be delivered and decomposed on demand under conditions of low pressure and prolonged high-temperature detonation. The goal is to destroy storage facilities and their contents while utilizing the biocidal products arising from the released energy to destroy any remaining harmful airborne agents. Decomposition of carefully selected iodine-rich compounds can produce large amounts of the very active biocides, hydroiodic acid (HI) and iodine (I2). Polyiodide anions, namely, I3(-), I5(-), which are excellent sources of such biocides, can be stabilized through interactions with large, symmetric cations, such as alkyl ammonium salts. We have designed and synthesized suitable compounds of adaptable high density up to 3.33 g cm(-3) that are low-pressure polyiodides with various alkyl ammonium cations, deliverable iodine contents of which range between 58.0-90.9%.

  19. Exploring the limits: A low-pressure, low-temperature Haber-Bosch process

    NASA Astrophysics Data System (ADS)

    Vojvodic, Aleksandra; Medford, Andrew James; Studt, Felix; Abild-Pedersen, Frank; Khan, Tuhin Suvra; Bligaard, T.; Nørskov, J. K.

    2014-04-01

    The Haber-Bosch process for ammonia synthesis has been suggested to be the most important invention of the 20th century, and called the ‘Bellwether reaction in heterogeneous catalysis’. We examine the catalyst requirements for a new low-pressure, low-temperature synthesis process. We show that the absence of such a process for conventional transition metal catalysts can be understood as a consequence of a scaling relation between the activation energy for N2 dissociation and N adsorption energy found at the surface of these materials. A better catalyst cannot obey this scaling relation. We define the ideal scaling relation characterizing the most active catalyst possible, and show that it is theoretically possible to have a low pressure, low-temperature Haber-Bosch process. The challenge is to find new classes of catalyst materials with properties approaching the ideal, and we discuss the possibility that transition metal compounds have such properties.

  20. Heat pump employing optimal refrigerant compressor for low pressure ratio applications

    DOEpatents

    Ecker, Amir L.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

  1. Environmentally assisted cracking of low pressure steam turbine disk-rim material

    SciTech Connect

    Inagaki, H.; Sugita, Y.; Kondo, Y.; Bodai, M.; Takel, M.

    1996-12-31

    At the last stage disk-rim blade attachments of low pressure steam turbines for fossil power units which are subjected to increasing number of start-stop operations, the frequent start-stop operations can be a potential problem in the integrity of the rotor. Environmentally assisted cracking of 3.5 NiCrMoV low alloy steel under cyclic straining was investigated in both the water environment at 60 C in the laboratory and the actual steam environment of a low pressure steam turbine. Effects of strain rate, strain holding time, superposed vibratory stress, impurities and dissolved oxygen in the water environment, on crack initiation life and crack propagation rate were investigated using trapezoidal strain wave form.

  2. Instantaneous and efficient surface wave excitation of a low pressure gas or gases

    DOEpatents

    Levy, Donald J.; Berman, Samuel M.

    1988-01-01

    A system for instantaneously ionizing and continuously delivering energy in the form of surface waves to a low pressure gas or mixture of low pressure gases, comprising a source of rf energy, a discharge container, (such as a fluorescent lamp discharge tube), an rf shield, and a coupling device responsive to rf energy from the source to couple rf energy directly and efficiently to the gas or mixture of gases to ionize at least a portion of the gas or gases and to provide energy to the gas or gases in the form of surface waves. The majority of the rf power is transferred to the gas or gases near the inner surface of the discharge container to efficiently transfer rf energy as excitation energy for at least one of the gases. The most important use of the invention is to provide more efficient fluorescent and/or ultraviolet lamps.

  3. The CF6 Jet Engine Performance Improvement - Low Pressure Turbine Active Clearance Control

    NASA Technical Reports Server (NTRS)

    Beck, B. D.; Fasching, W. A.

    1982-01-01

    A low pressure turbine (LPT) active clearance control (ACC) cooling system was developed to reduce the fuel consumption of current CF6-50 turbofan engines for wide bodied commercial aircraft. The program performance improvement goal of 0.3% delta sfc was determined to be achievable with an improved impingement cooling system. The technology enables the design of an optimized manifold and piping system which is capable of a performance gain of 0.45% delta sfc.

  4. Modelling Of Generation And Growth Of Nanoparticles In Low-Pressure Plasmas

    SciTech Connect

    Gordiets, B. F.

    2008-09-07

    Theoretical kinetic models of generation and growth of clusters and nanoparticles in low-pressure plasma are briefly rewired. The relatively simple kinetic model is discussed more detail. Simple formulas and equations are given for monomer density; cluster dimension distribution; critical cluster dimension; rate of particle production; particle density and average dimension as well as plasma characteristics. The analytical formula is also obtained for the time delay of the measured LIPEE signal in the 'Laser Induced Particle Explosive Evaporation' experimental method.

  5. Downhole steam generator using low-pressure fuel and air supply

    DOEpatents

    Fox, R.L.

    1981-01-07

    For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

  6. Study of the low-pressure plasma effect on polypropylene nonwovens

    SciTech Connect

    Lopez, R.; Pascual, M.; Calvo, O.

    2010-06-02

    In this work we have used low-pressure plasma with a gas based on methane and oxygen mixture to improve wettability and durability of a PP nonwoven fabrics. The obtained results show good durability with the use of methane-oxygen plasma mixture gas. The effects of the plasma are similar to a plasmapolymerization process but in this case we obtain hydrophilic properties with high durability. The surface does not suffer important changes and the roughness of the material remains constant.

  7. Life modeling of atmospheric and low pressure plasma-sprayed thermal-barrier coating

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Argarwal, P.; Duderstadt, E. C.

    1984-01-01

    The cycles-to-failure vs cycle duration data for three different thermal barrier coating systems, which consist of atmospheric pressure plasma-sprayed ZrO2-8 percent Y2O3 over similarly deposited or low pressure plasma sprayed Ni-base alloys, are presently analyzed by means of the Miller (1980) oxidation-based life model. Specimens were tested at 1100 C for heating cycle lengths of 1, 6, and 20 h, yielding results supporting the model's value.

  8. Low pressure fabric filters advanced dedusting technology for high resistivity fly ash

    SciTech Connect

    Johnson, H.F.; Weltz, E.; Horst, J.

    1998-07-01

    Power Generation organizations in Europe are making increased use of lower cost (costs are typically 20--25% lower than the lowest cost European sourced coals) and lower sulfur content Australian and South African coals to improve competitiveness. The higher resistivity of the particulate from combustion of these coals due to their relatively low sulphur content and somewhat higher ash content makes the particulate more difficult to collect with an electrostatic precipitator (ESP) and favors the use of pulse jet fabric filters (PJFF) to meet stringent emission requirements. The Lentjes Bischoff low pressure PJFF design--based on Lurgi technology--has been purposely designed and developed since the late 1980's for very large scale applications and has been successfully applied to over 11,000 MW of coal fired boilers in a number of countries with the majority of installations in Australia and South Africa. Coal fired boiler sizes range from 30 to 670 MW and include conventional pulverized coal (p.c.) fired boilers as well as stoker fired, fluidized bed and the latest circulating fluidized bed fired boiler technologies. These applications are on new large base load installations as well as retrofitted into existing ESP casings. The design, construction and operating experience with two major installations covering both the retrofit of a PJFF into an existing ESP casing to meet new more stringent emission requirements and a new large base load installation are examined in detail. Firstly, the authors look at the retrofit of low pressure PJFF to the existing 6 x 280 MW boiler ESP casings at Gladstone Power Station, Queensland, Australia and then the new base load low pressure PJFF for the 6 x 670 MW boilers for Majuba Power Station, South Africa. The development of the modern low pressure pulse jet fabric filter has significantly improved the cost competitiveness of PJFF versus alternative technologies.

  9. Observation of Quartz Cathode-Luminescence in a Low Pressure Plasma Discharge

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    Intense, steady-state cathode-luminescence has been observed from exposure of quartz powder to a low pressure rf-excited argon plasma discharge. The emission spectra (400 to 850 nm) associated with the powder luminescence were documented as a function of bias voltage using a spectrometer. The emission was broad-band, essentially washing out the line spectra features of the argon plasma discharge.

  10. Low-pressure pneumoperitoneum during laparoscopic donor nephrectomy to optimize live donors' comfort.

    PubMed

    Warlé, M C; Berkers, A W; Langenhuijsen, J F; van der Jagt, M F; Dooper, Ph M; Kloke, H J; Pilzecker, D; Renes, S H; Wever, K E; Hoitsma, A J; van der Vliet, J A; D'Ancona, F C H

    2013-01-01

    Nowadays, laparoscopic donor nephrectomy (LDN) has become the gold standard to procure live donor kidneys. As the relationship between donor and recipient loosens, it becomes of even greater importance to optimize safety and comfort of the surgical procedure. Low-pressure pneumoperitoneum has been shown to reduce pain scores after laparoscopic cholecystectomy. Live kidney donors may also benefit from the use of low pressure during LDN. To evaluate feasibility and efficacy to reduce post-operative pain, we performed a randomized blinded study. Twenty donors were randomly assigned to standard (14 mmHg) or low (7 mmHg) pressure during LDN. One conversion from low to standard pressure was indicated by protocol due to lack of progression. Intention-to-treat analysis showed that low pressure resulted in a significantly longer skin-to-skin time (149 ± 86 vs. 111 ± 19 min), higher urine output during pneumoperitoneum (23 ± 35 vs. 11 ± 20 mL/h), lower cumulative overall pain score after 72 h (9.4 ± 3.2 vs. 13.5 ± 4.5), lower deep intra-abdominal pain score (11 ± 3.3 vs. 7.5 ± 3.1), and a lower cumulative overall referred pain score (1.8 ± 1.9 vs. 4.2 ± 3). Donor serum creatinine levels, complications, and quality of life dimensions were not significantly different. Our data show that low-pressure pneumoperitoneum during LDN is feasible and may contribute to increase live donors' comfort during the early post-operative phase.

  11. On the optimal chamber length and electron heating mechanism in low pressure inductive discharges

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Ju; Kim, Kyung-Hyun; Lee, Ho-Won; Park, Il-Seo; Chung, Chin-Wook

    2016-09-01

    Plasma resistance with the chamber length was measured at different plasma densities in low pressure inductively coupled plasmas. It was found that the plasma resistance has a maximum at specific chamber length, Lopt, and the Lopt is changed with the plasma density. It is related to the maximum collisionless electron heating, which simultaneously satisfies the conditions of both the bounce resonance and the transit time resonance. Therefore, Lopt is an optimal chamber size for the power transfer to the plasma.

  12. Low pressure arc discharge lamp apparatus with magnetic field generating means

    DOEpatents

    Grossman, M.W.; George, W.A.; Maya, J.

    1987-10-06

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

  13. Growth Enhancement of Radish Sprouts Induced by Low Pressure O2 Radio Frequency Discharge Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-01-01

    We studied growth enhancement of radish sprouts (Raphanus sativus L.) induced by low pressure O2 radio frequency (RF) discharge plasma irradiation. The average length of radish sprouts cultivated for 7 days after O2 plasma irradiation is 30-60% greater than that without irradiation. O2 plasma irradiation does not affect seed germination. The experimental results reveal that oxygen related radicals strongly enhance growth, whereas ions and photons do not.

  14. Low pressure arc discharge lamp apparatus with magnetic field generating means

    DOEpatents

    Grossman, Mark W.; George, William A.; Maya, Jakob

    1987-01-01

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25.degree. C.

  15. Performance of low-pressure-ratio fan stage at two off-design blade setting angles

    NASA Technical Reports Server (NTRS)

    Kovich, G.; Tysl, E. R.; Moore, R. D.

    1977-01-01

    The overall and blade-element performance of a low pressure ratio, low tip speed fan stage at design speed is presented for tow off-design rotor blade angle settings. The rotor design tip speed is 243.8 m/sec and weight flow per unit annulus area is 175.8 kg/sec. Design weight flow and pressure ratio are 29.9 kg/sec and 1.151, respectively.

  16. Synthesis of Fullerenes in Low Pressure Benzene/Oxygen Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hebgen, Peter; Howard, Jack B.

    1999-01-01

    The interest in fullerenes is strongly increasing since their discovery by Kroto et al. in 1985 as products of the evaporation of carbon into inert gas at low pressure. Due to their all carbon closed-shell structure, fullerenes have many exceptional physical and chemical properties and a large potential for applications such as superconductors, sensors, catalysts, optical and electronic devices, polymers, high energy fuels, and biological and medical materials. This list is still growing, because the research on fullerenes is still at an early stage. Fullerenes can be formed not only in a system containing only carbon and an inert gas, but also in premixed hydrocarbon flames under reduced pressure and fuel rich conditions. The highest yields of fullerenes in flames are obtained under conditions of substantial soot formation. There is a need for more information on the yields of fullerenes under different conditions in order to understand the mechanisms of their formation and to enable the design of practical combustion systems for large-scale fullerene production. Little work has been reported on the formation of fullerenes in diffusion flames. In order to explore the yields of fullerenes and the effect of low pressure in diffusion flames, therefore we constructed and used a low pressure diffusion flame burner in this study.

  17. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    PubMed

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  18. Military Curriculum Materials for Vocational and Technical Education. Welding High and Low Pressure Lines, 3-26.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This short course in welding high and low pressure lines was adapted from military curriculum materials for use in vocational education. The course is designed to teach safety requirements for work with high and low pressure pipelines; pipe welding requirements and specifications; special pipeline repair welding applications; layout of pipe…

  19. Low-pressure hydrocephalic state and viscoelastic alterations in the brain.

    PubMed

    Pang, D; Altschuler, E

    1994-10-01

    Most shunt-dependent hydrocephalic patients present with predictable symptoms of headache and mental status changes when their cerebrospinal fluid shunts malfunction. Their intracranial pressure (ICP) is usually high, and they usually respond to routine shunt revision. This report describes 12 shunted patients who were admitted with the full-blown hydrocephalic syndrome but with low to low-normal ICP. All 12 patients had been maintained previously on medium-pressure shunts. Their symptoms included headache, lethargy, obtundation, and cranial neuropathies. At peak symptoms, their ventricular sizes were large (ventricular/biparietal ratio of 0.35 to 0.45) in six and massive (ventricular/biparietal ratio > 0.45) in six and their ICPs ranged from 2.2 to 6.6 mm Hg, with a mean of 4.4 +/- 1.3 mm Hg (+/- standard deviation), i.e., below or well within the pressure range of their shunts. The pressure volume index of three patients at peak symptoms ranged from 39.2 to 48.5 ml, with a mean of 43.9 +/- 4.6 ml, which represents a 190% increase from the predicted normal value. Seven patients failed to improve with multiple shunt revisions, including the use of low-pressure valves. In 11 patients, symptoms and ventriculomegaly were not reversed except with prolonged external ventricular drainage at subzero pressures (mean external ventricular drainage nadir pressure of -5.7 +/- 3.6 mm Hg, for a mean period of 22.2 days). During external ventricular drainage treatment, symptoms correlated only with ventricular size and not with ICP. All 11 were subsequently treated successfully with a new medium- or low-pressure shunt. One patient was treated successfully with prolonged shunt pumping. We postulate that: 1) the development of this low-pressure hydrocephalic state is related to alteration of the viscoelastic modulus of the brain, secondary to expulsion of extracellular water from the brain parenchyma, and to structural changes in brain tissues due to prolonged overstretching; 2

  20. Performance of a 13-Stage Development Compressor for the J40-WE-24 Engine at Equivalent Speeds from 30 to 112 Percent of Design

    NASA Technical Reports Server (NTRS)

    Hatch, James E.; Lucas, James G.; Finger, Harold B.

    1953-01-01

    The performance of a 13-stage development comressor for the J40-WE-24 engine has been determined at equivalent speeds from 30 to 112 percent of design. The design total-pressure ratio of 6.0 and the design weight flow of 164 pounds per second were not attained, An analysis was conducted to determine the reasons for the poor performance at the design and over-design speed. The analysis indicated that most of the difficulty could be attributed to the fact that the first stage was overcompromised to favor part-speed performance,

  1. Low pressure drop filtration of airborne molecular organic contaminants using open-channel networks

    NASA Astrophysics Data System (ADS)

    Dallas, Andrew J.; Joriman, Jon; Ding, Lefei; Weineck, Gerald; Seguin, Kevin

    2007-03-01

    Airborne molecular contamination (AMC) continues to play a very decisive role in the performance of many microelectronic devices and manufacturing processes. Besides airborne acids and bases, airborne organic contaminants such as 1-methyl-2-pyrrolidinone (NMP), hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), perfluoroalkylamines and condensables are of primary concern in these applications. Currently, the state of the filtration industry is such that optimum filter life and removal efficiency for organics is offered by granular carbon filter beds. However, the attributes that make packed beds of activated carbon extremely efficient also impart issues related to elevated filter weight and pressure drop. Most of the lower pressure drop AMC filters currently offered are quite expensive and are simply pleated combinations of various adsorptive and reactive media. On the other hand, low pressure drop filters, such as those designed as open-channel networks (OCN's), offer good filter life and removal efficiency with the additional benefits of significant reductions in overall filter weight and pressure drop. Equally important for many applications, the OCN filters can reconstruct the airflow so as to enhance the operation of a tool or process. For tool mount assemblies and fan filter units (FFUs) this can result in reduced fan and blower speeds, which subsequently can provide reduced vibration and energy costs. Additionally, these low pressure drop designs can provide a cost effective way of effectively removing AMC in full fab (or HVAC) filtration applications without significantly affecting air-handling requirements. Herein, we will present a new generation of low pressure drop OCN filters designed for the removal of airborne organics in a wide range of applications.

  2. Study of Boundary Layer Development in a Two-Stage Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Ashpis, David E.; Halstead, David E.; Wisler, David C.

    1998-01-01

    Experimental data from jet-engine tests have indicated that unsteady blade row (wake) interactions and separation can have a significant impact on the efficiency of turbine stages. The effects of these interactions can be intensified in low-pressure turbine stages because of the low Reynolds number operating environment. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Thus, during the last decade a significant amount of effort has been put into determining the effects of transition and turbulence on the performance of low pressure turbine stages. Experimental investigations have been performed, for example, by Hodson et al. and Halstead et al. These investigations have helped identify/clarify the roles that factors such as the Reynolds number, free stream turbulence intensity, pressure gradient and curvature have in the generation of losses. In parallel to the experimental investigations, there have been significant analytical efforts to improve the modeling of transition. Examples of such efforts include the works of Mayle and Gostelow et al. These newer models show promise of providing accurate transition predictions over a wide range of flow conditions, although they have yet to be implemented into the numerical flow analyses used by the turbine design community. Some recent computational investigations of interest include the works of Chernobrovkin and Lakshminarayana and Eulitz and Engel. The focus of the current effort has been to -use a viscous, unsteady quasi-three-dimensional Navier-Stokes analysis to study boundary layer development in a two-stage low-pressure turbine. A two-layer algebraic turbulence model, along with a natural transition model and a bubble transition model, have been used, The geometry used in the simulations has been the subject of extensive experiments. The predicted results have been compared with experimental data, including airfoil loadings and time

  3. Low pressure and time storage influences on the electrets stability of HDPE composite films

    NASA Astrophysics Data System (ADS)

    Yovcheva, T.; Viraneva, A.; Galikhanov, M.

    2014-12-01

    The influence of both low pressure and time storage on the surface potential decay of high density polyethylene (HDPE) composite films with different weight concentrations of the zeolite particles - 0 wt.%, 2 wt.% and 6 wt.% were studied. The samples were charged in a corona discharge by means of a corona triode system for ' minute under room conditions. Positive or negative 5kV voltage was applied to the corona electrode and 1 kV voltage of the same polarity as that of the corona electrode was applied to the grid. After charging, the electret surface potential was measured by the method of the vibrating electrode with compensation. Two groups of tests were performed. In the first group after charging, the electrets were placed into a vacuum chamber where the pressure was reduced step by step in the range from 1000 mbar to 0.1 mbar. At each step the samples were stored for 1 minute. Then the electrets were removed from the vacuum chamber, the surface potential was measured again and the normalized surface potential was calculated. It was established that the low pressure had led to the surface potential decay of the electrets. The influence of the low pressure was analyzed by the equation that describes processes of desorption from the electret surface accompanied with surface diffusion. In the second group after charging, the electret surface potential was measured with the time of storage for two months. The experimental results obtained show a significant change in the electret behaviour of the composite films after the incorporation of zeolite particles with different concentration into the HDPE matrix. It was established that the surface potential decay depends on the corona polarity and the particle concentration.

  4. Diode laser atomic fluorescence temperature measurements in low-pressure flames

    NASA Astrophysics Data System (ADS)

    Burns, I. S.; Lamoureux, N.; Kaminski, C. F.; Hult, J.; Desgroux, P.

    2008-12-01

    Temperature measurements have been performed in a low-pressure flame by the technique of diode laser induced atomic fluorescence. The experiments were done in a near-stoichiometric flat-flame of premixed methane, oxygen and nitrogen, at a pressure of 5.3 kPa. Indium atoms were seeded to the flame and probed using blue diode lasers; the lineshapes of the resulting fluorescence spectra were used to determine the flame temperature at a range of heights above the burner plate. The particular issues associated with the implementation of this measurement approach at low pressure are discussed, and it is shown to work especially well under these conditions. The atomic fluorescence lineshape thermometry technique is quicker to perform and requires less elaborate equipment than other methods that have previously been implemented in low-pressure flames, including OH-LIF and NO-LIF. There was sufficient indium present to perform measurements at all locations in the flame, including in the pre-heat zone close to the burner plate. Two sets of temperature measurements have been independently performed by using two different diode lasers to probe two separate transitions in atomic indium. The good agreement between the two sets of data provides a validation of the technique. By comparing thermocouple profiles recorded with and without seeding of the flame, we demonstrate that any influence of seeding on the flame temperature is negligible. The overall uncertainty of the measurements reported here is estimated to be ±2.5% in the burnt gas region.

  5. Insects at low pressure: applications to artificial ecosystems and implications for global windborne distribution

    NASA Technical Reports Server (NTRS)

    Cockell, C.; Catling, D.; Waites, H.

    1999-01-01

    Insects have a number of potential roles in closed-loop life support systems. In this study we examined the tolerance of a range of insect orders and life stages to drops in atmospheric pressure using a terrestrial atmosphere. We found that all insects studied could tolerate pressures down to 100 mb. No effects on insect respiration were noted down to 500 mb. Pressure toleration was not dependent on body volume. Our studies demonstrate that insects are compatible with plants in low-pressure artificial and closed-loop ecosystems. The results also have implications for arthropod colonization and global distribution on Earth.

  6. Flow of a Gas Turbine Engine Low-Pressure Subsystem Simulated

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1997-01-01

    The NASA Lewis Research Center is managing a task to numerically simulate overnight, on a parallel computing testbed, the aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The model solves the three-dimensional Navier- Stokes flow equations through all the components within the LPS, as well as the external flow around the engine nacelle. The LPS modeling task is being performed by Allison Engine Company under the Small Engine Technology contract. The large computer simulation was evaluated on networked computer systems using 8, 16, and 32 processors, with the parallel computing efficiency reaching 75 percent when 16 processors were used.

  7. A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames

    SciTech Connect

    Andrew McIlroy; Toby D. Hain; Hope A. Michelsen; Terrill A. Cool

    2000-12-15

    The oxidation of dimethyl ether (DME) is studied in low-pressure flames using new molecular beam mass spectrometer and laser diagnostics. Two 30.0-Torr, premixed DME/oxygen/argon flames are investigated with stoichiometries of 0.98 and 1.20. The height above burner profiles of nine stable species and two radicals are measured. These results are compared to the detailed chemical reaction mechanism of Curran and coworkers. Generally good agreement is found between the model and data. The largest discrepancies are found for the methyl radical profiles where the model predicts qualitatively different trends in the methyl concentration with stoichiometry than observed in the experiment.

  8. Tests of SSME low pressure pump in liquids at zero throughflow

    NASA Technical Reports Server (NTRS)

    Jackson, E. D.; Cook, R. M.

    1983-01-01

    Shutdown requirements in space of the Space Shuttle Main Engines require that the low pressure pump operate under conditions of zero flow and zero NPSH and still be able to generate head and absorb torque. Ground tests were conducted in both water and liquid oxygen to verify these capabilities. The test facilities are described, and the test results are presented showing the pump performance at zero flow over a wide range of NPSH conditions including zero values. The influence of operating speed, fluid medium, and internal struts upstream of the inducer are presented. A flow model schematic is presented sketching a flow field in the pump that is consistent with the observed data.

  9. Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate.

    PubMed

    Florusse, Louw J; Peters, Cor J; Schoonman, Joop; Hester, Keith C; Koh, Carolyn A; Dec, Steven F; Marsh, Kenneth N; Sloan, E Dendy

    2004-10-15

    Thermodynamic, x-ray diffraction, and Raman and nuclear magnetic resonance spectroscopy measurements show that clusters of H2 can be stabilized and stored at low pressures in a sII binary clathrate hydrate. Clusters of H2 molecules occupy small water cages, whereas large water cages are singly occupied by tetrahydrofuran. The presence of this second guest component stabilizes the clathrate at pressures of 5 megapascals at 279.6 kelvin, versus 300 megapascals at 280 kelvin for pure H2 hydrate.

  10. Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.; Kartuzova, Olga

    2010-01-01

    Motivation - Higher loading on Low-Pressure Turbine (LPT) airfoils: Reduce airfoil count, weight, cost. Increase efficiency, and Limited by suction side separation. Growing understanding of transition, separation, wake effects: Improved models. Take advantage of wakes. Higher lift airfoils in use. Further loading increases may require flow control: Passive: trips, dimples, etc. Active: plasma actuators, vortex generator jets (VGJs). Can increased loading offset higher losses on high lift airfoils. Objectives: Advance knowledge of boundary layer separation and transition under LPT conditions. Demonstrate, improve understanding of separation control with pulsed VGJs. Produce detailed experimental data base. Test and develop computational models.

  11. Track studies in water vapor using a low-pressure cloud chamber. II. Microdosimetric measurements.

    PubMed

    Stonell, G P; Marshall, M; Simmons, J A

    1993-12-01

    A low-pressure cloud chamber has been adapted to operate with pure water vapor. Photographs were obtained of tracks arising from the passage of ionizing radiation. The sources used were low-energy X rays, 242Cm alpha particles, and low-energy protons. Distributions of lineal energy, radial distances around an ion track, and interdroplet distances were measured and compared with the predictions of Monte Carlo calculations. After allowing for diffusion and the limitations of the geometry of the system, the measured and calculated distributions were found to be in good agreement.

  12. Determination of the Electron Temperature in a Low Pressure Dusty Radiofrequency Methane Plasma

    SciTech Connect

    Massereau-Guilbaud, Veronique; Geraud-Grenier, Isabelle; Plain, Andre

    2011-11-29

    The particles are obtained by PECVD in radiofrequency (13.56 MHz) low pressure plasmas (90%CH4-10%Ar). During the particle growth, the particles trap electrons and modify the EEDF, and the electrical and optical characteristics of the plasma. The plasma is analyzed by Optical Emission Spectroscopy. The excitation temperature and the electron temperature are calculated from the H{sub {alpha}}, H{sub {beta}}, H{sub {gamma}} Balmer hydrogen line intensities and from Ar ones. The temporal evolutions of the temperatures during the particle formation are compared and discussed.

  13. The development of an auto-sealing system using an electrically shrinkable tube under a low-pressure condition

    SciTech Connect

    Okano, Yoshihiro; Kitagawa, Takao; Shoji, Norio; Namioka, Toshiyuki; Komura, Minoru

    1997-04-01

    This article describes the development of a system to create high quality, automatic sealing of field joints of polyethylene coated pipelines. The system uses a combination of an electrically heated shrinkable tube and a low-pressure chamber. The self-heating shrinkable tube includes electric heater wires that heat when connected to electricity. A method was developed to eliminate air trapped between the tube and the steel pipe by shrinking the tube under a low-pressure condition. The low-pressure condition was automatic and easily attained by using a vacuum chamber. It was verified that the system produced high quality sealing of the field joints.

  14. Energy efficient engine: Turbine intermediate case and low-pressure turbine component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thulin, R. D.; Howe, D. C.

    1982-01-01

    A four stage, low pressure turbine component has been designed to power the fan and low pressure compressor system in the Energy Efficient Engine. Designs for a turbine intermediate case and an exit guide vane assembly also have been established. The components incorporate numerous technology features to enhance efficiency, durability, and performance retention. These designs reflect a positive step towards improving engine fuel efficiency on a component level. The aerodynamic and thermal/mechanical designs of the intermediate case and low pressure turbine components are presented and described. An overview of the predicted performance of the various component designs is given.

  15. Annularly grooved membrane combined with rood beam piezoresistive pressure sensor for low pressure applications

    NASA Astrophysics Data System (ADS)

    Li, Chuang; Cordovilla, Francisco; Ocaña, José L.

    2017-03-01

    A novel structural piezoresistive pressure sensor with annularly grooved membrane combined with rood beam has been proposed for low pressure measurements based on silicon substrate. In this study, a design method, including the model design, dimensions optimization, and performance prediction of the novel structure sensor, is presented. The finite element method has been used to analyze the stress distribution of sensitive elements and the deflection of membrane. On the basis of simulation results, the relationships between structural dimension variables and mechanical performance are deduced, which make the fabrication processes more efficient. According to statistics theory, the coefficient of determination R2 and residual sum of squares are introduced to indicate whether the fitting equations and curves match well with the simulation results. After that, a series of the optimal membrane dimensions are determined. Compared with other structural sensors, the optimized sensor achieves the best overall properties as it mitigates the contradiction between sensitivity and linearity. The reasons why the proposed sensor can maximize sensitivity and minimize nonlinearity are also discussed. By localizing more strain energy in the high concentrated stress profile and creating partially stiffened membrane, the proposed sensor has achieved a high sensitivity of 34.5 (mV/V)/psi and a low nonlinearity of 0.25% FSS. Thus, the proposed structure sensor will be a proper choice for low pressure applications less than 1 psi.

  16. Radio frequency breakdown between structured parallel plate electrodes with a millimetric gap in low pressure gases

    SciTech Connect

    Legradic, B.; Howling, A. A.; Hollenstein, C.

    2010-10-15

    This paper presents an investigation into radio frequency (rf) breakdown for electrodes with holes or protrusions, approximating the situation in real reactors and providing a benchmark for fluid simulations. rf breakdown curves (voltage versus pressure) generally show a steep left-hand branch at low pressures and a flatter right-hand branch at higher pressures. Introducing protrusions or holes in parallel plate electrodes will lower the breakdown voltage in certain conditions. Yet experiments show that the breakdown curves are not perceptibly influenced by the increased electric field at sharp edges or ridges. Instead, both experiments and simulation show that breakdown at high pressure will occur at the protrusion providing the smallest gap, while breakdown at low pressure will occur in the aperture providing the largest gap. This holds true as long as the feature in question is wide enough. Features that are too narrow will lose too many electrons due to diffusion, either to the walls of the apertures or to the surroundings of the protrusion, which negates the effect on the breakdown voltage. The simulation developed presents a tool to aid the design of complex rf parts for dark-space shielding.

  17. Sensitive cesium measurement in liquid sample using low-pressure laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Zhen Zhen; Yan, Jun Jie; Liu, Ji Ping; Deguchi, Yoshihiro; Katsumori, Shunpei; Ikutomo, Akihiro

    2015-12-01

    The environmental pollution by trace heavy metals is a severe problem for the environment and human health. In this paper, the liquid jet of CsNO3 solution employed was introduced to the measurement chamber and detected using laser-induced breakdown spectroscopy (LIBS) directly at low pressure to determine the detection features of trace Cs element in liquid. The distinct and round plasma can be acquired when reducing the pressure. The interaction between the plasma core of the liquid jet and the surrounding gas can be controlled to enhance Cs detection ability. Cs emission was mainly in the surrounding area in the plasma. The influences of laser focal point and plasma measurement area on the measured signals were studied under low-pressure condition. When employing the defocus mode and varying the measurement area within a certain range, Cs signal and the signal-to-background ratio were improved. Cs detection limit can reach to 22.8 ppb (3σ/ms) at pressure of 26 kPa in this paper. According to the discussion, the detection limit will be enhanced when improving the experimental conditions using this method, which shows the great application potential of liquid sample measurement.

  18. Sterilization of beehive material with a double inductively coupled low pressure plasma

    NASA Astrophysics Data System (ADS)

    Priehn, M.; Denis, B.; Aumeier, P.; Kirchner, W. H.; Awakowicz, P.; Leichert, L. I.

    2016-09-01

    American Foulbrood is a severe, notifiable disease of the honey bee. It is caused by infection of bee larvae with spores of the gram-positive bacterium Paenibacillus larvae. Spores of this organism are found in high numbers in an infected hive and are highly resistant to physical and chemical inactivation methods. The procedures to rehabilitate affected apiaries often result in the destruction of beehive material. In this study we assess the suitability of a double inductively coupled low pressure plasma as a non-destructive, yet effective alternative inactivation method for bacterial spores of the model organism Bacillus subtilis on beehive material. Plasma treatment was able to effectively remove spores from wax, which, under protocols currently established in veterinary practice, normally is destroyed by ignition or autoclaved for sterilization. Spores were removed from wooden surfaces with efficacies significantly higher than methods currently used in veterinary practice, such as scorching by flame treatment. In addition, we were able to non-destructively remove spores from the highly delicate honeycomb wax structures, potentially making treatment of beehive material with double inductively coupled low pressure plasma part of a fast and reliable method to rehabilitate infected bee colonies with the potential to re-use honeycombs.

  19. Utilization of low-pressure plasma to inactivate bacterial spores on stainless steel screws.

    PubMed

    Stapelmann, Katharina; Fiebrandt, Marcel; Raguse, Marina; Awakowicz, Peter; Reitz, Günther; Moeller, Ralf

    2013-07-01

    A special focus area of planetary protection is the monitoring, control, and reduction of microbial contaminations that are detected on spacecraft components and hardware during and after assembly. In this study, wild-type spores of Bacillus pumilus SAFR-032 (a persistent spacecraft assembly facility isolate) and the laboratory model organism B. subtilis 168 were used to study the effects of low-pressure plasma, with hydrogen alone and in combination with oxygen and evaporated hydrogen peroxide as a process gas, on spore survival, which was determined by a colony formation assay. Spores of B. pumilus SAFR-032 and B. subtilis 168 were deposited with an aseptic technique onto the surface of stainless steel screws to simulate a spore-contaminated spacecraft hardware component, and were subsequently exposed to different plasmas and hydrogen peroxide conditions in a very high frequency capacitively coupled plasma reactor (VHF-CCP) to reduce the spore burden. Spores of the spacecraft isolate B. pumilus SAFR-032 were significantly more resistant to plasma treatment than spores of B. subtilis 168. The use of low-pressure plasma with an additional treatment of evaporated hydrogen peroxide also led to an enhanced spore inactivation that surpassed either single treatment when applied alone, which indicates the potential application of this method as a fast and suitable way to reduce spore-contaminated spacecraft hardware components for planetary protection purposes.

  20. Electrical Properties for Capacitively Coupled Radio Frequency Discharges of Helium and Neon at Low Pressure

    NASA Astrophysics Data System (ADS)

    Tanisli, Murat; Sahin, Neslihan; Demir, Suleyman

    2016-10-01

    In this study, the symmetric radio frequency (RF) electrode discharge is formed between the two electrodes placing symmetric parallel. The electrical properties of symmetric capacitive RF discharge of pure neon and pure helium have been obtained from current and voltage waveforms. Calculations are done according to the homogeneous discharge model of capacitively coupled radio frequency (CCRF) using with the data in detail. Electrical properties of bulk plasma and sheath capacitance are also investigated at low pressure with this model. This study compares the electrical characteristics and sheath capacitance changes with RF power and pressure for helium and neon discharges. Also, the aim of the study is to see the differences between helium and neon discharges' current and voltage values. Their root-mean-square voltages and currents are obtained from Tektronix 3052C oscilloscope. Modified homogeneous discharge model of CCRF is used for low pressure discharges and the calculations are done using experimental results. It is seen that homogeneous discharge model of CCRF is usable with modification and then helium and neon discharge's electrical properties are investigated and presented with a comparison. Helium discharge's voltage and current characteristic have smaller values than neon's. It may be said that neon discharge is a better conductor than helium discharge. It is seen that the sheath capacitance is inversely correlation with sheath resistance.

  1. Characteristics of a Plasma Torch Designed for Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Yang, De Ming; Gao, Jianyi

    2012-06-01

    Unlike atmosphere plasma spraying (APS), very low pressure plasma spraying (VLPPS) can only weakly heat the feed materials at the plasma-free region exit of the nozzle. Most current VLPPS methods have adopted a high power plasma gun, which operates at high arc currents up to 2500 A to remedy the lower heating ability, causing a series of problems for both the plasma torch and the associated facility. According to the Kundsen number and pressures distribution inside of the nozzle in a low-pressure environment, a plasma torch was designed with a separated anode and nozzle, and with the powder feed to the plasma jets inside the nozzle intake. In this study, the pressures in the plasma gas intake, in the nozzle intake and outside the plasma torch were measured using an enthalpy probe. For practice, SUS 316 stainless steel coatings were prepared at the plasma currents of 500-600 A, an arc voltage of 50 V and a chamber pressure of 1000 Pa; the results indicated that coatings with an equiaxed microstructure could be deposited in proper conditions.

  2. Probe diagnostics in low pressure dc discharge. Does the Langmuir Paradox exist?

    NASA Astrophysics Data System (ADS)

    Godyak, Valery; Alexandrovich, Ben; Rahman, Abdur

    2006-10-01

    Maxwellian electron energy distributions in a highly non-equilibrium plasma of low pressure dc discharges is one the oldest and fascinating mysteries of gas discharge physics. There is extensive literature and many hypotheses attempting to explain this paradox, but the problem still remains unsolved. In this report we present results on the EEDF measurement in the positive column of a dc discharge in mercury vapor with differently oriented probes placed along the positive column over a wide range of discharge current showed that: a) - the EEDF is not Maxwellian, b) - is essentially anisotropic, c) - is not in equilibrium with discharge current (i.e. EEDF changes along the positive column), d) - the electron temperature inferred from the measured EEDF and that determined by the slope of the probe characteristic in semi-log scale are essentially different, e) - the linearity of the probe characteristic in semi-log scale (the sign of a Maxwellian EEDF) may occurs at essentially nonlinear dependence of the second derivative of the probe characteristic on the probe voltage in semi-log scale. The main conclusions of this study are: a) - the absence of Maxwellian EEDF in the low pressure dc discharge and b) - the Druyvesteyn method is not applicable for measurement of highly anisotropic EEDF typical for the Langmuir Paradox condition.

  3. Comprehensive Validation of an Intermittency Transport Model for Transitional Low-Pressure Turbine Flows

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.

    2005-01-01

    A transport equation for the intermittency factor is employed to predict transitional flows under the effects of pressure gradients, freestream turbulence intensities, Reynolds number variations, flow separation and reattachment. and unsteady wake-blade interactions representing diverse operating conditions encountered in low-pressure turbines. The intermittent behaviour of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, Mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menter's two-equation turbulence model (SST). The onset location of transition is obtained from correlations based on boundary-layer momentum thickness, acceleration parameter, and turbulence intensity. The intermittency factor is obtained from a transport model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The intermittency transport model is tested and validated against several well documented low pressure turbine experiments ranging from flat plate cases to unsteady wake-blade interaction experiments. Overall, good agreement between the experimental data and computational results is obtained illustrating the predicting capabilities of the model and the current intermittency transport modelling approach for transitional flow simulations.

  4. Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration.

    PubMed

    Blöcher, Christoph; Niewersch, Claudia; Melin, Thomas

    2012-04-15

    Phosphorus recovery from sewage sludge will become increasingly important within the next decades due to depletion of mineral phosphorus resources. In this work a new process concept was investigated, which aims at realising phosphorus recovery in a synergistic way with the overall sewage sludge treatment scheme. This process combines a low pressure wet oxidation for sewage sludge decomposition as well as phosphorus dissolution and a nanofiltration process to separate phosphorus from heavy metals and obtain a clean diluted phosphoric acid, from which phosphorus can be recovered as clean fertiliser. It was shown that this process concept is feasible for sewage sludge for wastewater treatment plants that apply enhanced biological removal or precipitation with alumina salts for phosphorus removal. The critical parameter for phosphorus dissolution in the low pressure wet oxidation process is the iron concentration, while in the nanofiltration multi-valent cations play a predominant role. In total, a phosphorus recovery of 54% was obtained for an exemplary wastewater treatment plant. Costs of the entire process are in the same range as conventional sewage sludge disposal, with the benefit being phosphorus recovery and reduced emission of greenhouse gases due to avoidance of sludge incineration.

  5. Quantitative and sensitive analysis of CN molecules using laser induced low pressure He plasma

    SciTech Connect

    Pardede, Marincan; Hedwig, Rinda; Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah; Ramli, Muliadi; Jobiliong, Eric; Suyanto, Hery; Marpaung, Alion Mangasi; Suliyanti, Maria Margaretha; Tjia, May On

    2015-03-21

    We report the results of experimental study on CN 388.3 nm and C I 247.8 nm emission characteristics using 40 mJ laser irradiation with He and N{sub 2} ambient gases. The results obtained with N{sub 2} ambient gas show undesirable interference effect between the native CN emission and the emission of CN molecules arising from the recombination of native C ablated from the sample with the N dissociated from the ambient gas. This problem is overcome by the use of He ambient gas at low pressure of 2 kPa, which also offers the additional advantages of cleaner and stronger emission lines. The result of applying this favorable experimental condition to emission spectrochemical measurement of milk sample having various protein concentrations is shown to yield a close to linear calibration curve with near zero extrapolated intercept. Additionally, a low detection limit of 5 μg/g is found in this experiment, making it potentially applicable for quantitative and sensitive CN analysis. The visibility of laser induced breakdown spectroscopy with low pressure He gas is also demonstrated by the result of its application to spectrochemical analysis of fossil samples. Furthermore, with the use of CO{sub 2} ambient gas at 600 Pa mimicking the Mars atmosphere, this technique also shows promising applications to exploration in Mars.

  6. Rapid Association Reactions at Low Pressure: Impact on the Formation of Hydrocarbons on Titan

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Yelle, R. V.; Lavvas, P.; Klippenstein, S. J.

    2012-01-01

    Photochemical models of Titan's atmosphere predict that three-body association reactions are the main production route for several major hydrocarbons. The kinetic rate constants of these reactions strongly depend on density and are therefore only important in Titan's lower atmosphere. However, radiative association reactions do not depend on pressure. The possible existence of large rates at low density suggests that association reactions could significantly affect the chemistry of Titan's upper atmosphere and better constraints for them are required. The kinetic parameters of these reactions are extremely difficult to constrain by experimental measurements as the low pressure of Titan's upper atmosphere cannot be reproduced in the laboratory. However, in the recent years, theoretical calculations of kinetics parameters have become more and more reliable. We therefore calculated several radical-radical and radical-molecule association reaction rates using transition state theory. The calculations indicate that association reactions are fast even at low pressure for adducts having as few as four C atoms. These drastic changes have however only moderate consequences for Titan's composition. Locally, mole fractions can vary by as much as one order of magnitude but the column-integrated production and condensation rates of hydrocarbons change only by a factor of a few. We discuss the impact of these results for the organic chemistry. It would be very interesting to check the impact of these new rate constants on other environments, such as giant and extrasolar planets as well as the interstellar medium.

  7. Evacuation of coal from hoppers/silos with low pressure pneumatic blasting systems

    NASA Technical Reports Server (NTRS)

    Fischer, J. S.

    1977-01-01

    The need for an efficient, economical, effective and quiet device for moving coal and other difficult bulk solids was recognized. Thus came the advent of the low pressure pneumatic blasting system - a very efficient means of using a small amount of plant air (up to 125 PSI) to eliminate the most troublesome material hang-ups in storage containers. This simple device has one moving part and uses approximately 3% of the air consumed by a pneumatic vibrator on the same job. The principle of operation is very simple: air stored in the unit's reservoir is expelled directly into the material via a patented quick release valve. The number, size, and placement of the blaster units on the storage vessel is determined by a series of tests to ascertain flowability of the problem material. These tests in conjunction with the hopper or silo configuration determine specification of a low pressure pneumatic blasting system. This concept has often proven effective in solving flow problems when all other means have failed.

  8. Annularly grooved membrane combined with rood beam piezoresistive pressure sensor for low pressure applications.

    PubMed

    Li, Chuang; Cordovilla, Francisco; Ocaña, José L

    2017-03-01

    A novel structural piezoresistive pressure sensor with annularly grooved membrane combined with rood beam has been proposed for low pressure measurements based on silicon substrate. In this study, a design method, including the model design, dimensions optimization, and performance prediction of the novel structure sensor, is presented. The finite element method has been used to analyze the stress distribution of sensitive elements and the deflection of membrane. On the basis of simulation results, the relationships between structural dimension variables and mechanical performance are deduced, which make the fabrication processes more efficient. According to statistics theory, the coefficient of determination R(2) and residual sum of squares are introduced to indicate whether the fitting equations and curves match well with the simulation results. After that, a series of the optimal membrane dimensions are determined. Compared with other structural sensors, the optimized sensor achieves the best overall properties as it mitigates the contradiction between sensitivity and linearity. The reasons why the proposed sensor can maximize sensitivity and minimize nonlinearity are also discussed. By localizing more strain energy in the high concentrated stress profile and creating partially stiffened membrane, the proposed sensor has achieved a high sensitivity of 34.5 (mV/V)/psi and a low nonlinearity of 0.25% FSS. Thus, the proposed structure sensor will be a proper choice for low pressure applications less than 1 psi.

  9. CH3 and CFx Detection in Low Pressure RF Discharges by Broadband Ultraviolet Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cappelli, M. A.; Kim, J. S.; Sharma, S. P.

    1998-10-01

    The detection of reactive radicals in low-pressure radio-frequency (RF) discharges is of importance to the understanding of the chemical processes involved in discharge applications such as reactive ion etching (RIE) and plasma-enhanced chemical vapor deposition (PECVD). Furthermore, the quantitative measurement of radical concentrations and their spatial distributions provide a test of theoretical models that describe the kinetics of such discharges and their ability to predict the overall reactor-scale performance. In this presentation, we describe preliminary studies of the quantitative detection of CH3 and CF2, which are the products of electron collisional dissociation of methane (CH4) and tetrafluoromethane (CF4), respectively, in low-pressure RF plasma discharges. The discharge studied is an inductively (transformer) coupled plasma (ICP) source, operating on either pure methane or pure tetrafluoromethane, in some cases, with argon dilution. Such discharges are commonly employed in RIE and PECVD applications, and these data contribute to the growing database on properties of such discharges, for which sophisticated models of their operation are presently under development at many laboratories. The detection method employed in these experiments relies on the relatively well studied, X -> B uv-absorption band of CH3 near 216 nm, and the A(0,2,0) -> X(0,0,0) uv-absorption band of CF2 at 234.3 nm.

  10. Microwave air plasmas in capillaries at low pressure I. Self-consistent modeling

    NASA Astrophysics Data System (ADS)

    Coche, P.; Guerra, V.; Alves, L. L.

    2016-06-01

    This work presents the self-consistent modeling of micro-plasmas generated in dry air using microwaves (2.45 GHz excitation frequency), within capillaries (<1 mm inner radius) at low pressure (300 Pa). The model couples the system of rate balance equations for the most relevant neutral and charged species of the plasma to the homogeneous electron Boltzmann equation. The maintenance electric field is self-consistently calculated adopting a transport theory for low to intermediate pressures, taking into account the presence of O- ions in addition to several positive ions, the dominant species being O{}2+ , NO+ and O+ . The low-pressure small-radius conditions considered yield very-intense reduced electric fields (˜600-1500 Td), coherent with species losses controlled by transport and wall recombination, and kinetic mechanisms strongly dependent on electron-impact collisions. The charged-particle transport losses are strongly influenced by the presence of the negative ion, despite its low-density (˜10% of the electron density). For electron densities in the range (1-≤ft. 4\\right)× {{10}12} cm-3, the system exhibits high dissociation degrees for O2 (˜20-70%, depending on the working conditions, in contrast with the  ˜0.1% dissociation obtained for N2), a high concentration of O2(a) (˜1014 cm-3) and NO(X) (5× {{10}14} cm-3) and low ozone production (<{{10}-3}% ).

  11. An expression for the h l factor in low-pressure electronegative plasma discharges

    NASA Astrophysics Data System (ADS)

    Chabert, P.

    2016-04-01

    The positive ion flux exiting a low-pressure plasma discharge is a crucial quantity in global (volume-averaged) models. In discharges containing only electrons and positive ions (electropositive discharges), it is common to write this flux {Γ\\text{wall}}={{h}\\text{l}}{{n}\\text{i0}}{{u}\\text{B}} , where {{n}\\text{i0}} is the central positive ion density, {{u}\\text{B}} is the positive ion fluid speed at the sheath edge (the Bohm speed), and {{h}\\text{l}} is the positive ion edge-to-centre density ratio. There are well established formulae for {{h}\\text{l}} in electropositive discharges, but for discharges containing negative ions (electronegative discharges), the analysis is more complicated. The purpose of this paper is to propose a formula for the {{h}\\text{l}} factor in low-pressure electronegative discharges. We use the numerical solution of fluid equations with Boltzmann negative ions, including Poisson’s equation, as a guide to derive an analytical expression that can easily be incorporated in global models. The parameter space in which the derived expression is valid is discussed at the end of the paper.

  12. Low-pressure clathrate-hydrate formation in amorphous astrophysical ice analogs

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Allamandola, L. J.; Sandford, S.; Hudgins, D.; Freund, F.

    1991-01-01

    In modeling cometary ice, the properties of clathrate hydrates were used to explain anomalous gas release at large radial distances from the Sun, and the retention of particular gas inventories at elevated temperatures. Clathrates may also have been important early in solar system history. However, there has never been a reasonable mechanism proposed for clathrate formation under the low pressures typical of these environments. For the first time, it was shown that clathrate hydrates can be formed by warming and annealing amorphous mixed molecular ices at low pressures. The complex microstructures which occur as a result of clathrate formation from the solid state may provide an explanation for a variety of unexplained phenomena. The vacuum and imaging systems of an Hitachi H-500H Analytical Electron Microscope was modified to study mixed molecular ices at temperatures between 12 and 373 K. The resulting ices are characterized by low-electron dose Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED). The implications of these results for the mechanical and gas release properties of comets are discussed. Laboratory IR data from similar ices are presented which suggest the possibility of remotely observing and identifying clathrates in astrophysical objects.

  13. Kinetic mechanism for low-pressure oxygen/methane ignition and combustion

    NASA Astrophysics Data System (ADS)

    Slavinskaya, N. A.; Wiegand, M.; Starcke, J. H.; Riedel, U.; Haidn, O. J.; Suslov, D.

    2013-03-01

    It is known that during a launch of a rocket, the interaction of the exhaust gases of rocket engines with the atmosphere causes a local depletion of the ozone layer. In order to study these chemical processes in detail, a chemical reaction mechanism of the methane oxidation appropriate for high- and low-pressure conditions and a chemical reactor network to reproduce operating conditions in rocket engines and in the environment have been developed. An earlier developed detailed chemical kinetic model for the high-pressure CH4/O2 combustion has been improved for the low pressure and low temperature methane combustion and augmented with a submodel for NOx formation. The main model improvements are related to the pressure depending reactions. The model has been validated for operating conditions of 0.02 < p < 100 atm, 300 < T < 1800 K and 0.5 < Φ < 3.0. The network of chemical reactors available in CHEMICAL WORKBENCH software has been successfully developed to simulate chemical processes in the convergent divergent rocket nozzle and in the exhaust-jet. Simulations performed have shown that the exhaust gases of a methane/oxygen propelled liquid rocket engine contain high amounts of active radicals, which can influence the formation of nitrogen compounds and consume ozone in the atmosphere.

  14. Quantitative and sensitive analysis of CN molecules using laser induced low pressure He plasma

    NASA Astrophysics Data System (ADS)

    Pardede, Marincan; Hedwig, Rinda; Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah; Jobiliong, Eric; Suyanto, Hery; Marpaung, Alion Mangasi; Suliyanti, Maria Margaretha; Ramli, Muliadi; Tjia, May On; Lie, Tjung Jie; Lie, Zener Sukra; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2015-03-01

    We report the results of experimental study on CN 388.3 nm and C I 247.8 nm emission characteristics using 40 mJ laser irradiation with He and N2 ambient gases. The results obtained with N2 ambient gas show undesirable interference effect between the native CN emission and the emission of CN molecules arising from the recombination of native C ablated from the sample with the N dissociated from the ambient gas. This problem is overcome by the use of He ambient gas at low pressure of 2 kPa, which also offers the additional advantages of cleaner and stronger emission lines. The result of applying this favorable experimental condition to emission spectrochemical measurement of milk sample having various protein concentrations is shown to yield a close to linear calibration curve with near zero extrapolated intercept. Additionally, a low detection limit of 5 μg/g is found in this experiment, making it potentially applicable for quantitative and sensitive CN analysis. The visibility of laser induced breakdown spectroscopy with low pressure He gas is also demonstrated by the result of its application to spectrochemical analysis of fossil samples. Furthermore, with the use of CO2 ambient gas at 600 Pa mimicking the Mars atmosphere, this technique also shows promising applications to exploration in Mars.

  15. Weak interactions between water and clathrate-forming gases at low pressures

    DOE PAGES

    Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; ...

    2015-07-17

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10–1 mbar methane or 10–5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10–5 mbar methane does not alter their morphology, suggesting that the presence ofmore » the Pt(111) surface is not a strong driver for hydrate formation. This weak water–gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. As a result, similar desorption temperatures were observed for desorption from amorphous solid water.« less

  16. Weak interactions between water and clathrate-forming gases at low pressures

    SciTech Connect

    Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; Kay, Bruce D.; Smith, R. Scott

    2015-07-17

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10–1 mbar methane or 10–5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10–5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water–gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. As a result, similar desorption temperatures were observed for desorption from amorphous solid water.

  17. Potential of nanofiltration and low pressure reverse osmosis in the removal of phosphorus for aquaculture.

    PubMed

    Leo, C P; Yahya, M Z; Kamal, S N M; Ahmad, A L; Mohammad, A W

    2013-01-01

    Aquaculture activities in developing countries have raised deep concern about nutrient pollution, especially excess phosphorus in wastewater, which leads to eutrophication. NF, NF90, NF450 and XLE membranes were studied to forecast the potential of nanofiltration and low pressure reverse osmosis in the removal of phosphorus from aquaculture wastewater. Cross-sectional morphology, water contact angle, water permeability and zeta potential of these membranes were first examined. Membrane with higher porosity and greater hydrophilicity showed better permeability. Membrane samples also commonly exhibited high zeta potential value in the polyphosphate-rich solution. All the selected membranes removed more than 90% of polyphosphate from the concentrated feed (75 mg/L) at 12 bar. The separation performance of XLE membrane was well maintained at 94.6% even at low pressure. At low feed concentration, more than 70.0% of phosphorus rejection was achieved using XLE membrane. The formation of intermolecular bonds between polyphosphate and the acquired membranes probably had improved the removal of polyphosphate at high feed concentration. XLE membrane was further tested and its rejection of polyphosphate reduced with the decline of pH and the addition of ammonium nitrate.

  18. The aerodynamic design and performance of the NASA/GE E3 low pressure turbine

    NASA Technical Reports Server (NTRS)

    Cherry, D. G.; Dengler, R. P.

    1984-01-01

    The aerodynamic design and scaled rig test results of the low pressure turbine (LPT) component for the NASA/General Electric Energy Efficient Engine (E3) are presented. The low pressure turbine is a highly loaded five-stage design featuring high outer wall slope, controlled vortex aerodynamics, low stage flow coefficient, and reduced clearances. An assessment of its performance has been made based on a series of scaled air turbine tests which were divided into two phases: Block I (March through August, 1979) and Block II (June through September, 1981). Results from the Block II five-stage test, summarized in the paper, indicate that the E3 LPT will attain an efficiency level of 91.5 percent at the Mach 0.8/35,000 ft. max. climb altitude design point. This is relative to program goals of 91.1 percent for the E3 demonstrator engine and 91.7 percent for a fully developed flight propulsion system LPT.

  19. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes.

    PubMed

    Sanches, Sandra; Barreto Crespo, Maria T; Pereira, Vanessa J

    2010-03-01

    This study reports the efficiency of low pressure UV photolysis for the degradation of pesticides identified as priority pollutants by the European Water Framework Directive 2000/60/EC. Direct low pressure UV photolysis and advanced oxidation processes (using hydrogen peroxide and titanium dioxide) experiments were conducted in laboratory grade water, surface water, and groundwater. LP direct photolysis using a high UV fluence (1500 mJ/cm(2)) was found to be extremely efficient to accomplish the degradation of all pesticides except isoproturon, whereas photolysis using hydrogen peroxide and titanium dioxide did not significantly enhance their removal. In all matrices tested the experimental photolysis of the pesticides followed the same trend: isoproturon degradation was negligible, alachlor, pentachlorophenol, and atrazine showed similar degradation rate constants, whereas diuron and chlorfenvinphos were highly removed. The degradation trend observed for the selected compounds followed the decadic molar absorption coefficients order with exception of isoproturon probably due to its extremely low quantum yield. Similar direct photolysis rate constants were obtained for each pesticide in the different matrices tested, showing that the water components did not significantly impact degradation. Extremely similar photolysis rate constants were also obtained in surface water for individual compounds when compared to mixtures. The model fluence and time-based rate constants reported were very similar to the direct photolysis experimental results obtained, while overestimating the advanced oxidation results. This model was used to predict how degradation of isoproturon, the most resilient compound, could be improved.

  20. Weak interactions between water and clathrate-forming gases at low pressures

    SciTech Connect

    Thurmer, Konrad; Yuan, Chunqing; Kimmel, Gregory A.; Kay, Bruce D.; Smith, R. Scott

    2015-11-01

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10-1 mbar methane or 10-5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10-5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water-gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~43 K and isobutane desorbs near ~100 K. Similar desorption temperatures were observed for desorption from amorphous solid water.

  1. Utilization of Low-Pressure Plasma to Inactivate Bacterial Spores on Stainless Steel Screws

    PubMed Central

    Stapelmann, Katharina; Fiebrandt, Marcel; Raguse, Marina; Awakowicz, Peter; Reitz, Günther

    2013-01-01

    Abstract A special focus area of planetary protection is the monitoring, control, and reduction of microbial contaminations that are detected on spacecraft components and hardware during and after assembly. In this study, wild-type spores of Bacillus pumilus SAFR-032 (a persistent spacecraft assembly facility isolate) and the laboratory model organism B. subtilis 168 were used to study the effects of low-pressure plasma, with hydrogen alone and in combination with oxygen and evaporated hydrogen peroxide as a process gas, on spore survival, which was determined by a colony formation assay. Spores of B. pumilus SAFR-032 and B. subtilis 168 were deposited with an aseptic technique onto the surface of stainless steel screws to simulate a spore-contaminated spacecraft hardware component, and were subsequently exposed to different plasmas and hydrogen peroxide conditions in a very high frequency capacitively coupled plasma reactor (VHF-CCP) to reduce the spore burden. Spores of the spacecraft isolate B. pumilus SAFR-032 were significantly more resistant to plasma treatment than spores of B. subtilis 168. The use of low-pressure plasma with an additional treatment of evaporated hydrogen peroxide also led to an enhanced spore inactivation that surpassed either single treatment when applied alone, which indicates the potential application of this method as a fast and suitable way to reduce spore-contaminated spacecraft hardware components for planetary protection purposes. Key Words: Bacillus spores—Contamination—Spacecraft hardware—Plasma sterilization—Planetary protection. Astrobiology 13, 597–606. PMID:23768085

  2. RAPID ASSOCIATION REACTIONS AT LOW PRESSURE: IMPACT ON THE FORMATION OF HYDROCARBONS ON TITAN

    SciTech Connect

    Vuitton, V.; Klippenstein, S. J. E-mail: yelle@lpl.arizona.edu E-mail: sjk@anl.gov

    2012-01-01

    Photochemical models of Titan's atmosphere predict that three-body association reactions are the main production route for several major hydrocarbons. The kinetic rate constants of these reactions strongly depend on density and are therefore only important in Titan's lower atmosphere. However, radiative association reactions do not depend on pressure. The possible existence of large rates at low density suggests that association reactions could significantly affect the chemistry of Titan's upper atmosphere and better constraints for them are required. The kinetic parameters of these reactions are extremely difficult to constrain by experimental measurements as the low pressure of Titan's upper atmosphere cannot be reproduced in the laboratory. However, in the recent years, theoretical calculations of kinetics parameters have become more and more reliable. We therefore calculated several radical-radical and radical-molecule association reaction rates using transition state theory. The calculations indicate that association reactions are fast even at low pressure for adducts having as few as four C atoms. These drastic changes have however only moderate consequences for Titan's composition. Locally, mole fractions can vary by as much as one order of magnitude but the column-integrated production and condensation rates of hydrocarbons change only by a factor of a few. We discuss the impact of these results for the organic chemistry. It would be very interesting to check the impact of these new rate constants on other environments, such as giant and extrasolar planets as well as the interstellar medium.

  3. In situ CF3 Detection in Low Pressure Inductive Discharges by Fourier Transform Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    The detection of CF(x) (x=1-3) radicals in low pressure discharges using source gases such as CF4 and CHF3 is of importance to the understanding of their chemical structure and relevance in plasma based etching processes. These radicals are known to contribute to the formation of fluorocarbon polymer films, which affect the selectivity and anisotropy of etching. In this study, we present preliminary results of the quantitative measurement of trifluoromethyl radicals, CF3, in low pressure discharges. The discharge studied here is an inductively (transformer) coupled plasma (ICP) source in the GEC reference cell, operating on pure CF4 at pressures ranging from 10 - 100 mTorr, This plasma source generates higher electron number densities at lower operating pressures than obtainable with the parallel-plate capacitively coupled version of the GEC reference cell. Also, this expanded operating regime is more relevant to new generations of industrial plasma reactors being used by the microelectronics industry. Fourier transform infrared (FTIR) spectroscopy is employed to observe the absorption band of CF3 radicals in the electronic ground state X2Al in the region of 1233-1270/cm. The spectrometer is equipped with a high sensitivity HgCdTe (MCT) detector and has a fixed resolution of 0.125/cm. The CF3 concentrations are measured for a range of operating pressures and discharge power levels.

  4. The role of thermal energy accommodation and atomic recombination probabilities in low pressure oxygen plasmas

    NASA Astrophysics Data System (ADS)

    Gibson, Andrew Robert; Foucher, Mickaël; Marinov, Daniil; Chabert, Pascal; Gans, Timo; Kushner, Mark J.; Booth, Jean-Paul

    2017-02-01

    Surface interaction probabilities are critical parameters that determine the behaviour of low pressure plasmas and so are crucial input parameters for plasma simulations that play a key role in determining their accuracy. However, these parameters are difficult to estimate without in situ measurements. In this work, the role of two prominent surface interaction probabilities, the atomic oxygen recombination coefficient γ O and the thermal energy accommodation coefficient α E in determining the plasma properties of low pressure inductively coupled oxygen plasmas are investigated using two-dimensional fluid-kinetic simulations. These plasmas are the type used for semiconductor processing. It was found that α E plays a crucial role in determining the neutral gas temperature and neutral gas density. Through this dependency, the value of α E also determines a range of other plasma properties such as the atomic oxygen density, the plasma potential, the electron temperature, and ion bombardment energy and neutral-to-ion flux ratio at the wafer holder. The main role of γ O is in determining the atomic oxygen density and flux to the wafer holder along with the neutral-to-ion flux ratio. It was found that the plasma properties are most sensitive to each coefficient when the value of the coefficient is small causing the losses of atomic oxygen and thermal energy to be surface interaction limited rather than transport limited.

  5. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  6. Discrete element simulation of powder compaction in cold uniaxial pressing with low pressure

    NASA Astrophysics Data System (ADS)

    Rojek, Jerzy; Nosewicz, Szymon; Jurczak, Kamila; Chmielewski, Marcin; Bochenek, Kamil; Pietrzak, Katarzyna

    2016-11-01

    This paper presents numerical studies of powder compaction in cold uniaxial pressing. The powder compaction in this work is considered as an initial stage of a hot pressing process so it is realized with relatively low pressure (up to 50 MPa). Hence the attention has been focused on the densification mechanisms at this range of pressure and models suitable for these conditions. The discrete element method employing spherical particles has been used in the numerical studies. Numerical simulations have been performed for two different contact models—the elastic Hertz-Mindlin-Deresiewicz model and the plastic Storåkers model. Numerical results have been compared with the results of laboratory tests of the die compaction of the NiAl powder. Comparisons have shown that the discrete element method is capable to represent properly the densification mechanisms by the particle rearrangement and particle deformation.

  7. Low pressure gas study for a direction-sensitive dark matter search experiment with MPGD

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Miuchi, K.; Iwaki, S.; Kubo, H.; Mizumoto, T.; Nishimura, H.; Parker, J. D.; Sawano, T.; Takada, A.; Tanimori, T.; Sekiya, H.; Takeda, A.

    2012-02-01

    The NEWAGE project (NEw generation WIMP search with an Advanced Gaseous tracking device Experiment) is a direction-sensitive dark matter search experiment, searching for WIMPs (Weakly Interacting Massive Particle) via nuclear recoil. The NEWAGE detector, a micro time-projection-chamber with a 400μm pitch read out, detects three-dimensional nuclear tracks. A low-pressure gas study (76 torr) was performed in order to lower the energy threshold, one of the most effective improvements for the next underground measurement. We measured the gas gain, the angular resolution and the detection efficiency. We have consequently lowered the energy threshold from 100 keV to 50 keV by decreasing the gas pressure.

  8. Variation of antioxidative activity and growth enhancement of Brassicaceae induced by low-pressure oxygen plasma

    NASA Astrophysics Data System (ADS)

    Ono, Reoto; Hayashi, Nobuya

    2015-06-01

    The mechanism of growth enhancement induced by active oxygen species generated in an oxygen plasma is investigated. The plant growth enhancement induced by the active oxygen species would relate to an antioxidative activity, which is one of the biological responses. The amount of generated active oxygen species is varied by the oxygen gas pressure in a low-pressure RF glow discharge plasma. The antioxidative activity of sprouts of Brassicaceae induced by the oxygen plasma is maximized at pressures between 30 and 40 Pa, whereas the antioxidative activity becomes small at around 60 and 80 Pa. The pressure dependence of the antioxidative activity of sprout stems is opposite to that of the stem length of the sprouts. The growth enhancement would be induced by the increase in the concentration of active oxygen species in plants owing to the decrease in the amount of antioxidative substances.

  9. Formation processes of nanometer sized particles in low pressure Ar/CH{sub 4} rf plasmas

    SciTech Connect

    Beckers, J.; Vacaresse, G. D. G. J.; Stoffels, W. W.

    2008-09-07

    In this paper, formation and growth processes of nanometer and micrometer sized dust particles in low pressure Ar/CH{sub 4} rf (13.56 MHz) plasmas are investigated as function of temperature in the range 25-100 deg. C. During experiments the pressure was typically 0.8 mbar and the forward power to the plasma was {approx}70 Watt. Measuring the fundamental voltage, current and phase angle together with their harmonics (up to the fourth) gives a good method to monitor the creation and growth of these dust particles in time. Furthermore, laser light scattering measurements are performed to give information about the dust particle density. It has been shown that dust particle formation in these conditions depends greatly on temperature.

  10. 3D simulation of tungsten low-pressure chemical vapor deposition in contact holes

    NASA Astrophysics Data System (ADS)

    Bär, E.; Lorenz, J.

    1995-10-01

    We present a new method for three-dimensional (3D) simulation of low-pressure chemical vapor deposition in arbitrary geometries using a segment-based topography discretization with triangles combined with the calculation of particle fluxes to the wafer surface. The simulation program is applied to tungsten LPCVD using the reduction of tungsten hexafluoride (WF 6) by silane (SiH 4). We found that an approach in which the redistribution of the SiH 4 molecules is simulated and a constant reaction probability after collision of a SiH 4 molecule with the surface is assumed allows the simulation of this process with a reaction probability which is consistent with thermodynamic calculations. A comparison between a simulated 3D profile and experimental data from tungsten LPCVD in a contact hole shows very good agreement between experiment and simulation.

  11. Active Oxygen Species Generator by Low Pressure Silent Discharge and its Application to Water Treatment

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaaki; Ikeda, Akira; Tanimura, Yasuhiro; Ohta, Koji; Yoshiyasu, Hajimu

    We have proposed the new water treatment using the active oxygen species such as an atomic oxygen with the oxidation power that is stronger than ozone. Based on the results of simulations we designed the silent discharge type active oxygen generator with a water ejector, which is operated on the discharge conditions of low pressure of 6.6kPa. and high temperature of about 200°C. The experimental results are as follows. (1) The yield of the active oxygen increases with the increase of the discharge tube temperature and the decrease of the gas pressure. (2) The life time of active oxygen is tens msec. (3) The active oxygen oxidizes efficiently the formic acid compared with ozone. It is assumed from these results that the active oxygen species having a strong oxidation power is generated.

  12. On designing low pressure loss working spaces for a planar Stirling micromachine

    NASA Astrophysics Data System (ADS)

    Hachey, M.-A.; Léveillé, É.; Fréchette, L. G.; Formosa, F.

    2015-12-01

    In this paper, research was undertaken with the objective to design low pressure loss working spaces for a Stirling cycle micro heat engine operating from low temperature waste heat. This planar free-piston heat engine is anticipated to operate at the kHz level with mm3 displacement. Given the resonant nature of the free-piston configuration, the complexity of its working gas’ flow geometry and its projected high operating frequency, flow analysis is relatively complex. Design considerations were thus based on fast prototyping and experimentation. Results show that geometrical features, such as a sharp 90° corner between the regenerator and working spaces, are strong contributors to pressure losses. This research culminated into a promising revised working space configuration for engine start-up, as it considerably reduced total pressure losses, more than 80% at Re = 700, from the original design.

  13. Low-pressure phase transformation from rhombohedral to cubic BN: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Shvedov, Leonid K.

    2002-03-01

    An irreversible phase transformation (PT) from the rhombohedral phase of boron nitride rBN to cubic cBN was recently recorded at the surprisingly low pressure of 5.6 GPa at room temperature. In this paper, a very nontrivial and unexpected explanation of this phenomenon is found, based on our criterion for the PT in plastic materials and approximate solution of corresponding plastic problems. It is found that due to orientational plastic instability and rotational softening in rBN and the higher yield stress of cBN, stresses grow drastically in the transforming region during the PT (despite a volume decrease by a factor of 1.53). This allows the fulfillment of the PT criterion which takes into account the whole stress history during the transformation process. It appears that the above experimental phenomenon is connected to the mechanical behavior of the system of transforming particles+surrounding materials at the millimeter scale.

  14. The effect of discharge chamber geometry on the ignition of low-pressure rf capacitive discharges

    SciTech Connect

    Lisovskiy, V.; Martins, S.; Landry, K.; Douai, D.; Booth, J.-P.; Cassagne, V.; Yegorenkov, V.

    2005-09-15

    This paper reports measured and calculated breakdown curves in several gases of rf capacitive discharges excited at 13.56 MHz in chambers of three different geometries: parallel plates surrounded by a dielectric cylinder ('symmetric parallel plate'), parallel plates surrounded by a grounded metallic cylinder ('asymmetric parallel plate'), and parallel plates inside a much larger grounded metallic chamber ('large chamber'). The breakdown curves for the symmetric chamber have a multivalued section at low pressure. For the asymmetric chamber the breakdown curves are shifted to lower pressures and rf voltages, but the multivalued feature is still present. At higher pressures the breakdown voltages are much lower than for the symmetric geometry. For the large chamber geometry the multivalued behavior is not observed. The breakdown curves were also calculated using a numerical model based on fluid equations, giving results that are in satisfactory agreement with the measurements.

  15. Evaluation of a 40 to 1 scale model of a low pressure engine

    NASA Technical Reports Server (NTRS)

    Cooper, C. E., Jr.; Thoenes, J.

    1972-01-01

    An evaluation of a scale model of a low pressure rocket engine which is used for secondary injection studies was conducted. Specific objectives of the evaluation were to: (1) assess the test conditions required for full scale simulations; (2) recommend fluids to be used for both primary and secondary flows; and (3) recommend possible modifications to be made to the scale model and its test facility to achieve the highest possible degree of simulation. A discussion of the theoretical and empirical scaling laws which must be observed to apply scale model test data to full scale systems is included. A technique by which the side forces due to secondary injection can be analytically estimated is presented.

  16. Dynamics of cathode spots in low-pressure arc plasma removing oxide layer on steel surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Z. L.; Yang, K.; Liu, H. X.; Zhang, Y. C.; Li, H.; Zhu, X. D.

    2016-03-01

    The dynamics of cathode spots has been investigated in low-pressure arc plasma for removing oxide layer on low carbon steel surfaces. The motion of cathode spots was observed with a high speed camera, and the arc voltage was analyzed by fast Fourier transform. The spots move on clean steel surface as a random walk, and the low-frequency components dominated the voltage waveform. However, the spots on steel surfaces with oxide layer tend to burn on the rim of the eroded area formed in the previous arcing, and the low-frequency components decrease correspondingly. The "color" of the colored random noise for arc voltage varies from the approximate brown noise for clean steel surface to pink noise for thick oxide layer, where the edge effect of boundary is considered to play a significant role.

  17. A 2-D Self-Consistent DSMC Model for Chemically Reacting Low Pressure Plasma Reactors

    SciTech Connect

    Bartel, Timothy J.; Economou, Demetre; Johannes, Justine E.

    1999-06-17

    This paper will focus on the methodology of using a 2D plasma Direct Simulation Monte Carlo technique to simulate the species transport in an inductively coupled, low pressure, chemically reacting plasma system. The pressure in these systems is typically less than 20 mtorr with plasma densities of approximately 10{sup 17} {number_sign}/m{sup 3} and an ionization level of only 0.1%. This low ionization level tightly couples the neutral, ion, and electron chemistries and interactions in a system where the flow is subsonic. We present our strategy and compare simulation results to experimental data for Cl{sub 2} in a Gaseous Electronics Conference (GEC) reference cell modified with an inductive coil.

  18. Performance and control study of a low-pressure-ratio turbojet engine for a drone aircraft

    NASA Technical Reports Server (NTRS)

    Seldner, K.; Geyser, L. C.; Gold, H.; Walker, D.; Burgner, G.

    1972-01-01

    The results of analog and digital computer studies of a low-pressure-ratio turbojet engine system for use in a drone vehicle are presented. The turbojet engine consists of a four-stage axial compressor, single-stage turbine, and a fixed area exhaust nozzle. Three simplified fuel schedules and a generalized parameter fuel control for the engine system are presented and evaluated. The evaluation is based on the performance of each schedule or control during engine acceleration from a windmill start at Mach 0.8 and 6100 meters to 100 percent corrected speed. It was found that, because of the higher acceleration margin permitted by the control, the generalized parameter control exhibited the best dynamic performance.

  19. Efficient swimmers use bending kinematics to generate low pressure regions for suction-based swimming thrust

    NASA Astrophysics Data System (ADS)

    Colin, Sean; Gemmell, Brad; Costello, John; Morgan, Jennifer; Dabiri, John

    2015-11-01

    A longstanding tenet in the conceptualization of animal swimming is that locomotion occurs by pushing against the surrounding water. Implicit in this perspective is the assumption that swimming involves lateral body accelerations that generate locally elevated pressures in the fluid, in order to achieve the expected downstream push of the surrounding water against the ambient pressure. Here we show that to the contrary, efficient swimming animals primarily pull themselves through the water by creating localized regions of low pressure via waves of body surface rotation that generate vortices. These effects are observed using laser diagnostics applied to normal and spinally-transected lampreys. The results suggest rethinking evolutionary adaptations observed in swimming animals as well as the mechanistic basis for bio-inspired underwater vehicles. NSF CBET (1510929).

  20. Low-pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    NASA Astrophysics Data System (ADS)

    Fumagalli, F.; Kylián, O.; Amato, L.; Hanuš, J.; Rossi, F.

    2012-04-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water vapour plasma process are discussed for practical applications in medical devices decontamination.

  1. Removal of C.I. Reactive Red 2 by low pressure UV/chlorine advanced oxidation.

    PubMed

    Wu, Qianyuan; Li, Yue; Wang, Wenlong; Wang, Ting; Hu, Hongying

    2016-03-01

    Azo dyes are commonly found as pollutants in wastewater from the textile industry, and can cause environmental problems because of their color and toxicity. The removal of a typical azo dye named C.I. Reactive Red 2 (RR2) during low pressure ultraviolet (UV)/chlorine oxidation was investigated in this study. UV irradiation at 254nm and addition of free chlorine provided much higher removal rates of RR2 and color than UV irradiation or chlorination alone. Increasing the free chlorine dose enhanced the removal efficiency of RR2 and color by UV/chlorine oxidation. Experiments performed with nitrobenzene (NB) or benzoic acid (BA) as scavengers showed that radicals (especially OH) formed during UV/chlorine oxidation are important in the RR2 removal. Addition of HCO3(-) and Cl(-) to the RR2 solution did not inhibit the removal of RR2 during UV/chlorine oxidation.

  2. Simulation of rarefied low pressure RF plasma flow around the sample

    NASA Astrophysics Data System (ADS)

    Zheltukhin, V. S.; Shemakhin, A. Yu

    2017-01-01

    The paper describes a mathematical model of the flow of radio frequency plasma at low pressure. The hybrid mathematical model includes the Boltzmann equation for the neutral component of the RF plasma, the continuity and the thermal equations for the charged component. Initial and boundary conditions for the corresponding equations are described. The electron temperature in the calculations is 1-4 eV, atoms temperature in the plasma clot is (3-4) • 103 K, in the plasma jet is (3.2-10) • 102 K, the degree of ionization is 10-7-10-5, electron density is 1015-1019 m-3. For calculations plasma parameters is developed soft package on C++ program language, that uses the OpenFOAM library package. Simulations for the vacuum chamber in the presence of a sample and the free jet flow were carried out.

  3. Characterization of Low Pressure Cold Plasma in the Cleaning of Contaminated Surfaces

    NASA Technical Reports Server (NTRS)

    Lanz, Devin Garrett; Hintze, Paul E.

    2016-01-01

    The characterization of low pressure cold plasma is a broad topic which would benefit many different applications involving such plasma. The characterization described in this paper focuses on cold plasma used as a medium in cleaning and disinfection applications. Optical Emission Spectroscopy (OES) and Mass Spectrometry (MS) are the two analytical methods used in this paper to characterize the plasma. OES analyzes molecules in the plasma phase by displaying the light emitted by the plasma molecules on a graph of wavelength vs. intensity. OES was most useful in identifying species which may interact with other molecules in the plasma, such as atomic oxygen or hydroxide radicals. Extracting useful data from the MS is done by filtering out the peaks generated by expected molecules and looking for peaks caused by foreign ones leaving the plasma chamber. This paper describes the efforts at setting up and testing these methods in order to accurately and effectively characterize the plasma.

  4. Discharge parameters and dominant electron conductivity mechanism in a low-pressure planar magnetron discharge

    SciTech Connect

    Baranov, O.; Romanov, M.; Ostrikov, Kostya

    2009-06-15

    Parameters of a discharge sustained in a planar magnetron configuration with crossed electric and magnetic fields are studied experimentally and numerically. By comparing the data obtained in the experiment with the results of calculations made using the proposed theoretical model, conclusion was made about the leading role of the turbulence-driven Bohm electron conductivity in the low-pressure operation mode (up to 1 Pa) of the discharge in crossed electric and magnetic fields. A strong dependence of the width of the cathode sputter trench, associated with the ionization region of the magnetron discharge, on the discharge parameters was observed in the experiments. The experimental data were used as input parameters in the discharge model that describes the motion of secondary electrons across the magnetic field in the ionization region and takes into account the classical, near-wall, and Bohm mechanisms of electron conductivity.

  5. The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor

    SciTech Connect

    Pourali, N.; Foroutan, G.

    2015-10-15

    A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which in turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.

  6. Comparison measurements of low-pressure between a laser refractometer and ultrasonic manometer

    NASA Astrophysics Data System (ADS)

    Egan, Patrick F.; Stone, Jack A.; Ricker, Jacob E.; Hendricks, Jay H.

    2016-05-01

    We have developed a new low-pressure sensor which is based on the measurement of (nitrogen) gas refractivity inside a Fabry-Perot cavity. We compare pressure determinations via this laser refractometer to that of well-established ultrasonic manometers throughout the range 100 Pa to 180 000 Pa. The refractometer demonstrates 10-6 ṡ p reproducibility for p > 100 Pa, and this precision outperforms a manometer. We also claim the refractometer has an expanded uncertainty of U(pFP) = [(2.0 mPa)2 + (8.8 × 10-6 ṡ p)2]1/2, as realized through the properties of nitrogen gas; we argue that a transfer of the pascal to p < 1 kPa using a laser refractometer is more accurate than the current primary realization.

  7. Experimental testing of cooling by low pressure adsorption in a zeolite

    SciTech Connect

    Redman, C.M.

    1985-01-01

    A small scale facility was designed, constructed, and utilized to test the use of zeolite adsorption of water vapor to augment chill storage in ice for conventional space cooling. The facility uses solar-derived energy, for the heat source and evaporatively chilled water for the heat sump. The product cooling uses sublimation of ice instead of melting. The ZCAT facility utilizes a heat pumping technique in which a water vapor adsorbent functions as the compressor and condenser. The design was based on use of 13X zeolite as the adsorber because of its high adsorbence at low pressures. However, it has been determined that other materials such as silica gel should give superior performance. While zeolite 13X holds more water in the pressure and temperature ranges of interest, silica gel cycles more water and has less residue water. Both points are very important in the design of an efficient and cost effective system.

  8. Identification of reaction products in the low-pressure chemical vapor deposition of molybdenum silicide

    SciTech Connect

    Gaczi, P.J.; Reynolds, G.J. )

    1989-09-01

    The gaseous species produced by low-pressure chemical vapor deposition of molybdenum silicide in a cold wall reactor were identified by mass spectroscopy. Lowering the ionizing electron energy made possible the unambiguous assignment of the mass spectra to individual species and also permitted useful quantitative estimates to be made. Thermodynamic calculations using the computer program SOLGASMIX were carried out on the M-Si-H-F (M = Mo, W) quaternary system. Both experiment and calculation indicate that the fluorosilanes were the major gaseous reaction by-products, with SiHF{sub 3} being the most abundant for the experimental conditions investigated here. The changes in the process with substrate temperature were also investigated and are discussed with reference to both thermodynamic and kinetic effects.

  9. Direct current-self-sustained non-ambipolar plasma at low pressure

    SciTech Connect

    Chen, Zhiying; Chen, Lee; Funk, Merritt

    2013-12-16

    For decades, non-ambipolar diffusion has been observed and studied in laboratory plasmas that contain a double layer. However, self-sustained non-ambipolar plasma has yet to be demonstrated. This article reports the method and results for achieving such a condition at low pressure, with a wide power range (as low as 6 W). The findings reveal that to achieve self-sustained non-ambipolar plasma, both the balance between electron and ion heating and the space-potential gradient are critical. The plasma reactor developed in this work has potential applications that include microelectronic surface processing and space propulsion, via space-charge-neutral plasma-beam thruster, when operated in the high power regime.

  10. Low pressure chemical vapor deposition of niobium coating on silicon carbide

    NASA Astrophysics Data System (ADS)

    Liu, Qiaomu; Zhang, Litong; Cheng, Laifei; Liu, Jinling; Wang, Yiguang

    2009-07-01

    Nb coatings were prepared on a SiC substrate by low pressure chemical vapor deposition using NbCl 5. Thermodynamic calculations were performed to study the effect of temperature and partial pressure of NbCl 5 on the final products. The as-deposited coatings were characterized by scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy. The Nb coatings are oriented and grow in the preferred (2 0 0) plane and (2 1 1) plane, at 1173 K and 1223-1423 K, respectively. At 1123-1273 K, the deposition is controlled by the surface kinetic processes. The activation energy is found to be 133 kJ/mol. At 1273-1373 K, the deposition is controlled by the mass transport processes. The activation energy is found to be 46 kJ/mol. The growth mechanism of the chemical vapor deposited Nb is also discussed based on the morphologies and the deposition rates.

  11. Theory of instabilities in crossed-field discharges at low pressures

    SciTech Connect

    Abolmasov, Sergey N.; Samukawa, Seiji; Bizyukov, Alexander A.

    2007-09-15

    Anode layer thruster, Penning, cylindrical magnetron, and inverted-magnetron discharges all behave, at pressures below about 10{sup -4} Torr, as crossed-field discharges. At such low pressures, a crossed-field discharge is pure electron plasma and most of the discharge voltage appears across an electron sheath so that the electric field is orthogonal to the magnetic field. The principal difficulties in the practical use of these discharges in this pressure range arise from instabilities in the discharge, which are commonly attributed to diocotron instabilities in the electron sheath. On the contrary, this paper describes a theory of the electron sheath based on the classical expression for the cross-field mobility of electrons. The theory predicts that the observed instabilities, accompanied by appearance of pulses of excess energy electrons at the cathode(s) and nonlinearity in the discharge characteristics, are simply the result of periodic travel of the electron sheath through the discharge gap.

  12. Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing.

    PubMed

    Li, Yanbo; Cooper, Jason K; Buonsanti, Raffaella; Giannini, Cinzia; Liu, Yi; Toma, Francesca M; Sharp, Ian D

    2015-02-05

    A new method for achieving high efficiency planar CH3NH3I3-xClx perovskite photovoltaics, based on a low pressure, reduced temperature vapor annealing is demonstrated. Heterojunction devices based on this hybrid halide perovskite exhibit a top PCE of 16.8%, reduced J-V hysteresis, and highly repeatable performance without need for a mesoporous or nanocrystalline metal oxide layer. Our findings demonstrate that large hysteresis is not an inherent feature of planar heterojunctions, and that efficient charge extraction can be achieved with uniform halide perovskite materials with desired composition. X-ray diffraction, valence band spectroscopy, and transient absorption measurements of these thin films reveal that structural modifications induced by chlorine clearly dominate over chemical and electronic doping effects, without affecting the Fermi level or photocarrier lifetime in the material.

  13. The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor

    NASA Astrophysics Data System (ADS)

    Pourali, N.; Foroutan, G.

    2015-10-01

    A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which in turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.

  14. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    DOEpatents

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  15. Research program: The investigation of heat transfer and fluid flow at low pressure

    NASA Astrophysics Data System (ADS)

    El-Genk, M. S.; Philbin, J. S.; Foushee, F. C.

    1986-04-01

    This paper gives an overview of a multiyear joint research program being conducted at the University of New Mexico (UNM) with support from Sandia National Laboratories and GA Technologies. This research focuses on heat removal and fluid dynamics in flow regimes characterized by low pressure and low Reynolds number. The program was motivated by a desire to characterize and analyze cooling in a broad class of TRIGA-type reactors under: (1) typical operating conditions, (2) anticipated, new operating regimes, and (3) postulated accident conditions. It has also provided experimental verification of analytical tools used in design analysis. The paper includes descriptions of the UNM thermal-hydraulics test facility and the experimental test sections. During the first two years experiments were conducted using single, electrically heated rod in water and air annuli. This configuration provides an observable and serviceable simulation of a fuel rod and its coolant channel.

  16. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.

    PubMed

    Sun, Wanqi; Liang, Miao; Li, Zhen; Shu, Jinian; Yang, Bo; Xu, Ce; Zou, Yao

    2016-08-15

    On-spot monitoring of threat agents needs high sensitive instrument. In this study, a low-pressure photoionization mass spectrometer (LPPI-MS) was employed to detect trace amounts of vapor-phase explosives and chemical warfare agent mimetics under ambient conditions. Under 10-s detection time, the limits of detection of 2,4-dinitrotoluene, nitrotoluene, nitrobenzene, and dimethyl methyl phosphonate were 30, 0.5, 4, and 1 parts per trillion by volume, respectively. As compared to those obtained previously with PI mass spectrometric techniques, an improvement of 3-4 orders of magnitude was achieved. This study indicates that LPPI-MS will open new opportunities for the sensitive detection of explosives and chemical warfare agents.

  17. Low pressure process for continuous fiber reinforced polyamic acid resin matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Druyun, Darleen A. (Inventor); Hou, Tan-Hung (Inventor); Kidder, Paul W. (Inventor); Reddy, Rakasi M. (Inventor); Baucom, Robert M. (Inventor)

    1994-01-01

    A low pressure processor was developed for preparing a well-consolidated polyimide composite laminate. Prepreg plies were formed from unidirectional fibers and a polyamic acid resin solution. Molding stops were placed at the sides of a matched metal die mold. The prepreg plies were cut shorter than the length of the mold in the in-plane lateral direction and were stacked between the molding stops to a height which was higher than the molding stops. The plies were then compressed to the height of the stops and heated to allow the volatiles to escape and to start the imidization reaction. After removing the stops from the mold, the heat was increased and 0 - 500 psi was applied to complete the imidization reaction. The heat and pressure were further increased to form a consolidated polyimide composite laminate.

  18. Low-pressure microwave plasma nucleation and deposition of diamond films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.; Rich, D. H.

    1992-01-01

    Low-pressure microwave plasma nucleation and deposition of diamond films were investigated in the pressure range 10-mtorr to 10 torr, at substrate temperatures 400-750 C and with CH4 and O2 concentrations in H2 plasma of 2-15 percent and 2-10 percent, respectively. The experiments were performed in a microwave plasma system consisting of a microwave plasma chamber, a downstream deposition chamber, and an RF induction heated sample stage. Scanning electron microscopy of diamond films deposited at 600 C with 5 percent CH4 and 5 percent O2 in H2 plasmas showed high-quality well faceted crystallites of 1/2 micron size. Cathodoluminescence measurements of these films showed very few nitrogen impurities and no detectable silicon impurities.

  19. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    SciTech Connect

    Assamagan, Ketevi; Baker, O.; Bayatian, G.; Carlini, Roger; Danagoulian, Areg; Eden, Thomas; Egiyan, Kim; Ent, Rolf; Fenker, Howard; Gan, Liping; Gasparian, Ashot; Grigoryan, Hovhannes; Greenwood, Z; Gueye, Paul; Hashimoto, Osamu; Johnston, Kathleen; Keppel, Cynthia; Knyazian, S.; Majewski, Stanislaw; Magaryan, A; Margarian, Yu.; Marikyan, Gagik; Martoff, Charles; Mkrtchyan, Hamlet; PARLAKYAN, L.; Parlakyan, L.; Sato, Ikuro; Sawafta, Reyad; Simicevic, Neven; Tadevosyan, Vardan; Takahashi, Toshiyuki; Tang, Liguang; VARTANYAN, G.; Vulcan, William; Wells, Steven; Wood, Stephen

    1999-05-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a 252Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1z2Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200ps (FWHM) for a chamber size of 21z21cm2 was achieved.

  20. Remote catalyzation for growth of boron nitride nanotubes by low pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Liangjie; Li, Taotao; Ling, Lin; Luo, Jie; Zhang, Kai; Xu, Yancui; Lu, Huifen; Yao, Yagang

    2016-05-01

    Direct deposition of high purity and quality boron nitride nanotubes (BNNTs) on Si substrate were obtained using low pressure chemical vapor deposition (LPCVD). We find Fe-Mg-O species may act as catalysts for growing BNNTs. This synthesis process conforms to vapor-liquid-solid (VLS) growth mechanism. As-grown BNNTs also show a large optical energy band gap of 6.12 eV, approaching to hexagonal phase BN single crystals. Meanwhile, as-grown BNNTs exhibit an intense UV-emission band located at 345 nm and a weak deep band at 237 nm. Their optoelectronic properties make them have promising for future nanoscale deep-UV light emitting devices.

  1. A search for chemical laser action in low pressure metal vapor flames. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zwillenberg, M. L.

    1975-01-01

    Optical emissions were studied from low pressure (approximately 1 torr) dilute diffusion flames of Ca and Mg vapor with O2, N2O and mixtures of CCl4 and O2. The Ca flames with O2 and N2O revealed high vibrational excitation of the product CaO molecule (up to v=30). The flames with CCl4 revealed extreme nonequilibrium metal atom electronic excitation, up to the metal atom ionization limit (6.1 eV for Ca, 7.6 eV for Mg). The metal atom excited electronic state populations did not follow a Boltzmann distribution, but the excitation rates ('pumping rate') were found to obey an Arrhenius-type expression, with the electronic excitation energy playing the role of activation energy and a temperature of about 5000 K for triplet excited states and 2500 K for singlets (vs. approximately 500 K translational temperature).

  2. Characterization of the large area plane-symmetric low-pressure DC glow discharge

    NASA Astrophysics Data System (ADS)

    Avtaeva, S.; Gorokhovsky, V.; Myers, S.; Robertson, S.; Shunko, E.; Zembower, Z.

    2016-10-01

    Electron density and temperature as well as nitrogen dissociation degree in the low-pressure (10-50 mTorr) large area plane-symmetric DC glow discharge in Ar-N2 mixtures are studied by probes and spectral methods. Electron density measured by a hairpin probe is in good agreement with that derived from the intensity ratio of the N2 2nd positive system bands IC , 1 - 3/IC , 0 - 2 and from the intensity ratio of argon ions and atom lines IArII/IArI, while Langmuir probe data provides slightly higher values of electron density. Electron density in the low-pressure DC glow discharge varies with the discharge conditions in the limits of 108-1010 cm- 3. The concept of electron temperature can be used in low-pressure glow discharges with reservations. The intensity ratio of (0-0) vibrational bands of N2 1st negative and 2nd positive systems I391.4/I337.1 exhibits the electron temperature of 1.5-2.5 eV when argon fraction in the mixture is higher than nitrogen fraction and this ratio quickly increases with nitrogen fraction up to 10 eV in pure nitrogen. The electron temperature calculated from Langmuir probe I-V characteristics assuming a Maxwellian EEDF, gives Te 0.3-0.4 eV. In-depth analysis of the EEDF using the second derivative of Langmuir probe I-V characteristics shows that in a low-pressure glow discharge the EEDF is non-Maxwellian. The EEDF has two populations of electrons: the main background non-Maxwellian population of ;cold; electrons with the mean electron energy of 0.3-0.4 eV and the small Maxwellian population of ;hot; electrons with the mean electron energy of 1.0-2.5 eV. Estimations show that with electron temperature lower than 1 eV the rate of the direct electron impact ionization of N2 is low and the main mechanism of N2 ionization becomes most likely Penning and associative ionization. In this case, assumptions of the intensity ratio IN2+ , 391/IN2 , 337 method are violated. In the glow discharge, N2 dissociation degree reaches about 7% with the argon

  3. Experimental Study of Electron Emission Characteristics of a Surface Flashover Trigger in a Low Pressure Environment

    NASA Astrophysics Data System (ADS)

    Hu, Shangmao; Yao, Xueling; Chen, Jingliang

    2010-12-01

    Characteristics of electron emission induced by a surface flashover trigger device in a low-pressure trigger switch were investigated. A test method to measure the emitted charges from the trigger device was developed, and the factors affecting the emitted charges were analyzed. The results indicated that the major emitted charges from the trigger device were induced by surface plasma generated by surface flashover occurring on the trigger dielectric material. The emitted charges and the peak emission current increased linearly with the change in the trigger voltage and bias voltage. The emitted charges collected from the anode were affected by the gap distance. However, the emitted charges were less affected by the anode diameter. Furthermore, the emitted charges and the peak emission current decreased rapidly with the increase in gas pressure in a range from 0 Pa to 100 Pa, and then remained stable or changed slightly when the increase in gas pressure up to 2400 Pa.

  4. Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Cohen, R. E.

    2016-08-01

    We studied the low-pressure (0-10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P21/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P21/c phase transition occurs at 2.1(1) GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.

  5. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media

    DOEpatents

    McLellan, Edward J.

    1983-01-01

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode (1) and cathode (2) to below breakdown voltage using a dc voltage source (3). An array of resistors (4) or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit (5) producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO.sub.2 laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  6. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    NASA Astrophysics Data System (ADS)

    Rossi, F.; Kylián, O.; Rauscher, H.; Hasiwa, M.; Gilliland, D.

    2009-11-01

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O2 mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  7. Wall thinning criteria for low temperature-low pressure piping. Task 91-030-1

    SciTech Connect

    Mertz, G.E.

    1993-01-01

    This acceptance criteria is intended to prevent gross rupture or rapidly propagating failure during normal and abnormal operating conditions. Pitting may be present in the carbon steel piping. While the acceptance criteria have provisions to preclude gross rupture through a pitted region, they do not protect against throughwall pit growth and subsequent leakage. Potential leakage through a pit in low pressure piping is less than the post-DBE design basis leakage. Both the uniform thinning and LTA criteria protect against leakage, since their potential for leakage is larger. The acceptance criteria protects against gross rupture due to general wall thinning, local wall thinning (LTA`s), pitting, and fracture through weld defects. General wall thinning calculations are based on the restart criteria, SEP-24. LTA criteria for hoop stresses are based on ASME Code Case N-480 {open_quotes}Examination Requirements for Pipe Wall Thinning Due to Single Phase Erosion and Corrosion{close_quotes}. The LTA criteria for axial stress is based on an effective average thickness concept, which prevents plastic collapse of a locally thinned pipe. Limits on pit density, based on an effective cross section concept, are used to prevent gross rupture through a group of pits. The CEGB R-6 failure assessment diagram is used in the fracture evaluation, along with postulated weld defects. This criteria is intended for low temperature, low pressure piping systems. Corrosion and/or weld defects increase the peak stresses during normal operation and may lead to a reduction in fatigue life. Piping systems subject to significant thermal or mechanical fatigue will require additional analysis which is beyond the scope of this document.

  8. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  9. Effects of Alternate Leading Edge Cutback on the Space Shuttle Main Engine Low Pressure Fuel Pump

    NASA Technical Reports Server (NTRS)

    Mulder, Andrew; Skelley, Stephen

    2016-01-01

    A higher order cavitation oscillation observed in the SSME low pressure fuel pump has been eliminated in water flow testing of a modified subscale replica of the inducer. The low pressure pump was modified by removing the outboard sections of two opposing blades of the four-bladed inducer, blending the "cutback" regions into the blades at the leading edge and tip, and removing material on the suction sides to decrease the exposed leading edge thickness. The leading edge tips of the cutback blades were moved approximately 25 degrees from their previous locations, thereby increasing one blade to blade spacing, decreasing the second, while simultaneously moving the cutback tips downstream. The test was conducted in MSFC's inducer test loop at scaled operating conditions in degassed and filtered water. In addition to eliminating HOC across the entire scaled operating regime, rotating cavitation was suppressed while the range of both alternate blade and asymmetric cavitation were increased. These latter phenomena, and more significantly, the shifts between these cavitation modes also resulted in significant changes to the head coefficient at low cavitation numbers. Reverse flow was detected at a slightly larger flow coefficient with the cutback inducer and suction capability was reduced by approximately 1 velocity head at and above approximately 90% of the reference flow coefficient. These performance changes along with more intense reverse flow are consistent with poor flow area management and increased incidence in the cutback region. Although the test demonstrated that the inducer modification was successful at eliminating the higher order cavitation across the entire scaled operating regime, different, previously unobserved, cavitation oscillations were introduced and significant performance penalties were imposed.

  10. Characterization of a low-pressure high-capacity {sup 129}Xe flow-through polarizer

    SciTech Connect

    Schrank, G.; Ma, Z.; Schoeck, A.; Saam, B.

    2009-12-15

    We describe a low-pressure flow-through apparatus for generating hyperpolarized {sup 129}Xe and report its performance by examining both the output {sup 129}Xe polarization P{sub Xe} by NMR and the in situ Rb polarization profile by optically detected electron paramagnetic resonance. The polarizer is based on a previously presented design employing a long optical pumping cell, lean Xe mixture at low pressure, Rb presaturation, and counterflow of gas with respect to the direction of light propagation. The numerical model to which we compare the polarizer's performance includes the temperature dependence of the Rb-{sup 129}Xe spin-exchange rate, which has not previously been treated. The qualitative trends in the data mostly follow those in the model, although the model predicts P{sub Xe} to be up to a factor of two higher than observed. This discrepancy cannot be attributed to low Rb polarization: the model and the optically detected electron paramagnetic resonance data (acquired at six points along the length of the heated portion of the optical pumping cell) are in reasonable agreement and show typical values of 85%-95%, although measurements also reveal an anomalous region of depressed Rb polarization near the middle of the cell. The highest output {sup 129}Xe polarization P{sub Xe}=84+-16%, was recorded using approx =60 W of frequency-narrowed laser light at a Xe partial pressure (referenced to 20 deg. C) of 1.1+-0.2 mbar, flowing at 1 sccm of Xe; typical values were P{sub Xe}approx =20% flowing at 10 sccm of Xe with approx =30 W of laser light.

  11. Particle modelling of magnetically confined oxygen plasma in low pressure radio frequency discharge

    SciTech Connect

    Benyoucef, Djilali; Yousfi, Mohammed

    2015-01-15

    The main objective of this paper is the modelling and simulation of a radio frequency (RF) discharge in oxygen at low pressure and at room temperature, including the effect of crossed electric and magnetic fields for generation and confinement of oxygen plasma. The particle model takes into account one axial dimension along the electric field axis and three velocity components during the Monte Carlo treatment of the collisions between charged particles and background gas. The simulation by this developed code allows us not only to determine the electrodynamics characteristics of the RF discharge, but also to obtain kinetics and energetic description of reactive oxygen plasma at low pressure. These information are very important for the control of the deep reactive-ion etching technology of the silicon to manufacture capacitors with high density and for the deposition thick insulating films or thick metal to manufacture micro-coils. The simulation conditions are as follows: RF peak voltage of 200 V, frequency of 13.56 MHz, crossed magnetic field varying from 0 to 50 Gauss, and oxygen pressure of 13.8 Pa. In the presence of magnetic field, the results show an increase of the plasma density, a decrease of the electron mean energy, and also a reduction of the ratio between electron density and positive ion density. Finally in order to validate, the results are successfully compared with measurements already carried out in the literature. The conditions of comparison are from 100 to 300 V of the peak voltage at 13.56 MHz under a pressure of 13.8 Pa and a gap distance of 2.5 cm.

  12. Measurements in a Transitional Boundary Layer Under Low-Pressure Turbine Airfoil Conditions

    NASA Technical Reports Server (NTRS)

    Simon, Terrence W.; Qiu, Songgang; Yuan, Kebiao; Ashpis, David (Technical Monitor); Simon, Fred (Technical Monitor)

    2000-01-01

    This report presents the results of an experimental study of transition from laminar to turbulent flow in boundary layers or in shear layers over separation zones on a convex-curved surface which simulates the suction surface of a low-pressure turbine airfoil. Flows with various free-stream turbulence intensity (FSTI) values (0.5%, 2.5% and 10%), and various Reynolds numbers (50,000, 100,000 200,000 and 300,000) are investigated. Reynold numbers in the present study are based on suction surface length and passage exit mean velocity. Flow separation followed by transition within the separated flow region is observed for the lower-Re cases at each of the FSTI levels. At the highest Reynolds numbers and at elevated FSn, transition of the attached boundary layer begins before separation, and the separation zone is small. Transition proceeds in the shear layer over the separation bubble. For both the transitional boundary layer and the transitional shear layer, mean velocity, turbulence intensity and intermittency (the fraction of the time the flow is turbulent) distributions are presented. The present data are compared to published distribution models for bypass transition, intermittency distribution through transition, transition start position, and transition length. A model developed for transition of separated flows is shown to adequately predict the location of the beginning of transition, for these cases, and a model developed for transitional boundary layer flows seems to adequately predict the path of intermittency through transition when the transition start and end are known. These results are useful for the design of low-pressure turbine stages which are known to operate under conditions replicated by these tests.

  13. A comparison of low-pressure and supercharged operation of polymer electrolyte membrane fuel cell systems for aircraft applications

    NASA Astrophysics Data System (ADS)

    Werner, C.; Preiß, G.; Gores, F.; Griebenow, M.; Heitmann, S.

    2016-08-01

    Multifunctional fuel cell systems are competitive solutions aboard future generations of civil aircraft concerning energy consumption, environmental issues, and safety reasons. The present study compares low-pressure and supercharged operation of polymer electrolyte membrane fuel cells with respect to performance and efficiency criteria. This is motivated by the challenge of pressure-dependent fuel cell operation aboard aircraft with cabin pressure varying with operating altitude. Experimental investigations of low-pressure fuel cell operation use model-based design of experiments and are complemented by numerical investigations concerning supercharged fuel cell operation. It is demonstrated that a low-pressure operation is feasible with the fuel cell device under test, but that its range of stable operation changes between both operating modes. Including an external compressor, it can be shown that the power demand for supercharging the fuel cell is about the same as the loss in power output of the fuel cell due to low-pressure operation. Furthermore, the supercharged fuel cell operation appears to be more sensitive with respect to variations in the considered independent operating parameters load requirement, cathode stoichiometric ratio, and cooling temperature. The results indicate that a pressure-dependent self-humidification control might be able to exploit the potential of low-pressure fuel cell operation for aircraft applications to the best advantage.

  14. Method to Remove Particulate Matter from Dusty Gases at Low Pressures

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Clements, J. Sid

    2012-01-01

    Future human exploration of Mars will rely on local Martian resources to reduce the mass, cost, and risk of space exploration launched from Earth. NASA's In Situ Resource Utilization (ISRU) Project seeks to produce mission consumables from local Martian resources, such as atmospheric gas. The Martian atmosphere, however, contains dust particles in the 2-to-10 -micrometer range. These dust particles must be removed before the Martian atmospheric gas can be processed. The low pressure of the Martian atmosphere, at 5 to 10 mbars, prevents the development of large voltages required for a standard electrostatic precipitator. If the voltage is increased too much, the corona transitions into a glow/streamer discharge unsuitable for the operation of a precipitator. If the voltage is not large enough, the dust particles are not sufficiently charged and the field is not strong enough to drive the particles to the collector. A method using electrostatic fields has been developed to collect dust from gaseous environments at low pressures, specifically carbon dioxide at pressures around 5 to 10 mbars. This method, commonly known as electrostatic precipitation, is a mature technology in air at one atmosphere. In this case, the high voltages required for the method to work can easily be achieved. However, in carbon dioxide at low pressures, such as those found on Mars, large voltages are not possible. The innovation reported here consists of two concentric cylindrical electrodes set at specific potential difference that generate an electric field that produces a corona capable of imparting an electrostatic charge to the incoming dust particles. The strength of the field is carefully balanced so as to produce a stable charging corona at 5 to 10 mbars, and is also capable of imparting a force to the particles that drives them to the collecting electrode. There are only two possible ways that dust can be removed from Martian atmospheric gas intakes: with this electrostatic

  15. Fracturing of Etnean and Vesuvian rocks at high temperatures and low pressures

    NASA Astrophysics Data System (ADS)

    Rocchi, Valentina; Sammonds, P. R.; Kilburn, C. R. J.

    2004-04-01

    The mechanical properties of volcanic rocks at high temperatures and low pressures are key properties in the understanding of a range of volcanological problems, in particular lava flow dynamics. The measurement of these properties on extrusive volcanic samples under the appropriate pressure and temperature conditions has a direct application in the assessment of volcanic hazards. A new triaxial deformation cell has been designed to obtain mechanical strength data on rock samples at temperatures up to 1000°C and pressures up to 30 MPa. Significantly, the cell uses large cylindrical rock specimens, 25 mm diameter by 75 mm long, never previously employed in such a high-temperature apparatus. The large specimen size is necessary to test volcanic rocks with their large crystals and vesicles. The design of this novel apparatus is presented. Its operating temperature and pressure range encompasses the conditions of an advancing flow from the vent to the front, as well as the conditions of the volcanic rocks hosting magma at equivalent depths of up to 2 km. Experimental results are presented for tests on Vesuvian and Etnean rocks. Results show that the Vesuvius and the Etnean rocks remain fully brittle up to 600°C with typical strengths of 90 MPa and 100 MPa and Young's moduli of 60 GPa and 40 GPa, respectively. Above these temperatures the elastic modulus and compressive strength decreases steadily in both the Vesuvian and Etnean rocks, reaching 10% of the original values at 900°C and 800°C, respectively, when partial melting occurred. Full melting occurs at 1100°C in the Vesuvian rock and at 1040°C in the Etnean rock. Results also show that confining pressure has only a small effect on the strength of the rock at these low pressures, and that strain rates are important at high temperatures. Fracture energy release rates have been calculated and show an inversely proportional relationship with temperature. Results reveal why fracturing is important on the crust of

  16. Microwave air plasmas in capillaries at low pressure II. Experimental investigation

    NASA Astrophysics Data System (ADS)

    Stancu, G. D.; Leroy, O.; Coche, P.; Gadonna, K.; Guerra, V.; Minea, T.; Alves, L. L.

    2016-11-01

    This work presents an experimental study of microwave (2.45 GHz excitation frequency) micro-plasmas, generated in dry air (N2 80%: O2 20%) within a small radius silica capillary (345 µm inner radius) at low pressure (300 Pa) and low powers (80-130 W). Experimental diagnostics are performed using optical emission spectroscopy calibrated in absolute intensity. Axial-resolved measurements (50 µm spatial resolution) of atomic transitions N(3p4S)  →  N(3s4P) O(3p5P)  →  O(3s5S) and molecular transitions N2(C,v‧)  →  N2(B,v″) \\text{N}2+ (B,v‧)  →  \\text{N}2+ (X,v″) allow us to obtain, as a function of the coupled power, the absolute densities of N(3p4S), O(3p5P), N2(C), N2(B) and \\text{N}2+ (B), as well as the gas (rotational) temperature (700-1000 K), the vibrational temperature of N2(C,v) (7000-10 000 K) and the excitation temperatures of N2(C) and N2(B) (11 000 K). The analysis of the H β line-width gives an upper limiting value of 1013 cm-3 for the electron density; its axial variation (4  ×  1011-6  ×  1012 cm-3) being estimated by solving the wave electrodynamics equations for the present geometry, plasma length and electron-neutral collision frequency. The experimental results were compared with the results from a 0D model, presented in companion paper I [1], which couples the system of rate balance equations for the dominant neutral and charged plasma species to the homogeneous two-term electron Boltzmann equation, taking the measured gas temperature and the estimated electron density as input parameters. Good qualitative agreement is found between the measurements and calculations of the local species densities for various powers and axial positions. The dissociation degree of oxygen is found above 10%. Moreover, both the measurements and calculations show evidence of the non-equilibrium behavior of low-temperature plasmas, with vibrational and excitation temperatures at least

  17. Safety, tolerability, and efficacy of endoscopic low-pressure liquid nitrogen spray cryotherapy in the esophagus

    PubMed Central

    Greenwald, Bruce D.; Dumot, John A.; Horwhat, J. David; Lightdale, Charles J.; Abrams, Julian A.

    2011-01-01

    SUMMARY Endoscopic cryotherapy is a new technique for ablation of esophageal dysplasia and neoplasia. Preliminary studies have shown it to be safe and effective for this indication. The objective of this study is to characterize safety, tolerability, and efficacy of low-pressure liquid nitrogen endoscopic spray cryotherapy ablation in a large cohort across multiple study sites. Parallel prospective treatment studies at four tertiary care academic medical centers in the U.S. assessed spray cryotherapy in patients with Barrett’s esophagus with or without dysplasia, early stage esophageal cancer, and severe squamous dysplasia who underwent cryotherapy ablation of the esophagus. All patients were contacted between 1 and 10 days after treatment to assess for side effects and complications of treatment. The main outcome measurement was the incidence of serious adverse events and side effects from treatment. Complete response for high-grade dysplasia (HGD) (CR-HGD), all dysplasia (CR-D), intestinal metaplasia (CR-IM) and cancer (CR-C) were assessed in patients completing therapy during the study period. A total of 77 patients were treated for Barrett’s high-grade dysplasia (58.4%), intramucosal carcinoma (16.9%), invasive carcinoma (13%), Barrett’s esophagus without dysplasia (9.1%), and severe squamous dysplasia (2.6%). Twenty-two patients (28.6%) reported no side effects throughout treatment. In 323 procedures, the most common complaint was chest pain (17.6%) followed by dysphagia (13.3%), odynophagia (12.1%), and sore throat (9.6%). The mean duration of any symptoms was 3.6 days. No side effects were reported in 48% of the procedures (155/323). Symptoms did not correlate with age, gender, diagnosis, or to treatment early versus late in the patient’s or site’s experience. Logit analysis showed that symptoms were greater in those with a Barrett’s segment of 6 cm or longer. Gastric perforation occurred in one patient with Marfan’s syndrome. Esophageal

  18. Physical Insights, Steady Aerodynamic Effects, and a Design Tool for Low-Pressure Turbine Flutter

    NASA Astrophysics Data System (ADS)

    Waite, Joshua Joseph

    The successful, efficient, and safe turbine design requires a thorough understanding of the underlying physical phenomena. This research investigates the physical understanding and parameters highly correlated to flutter, an aeroelastic instability prevalent among low pressure turbine (LPT) blades in both aircraft engines and power turbines. The modern way of determining whether a certain cascade of LPT blades is susceptible to flutter is through time-expensive computational fluid dynamics (CFD) codes. These codes converge to solution satisfying the Eulerian conservation equations subject to the boundary conditions of a nodal domain consisting fluid and solid wall particles. Most detailed CFD codes are accompanied by cryptic turbulence models, meticulous grid constructions, and elegant boundary condition enforcements all with one goal in mind: determine the sign (and therefore stability) of the aerodynamic damping. The main question being asked by the aeroelastician, "is it positive or negative?'' This type of thought-process eventually gives rise to a black-box effect, leaving physical understanding behind. Therefore, the first part of this research aims to understand and reveal the physics behind LPT flutter in addition to several related topics including acoustic resonance effects. A percentage of this initial numerical investigation is completed using an influence coefficient approach to study the variation the work-per-cycle contributions of neighboring cascade blades to a reference airfoil. The second part of this research introduces new discoveries regarding the relationship between steady aerodynamic loading and negative aerodynamic damping. Using validated CFD codes as computational wind tunnels, a multitude of low-pressure turbine flutter parameters, such as reduced frequency, mode shape, and interblade phase angle, will be scrutinized across various airfoil geometries and steady operating conditions to reach new design guidelines regarding the influence

  19. Heat and mass transfer of a low-pressure Mars greenhouse: Simulation and experimental analysis

    NASA Astrophysics Data System (ADS)

    Hublitz, Inka

    Biological life support systems based on plant growth offer the advantage of producing fresh food for the crew during a long surface stay on Mars. Greenhouses on Mars are also used for air and water regeneration and waste treatment. A major challenge in developing a Mars greenhouse is its interaction with the thin and cold Mars environment. Operating a Mars greenhouse at low interior pressure reduces the pressure differential across the structure and therefore saves structural mass as well as reduces leakage. Experiments were conducted to analyze the heating requirements as well as the temperature and humidity distribution within a small-scale greenhouse that was placed in a chamber simulating the temperatures, pressure and light conditions on Mars. Lettuce plants were successfully grown inside of the Mars greenhouse for up to seven days. The greenhouse atmosphere parameters, including temperature, total pressure, oxygen and carbon dioxide concentration were controlled tightly; radiation level, relative humidity and plant evapo-transpiration rates were measured. A vertical stratification of temperature and humidity across the greenhouse atmosphere was observed. Condensation formed on the inside of the greenhouse when the shell temperature dropped below the dew-point. During the night cycles frost built up on the greenhouse base plate and the lower part of the shell. Heat loss increased significantly during the night cycle. Due to the placement of the heating system and the fan blowing warm air directly on the upper greenhouse shell, condensation above the plants was avoided and therefore the photosynthetically active radiation at plant level was kept constant. Plant growth was not affected by the temperature stratification due to the tight temperature control of the warmer upper section of the greenhouse, where the lettuce plants were placed. A steady state and a transient heat transfer model of the low pressure greenhouse were developed for the day and the night

  20. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  1. Improving the conversion efficiency of Cu2ZnSnS4 solar cell by low pressure sulfurization

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Su, Zhenghua; Zhao, Lianbo; Yan, Chang; Liu, Fangyang; Cui, Hongtao; Hao, Xiaojing; Liu, Yexiang

    2014-04-01

    Cu2ZnSnS4 thin films have been prepared by the sol-gel sulfurization method on Mo-coated substrates, and the comparative studies between the atmospheric pressure sulfurization and low pressure sulfurization was carried out. The Cu2ZnSnS4 film sulfurized at low pressure exhibits larger grain size, thinner MoS2 layer, and free of SnS secondary phase, but more ZnS on surface. The device efficiency of 4.1% using Cu2ZnSnS4 absorber from atmospheric pressure sulfurization is improved to 5.7% using that from low pressure sulfurization via the boost of open-circuit and fill factor.

  2. Effects of temperature and exposure time on mortality of stored-product insects exposed to low pressure.

    PubMed

    Mbata, G N; Phillips, T W

    2001-10-01

    The prospects of using low pressure that creates a low-oxygen atmosphere to control stored-product insects were investigated in the laboratory. Eggs, larvae, and pupae of Tribolium castaneum (Herbst), Plodia interpunctella (Hübner), and Rhyzopertha dominica (F.) were exposed to 32.5 mmHg in glass chambers at 25, 33, 37, and 40 degrees C for times ranging from 30 min to 144 h. Time-mortality data were subjected to probit analyses and lethal dose ratios were computed to determine differences in lethal time (LT) values among all species-life stage combinations across the four temperatures. Eggs of each species were the life stage most tolerant to low pressure. Pupae of T. castaneum and R. dominica were more tolerant to low pressure than larvae. In all life stages, mortality increased with increasing exposure time to low pressure and also with increasing temperature. Immature stages of R. dominica were more tolerant to low pressure than immature stages of the other two species. The LT99 for R. dominica eggs was 176.32 h at 25 degrees C and that for P. interpunctella eggs was 28.35 h at the same temperature. An increase in temperature to 33 degrees C resulted in a LT99 < of 85.98 h for R. dominica and 6.21 h for P. interpunctella. Higher temperatures resulted in further significant reduction in lethal time values. Low pressure represents a simple, nonchemical alternative to fumigants such as methyl bromide and phosphine for controlling pests of stored-products or other commodities.

  3. Relationship between monsoon precipitation and low pressure systems in climate model simulations

    NASA Astrophysics Data System (ADS)

    Veluthedathekuzhiyil, Praveen; Sandeep, S.; Ajayamohan R., S.

    2015-04-01

    The north north-west propagating Low Pressure Systems (LPS) play an important role in bringing rainfall in to the interior parts of Indian subcontinent. The detection and tracking of these weak systems are challenging compared to the tropical and extra tropical cyclones. An objective detection and tracking algorithm of LPS is developed and tested on reanalysis products and climate model simulations. This novel method mimics the conventional identification of tracking algorithm based on the detection of closed isobars on surface pressure charts. A fair comparison between the LPS detected using the algorithm and observations obtained from daily weather charts (Sikka, 2006) is obtained. The algorithm is further applied on historical CMIP5 simulations. About 60% of the observed total summer monsoon precipitation over east-central India is found to be associated with LPS activities, while that in model simulations this ratio varies between 5 - 60%. The analysis found that the models with realistic LPS activity were able to produce a reasonable mean seasonal monsoon precipitation. The skill of simulating a better LPS activity is found to be linked to the representation of Tropical Easterly Jet in these models.

  4. Thermodynamics of methane adsorption on copper HKUST-1 at low pressure

    SciTech Connect

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-11

    Metal–organic frameworks (MOFs) can be engineered as natural gas storage materials by tuning the pore structures and surface properties. Here we report the direct measurement of CH₄ adsorption enthalpy on a paddlewheel MOF (Cu HKUST-1) using gas adsorption calorimetry at 25 °C at low pressures (below 1 bar). In this pressure region, the CH₄–CH₄ intermolecular interactions are minimized and the energetics solely reflects the CH₄–MOF interactions. Our results suggest moderately exothermic physisorption with an enthalpy of -21.1 ± 1.1 kJ/mol CH₄ independent of coverage. The calorimetric investigation complements previous computational and crystallographic studies by providing zero coverage enthalpies of CH₄ adsorption. The analysis of the new and literature data suggests that in initial stages of adsorption the CH₄–HKUST-1 interaction tends to be more sensitive to the pore dimension than to the guest polarizability, suggesting a less specific chemical binding role for the open Cu site.

  5. Thermodynamics of methane adsorption on copper HKUST-1 at low pressure

    DOE PAGES

    Wu, Di; Guo, Xiaofeng; Sun, Hui; ...

    2015-06-11

    Metal–organic frameworks (MOFs) can be engineered as natural gas storage materials by tuning the pore structures and surface properties. Here we report the direct measurement of CH₄ adsorption enthalpy on a paddlewheel MOF (Cu HKUST-1) using gas adsorption calorimetry at 25 °C at low pressures (below 1 bar). In this pressure region, the CH₄–CH₄ intermolecular interactions are minimized and the energetics solely reflects the CH₄–MOF interactions. Our results suggest moderately exothermic physisorption with an enthalpy of -21.1 ± 1.1 kJ/mol CH₄ independent of coverage. The calorimetric investigation complements previous computational and crystallographic studies by providing zero coverage enthalpies of CH₄more » adsorption. The analysis of the new and literature data suggests that in initial stages of adsorption the CH₄–HKUST-1 interaction tends to be more sensitive to the pore dimension than to the guest polarizability, suggesting a less specific chemical binding role for the open Cu site.« less

  6. Effect of distribution of electric field on low-pressure gas breakdown

    NASA Astrophysics Data System (ADS)

    Fu, Yangyang; Yang, Shuo; Zou, Xiaobing; Luo, Haiyun; Wang, Xinxin

    2017-02-01

    A low-pressure gas breakdown in a gap of the non-uniform electric field between two plane-parallel electrodes was studied. The experiments were specially designed to neatly separate the effect of a centered dielectric tube in between the electrodes on the breakdown from the effect of the electric field distribution determined by the electrode geometry on the breakdown. For a given electrode radius and an interelectrode distance, when the diameter of the centered dielectric tube in between the electrodes is smaller, the breakdown voltage is lower, which is most possibly as a result of the flashover more easily happening along the surface of the smaller tube on which the more charged particles are accumulated. When the dielectric tube in between the electrodes is removed, the breakdown voltage depends not only on the product of gas pressure and gap length but also on the aspect ratio of the gas gap, i.e., Ub = f(pd, d/r). Furthermore, Ub = f(pd, d/r) was proved to automatically fulfill two necessary conditions for the similar discharges in the non-uniform electric field, which implies that Ub = f(pd, d/r) is an expression of the similarity theorem in the breakdown of a gap between two plane-parallel electrodes and confirms Townsend's prediction that the general similarity theorem can be applied equally to the breakdowns in non-uniform fields.

  7. Analysis based on global model of nitrogen plasma produced by pulsed microwave at low pressure

    SciTech Connect

    Qiu, Feng; Yan, Eryan Meng, Fanbao; Ma, Hongge; Liu, Minghai

    2015-07-15

    This paper analyzes certain evolution processes in nitrogen plasmas discharged using pulsed microwaves at low pressure. Comparing the results obtained from the global model incorporating diffusion and the microwave transmission method, the temporal variation of the electron density is analyzed. With a discharge pressure of 300 Pa, the results obtained from experiments and the global model calculation show that when the discharge begins the electron density in the plasma rises quickly, to a level above the critical density corresponding to the discharge microwave frequency, but falls slowly when the discharge microwave pulse is turned off. The results from the global model also show that the electron temperature increases rapidly to a peak, then decays after the electron density reaches the critical density, and finally decreases quickly to room temperature when the discharge microwave pulse is turned off. In the global model, the electron density increases because the high electron temperature induces a high ionization rate. The decay of the electron density mainly comes from diffusion effect.

  8. The isolation of soyasaponins by fractional precipitation, solid phase extraction, and low pressure liquid chromatography.

    PubMed

    Gurfinkel, D M; Reynolds, W F; Rao, A V

    2005-11-01

    Bioactive soyasaponins are present in soybean (Glycine max). In this study, the isolation of soyasaponins in relatively pure form (>80%) using precipitation, solid phase extraction and reverse phase low pressure liquid chromatography (RP-LPLC) is described. Soy flour soyasaponins were separated from non-saponins by methanol extraction and precipitation with ammonium sulphate. Acetylated group A soyasaponins were isolated first by solid phase extraction followed by RP-LPLC (solvent: ethanol-water). Soyasaponins, from a commercial preparation, were saponified and fractionated into deacetylated group A and group B soyasaponins by solid phase extraction (methanol-water). Partial hydrolysis of group B soyasaponins produced a mixture of soyasaponin III and soyasapogenol B monoglucuronide. RP-LPLC of deacetylated group A soyasaponins separated soyasaponin A1 and A2 (38% methanol); of group B soyasaponins isolated soyasaponin I (50% ethanol); and of the partial hydrolysate separated soyasaponin III from soyasapogenol B monoglucuronide (50% ethanol). This methodology provides soyasaponin fractions that are suitable for biological evaluation.

  9. Raman spectroscopic characterization of diamond films grown in a low-pressure flat flame

    NASA Astrophysics Data System (ADS)

    Wolter, S. D.; Prater, J. T.; Sitar, Z.

    2001-06-01

    Diamond films produced in the low-pressure flat flame have been examined using Raman spectroscopy. The effect of the oxy-acetylene gas mixture (R=O 2/C 2H 2 gas ratio of 0.95 to 1.06) and substrate temperature (650-850°C) on the form of the non-diamond carbon as well as the diamond phase purity and crystallinity are reported. An assessment of the diamond crystallinity was achieved by inspection of the full-width-at-half-maximum (FWHM) of the Raman line observed at 1332±0.5 cm -1 representing sp 3-bonded carbon. This analysis revealed a FWHM as low as ˜4.3 cm -1 for the optimum growth conditions of an R=1.05 and substrate temperatures of 650-750°C. The broad non-diamond carbon component in the 1350 cm -1 to 1650 cm -1 range was deconvoluted into three distinct Gaussian peaks at 1355±1.5 cm -1, 1470±7.5 cm -1, and 1550±4.0 cm -1. These peaks remained in the same relative proportion regardless of the processing conditions, and the total area of the non-diamond peaks was found to correspond linearly with the background luminescence. A relative comparison of the diamond and non-diamond carbon was used to qualitatively estimate the diamond film phase purity.

  10. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery - Part 1.

    PubMed

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H(2) storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1(st) hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body.

  11. Comparing geophysical measurements to theoretical estimates for soil mixtures at low pressures

    SciTech Connect

    Wildenschild, D; Berge, P A; Berryman, K G; Bonner, B P; Roberts, J J

    1999-01-15

    The authors obtained good estimates of measured velocities of sand-peat samples at low pressures by using a theoretical method, the self-consistent theory of Berryman (1980), using sand and porous peat to represent the microstructure of the mixture. They were unable to obtain useful estimates with several other theoretical approaches, because the properties of the quartz, air and peat components of the samples vary over several orders of magnitude. Methods that are useful for consolidated rock cannot be applied directly to unconsolidated materials. Instead, careful consideration of microstructure is necessary to adapt the methods successfully. Future work includes comparison of the measured velocity values to additional theoretical estimates, investigation of Vp/Vs ratios and wave amplitudes, as well as modeling of dry and saturated sand-clay mixtures (e.g., Bonner et al., 1997, 1998). The results suggest that field data can be interpreted by comparing laboratory measurements of soil velocities to theoretical estimates of velocities in order to establish a systematic method for predicting velocities for a full range of sand-organic material mixtures at various pressures. Once the theoretical relationship is obtained, it can be used to estimate the soil composition at various depths from field measurements of seismic velocities. Additional refining of the method for relating velocities to soil characteristics is useful for development inversion algorithms.

  12. Vapors and Droplets Mixture Deposition of Metallic Coatings by Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Vautherin, B.; Planche, M.-P.; Bolot, R.; Quet, A.; Bianchi, L.; Montavon, G.

    2014-04-01

    In recent years, the very low pressure plasma-spraying (VLPPS) process has been intensely developed and implemented to manufacture thin, dense and finely structured ceramic coatings for various applications, such as Y2O3 for diffusion barriers, among other examples. This paper aims at presenting developments carried out on metallic coatings. Aluminum was chosen as a demonstrative material due to its "moderate" vaporization enthalpy (i.e., 38.23 KJ cm-3) compared to the one of copper (i.e., 55.33 KJ cm-3), cobalt (i.e., 75.03 KJ cm-3), or even tantalum (i.e., 87.18 KJ cm-3). The objective of this work is primarily to better understand the behavior of a solid precursor injected into the plasma jet leading to the formation of vapors and to better control the factors affecting the coating structure. Nearly dense aluminum coatings were successfully deposited by VLPPS at 100 Pa with an intermediate power plasma torch (i.e., Sulzer Metco F4 type gun with maximum power of 45 kW). Optical emission spectroscopy (OES) was implemented to study and analyze the vapor behavior into the plasma jet. Simplified CFD modeling allowed better understanding of some of the thermo-physical mechanisms. The effect of powder-size distribution, substrate temperature and spray distance were studied. The phase composition and microstructural features of the coatings were characterized by XRD and SEM. Moreover, Vickers microhardness measurements were implemented.

  13. Microwave techniques for electron density measurements in low pressure RF plasmas

    NASA Astrophysics Data System (ADS)

    Zheltukhin, Viktor; Gafarov, Ildar; Shemakhin, Alexander

    2016-09-01

    Results of the experimental studying of RF plasma jet at low pressure in the range of 10 - 300 Pa is presented. The electron density distribution both in inductive and in capacitive coupled RF discharges was measured at 1.76 MHz and 13.56 MHz consequently. We used three independent microwave diagnostic techniques such as free space (the ``two-frequency'' and ``on the cut-off signal'') and a resonator. It is found that the electron density in the RF plasma jets is by 1-2 orders of magnitude greater than in the decaying plasma jet, and by 1-2 orders of magnitude less than in the RF plasma torch. Thus the RF plasma jet is similar to the additional discharge between the electrodes or the coil and the vacuum chamber walls. As a consequence, the formation of the positive charge sheath near the specimen placed in plasma stream is observed. It is found that the maximum of ionization degree as well as more uniform electron density distribution across the stream is observed in the range of the gas flow rate Gg = 0 . 06 - 0 . 12 g/s and the discharge power Pd = 0 . 5 - 2 . 5 kW. The work was funded by RFBR, according to the research projects No. 16-31-60081 mol_a_dk.

  14. Reactivation of Giardia lamblia cysts after exposure to low-pressure UV irradiation.

    PubMed

    Shin, Gwy-Am; Linden, Karl G

    2015-07-01

    In this study, we determined the repair capabilities of Giardia lamblia cysts when they were exposed to low-pressure (LP) UV and then 4 different repair conditions. A UV collimated beam apparatus was used to expose shallow suspensions of G. lamblia cysts in buffered reagent water (PBS, pH 7.2) to various doses of LP UV irradiation. After UV irradiation, samples were exposed to 4 repair conditions (light and dark repair conditions with 2 temperatures (25 °C and 37 °C) for each condition). The inactivation of G. lamblia cysts by LP UV was very extensive (∼ 5 log10) even with a low dose of LP UV (1 mJ/cm(2)). More importantly, there was significant restoration of infectivity in G. lamblia cysts when they were exposed to a low dose of LP UV and then to all the repair conditions tested. Overall, the results of this study indicate that G. lamblia cysts do have the ability to repair their UV-damaged DNA when they are exposed to low doses of LP UV irradiation. This is the first study to report the presence of repair in UV-irradiated G. lamblia cysts.

  15. Compressible DNS study of separation bubbles for flow past a low pressure turbine blade

    NASA Astrophysics Data System (ADS)

    Ranjan, Rajesh; Deshpande, Suresh; Narasimha, Roddam

    2014-11-01

    A representative low pressure turbine blade T106A is subjected to a direct numerical simulation (DNS) study for low Reynolds Number (Re = 51831 based on inflow velocity and axial chord) and angle of incidence (45.5 deg from the axial chord). The DNS code used here solves the compressible Navier-Stokes equations and uses a semi-kinetic energy preserving scheme. A hybrid grid is used for the computational domain, with a very fine wall-bounded boundary layer grid near the surface of the blade and an unstructured grid for rest of the domain. Total grid size for the current simulation is around 160 million. In the mean flow, a long but shallow separation bubble is found near the trailing edge. However, the instantaneous flow reveals a train of bubbles at this location. These instantaneous bubbles continually break and merge in time. The presence of these separation bubbles make the flow very complicated, as the bubbles are responsible for tripping the otherwise laminar flow to a transitional state. Skin friction and heat transfer co-efficient are also computed over the blade to understand the effect of these bubbles on parameters of engineering importance. Supported by a GATET funded project on DNS of turbomachinery blading. The Param Yuva-II at CDAC was utilized for the simulations.

  16. Density of metastable atoms in the plume of a low-pressure argon microplasma

    NASA Astrophysics Data System (ADS)

    Cooley, James; Xue, Jun; Urdahl, Randall

    2011-10-01

    Spatially-resolved measurements of the density of metastable excited atoms in the plume of an argon microplasma are presented. The microplasma device is operated at relatively low pressure, on the order of 1 Torr, and is exhausted into a vacuum. Line-integrated densities of excited argon neutrals in the exhaust plume are measured using tunable diode laser absorption spectroscopy. The density of argon metastables in both 1s5 and 1s3 states are measured. These line-integrated density measurements are converted to three-dimensional density maps using Abel inversion. The density of 1s5 argon peaks at a value of approximately 1018 m-3 near the outlet orifice, while the 1s3 density is roughly five times lower everywhere. It is found that, far from the face of the microplasma outlet orifice, metastable density follows an angular distribution consistent with that expected of vacuum gas expansion as predicted by classic rarified flow theory. Metastable flux is found to be conserved as the plume expands through 4 mm, suggesting an absence of de-excitation collisions or other loss processes along with a frozen velocity profile.

  17. Density of metastable atoms in the plume of a low-pressure argon microplasma

    NASA Astrophysics Data System (ADS)

    Xue, J.; Cooley, J. E.; Urdahl, R. S.

    2012-09-01

    Spatially resolved measurements of the density of metastable excited atoms in the plume of an argon microplasma are presented. The microplasma device is operated at a relatively low pressure, on the order of 1 Torr, and is exhausted into a vacuum. Line-integrated densities of excited argon neutrals in the exhaust plume are measured using tunable diode laser absorption spectroscopy. The densities of argon metastables in both 1s5 and 1s3 states are measured. These line-integrated density measurements are converted to three-dimensional density maps using the Abel inversion. The density of 1s5 argon peaks at a value of approximately 1018 m-3 near the outlet orifice, while the 1s3 density is roughly five times lower everywhere. It is found that, far from the face of the microplasma outlet orifice, metastable density follows axial and angular distributions consistent with that expected of vacuum gas expansion as predicted by classic rarified flow theory. Integrated metastable density is found to be conserved as the plume expands through 4 mm, suggesting a net production of excited species in the first millimetre and a constant population further downstream.

  18. Low pressure catalytic co-conversion of biogenic waste (rapeseed cake) and vegetable oil.

    PubMed

    Giannakopoulou, Kanellina; Lukas, Michael; Vasiliev, Aleksey; Brunner, Christoph; Schnitzer, Hans

    2010-05-01

    Zeolite catalysts of three types (H-ZSM-5, Fe-ZSM-5 and H-Beta) were tested in the catalytic co-conversion of rapeseed cake and safflower oil into bio-fuel. This low pressure process was carried out at the temperatures of 350 and 400 degrees Celsius. The yields and compositions of the product mixtures depended on the catalyst nature and the process temperatures. The produced organic phases consisted mainly of hydrocarbons, fatty acids and nitriles. This mixture possessed improved characteristics (e.g. heating value, water content, density, viscosity, pH) compared with the bio-oils, making possible its application as a bio-fuel. The most effective catalyst, providing the highest yield of organic liquid phase, was the highly acidic/wide-pore H-Beta zeolite. The products obtained on this catalyst demonstrated the highest degree of deoxygenation and the higher HHV (Higher Heating Value). The aqueous liquid phase contained water-soluble carboxylic acids, phenols and heterocyclic compounds.

  19. Low pressure fractionation in arc volcanoes: an example from Augustine Volcano, Alaska

    SciTech Connect

    Daley, E.E.; Swanson, S.E.

    1985-01-01

    Augustine Volcano, situated between the Cook and Katmai segments of the Eastern Aleutian Volcanic Arc, has erupted 5 times since its discovery in 1778. Eruptions are characterized by early vent-clearing eruptions with accompanying pyroclastic flows followed by dome-building and more pyroclastic flows. Bulk rock chemistry of historic and prehistoric lavas shows little variability. The lavas are calc-alkaline, low to medium K, porphyritic acid andesites, rare basalt, and minor dacite pumice. FeO*/MgO averages 1.6 over this silica range. Plagioclase phenocrysts show complicated zoning patterns, but olivine, orthopyroxene, and clinopyroxene phenocrysts show little compositional variation. Hornblende, where present, is ubiquitously oxidized and was clearly out of equilibrium during the last stages of fractionation. Evolved liquid compositions of vitriophyric domes are rhyolitic, and of pumices are slightly less evolved suggesting that individual eruptions become more fractionated with time. Comparison of glass compositions with experimental results is consistent with low pressure fractionation of a relatively dry silicate melt. Disequilibrium of amphiboles and the evolved nature of glasses indicate that shallow level fractionation plays a significant role in the evolution of Augustine magmas. This model is consistent with a shallow magma chamber inferred from geophysical models of the Augustine system and also with its simple, predictable eruption pattern.

  20. Design and Application of a High Sensitivity Piezoresistive Pressure Sensor for Low Pressure Conditions

    PubMed Central

    Yu, Huiyang; Huang, Jianqiu

    2015-01-01

    In this paper, a pressure sensor for low pressure detection (0.5 kPa–40 kPa) is proposed. In one structure (No. 1), the silicon membrane is partly etched to form a crossed beam on its top for stress concentration. An aluminum layer is also deposited as part of the beam. Four piezoresistors are fabricated. Two are located at the two ends of the beam. The other two are located at the membrane periphery. Four piezoresistors connect into a Wheatstone bridge. To demonstrate the stress concentrate effect of this structure, two other structures were designed and fabricated. One is a flat membrane structure (No. 2), the other is a structure with the aluminum beam, but without etched silicon (No. 3). The measurement results of these three structures show that the No.1 structure has the highest sensitivity, which is about 3.8 times that of the No. 2 structure and 2.7 times that of the No. 3 structure. They also show that the residual stress in the beam has some backside effect on the sensor performance. PMID:26371001

  1. Experimental investigations of driving frequency effect in low-pressure capacitively coupled oxygen discharges

    SciTech Connect

    Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu; Gao, Fei; Wang, You-Nian

    2015-04-14

    The effect of driving frequency on the electron density is investigated in low-pressure capacitively coupled oxygen plasmas by utilizing a floating hairpin probe. The power absorbed by the plasma is investigated and it is found that the power lost in the matching network can reach 50% or higher under certain conditions. The effect of driving frequency on the electron density is studied from two aspects, i.e., constant absorbed power and electrode voltage. In the former case, the electron density increases with the driving frequency increasing from 13.56 to 40.68 MHz and slightly changes depending on the gas pressures with the frequency further increasing to 100 MHz. In the latter case, the electron density rapidly increases when the driving frequency increases from 13.56 to 40.68 MHz, and then decreases with the frequency further increasing to 100 MHz. The electron series resonance is observed at 40.68 MHz and can be attributed to the higher electron density. And the standing wave effect also plays an important role in increasing electron density at 100 MHz and 2.6 Pa.

  2. Diamond synthesis from carbon nanofibers at low temperature and low pressure

    NASA Astrophysics Data System (ADS)

    Luo, Chengzhi; Qi, Xiang; Pan, Chunxu; Yang, Wenge

    2015-09-01

    In this article, we report a new route to synthesize diamond by converting “solid” carbon nanofibers with a Spark Plasma Sintering system under low temperature and pressure (even at atmospheric pressure). Well-crystallized diamond crystals are obtained at the tips of the carbon nanofibers after sintering at 1500 °C and atmospheric pressure. Combining with scanning electron microscopy, transmission electron microscopy, electron-energy loss spectroscopy and Raman spectroscopy observations, we propose the conversion mechanism as follows: the disorder “solid” carbon nanofibers → well crystallined carbon nanofibers → bent graphitic sheets → onion-liked rings → diamond single crystal → the bigger congregated diamond crystal. It is believed that the plasma generated by low-voltage, vacuum spark, via a pulsed DC in Spark Plasma Sintering process, plays a critical role in the low temperature and low pressure diamond formation. This Spark Plasma Sintering process may provide a new route for diamond synthesis in an economical way to a large scale.

  3. Diagnostics of surface wave driven low pressure plasmas based on indium monoiodide-argon system

    NASA Astrophysics Data System (ADS)

    Ögün, C. M.; Kaiser, C.; Kling, R.; Heering, W.

    2015-06-01

    Indium monoiodide is proposed as a suitable alternative to hazardous mercury, i.e. the emitting component inside the compact fluorescent lamps (CFL), with comparable luminous efficacy. Indium monoiodide-argon low pressure lamps are electrodelessly driven with surface waves, which are launched and coupled into the lamp by the ‘surfatron’, a microwave coupler optimized for an efficient operation at a frequency of 2.45 GHz. A non intrusive diagnostic method based on spatially resolved optical emission spectroscopy is employed to characterize the plasma parameters. The line emission coefficients of the plasma are derived by means of Abel’s inversion from the measured spectral radiance data. The characteristic plasma parameters, e.g. electron temperature and density are determined by comparing the experimentally obtained line emission coefficients with simulated ones from a collisional-radiative model. Additionally, a method to determine the absolute plasma efficiency via irradiance measurements without any goniometric setup is presented. In this way, the relationship between the plasma efficiency and the plasma parameters can be investigated systematically for different operating configurations, e.g. electrical input power, buffer gas pressure and cold spot temperature. The performance of indium monoiodide-argon plasma is compared with that of conventional CFLs.

  4. Investigation of Low-Pressure Ultraviolet Radiation on Inactivation of Rhabitidae Nematode from Water

    PubMed Central

    DEHGHANI, Mohammad Hadi; JAHED, Gholam-Reza; ZAREI, Ahmad

    2013-01-01

    Background: Rhabditidae is a family of free-living nematodes. Free living nematodes due to their active movement and resistance to chlorination, do not remove in conventional water treatment processes thus can be entered to distribution systems and cause adverse health effects. Ultraviolet radiation (UV) can be used as a method of inactivating for these organisms. This cross sectional study was done to investigate the efficiency of ultraviolet lamp in the inactivation of free living nematode in water. Methods: The effects of radation time, turbidity, pH and temperature were invistigated in this study. Ultraviolet lamp used in this study was a 11 W lamp and intensity of this lamp was 24 μw / cm2. Results: Radiation time required to achieve 100% efficiency for larvae nematode and adults was 9 and 10 minutes respectively. There was a significant correlation between the increase in radiation time, temperature rise and turbidity reduction with inactivation efficiency of lamp (P<0.001). Increase of turbidity up 25 NTU decreased inactivation efficiency of larvae and adult nematodes from 100% to 66% and 100% to 64% respectively. Change in pH range from 6 to 9 did not affect the efficiency of inactivation. With increasing temperature inactivation rate increased. Also the effect of the lamp on inactivation of larvae nematod was mor than adults. Conclusions: It seems that with requiring the favorable conditions low-pressure ultraviolet radiation systems can be used for disinfection of water containing Rhabitidae nematode. PMID:23641409

  5. Radiation properties of low-pressure discharges in rare-gas mixtures containing xenon

    NASA Astrophysics Data System (ADS)

    Gortchakov, S.; Uhrlandt, D.

    2005-02-01

    Glow discharges in mixtures of xenon with other rare gases can be used as alternatives to mercury-containing UV/VUV radiation sources and fluorescent lamps. The advantages of such sources are environmental compatibility, instant light output after switching on, and less pronounced temperature dependence. However, the optimum choice of the gas composition with respect to the maximum efficiency and power of the xenon resonance radiation as well as to a stable discharge operation still remains an open question. The dc cylindrical positive column of low-pressure discharges in rare-gas mixtures is studied by a detailed self-consistent kinetic description. The influence of the buffer gases helium, neon and argon as well as the appropriate choice of the xenon admixture are revealed by analysing different triple-gas mixtures. Changes in the global power budget and the radial structure of the plasma are discussed. A mixture of He and about 1-2% Xe arises as an optimum composition.

  6. Nanostructure protein repellant amphiphilic copolymer coatings with optimized surface energy by Inductively Excited Low Pressure Plasma.

    PubMed

    Bhatt, Sudhir; Pulpytel, Jérome; Ceccone, Giacomo; Lisboa, Patricia; Rossi, François; Kumar, Virendra; Arefi-Khonsari, Farzaneh

    2011-12-06

    Statistically designed amphiphilic copolymer coatings were deposited onto Thermanox, Si wafer, and quartz crystal microbalance (QCM) substrates via Plasma Enhanced Chemical Vapor Deposition of 1H,1H,2H,2H-perfluorodecyl acrylate and diethylene glycol vinyl ether in an Inductively Excited Low Pressure Plasma reactor. Plasma deposited amphiphilic coatings were characterized by Field Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, Atomic Force Microscopy, and Water Contact Angle techniques. The surface energy of the coatings can be adjusted between 12 and 70 mJ/m(2). The roughness of the coatings can be tailored depending on the plasma mode used. A very smooth coating was deposited with a CW (continuous wave) power, whereas a rougher surface with R(a) in the range of 2 to 12 nm was deposited with the PW (pulsed wave) mode. The nanometer scale roughness of amphiphilic PFDA-co-DEGVE coatings was found to be in the range of the size of the two proteins namely BSA and lysozyme used to examine for the antifouling properties of the surfaces. The results show that the statistically designed surfaces, presenting a surface energy around 25 mJ/m(2), present no adhesion with respect to both proteins measured by QCM.

  7. Low-pressure microwave plasma ultraviolet lamp for water purification and ozone applications

    NASA Astrophysics Data System (ADS)

    Al-Shamma'a, A. I.; Pandithas, I.; Lucas, J.

    2001-09-01

    Low-pressure mercury lamps are commonly used for germicidal applications. The germicidal effect is due to the emission of light at 254 nm, which leads to the destruction of the most waterborne bacteria and viruses. The microwave plasma ultraviolet (UV) lamp (MPUVL) is a new technology for generating a high-intensity UV light and that can be also controlled to operate at 185 nm irradiation is in air at this wavelength produces ozone. The microwave power is injected into a resonant cavity and the surface wave excitation takes place within the cavity through that part of the discharge tube (fused silica) protruding inside it. The MPUVL has many advantages over conventional lamps, which are limited to an output power in the region of 30 W m-1, while MPUVL can deliver any amount of power per unit length and the tube can be of any shape, length or diameter. This paper describes the design of the MPUVL and compares its efficiency with that of conventional lamps through spectral analysis. Other results, which include the effects of temperature and different power inputs, are also discussed.

  8. Endoscopic third ventriculostomy as adjunctive therapy in the treatment of low-pressure hydrocephalus in adults

    PubMed Central

    Foster, Kimberly A.; Deibert, Christopher P.; Choi, Phillip A.; Gardner, Paul A.; Tyler-Kabara, Elizabeth C.; Engh, Johnathan A.

    2016-01-01

    Background: Treatment of low-pressure hydrocephalus (LPH) may require prolonged external ventricular drainage (EVD) at sub-zero pressures to reverse ventriculomegaly. Endoscopic third ventriculostomy (ETV) has been used in the treatment of noncommunicating hydrocephalus; however, indications for ETV are expanding. Methods: Patients with the diagnosis of LPH as defined by the Pang and Altschuler criteria who underwent sub-zero drainage treatment over an 8-year period were included. Patients were divided into two cohorts based on whether or not ETV was employed during their treatment. Time from EVD placement to internalization of shunt was recorded for both groups; time from ETV to placement of shunt was recorded for the patients undergoing ETV. Results: Sixteen adult patients with LPH were managed with sub-zero drainage method. Ten (62.5%) patients did not undergo ETV and the average time from first ventriculostomy to shunting was 73 days (range 14–257 days). Six (37.5%) patients underwent ETV during the course of their treatment; average time from initial ventriculostomy to shunt was 114 days (range 0–236 days) (P = 0.16). Time from development of LPH to ETV ranged from 28 days to 6.5 months. In the ETV group, of the 4 patients who underwent shunting, the average time to shunting following ETV was 15.25 days. Conclusions: ETV can be used successfully in the management of refractory LPH to decrease the duration of EVD. PMID:27069743

  9. The deterministic prediction of failure of low pressure steam turbine disks

    SciTech Connect

    Liu, Chun; Macdonald, D.D.

    1993-05-01

    Localized corrosion phenomena, including pitting corrosion, stress corrosion cracking, and corrosion fatigue, are the principal causes of corrosion-induced damage in electric power generating facilities and typically result in more than 50% of the unscheduled outages. Prediction of damage, so that repairs and inspections can be made during scheduled outages, could have an enormous impact on the economics of electric power generation. To date, prediction of corrosion damage has been made on the basis of empirical/statistical methods that have proven to be insufficiently robust and accurate to form the basis for the desired inspection/repair protocol. In this paper, we describe a deterministic method for predicting localized corrosion damage. We have used the method to illustrate how pitting corrosion initiates stress corrosion cracking (SCC) for low pressure steam turbine disks downstream of the Wilson line, where a thin condensed liquid layer exists on the steel disk surfaces. Our calculations show that the SCC initiation and propagation are sensitive to the oxygen content of the steam, the environment in the thin liquid condensed layer, and the stresses that the disk experiences in service.

  10. Spectroscopic study of unique line broadening and inversion in low-pressure microwave generated water plasmas

    NASA Astrophysics Data System (ADS)

    Mills, R. L.; Ray, P. C.; Mayo, R. M.; Nansteel, M.; Dhandapani, B.; Phillips, J.

    2005-12-01

    It was demonstrated that low pressure (˜0.2 torr) water vapor plasmas generated in a 10 mm inner diameter quartz tube with an Evenson microwave cavity show at least two features that are not explained by conventional plasma models. First, significant (gt2.5Å) hydrogen Balmer alpha line broadening, of constant width, up to 5 cm from the microwave coupler was recorded. Only hydrogen, and not oxygen, showed significant line broadening. This feature, observed previously in hydrogen-containing mixed gas plasmas generated with high voltage dc and rf discharges, was explained by some researchers as resulting from acceleration of hydrogen ions near the cathode. This explanation cannot apply to the line broadening observed in the (electrodeless) microwave plasmas generated in this work, particularly at distances as great as 5 cm from the microwave coupler. Second, inversion of the line intensities of both the Lyman and Balmer series, again at distances up to 5 cm from the coupler, were observed. The line inversion suggests the existence of a hitherto unknown source of pumping of the optical power in plasmas. Finally, it is notable that other aspects of the plasma including the OH* rotational temperature and low electron concentrations are quite typical of plasmas of this type.

  11. Energy efficient engine. Low pressure turbine test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Cherry, D. G.; Gay, C. H.; Lenahan, D. T.

    1982-01-01

    The low pressure turbine for the energy efficient engine is a five-stage configuration with moderate aerodynamic loading incorporating advanced features of decambered airfoils and extended blade overlaps at platforms and shrouds. Mechanical integrity of 18,000 hours on flowpath components and 36,000 hours on all other components is achieved along with no aeromechanical instabilities within the steady-state operating range. Selection of a large number (156) of stage 4 blades, together with an increased stage 4 vane-to-blade gap, assists in achieving FAR 36 acoustic goals. Active clearance control (ACC) of gaps at blade tips and interstage seals is achieved by fan air cooling judiciously applied at responsive locations on the casing. This ACC system is a major improvement in preventing deterioration of the 0.0381 cm (0.015 in.) clearances required to meet the integrated-core/low-spool turbine efficiency goal of 91.1% and the light propulsion system efficiency goal of 91.7%.

  12. Simulation study of nanoparticle coating in a low pressure plasma reactor

    SciTech Connect

    Pourali, N.; Foroutan, G.

    2015-02-15

    A self-consistent combination of plasma fluid model, nanoparticle heating model, and surface deposition model is used to investigate the coating of nanosize particles by amorphous carbon layers in a low pressure plasma reactor. The numerical results show that, owing to the net heat release in the surface reactions, the particle temperature increases and its equilibrium value remains always 50 K above the background gas temperature. The deposition rate decreases with increasing of the particle temperature and the corresponding time scale is of the order of 10 ms. The deposition rate is also strongly affected by the change in plasma parameters. When the electron temperature is increased, the deposition rate first increases due to the enhanced ion and radical generation, shows a maximum and then declines as the particle temperature rises above the gas temperature. An enhancement in the background gas pressure and/or temperature leads to a reduction in the deposition rate, which can be explained in terms of the enhanced etching by atomic hydrogen and particle heating by the background gas.

  13. Use of Dimples to Suppress Boundary Layer Separation on a Low Pressure Turbine Blade

    NASA Astrophysics Data System (ADS)

    Rouser, Kurt P.

    2002-12-01

    Flow separation on a low pressure turbine blade is explored at Reynolds numbers of 25k, 45k and 100k, Experimental data is collected in a low-speed, draw-down wind tunnel using a cascade of eight Pak-B blades, Flow is examined from measurements of blade surface pressures, boundary layer parameters, exit velocities, and total pressure losses across the blade, Two recessed dimple shapes are assessed for suppressing flow separation and associated losses, One dimple is spherical, and the second is asymmetric, formed from a full dimple spanwise half-filled, A single row of each dimple shape is tested at 50%, 55% and 65% axial chord, Symmetric dimples reduce separation losses by as much as 28%, while asymmetric dimples reduce losses by as much as 23%, A complementary three-dimensional computational study is conducted to visualize local flow structure, Computational analysis uses Gridgen v13,3 as a mesh generator, Fluent v6,O as a flow solver and FIELDVIEW - v8,0 for graphic display and analysis, Computational results for Pak-B blades at a Reynolds number of 25k indicate that both dimple shapes cause a span-wise vortex to rollup within the dimple and provide a localized pressure drop,

  14. Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Hultgren, Lennart .

    2000-01-01

    Detailed velocity measurements were made along a flat plate subject to the same dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil. Reynolds numbers based on wetted plate length and nominal exit velocity were varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low and high inlet free-stream turbulence intensities (0.2% and 7%) were set using passive grids. The location of boundary-layer separation does not depend strongly on the free-stream turbulence level or Reynolds number, as long as the boundary layer remains non-turbulent prior to separation. Strong acceleration prevents transition on the upstream part of the plate in all cases. Both free-stream turbulence and Reynolds number have strong effects on transition in the adverse pressure gradient region. Under low free-stream turbulence conditions transition is induced by instability waves in the shear layer of the separation bubble. Reattachment generally occurs at the transition start. At Re = 50,000 the separation bubble does not close before the trailing edge of the modeled airfoil. At higher Re, transition moves upstream, and the boundary layer reattaches. With high free-stream turbulence levels, transition appears to occur in a bypass mode, similar to that in attached boundary layers. Transition moves upstream, resulting in shorter separation regions. At Re above 200,000, transition begins before separation. Mean velocity, turbulence and intermittency profiles are presented.

  15. Low pressure premixed CH4/air flames with forced periodic mixture fraction oscillations: experimental approach

    NASA Astrophysics Data System (ADS)

    Ax, H.; Kutne, P.; Meier, W.; König, K.; Maas, U.; Class, A.; Aigner, M.

    2009-03-01

    An experimental setup for the generation and investigation of periodic equivalence ratio oscillations in laminar premixed flames is presented. A special low-pressure burner was developed which generates stable flames in a wide pressure range down to 20 mbar and provides the possibility of rapid mixture fraction variations. The technical realization of the mixture fraction variations and the characteristics of the burner are described. 1D laser Raman scattering was applied to determine the temperature and concentration profiles of the major species through the flame front in correlation to the phase-angle of the periodic oscillation. OH* chemiluminescence was detected to qualitatively analyze the response of the flame to mixture fraction variations by changing shape and position. Exemplary results from a flame at p=69 mbar, forced at a frequency of 10 Hz, are shown and discussed. The experiments are part of a cooperative research project including the development of kinetic models and numerical simulation tools with the aim of a better understanding and prediction of periodic combustion instabilities in gas turbines. The focus of the current paper lies on the presentation of the experimental realization and the measuring techniques.

  16. Production and Study of Titan's Aerosols Analogues with A RF Low Pressure Plasma Discharge

    SciTech Connect

    Szopa, C.; Cernogora, G.; Correia, J.J.; Boufendi, L.; Jolly, A.

    2005-10-31

    The atmosphere of Titan, the biggest satellite of Saturn, contains aerosols produced by the organic chemistry induced by the photochemistry of N2 and CH4, the major gaseous atmospheric compounds. In spite of their importance for the properties of the Titan's atmosphere, and for organic chemistry, only few direct information are available about them because of the limitations of the observational techniques, and their processes of formation and growth are not understood. In order to bring answers to these questions, we developed a new type of laboratory simulation to produce analogues of Titan's aerosols (known as tholins) with a low pressure Radio Frequency plasma discharge. The main originality of this experiment (named PAMPRE) comes from its ability to produce particles in volume, as they are maintained in levitation by electrostatic forces compensating gravity, whereas the other experiments produce tholins on the reactors walls or a substrate. We initiated our investigations by a study of the properties of the produced particles as a function of the plasma operating conditions (i.e. amount of CH4 in N2, injected RF power, pressure, and gas flow). We here present the results of this study.

  17. Ablative material testing for low-pressure, low-cost rocket engines

    NASA Technical Reports Server (NTRS)

    Richter, G. Paul; Smith, Timothy D.

    1995-01-01

    The results of an experimental evaluation of ablative materials suitable for the production of light weight, low cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compositions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal chamber pressure of 1138 kPa (165 psi) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approximately 2456 K (4420 R). Two high-density composition materials exhibited high erosion resistance, while two low-density compositions exhibited approximately 6-75 times lower average erosion resistance. The results compare favorably with previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket engines.

  18. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure.

    PubMed

    Wang, Luying; Dumont, Randall S; Dickson, James M

    2012-07-28

    Nonequilibrium molecular dynamics (NEMD) simulations are used to investigate pressure-driven water flow passing through carbon nanotube (CNT) membranes at low pressures (5.0 MPa) typical of real nanofiltration (NF) systems. The CNT membrane is modeled as a simplified NF membrane with smooth surfaces, and uniform straight pores of typical NF pore sizes. A NEMD simulation system is constructed to study the effects of the membrane structure (pores size and membrane thickness) on the pure water transport properties. All simulations are run under operating conditions (temperature and pressure difference) similar to a real NF processes. Simulation results are analyzed to obtain water flux, density, and velocity distributions along both the flow and radial directions. Results show that water flow through a CNT membrane under a pressure difference has the unique transport properties of very fast flow and a non-parabolic radial distribution of velocities which cannot be represented by the Hagen-Poiseuille or Navier-Stokes equations. Density distributions along radial and flow directions show that water molecules in the CNT form layers with an oscillatory density profile, and have a lower average density than in the bulk flow. The NEMD simulations provide direct access to dynamic aspects of water flow through a CNT membrane and give a view of the pressure-driven transport phenomena on a molecular scale.

  19. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  20. Thermodynamic states of nanoclusters at low pressure and low temperature: the case of 13 H(2).

    PubMed

    Soullard, Jacques; Santamaria, Ruben; Boyer, Denis

    2011-09-08

    A confinement model of finite-size systems that embodies an equation of state is presented. The temperature and pressure of the system are obtained from the positions and velocities of the enclosed particles after a number of molecular dynamics simulations. The pressure has static and dynamic (thermal) contributions, extending the Mie-Grüneisen equation of state to include weakly interacting anharmonic oscillators. The model is applied to a system of 13 H(2) molecules under low-pressure and low-temperature conditions in the classical regime. The confining cage in this case is a spherical hydrogen cavity. The Born-Oppenheimer molecular dynamics in conjunction with density functional theory are used for the time evolution of the particle system. The hydrogen molecules form a noncrystalline cluster structure with icosahedral symmetry that remains so in the whole temperature range investigated. The fluctuations of the interatomic distances increase with the temperature, while the orientational order of the enclosed system of molecules fades out, suggesting a gradual order-disorder transition.

  1. Atomic and molecular hydrogen gas temperatures in a low-pressure helicon plasma

    NASA Astrophysics Data System (ADS)

    Samuell, Cameron M.; Corr, Cormac S.

    2015-08-01

    Neutral gas temperatures in hydrogen plasmas are important for experimental and modelling efforts in fusion technology, plasma processing, and surface modification applications. To provide values relevant to these application areas, neutral gas temperatures were measured in a low pressure (< 10 mTorr) radiofrequency helicon discharge using spectroscopic techniques. The atomic and molecular species were not found to be in thermal equilibrium with the atomic temperature being mostly larger then the molecular temperature. In low power operation (< 1 kW), the molecular hydrogen temperature was observed to be linearly proportional to the pressure while the atomic hydrogen temperature was inversely proportional. Both temperatures were observed to rise linearly with input power. For high power operation (5-20 kW), the molecular temperature was found to rise with both power and pressure up to a maximum of approximately 1200 K. Spatially resolved measurements near a graphite target demonstrated localised cooling near the sample surface. The temporal evolution of the molecular gas temperature during a high power 1.1 ms plasma pulse was also investigated and found to vary considerably as a function of pressure.

  2. Dynamics of a Microwave Excited Microplasma Flowing into Very Low Pressures

    NASA Astrophysics Data System (ADS)

    Tian, Peng; Denning, Mark; Urdahl, Randall; Kushner, Mark J.

    2014-10-01

    Capacitively coupled microplasmas in dielectric cavities have a range of applications from VUV sources for surface treatment to radical production. Due to the small size of these devices, pd (pressure × size) scaling requires that they operate at high pressure. When the output of the microplasma is needed at low pressure, a plume of radicals and ions flows from the higher pressure microdischarge cavity into the lower pressure workspace. These conditions affect both the delivery of the radicals, ions and photons in the plume, and the dynamics of the microdischarge. In this paper, we discuss results from a computational investigation of a microwave excited microplasma operating at a pressure of several Torr of a rare gas with powers of 2--10s of Watts at 2.5 GHz. The plume from the microdischarge cavity flows into pressures as low as a few mTorr. A 2-d plasma hydrodynamics model with radiation and electron energy transport addressed using Monte Carlo techniques has been modified to enable the plume to flow into near vacuum. Plasma dynamics and reactive fluxes from the cavity will be discussed for different flow boundary conditions, as a function of power, pressure and gas mixtures. Work supported by Agilent Technologies, DOE Office of Fusion Energy Science and NSF.

  3. The Effects of Blade Count on Boundary Layer Development in a Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Flitan, Horia C.; Ashpis, David E.; Solomon, William J.

    2000-01-01

    Experimental data from jet-engine tests have indicated that turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Recent studies have shown that Reynolds number effects contribute to the lower efficiencies at cruise conditions. In the current study numerical simulations have been performed to study the boundary layer development in a two-stage low-pressure turbine, and to evaluate the models available for low Reynolds number flows in turbomachinery. In a previous study using the same geometry the predicted time-averaged boundary layer quantities showed excellent agreement with the experimental data, but the predicted unsteady results showed only fair agreement with the experimental data. It was surmised that the blade count approximation used in the numerical simulations generated more unsteadiness than was observed in the experiments. In this study a more accurate blade approximation has been used to model the turbine, and the method of post-processing the boundary layer information has been modified to more closely resemble the process used in the experiments. The predicted results show improved agreement with the unsteady experimental data.

  4. Low-Pressure Vapor-Assisted Solution Process for Thiocyanate-Based Pseudohalide Perovskite Solar Cells.

    PubMed

    Chiang, Yu-Hsien; Cheng, Hsin-Min; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter

    2016-09-22

    In this report, we fabricated thiocyanate-based perovskite solar cells with low-pressure vapor-assisted solution process (LP-VASP) method. Photovoltaic performances are evaluated with detailed materials characterizations. Scanning electron microscopy images show that SCN-based perovskite films fabricated using LP-VASP have long-range uniform morphology and large grain sizes up to 1 μm. The XRD and Raman spectra were employed to observe the characteristic peaks for both SCN-based and pure CH3 NH3 PbI3 perovskite. We observed that the Pb(SCN)2 film transformed to PbI2 before the formation of perovskite film. X-ray photoemission spectra (XPS) show that only a small amount of S remained in the film. Using LP-VASP method, we fabricated SCN-based perovskite solar cells and achieved a power conversion efficiency of 12.72 %. It is worth noting that the price of Pb(SCN)2 is only 4 % of PbI2 . These results demonstrate that pseudo-halide perovskites are promising materials for fabricating low-cost perovskite solar cells.

  5. Progress on Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, R. W.; Duke-Tinson, O.; Nolan, S.; Page, E. J.; Lopez, M.; Karama, J.; Paolino, R. N.; Schlank, C.; Sherman, J.; Stutzman, B. S.; Crilly, P. B.

    2013-10-01

    At the Coast Guard Academy Plasma Lab (CGAPL), a small Helicon Plasma Experiment (HPX) is being developed to utilize the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T), for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range. We employ a 400 to 1000 Gauss electromagnet that promotes energy conservation in the plasma via external energy production in the magnetic field facilitated by decreased inertial effects, in order to reach the Helicon Mode. With the initial construction phase complete and repeatable plasmas attained, HPX is constructing triple and mach particle probes, magnetic probes, and a single point 300 W Thompson Scattering system backed by a 32-channel Data Acquisition (DAQ) system capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the optical, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY12.

  6. Progress in Development of Low Pressure High Density Plasmas on a Small Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Lopez, M.; Nolan, S.; Page, E. L.; Schlank, C.; Sherman, J.; Stutzman, B. S.; Zuniga, J.

    2012-10-01

    At the Coast Guard Academy Plasma Lab (CGAPL), a small Helicon Plasma Experiment (HPX) is being developed to utilize the reputed high densities (10^13 cm-3 and higher) at low pressure (.01 T) [1], for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range and employs an electromagnet to provide the external energy in the plasma's magnetic field to transition from the H-Mode to the Helicon Mode. An acceleration coil, currently under construction, will place the plasma in the vacuum chamber for optical and particle probing. With the initial construction phase complete and first plasmas attained, HPX is constructing triple and mach particle probes, magnetic probes, and a single point 300 W Thompson Scattering system backed by a 32-channel DAQ system capable 12 bits of sampling precision at 2 MS/s for plasma property investigations. Progress on the development of the RF coupling system, magnetic coils, and qualitative observations from the optical and electric diagnostics are to be reported. [4pt] [1] K. Toki, et al., Thin Solid Films 506-507 (2005).

  7. Progress on Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Azzari, Phillip; Duke-Tinson, Omar; Frank, John; Karama, Jackson; Hopson, Jordan; Paolino, Richard; Sandri, Eva; Sherman, Justin; Wright, Erin; Turk, Jeremy

    2015-11-01

    The small Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Lab (CGAPL), continues to progress toward utilizing the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T) [1] of helicons, for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas (~ 20 - 30 ns) induced by an RF frequency in the 10 to 70 MHz range. HPX is constructing RF field corrected Langmuir probe raw data will be collected and used to measure the plasma's density, temperature, and potentially the structure and behavior during experiments. Our 2.5 J YAG laser Thomson Scattering system backed by a 32-channel Data Acquisition (DAQ) system is capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the Thomson Scattering, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15.

  8. Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Azzari, Phillip; Crilly, Paul; Duke-Tinson, Omar; Karama, Jackson; Paolino, Richard; Schlank, Carter; Sherman, Justin

    2014-10-01

    The small Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Lab (CGAPL), continues to progress toward utilizing the reputed high densities (10 cm-3 and higher) at low pressure (.01 T) of helicons, for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range. We employ a 400 to 1000 Gauss electromagnet that promotes energy conservation in the plasma via external energy production in the magnetic field facilitated by decreased inertial effects, in order to reach the Helicon Mode. HPX is completing construction of triple and mach particle probes, magnetic probes, and is designing a single point 300 W Thompson Scattering system backed by a 32-channel Data Acquisition (DAQ) system capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the optical, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY13.

  9. Updates to the Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Azzari, Phil; Crilly, Paul; Duke-Tinson, Omar; Karama, Jackson; Paolino, Richard; Schlank, Carter; Sherman, Justin; Emami, Tooran; Turk, Jeremy

    2016-10-01

    The small Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Lab (CGAPL), continues to progress toward utilizing the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T) [1] of helicons, for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas ( 20 - 30 ns) induced by an RF frequency in the 10 to 70 MHz range. HPX is constructing RF field corrected Langmuir probe raw data will be collected and used to measure the plasma's density, temperature, and potentially the structure and behavior during experiments. Our 2.5 J YAG laser Thomson Scattering system backed by a 32-channel Data Acquisition (DAQ) system is capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations are being developed and tested. Progress on the construction of the RF coupling system, Helicon Mode development, and magnetic coils, along with observations from the Thomson Scattering, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.

  10. Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine

    SciTech Connect

    Baumgard, Kirby; Triana, Antonio; Johnson, John; Yang, Song; Premchand, Kiran

    2006-01-30

    The goal of the project was to demonstrate that low pressure loop EGR incorporating a diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF) can be applied to an off-highway engine to meet Tier 3 (Task I) and Interim Tier 4 (Task II) off-road emissions standards. Task I data was collected using a John Deere 8.1 liter engine modified with a low pressure loop EGR system. The engine and EGR system was optimized and final data over the ISO 8178 eight mode test indicated the NOx emissions were less than 4 g/kWh and the PM was less than 0.02 g/kWh which means the engine met the Tier 3 off-road standard. Considerable experimental data was collected and used by Michigan Tech University to develop and calibrate the MTU-Filter 1D DPF model. The MTU-Filter 1D DPF code predicts the particulate mass evolution (deposition and oxidation) in the diesel particulate filter (DPF) during simultaneous loading and during thermal and NO{sub 2}-assisted regeneration conditions. It also predicts the pressure drop across the DPF, the flow and temperature fields, the solid filtration efficiency and the particle number distribution downstream of the DPF. A DOC model was also used to predict the NO{sub 2} upstream of the DPF. The DPF model was calibrated to the experimental data at temperatures from 230 C to 550 C, and volumetric flow rates from 9 to 39 actual m{sup 3}/min. Model predictions of the solid particulate mass deposited in the DPF after each loading and regeneration case were in agreement within +/-10g (or +/-10%) of experimental measurements at the majority of the engine operating conditions. The activation temperatures obtained from the model calibration are in good agreement with values reported in the literature and gave good results in the model calibration by using constant pre-exponential factors throughout the entire range of conditions evaluated. The average clean filter permeability was 2.372 x 10{sup -13} m{sup 2}. Estimates of the solid particulate mass

  11. Low pressure cesium and potassium Diode Pumped Alkali Lasers: pros and cons

    NASA Astrophysics Data System (ADS)

    Zhdanov, Boris V.; Rotondaro, Matthew D.; Shaffer, Michael K.; Knize, Randall J.

    2015-10-01

    This paper based on the talk presented at the Security plus Defence 2015 Conference held at Toulouse, France in September 2015. In this paper we present the results of our experiments on a comparative study of Cesium and Potassium based DPALs aimed to determine which of these two lasers has better potential for scaling to high powers. For both lasers we have chosen a so called "low pressure DPAL approach", which uses buffer gas pressure of about 1 Atm for spin-orbit mixing of the exited states of alkali atoms to provide population inversion in the gain medium. The goal of this study was to determine power limiting effects, which affect performance of these DPALs, and find out how these limiting effects can be mitigated. The experiments were performed using both static and flowing gain medium. In our experiments, we studied the performance of both lasers in CW and pulsed modes with different pulse duration and observed output power degradation in time from the initial value to the level corresponding to the CW mode of operation. As a result of this study, we revealed some essential positive and negative features of both DPALs, which should be taken into account for power scaling experiments.

  12. Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium.

    PubMed

    Ding, Shiyuan; Yang, Yu; Huang, Haiou; Liu, Hengchen; Hou, Li-an

    2015-08-30

    The objective of this study was to identify the removal mechanisms of radionuclides by reverse osmosis (RO) membranes under conditions relevant to full-scale water treatment. For this purpose, the effects of feed solution chemistry on the removal of Cs and Sr by a low pressure RO system was investigated by systematically varying membrane surface charge, ionic composition, and organic matter concentrations. The results showed that the effects of solution chemistry on the filtration of Cs and Sr were related to their hydrated ionic radius, resulting in the predominance of the Donnan's effect and electrostatic interactions, respectively. Consequently, the rejection of Cs increased more pronouncedly than Sr with the increases of feed concentration. Due to the Donnan's effect, different anions decreased the rejection of Cs to different extents in accordance to the order of anions' radii as SO4(2-)>Cl(-)>NO3(-)>F(-). The variations in Sr rejection were influenced by the electrostatic interactions between Sr(2+) and the membrane. In addition, humic acid (HA) lowered the rejection of Cs and caused significant membrane flux decline, but did not change the rejection of Sr. Sr also aggravated HA fouling of the membrane.

  13. Performances of nanofiltration and low pressure reverse osmosis membranes for desalination: characterization and modelling

    NASA Astrophysics Data System (ADS)

    Boussouga, Y. A.; Lhassani, A.

    2017-03-01

    The nanofiltration and the reverse osmosis processes are the most common techniques for the desalination of water contaminated by an excess of salts. In this present study, we were interested in the characterization of commercial, composite and asymmetric membranes of nanofiltration (NF90, NF270) and low pressure reverse osmosis (BW30LE). The two types of characterization that we opted for our study: (i) characterization of electrical proprieties, in terms of the surface charge of various membranes studied by the measurement of the streaming potential, (ii) hydrodynamic characterization in terms of hydraulic permeability with pure water, mass transfer and phenomenological parameters for each system membrane/salt using hydrodynamic approaches. The irreversible thermodynamics allowed us to model the observed retention Robs of salts (NaCl and Na2SO4) for the different membranes studied, to understand and to predict a good filtration with a membrane. A study was conducted on the type of mass transfer for each system membrane/salt: convection and diffusion. The results showed that all tested membranes are negatively charged for the solutions at neutral pH, this is explained by their material composition. The results also showed competitiveness between the different types of membranes. In view of that the NF remains effective in terms of selective retention with less energy consumption than LPRO.

  14. Characteristics of Boundary Layer Transition in a Multi-Stage Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Wisler, Dave; Halstead, David E.; Okiishi, Ted

    2007-01-01

    An experimental investigation of boundary layer transition in a multi-stage turbine has been completed using surface-mounted hot-film sensors. Tests were carried out using the two-stage Low Speed Research Turbine of the Aerodynamics Research Laboratory of GE Aircraft Engines. Blading in this facility models current, state-of-the-art low pressure turbine configurations. The instrumentation technique involved arrays of densely-packed hot-film sensors on the surfaces of second stage rotor and nozzle blades. The arrays were located at mid-span on both the suction and pressure surfaces. Boundary layer measurements were acquired over a complete range of relevant Reynolds numbers. Data acquisition capabilities provided means for detailed data interrogation in both time and frequency domains. Data indicate that significant regions of laminar and transitional boundary layer flow exist on the rotor and nozzle suction surfaces. Evidence of relaminarization both near the leading edge of the suction surface and along much of the pressure surface was observed. Measurements also reveal the nature of the turbulent bursts occuring within and between the wake segments convecting through the blade row. The complex character of boundary layer transition resulting from flow unsteadiness due to nozzle/nozzle, rotor/nozzle, and nozzle/rotor wake interactions are elucidated using these data. These measurements underscore the need to provide turbomachinery designers with models of boundary layer transition to facilitate accurate prediction of aerodynamic loss and heat transfer.

  15. Synthetic Vortex Generator Jets Used to Control Separation on Low-Pressure Turbine Airfoils

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Volino, Ralph J.

    2005-01-01

    Low-pressure turbine (LPT) airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and lower cost by reducing the number of airfoils in an engine. When the adverse pressure gradient on the suction side of these airfoils becomes strong enough, the boundary layer will separate. Separation bubbles, particularly those that fail to reattach, can result in a significant loss of lift and a subsequent degradation of engine efficiency. The problem is particularly relevant in aircraft engines. Airfoils optimized to produce maximum power under takeoff conditions may still experience boundary layer separation at cruise conditions because of the thinner air and lower Reynolds numbers at altitude. Component efficiency can drop significantly between takeoff and cruise conditions. The decrease is about 2 percent in large commercial transport engines, and it could be as large as 7 percent in smaller engines operating at higher altitudes. Therefore, it is very beneficial to eliminate, or at least reduce, the separation bubble.

  16. A collisional-radiative model for low-pressure weakly magnetized Ar plasmas

    NASA Astrophysics Data System (ADS)

    Zhu, Xi-Ming; Tsankov, Tsanko; Czarnetzki, Uwe; Marchuk, Oleksandr

    2016-09-01

    Collisional-radiative (CR) models are widely investigated in plasma physics for describing the kinetics of reactive species and for optical emission spectroscopy. This work reports a new Ar CR model used in low-pressure (0.01-10 Pa) weakly magnetized (<0.1 Tesla) plasmas, including ECR, helicon, and NLD discharges. In this model 108 realistic levels are individually studied, i.e. 51 lowest levels of the Ar atom and 57 lowest levels of the Ar ion. We abandon the concept of an ``effective level'' usually adopted in previous models for glow discharges. Only in this way the model can correctly predict the non-equilibrium population distribution of close energy levels. In addition to studying atomic metastable and radiative levels, this model describes the kinetic processes of ionic metastable and radiative levels in detail for the first time. This is important for investigation of plasma-surface interaction and for optical diagnostics using atomic and ionic line-ratios. This model could also be used for studying Ar impurities in tokamaks and astrophysical plasmas.

  17. Track studies in water vapor using a low-pressure cloud chamber. I. Macroscopic measurements.

    PubMed

    Stonell, G P; Marshall, M; Simmons, J A

    1993-12-01

    Techniques have been developed to operate a low-pressure cloud chamber with pure water vapor. Photographs have been obtained of the tracks arising in this medium from the passage of ionizing radiation. The sources used were low-energy X rays, 242Cm alpha particles, and low-energy protons. Track lengths of the electrons were similar to those found previously in tissue-equivalent gas. W values of 35.6 +/- 0.4 and 32.6 +/- 0.6 eV per ion pair for carbon and aluminum X rays also compare closely with those in tissue-equivalent gas, but are somewhat higher than the predictions of Monte Carlo calculations. Differential w values were obtained: for alpha particles of energy 5.3 MeV the value was 33.0 +/- 3.0 eV per ion pair; for protons of energy 390, 230, and 85 keV the values were 30.6 +/- 1.9, 31.9 +/- 2.0, and 33.6 +/- 3.4 eV per ion pair. The energy losses of protons in water vapor were measured in a second (dummy) chamber used for energy calibration. Results support Janni's values of stopping power for protons in the energy range 40-480 keV.

  18. Experimental calculations of droplet diffusion in a low-pressure cloud chamber.

    PubMed

    Briden, P E; Holt, P D; Simmons, J A

    1994-11-01

    A low-pressure cloud chamber was used for several years to display the tracks created by the passage of ionizing particles through vapors of interest. The spatial distributions of the ions that were formed were of special interest, but the accuracy with which these distributions could be determined was reduced by the presence of diffusion. This meant that the droplets, when photographed, had moved significantly away from the point of creation of the parent ion. In the present investigation photographs obtained by previous workers have been analyzed in an attempt to quantify the extent to which the droplets had diffused. The results suggest that the diffusion, when converted to standard density (1000 kg/m3), was independent of the pressure inside the cloud chamber and the mixture used. It could be represented by a one-dimensional root-mean-square diffusion distance whose value was calculated to be 2.42 +/- 0.04 nm. Values for the diffusion of thermalized electrons (< approximately 4 eV) before capture to form negative ions were also calculated. They appeared to lie in the range 3.5-5.0 nm, and were again independent of the pressure and nature of the mixture. The magnitude of the diffusion was large enough to mask any measurable prediffusion structure for a distance in the region of 10 nm radially around the track path of the alpha-particle and proton tracks analyzed.

  19. NASA/GE Energy Efficient Engine low pressure turbine scaled test vehicle performance report

    NASA Technical Reports Server (NTRS)

    Bridgeman, M. J.; Cherry, D. G.; Pedersen, J.

    1983-01-01

    The low pressure turbine for the NASA/General Electric Energy Efficient Engine is a highly loaded five-stage design featuring high outer wall slope, controlled vortex aerodynamics, low stage flow coefficient, and reduced clearances. An assessment of the performance of the LPT has been made based on a series of scaled air-turbine tests divided into two phases: Block 1 and Block 2. The transition duct and the first two stages of the turbine were evaluated during the Block 1 phase from March through August 1979. The full five-stage scale model, representing the final integrated core/low spool (ICLS) design and incorporating redesigns of stages 1 and 2 based on Block 1 data analysis, was tested as Block 2 in June through September 1981. Results from the scaled air-turbine tests, reviewed herein, indicate that the five-stage turbine designed for the ICLS application will attain an efficiency level of 91.5 percent at the Mach 0.8/10.67-km (35,000-ft), max-climb design point. This is relative to program goals of 91.1 percent for the ICLS and 91.7 percent for the flight propulsion system (FPS).

  20. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  1. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    SciTech Connect

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  2. Diamond synthesis from carbon nanofibers at low temperature and low pressure.

    PubMed

    Luo, Chengzhi; Qi, Xiang; Pan, Chunxu; Yang, Wenge

    2015-09-09

    In this article, we report a new route to synthesize diamond by converting "solid" carbon nanofibers with a Spark Plasma Sintering system under low temperature and pressure (even at atmospheric pressure). Well-crystallized diamond crystals are obtained at the tips of the carbon nanofibers after sintering at 1500 °C and atmospheric pressure. Combining with scanning electron microscopy, transmission electron microscopy, electron-energy loss spectroscopy and Raman spectroscopy observations, we propose the conversion mechanism as follows: the disorder "solid" carbon nanofibers→well crystallined carbon nanofibers→bent graphitic sheets→onion-liked rings→diamond single crystal→the bigger congregated diamond crystal. It is believed that the plasma generated by low-voltage, vacuum spark, via a pulsed DC in Spark Plasma Sintering process, plays a critical role in the low temperature and low pressure diamond formation. This Spark Plasma Sintering process may provide a new route for diamond synthesis in an economical way to a large scale.

  3. Computer Modeling of an Ion Trap Mass Analyzer, Part I: Low Pressure Regime

    NASA Astrophysics Data System (ADS)

    Nikolić, Dragan; Madzunkov, Stojan M.; Darrach, Murray R.

    2015-12-01

    We present the multi-particle simulation program suite Computational Ion Trap Analyzer (CITA) designed to calculate the ion trajectories within a Paul quadrupole ion trap developed by the Jet Propulsion Laboratory (JPL). CITA uses an analytical expression of the electrodynamic field, employing up to six terms in multipole expansion and a modified velocity-Verlet method to numerically calculate ion trajectories. The computer code is multithreaded and designed to run on shared-memory architectures. CITA yields near real-time simulations with full propagation of 26 particles per second per core. As a consequence, a realistic numbers of trapped ions (100+ million) can be used and their trajectories modeled, yielding a representative prediction of mass spectrometer analysis of trace gas species. When the model is compared with experimental results conducted at low pressures using the conventional quadrupole and dipole excitation modes, there is an excellent agreement with the observed peak shapes. Owing to the program's efficiency, CITA has been used to explore regions of trapping stability that are of interest to experimental research. These results are expected to facilitate a fast and reliable modeling of ion dynamics in miniature quadrupole ion trap and improve the interpretation of observed mass spectra.

  4. Computer Modeling of an Ion Trap Mass Analyzer, Part I: Low Pressure Regime.

    PubMed

    Nikolić, Dragan; Madzunkov, Stojan M; Darrach, Murray R

    2015-12-01

    We present the multi-particle simulation program suite Computational Ion Trap Analyzer (CITA) designed to calculate the ion trajectories within a Paul quadrupole ion trap developed by the Jet Propulsion Laboratory (JPL). CITA uses an analytical expression of the electrodynamic field, employing up to six terms in multipole expansion and a modified velocity-Verlet method to numerically calculate ion trajectories. The computer code is multithreaded and designed to run on shared-memory architectures. CITA yields near real-time simulations with full propagation of 26 particles per second per core. As a consequence, a realistic numbers of trapped ions (100+ million) can be used and their trajectories modeled, yielding a representative prediction of mass spectrometer analysis of trace gas species. When the model is compared with experimental results conducted at low pressures using the conventional quadrupole and dipole excitation modes, there is an excellent agreement with the observed peak shapes. Owing to the program's efficiency, CITA has been used to explore regions of trapping stability that are of interest to experimental research. These results are expected to facilitate a fast and reliable modeling of ion dynamics in miniature quadrupole ion trap and improve the interpretation of observed mass spectra. Graphical Abstract ᅟ.

  5. Prediction of electron and ion concentrations in low-pressure premixed acetylene and ethylene flames

    NASA Astrophysics Data System (ADS)

    Cancian, J.; Bennett, B. A. V.; Colket, M. B.; Smooke, M. D.

    2013-04-01

    Flame stabilisation and extinction in a number of different flows can be affected by application of electric fields. Electrons and ions are present in flames, and because of charge separation, weak electric fields can also be generated even when there is no externally applied electric field. In this work, a numerical model incorporating ambipolar diffusion and plasma kinetics has been developed to predict gas temperature, species, and ion and electron concentrations in laminar premixed flames without applied electric fields. This goal has been achieved by combining the existing CHEMKIN-based PREMIX code with a recently developed methodology for the solution of electron temperature and transport properties that uses a plasma kinetics model and a Boltzmann equation solver. A chemical reaction set has been compiled from seven sources and includes chemiionisation, ion-molecule, and dissociative-recombination reactions. The numerical results from the modified PREMIX code (such as peak number densities of positive ions) display good agreement with previously published experimental data for fuel-rich, non-sooting, low-pressure acetylene and ethylene flames without applied electric fields.

  6. Evaluation of HFC-245ca for commercial use in low pressure chillers. Final report, Volume I

    SciTech Connect

    Keuper, E.F.

    1996-03-01

    Federal regulations banned the production of CFC-11 on January 1, 1996. HCFC-123, the only commercial alternative, will be limited to service applications after January 1, 2020 and will be eliminated from production on January 1, 2030. HFC-245ca has been identified as a potential replacement for CFC-11 in retrofit applications and for HCFC-123 in new chillers, but the marginal flammability of HFC-245ca is a major obstacle to its commercial use as a refrigerant in the United States. This report assesses the commercial viability of HFC-245ca based on its experimental performance in a direct drive low pressure centrifugal chiller exclusive of its flammability characteristics. Three different impeller diameters were tested in the chiller, with all impellers having identical discharge blade angles. Experimental work included tests in a 200 ton 3 stage direct drive chiller with 3 impeller sets properly sized for each of three refrigerants, CFC-11, HCFC-123, and HFC-245ca. The commercial viability assessment focused on both retrofit and new product performance and cost.

  7. Episodic metamorphism and deformation in low-pressure, high-temperature terranes

    NASA Astrophysics Data System (ADS)

    Stüwe, Kurt; Sandiford, Michael; Powell, Roger

    1993-09-01

    In many cases, low-pressure, high-temperature metamorphism must be the consequence of advective heat transfer, e.g., the ascent of granitic magma. Whereas such heating mechanisms are necessarily short-lived, the lifetime of the underlying orogenic processes is likely to be much longer, and it is conceivable that, during the evolution of an orogen, repeated transient heating at shallow crustal levels is caused by episodes of segregation and upward passage of melts generated at deep crustal levels. The number and timing of these events would depend on such factors as critical melt segregation volume, Moho temperature, and strain-rate evolution. We investigate some of the controls on this multiple-event superposition using a simple thermomechanical model designed to predict, simultaneously, the strain-rate and the isostatic and thermal evolution of convergent orogenesis, subject to a constant driving force. An appealing aspect of this formulation is that, in contrast to models that have attempted to explain event cyclicity through episodic processes acting on the orogenic boundaries, it accounts for the repeated occurrence of events through processes inherent to the orogenic system itself.

  8. Numerical simulation of turbulent flow in the throttle of the MBIR reactor's low-pressure chamber

    NASA Astrophysics Data System (ADS)

    Yarunichev, V. A.; Orlova, E. E.; Lemekhov, Yu. V.; Shpanskii, V. A.

    2015-08-01

    This work in devoted to numerical calculation of turbulent flow in a labyrinth-type throttle. A system of such throttles is installed at the inlet to the MBIR reactor's low-pressure chamber and serves for setting up the required pressure difference and coolant flow rate. MBIR is a multipurpose fourthgeneration fast-neutron research reactor intended for investigating new kinds of nuclear fuel, structural materials, and coolants. The aim of this work is to develop a verified procedure for carrying out 3D calculation of the throttle using CFD modeling techniques. The investigations on determining the throttle hydraulic friction coefficient were carried out in the range of Reynolds numbers Re = 52000-136000. The reactor coolant (liquid sodium) was modeled by tap water. The calculations were carried out using high-Reynolds-number turbulence models with the near-wall functions k-ɛ and RNG k-ɛ, where k is the turbulent pulsation kinetic energy and ɛ is the turbulence kinetic energy dissipation rate. The obtained results have shown that the calculated value of hydraulic friction coefficient differs from its experimental value by no more than 10%. The developed procedure can be applied in determining the hydraulic friction coefficient of a modified labyrinth throttle design. The use of such calculation will make it possible to predict an experiment with the preset accuracy.

  9. Thermodynamics of Methane Adsorption on Copper HKUST-1 at Low Pressure.

    PubMed

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-07-02

    Metal-organic frameworks (MOFs) can be engineered as natural gas storage materials by tuning the pore structures and surface properties. Here we report the direct measurement of CH4 adsorption enthalpy on a paddlewheel MOF (Cu HKUST-1) using gas adsorption calorimetry at 25 °C at low pressures (below 1 bar). In this pressure region, the CH4-CH4 intermolecular interactions are minimized and the energetics solely reflects the CH4-MOF interactions. Our results suggest moderately exothermic physisorption with an enthalpy of -21.1 ± 1.1 kJ/mol CH4 independent of coverage. This calorimetric investigation complements previous computational and crystallographic studies by providing zero coverage enthalpies of CH4 adsorption. The analysis of the new and literature data suggests that in initial stages of adsorption the CH4-HKUST-1 interaction tends to be more sensitive to the pore dimension than to the guest polarizability, suggesting a less specific chemical binding role for the open Cu site.

  10. Reconsideration of basic concepts for the low-pressure discharge maintenance

    NASA Astrophysics Data System (ADS)

    Shivarova, Antonia

    2016-09-01

    The Schottky condition and the concept for the ambipolar field known as bases of the low-pressure discharge maintenance are reconsidered. Whereas the Schottky condition results in a value of the electron temperature independent of the plasma density, the discussed generalized form of the Schottky condition relates - due to the nonlinear processes in the charged particle balance - the electron temperature to the plasma density, thus, ensuring self-consistency of the plasma description. The concept for equality of the electron and ion fluxes resulting into the ambipolar field is the second issue discussed. Localization of the power input outside the high plasma-density region, a common case in many rf plasma sources, breaks it down by transforming the ambipolar field into a vortex, non-conservative, field. Since the dc field in the discharge should be a potential (conservative) field, it appears to be composed by two vortex field: the ambipolar field and a field related to a vortex dc current, the latter driven by a deviation from the Boltzmann distribution of the electron density. In addition, due to the steady-state magnetic field self-induced by the vortex current in the discharge, the plasma appears magnetized without having an external magnetic field applied.

  11. Deuterium analysis in zircaloy using ps laser-induced low pressure plasma

    SciTech Connect

    Marpaung, Alion Mangasi; Lie, Zener Sukra; Niki, Hideaki; Kagawa, Kiichiro; Fukumoto, Ken-ichi; Ramli, Muliadi; Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Hedwig, Rinda; Tjia, May On; Pardede, Marincan; Suliyanti, Maria Margaretha; Jobiliong, Eric; Kurniawan, Koo Hendrik

    2011-09-15

    An experimental study on picosecond laser induced plasma spectroscopy of a zircaloy sample with low-pressure surrounding helium gas has been carried out to demonstrate its potential applicability to three-dimensional quantitative micro-analysis of deuterium impurities in zircaloy. This was achieved by adopting the optimal experimental condition ascertained in this study, which is specified as 7 mJ laser energy, 1.3 kPa helium pressure, and 50 {mu}s measurement window, and which was found to result in consistent D emission enhancement. Employing these operational parameters, a linear calibration line exhibiting a zero intercept was obtained from zircaloy-4 samples doped with various concentrations of D impurity, regarded as surrogates for H impurity. An additional measurement also yielded a detection limit of about 10 {mu}g/g for D impurity, well below the acceptable threshold of damaging H concentration in zircaloy. Each of these measurements was found to produce a crater size of only 25 {mu}m in diameter, promising its application for performing less-destructive measurements. The result of this study has thus paved the way for conducting a further experiment with hydrogen-doped zircaloy samples and the further technical development of a three-dimensional quantitative micro-analysis of detrimental hydrogen impurity in zircaloy vessels used in nuclear power plants.

  12. Multifunctional Low-Pressure Turbine for Core Noise Reduction, Improved Efficiency, and Nitrogen Oxide (NOx) Reduction

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Shyam, Vikram; Rigby, David L.

    2013-01-01

    This work studied the feasibility of using Helmholtz resonator cavities embedded in low-pressure-turbine (LPT) airfoils to (1) reduce core noise by damping acoustic modes; (2) use the synthetic jets produced by the liner hole acoustic oscillations to improve engine efficiency by maintaining turbulent attached flow in the LPT at low-Reynolds-number cruise conditions; and (3) reduce engine nitrogen oxide emissions by lining the internal cavities with materials capable of catalytic conversion. Flat plates with embedded Helmholtz resonators, designed to resonate at either 3000 or at 400 Hz, were simulated using computational fluid dynamics. The simulations were conducted for two inlet Mach numbers, 0.25 and 0.5, corresponding to Reynolds numbers of 90 000 and 164 000 based on the effective chordwise distance to the resonator orifice. The results of this study are (1) the region of acoustic treatment may be large enough to have a benefit; (2) the jets may not possess sufficient strength to reduce flow separation (based on prior work by researchers in the flow control area); and (3) the additional catalytic surface area is not exposed to a high velocity, so it probably does not have any benefit.

  13. Uniform Thermal Nanoimprinting at Low Pressure by Improved Heat Transfer Using Hydrofluoroethers

    NASA Astrophysics Data System (ADS)

    Mekaru, Harutaka; Hiroshima, Hiroshi

    2013-06-01

    We propose a low-pressure process of thermal nanoimprinting by improved heat transfer. In poly(ethylene terephthalate) (PET; Tg=75 °C), poly(methyl methacrylate) (PMMA; Tg=105 °C), and polycarbonate (PC; Tg=150 °C), in which fine pattern transfer can be performed at 12.9 MPa, if the imprinting pressure is reduced to one-third, poor transfer occurs at the edges of the patterned area, and the uniformity of the entire patterned area degrades. However, it turned out that moldability can be improved significantly by introducing hydrofluoroether (HFE) between the mold and the surface of thermoplastic sheets. A dispensing method using a pipette was chosen to introduce HFE, and three types of HFE liquid, namely, Novec 7100 (bp=61 °C), Novec 7200 (bp=76 °C), and Novec 7300 (bp=98 °C), were tested. It was confirmed that the uniformity was greatly improved by combinations of PET and Novec 7100, PMMA and Novec 7200, and PC and Novec 7300. The heat of the mold spread efficiently onto the surface of thermoplastics via the HFE liquid, and it seems to result in the same effect as a preliminary heating process before the mold comes into contact with the thermoplastic sheet.

  14. Low-pressure cesium and potassium diode pumped alkali lasers: pros and cons

    NASA Astrophysics Data System (ADS)

    Zhdanov, Boris V.; Rotondaro, Matthew D.; Shaffer, Michael K.; Knize, Randall J.

    2016-02-01

    This paper presents the results of our experiments on a comparative study of cesium and potassium diode pumped alkali lasers (DPALs) aimed to determine which of these two lasers has more potential to scale to high powers. For both lasers, we have chosen a "low-pressure DPAL approach," which uses buffer gas pressure of about 1 atm for spin-orbit mixing of the excited states of alkali atoms to provide population inversion in the gain medium. The goal of this study was to determine power-limiting effects, which affect the performance of these DPALs, and find out how these limiting effects can be mitigated. We studied the performance of both lasers in CW and pulsed modes using both static and flowing gain medium and pump with different pulse duration. We observed output power degradation in time from the initial value to the level corresponding to the CW mode of operation. As a result of this study, some essential positive and negative features of both DPALs were revealed, which should be taken into account for power-scaling experiments.

  15. Vibrational kinetics in Cl2 and O2 low-pressure inductively-coupled plasmas

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul; Foucher, Mickael; Marinov, Daniil; Chabert, Pascal; Annusova, Anna; Guerra, Vasco; Agarwal, Ankur; Rauf, Shahid

    2015-09-01

    Low energy electron interactions with molecules via resonances can cause vibrational excitation (affecting chemical kinetics), electron energy loss and modification of the EEDF. However, with the exception of N2 and H2 plasmas, very little attention has been paid to this subject. We have implemented a novel high-sensitivity ultra-broadband UV absorption bench, allowing spectra to be recorded with noise as low as 2×10-5 over a 250 nm wavelength range, and recording of complete vibronic bands. We applied this to radiofrequency inductively-coupled plasmas in low pressure (5-50 mTorr) pure O2 and pure Cl2. In O2 plasmas we surprisingly observe highly vibrationally excited O2 (v'' up to 18) via B-X Schumann-Runge bands. Cl2 molecules show a broad UV absorption spectrum in the region 250-400 nm, with distinctly different absorption spectra for vibrationally excited molecules. However, only a small fraction of the Cl2 molecules were observed in vibrationally excited states and the vibrational temperature is close to equilibrium with the local gas translational temperature (up to 1000 K), in contrast to O2. We are currently working on global models with vibrational kinetics to explain these results. Work supported by LABEX Plas@par (ANR-11-IDEX-0004-02), and Applied Materials.

  16. Study of dust re-suspension at low pressure in a dedicated wind-tunnel

    NASA Astrophysics Data System (ADS)

    Rondeau, Anthony; Sabroux, Jean-Christophe; Chassefière, Eric

    2015-04-01

    The atmosphere of several telluric planets or satellites are dusty. Such is the case of Earth, Venus, Mars and Titan, each bearing different aeolian processes linked principally to the kinematic viscosity of the near-surface atmosphere. Studies of the Martian atmosphere are particularly relevant for the understanding of the dust re-suspension phenomena at low pressure (7 mbar). It turns out that operation of fusion reactors of the tokamak design produces significant amount of dust through the erosion of plasma-facing components. Such dust is a key issue, both regarding the performance and the safety of a fusion reactor such as ITER, under construction in Cadarache, France. Indeed, to evaluate the explosion risk in the ITER fusion reactor, it is essential to quantify the re-suspended dust fraction as a function of the dust inventory that can be potentially mobilized during a loss of vacuum accident (LOVA), with air or water vapour ingress. A complete accident sequence will encompass dust re-suspension from near-vacuum up to atmospheric pressure. Here, we present experimental results of particles re-suspension fractions measured at 1000, 600 and 300 mbar in the IRSN BISE (BlowIng facility for airborne releaSE) wind tunnel. Both dust monolayer deposits and multilayer deposits were investigated. In order to obtain experimental re-suspension data of dust monolayer deposits, we used an optical microscope allowing to measure the re-suspended particles fraction by size intervals of 1 µm. The deposits were made up of tungsten particles on a tungsten surface (an ubiquitous plasma facing component) and alumina particles on a glass plate, as a surrogate. A comparison of the results with the so-called Rock'nRoll dust re-suspension model (Reeks and Hall, 2001) is presented and discussed. The multilayer deposits were made in a vacuum sedimentation chamber allowing to obtain uniform deposits in terms of thickness. The re-suspension experimental data of such deposits were obtained

  17. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets: Experimental Data Archive

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important. This is the supplemental CD-ROM

  18. Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Sohn, Ki Hyeon; DeWitt, Kenneth J.

    2007-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000, and 250,000 with four levels of freestream turbulence ranging from 1 to 4 percent. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000, and 100,000. Spectral data show no evidence of Kelvin-Helmholtz of Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transition flows over the separation bubble of certain conditions. Transition onset and end locations and length determined from intermittency profiles decreased as Reynolds number and freestream turbulence levels increase.

  19. Experimental Study of the Effects of Periodic Unsteady Wakes on Flow Separation in Low Pressure Turbines

    NASA Technical Reports Server (NTRS)

    Ozturk, Burak; Schobeiri, Meinhard T.

    2009-01-01

    The present study, which is the first of a series of investigations of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary layer flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed on a large-scale, high-subsonic unsteady turbine cascade research facility with an integrated wake generator and test section unit. Blade Pak B geometry was used in the cascade. The wakes were generated by continuously moving cylindrical bars device. Boundary layer investigations were performed using hot wire anemometry at Reynolds number of 110,000, based on the blade suction surface length and the exit velocity, for one steady and two unsteady inlet flow conditions, with the corresponding passing frequencies, wake velocities, and turbulence intensities. The reduced frequencies cover the entire operation range of LP-turbines. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re = 50,000, 75,000, 100,000, 110,000, and 125,000. For each Reynolds number, surface pressure measurements are carried out at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extension of the separation zone as well as its behavior under unsteady wake flow. The results, presented in ensemble-averaged and contour plot forms, help to understand the physics of the separation phenomenon under periodic unsteady wake flow.

  20. Inactivation of Single-Celled Ascaris suum Eggs by Low-Pressure UV Radiation

    PubMed Central

    Brownell, Sarah A.; Nelson, Kara L.

    2006-01-01

    Intact and decorticated single-celled Ascaris suum eggs were exposed to UV radiation from low-pressure, germicidal lamps at fluences (doses) ranging from 0 to 8,000 J/m2 for intact eggs and from 0 to 500 J/m2 for decorticated eggs. With a UV fluence of 500 J/m2, 0.44- ± 0.20-log inactivation (mean ± 95% confidence interval) (63.7%) of intact eggs was observed, while a fluence of 4,000 J/m2 resulted in 2.23- ± 0.49-log inactivation (99.4%). (The maximum quantifiable inactivation was 2.5 log units.) Thus, according to the methods used here, Ascaris eggs are the most UV-resistant water-related pathogen identified to date. For the range of fluences recommended for disinfecting drinking water and wastewater (200 to 2,000 J/m2), from 0- to 1.5-log inactivation can be expected, although at typical fluences (less than 1,000 J/m2), the inactivation may be less than 1 log. When the eggs were decorticated (the outer egg shell layers were removed with sodium hypochlorite, leaving only the lipoprotein ascaroside layer) before exposure to UV, 1.80- ± 0.32-log reduction (98.4%) was achieved with a fluence of 500 J/m2, suggesting that the outer eggshell layers protected A. suum eggs from inactivation by UV radiation. This protection may have been due to UV absorption by proteins in the outer layers of the 3- to 4-μm-thick eggshell. Stirring alone (without UV exposure) also inactivated some of the Ascaris eggs (∼20% after 75 min), which complicated determination of the inactivation caused by UV radiation alone. PMID:16517669

  1. Glow Discharge Plasma Demonstrated for Separation Control in the Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Ashpis, David e.; Hultgren, Lennart S.

    2004-01-01

    Flow separation in the low-pressure turbine (LPT) is a major barrier that limits further improvements of aerodynamic designs of turbine airfoils. The separation is responsible for performance degradation, and it prevents the design of highly loaded airfoils. The separation can be delayed, reduced, or eliminated completely if flow control techniques are used. Successful flow control technology will enable breakthrough improvements in gas turbine performance and design. The focus of this research project was the development and experimental demonstration of active separation control using glow discharge plasma (GDP) actuators in flow conditions simulating the LPT. The separation delay was shown to be successful, laying the foundation for further development of the technologies to practical application in the LPT. In a fluid mechanics context, the term "flow control" means a technology by which a very small input results in a very large effect on the flow. In this project, the interest is to eliminate or delay flow separation on LPT airfoils by using an active flow control approach, in which disturbances are dynamically inserted into the flow, they interact with the flow, and they delay separation. The disturbances can be inserted using a localized, externally powered, actuating device, examples are acoustic, pneumatic, or mechanical devices that generate vibrations, flow oscillations, or pulses. A variety of flow control devices have been demonstrated in recent years in the context of the external aerodynamics of aircraft wings and airframes, where the incoming flow is quiescent or of a very low turbulence level. However, the flow conditions in the LPT are significantly different because there are high levels of disturbances in the incoming flow that are characterized by high free-stream turbulence intensity. In addition, the Reynolds number, which characterizes the viscous forces in the flow and is related to the flow speed, is very low in the LPT passages.

  2. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important.

  3. Final Report: Comparison of the primary (national) standards of low-pressure gas flow

    NASA Astrophysics Data System (ADS)

    Benková, Miroslava; Makovnik, Stefan; Mickan, Bodo

    2015-01-01

    The EURAMET.M.FF-K6 comparison was organized for the purpose of determination of the degree of equivalence of the primary (national) standards for low-pressure gas flow measurement over the range (2 to 100) m3/h and was performed simultaneously with CCM.FF-K6.2011 with the same transfer standard. A rotary gas meter G65 was used as a transfer standard. The measurements were provided by prescribed reference conditions. Fifteen laboratories from EURAMET participated in this key comparison - SMU, Slovakia; PTB, Germany; CEM, Spain; LNE-LADG, France; VSL, Netherlands; CMI, Czech Republic; BEV, Austria; MKEH, Hungary; GUM Poland; SP, Sweden; METAS, Switzerland; DMDM, Serbia; TUBITAK-UME, Turkey; EIM, Greece; IMBiH, Bosnia-Herzegovina. The EURAMET.M.FF-K6 is linked to the CCM.FF-K6.2011 by correcting the results of three linking laboratories (Slovakia SMU, Germany PTB and France LNE LADG). This correction provides an estimate of what would have been the result from the EURAMET.M-FF-K6 participants, if they had actually participated in CCM.FF-K6.2011. According to the evaluation 93.7 % of the results were consistent with KCRV, 3.4 % of the results were in the warning level and 2.9 % of the results were inconsistent. The results of this comparison can be used for review of the CMC tables. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. Removal of aqueous nC60 fullerene from water by low pressure membrane filtration.

    PubMed

    Floris, R; Nijmeijer, K; Cornelissen, E R

    2016-03-15

    The potential environmental and health risks of engineered nanoparticles such as buckminsterfullerene C60 in water require their removal during the production of drinking water. We present a study focusing on (i) the removal mechanism and (ii) the elucidation of the role of the membrane pore size during removal of nC60 fullerene nanoparticle suspensions in dead-end microfiltration and ultrafiltration mimicking separation in real industrial water treatment plants. Membranes were selected with pore sizes ranging from 18 nm to 500 nm to determine the significance of the nC60 to membrane pore size ratio and the adsorption affinity between nC60 and membrane material during filtration. Experiments were carried out with a dead-end bench-scale system operated at constant flux conditions including a hydraulic backwash cleaning procedure. nC60 nanoparticles can be efficiently removed by low pressure membrane technology with smaller and, unexpectedly, also by mostly similar or larger pores than the particle size, although the nC60 filtration behaviour appeared to be different. The nC60 size to membrane pore size ratio and the ratio of the cake-layer deposition resistance to the clean membrane resistance, both play an important role on the nC60 filtration behaviour and on the efficiency of the backwash procedure recovering the initial membrane filtration conditions. These results become specifically significant in the context of drinking water production, for which they provide relevant information for an accurate selection between membrane processes and operational parameters for the removal of nC60 in the drinking water treatment.

  5. Formation of hydrocarbons on Titan: Impact of rapid association reactions at low pressure

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Yelle, R. V.; Lavvas, P.; Klippenstein, S. J.

    2011-10-01

    In the 1980's, Voyager revealed that complex organic molecules were present in Titan's atmosphere but the actual mechanisms leading to this rich chemistry were largely unknown. The recent Cassini results indicate that the chemistry ocurring in Titan's upper atmosphere is far more complex than anticipated. The detection of heavy positive and negative ions [13] reveals that much of the molecular growth occurs in the upper atmosphere rather than at lower altitudes [5, 12]. Photochemical models predict that three-body association reactions (A + B + M!AB + M) are the main production route for several hydrocarbons, including alkanes [2, 3]. The kinetic parameters of these reactions strongly depend on density and are therefore extremely difficult to constrain by experimental measurements as the low pressure of Titan's upper atmosphere cannot be reproduced in the laboratory. As a consequence, they have to be extrapolated outside the range of measurements, leading to high uncertainties. According to these extrapolations, three-body association reactions are only efficient in Titan's lower atmosphere. However, radiative association reactions (A + B ! AB + h) do not depend on pressure and can therefore still be efficient in the upper atmosphere. Unfortunately, they are largely uncharacterized and have consequently been neglected in photochemical models so far. Because of their potential importance at higher altitude, association reactions can have an important contribution to our understanding of molecular growth and better constraints for them are required. In the recent years, theoretical calculations of kinetics parameters have become more and more reliable [7]. We therefore performed ab initio transition state theory based master equation calculations for several radical-radical and radical-molecule association reactions. The computed kinetics parameters were included in our photochemical model of Titan. We present here the main results and discuss their impact for the

  6. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    NASA Astrophysics Data System (ADS)

    de Vries, N.; Palomares, J. M.; Iordanova, E. I.; van Veldhuizen, E. M.; van der Mullen, J. J. A. M.

    2008-10-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, ne, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, Te, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the ne values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 ± 0.5) × 1019 m-3, whereas the ne value (2 ± 0.5) × 1019 m-3 obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high (~1020 m-3). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the Te values obtained with TS are equal to 13 400 ± 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  7. Inactivation of single-celled Ascaris suum eggs by low-pressure UV radiation.

    PubMed

    Brownell, Sarah A; Nelson, Kara L

    2006-03-01

    Intact and decorticated single-celled Ascaris suum eggs were exposed to UV radiation from low-pressure, germicidal lamps at fluences (doses) ranging from 0 to 8,000 J/m2 for intact eggs and from 0 to 500 J/m2 for decorticated eggs. With a UV fluence of 500 J/m2, 0.44-+/-0.20-log inactivation (mean+/-95% confidence interval) (63.7%) of intact eggs was observed, while a fluence of 4,000 J/m2 resulted in 2.23-+/-0.49-log inactivation (99.4%). (The maximum quantifiable inactivation was 2.5 log units.) Thus, according to the methods used here, Ascaris eggs are the most UV-resistant water-related pathogen identified to date. For the range of fluences recommended for disinfecting drinking water and wastewater (200 to 2,000 J/m2), from 0- to 1.5-log inactivation can be expected, although at typical fluences (less than 1,000 J/m2), the inactivation may be less than 1 log. When the eggs were decorticated (the outer egg shell layers were removed with sodium hypochlorite, leaving only the lipoprotein ascaroside layer) before exposure to UV, 1.80-+/-0.32-log reduction (98.4%) was achieved with a fluence of 500 J/m2, suggesting that the outer eggshell layers protected A. suum eggs from inactivation by UV radiation. This protection may have been due to UV absorption by proteins in the outer layers of the 3- to 4-microm-thick eggshell. Stirring alone (without UV exposure) also inactivated some of the Ascaris eggs (approximately 20% after 75 min), which complicated determination of the inactivation caused by UV radiation alone.

  8. Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Sohn, Ki Hyeon; DeWitt, Kenneth J.

    1998-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000 and 250,000 with four levels of freestream turbulence ranging from 1% to 4%. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000 and 100,000. Spectral data show no evidence of Kelvin-Helmholtz or Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transitional flows over the separation bubble for certain conditions. Transition onset and end locations and length determined from intermittency profiles decrease as Reynolds number and freestream turbulence levels increase.

  9. Compressible DNS of transitional and turbulent flow in a low pressure turbine cascade

    NASA Astrophysics Data System (ADS)

    Ranjan, Rajesh; Deshpande, Suresh; Narasimha, Roddam

    2015-11-01

    Direct numerical simulation (DNS) of flow in a low pressure turbine cascade at high incidence is performed using a new in-house code ANUROOP. This code solves compressible Navier-Stokes equations in conservative form using finite volume technique and uses kinetic-energy consistent scheme for the flux calculations. ANUROOP is capable of handling flow past complex geometries using hybrid grid approach (separate grid topologies for the boundary layer and rest of the blade passage). This approach offers much more control in mesh spacing and distribution compared to elliptic grid technique, which is used in many previous studies. Also, in contrast to previous studies, focus of the current work is mainly on the boundary layer flow. The flow remains laminar on the pressure side of the blade, but separates in the aft region of the suction side leading to transition. Separation bubbles formed at this region are transient in nature and we notice multiple bubbles merging and breaking in time. In the mean flow however, only one bubble is seen. Velocity profiles very near to the leading edge of the suction side suggest strong curvature effect. Higher-order boundary layer theory that includes effect of curvature is found to be necessary to characterize the flow in this region. Also, the grid convergence study reveals interesting aspects of numerics vital for accurate simulation of this kind of complex flows. We would like to thank the Gas Turbine Enabling Technology (GATET) Program for funding this project. We also thank C-DAC, Pune and CSIR-4PI, Bangalore for providing computational resources.

  10. Ice-melt rates during volcanic eruptions within water-drained, low-pressure subglacial cavities

    NASA Astrophysics Data System (ADS)

    Woodcock, D. C.; Lane, S. J.; Gilbert, J. S.

    2016-02-01

    Subglacial volcanism generates proximal and distal hazards including large-scale flooding and increased levels of explosivity. Direct observation of subglacial volcanic processes is infeasible; therefore, we model heat transfer mechanisms during subglacial eruptions under conditions where cavities have become depressurized by connection to the atmosphere. We consider basaltic eruptions in a water-drained, low-pressure subglacial cavity, including the case when an eruption jet develops. Such drained cavities may develop on sloping terrain, where ice may be relatively shallow and where gravity drainage of meltwater will be promoted. We quantify, for the first time, the heat fluxes to the ice cavity surface that result from steam condensation during free convection at atmospheric pressure and from direct and indirect radiative heat transfer from an eruption jet. Our calculations indicate that the direct radiative heat flux from a lava fountain (a "dry" end-member eruption jet) to ice is c. 25 kW m-2 and is a minor component. The dominant heat transfer mechanism involves free convection of steam within the cavity; we estimate the resulting condensation heat flux to be c. 250 kW m-2. Absorption of radiation from a lava fountain by steam enhances convection, but the increase in condensing heat flux is modest at c. 25 kW m-2. Overall, heat fluxes to the ice cavity surface are likely to be no greater than c. 300 kW m-2. These are comparable with heat fluxes obtained by single phase convection of water in a subglacial cavity but much less than those obtained by two-phase convection.

  11. Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma

    NASA Astrophysics Data System (ADS)

    Lebedev, Yu A.

    2015-10-01

    Microwave discharges (MD) are widely used as a source of non-equilibrium low pressure plasma for different applications. This paper reviews the methods of microwave plasma generation at pressures from 10-2 approximately to 30 kPa with centimeter-millimeter wavelength microwaves on the basis of scientific publications since 1950 up to the present. The review consists of 16 sections. A general look at MDs and their application is given in the introduction, together with a description of a typical block-schema of the microwave plasma generator, classification of MD, and attractive features of MD. Sections 2-12 describe the different methods of microwave plasma generators on the basis of cavity and waveguide discharges, surface and slow wave discharges, discharges with distributed energy input, initiated and surface discharges, discharges in wave beams, discharges with stochastically jumping phases of microwaves, discharges in an external magnetic field and discharges with a combination of microwave field and dc and RF fields. These methods provide the possibility of producing nonequilibriun high density plasma in small and large chambers for many applications. Plasma chemical activity of nonequilibrium microwave plasma is analyzed in section 13. A short consideration of the history and status of the problem is given. The main areas of microwave plasma application are briefly described in section 14. Non-uniformity is the inherent property of the majority of electrical discharges and MDs are no exception. Peculiarities of physical-chemical processes in strongly non-uniform MDs are demonstrated placing high emphasis on the influence of small noble gas additions to the main plasma gas (section 15). The review is illustrated by 80 figures. The list of references contains 350 scientific publications.

  12. Study of the low-pressure chemical-vapor-deposited tungsten-silicon interface: Interfacial fluorine

    SciTech Connect

    Carlisle, J.A.; Chopra, D.R.; Dillingham, T.R.; Gnade, B.; Smith, G.

    1989-03-15

    Single-crystal silicon <100> substrates uniformly doped at approx. >12 ..cap omega.. cm with boron were deposited with approx.800 A of low-pressure chemically vapor deposited W in a hot-quartz-walled (Anicon) system at a deposition temperature of 300 /sup 0/C. The samples studied include an as-deposited sample and two others which were post-deposition annealed at 600 /sup 0/C in Ar for 15 min each. X-ray photoelectron spectroscopy (XPS) coupled with an Ar/sup +/ ion sputter profiling technique was employed to investigate these structures as a function of depth. Particular emphasis was placed on the depth distribution, content, and chemical state of the fluorine present. Rutherford backscattering spectrometry and x-ray diffraction were used to corroborate the XPS data. Results show that, for the as-deposited and 600 /sup 0/C annealed sample, the maximum concentration of fluorine (0.6--0.8 at. %) is observed, not at the W/Si interface, but rather at the W (H/sub 2/ reduction)/W (Si displacement) interface. For the sample annealed at 850 /sup 0/C, WSi/sub 2/ is formed in the overlayer, and the peak in the F profile corresponds to the position of the WSi/sub 2//Si interface. The maximum concentration of fluorine is reduced by approximately 75% to 0.23 at. % in this sample. From the XPS spectra of the F 1s region, the chemical species of fluorine present in these samples have been identified as WF/sub 6/, WF/sub 5/, and WF/sub 4/.

  13. Intermittent multijet sprays for improving mixture preparation with low-pressure injection systems

    NASA Astrophysics Data System (ADS)

    Panão, Miguel R. Oliveira; Moreira, António Luis N.; Durão, Diamantino F. G.

    2013-06-01

    In this work, the characteristics of droplets produced by a multijet impingement atomization process are measured with a Phase-Doppler Interferometer and statistically described using finite mixtures of weighted probability density functions. Through this statistical tool, drop size and axial velocity distributions are involved in the physical interpretation of the flow, instead of limiting it to first- and second-order distribution moments. Each group of droplets with similar size characteristics has been modeled by lognormal distributions and normal distributions relatively to drop axial velocity. The analysis based on finite mixtures identified three groups of droplets with similar size characteristics, although the group with smaller sizes is negligibly represented in the statistical finite mixture. Also, the lognormal standard deviation in all groups is well correlated with the corresponding geometric mean diameter allowing to simplify the description of the spray. In terms of axial velocity, mainly one distribution has been identified with a relatively constant standard deviation, and a characteristic velocity slightly dependent on the duty cycle associated with the spray intermittent condition. Furthermore, droplets characteristics are correlated with the heat transfer rate obtained for several operating conditions that maintain the surface temperature in steady-state at 125 °C. The effect of the time between consecutive injections is analyzed. Concerning the potential use of multijet impingement sprays for fuel injection systems, results evidence the importance of an interaction between thin liquid film heat transfer and droplets axial velocity for enhancing heat transfer and promote evaporation. This would decrease the amount of fuel deposited on interposed surfaces, thus, improving mixture preparation in low-pressure injection systems for internal combustion engines.

  14. Stamping-based planarization of flexible substrate for low-pressure UV nanoimprint lithography.

    PubMed

    Altun, Ali Ozhan; Jeong, Jun-Ho; Jung, Sung-Un; Kim, Ki-Don; Choi, Dae-Geun; Choi, Jun-Hyuk; Shim, Jong-Youp; Lee, Dong-Il; Lee, Eung-Sug

    2008-11-01

    Patterning flexible substrates in nano scale is an important and challenging issue in the fabrication of next-generation devices based on a non-silicon substrate. Step and Flash imprint lithography (S-FIL) which is a room temperature and low pressure process offers several important advantages, such as the use of a smaller and therefore cheaper stamp or the possibility of the overlay imprinting, as a transparent stamp is utilized. However, it is very difficult to perform S-FIL on a flexible substrate successfully due to the high waviness. The waviness of a flexible substrate is not a constant value in contrast to a rigid substrate. It depends on the imprint pressure applied onto the substrate. In this paper, in section two, the effect of the imprint pressure on the waviness of the surface of the flexible substrate is examined. It is proved that the waviness of the surface of the flexible substrate could not be reduced sufficiently to assure a successful imprint at low imprint pressures. In the third section, a method of patterning polymer substrates using ultra-violet nanoimprint lithography (UV-NIL) is presented. The method consists of two stages, stamping-based planarization and S-FIL. In stamping-based planarization, a planarization layer of transparent polymer is formed onto the flexible substrate. Waviness of the blank stamp (in this study, glass wafer) is transferred to the planarization layer. S-FIL is performed with the nanoimprint tool IMPRIO100 directly onto the planarization layer employing a 1 x 1 in. quartz stamp. Optical microscope and SEM images of the successfully imprinted patterns were also presented.

  15. Experimental Studies of Low-Pressure Turbine Flows and Flow Control

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.

    2012-01-01

    This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies.

  16. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures, which provide for the emission of such gas under a pressure...

  17. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures, which provide for the emission of such gas under a pressure...

  18. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures, which provide for the emission of such gas under a pressure...

  19. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures, which provide for the emission of such gas under a pressure...

  20. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures, which provide for the emission of such gas under a pressure...

  1. SEPARATION OF HAZARDOUS ORGANICS BY LOW PRESSURE MEMBRANES: TREATMENT OF SOIL-WASH RINSE-WATER LEACHATES

    EPA Science Inventory

    Soil washing is a promising technology for treating contaminated soils. In the present work, low-pressure, thin-film composite membranes were evaluated to treat the soil-wash leachates so that the treated water could be recycled back to the soil washing step. Experiments were don...

  2. Millimeter-size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition.

    PubMed

    Chen, Shanshan; Ji, Hengxing; Chou, Harry; Li, Qiongyu; Li, Hongyang; Suk, Ji Won; Piner, Richard; Liao, Lei; Cai, Weiwei; Ruoff, Rodney S

    2013-04-11

    Millimeter-size single-crystal monolayer graphene is synthesized on polycrystalline Cu foil by a method that involves suppressing loss by evaporation of the Cu at high temperature under low pressure. This significantly diminishes the number of graphene domains, and large single crystal domains up to ∼2 mm in size are grown.

  3. Plasma-chemical reactor based on a low-pressure pulsed arc discharge for synthesis of nanopowders

    NASA Astrophysics Data System (ADS)

    Karpov, I. V.; Ushakov, A. V.; Lepeshev, A. A.; Fedorov, L. Yu.

    2017-01-01

    A reactor for producing nanopowders in the plasma of a low-pressure arc discharge has been developed. As a plasma source, a pulsed cold-cathode arc evaporator has been applied. The design and operating principle of the reactor have been described. Experimental data on how the movement of a gaseous mixture in the reactor influences the properties of nanopowders have been presented.

  4. Assessing the effectiveness of low-pressure ultraviolet light for inactivating Mycobacterium avium complex (MAC) micro-organisms

    EPA Science Inventory

    Aims: To assess low-pressure ultraviolet light (LP-UV) inactivation kinetics of Mycobacterium avium complex (MAC) strains in a water matrix using collimated beam apparatus. Methods and Results: Strains of M. avium (n = 3) and Mycobacterium intracellulare (n = 2) were exposed t...

  5. A Computational Fluid Dynamics Study of Transitional Flows in Low-Pressure Turbines under a Wide Range of Operating Conditions

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.; Volino, R. J.; Corke, T. C.; Thomas, F. O.; Huang, J.; Lake, J. P.; King, P. I.

    2007-01-01

    A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub p) with the intermittency factor, gamma. Turbulent quantities are predicted using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions.

  6. Investigation of the DSMC Approach for Ion/neutral Species in Modeling Low Pressure Plasma Reactor

    SciTech Connect

    Deng Hao; Li, Z.; Levin, D.; Gochberg, L.

    2011-05-20

    Low pressure plasma reactors are important tools for ionized metal physical vapor deposition (IMPVD), a semiconductor plasma processing technology that is increasingly being applied to deposit Cu seed layers on semiconductor surfaces of trenches and vias with the high aspect ratio (e.g., >5:1). A large fraction of ionized atoms produced by the IMPVD process leads to an anisotropic deposition flux towards the substrate, a feature which is critical for attaining a void-free and uniform fill. Modeling such devices is challenging due to their high plasma density, reactive environment, but low gas pressure. A modular code developed by the Computational Optical and Discharge Physics Group, the Hybrid Plasma Equipment Model (HPEM), has been successfully applied to the numerical investigations of IMPVD by modeling a hollow cathode magnetron (HCM) device. However, as the development of semiconductor devices progresses towards the lower pressure regime (e.g., <5 mTorr), the breakdown of the continuum assumption limits the application of the fluid model in HPEM and suggests the incorporation of the kinetic method, such as the direct simulation Monte Carlo (DSMC), in the plasma simulation.The DSMC method, which solves the Boltzmann equation of transport, has been successfully applied in modeling micro-fluidic flows in MEMS devices with low Reynolds numbers, a feature shared with the HCM. Modeling of the basic physical and chemical processes for ion/neutral species in plasma have been developed and implemented in DSMC, which include ion particle motion due to the Lorentz force, electron impact reactions, charge exchange reactions, and charge recombination at the surface. The heating of neutrals due to collisions with ions and the heating of ions due to the electrostatic field will be shown to be captured by the DSMC simulations. In this work, DSMC calculations were coupled with the modules from HPEM so that the plasma can be self-consistently solved. Differences in the Ar

  7. On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

    NASA Technical Reports Server (NTRS)

    Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.

    2005-01-01

    The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the

  8. On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

    NASA Technical Reports Server (NTRS)

    Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.

    2003-01-01

    The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flowconditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the

  9. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.

    PubMed

    Chung, Eun Ji; Sugimoto, Matthew; Koh, Jason L; Ameer, Guillermo A

    2012-02-01

    Scaffolds for tissue engineering applications must incorporate porosity for optimal cell seeding, tissue ingrowth, and vascularization, but common fabrication methods for achieving porosity are incompatible with a variety of polymers, limiting widespread use. In this study, porous scaffolds consisting of poly(1,8-octanediol-co-citrate) (POC) containing hydroxyapatite nanocrystals (HA) were fabricated using low-pressure foaming (LPF). LPF is a novel method of fabricating an interconnected, porous scaffold with relative ease. LPF takes advantage of air bubbles that act as pore nucleation sites during a polymer mixing step. Vacuum is applied to expand the nucleation sites into interconnected pores that are stabilized through cross-linking. POC was combined with 20%, 40%, and 60% by weight HA, and the effect of increasing HA particle content on porosity, mechanical properties, and alkaline phosphatase (ALP) activity of human mesenchymal stem cells (hMSC) was evaluated. The effect of the prepolymer viscosity on porosity and the mechanical properties of POC with 40% by weight HA (POC-40HA) were also assessed. POC-40HA scaffolds were also implanted in an osteochondral defect of a rabbit model, and the explants were assessed at 6 weeks using histology. With increasing HA content, the pore size of POC-HA scaffolds can be varied (85 to 1,003 μm) and controlled to mimic the pore size of native trabecular bone. The compression modulus increased with greater HA content under dry conditions and were retained to a greater extent than with porous scaffolds fabricated using salt-leaching under wet conditions. Furthermore, all POC-HA scaffolds prepared using LPF supported hMSC attachment, and an increase in ALP activity correlated with an increase in HA content. An increase in the prepolymer viscosity resulted in increased compression modulus, greater distance between pores, and less porosity. After 6 weeks in vivo, cell and tissue infiltration was present throughout the scaffold

  10. Design and validation of a high-lift low-pressure turbine blade

    NASA Astrophysics Data System (ADS)

    McQuilling, Mark Wayne

    This dissertation is a design and validation study of the high-lift low-pressure turbine (LPT) blade designated L2F. High-lift LPTs offer the promise of reducing the blade count in modern gas turbine engines. Decreasing the blade count can reduce development and maintenance costs and the weight of the engine, but care must be taken in order to maintain turbine section performance with fewer blades. For an equivalent amount of work extracted, lower blade counts increase blade loading in the LPT section. The high-lift LPT presented herein allows 38% fewer blades with a Zweifel loading coefficient of 1.59 and maintains the same inlet and outlet blade metal angles of conventional geometries in service today while providing an improved low-Reynolds number characteristic. The computational design method utilizes the Turbine Design and Analysis System (TDAAS) developed by John Clark of the Air Force Research Laboratory. TDAAS integrates several government-funded design utilities including airfoil and grid generation capability with a Reynolds-Averaged Navier-Stokes flow solver into a single, menu-driven, Matlab-based system. Transition modeling is achieved with the recently developed model of Praisner and Clark, and this study validates the use of the model for design purposes outside of the Pratt & Whitney (P&W) design system where they were created. Turbulence modeling is achieved with the Baldwin and Lomax zero-equation model. The experimental validation consists of testing the front-loaded L2F along with a previously designed, mid-loaded blade (L1M) in a linear turbine cascade in a low-speed wind tunnel over a range of Reynolds numbers at 3.3% freestream turbulence. Hot-wire anemometry and pressure measurements elucidate these comparisons, while a shear and stress sensitive film (S3F) also helps describe the flow in areas of interest. S3F can provide all 3 components of stress on a surface in a single measurement, and these tests extend the operational envelope of the

  11. "Virtual IED sensor" at an rf-biased electrode in low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Bogdanova, M. A.; Lopaev, D. V.; Zyryanov, S. M.; Rakhimov, A. T.

    2016-07-01

    Energy distribution and the flux of the ions coming on a surface are considered as the key-parameters in anisotropic plasma etching. Since direct ion energy distribution (IED) measurements at the treated surface during plasma processing are often hardly possible, there is an opportunity for virtual ones. This work is devoted to the possibility of such indirect IED and ion flux measurements at an rf-biased electrode in low-pressure rf plasma by using a "virtual IED sensor" which represents "in-situ" IED calculations on the absolute scale in accordance with a plasma sheath model containing a set of measurable external parameters. The "virtual IED sensor" should also involve some external calibration procedure. Applicability and accuracy of the "virtual IED sensor" are validated for a dual-frequency reactive ion etching (RIE) inductively coupled plasma (ICP) reactor with a capacitively coupled rf-biased electrode. The validation is carried out for heavy (Ar) and light (H2) gases under different discharge conditions (different ICP powers, rf-bias frequencies, and voltages). An EQP mass-spectrometer and an rf-compensated Langmuir probe (LP) are used to characterize plasma, while an rf-compensated retarded field energy analyzer (RFEA) is applied to measure IED and ion flux at the rf-biased electrode. Besides, the pulsed selfbias method is used as an external calibration procedure for ion flux estimating at the rf-biased electrode. It is shown that pulsed selfbias method allows calibrating the IED absolute scale quite accurately. It is also shown that the "virtual IED sensor" based on the simplest collisionless sheath model allows reproducing well enough the experimental IEDs at the pressures when the sheath thickness s is less than the ion mean free path λi (s < λi). At higher pressure (when s > λi), the difference between calculated and experimental IEDs due to ion collisions in the sheath is observed in the low energy range. The effect of electron impact ionization

  12. Turbulent transition behavior in a separated and attached-flow low pressure turbine passage

    NASA Astrophysics Data System (ADS)

    Memory, Curtis L.

    Various time accurate numerical simulations were conducted on the aft-loaded L1A low pressure turbine airfoil operating at Reynolds numbers presenting with fully-stalled, non-reattaching laminar separation. The numerical solver TURBO was modified from its annular gas turbine simulation configuration to conduct simulations based on a linear cascade wind tunnel facility. Simulation results for the fully separated flow fields revealed various turbulent decay mechanisms. Separated shear layer decay, in the form of vortices forming between the shear layer and the blade wall, was shown to agree with experimental particle image velocimetry (PIV) data in terms of decay vortex size and core vorticity levels. These vortical structures eventually mix into a large recirculation zone which dominates the blade wake. Turbulent wake ex- tent and time-averaged velocity distributions agreed with PIV data. Steady-blowing vortex generating jet (VGJ) flow control was then applied to the flow fields. VGJ-induced streamwise vorticity was only present at blowing ratios above 1.5. VGJs actuated at the point of flow separation on the blade wall were more effective than those actuated downstream, within the separation zone. Pulsed-blowing VGJs at the upstream blade wall position were then actuated at various pulsing frequencies, duty cycles, and blowing ratios. These condition variations yielded differing levels of separation zone mitigation. Pulsed VGJs were shown to be more effective than steady blowing VGJs at conditions of high blowing ratio, high frequency, or high duty cycle, where blowing ratio had the highest level of influence on pulsed jet efficacy. The characteristic "calm zone" following the end of a given VGJ pulse was observed in simulations exhibiting high levels of separation zone mitigation. Numerical velocity fields near the blade wall during this calm zone was shown to be similar to velocity fields observed in PIV data. Instantaneous numerical vorticity fields indicated

  13. Association reactions at low pressure. III. The C2H2+/C2H2 system.

    PubMed

    Anicich, V G; Sen, A D; Huntress, W T; McEwan, M J

    1990-11-15

    The association reactions, C4H2(+) + C2H2 and C4H3(+) + C2H2 have been examined at pressures between 8 x 10(-8) and 1 x 10(-4) Torr at 298 K in an ion cyclotron resonance mass spectrometer. Association occurred via two different mechanisms. At pressures below approximately 2 x 10(-6) Torr, the association was bimolecular having rate coefficients k2 = 2.7 x 10(-10) cm3 s-1 and 2.0 x 10(-10) cm3 s-1 for C4H2+ and C4H3+, respectively. At pressures above approximately 2 x 10(-6) Torr, termolecular association was observed with rate coefficients, k3 = 5.7 x 10(-23) cm6 s-1 and 1.3 x 10(-23) cm6 s-1 for C4H2+ and C4H3+, respectively, when M = C2H2. The termolecular rate constants with N2, Ar, Ne, and He as the third body, M, are also reported. We propose that the low pressure bimolecular association process was the result of radiative stabilization of the complex and the termolecular association process was the result of collisional stabilization. Elementary rate coefficients were obtained and the lifetime of the collision complex was > or = 57 microseconds for (C6H4+)* and > or = 18 microseconds for (C6H5+)*. At pressures below 1 x 10(-6) Torr, approximately 11% of the (C6H4+)* were stabilized by photon emission and the remaining approximately 89% reverted back to reactants, while approximately 24% of the (C6H5+)* were stabilized by photon emission and the remaining approximately 76% reverted back to reactants. The ionic products of the C2H2(+) + C2H2 reaction, C4H2+ and C4H3+, were found to be formed with enough internal energy that they did not react by the radiative association channel until relaxed by several nonreactive collisions with the bath gas.

  14. Tracking inorganic foulants irreversibly accumulated on low-pressure membranes for treating surface water.

    PubMed

    Yamamura, Hiroshi; Kimura, Katsuki; Higuchi, Kumiko; Watanabe, Yoshimasa; Ding, Qing; Hafuka, Akira

    2015-12-15

    While low-pressure membrane filtration processes (i.e., microfiltration and ultrafiltration) can offer precise filtration than sand filtration, they pose the problem of reduced efficiency due to membrane fouling. Although many studies have examined membrane fouling by organic substances, there is still not enough data available concerning membrane fouling by inorganic substances. The present research investigated changes in the amounts of inorganic components deposited on the surface of membrane filters over time using membrane specimens sampled thirteen times at arbitrary time intervals during pilot testing in order to determine the mechanism by which irreversible fouling by inorganic substances progresses. The experiments showed that the inorganic components that primarily contribute to irreversible fouling vary as filtration continues. It was discovered that, in the initial stage of operation, the main membrane-fouling substance was iron, whereas the primary membrane-fouling substances when operation finished were manganese, calcium, and silica. The amount of iron accumulated on the membrane increased up to the thirtieth day of operation, after which it reached a steady state. After the accumulation of iron became static, subsequent accumulation of manganese was observed. The fact that the removal rates of these inorganic components also increased gradually shows that the size of the exclusion pores of the membrane filter narrows as operation continues. Studying particle size distributions of inorganic components contained in source water revealed that while many iron particles are approximately the same size as membrane pores, the fraction of manganese particles slightly smaller than the pores in diameter was large. From these results, it is surmised that iron particles approximately the same size as the pores block them soon after the start of operation, and as the membrane pores narrow with the development of fouling, they become further blocked by manganese

  15. Separation control in low pressure turbines using plasma actuators with passing wakes

    NASA Astrophysics Data System (ADS)

    Burman, Debashish

    A Dielectric Barrier Discharge (DBD) plasma actuator is operated in flow over the suction surface of a Pack-B Low Pressure Turbine (LPT) airfoil at a Reynolds number of 50,000 (based on exit velocity and suction surface length) and inlet free-stream turbulence intensity of 2.5%. Preliminary characterization studies were made of the effect of varying actuator pulsing frequency and duty cycle, actuator edge effects, and orientation of the actuator with the flow. Flow control was demonstrated with the actuator imparting momentum opposite to the stream-wise flow direction, showing that it is possible to use disturbances alone to destabilize the flow and effect transition. No frequencies of strong influence were found over the range tested, indicating that a broad band of effective frequencies exists. Edge effects were found to considerably enhance separation control. Total pressure measurements of the flow without passing wakes were taken using a glass total-pressure tube. Corrections for streamline displacement due to shear and wall effects were made, and comparisons with previous hot-wire measurements were used to validate data. Performance features of conventional two-electrode and a novel three-electrode actuator configuration were compared. Hot-wire anemometry was used to take time-varying ensemble-averaged near-wall velocity measurements of the flow with periodic passing wakes. Corrections were made for near-wall effects, temperature effects, and interference of the electric field. The wakes were generated by a wake generator mechanism located upstream of the airfoil passage. The near-suction-surface total pressure field (flow without wakes) and velocity field (flow with wakes) in the trailing part of the airfoil passage, and the wall-normal gradient of these quantities, were used to demonstrate effective prevention of flow separation using the plasma actuator. Both flows (with and without passing wakes) showed fully attached flow (or very thin separation zones

  16. Advanced Research on the Electrode Area of a Low Pressure Hg-Ar Discharge Lamp

    NASA Astrophysics Data System (ADS)

    Shi, Jianou

    The phenomenon of electrical discharge in low pressure Hg-Ar vapor has been under continuous investigation since it was first discovered. Because much work has been done in the positive column, it is, therefore, that the electrode area of the lamp is the main focus of this thesis. To simulate the interface phenomena on a electrode surface, samples, with optically smooth tungsten-barium interfaces were fired in a high vacuum furnace at different temperatures. Measurements were made using surface characterization techniques. It is found that no Ba_3WO _6 is formed on the surface as previously reported in the powder mixing experiments, and the interface consists mainly of BaWO_4. It was discovered in the early 1950's that vaporization of the barium from the cathode in a fluorescent lamp could be reduced tremendously with the addition of 5% of ZrO _2 to the coating mix. However, the reason for this is poorly understood. A possible explanation has been found, and number of tests have been completed to simulate the formation of BaZO_3 under different lamp operating conditions. The measurements and simulation of barium atom and ion number densities are presented. Barium emitted from the electrode surface has a strong interaction with the local plasma. The number density distributions depend mainly on the discharge conditions. A Monte Carlo computer simulation for the barium ion number density is described and the results from the simulation compared to the experimental results obtained by absorption method. It is clear that the ion distribution and phosphor contamination in the electrode area are two closely related issues. XPS is used to measure the chemical composition on the phosphor surface of the lamp. A discussion of calibration methods and the possible compounds forming on the phosphors is then presented. A number of questions have been raised concerning the safety of the lamp and its affects on health related to radiation generated in the electrode area. Typically

  17. Thermal Shock Properties of Yttria-Stabilized Zirconia Coatings Deposited Using Low-Energy Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Liao, Hanlin; Coddet, Christian

    2015-08-01

    Yttria-stabilized zirconia (YSZ) coatings have been frequently used as a thermal protective layer on the metal or alloy component surfaces. In the present study, ZrO2-7%Y2O3 thermal barrier coatings (TBCs) were successfully deposited by DC (direct current) plasma spray process under very low pressure conditions (less than 1 mbar) using low-energy plasma guns F4-VB and F100. The experiments were performed to evaluate the thermal shock resistance of different TBC specimens which were heated to 1373 K at a high-temperature cycling furnace and held for 0.5 h, followed by air cooling at room temperature for 0.2 h. For comparison, a corresponding atmospheric plasma spray (APS) counterpart was also elaborated to carry out the similar experiments. The results indicated that the very low pressure plasma spray (VLPPS) coatings displayed better thermal shock resistance. Moreover, the failure mechanism of the coatings was elucidated.

  18. Modeling the Rapid Boil-Off of a Cryogenic Liquid When Injected into a Low Pressure Cavity

    NASA Technical Reports Server (NTRS)

    Lira, Eric

    2016-01-01

    Many launch vehicle cryogenic applications require the modeling of injecting a cryogenic liquid into a low pressure cavity. The difficulty of such analyses lies in accurately predicting the heat transfer coefficient between the cold liquid and a warm wall in a low pressure environment. The heat transfer coefficient and the behavior of the liquid is highly dependent on the mass flow rate into the cavity, the cavity wall temperature and the cavity volume. Testing was performed to correlate the modeling performed using Thermal Desktop and Sinda Fluint Thermal and Fluids Analysis Software. This presentation shall describe a methodology to model the cryogenic process using Sinda Fluint, a description of the cryogenic test set up, a description of the test procedure and how the model was correlated to match the test results.

  19. Atomic hydrogen emission induced by TEA CO(2) laser bombardment on solid samples at low pressure and its analytical application.

    PubMed

    Idris, Nasrullah; Terai, Sumito; Lie, Tjung Jie; Kurniawan, Hendrik; Kobayashi, Takao; Maruyama, Tadashi; Kagawa, Kiichiro

    2005-01-01

    Hydrogen emission has been studied in laser plasmas by focusing a TEA CO(2) laser (10.6 microm, 500 mJ, 200 ns) on various types of samples, such as glass, quartz, black plastic sheet, and oil on copper plate sub-target. It was found that H(alpha) emission with a narrow spectral width occurs with high efficiency when the laser plasma is produced in the low-pressure region. On the contrary, the conventional well-known laser-induced breakdown spectroscopy (LIBS), which is usually carried out at atmospheric air pressure, cannot be applied to the analysis of hydrogen as an impurity. By combining low-pressure laser-induced plasma spectroscopy with laser surface cleaning, a preliminary quantitative analysis was made on zircaloy pipe samples intentionally doped with hydrogen. As a result, a good linear relationship was obtained between H(alpha) emission intensity and its concentration.

  20. The NASA Low-Pressure Turbine Flow Physics Program: A Review

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.

    2002-01-01

    An overview of the NASA Glenn Low-Pressure Turbine (LPT) Flow Physics Program will be presented. The flow in the LPT is unique for the gas turbine. It is characterized by low Reynolds number and high freestream turbulence intensity and is dominated by interplay of three basic mechanisms: transition, separation and wake interaction. The flow of most interest is on the suction surface, where large losses are generated due to separation. The LPT is a large, multistage, heavy, jet engine component that suffers efficiency degradation between takeoff and cruise conditions due to decrease in Reynolds number with altitude. The performance penalty is around 2 points for large commercial bypass engines and as much as 7 points for small, high cruise altitude, military engines. The gas-turbine industry is very interested in improving the performance of the LPT and in reducing its weight, part count and cost. Many improvements can be accomplished by improved airfoil design, mainly by increasing the airfoil loading that can yield reduction of airfoils and improved performance. In addition, there is a strong interest in reducing the design cycle time and cost. Key enablers of the needed improvements are computational tools that can accurately predict LPT flows. Current CFD tools in use cannot yet satisfactorily predict the unsteady, transitional and separated flow in the LPT. The main reasons are inadequate transition & turbulence models and incomplete understanding of the LPT flow physics. NASA Glenn has established its LPT program to answer these needs. The main goal of the program is to develop and assess models for unsteady CFD of LPT flows. An approach that consists of complementing and augmenting experimental and computational work elements has been adopted. The work is performed in-house and by several academic institutions, in cooperation and interaction with industry. The program was reviewed at the Minnowbrook II meeting in 1997. This review will summarize the progress

  1. Low-pressure micro-strip gas chamber and a search for a high-efficiency secondary-electron emitter

    SciTech Connect

    Anderson, D.F.; Kwan, S.; Sbarra, C.

    1994-11-01

    The test beam performance of a low-pressure micro-strip gas chamber with a thick CsI secondary-electron emitting surface as the source of primary ionization is presented. A study of the secondary-electron yield of CsI and KCl coated surfaces are discussed, as well as a promising new technique, CsI-treated CVD diamond films.

  2. Design and calibration of an in-stack, low-pressure impactor. Final report, January 1985-October 1987

    SciTech Connect

    Lundgren, D.A.; Vanderpool, R.W.

    1989-03-01

    The purpose of this project was to design, fabricate, calibrate, and field test a low-pressure impactor for sampling and size-classifying particulate exhaust from jet-engine test cells. This report covers all aspects of the effort through an actual field test on a J79-type engine exhaust. A computer code for user prediction of impactor stage outputs is included as well as design drawings for impactor fabrication.

  3. Cutting concrete with abrasive waterjets. Phase 1: evaluation of relatively low pressure water-jet performance. Final report

    SciTech Connect

    Yie, G.G.

    1986-01-01

    In laboratory testing, a prototype low-pressure abrasive water-jet system proved more effective in cutting concrete and asphalt than the high-pressure systems tested before. Projected operating costs for the hand-carried unit - a fraction of those of conventional concrete saws and carbide cutting wheels - could mean savings between $15,000 and $20,000 per mile of cut.

  4. Effects of the nozzle design on the properties of plasma jet and formation of YSZ coatings under low pressure conditions

    NASA Astrophysics Data System (ADS)

    Sun, Chengqi; Gao, Yang; Yang, Deming; Fu, Yingqing

    2016-09-01

    How to control the quality of the coatings has become a major problem during the plasma spraying. Because nozzle contour has a great influence on the characteristic of the plasma jet, two kinds of plasma torches equipped with a standard cylindrical nozzle and a converging-diverging nozzle are designed for low pressure plasma spraying(LPPS) and very low pressure plasma spraying(VLPPS). Yttria stabilized zirconia(YSZ) coatings are obtained in the reducing pressure environment. The properties of the plasma jet without or with powder injection are analyzed by optical emission spectroscopy, and the electron temperature is calculated based on the ratio of the relative intensity of two Ar I spectral lines. The results show that some of the YSZ powder can be vaporized in the low pressure enlarged plasma jet, and the long anode nozzle may improve the characteristics of the plasma jet. The coatings deposited by LPPS are mainly composed of the equiaxed grains and while the unmelted powder particles and large scalar pores appear in the coatings made by VLPPS. The long anode nozzle could improve the melting of the powders and deposition efficiency, and enhance the coatings' hardness. At the same time, the long anode nozzle could lead to a decrease in the overspray phenomenon. Through the comparison of the two different size's nozzle, the long anode is much more suitable for making the YSZ coatings.

  5. Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars.

    PubMed

    Nicholson, Wayne L; Krivushin, Kirill; Gilichinsky, David; Schuerger, Andrew C

    2013-01-08

    The ability of terrestrial microorganisms to grow in the near-surface environment of Mars is of importance to the search for life and protection of that planet from forward contamination by human and robotic exploration. Because most water on present-day Mars is frozen in the regolith, permafrosts are considered to be terrestrial analogs of the martian subsurface environment. Six bacterial isolates were obtained from a permafrost borehole in northeastern Siberia capable of growth under conditions of low temperature (0 °C), low pressure (7 mbar), and a CO(2)-enriched anoxic atmosphere. By 16S ribosomal DNA analysis, all six permafrost isolates were identified as species of the genus Carnobacterium, most closely related to C. inhibens (five isolates) and C. viridans (one isolate). Quantitative growth assays demonstrated that the six permafrost isolates, as well as nine type species of Carnobacterium (C. alterfunditum, C. divergens, C. funditum, C. gallinarum, C. inhibens, C. maltaromaticum, C. mobile, C. pleistocenium, and C. viridans) were all capable of growth under cold, low-pressure, anoxic conditions, thus extending the low-pressure extreme at which life can function.

  6. Graphene chemical vapor deposition at very low pressure: The impact of substrate surface self-diffusion in domain shape

    SciTech Connect

    Cunha, T. H. R.; Ek-Weis, J.; Lacerda, R. G.; Ferlauto, A. S.

    2014-08-18

    The initial stages of graphene chemical vapor deposition at very low pressures (<10{sup −5 }Torr) were investigated. The growth of large graphene domains (∼up to 100 μm) at very high rates (up to 3 μm{sup 2} s{sup −1}) has been achieved in a cold-wall reactor using a liquid carbon precursor. For high temperature growth (>900 °C), graphene grain shape and symmetry were found to depend on the underlying symmetry of the Cu crystal, whereas for lower temperatures (<900 °C), mostly rounded grains are observed. The temperature dependence of graphene nucleation density was determined, displaying two thermally activated regimes, with activation energy values of 6 ± 1 eV for temperatures ranging from 900 °C to 960 °C and 9 ± 1 eV for temperatures above 960 °C. The comparison of such dependence with the temperature dependence of Cu surface self-diffusion suggests that graphene growth at high temperatures and low pressures is strongly influenced by copper surface rearrangement. We propose a model that incorporates Cu surface self-diffusion as an essential process to explain the orientation correlation between graphene and Cu crystals, and which can clarify the difference generally observed between graphene domain shapes in atmospheric-pressure and low-pressure chemical vapor deposition.

  7. Effect of low-pressure plasma treatment on the color and oxidative stability of raw pork during refrigerated storage.

    PubMed

    Ulbin-Figlewicz, Natalia; Jarmoluk, Andrzej

    2016-06-01

    The effect of low-pressure plasma on quality attributes of meat is an important aspect, which must be considered before application in food. The aim of this study was to determine the color, fatty acid composition, lipid oxidation expressed as thiobarbituric acid reactive substances and total antioxidant capacity of raw pork samples exposed to helium low-pressure plasma treatment (20 kPa) for 0, 2, 5, and 10 min during the storage period. The thiobarbituric acid reactive substance concentrations of all plasma-treated samples during storage were in the range from 0.26 to 0.61 mg malondialdehyde/kg. Exposure time caused significant changes only in total color difference, hue angle, and chroma after 10 min of treatment. Ferric reducing ability of plasma values of meat samples decreased from 1.93 to 1.40 mmol Trolox Eq/kg after 14 days of storage. The storage period significantly affected proportion of polyunsaturated fatty acids, with an increase about 3% after 14 days of refrigeration storage while the content of saturated fatty acids was at the same level. Helium low-pressure plasma does not induce oxidative processes. Application of this decontamination technique while maintaining product quality is possible in food industry.

  8. Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars

    PubMed Central

    Nicholson, Wayne L.; Krivushin, Kirill; Gilichinsky, David; Schuerger, Andrew C.

    2013-01-01

    The ability of terrestrial microorganisms to grow in the near-surface environment of Mars is of importance to the search for life and protection of that planet from forward contamination by human and robotic exploration. Because most water on present-day Mars is frozen in the regolith, permafrosts are considered to be terrestrial analogs of the martian subsurface environment. Six bacterial isolates were obtained from a permafrost borehole in northeastern Siberia capable of growth under conditions of low temperature (0 °C), low pressure (7 mbar), and a CO2-enriched anoxic atmosphere. By 16S ribosomal DNA analysis, all six permafrost isolates were identified as species of the genus Carnobacterium, most closely related to C. inhibens (five isolates) and C. viridans (one isolate). Quantitative growth assays demonstrated that the six permafrost isolates, as well as nine type species of Carnobacterium (C. alterfunditum, C. divergens, C. funditum, C. gallinarum, C. inhibens, C. maltaromaticum, C. mobile, C. pleistocenium, and C. viridans) were all capable of growth under cold, low-pressure, anoxic conditions, thus extending the low-pressure extreme at which life can function. PMID:23267097

  9. Modeling the Effects of Ice Accretion on the Low Pressure Compressor and the Overall Turbofan Engine System Performance

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Wright, William B.

    2011-01-01

    The focus of this study is on utilizing a mean line compressor flow analysis code coupled to an engine system thermodynamic code, to estimate the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper a temperature range in which engine icing would occur was assumed. This provided a mechanism to locate potential component icing sites and allow the computational tools to add blockages due to ice accretion in a parametric fashion. Ultimately the location and level of blockage due to icing would be provided by an ice accretion code. To proceed, an engine system modeling code and a mean line compressor flow analysis code were utilized to calculate the flow conditions in the fan-core and low pressure compressor and to identify potential locations within the compressor where ice may accrete. In this study, an "additional blockage" due to the accretion of ice on the metal surfaces, has been added to the baseline aerodynamic blockage due to boundary layer, as well as the blade metal blockage. Once the potential locations of ice accretion are identified, the levels of additional blockage due to accretion were parametrically varied to estimate the effects on the low pressure compressor blade row performance operating within the engine system environment. This study includes detailed analysis of compressor and engine performance during cruise and descent operating conditions at several altitudes within the notional flight trajectory. The purpose of this effort is to develop the computer codes to provide a predictive capability to forecast the onset of engine icing events, such that they could ultimately help in the avoidance of these events.

  10. Note: High turn density magnetic coils with improved low pressure water cooling for use in atom optics

    NASA Astrophysics Data System (ADS)

    McKay Parry, Nicholas; Baker, Mark; Neely, Tyler; Carey, Thomas; Bell, Thomas; Rubinsztein-Dunlop, Halina

    2014-08-01

    We describe a magnetic coil design utilizing concentrically wound electro-magnetic insulating (EMI) foil (25.4 μm Kapton backing and 127 μm thick layers). The magnetic coils are easily configurable for different coil sizes, while providing large surfaces for low-pressure (0.12 bar) water cooling. The coils have turn densities of ˜5 mm-1 and achieve a maximum of 377 G at 2.1 kW driving power, measured at a distance 37.9 mm from the axial center of the coil. The coils achieve a steady-state temperature increase of 36.7°C/kW.

  11. Nature of the self-limiting effect in the low-pressure chemical vapor deposition of tungsten

    SciTech Connect

    Lifshitz, N.

    1987-09-28

    We propose a mechanism for the self-limiting effect which occurs in the low-pressure chemical vapor deposition of tungsten. When W is deposited by silicon reduction of tungsten hexafluoride WF/sub 6/, the deposition suddenly ceases at an early stage. No such effect is observed in the deposition of Mo using analogous chemistry. We believe the self-limiting effect is due to the formation of nonvolatile lower fluorides of tungsten. Our hypothesis is supported by secondary ion mass spectroscopy studies which indicate the presence of fluorine (approx. =3%) in W films, whereas in Mo films the concentration of fluorine is an order of magnitude lower.

  12. Nature of the self-limiting effect in the low-pressure chemical vapor deposition of tungsten

    NASA Astrophysics Data System (ADS)

    Lifshitz, N.

    1987-09-01

    We propose a mechanism for the self-limiting effect which occurs in the low-pressure chemical vapor deposition of tungsten. When W is deposited by silicon reduction of tungsten hexafluoride WF6, the deposition suddenly ceases at an early stage. No such effect is observed in the deposition of Mo using analogous chemistry. We believe the self-limiting effect is due to the formation of nonvolatile lower fluorides of tungsten. Our hypothesis is supported by secondary ion mass spectroscopy studies which indicate the presence of fluorine (≊3%) in W films, whereas in Mo films the concentration of fluorine is an order of magnitude lower.

  13. Modernization of exhaust hood of low-pressure cylinder of a cogeneration turbine T-250/300-23.5

    NASA Astrophysics Data System (ADS)

    Solodov, V. G.; Khandrymailov, A. A.; Kultishev, A. Yu.; Stepanov, M. Yu.; Yamaltdinov, A. A.

    2015-12-01

    An option of modernization of an exhaust hood for a low-pressure cylinder of a T-250/300-23.5 series turbine is presented in order to increase its effectiveness in a wide regimes range. An influence of a number of design decisions on gas-dynamic and energy characteristics of an exhaust compartment is considered. The investigation is carried out by the numerical simulation of a viscous wet steam flow through the exhaust compartment consisting of a last stage and an exhaust hood. A comparison of the calculated and experimental data is presented.

  14. Transport Equations Resolution By N-BEE Anti-Dissipative Scheme In 2D Model Of Low Pressure Glow Discharge

    SciTech Connect

    Kraloua, B.; Hennad, A.

    2008-09-23

    The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.

  15. Transient Heat and Mass Transfer from a Leaf Undergoing Stomatal Closure in a Low Pressure Environment 1

    PubMed Central

    Aylor, Donald E.; Krikorian, A. D.

    1970-01-01

    Stomatal control of water loss was studied in a low pressure environment by using detached leaves of Crassula argentea Thunb., Peperomia obtusifolia (L.) A. Dietr., and Setcreasea pallida Rose cv. `Purple Heart.' The transient behavior of temperature and rate of mass loss were determined. A model based on free molecule gas flow was developed and used to predict mass loss to within the same order of magnitude of experimentally obtained results. By utilizing this model, the transient behavior of stomatal aperture was determined. The “nonphysiological” experimental conditions do not inhibit the closing process; therefore, this new experimental technique is a valid method of studying stomatal closure. PMID:16657505

  16. Vessel failure time for a low-pressure short-term station blackout in a BWR-4

    SciTech Connect

    Carbajo, J.J. )

    1993-01-01

    A low-pressure, short-term station blackout severe accident sequence has been analyzed using the MELCOR code, version 1.8.1, in a boiling water reactor (BWR)-4. This paper presents a sensitivity study evaluating the effect of several MELCOR input parameters on vessel failure time. Results using the MELCOR/CORBH package and the BWRSAR code are also presented and compared to the MELCOR results. These calculated vessel failure times are discussed, and a judgment is offered as to which is the most realistic.

  17. Physical and electrical properties of graphene grown under different hydrogen flow in low pressure chemical vapor deposition

    PubMed Central

    2014-01-01

    Hydrogen flow during low pressure chemical vapor deposition had significant effect not only on the physical properties but also on the electrical properties of graphene. Nucleation and grain growth of graphene increased at higher hydrogen flows. And, more oxygen-related functional groups like amorphous and oxidized carbon that probably contributed to defects or contamination of graphene remained on the graphene surface at low H2 flow conditions. It is believed that at low hydrogen flow, those remained oxygen or other oxidizing impurities make the graphene films p-doped and result in decreasing the carrier mobility. PMID:25332692

  18. NASA CF6 jet engine diagnostics program: Long-term CF6-6D low-pressure turbine deterioration

    NASA Technical Reports Server (NTRS)

    Smith, J. J.

    1979-01-01

    Back-to-back performance tests were run on seven airline low pressure turbine (LPT) modules and four new CF6-6D modules. Back-to-back test cell runs, in which an airline LPT module was directly compared to a new production module, were included. The resulting change, measured in fuel burn, equaled the level of LPT module deterioration. Three of the LPT modules were analytically inspected followed by a back-to-back test cell run to evaluate current refurbishment techniques.

  19. Performance of low-pressure-ratio low-tip-speed fan stage with blade tip solidity of 0.65

    NASA Technical Reports Server (NTRS)

    Kovich, G.; Steinke, R. J.

    1976-01-01

    The overall and blade-element performance of a low pressure ratio, low tip speed fan stage is presented over the stable operating range at rotative speeds from 90 to 120 percent of design speed. Stage peak efficiency of 0.927 was obtained at a weight flow of 32.4 kg/sec (190.31 kg/sec/sq m of annulus area) and a pressure ratio of 1.134. The stall margin at design speed and peak efficiency was 15.3 percent.

  20. Microwave-assisted aminocarbonylation of ynamides by using catalytic [Fe3(CO)12] at low pressures of carbon monoxide.

    PubMed

    Pizzetti, Marianna; Russo, Adele; Petricci, Elena

    2011-04-11

    The microwave-assisted aminocarbonylation of ynamides at low pressures of CO is reported. A new class of (E)-acrylamides that are potentially suitable for several applications has been regioselectively synthesized after microwave irradiation for only 20 min by using eco-friendly [Fe(3)(CO)(12)] as the catalyst precursor and triethylamine as the ligand. This transformation is atom economic as all reactants are used in stoichiometric quantities. Furthermore, the transformation is efficiently applied to the alkoxycarbonylation of alkynes as well. Moreover, running these reactions under microwave irradiation allows the simplification of the reaction conditions with remarkable reductions in time, temperature and gas pressure.

  1. Enhancement of negative hydrogen ion production at low pressure by controlling the electron kinetics property with transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Kim, Seongcheol; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-12-01

    In a volume production H- ion source, independent control of electron energy distribution between the driver region and the extraction region is crucial for the efficient production of H- ions due to its unique volume production mechanism. However, at the low pressure regime compatible to ITER operation, it is difficult to control electron energy distribution separately because the nonlocal property dominates the electron kinetics. In this work, we suggest a new method to control the locality of electron kinetics. In this method, an additional pair of permanent magnets is introduced in the vicinity of the skin layer, differently from the conventional method in which the magnetic filter field was strengthened in the extraction region. This magnetic field shortens the energy relaxation length and changes the electron kinetics from nonlocal to local even for low pressure discharges. In this paper, we show that the locality of electron kinetics can be effectively controlled by the additional magnetic field near the skin layer by measuring the electron temperature profile along the center of the discharge chamber as well as by comparing electron energy probability function shapes for different strengths of magnetic field. Using this new method, we demonstrate that control of locality of electron kinetics can greatly enhance the production of H- ions in the extraction region by measuring H- ion beam current extracted from the plasma source.

  2. Simultaneous removal of phosphorus and EfOM using MIEX, coagulation, and low-pressure membrane filtration.

    PubMed

    Kim, Hyun-Chul; Timmes, Thomas C; Dempsey, Brian A

    2015-01-01

    The feasibility of using magnetic ion exchange (MIEX) treatment, in-line alum coagulation, and low-pressure membrane filtration was investigated for the simultaneous removal of total phosphorus (TP) and effluent organic matter (EfOM) from biologically treated wastewater. The focus was also placed on minimizing fouling of polyvinylidene fluoride and polyethersulfone membranes, which are the most commonly used low-pressure membranes in new and retrofit wastewater treatment plants. MIEX alone was effective for the removal of EfOM, and MIEX plus a small alum dose was very effective in removing both EfOM and TP. MIEX removed phosphorus, but organic acids in EfOM were preferentially removed, and the effects of competing anions on the removal of EfOM were insignificant. All the pretreatment strategies decreased the resistance to filtration. The greatest decrease in fouling was achieved by using MIEX (15 mL L⁻¹) plus a very low dose of alum (∼0.5 mg Al L⁻¹). Sweep floc coagulation using alum and without MIEX also significantly decreased fouling but did not effectively remove EfOM and produced high floc volume that could be problematic for inside-out hollow-fibre modules. The addition of these reagents into rapid mix followed by membrane filtration would provide operational simplicity and could be easily retrofitted at existing membrane filtration facilities.

  3. Online spectrophotometric determination of Fe(II) and Fe(III) by flow injection combined with low pressure ion chromatography

    NASA Astrophysics Data System (ADS)

    Chen, Shujuan; Li, Nan; Zhang, Xinshen; Yang, Dongjing; Jiang, Heimei

    2015-03-01

    A simple and new low pressure ion chromatography combined with flow injection spectrophotometric procedure for determining Fe(II) and Fe(III) was established. It is based on the selective adsorption of low pressure ion chromatography column to Fe(II) and Fe(III), the online reduction reaction of Fe(III) and the reaction of Fe(II) in sodium acetate with phenanthroline, resulting in an intense orange complex with a suitable absorption at 515 nm. Various chemical (such as the concentration of colour reagent, eluant and reductive agent) and instrumental parameters (reaction coil length, reductive coil length and wavelength) were studied and were optimized. Under the optimum conditions calibration graph of Fe(II)/Fe(III) was linear in the Fe(II)/Fe(III) range of 0.040-1.0 mg/L. The detection limit of Fe(III) and Fe(II) was respectively 3.09 and 1.55 μg/L, the relative standard deviation (n = 10) of Fe(II) and Fe(III) 1.89% and 1.90% for 0.5 mg/L of Fe(II) and Fe(III) respectively. About 2.5 samples in 1 h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of water samples.

  4. Coupled fluid-thermal analysis of low-pressure sublimation and condensation with application to freeze-drying

    NASA Astrophysics Data System (ADS)

    Ganguly, Arnab

    Freeze-drying is a low-pressure, low-temperature condensation pumping process widely used in the manufacture of bio-pharmaceuticals for removal of solvents by sublimation. The goal of the process is to provide a stable dosage form by removing the solvent in such a way that the sensitive molecular structure of the active substance is least disturbed. The vacuum environment presents unique challenges for understanding and controlling heat and mass transfer in the process. As a result, the design of equipment and associated processes has been largely empirical, slow and inefficient. A comprehensive simulation framework to predict both, process and equipment performance is critical to improve current practice. A part of the dissertation is aimed at performing coupled fluid-thermal analysis of low-pressure sublimation-condensation processes typical of freeze-drying technologies. Both, experimental and computational models are used to first understand the key heat transfer modes during the process. A modeling and computational framework, validated with experiments for analysis of sublimation, water-vapor flow and condensation in application to pharmaceutical freeze-drying is developed. Augmented with computational fluid dynamics modeling, the simulation framework presented here allows to predict for the first time, dynamic product/process conditions taking into consideration specifics of equipment design. Moreover, by applying the modeling framework to process design based on a design-space approach, it has demonstrated that there is a viable alternative to empiricism.

  5. Effective inactivation of Saccharomyces cerevisiae in minimally processed Makgeolli using low-pressure homogenization-based pasteurization.

    PubMed

    Bak, Jin Seop

    2015-01-01

    In order to address the limitations associated with the inefficient pasteurization platform used to make Makgeolli, such as the presence of turbid colloidal dispersions in suspension, commercially available Makgeolli was minimally processed using a low-pressure homogenization-based pasteurization (LHBP) process. This continuous process demonstrates that promptly reducing the exposure time to excessive heat using either large molecules or insoluble particles can dramatically improve internal quality and decrease irreversible damage. Specifically, optimal homogenization increased concomitantly with physical parameters such as colloidal stability (65.0% of maximum and below 25-μm particles) following two repetitions at 25.0 MPa. However, biochemical parameters such as microbial population, acidity, and the presence of fermentable sugars rarely affected Makgeolli quality. Remarkably, there was a 4.5-log reduction in the number of Saccharomyces cerevisiae target cells at 53.5°C for 70 sec in optimally homogenized Makgeolli. This value was higher than the 37.7% measured from traditionally pasteurized Makgeolli. In contrast to the analytical similarity among homogenized Makgeollis, our objective quality evaluation demonstrated significant differences between pasteurized (or unpasteurized) Makgeolli and LHBP-treated Makgeolli. Low-pressure homogenization-based pasteurization, Makgeolli, minimal processing-preservation, Saccharomyces cerevisiae, suspension stability.

  6. Design and development of low pressure evaporator/condenser unit for water-based adsorption type climate control systems

    NASA Astrophysics Data System (ADS)

    Venkataramanan, Arjun; Rios Perez, Carlos A.; Hidrovo, Carlos H.

    2016-11-01

    Electric vehicles (EVs) are the future of clean transportation and driving range is one of the important parameters which dictates its marketability. In order to increase driving range, electrical battery energy consumption should be minimized. Vapor-compression refrigeration systems currently employed in EVs for climate control consume a significant fraction of the battery charge. Thus, by replacing this traditional heating ventilation and air-conditioning system with an adsorption based climate control system one can have the capability of increasing the drive range of EVs.The Advanced Thermo-adsorptive Battery (ATB) for climate control is a water-based adsorption type refrigeration cycle. An essential component of the ATB is a low pressure evaporator/condenser unit (ECU) which facilitates both the evaporation and condensation processes. The thermal design of the ECU relies predominantly on the accurate prediction of evaporation/boiling heat transfer coefficients since the standard correlations for predicting boiling heat transfer coefficients have large uncertainty at the low operating pressures of the ATB. This work describes the design and development of a low pressure ECU as well as the thermal performance of the actual ECU prototype.

  7. Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation

    NASA Technical Reports Server (NTRS)

    Suzen, Y. Bora; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.

    2001-01-01

    A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.

  8. Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, t , with the intermittency factor, y. Turbulent quantities are predicted by using Menter s two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.

  9. Low-pressure plasma enhanced immobilization of chitosan on low-density polyethylene for bio-medical applications

    NASA Astrophysics Data System (ADS)

    Pandiyaraj, K. Navaneetha; Ferraria, Ana Maria; Rego, Ana Maria Botelho do; Deshmukh, Rajendra. R.; Su, Pi-Guey; Halleluyah Mercy, Jr.; Halim, Ahmad Sukari

    2015-02-01

    With the aim of improving blood compatibility of low density polyethylene (LDPE) films, an effective low-pressure plasma technology was employed to functionalize the LDPE film surfaces through in-situ grafting of acrylic acid (AAc). Subsequently, the molecules of poly(ethylene glycol) (PEG) and chitosan (CHI) were immobilized on the surface of grafted LDPE films. The unmodified and modified LDPE films were analyzed using various characterization techniques such as contact angle, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS) to understand the changes in surface properties such as hydrophilicity, surface topography and chemical composition, respectively. Furthermore, LDPE films have been subjected to an ageing process to determine the durability of the plasma assisted surface modification. The blood compatibility of the surface modified LDPE films was confirmed by in vitro tests. It was found that surface modified LDPE films show better hydrophilic behavior compared with the unmodified one. FTIR and XPS results confirm the successful immobilization of CHI on the surface of LDPE films. LDPE films showed marked morphological changes after grafting of AAc, PEG and CHI which were confirmed through AFM imaging. The in vitro blood compatibility tests have clearly demonstrated that CHI immobilized LDPE films exhibit remarkable anti thrombogenic nature compared with other modified films. Surface modified LDPE films through low-pressure plasma technique could be adequate for biomedical implants such as artificial skin substrates, urethral catheters or cardiac stents, among others.

  10. First occurrence of very low pressure ultra-high temperatures metamorphism in the Khondalite Belt, North China Craton.

    NASA Astrophysics Data System (ADS)

    Lobjoie, Cyril; Lin, Wei; Trap, Pierre; Goncalves, Philippe; Marquer, Didier

    2016-04-01

    This study report the first occurrence of very low pressure (<0.4GPa) ultra-high temperatures metamorphism within the Paleoproterozoic Khondalite Belt of the North China Craton. This high grade orogenic domain is mostly composed of garnet +/- spinel +/- sapphirine-bearing migmatites, numerous Grt-bearing granites and marbles. These rocks are intruded by numerous metric to kilometric mafic intrusions. Petrological analyses and phase equilibria diagram modeling were performed on garnet and spinel-bearing and olivine-bearing migmatites. Garnet and spinel-bearing migmatites show a quartz, ternary feldspar, garnet, biotite sillimanite and spinel main assemblage. Pseudosection diagram calculations give suprasolidus P-T conditions around ca. 0.7GPa for ca. 900°C that correspond to the peak temperature conditions. Thermometry using ternary feldspar thermometry gives temperatures estimations at ca. 950-1015°C for a pressure of 0.7GPa. The Olivine-bearing migmatite, located at the contact with a mafic intrusion, shows two main assemblages. The first assemblage that makes the rock matrix consists of a micrographic quartz and feldspar domains associated with biotite, sillimanite and spinel. The second assemblage appears within mm-scale pockets with a complex symplectitic texture. Careful investigation revealed that theses pockets formed after garnet pseudomorphosis, with the development of an Opx-Sp-Crd association. Within this assemblage, an olivine-cordierite and Opx-Crd-Bi-Qtz assemblage occurred as smaller pockets. The petrogenetic grid and pseudosection calculations made for this olivine-bearing migmatite give P-T conditions around 0.35GPa for ca. 950°C that correspond to the peak temperature conditions recorded by the olivine-cordierite assemblage. The succession of reactions with garnet pseudomorphosis into an Opx-Spl-Crd followed by the crystallization of an Ol-Crd assemblage is modelled in the petrogenetic grid calculation and correspond to an isobaric clockwise P

  11. Modeling the Deterioration of Engine and Low Pressure Compressor Performance During a Roll Back Event Due to Ice Accretion

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip, C. E.; Jones, Scott M.

    2014-01-01

    The main focus of this study is to apply a computational tool for the flow analysis of the engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) of NASA Glenn Research Center. A data point was selected for analysis during which the engine experienced a full roll back event due to the ice accretion on the blades and flow path of the low pressure compressor. The computational tool consists of the Numerical Propulsion System Simulation (NPSS) engine system thermodynamic cycle code, and an Euler-based compressor flow analysis code, that has an ice particle melt estimation code with the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Decreasing the performance characteristics of the low pressure compressor (LPC) within the NPSS cycle analysis resulted in matching the overall engine performance parameters measured during testing at data points in short time intervals through the progression of the roll back event. Detailed analysis of the fan-core and LPC with the compressor flow analysis code simulated the effects of ice accretion by increasing the aerodynamic blockage and pressure losses through the low pressure compressor until achieving a match with the NPSS cycle analysis results, at each scan. With the additional blockages and losses in the LPC, the compressor flow analysis code results were able to numerically reproduce the performance that was determined by the NPSS cycle analysis, which was in agreement with the PSL engine test data. The compressor flow analysis indicated that the blockage due to ice accretion in the LPC exit guide vane stators caused the exit guide vane (EGV) to be nearly choked, significantly reducing the air flow rate into the core. This caused the LPC to eventually be in stall due to increasing levels of diffusion in the rotors and high incidence angles in the inlet guide vane (IGV) and EGV stators. The flow analysis indicating

  12. Low pressure CO₂ hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO₂ interface

    DOE PAGES

    Yang, Xiaofang; Boscoboinik, J. Anibal; Kattel, Shyam; ...

    2015-07-28

    Capture and recycling of CO₂ into valuable chemicals such as alcohols could help mitigate its emissions into the atmosphere. Due to its inert nature, the activation of CO₂ is a critical step in improving the overall reaction kinetics during its chemical conversion. Although pure gold is an inert noble metal and cannot catalyze hydrogenation reactions, it can be activated when deposited as nanoparticles on the appropriate oxide support. In this combined experimental and theoretical study, it is shown that an electronic polarization at the metal–oxide interface of Au nanoparticles anchored and stabilized on a CeOx/TiO₂ substrate generates active centers formore » CO₂ adsorption and its low pressure hydrogenation, leading to a higher selectivity toward methanol. In conclusion, this study illustrates the importance of localized electronic properties and structure in catalysis for achieving higher alcohol selectivity from CO₂ hydrogenation.« less

  13. An Assessment of the Residual Stresses in Low Pressure Plasma Sprayed Coatings on an Advanced Copper Alloy

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.; Agarwal, A.; Lachtrupp, T. P.

    2002-01-01

    Modeling studies were conducted on low pressure plasma sprayed (LPPS) NiAl top coat applied to an advanced Cu-8(at.%)Cr-4%Nb alloy (GRCop-84) substrate using Ni as a bond coat. A thermal analysis suggested that the NiAl and Ni top and bond coats, respectively, would provide adequate thermal protection to the GRCop-84 substrate in a rocket engine operating under high heat flux conditions. Residual stress measurements were conducted at different depths from the free surface on coated and uncoated GRCop-84 specimens by x-ray diffraction. These data are compared with theoretically estimated values assessed by a finite element analysis simulating the development of these stresses as the coated substrate cools down from the plasma spraying temperature to room temperature.

  14. Characterization of magnetically confined low-pressure plasmas produced by an electromagnetic field in argon-acetylene mixtures

    NASA Astrophysics Data System (ADS)

    Makdessi, G. Al; Margot, J.; Clergereaux, R.

    2016-10-01

    Dust particles formation was investigated in magnetically confined low-pressure plasma produced in argon-acetylene mixtures. The plasma characteristics were measured in order to identify the species involved in the dust particles formation. Their dependence on the operating conditions including magnetic field intensity, acetylene fraction in the gas mixture and operating pressure was examined. In contrast with noble gases, in the presence of acetylene, the electron temperature increases with the magnetic field intensity, indicating additional charged particles losses in the plasma. Indeed, in these conditions, larger hydrocarbon ions are produced leading to the formation of dust particles in the plasma volume. The observed dependence of positive ion mass distribution and density and relative negative ion density on the operating parameters suggests that the dust particles are formed through different pathways, where negative and positive ions are both involved in the nucleation.

  15. Very low pressure plasma sprayed yttria-stabilized zirconia coating using a low-energy plasma gun

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Planche, Marie-Pierre; Liao, Hanlin; Coddet, Christian

    2011-12-01

    In the present study, a more economical low-energy plasma source was used to perform a very low pressure plasma-spray (VLPPS) process. The plasma-jet properties were analyzed by means of optical emission spectroscopy (OES). Moreover, yttria-stabilized zirconia coating (YSZ) was elaborated by a F100 low-power plasma gun under working pressure of 1 mbar, and the substrate specimens were partially shadowed by a baffle-plate during plasma spraying for obtaining different coating microstructures. Based on the SEM observation, a column-like grain coating was deposited by pure vapor deposition at the shadowed region, whereas, in the unshadowed region, the coating exhibited a binary microstructure which was formed by a mixed deposition of melted particles and evaporated particles. The mechanical properties of the coating were also well under investigation.

  16. Effect of Reynolds number, turbulence level and periodic wake flow on heat transfer on low pressure turbine blades.

    PubMed

    Suslov, D; Schulz, A; Wittig, S

    2001-05-01

    The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.

  17. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    SciTech Connect

    Gentile, C. A.; Blanchard, W. R.; Kozub, T. A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-14

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber

  18. LIBS-based detection of geological samples at low pressures (<0.001 torr) for moon and asteroid exploration.

    SciTech Connect

    Harris, R. D.; Cremers, D. A.; Khoo, C.; Benelli, K. M.

    2005-01-01

    LIBS is under development for future use on surface probes to Mars. Under simulated Mars atmospheric composition and pressure (7 torr, predominately CO{sub 2}), LIBS has been shown useful for qualitative and quantitative analysis of geological samples at close and stand-off distances (19 m). Because of its many advantages compared to previously deployed and current in-use methods of elemental analysis (e.g. x-ray fluorescence, APXS), LIBS has potential for application to other planetary bodies. Of particular interest are the Moon and asteroids having very low ambient gas pressures at the surface. Because the laser plasma used by LIBS is sensitive to the surrounding atmosphere, it is important to determine analysis capabilities under these conditions. The results of a study of LIBS capabilities at low pressure is presented here for both in-situ and stand-off analysis.

  19. Interplanetary magnetic field polarity and the size of low-pressure troughs near 180 deg W longitude

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.; Duffy, P. B.; Schatten, K. H.; Svalgaard, L.; Scherrer, P. H.; Roberts, W. O.; Olson, R. H.

    1979-01-01

    The relationship between interplanetary magnetic field polarity and the area of low pressure (300 mbar) troughs near 180 deg W longitude is examined. For most of the winters from 1951 to 1973, the trough size, as indicated by the vorticity area index, is found to be significantly greater when the interplanetary magnetic field is directed away from the sun than when the field is directed towards the sun. This relationship is shown to hold for various combinations of winters and for most months within a winter, and be most pronounced at the time when polarity was determined. It is suggested that the phenomenon is caused by merging of interplanetary magnetic field lines, when polarity is directed away from the sun, with geomagnetic field lines in the Northern Hemisphere (where these measurements were made), allowing energetic particle fluxes to have access to the north polar region

  20. Influence of temperature gradients on partial pressures in a low-pressure chemical-vapor-deposition reactor

    NASA Astrophysics Data System (ADS)

    Oosterlaken, T. G. M.; Leusink, G. J.; Janssen, G. C. A. M.; Radelaar, S.; Kuijlaars, K. J.; Kleijn, C. R.; van den Akker, H. E. A.

    1994-09-01

    Measurements and calculations of the influence of temperature gradients on the partial pressures of the gas species in a cold-wall chemical-vapor-deposition reactor are presented. The experiments were performed at low pressures (300-500 Pa total pressure) and gas mixtures consisting of hydrogen, nitrogen, and tetrafluoromethane. The partial pressures were determined by Raman spectroscopy. The Soret effect (or thermal diffusion) has a large influence on the partial pressures of heavy gases in the vicinity of the heated wafer. In some cases a decrease in partial pressure of 20% compared to the inlet partial pressures was observed. Numerical calculations were performed to predict the behavior of the gas mixture. For mixtures under investigation the gas temperatures as well as the changes in partial pressures due to the Soret effect were predicted correctly.

  1. DNS of Flow in a Low-Pressure Turbine Cascade Using a Discontinuous-Galerkin Spectral-Element Method

    NASA Technical Reports Server (NTRS)

    Garai, Anirban; Diosady, Laslo Tibor; Murman, Scott; Madavan, Nateri

    2015-01-01

    A new computational capability under development for accurate and efficient high-fidelity direct numerical simulation (DNS) and large eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy-stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy and is implemented in a computationally efficient manner on a modern high performance computer architecture. A validation study using this method to perform DNS of flow in a low-pressure turbine airfoil cascade are presented. Preliminary results indicate that the method captures the main features of the flow. Discrepancies between the predicted results and the experiments are likely due to the effects of freestream turbulence not being included in the simulation and will be addressed in the final paper.

  2. Hydrogen-oxygen catalytic ignition and thruster investigation. Volume 1: Catalytic ignition and low pressure thruster evaluations

    NASA Technical Reports Server (NTRS)

    Johnson, R. J.

    1972-01-01

    An experimental and analytical program was conducted to evaluate catalytic igniter operational limits, igniter scaling criteria, and delivered performance of cooled, flightweight gaseous hydrogen-oxygen reaction control thrusters. Specific goals were to: (1) establish operating life and environmental effects for both Shell 405-ABSG and Engelhard MFSA catalysts, (2) provide generalized igniter design guidelines for high response without flashback, and (3) to determine overall performance of thrusters at chamber pressures of 15 and 300 psia (103 and 2068 kN/sq m) and thrust levels of 30 and 1500 lbf, respectively. The experimental results have demonstrated the feasibility of reliable, high response catalytic ignition and the effectiveness of ducted chamber cooling for a high performance flightweight thruster. This volume presents the results of the catalytic igniter and low pressure thruster evaluations are presented.

  3. Note: High turn density magnetic coils with improved low pressure water cooling for use in atom optics

    SciTech Connect

    McKay Parry, Nicholas Neely, Tyler; Carey, Thomas; Bell, Thomas; Rubinsztein-Dunlop, Halina; Baker, Mark

    2014-08-15

    We describe a magnetic coil design utilizing concentrically wound electro-magnetic insulating (EMI) foil (25.4 μm Kapton backing and 127 μm thick layers). The magnetic coils are easily configurable for different coil sizes, while providing large surfaces for low-pressure (0.12 bar) water cooling. The coils have turn densities of ∼5 mm{sup −1} and achieve a maximum of 377 G at 2.1 kW driving power, measured at a distance 37.9 mm from the axial center of the coil. The coils achieve a steady-state temperature increase of 36.7°C/kW.

  4. Filament wound pressure vessels - Effects of using liner tooling of low pressure vessels for high pressure vessels development

    NASA Astrophysics Data System (ADS)

    Lal, Krishna M.

    High performance pressure vessels have been recently demanded for aerospace and defense applications. Filament wound pressure vessels consist of a metallic thin liner, which also acts as a mandrel, and composite/epoxy overwrap. Graphite/epoxy overwrapped vessels have been developed to obtain the performance ratio, PV/W, as high as one million inches. Under very high pressure the isotropic metallic liner deforms elasto-plastically, and orthotropic composite fibers deform elastically. Sometimes, for the development of ultra high pressure vessels, composite pressure vessels industry uses the existing liner tooling developed for low burst pressure capacity composite vessels. This work presents the effects of various design variables including the low pressure liner tooling for the development of the high burst pressure capacity Brilliant Pebbles helium tanks. Advance stress analysis and development of an ultra high pressure helium tank.

  5. Boundary-Layer Separation Control under Low-Pressure Turbine Airfoil Conditions using Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Modem low-pressure turbines, in general, utilize highly loaded airfoils in an effort to improve efficiency and to lower the number of airfoils needed. Typically, the airfoil boundary layers are turbulent and fully attached at takeoff conditions, whereas a substantial fraction of the boundary layers on the airfoils may be transitional at cruise conditions due to the change of density with altitude. The strong adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation at the latter low Reynolds number conditions. Large separation bubbles, particularly those which fail to reattach, cause a significant degradation of engine efficiency. A component efficiency drop of the order 2% may occur between takeoff and cruise conditions for large commercial transport engines and could be as large as 7% for smaller engines at higher altitude. An efficient means of of separation elimination/reduction is, therefore, crucial to improved turbine design. Because the large change in the Reynolds number from takeoff to cruise leads to a distinct change in the airfoil flow physics, a separation control strategy intended for cruise conditions will need to be carefully constructed so as to incur minimum impact/penalty at takeoff. A complicating factor, but also a potential advantage in the quest for an efficient strategy, is the intricate interplay between separation and transition for the situation at hand. Volino gives a comprehensive discussion of several recent studies on transition and separation under low-pressure-turbine conditions, among them one in the present facility. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions. If the transition occurs early in the boundary layer then separation may be reduced or completely eliminated. Transition in the shear layer of a separation bubble can lead to rapid reattachment. This suggests using control mechanisms to trigger and enhance early

  6. Physisorption of Ar, Kr, CH4, and N2 on 304 stainless steel at very low pressures.

    NASA Technical Reports Server (NTRS)

    Troy, M.; Wightman, J. P.

    1971-01-01

    Determination of physisorption isotherms of these gases on stainless steel by pressure change measurements in very low pressure cryogenic baths where a steel nipple was brought in contact with the test gas at 77 to 90 K in a sealed constant-volume system. The position of the nipple in the gas was changed in such a manner that gas adsorption on a 47.5 sq cm area of the steel surface could be measured. The Dubinin-Radushkevich (DR) equation (1947) was used for an empirical description of isotherms at different temperatures. The mean adsorption energies calculated from the DR plots were 1290, 1545, 1490 and 1903 cal/mol for Ar, Kr, CH4 and N2, respectively, being about 10% higher than the corresponding values on Pyrex.

  7. An aircraft instrument design for in situ tropospheric OH measurements by laser induced fluorescence at low pressures

    NASA Technical Reports Server (NTRS)

    Brune, William H.; Stevens, Philip S.; Mather, James H.

    1993-01-01

    The hydroxyl radical (OH) is important for many processes involved in tropospheric chemistry. For instance, it initiates the photochemical degradation of gases that cause global climate change, such as methane and the chlorofluorocarbon substitutes (HCFCs). Because of its reactivity, its abundances are less than 0.1 pptv. Thus, OH has been very difficult to measure accurately, despite its importance. Techniques have evolved, however, so that good measurements of tropospheric OH abundances are now possible. One of these techniques that is adaptable to aircraft measurements is the laser induced fluorescence detection of the OH radical in a detection chamber at low pressures. The current ground-based instrument, which can be readily adapted to aircraft, can detect OH abundances of 1.4 x 10 exp 5 OH molecules/cu cm with S/N = 2 in 30 sec, and 5 x 10 exp 4/cu cm in 5 min.

  8. Evaluation of tungsten shaped-charge liners spray-formed using the low-pressure plasma spray process

    SciTech Connect

    Buchanan, E.R.; Sickinger, A.

    1994-12-31

    This paper documents the results of a DARPA Phase 1 SBIR program which was awarded following a solicitation to develop new technologies for the forming of refractory metal shaped-charge liners. Holtgren had proposed to manufacture liners by spraying refractory metal powder onto a rapidly-rotating mandrel inside the chamber of a low-pressure plasma spray system. A total of nine tungsten shaped-charge liners were sprayed during the course of the program. Metallographic evaluation of the liners revealed that the as-sprayed microstructure was dense, averaging 98.5% density. The grain structure is equiaxed and fine, averaging five microns in diameter. The sprayed shapes were then processed to the final liner configuration by cylindrical grinding. The liners were ductile enough to withstand the strains of grinding and normal handling.

  9. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma

    SciTech Connect

    Stranak, Vitezslav; Herrendorf, Ann-Pierra; Drache, Steffen; Bogdanowicz, Robert; Hippler, Rainer; Cada, Martin; Hubicka, Zdenek; Tichy, Milan

    2012-11-01

    This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a high concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.

  10. In situ observation of UF5 nanoparticle growth in a low-pressure mixed-flow reactor

    NASA Astrophysics Data System (ADS)

    Kuga, Y.; Hirasawa, M.; Seto, T.; Okuyama, K.; Takeuchi, K.

    A mixed-flow reactor for the generation of UF5 nanoparticles equipped with an in situ size-monitoring system, a LPDMA (low-pressure differential mobility analyzer), was developed to experimentally investigate the nanoparticle growth mechanism. The concentration of photoproduced UF5 molecules was controlled by changing three factors: (I) the concentration of the feed UF6 gas, (II) the laser pulse energy of the irradiation, and (III) the repetition rate of the laser pulses. The dependence of the volumetric average diameter of the photoproduced particles on the UF5 nascent concentration in all three cases was found to be very similar. The result strongly suggests that the reactor functions as a mixed-flow reactor under a complete mixing condition. The particle size measured by the LPDMA was found to be in the range of 6 to 11 nm, and it was approximately proportional to the power 0.3 of the initial concentration of photoproduced UF5 molecules.

  11. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    SciTech Connect

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-27

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  12. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-01-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M•+, MH+, [M - H2O]+, and solvent adducts were observed in positive LPPI, [M - H]- and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure.

  13. Active metasomatism in the Cerro Prieto geothermal system, Baja California, Mexico: a telescoped low pressure/temperature metamorphic facies series

    SciTech Connect

    Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.; Bird, D.K.

    1983-01-01

    In the Cerro Prieto geothermal field, carbonate-cemented, quartzofeldspathic sediments of the Colorado River delta are being actively metasomatized into calc-silicate metamorphic rocks by reaction with alkali chloride brines between 200/sup 0/ and 370/sup 0/C, low fluid and lithostatic pressures, and low oxygen fugacities. Petrologic investigations of drill cores and cutting from over 50 wells in this field identified a prograde series of calc-silicate mineral zones which include as index minerals: wairakite, epidote, prehnite, and clinopyroxene. Associated divariant mineral assemblages are indicative of a very low pressure/temperature metamorphic facies series which encompasses the clay-carbonate, zeolite, greenschist, and amphibolite facies. This hydrothermal metamorphic facies series, which is becoming increasingly recognized in other active geothermal systems, is characterized by temperature-telescoped dehydration and decarbonation mineral equilibria. Its equivalent should now be sought in fossil hydrothermal systems.

  14. Photocatalytic abatement of NOx by C-TiO2/polymer composite coatings obtained by low pressure cold gas spraying

    NASA Astrophysics Data System (ADS)

    Robotti, M.; Dosta, S.; Fernández-Rodríguez, C.; Hernández-Rodríguez, M. J.; Cano, I. G.; Melián, E. Pulido; Guilemany, J. M.

    2016-01-01

    In the present work, we study the photocatalytic activity of carbon-modified TiO2 (C-TiO2)/polymer composite coatings obtained by low pressure cold gas spraying (LP-CGS). To produce the novel coatings, C-TiO2 was mixed with a ductile material, the polymer ECTFE, by means of a low energy ball milling (LEBM) process. The LEBM system permits the mechanical anchoring of small TiO2 aggregates around the large ductile polymeric particles. A well-bonded coating with good mechanical coupling was formed between the ball-milled mixture and the substrate. Photocatalytic tests showed that the LP-CGS nano-TiO2 coatings actively photodegraded NO and the by-product, NO2. Compared to commercial paint, the as-prepared coatings presented here enhanced photocatalytic performance.

  15. Synthesis and characterization of smooth ultrananocrystalline diamond films via low pressure bias-enhanced nucleation and growth

    NASA Astrophysics Data System (ADS)

    Chen, Y. C.; Zhong, X. Y.; Konicek, A. R.; Grierson, D. S.; Tai, N. H.; Lin, I. N.; Kabius, B.; Hiller, J. M.; Sumant, A. V.; Carpick, R. W.; Auciello, O.

    2008-03-01

    This letter describes the fundamental process underlying the synthesis of ultrananocrystalline diamond (UNCD) films, using a new low-pressure, heat-assisted bias-enhanced nucleation (BEN)/bias enhanced growth (BEG) technique, involving H2/CH4 gas chemistry. This growth process yields UNCD films similar to those produced by the Ar-rich/CH4 chemistries, with pure diamond nanograins (3-5nm ), but smoother surfaces (˜6nm rms) and higher growth rate (˜1μm/h). Synchrotron-based x-Ray absorption spectroscopy, atomic force microscopy, and transmission electron microscopy studies on the BEN-BEG UNCD films provided information critical to understanding the nucleation and growth mechanisms, and growth condition-nanostructure-property relationships.

  16. Numerical Investigation of the Interaction between Mainstream and Tip Shroud Leakage Flow in a 2-Stage Low Pressure Turbine

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Liu, Huoxing

    2014-06-01

    The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.

  17. CFD Study of the Hydrocarbon Boost Low-Pressure Inducer and Kicker in the Presence of a Circumferential Groove

    NASA Technical Reports Server (NTRS)

    Coker, Robert

    2011-01-01

    Results are presented of a computational fluid dynamics (CFD) study done in support of Marshall Space Flight Center's (MSFC) sub-scale water flow experiments of the Hydrocarbon Boost (HCB) Oxidizer Turbopump (OTP) being developed by the Air Force Research Laboratory (AFRL) and Aerojet. A circumferential groove may be added to the pump to reduce synchronous cavitation and subsequent bearing loads at a minimal performance cost. However, the energy may reappear as high order cavitation (HOC) that spans a relatively large frequency range. Thus, HOC may have implications for the full-scale OTP inducer in terms of reduced structural margin at higher mode frequencies. Simulations using the LOCI/Stream CFD program were conducted in order to explore the fluid dynamical impact of the groove on the low-pressure inducer and kicker. It was found that the circumferential groove has minimal head performance impact, but causes back-flowing high-swirl fluid to interact with the nearly-axial incoming fluid just above the inducer blades. The high-shear interface between the fluids is Kelvin-Helmholtz unstable, resulting in trains of low pressure regions or 'pearls' forming near the upstream edge of the groove. When the static pressure in these regions becomes low enough and they get cut by the blade leading edge, HOC is thought to occur. Although further work is required, the numerical models indicate that HOC will occur in the runbox of the AFRL/Aerojet HCB OTP. Comparisons to the ongoing water flow experiments will be discussed, as well as possible designs that may mitigate HOC while continuing to reduce synchronous cavitation. December 2011 MSS/LPS/SPS Joint Subcommittee Meeting ABSTRACT SUBMITTAL FORM

  18. Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model

    SciTech Connect

    Skeen, Scott A.; Yang, Bin; Jasper, Ahren W.; Pitz, William J.; Hansen, Nils

    2011-11-14

    The chemical compositions of three low-pressure premixed flames of methylcyclohexane (MCH) are investigated with the emphasis on the chemistry of MCH decomposition and the formation of aromatic species, including benzene and toluene. The flames are stabilized on a flat-flame (McKenna type) burner at equivalence ratios of φ = 1.0, 1.75, and 1.9 and at low pressures between 15 Torr (= 20 mbar) and 30 Torr (= 40 mbar). The complex chemistry of MCH consumption is illustrated in the experimental identification of several C7H12, C7H10, C6H12, and C6H10 isomers sampled from the flames as a function of distance from the burner. Three initiation steps for MCH consumption are discussed: ring-opening to heptenes and methyl-hexenes (isomerization), methyl radical loss yielding the cyclohexyl radical (dissociation), and H abstraction from MCH. Mole fraction profiles as a function of distance from the burner for the C7 species supplemented by theoretical calculations are presented, indicating that flame structures resulting in steeper temperature gradients and/or greater peak temperatures can lead to a relative increase in MCH consumption through the dissociation and isomerization channels. Trends observed among the stable C6 species as well as 1,3-pentadiene and isoprene also support this conclusion. Relatively large amounts of toluene and benzene are observed in the experiments, illustrating the importance of sequential H-abstraction steps from MCH to toluene and from cyclohexyl to benzene. Furthermore, modeled results using the detailed chemical model of Pitz et al. (Proc. Combust. Inst.2007, 31, 267–275) are also provided to illustrate the use of these data as a benchmark for the improvement or future development of a MCH mechanism.

  19. Buoyancy induced limits for nanoparticle synthesis experiments in horizontal premixed low-pressure flat-flame reactors

    NASA Astrophysics Data System (ADS)

    Weise, C.; Faccinetto, A.; Kluge, S.; Kasper, T.; Wiggers, H.; Schulz, C.; Wlokas, I.; Kempf, A.

    2013-06-01

    Premixed low-pressure flat-flame reactors can be used to investigate the synthesis of nanoparticles. The present work examines the flow field inside such a reactor during the formation of carbon (soot) and iron oxide (from Fe(CO)5) nanoparticles, and how it affects the measurements of nanoparticle size distribution. The symmetry of the flow and the impact of buoyancy were analysed by three-dimensional simulations and the nanoparticle size distribution was obtained by particle mass spectrometry (PMS) via molecular beam sampling at different distances from the burner. The PMS measurements showed a striking, sudden increase in particle size at a critical distance from the burner, which could be explained by the flow field predicted in the simulations. The simulation results illustrate different fluid mechanical phenomena which have caused this sudden rise in the measured particle growth. Up to the critical distance, buoyancy does not affect the flow, and an (almost) linear growth is observed in the PMS experiments. Downstream of this critical distance, buoyancy deflects the hot gas stream and leads to an asymmetric flow field with strong recirculation. These recirculation zones increase the particle residence time, inducing very large particle sizes as measured by PMS. This deviation from the assumed symmetric, one-dimensional flow field prevents the correct interpretation of the PMS results. To overcome this problem, modifications to the reactor were investigated; their suitability to reduce the flow asymmetry was analysed. Furthermore, 'safe' operating conditions were identified for which accurate measurements are feasible in premixed low-pressure flat-flame reactors that are transferrable to other experiments in this type of reactor. The present work supports experimentalists to find the best setup and operating conditions for their purpose.

  20. Addressing reverse osmosis fouling within water reclamation--a side-by-side comparison of low-pressure membrane pretreatments.

    PubMed

    Kent, Fraser C; Farahbakhsh, Khosrow

    2011-06-01

    A tertiary membrane filtration (TMF) pilot operating on secondary effluent and a membrane bioreactor (MBR) were setup in a side-by-side study as pretreatments for two identical reverse osmosis pilot systems. The water quality of the permeate from both low-pressure membrane pretreatment systems and the fouling rate of the reverse osmosis systems were compared to assess the capabilities of the two low-pressure membrane pretreatments to prevent organic fouling of the reverse osmosis systems. Both pretreatment pilots were setup using typical operating conditions (i.e., solids retention time and mixed-liquor suspended solids). A consistent difference in water quality and reverse osmosis performance was demonstrated during the 12-month study. The MBR permeate consistently had significantly lower total organic carbon (TOC) and chemical oxygen demand concentrations, but higher color and specific UV absorbance compared with the permeate from the TMF pretreatment. The pretreatment with the MBR gave an average reverse osmosis fouling rate over the entire study (0.27 Lmh/bar.month) that was less than half of the value found for the reverse osmosis with TMF pretreatment (0.60 Lmh/bar.month). A correlation of reverse osmosis feed TOC concentration with average reverse osmosis fouling rate also was established, independent of the pretreatment method used. Results from a cleaning analysis, energy dispersive spectroscopy, and fourier transformed infrared reflectometry confirmed that the foulants were primarily organic in nature. It is concluded that, for this type of application and setup, MBR systems present an advantage over tertiary membrane polishing of secondary effluent for reverse osmosis pretreatment.

  1. Synthesis of highly transparent ultrananocrystalline diamond films from a low-pressure, low-temperature focused microwave plasma jet.

    PubMed

    Liao, Wen-Hsiang; Wei, Da-Hua; Lin, Chii-Ruey

    2012-01-19

    This paper describes a new low-temperature process underlying the synthesis of highly transparent ultrananocrystalline diamond [UNCD] films by low-pressure and unheated microwave plasma jet-enhanced chemical vapor deposition with Ar-1%CH4-10%H2 gas chemistry. The unique low-pressure/low-temperature [LPLT] plasma jet-enhanced growth even with added H2 and unheated substrates yields UNCD films similar to those prepared by plasma-enhanced growth without addition of H2 and heating procedure. This is due to the focused plasma jet which effectively compensated for the sluggish kinetics associated with LPLT growth. The effects of pressure on UNCD film synthesis from the microwave plasma jet were systematically investigated. The results indicated that the substrate temperature, grain size, surface roughness, and sp3 carbon content in the films decreased with decreasing pressure. The reason is due to the great reduction of Hα emission to lower the etching of sp2 carbon phase, resulting from the increase of mean free path with decreasing pressure. We have demonstrated that the transition from nanocrystalline (80 nm) to ultrananocrystalline (3 to 5 nm) diamond films grown via microwave Ar-1%CH4-10%H2 plasma jets could be controlled by changing the pressure from 100 to 30 Torr. The 250-nm-thick UNCD film was synthesized on glass substrates (glass transition temperature [Tg] 557°C) using the unique LPLT (30 Torr/460°C) microwave plasma jet, which produced UNCD films with a high sp3 carbon content (95.65%) and offered high optical transmittance (approximately 86% at 700 nm).

  2. Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model

    DOE PAGES

    Skeen, Scott A.; Yang, Bin; Jasper, Ahren W.; ...

    2011-11-14

    The chemical compositions of three low-pressure premixed flames of methylcyclohexane (MCH) are investigated with the emphasis on the chemistry of MCH decomposition and the formation of aromatic species, including benzene and toluene. The flames are stabilized on a flat-flame (McKenna type) burner at equivalence ratios of φ = 1.0, 1.75, and 1.9 and at low pressures between 15 Torr (= 20 mbar) and 30 Torr (= 40 mbar). The complex chemistry of MCH consumption is illustrated in the experimental identification of several C7H12, C7H10, C6H12, and C6H10 isomers sampled from the flames as a function of distance from the burner.more » Three initiation steps for MCH consumption are discussed: ring-opening to heptenes and methyl-hexenes (isomerization), methyl radical loss yielding the cyclohexyl radical (dissociation), and H abstraction from MCH. Mole fraction profiles as a function of distance from the burner for the C7 species supplemented by theoretical calculations are presented, indicating that flame structures resulting in steeper temperature gradients and/or greater peak temperatures can lead to a relative increase in MCH consumption through the dissociation and isomerization channels. Trends observed among the stable C6 species as well as 1,3-pentadiene and isoprene also support this conclusion. Relatively large amounts of toluene and benzene are observed in the experiments, illustrating the importance of sequential H-abstraction steps from MCH to toluene and from cyclohexyl to benzene. Furthermore, modeled results using the detailed chemical model of Pitz et al. (Proc. Combust. Inst.2007, 31, 267–275) are also provided to illustrate the use of these data as a benchmark for the improvement or future development of a MCH mechanism.« less

  3. Low pressure hydrocyclone separator

    SciTech Connect

    Flanigan, D.A.; Stolhand, J.E.

    1989-07-04

    This patent describes a method of separating a dispersed phase liquid from a bulk phase liquid of a liquid-liquid mixture, the dispersed phase and bulk phase liquids having different densities. The method comprises the steps of: providing a supply of the liquid-liquid mixture at a first pressure; providing a pump means including means for minimizing degradation of the volumetric means size of droplets of the dispersed phase further including a pump size for maintaining the pump means at substantially near maximum flow rate capacity; pumping the liquid-liquid mixture with at least one pump means to a second pressure such that a differential between the first and second pressures is not substantially greater than a differential pressure at which the pump means begins to substantially degrade the volumetric mean size of droplets of the dispersed phase liquid passing therethrough, the pumping without substantial droplet degradation being achieved by operating the pump means at relatively near its maximum flow rate capacity to substantially reduce on a percentage basis the effect of fluid slippage within the pump means; directing the liquid-liquid mixture from the pump means to a hydrocyclone; and separating a substantial portion of the dispersed phase liquid from the liquid-liquid mixture in the hydrocyclone.

  4. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    NASA Astrophysics Data System (ADS)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  5. Turbofan engine with a low pressure turbine driven supercharger in a bypass duct operated by a fuel rich combustor and an afterburner

    NASA Technical Reports Server (NTRS)

    Bartos, James W. (Inventor)

    1999-01-01

    A multiple bypass turbofan engine includes a core Brayton Cycle gas generator with a fuel rich burning combustor and is provided with a variable supercharged bypass duct around the gas generator with a supercharging means in the supercharged bypass duct powered by a turbine not mechanically connected to the gas generator. The engine further includes a low pressure turbine driven forward fan upstream and forward of an aft fan and drivingly connected to a low pressure turbine by a low pressure shaft, the low pressure turbine being aft of and in serial flow communication with the core gas generator. A fan bypass duct is disposed radially outward of the core engine assembly and has first and second inlets disposed between the forward and aft fans. An inlet duct having an annular duct wall is disposed radially inward of the bypass duct and connects the second inlet to the bypass duct. A supercharger means for compressing air is drivingly connected to the low pressure turbine and is disposed in the inlet duct. A secondary combustor or augmentor is disposed in an exhaust duct downstream of and in fluid flow communication with the bypass duct and the gas generator.

  6. Ethylene Decomposition Initiated by Ultraviolet Radiation from Low Pressure Mercury Lamps: Kinetics Model Prediction and Experimental Verification.

    NASA Astrophysics Data System (ADS)

    Jozwiak, Zbigniew Boguslaw

    1995-01-01

    Ethylene is an important auto-catalytic plant growth hormone. Removal of ethylene from the atmosphere surrounding ethylene-sensitive horticultural products may be very beneficial, allowing an extended period of storage and preventing or delaying the induction of disorders. Various ethylene removal techniques have been studied and put into practice. One technique is based on using low pressure mercury ultraviolet lamps as a source of photochemical energy to initiate chemical reactions that destroy ethylene. Although previous research showed that ethylene disappeared in experiments with mercury ultraviolet lamps, the reactions were not described and the actual cause of ethylene disappearance remained unknown. Proposed causes for this disappearance were the direct action of ultraviolet rays on ethylene, reaction of ethylene with ozone (which is formed when air or gas containing molecular oxygen is exposed to radiation emitted by this type of lamp), or reactions with atomic oxygen leading to formation of ozone. The objective of the present study was to determine the set of physical and chemical actions leading to the disappearance of ethylene from artificial storage atmosphere under conditions of ultraviolet irradiation. The goal was achieved by developing a static chemical model based on the physical properties of a commercially available ultraviolet lamp, the photochemistry of gases, and the kinetics of chemical reactions. The model was used to perform computer simulations predicting time dependent concentrations of chemical species included in the model. Development of the model was accompanied by the design of a reaction chamber used for experimental verification. The model provided a good prediction of the general behavior of the species involved in the chemistry under consideration; however the model predicted lower than measured rate of ethylene disappearance. Some reasons for the model -experiment disagreement are radiation intensity averaging, the experimental

  7. Characterization of Dust-Plasma Interactions In Non-Thermal Plasmas Under Low Pressure and the Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Bilik, Narula

    This dissertation research focuses on the experimental characterization of dust-plasma interactions at both low and atmospheric pressure. Its goal is to fill the knowledge gaps in (1) the fundamental research of low pressure dusty plasma electrons, which mainly relied on models with few experimental results; and (2) the nanoparticle synthesis process in atmospheric pressure uniform glow plasmas (APGDs), which is largely unexplored in spite of the economical advantage of APGDs in nanotechnology. The low pressure part of the dissertation research involves the development of a complete diagnostic process for an argon-siline capacitively-coupled RF plasma. The central part of the diagnostic process is the Langmuir probe measurement of the electron energy probability function (EEPF) in a dusty plasma, which has never been measured before. This is because the dust particles in the plasma cause severe probe surface contamination and consequently distort the measurement. This problem is solved by adding a solenoid-actuated shield structure to the Langmuir probe, which physically protects the Langmuir probe from the dust particle deposition to ensure reliable EEPF measurements. The dusty plasma EEPFs are characterized by lower electron density and higher electron temperature accompanied by a drop in the low energy electron population. The Langmuir probe measurement is complemented with other characterizations including the capacitive probe measurement, power measurement, and dust particle collection. The complete diagnostic process then gives a set of local plasma parameters as well as the details of the dust-electron interactions reflected in the EEPFs. This set of data serves as input for an analytical model of nanoparticle charging to yield the time evolution of nanoparticle size and charge in the dusty plasma. The atmospheric pressure part of the dissertation focuses on the design and development of an APGD for zinc oxide nanocrystal synthesis. One of the main

  8. Modeling and experiments for wall heat flux partitioning during subcooled flow boiling of water at low pressures

    NASA Astrophysics Data System (ADS)

    Basu, Nilanjana

    Void fraction during subcooled flow boiling depends on the amount of vapor generated at the wall and condensation in the bulk. Partitioning of heat flux at the wall is required to determine the fraction of the energy that is utilized for vapor production. The wall heat flux models currently available in the literature were developed for high-pressure applications and have too much empiricism built into them. As such their deficiencies become pronounced when applied to low pressures (1--5 bar), which are of interest in passively cooled advanced reactors (e.g., AP 600). In this work a mechanistic model for nucleate boiling heat flux as a function of wall superheat has been developed. The premise of the proposed model is that the entire energy from the wall is first transferred to the superheated liquid layer adjacent to the wall, either by transient conduction or forced convection. A fraction of this energy is then utilized for vapor generation. Contribution of each of the heat transfer mechanism---forced convection, transient conduction, and vapor generation, has been quantified in terms of nucleation site densities, bubble departure and lift off diameters, bubble release frequency, flow parameters like velocity, inlet subcooling, wall superheat, and fluid and surface properties, including system pressures. In this work, the vapor generation component at the wall is computed independently and not as factors of other wall heat flux components as has been done in most past studies. To support the model development, subcooled flow boiling experiments were conducted at pressures of 1.03 to 3.2 bar for a wide range of mass fluxes (124 kg/m2s to 926 kg/m2s ), heat fluxes (2.5 W/cm2 to 113 W/cm2) and for contact angles varying from 30° to 90°. These experiments were conducted using a vertical Copper plate and a Zircalloy-4 nine-rod bundle. Experimental data were also utilized for developing empirical correlations for nucleation site density, bubble departure and lift off

  9. Low Pressure Radio-Frequency Oxygen Plasma Induced Oxidation of Titanium – Surface Characteristics and Biological Effects

    PubMed Central

    Tseng, Wan-Yu; Hsu, Sheng-Hao; Huang, Chieh-Hsiun; Tu, Yu-Chieh; Tseng, Shao-Chin; Chen, Hsuen-Li; Chen, Min-Huey; Su, Wei-Fang; Lin, Li-Deh

    2013-01-01

    Objective This research was designed to investigate the effects of low pressure radio-frequency (RF) oxygen plasma treatment (OPT) on the surface of commercially pure titanium (CP-Ti) and Ti6Al4V. Surface topography, elemental composition, water contact angle, cell viability, and cell morphology were surveyed to evaluate the biocompatibility of titanium samples with different lengths of OP treating time. Materials and Methods CP-Ti and Ti6Al4V discs were both classified into 4 groups: untreated, treated with OP generated by using oxygen (99.98%) for 5, 10, and 30 min, respectively. After OPT on CP-Ti and Ti6Al4V samples, scanning probe microscopy, X-ray photoelectron spectrometry (XPS), and contact angle tests were conducted to determine the surface topography, elemental composition and hydrophilicity, respectively. The change of surface morphology was further studied using sputtered titanium on silicon wafers. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and F-actin immunofluorescence stain were performed to investigate the viability and spreading behavior of cultivated MG-63 cells on the samples. Results The surface roughness was most prominent after 5 min OPT in both CP-Ti and Ti6Al4V, and the surface morphology of sputtered Ti sharpened after the 5 min treatment. From the XPS results, the intensity of Ti°, Ti2+, and Ti3+ of the samples’ surface decreased indicating the oxidation of titanium after OPT. The water contact angles of both CP-Ti and Ti6Al4V were increased after 5 min OPT. The results of MTT assay demonstrated MG-63 cells proliferated best on the 5 min OP treated titanium sample. The F-actin immunofluorescence stain revealed the cultivated cell number of 5 min treated CP-Ti/Ti6Al4V was greater than other groups and most of the cultivated cells were spindle-shaped. Conclusions Low pressure RF oxygen plasma modified both the composition and the morphology of titanium samples’ surface. The CP-Ti/Ti6Al4V treated with 5 min

  10. Modification of carbon fabrics by radio-frequency capacitive discharge at low pressure to regulate mechanical properties of carbon fiber reinforced plastics based on it

    NASA Astrophysics Data System (ADS)

    Garifullin, A. R.; Krasina, I. V.; Skidchenko, E. A.; Shaekhov, M. F.; Tikhonova, N. V.

    2017-01-01

    To increase the values of mechanical properties of carbon fiber (CF) composite materials used in sports equipment production the method of radio-frequency capacitive (RFC) low-pressure plasma treatment in air was proposed. Previously it was found that this type of modification allows to effectively regulate the surface properties of fibers of different nature. This treatment method differs from the traditional ones by efficiency and environmental friendliness as it does not require the use of aggressive, environmentally hazardous chemicals. In this paper it was established that RFC low-pressure air plasma treatment of carbon fabrics enhances the interlaminar shear strength (ILSS) of carbon fiber reinforced plastic (CFRP). As a result of experimental studies of CF by Fourier Transform Infrared (FTIR) spectroscopy method it was proved that after radio-frequency capacitive plasma treatment at low pressure in air the oxygen-containing functional groups is grafted on the surface. These groups improve adhesion at the interface “matrix-fiber”.

  11. Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-Maxwellian electron energy distributions

    SciTech Connect

    Huh, Sung-Ryul; Kim, Nam-Kyun; Jung, Bong-Ki; Chung, Kyoung-Jae; Hwang, Yong-Seok; Kim, Gon-Ho

    2015-03-15

    A global model was developed to investigate the densities of negative ions and the other species in a low-pressure inductively coupled hydrogen plasma with a bi-Maxwellian electron energy distribution. Compared to a Maxwellian plasma, bi-Maxwellian plasmas have higher populations of low-energy electrons and highly vibrationally excited hydrogen molecules that are generated efficiently by high-energy electrons. This leads to a higher reaction rate of the dissociative electron attachment responsible for negative ion production. The model indicated that the bi-Maxwellian electron energy distribution at low pressures is favorable for the creation of negative ions. In addition, the electron temperature, electron density, and negative ion density calculated using the model were compared with the experimental data. In the low-pressure regime, the model results of the bi-Maxwellian electron energy distributions agreed well quantitatively with the experimental measurements, unlike those of the assumed Maxwellian electron energy distributions that had discrepancies.

  12. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights

    PubMed Central

    Rowse, Elizabeth G.; Harris, Stephen; Jones, Gareth

    2016-01-01

    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum ‘white’ light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these ‘light-intolerant’ bat species. PMID:27008274

  13. Sensitive analysis of carbon, chromium and silicon in steel using picosecond laser induced low pressure helium plasma

    NASA Astrophysics Data System (ADS)

    Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Pardede, Marincan; Jobiliong, Eric; Hedwig, Rinda; Lie, Zener Sukra; Suyanto, Hery; Tjia, May On; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2015-12-01

    An experimental study has been performed on the gas pressure and laser energy dependent variations of plasma emission intensities in Ar, He and N2 ambient gases induced by picosecond (ps) Nd-YAG laser irradiation on low alloy steel (JSS) samples. The study is aimed to demonstrate distinct advantage of using low pressure He ambient gas in combination with ps laser for the sensitive ppm level detection of C, Si and Cr emission lines in the UV-VIS spectral region. The much shorter pulses of ps laser are chosen for the effective ablation at much lower energy and for the benefit of reducing the undesirable long heating of the sample surface. It is found that the C I 247.8 nm, Fe I 253.5 nm, and Si I 251.4 nm emission lines induced by the ps laser at 15 mJ are readily detected with He ambient gas of 2.6 kPA, featuring generally sharp spectral signals with very low background. The following experimental results using samples with various concentrations of C, Si and Cr impurities are shown to produce for each of those elements a linear calibration line with extrapolated zero intercept, demonstrating the applicability for their quantitative analyses, with a preliminary estimated detection limits of 20 μg/g, 15 μg/g, and 5 μg/g, for C, Si, and Cr, respectively. The possibility of applying the same setup for concentration depth profiling is also demonstrated.

  14. Low-pressure catalytic wet-air oxidation of a high-strength industrial wastewater using Fenton's reagent.

    PubMed

    Biçaksiz, Zeliha; Aytimur, Gülin; Atalay, Süheyda

    2008-06-01

    Wastewater from the Afyon Alkaloids Factory (Afyon, Turkey) was subjected to low-pressure catalytic wet-air oxidation (CWAO) using Fenton's reagent, and the optimal reaction conditions were investigated. The CWAO using Fenton's reagent was applied to the factory effluent, diluted factory effluent, and aerobically pretreated wastewater. To find the optimum quantities of reagents, ferrous iron (Fe(+2))-to-substrate ratios of 1:10, 1:25, and 1:50 and hydrogen peroxide (H2O2)-to-Fe(+2) ratios of 1, 5, and 10 were investigated, and the treatment was carried out at different temperatures. High chemical oxygen demand (COD) removals were obtained at 50 degrees C, with the Fe(+2)-to-substrate ratio range between 1:10 and 1:25. The change in H2O2-to-Fe(+2) ratios did not cause any considerable effect. Also, the percentages of COD removals were nearly the same, so the ratio H2O2:Fe(+2):1 is recommended. Aerobic pretreatment seems to be effective. On the other hand, no enhancement was observed in the case of the diluted wastewater.

  15. Measuring OH and HO{sub 2} in the troposphere by laser-induced fluorescence at low pressure

    SciTech Connect

    Brune, W.H.; Stevens, P.S.; Mather, J.H.

    1995-10-01

    The hydroxyl radical OH oxidizes many trace gases in the atmosphere. It initiates and then participates in chemical reactions that lead to such phenomena as photochemical smog, acid rain, and stratospheric ozone depletion. Because OH is so reactive, its volume mixing ratio is less than 1 part per trillion volume (pptv) throughout the troposphere. Its close chemical cousin, the hydroperoxyl radical HO{sub 2}, participates in many reactions as well. The authors have developed an instrument capable of measuring OH and HO{sub 2} by laser-induced fluorescence in a detection chamber at low pressure. This prototype instrument is able to detect about 1.4 X 10{sup 5} molecules cm{sup {minus}3} (0.005 pptv) of OH at the ground in a signal integration time of 30 s with negligible interferences. The absolute uncertainty is a factor of 1.5. This instrument is now being adapted to aircraft use for measurements throughout the troposphere. 25 refs., 7 figs.

  16. Use of low-shear pumps and hydrocyclones for improved performance in the cleanup of low-pressure water

    SciTech Connect

    Skilbeck, F. )

    1992-08-01

    Although the advantages of using hydrocyclones for oily water cleanup are well proven, their use has been limited to applications where adequate system feed pressure for satisfactory operation was present. This paper reports that to use hydrocyclones in low-pressure operations, research testing was undertaken to determine the most suitable pumping system. Successful field trials with a low-shear progressive cavity pump and a single-liner hydrocyclone were conducted in the U.S. These trials provided the basis for full-scale tests on the Hutton platform in the U.K. sector of the North Sea. These tests demonstrated the feasibility of using large, low-shear, progressive cavity pumps in conjunction with multitube hydrocyclone units. A long-term evaluation of the pumped system was completed on the Hutton platform following these reported results. This work not only demonstrated the feasibility of pumped hydrocyclone oily water cleanup systems, but also resulted in analytical techniques that greatly assist in optimizing hydrocyclone operation.

  17. The effects of process parameters on yield and properties of iron nanoparticles from ferrocene in a low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Panchal, V.; Lahoti, G.; Bhandarkar, U.; Neergat, M.

    2011-08-01

    The effects of process parameters on iron nanoparticle formation and properties while using ferrocene as a precursor in a low-pressure capacitively coupled plasma are investigated. The L18 array of the Taguchi method, followed by the L4 array, is used with the notional objective of increasing the yield of nanoparticles. A study of the size, shape and composition of the particles (using transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, x-ray diffraction, CHON and inductively coupled plasma-atomic emission spectroscopy analysis) gives an insight into the role played by various process parameters. Pressure is the most critical parameter in increasing nanoparticle yield, whereas hydrogen flow plays a key role in determining the nanoparticle size and composition. Atomic hydrogen helps in removing amorphous carbon and reducing the nanoparticle size. RF power plays an important role in the dissociation of ferrocene thus also affecting the composition. Nanoparticles obtained using optimized conditions are a mixture of Fe3O4 and Fe2O3 with cluster size 25-40 nm in diameter that are further made up of 2-4 nm crystallites. Magnetic property measurements indicate that the nanoparticles are super-paramagnetic in nature.

  18. Low resistance tungsten films on GaAs deposited by means of rapid thermal low pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Katz, A.; Feingold, A.; Nakahara, S.; Pearton, S. J.; Lane, E.

    1992-08-01

    Low resistance tungsten (W) films were deposited onto GaAs substrates by means of rapid thermal low pressure chemical vapor deposition (RT-LPCVD), using tungsten hexafluoride (WF6) gas reduced by hydrogen (H2). Deposition temperatures up to 550 °C for durations of up to 30 s were explored, resulting in deposition of relatively pure W films (containing less than 2% O2 and C). Post-deposition sintering of the layers led to significant reduction of the resistivity to values as low as 50 μΩ cm. The efficiency of the deposition improved upon increasing the H2 flow rate up to 1250 sccm resulting in a deposition rate of about 10 nm/s at a total chamber pressure of 3.5 Torr and temperature of 500 °C. The films appeared to be polycrystalline with a very fine grain structure, regardless of the deposition temperature with good morphology and underwent a limited reaction with the underlying GaAs substrates.

  19. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve

    PubMed Central

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-01-01

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D® software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink® in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system. PMID:27213398

  20. Pattern uniformity in large-area ultraviolet nano-imprinting by a cylindrically inflated flexible mold under low pressure.

    PubMed

    Kim, Geehong; Jeong, Mira; Lim, Hyungjun; Lee, Jaejong; Choi, Kee Bong; Do, Lee-Mi

    2012-07-01

    This paper shows a novel nano-imprint method with a polydimethylsiloxane (PDMS) replica mold that was bonded on a cylindrically inflated polycarbonate (PC) film via a low air pressure. The PDMS mold, which was deformed in terms of its cylindrical shape, made a line contact with a substrate from the center region and the contact region, then expanded gradually to the outside of the substrate when the contact force increased. This contact procedure squeezed the resin that was dropped on the substrate from the center to the outside, which prevented the trapping of air bubbles while the cavities were filled with the patterns on the PDMS mold. The main characteristic of the proposed process was that the nano-imprint can be realized under a low pressure, compared to conventional processes. We will show the system that was implemented under the proposed process concept and the patterns that were transferred in an ultraviolet curable resin under pressure conditions of less than 5 kPa.

  1. Low-pressure effective fluorescence lifetimes and photo-physical rate constants of one- and two-ring aromatics

    NASA Astrophysics Data System (ADS)

    Benzler, Thorsten; Faust, Stephan; Dreier, Thomas; Schulz, Christof

    2015-12-01

    One- and two-ring aromatics such as toluene and naphthalene are frequently used molecular tracer species in laser-induced fluorescence (LIF) imaging diagnostics. Quantifying LIF signal intensities requires knowledge of the photo-physical processes that determine the fluorescence quantum yield. Collision-induced and intramolecular energy transfer processes in the excited electronic state closely interact under practical conditions. They can be separated through experiments at variable low pressures. Effective fluorescence lifetimes of gaseous toluene, 1,2,4-trimethylbenzene, anisole, naphthalene, and 1-methylnaphthalene diluted in CO2 were measured after picosecond laser excitation at 266 nm and time-resolved detection of fluorescence intensities. Measurements in an optically accessible externally heated cell between 296 and 475 K and 0.010-1 bar showed that effective fluorescence lifetimes generally decrease with temperature, while the influence of the bath-gas pressure depends on the respective target species and temperature. The results provide non-radiative and fluorescence rate constants and experimentally validate the effect of photo-induced cooling.

  2. On-line automated evaluation of lipid nanoparticles transdermal permeation using Franz diffusion cell and low-pressure chromatography.

    PubMed

    Alves, Ana Catarina; Ramos, Inês I; Nunes, Cláudia; Magalhães, Luís M; Sklenářová, Hana; Segundo, Marcela A; Lima, José L F C; Reis, Salette

    2016-01-01

    A low-pressure liquid chromatography system for the on-line quantification of caffeine loaded into lipid nanoparticles that permeates pig skin was developed. The apparatus includes a Franz diffusion cell with computer-controlled sampling that allows collection of acceptor solution with automatic compensation for sample withdrawing, and a C-18 reversed-phase monolithic column integrated in a typical Flow Injection Analysis (FIA) set-up where separation between caffeine and other matrix elements is performed before spectrophotometric quantification at 273 nm. Several parameters regarding chromatographic analysis (propulsion element, column length, mobile phase composition, and flow rate) were studied along with the establishment of the sampling procedure. Under the selected conditions (monolithic column Chromolith® RP-18 15 mm × 4.6 mm i.d., acetonitrile:water 10:90 (v/v), flow rate 0.45 mL min(-1)) a detection limit of 4 μM and RSD values for caffeine concentration <2% were achieved. High recovery values were obtained when Hepes buffer incubated as acceptor solution in presence of pig skin for 8 h was spiked with caffeine (103±5%). The developed system also accounts for low organic solvent consumption, low operating costs, low generation of waste and high sample throughput (24 h(-1)). Due to the real time automated sampling and high throughput, transdermal permeation profiles of nanoformulations can be established within a time frame seldom observed by conventional techniques.

  3. Application of low-pressure gas chromatography/tandem mass spectrometry to the determination of pesticide residues in tropical fruits.

    PubMed

    Martínez Vidal, José Luis; Fernández Moreno, José Luis; Arrebola Liébanas, Francisco Javier; Garrido Frenich, Antonia

    2007-01-01

    A multiresidue method has been developed for determining pesticide residues in the tropical fruits kiwi, custard apple, and mango. The intended purpose of the method is for regulatory analyses of commodities for pesticides that have established maximum residue limits. A fast and simple extraction method with cyclohexane-ethyl acetate (1 + 1, v/v) and a high-speed homogenizer was optimized. Pressurized liquid extraction was evaluated as an alternative automated extraction technique. The pesticide residues were determined by using low-pressure gas chromatography coupled to tandem mass spectrometry. The proposed methodology was validated for each matrix. Pesticide recoveries ranged from 70 to 110%, with repeatability relative standard deviations of < or = 18% at spiking levels of 12 and 50 microg/kg. The limits of quantitation were in the range of 0.03-6.17 microg/kg, and the limits of detection were between 0.01 and 3.75 microg/kg. Mango can be selected as a representative matrix for calibration on the basis of the results of a potential matrix effect study. The method was successfully applied to the determination of pesticide residues in real samples in Spain.

  4. Enhanced Optical Properties of Chemical Vapor Deposited Single Crystal Diamond by Low-Pressure/High-Temperature Annealing

    SciTech Connect

    Meng, Y.; Yan, C; Lai, Y; Krasnicki, S; Shu, H; Yu, T; Liang, Q; Mao, H; Hemley, R

    2008-01-01

    Single crystal diamond produced by chemical vapor deposition (CVD) at very high growth rates (up to 150 em/h) has been successfully annealed without graphitization at temperatures up to 2200 C and pressures <300 torr. Crystals were annealed in a hydrogen environment by using microwave plasma techniques for periods of time ranging from a fraction of minute to a few hours. This low-pressure/high-temperature (LPHT) annealing enhances the optical properties of this high-growth rate CVD single crystal diamond. Significant decreases are observed in UV, visible, and infrared absorption and photoluminescence spectra. The decrease in optical absorption after the LPHT annealing arises from the changes in defect structure associated with hydrogen incorporation during CVD growth. There is a decrease in sharp line spectral features indicating a reduction in nitrogen-vacancy-hydrogen (NVH-) defects. These measurements indicate an increase in relative concentration of nitrogen-vacancy (NV) centers in nitrogen-containing LPHT-annealed diamond as compared with as-grown CVD material. The large overall changes in optical properties and the specific types of alterations in defect structure induced by this facile LPHT processing of high-growth rate single-crystal CVD diamond will be useful in the creation of diamond for a variety of scientific and technological applications.

  5. Kinetic theory of the positive column of a low-pressure discharge in a transverse magnetic field

    SciTech Connect

    Londer, Ya. I.; Ul'yanov, K. N.

    2011-10-15

    The influence of a transverse magnetic field on the characteristics of the positive column of a planar low-pressure discharge is studied theoretically. The motion of magnetized electrons is described in the framework of a continuous-medium model, while the ion motion in the ambipolar electric field is described by means of a kinetic equation. Using mathematical transformations, the problem is reduced to a secondorder ordinary differential equation, from which the spatial distribution of the potential is found in an analytic form. The spatial distributions of the plasma density, mean plasma velocity, and electric potential are calculated, the ion velocity distribution function at the plasma boundary is found, and the electron energy as a function of the magnetic field is determined. It is shown that, as the magnetic field rises, the electron energy increases, the distributions of the plasma density and mean plasma velocity become asymmetric, the maximum of the plasma density is displaced in the direction of the Ampere force, and the ion flux in this direction becomes substantially larger than the counter-directed ion flux.

  6. Numerical study of effect of secondary electron emission on discharge characteristics in low pressure capacitive RF argon discharge

    SciTech Connect

    Liu, Qian; Liu, Yue Samir, Tagra; Ma, Zhaoshuai

    2014-08-15

    Based on the drift and diffusion approximation theory, a 1D fluid model on capacitively coupled RF argon glow discharge at low pressure is established to study the effect of secondary electron emission (SEE) on the discharge characteristics. The model is numerically solved by using a finite difference method and the numerical results are obtained. The numerical results indicate that when the SEE coefficient is larger, the plasma density is higher and the time of reaching steady state is longer. It is also found that the cycle-averaged electric field, electric potential, and electron temperature change a little as the SEE coefficient is increased. Moreover, the discharge characteristics in some nonequilibrium discharge processes with different SEE coefficients have been compared. The analysis shows that when the SEE coefficient is varied from 0.01 to 0.3, the cycle-averaged electron net power absorption, electron heating rate, thermal convective term, electron energy dissipation, and ionization all have different degrees of growth. While the electron energy dissipation and ionization are quite special, there appear two peaks near each sheath region in the discharge with a relatively larger SEE coefficient. In this case, the discharge is certainly operated in a hybrid α-γ-mode.

  7. Tailoring surface properties of polyethylene separator by low pressure 13.56 MHz RF oxygen plasma glow discharge

    NASA Astrophysics Data System (ADS)

    Li, Chun; Liang, Chia-Han; Huang, Chun

    2016-01-01

    Low-pressure plasma surface modification in a radio-frequency capacitively coupled glow discharge of oxygen gas was carried out to induce polar functional groups onto polyethylene membrane separator surfaces to enhance its hydrophilicity. The surface changes in surface free energy were monitored by static contact angle measurement. A significant increase in the surface energy of polyethylene membrane separators caused by the oxygen gas plasma modifications was observed. The static water contact angle of the plasma-modified membrane separator significantly decreased with the increase in treatment duration and plasma power. An obvious increase in the surface energy of the membrane separators owing to the oxidative effect of oxygen-gas-plasma modifications was also observed. Optical emission spectroscopy was carried out to analyze the chemical species generated by oxygen gas plasma surface modification. The variations in the surface morphology and chemical structure of the separators were confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). XPS showed significantly higher surface concentrations of oxygen functional groups in the oxygen-gas-plasma-modified polymeric separator surfaces than in the unmodified polymeric separator surface. The experimental results show the important role of chemical species in the interaction between oxygen gas plasmas and the separator surface, which can be controlled by surface modification to tailor the hydrophilicity of the separator.

  8. HIGH-k GATE DIELECTRIC: AMORPHOUS Ta/La2O3 FILMS GROWN ON Si AT LOW PRESSURE

    NASA Astrophysics Data System (ADS)

    Bahari, Ali; Khorshidi, Zahra

    2014-09-01

    In the present study, Ta/La2O3 films (La2O3 doped with Ta2O5) as a gate dielectric were prepared using a sol-gel method at low pressure. Ta/La2O3 film has some hopeful properties as a gate dielectric of logic device. The structure and morphology of Ta/La2O3 films were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrical properties of films were performed using capacitance-voltage (C-V) and current density-voltage (J-V) measurements. The optical bandgap of samples was studied by UV-visible optical absorbance measurement. The optical bandgap, Eopt, is determined from the absorbance spectra. The obtained results show that Ta/La2O3 film as a good gate dielectric has amorphous structure, good thermal stability, high dielectric constant (≈ 25), low leakage current and wide bandgap (≈ 4.7 eV).

  9. Rejection of pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) by low pressure reverse osmosis membranes.

    PubMed

    Ozaki, H; Ikejima, N; Shimizu, Y; Fukami, K; Taniguchi, S; Takanami, R; Giri, R R; Matsui, S

    2008-01-01

    This paper aims to elucidate retention characteristics of some pharmaceuticals and personal care products (PPCPs), and endocrine disrupting chemicals (EDCs), by two polyamide low pressure reverse osmosis (LPRO) membranes. Feed solution pH did not have an influence on rejections of undissociated solutes, which was most likely governed by adsorption, size exclusion and diffusion simultaneously. Size exclusion was presumably dominant, especially with tight membranes (UTC-70U). Rejections of the solutes with low dipole moment (<1.0 debye) decreased with increasing octanol-water partition coefficient (K(ow)). The solutes with large K(ow) values were most likely adsorbed on membrane and subsequently passed through it resulting in larger diffusion coefficient (D(p)). The rejections decreased with increasing D(p) values irrespective of their dipole moments. Rejections of solutes with comparatively larger dipole moments might be dominated by diffusion and/or convection rather than their hydrophobicity. However, rejections of solutes with hydroxyl and carboxyl functional groups by UTC-60 increased with solution pH. More than 80% rejections were obtained for degree of dissociation (alpha)>0.5. Electrostatic repulsion played a key role for rejection of dissociated solutes, especially by loose LPRO membranes. Therefore, assessing the dissociation degree at desired pH values can be a key step to obtain an insight of rejection mechanisms by polyamide membranes.

  10. Characterization of low-pressure microwave and radio frequency discharges in oxygen applying optical emission spectroscopy and multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Styrnoll, Tim; Mitschker, Felix; Bienholz, Stefan; Nikita, Bibinov; Awakowicz, Peter

    2013-11-01

    Optical emission spectroscopy (OES) and multipole resonance probe (MRP) are adopted to characterize low-pressure microwave (MW) and radio frequency (RF) discharges in oxygen. In this context, both discharges are usually applied for the deposition of permeation barrier SiOx films on plastic foils or the inner surface of plastic bottles. For technological reasons the MW excitation is modulated and a continuous wave (cw) RF bias is used. The RF voltage produces a stationary low-density plasma, whereas the high-density MW discharge is pulsed. For the optimization of deposition process and the quality of the deposited barrier films, plasma conditions are characterized using OES and MRP. To simplify the comparison of applied diagnostics, both MW and RF discharges are studied separately in cw mode. The OES and MRP diagnostic methods complement each other and provide reliable information about electron density and electron temperature. In the MW case, electron density amounts to ne = (1.25 ± 0.26) × 1017 m-3, and kTe to 1.93 ± 0.20 eV, in the RF case ne = (6.8 ± 1.8)×1015 m-3 and kTe = 2.6 ± 0.35 eV. The corresponding gas temperatures are 760±40 K and 440±20 K.

  11. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve.

    PubMed

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-05-20

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D(®) software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink(®) in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system.

  12. Acoustic performance of low pressure axial fan rotors with different blade chord length and radial load distribution

    NASA Astrophysics Data System (ADS)

    Carolus, Thomas

    The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.

  13. Mass spectrometry of positive ions in capacitively coupled low pressure RF discharges in oxygen with water impurities

    NASA Astrophysics Data System (ADS)

    Stefanović, Ilija; Stojanović, Vladimir; Boulmer-Leborgne, Chantal; Lecas, Thomas; Kovacevic, Eva; Berndt, Johannes

    2016-07-01

    A capacitively coupled RF oxygen discharge is studied by means of mass spectroscopy. Mass spectra of neutral and positive species are measured in the mid plane between the electrodes at different distances between plasma and mass-spectrometer orifice. In the case of positive ions, as expected, the largest flux originates from \\text{O}2+ . However, a significant number of impurities are detected, especially for low input powers and larger distances. The most abundant positive ions (besides \\text{O}2+ ) are \\text{N}{{\\text{O}}+}, \\text{NO}2+ , {{\\text{H}}+}≤ft({{\\text{H}}2}\\text{O}\\right) , and {{\\text{H}}+}{{≤ft({{\\text{H}}2}\\text{O}\\right)}2} . In particular, for the case of hydrated hydronium ions {{\\text{H}}+}{{≤ft({{\\text{H}}2}\\text{O}\\right)}n} (n  =  1, 2) a surprisingly large flux (for low pressure plasma conditions) is detected. Another interesting fact concerns the {{\\text{H}}2}{{\\text{O}}+} ions. Despite the relatively high ammount of water impurities {{\\text{H}}2}{{\\text{O}}+} ions are present only in traces. The reaction mechanisms leading to the production of the observed ions, especially the hydrated hydronium ions are discussed.

  14. Controllable Generation of a Submillimeter Single Bubble in Molten Metal Using a Low-Pressure Macrosized Cavity

    NASA Astrophysics Data System (ADS)

    Konovalenko, Alexander; Sköld, Per; Kudinov, Pavel; Bechta, Sevostian; Grishchenko, Dmitry

    2017-04-01

    We develop a method for generation of a single gas bubble in a pool of molten metal. The method can be useful for applications and research studies where a controllable generation of a single submillimeter bubble in opaque hot liquid is required. The method resolves difficulties with bubble detachment from the orifice, wettability issues, capillary channel and orifice surfaces degradation due to contact with corrosive hot liquid, etc. The macrosized, 5- to 50-mm3 cavity is drilled in the solid part of the pool. Flushing the cavity with gas, vacuuming it to low pressure, as well as sealing and consequent remelting cause cavity implosion due to a few orders in magnitude pressure difference between the cavity and the molten pool. We experimentally demonstrate a controllable production of single bubbles ranging from a few milliliters down to submillimeter size. The uncertainties in size and bubble release timing are estimated and compared with experimental observations for bubbles ranging within 0.16 to 4 mm in equivalent-volume sphere diameter. Our results are obtained in heavy liquid metals such as Wood's and Lead-Bismuth eutectics at 353 K to 423 K (80 °C to 150 °C).

  15. Comparison of the noise characteristics of two low pressure ratio fans with a high throat Mach number inlet

    NASA Technical Reports Server (NTRS)

    Wesoky, H. L.; Abbott, J. M.; Dietrich, D. A.

    1978-01-01

    Acoustics data obtained in experiments with two low pressure ratio 50.8 cm (20 in.) diameter model fans differing in design tip speed were compared. Determination of the average throat Mach number used to compare high Mach inlet noise reduction characteristics was based on a correlation of inlet wall static pressure measurements with a flow field calculation. The largest noise reductions were generally obtained with the higher tip speed fan. At a throat Mach number of 0.79, the difference in noise reduction was about 3.5 db with static test conditions. Although the noise reduction increased for the lower tip speed fan with a simulated flight velocity of 41 m/sec (80 knots), it was still about 2 db less than that of the high tip speed fan which was only tested at the static condition. However, variations in acoustic performance could not be absolutely attributed to the different fan designs because of differences in inlet lip contours which resulted in small variations of peak wall Mach number and axial extend of supersonic and near-sonic flow.

  16. Electron ranaway and ion-ion plasma formation in afterglow low-pressure plasma of oxygen-containing gas mixtures

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Kosykh, Nikolay; Gutsev, Sergey

    2012-10-01

    Experimental investigation of temporal evolution of charged plasma species in afterglow plasma of oxygen-containing mixtures have been investigated. The probe VAC and the time dependence of the saturation positive and negative particles currents to a probe in a fixed bias voltage were performed. The decay of afterglow low-pressure electronegative gas plasmas take place in two distinct stages (the electron-ion stage, and the ion-ion stage) as it was shown in [1] for pure oxygen. In the first stage, the negative ions are locked within a discharge volume and plasma is depleted of electrons and positive ions. The electron density decay is faster, than exponential, and practically all electrons leave plasma volume during finite time followed by the ion--ion (electron-free) plasma formation. The decay of the ion-ion plasma depends on the presence of detachment. With a large content of electronegative gas (oxygen) in a mixture, when there is a ``detachment particles,'' a small fraction of the electrons appearing as a result of the detachment continue to hold all negative ions in the discharge volume. In this case, the densities of all charged plasma components decay according to the same exponential law with a characteristic detachment time. At a low oxygen content in the gas mixture there is no detachment and plasma decays by an ion--ion ambipolar diffusion mechanism.[4pt][1]. S.A.Gutsev, A.A.Kudryavtsev, V.A.Romanenko. Tech.Phys. 40, 1131, (1995).

  17. Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure

    NASA Astrophysics Data System (ADS)

    Hedwig, Rinda; Budi, Wahyu Setia; Abdulmadjid, Syahrun Nur; Pardede, Marincan; Suliyanti, Maria Margaretha; Lie, Tjung Jie; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2006-12-01

    The applicability of spectrochemical analysis for liquid and powder samples of minute amount in the form of thin film was investigated using ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A variety of organic samples such as commercial black ink usually used for stamp pad, ginseng extract, human blood, liquid milk and ginseng powder was prepared as film deposited on the surface of an appropriate hard substrate such as copper plate or glass slide. It was demonstrated that in all cases studied, good quality spectra were obtained with very low background and free from undesirable contamination by the substrate elements, featuring ppm or even sub-ppm sensitivity and worthy of application for quantitative analysis of organic samples. The proper preparation of the films was found to be crucial in achieving the high quality spectra. It was further shown that much inferior results were obtained when the atmospheric-pressure (101 kPa) operating condition of laser-induced breakdown spectroscopy or the fundamental wavelength of the Nd-YAG laser was employed due to the excessive or improper laser ablation process.

  18. Evidence for Skill Level Differences in the Thought Processes of Golfers During High and Low Pressure Situations

    PubMed Central

    Whitehead, Amy E.; Taylor, Jamie A.; Polman, Remco C. J.

    2016-01-01

    Two studies examined differences in the cognition of golfers with differing levels of expertise in high and low pressure situations. In study 1, six high skill and six low skill golfers performed six holes of golf, while verbalizing their thoughts using Think Aloud (TA) protocol. Higher skilled golfers’ cognitive processes centered more on planning in comparison to lower skilled golfers. Study 2 investigated whether thought processes of golfers changed in response to competitive pressure. Eight high skill and eight moderate skilled golfers, completed a practice round and a competition round whilst verbalizing thoughts using TA. To create pressure in the competition condition, participants were instructed that monetary prizes would be awarded to the top three performers and scores of all golfers would be published in a league table in the club house. When performing under competitive pressure, it was found that higher skilled golfers were more likely to verbalize technical rules compared to practice conditions, especially during putting performance. This shift in cognition toward more technical aspects of motor performance was strongly related to scores on the Decision Specific Reinvestment Scale, suggesting individuals with a higher propensity for reinvestment show the largest changes in cognition under pressure. From a practical perspective, TA can aid a player, coach or sport psychologist by allowing thought processes to be identified and investigate a performer’s thoughts when faced with the pressure of a competition. PMID:26779085

  19. Photocatalytic reaction characteristics of the titanium dioxide supported on the long phosphorescent phosphor by a low pressure chemical vapor deposition.

    PubMed

    Kim, Jung-Sik; Kim, Seung-Woo; Jung, Sang-Chul

    2014-10-01

    This study investigated the photocatalytic behavior of titanium dioxide (TiO2)-supported on the long phosphorescent materials. Nanocrystalline TiO2 was directly deposited on the plate of alkaline earth aluminate phosphor, CaAl2O4: Eu2+, Nd3+ by a low pressure chemical vapor deposition (LPCVD). Photocatalytic reaction performance was examined with the decomposition of benzene gas by using a gas chromatography (GC) system under ultraviolet and visible light (λ > 410 nm) irradiations. The LPCVD TiO2-coated phosphors showed active photocatalytic reaction under visible irradiation. The mechanism of the photocatalytic reactivity for the TiO,-coated phosphorescent phosphor was discussed in terms of the energy band structure and phosphorescence. The coupling of TiO2 with phosphor may result in energy band bending in the junction region, which makes the TiO, crystal at the interface to be photo-reactive under visible light irradiation. The fastest degradation of ben- zene gas occurred for the TiO,-coated phosphor prepared with 1 min deposition time (-150 nm thickness). The LPCVD TiO,-coated phosphor is also photo-reactive under darkness through the light photons emitted from the CaAl2O4 phosphor. In addition, the TiO2-coated phosphorescent phosphors were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  20. Impact of low-pressure glow-discharge-pulsed plasma polymerization on properties of polyaniline thin films

    NASA Astrophysics Data System (ADS)

    Jatratkar, Aviraj A.; Yadav, Jyotiprakash B.; Deshmukh, R. R.; Barshilia, Harish C.; Puri, Vijaya; Puri, R. K.

    2016-12-01

    This study reports on polyaniline thin films deposited on a glass substrate using a low-pressure glow-discharge-pulsed plasma polymerization method. The polyaniline thin film obtained by pulsed plasma polymerization has been successfully demonstrated as an optical waveguide with a transmission loss of 3.93 dB cm-1, and has the potential to be employed in integrated optics. An attempt has been made to investigate the effect of plasma OFF-time on the structural, optical as well as surface properties of polyaniline thin film. The plasma ON-time has been kept constant and the plasma OFF-time has been varied throughout the work. The plasma OFF-time strongly influenced the properties of the polyaniline thin film, and a nanostructured and compact surface was revealed in the morphological studies. The plasma OFF-time was found to enhance film thickness, roughness, refractive index and optical transmission loss, whereas it reduced the optical band gap of the polyaniline thin films. Retention in the aromatic structure was confirmed by FTIR results. Optical studies revealed a π-π* electronic transition at about 317 nm as well as the formation of a branched structure. As compared with continuous wave plasma, pulsed plasma polymerization shows better properties. Pulsed plasma polymerization reduced the roughness of the film from 1.2 nm to 0.42 nm and the optical transmission loss from 6.56 dB cm-1 to 3.39 dB cm-1.

  1. Identification of key water quality characteristics affecting the filterability of biologically treated effluent in low-pressure membrane filtration.

    PubMed

    Nguyen, T; Fan, L; Roddick, F A; Harris, J L

    2010-01-01

    There are many water quality characteristics which could influence the filterability of biologically treated effluent from Melbourne's Western Treatment Plant (WTP). Statistical correlation was used to identify the key water characteristics affecting the microfiltration (MF) and ultrafiltration (UF) filterability in terms of permeate volume of the treated effluent. The models developed showed that turbidity, dissolved organic carbon (DOC) and total suspended solids (TSS) were the key factors which influenced the MF and UF filterability. Turbidity was the dominant factor affecting the accuracy of the model for MF filterability while DOC was the major factor affecting the accuracy of the model for UF filterability. A prediction accuracy of 85% was obtained for MF and 86% for UF filterability of the WTP effluent. The characteristics of the organic components of the wastewater were demonstrated by EEM spectra to have seasonal variation which would have reduced the prediction accuracy. As turbidity, DOC and TSS can be determined on-line, the models would be useful for rapid prediction of the filterability of WTP effluent and this may assist the control of low-pressure membrane filtration processes.

  2. Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Rafique, Subrina; Han, Lu; Tadjer, Marko J.; Freitas, Jaime A.; Mahadik, Nadeemullah A.; Zhao, Hongping

    2016-05-01

    This paper presents the homoepitaxial growth of phase pure (010) β-Ga2O3 thin films on (010) β-Ga2O3 substrate by low pressure chemical vapor deposition. The effects of growth temperature on the surface morphology and crystal quality of the thin films were systematically investigated. The thin films were synthesized using high purity metallic gallium (Ga) and oxygen (O2) as precursors for gallium and oxygen, respectively. The surface morphology and structural properties of the thin films were characterized by atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. Material characterization indicates the growth temperature played an important role in controlling both surface morphology and crystal quality of the β-Ga2O3 thin films. The smallest root-mean-square surface roughness of ˜7 nm was for thin films grown at a temperature of 950 °C, whereas the highest growth rate (˜1.3 μm/h) with a fixed oxygen flow rate was obtained for the epitaxial layers grown at 850 °C.

  3. One-dimensional Ar-SF{sub 6} hydromodel at low-pressure in e-beam generated plasmas

    SciTech Connect

    Petrov, George M. Boris, David R.; Petrova, Tzvetelina B.; Walton, Scott G.

    2016-03-15

    A one-dimensional steady-state hydrodynamic model of electron beam generated plasmas produced in Ar-SF{sub 6} mixtures at low pressure in a constant magnetic field was developed. Simulations were performed for a range of SF{sub 6} partial pressures at constant 30 mTorr total gas pressure to determine the spatial distribution of species densities and fluxes. With the addition of small amount of SF{sub 6} (∼1%), the confining electrostatic field sharply decreases with respect to the pure argon case. This effect is due to the applied magnetic field inhibiting electron diffusion. The hallmark of electronegative discharge plasmas, positive ion—negative ion core and positive ion—electron edge, was not observed. Instead, a plasma with large electronegativity (∼100) is formed throughout the volume, and only a small fraction (≈30%) of the parent SF{sub 6} molecules were dissociated to F{sub 2}, SF{sub 2}, and SF{sub 4}. Importantly, F radical densities were found to be very low, on the order of the ion density. Model predictions for the electron density, ion density, and plasma electronegativity are in good agreement with experimental data over the entire range of SF{sub 6} concentrations investigated.

  4. Modification of polypropylene foils by low pressure oxygen plasma and its influence on the formation of titanium dioxide films

    NASA Astrophysics Data System (ADS)

    Sadowski, Rafal; Macyk, Wojciech

    2014-10-01

    Commercially available polypropylene foils were pre-treated with low pressure, room temperature radio frequency (RF) oxygen plasma at constant power and pressure. Various durations of pre-treatment process were applied. Afterwards the samples were covered with titanium dioxide thin film by dip-coating technique and photosensitized by titanium(IV) surface complexes formed upon impregnation with catechol-like ligands. Optical emission spectroscopy (OES) measurements were used for determining plasma species. The surface properties before and after plasma treatment were characterized by contact angle measurements, FTIR-ATR, UV-Vis, and X-ray photoelectron spectroscopy (XPS). Titanium dioxide thin films were characterized by scanning electron microscopy (SEM) and UV-Vis spectroscopy. The photoactivity of TiO2 films was tested by photocurrent measurements. It was shown that plasma pre-treatment is essential for oxygen groups formation which contribute to titanium dioxide binding to polymer surface. The support from National Science Centre within the DEC-2012/05/N/ST5/01497 grant is highly acknowledged.

  5. Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water.

    PubMed

    Sholtes, Kari A; Lowe, Kincaid; Walters, Glenn W; Sobsey, Mark D; Linden, Karl G; Casanova, Lisa M

    2016-09-01

    Ultraviolet (UV) light-emitting diodes (LEDs) emitting at 260 nm were evaluated to determine the inactivation kinetics of bacteria, viruses, and spores compared to low-pressure (LP) UV irradiation. Test microbes were Escherichia coli B, a non-enveloped virus (MS-2), and a bacterial spore (Bacillus atrophaeus). For LP UV, 4-log10 reduction doses were: E. coli B, 6.5 mJ/cm(2); MS-2, 59.3 mJ/cm(2); and B. atrophaeus, 30.0 mJ/cm(2). For UV LEDs, the 4-log10 reduction doses were E. coli B, 6.2 mJ/cm(2); MS-2, 58 mJ/cm(2); and B. atrophaeus, 18.7 mJ/cm(2). Microbial inactivation kinetics of the two UV technologies were not significantly different for E. coli B and MS-2, but were different for B. atrophaeus spores. UV LEDs at 260 nm are at least as effective for inactivating microbes in water as conventional LP UV sources and should undergo further development in treatment systems to disinfect drinking water.

  6. Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high-temperature annealing.

    PubMed

    Meng, Yu-fei; Yan, Chih-shiue; Lai, Joseph; Krasnicki, Szczesny; Shu, Haiyun; Yu, Thomas; Liang, Qi; Mao, Ho-kwang; Hemley, Russell J

    2008-11-18

    Single crystal diamond produced by chemical vapor deposition (CVD) at very high growth rates (up to 150 microm/h) has been successfully annealed without graphitization at temperatures up to 2200 degrees C and pressures <300 torr. Crystals were annealed in a hydrogen environment by using microwave plasma techniques for periods of time ranging from a fraction of minute to a few hours. This low-pressure/high-temperature (LPHT) annealing enhances the optical properties of this high-growth rate CVD single crystal diamond. Significant decreases are observed in UV, visible, and infrared absorption and photoluminescence spectra. The decrease in optical absorption after the LPHT annealing arises from the changes in defect structure associated with hydrogen incorporation during CVD growth. There is a decrease in sharp line spectral features indicating a reduction in nitrogen-vacancy-hydrogen (NVH(-)) defects. These measurements indicate an increase in relative concentration of nitrogen-vacancy (NV) centers in nitrogen-containing LPHT-annealed diamond as compared with as-grown CVD material. The large overall changes in optical properties and the specific types of alterations in defect structure induced by this facile LPHT processing of high-growth rate single-crystal CVD diamond will be useful in the creation of diamond for a variety of scientific and technological applications.

  7. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    SciTech Connect

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing; Wang, Xinxin

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observed that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.

  8. Thermal barrier coating life and isothermal oxidation of low-pressure plasma-sprayed bond coat alloys

    NASA Technical Reports Server (NTRS)

    Brindley, W. J.; Miller, R. A.

    1990-01-01

    The paper investigates the isothermal oxidation kinetics of Ni-35Cr-6Al-0.95Y, Ni-18Cr-12Al-0.3Y, and Ni-16Cr-6Al-0.3Y low-pressure plasma-sprayed bond coat alloys and examines the effect of these alloys on the thermal barrier coating (TBC) cyclic life. TBC life was examined by cycling substrates coated with the different bond coats and a ZrO2-7 wt pct Y2O3 TBC in an air-rich burner rig flame between 1150 C and room temperature. The oxidation kinetics of the three bond coat alloys was examined by isothermal oxidation of monolithic NJiCrAlY coupons at 1083 C. The Ni-35Cr-6Al-0.95Y alloy exhibits comparatively high isothermal oxidation weight gains and provides the longest TBC life, whereas the Ni-16Cr-6Al-0.3Y alloy had the lowest weight gains and provided the shortest TBC life. The results show that, although bond coat oxidation is known to have a strong detrimental effect on TBC life, it is not the only bond coat factor that determines TBC life.

  9. Controllable Generation of a Submillimeter Single Bubble in Molten Metal Using a Low-Pressure Macrosized Cavity

    NASA Astrophysics Data System (ADS)

    Konovalenko, Alexander; Sköld, Per; Kudinov, Pavel; Bechta, Sevostian; Grishchenko, Dmitry

    2017-01-01

    We develop a method for generation of a single gas bubble in a pool of molten metal. The method can be useful for applications and research studies where a controllable generation of a single submillimeter bubble in opaque hot liquid is required. The method resolves difficulties with bubble detachment from the orifice, wettability issues, capillary channel and orifice surfaces degradation due to contact with corrosive hot liquid, etc. The macrosized, 5- to 50-mm3 cavity is drilled in the solid part of the pool. Flushing the cavity with gas, vacuuming it to low pressure, as well as sealing and consequent remelting cause cavity implosion due to a few orders in magnitude pressure difference between the cavity and the molten pool. We experimentally demonstrate a controllable production of single bubbles ranging from a few milliliters down to submillimeter size. The uncertainties in size and bubble release timing are estimated and compared with experimental observations for bubbles ranging within 0.16 to 4 mm in equivalent-volume sphere diameter. Our results are obtained in heavy liquid metals such as Wood's and Lead-Bismuth eutectics at 353 K to 423 K (80 °C to 150 °C).

  10. Kinetics of low-pressure, low-temperature graphene growth: toward single-layer, single-crystalline structure.

    PubMed

    Mehdipour, Hamid; Ostrikov, Kostya Ken

    2012-11-27

    Graphene grown on metal catalysts with low carbon solubility is a highly competitive alternative to exfoliated and other forms of graphene, yet a single-layer, single-crystal structure remains a challenge because of the large number of randomly oriented nuclei that form grain boundaries when stitched together. A kinetic model of graphene nucleation and growth is developed to elucidate the effective controls of the graphene island density and surface coverage from the onset of nucleation to the full monolayer formation in low-pressure, low-temperature CVD. The model unprecedentedly involves the complete cycle of the elementary gas-phase and surface processes and shows a precise quantitative agreement with the recent low-energy electron diffraction measurements and also explains numerous parameter trends from a host of experimental reports. These agreements are demonstrated for a broad pressure range as well as different combinations of precursor gases and supporting catalysts. The critical role of hydrogen in controlling the graphene nucleation and monolayer formation is revealed and quantified. The model is generic and can be extended to even broader ranges of catalysts and precursor gases/pressures to enable the as yet elusive effective control of the crystalline structure and number of layers of graphene using the minimum amounts of matter and energy.

  11. High-frequency data observations from space shuttle main engine low pressure fuel turbopump discharge duct flex joint tripod failure investigation

    NASA Technical Reports Server (NTRS)

    Zoladz, T. F.; Farr, R. A.

    1991-01-01

    Observations made by Marshall Space Flight Center (MSFC) engineers during their participation in the Space Shuttle Main Engine (SSME) low pressure fuel turbopump discharge duct flex joint tripod failure investigation are summarized. New signal processing techniques used by the Component Assessment Branch and the Induced Environments Branch during the failure investigation are described in detail. Moreover, nonlinear correlations between frequently encountered anomalous frequencies found in SSME dynamic data are discussed. A recommendation is made to continue low pressure fuel (LPF) duct testing through laboratory flow simulations and MSFC-managed technology test bed SSME testing.

  12. Experimental Studies of Low-Pressure Turbine Flows and Flow Control. Streamwise Pressure Profiles and Velocity Profiles

    NASA Technical Reports Server (NTRS)

    Volino, Ralph

    2012-01-01

    This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies.This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy

  13. Measurement of vibrational energy transfer of OH (A2S+,v'=1?0) in low-pressure flames

    NASA Astrophysics Data System (ADS)

    Hartlieb, A. T.; Markus, D.; Kreutner, W.; Kohse-Höinghaus, K.

    1997-07-01

    Vibrational energy transfer (VET) and electronic quenching of OH (A2D+) was measured in a low-pressure H2/O2 flame for three rotational levels of OH (v'=1). Rate coefficients for collisions with H2O and N2 were determined. At 1600 K, kVET (N2) is (in 10-11 cm3s-1) 10.1DŽ, 6.1ǃ.8, and 3.8ǃ.3 for N'=0, 5, and 13, respectively. The kVET (H2O) is <1.1ǃ.8. The kQ (N2) is <2.4NJ for both vibrational levels. The kQ (H2O) in v'=1 is 59.1Lj.5, 54.7Lj.4, and 54.9Lj.6 for N'=0, 5, and 13, respectively, and, determined indirectly, 74.6ᆞ.4, 70.6ᆞ.3, and 63.4lj.3 for N'=0, 5, and 13 in v'=0. A multi-level model of OH population dynamics, which is being developed for the quantitative simulation of experimental LIF spectra, was extended to include VET. It was attempted to simulate state-to-state-specific VET coefficients for N2 collisions. From these simulations it appears that angular momentum conservation does not determine the N dependence of the vibrational relaxation step.

  14. Modelling of infrared optical constants for polycrystalline low pressure chemical vapour deposition ZnO:B films

    NASA Astrophysics Data System (ADS)

    Prunici, P.; Hamelmann, F. U.; Beyer, W.; Kurz, H.; Stiebig, H.

    2013-03-01

    Doped zinc oxide films are of high interest in thin film solar cell technology for application as transparent conducting oxide. Rapid and detailed characterisation of ZnO thin film properties is required for quality control and optimisation of the deposited films. In the present work, a new model of dielectric functions based on the effective medium approximation (EMA) is developed and is applied for characterisation of polycrystalline boron doped zinc oxide (ZnO:B) films, deposited by low pressure chemical vapour deposition (LPCVD) technique onto glass substrates. The model takes into account that polycrystalline ZnO is considered to consist of crystal grains surrounded by depletion layers. Using this model and Fourier Transform Infrared Spectroscopy (FTIR) performed in reflection configuration over a wide mid-infrared spectral region (from 2 μm up to 25 μm), the properties of depletion layer and the bulk of the grains in ZnO can be rapidly characterised in detail, and the volume fraction of the depletion layer can be extracted. The results are in good agreement with previously presented theories of electron transport in polycrystalline materials. Using electrical measurements like conductivity and Hall techniques in addition to the optically determined parameters, predominant electron scattering mechanisms in polycrystalline films for different doping levels are identified. The measurements show the impact of the doping level on depletion layer of the crystallites. It is shown, furthermore, that under a water vapour rich environment the volume fraction of the depletion layer may increase up to 5 times and more, while the mobility of the charge carriers in the depletion layer drops drastically from about 31 cm2V-1s-1 to about 8 cm2V-1s-1. This indicates that water vapour exposure causes an increase of the potential barrier in the grain boundary depletion layer, limiting the electron transport across the grain boundaries to a classical thermionic emission

  15. A comparative study on continuous and pulsed RF argon capacitive glow discharges at low pressure by fluid modeling

    NASA Astrophysics Data System (ADS)

    Liu, Ruiqiang; Liu, Yue; Jia, Wenzhu; Zhou, Yanwen

    2017-01-01

    Based on the plasma fluid theory and using the drift-diffusion approximation, a mathematical model for continuous and pulsed radial frequency (RF) argon capacitive glow discharges at low pressure is established. The model is solved by a finite difference method and the numerical results are reported. Based on the systematic analysis of the results, plasma characteristics of the continuous and pulsed RF discharges are comparatively investigated. It is shown that, under the same condition for the peak value of the driving potential, the cycle-averaged electron density, the current density, and other essential physical quantities in the continuous RF discharge are higher than those from the pulsed RF discharge. On the other hand, similar plasma characteristics are obtained with two types of discharges, by assuming the same deposited power. Consequently, higher driving potential is needed in pulsed discharges in order to maintain the same effective plasma current. Furthermore, it is shown that, in the bulk plasma region, the peak value of the bipolar electric field from the continuous RF discharge is greater than that from the pulsed RF discharge. In the sheath region, the ionization rate has the shape of double-peaking and the explanation is given. Because the plasma input power depends on the driving potential and the plasma current phase, the phase differences between the driving potential and the plasma current are compared between the continuous and the pulsed RF discharges. It is found that this phase difference is smaller in the pulsed RF discharge compared to that of the continuous RF discharge. This means that the input energy coupling in the pulsed RF discharge is less efficient than the continuous counterpart. This comparative study, carried out also under other conditions, thus can provide instructive ideas in applications using the continuous and pulsed RF capacitive glow discharges.

  16. Facile Carbonization of Microporous Organic Polymers into Hierarchically Porous Carbons Targeted for Effective CO2 Uptake at Low Pressures.

    PubMed

    Gu, Shuai; He, Jianqiao; Zhu, Yunlong; Wang, Zhiqiang; Chen, Dongyang; Yu, Guipeng; Pan, Chunyue; Guan, Jianguo; Tao, Kai

    2016-07-20

    The advent of microporous organic polymers (MOPs) has delivered great potential in gas storage and separation (CCS). However, the presence of only micropores in these polymers often imposes diffusion limitations, which has resulted in the low utilization of MOPs in CCS. Herein, facile chemical activation of the single microporous organic polymers (MOPs) resulted in a series of hierarchically porous carbons with hierarchically meso-microporous structures and high CO2 uptake capacities at low pressures. The MOPs precursors (termed as MOP-7-10) with a simple narrow micropore structure obtained in this work possess moderate apparent BET surface areas ranging from 479 to 819 m(2) g(-1). By comparing different activating agents for the carbonization of these MOPs matrials, we found the optimized carbon matrials MOPs-C activated by KOH show unique hierarchically porous structures with a significant expansion of dominant pore size from micropores to mesopores, whereas their microporosity is also significantly improved, which was evidenced by a significant increase in the micropore volume (from 0.27 to 0.68 cm(3) g(-1)). This maybe related to the collapse and the structural rearrangement of the polymer farmeworks resulted from the activation of the activating agent KOH at high temperature. The as-made hierarchically porous carbons MOPs-C show an obvious increase in the BET surface area (from 819 to 1824 m(2) g(-1)). And the unique hierarchically porous structures of MOPs-C significantly contributed to the enhancement of the CO2 capture capacities, which are up to 214 mg g(-1) (at 273 K and 1 bar) and 52 mg g(-1) (at 273 K and 0.15 bar), superior to those of the most known MOPs and porous carbons. The high physicochemical stabilities and appropriate isosteric adsorption heats as well as high CO2/N2 ideal selectivities endow these hierarchically porous carbon materials great potential in gas sorption and separation.

  17. Particle size distributions of particulate emissions from the ferroalloy industry evaluated by electrical low pressure impactor (ELPI).

    PubMed

    Kero, Ida; Naess, Mari K; Tranell, Gabriella

    2015-01-01

    The present article presents a comprehensive evaluation of the potential use of an Electrical Low Pressure Impactor (ELPI) in the ferroalloy industry with respect to indoor air quality and fugitive emission control. The ELPI was used to assess particulate emission properties, particularly of the fine particles (Dp ≤ 1 μm), which in turn may enable more satisfactory risk assessments for the indoor working conditions in the ferroalloy industry. An ELPI has been applied to characterize the fume in two different ferroalloy plants, one producing silicomanganese (SiMn) alloys and one producing ferrosilicon (FeSi) alloys. The impactor classifies the particles according to their aerodynamic diameter and gives real-time particle size distributions (PSD). The PSD based on both number and mass concentrations are shown and compared. Collected particles have also been analyzed by transmission and scanning electron microscopy with energy dispersive spectroscopy. From the ELPI classification, particle size distributions in the range 7 nm - 10 μm have been established for industrial SiMn and FeSi fumes. Due to the extremely low masses of the ultrafine particles, the number and mass concentration PSD are significantly different. The average aerodynamic diameters for the FeSi and the SiMn fume particles were 0.17 and 0.10 μm, respectively. Based on this work, the ELPI is identified as a valuable tool for the evaluation of airborne particulate matter in the indoor air of metallurgical production sites. The method is well suited for real-time assessment of morphology (particle shape), particle size, and particle size distribution of aerosols.

  18. Fast low-pressure microwave assisted extraction and gas chromatographic determination of polychlorinated biphenyls in soil samples.

    PubMed

    Bruzzoniti, M C; Maina, R; Tumiatti, V; Sarzanini, C; Rivoira, L; De Carlo, R M

    2012-11-23

    A new technology equipment for low-pressure microwave assisted extraction (usually employed for organic chemistry reactions), recently launched in the market, is used for the first time in environmental analysis for the extraction of commercial technical Aroclor mixtures from soil. Certified reference materials of Aroclor 1260, Aroclor 1254 and Aroclor 1242 in transformer oils were used to contaminate the soil samples and to optimize the extraction method as well as the subsequent gas chromatographic electron capture detection (GC-ECD) analytical method. The study was performed optimizing the extraction, the purification and the gas chromatographic separation conditions to enhance the resolution of difficult pairs of congeners (C28/31 and C141/179). After optimization, the recovery yields were included within the range 79-84%. The detection limits, evaluated for two different commercial polychlorinated biphenyl (PCB) mixtures (Aroclor 1260 and Aroclor 1242) were 0.056 ± 0.001 mg/kg and 0.290 ± 0.006 mg/kg, respectively. The method, validated with certified soil samples, was used to analyze a soil sample after an event of failure of a pole-mounted transformer which caused the dumping of PCB contaminated oil in soil. Moreover, the method provides simple sample handling, fast extraction with reduced amount of sample and solvents than usually required, and simple purification step involving the use of solvent (cyclohexane) volumes as low as 5 mL. Reliability and reproducibility of extraction conditions are ensured by direct and continuous monitoring of temperature and pressure conditions.

  19. Particle Size Distributions of Particulate Emissions from the Ferroalloy Industry Evaluated by Electrical Low Pressure Impactor (ELPI)

    PubMed Central

    Kero, Ida; Naess, Mari K.; Tranell, Gabriella

    2015-01-01

    The present article presents a comprehensive evaluation of the potential use of an Electrical Low Pressure Impactor (ELPI) in the ferroalloy industry with respect to indoor air quality and fugitive emission control. The ELPI was used to assess particulate emission properties, particularly of the fine particles (Dp ≤ 1 μm), which in turn may enable more satisfactory risk assessments for the indoor working conditions in the ferroalloy industry. An ELPI has been applied to characterize the fume in two different ferroalloy plants, one producing silicomanganese (SiMn) alloys and one producing ferrosilicon (FeSi) alloys. The impactor classifies the particles according to their aerodynamic diameter and gives real-time particle size distributions (PSD). The PSD based on both number and mass concentrations are shown and compared. Collected particles have also been analyzed by transmission and scanning electron microscopy with energy dispersive spectroscopy. From the ELPI classification, particle size distributions in the range 7 nm – 10 μm have been established for industrial SiMn and FeSi fumes. Due to the extremely low masses of the ultrafine particles, the number and mass concentration PSD are significantly different. The average aerodynamic diameters for the FeSi and the SiMn fume particles were 0.17 and 0.10 μm, respectively. Based on this work, the ELPI is identified as a valuable tool for the evaluation of airborne particulate matter in the indoor air of metallurgical production sites. The method is well suited for real-time assessment of morphology (particle shape), particle size, and particle size distribution of aerosols. PMID:25380385

  20. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer

    NASA Astrophysics Data System (ADS)

    Mutch, E. J. F.; Blundy, J. D.; Tattitch, B. C.; Cooper, F. J.; Brooker, R. A.

    2016-10-01

    We report new experimental data on the composition of magmatic amphiboles synthesised from a variety of granite (sensu lato) bulk compositions at near-solidus temperatures and pressures of 0.8-10 kbar. The total aluminium content (Altot) of the synthetic calcic amphiboles varies systematically with pressure ( P), although the relationship is nonlinear at low pressures (<2.5 kbar). At higher pressures, the relationship resembles that of other experimental studies, which suggests of a general relationship between Altot and P that is relatively insensitive to bulk composition. We have developed a new Al-in-hornblende geobarometer that is applicable to granitic rocks with the low-variance mineral assemblage: amphibole + plagioclase (An15-80) + biotite + quartz + alkali feldspar + ilmenite/titanite + magnetite + apatite. Amphibole analyses should be taken from the rims of grains, in contact with plagioclase and in apparent textural equilibrium with the rest of the mineral assemblage at temperatures close to the haplogranite solidus (725 ± 75 °C), as determined from amphibole-plagioclase thermometry. Mean amphibole rim compositions that meet these criteria can then be used to calculate P (in kbar) from Altot (in atoms per formula unit, apfu) according to the expression: {it{P }}( {{kbar}} ) = 0.5 + 0.331( 8 ) × {{Al}}^{{tot}} + 0.995( 4 ) × ( {{{Al}}^{{tot}} } )2 This expression recovers equilibration pressures of our calibrant dataset, comprising both new and published experimental and natural data, to within ±16 % relative uncertainty. An uncertainty of 10 % relative for a typical Altot value of 1.5 apfu translates to an uncertainty in pressure estimate of 0.5 kbar, or 15 % relative. Thus the accuracy of the barometer expression is comparable to the precision with which near-solidus amphibole rim composition can be characterised.

  1. Investigation of effect of excitation frequency on electron energy distribution functions in low pressure radio frequency bounded plasmas

    SciTech Connect

    Bhattacharjee, Sudeep; Lafleur, Trevor; Charles, Christine; Boswell, Rod

    2011-07-15

    Particle in cell (PIC) simulations are employed to investigate the effect of excitation frequency {omega} on electron energy distribution functions (EEDFs) in a low pressure radio frequency (rf) discharge. The discharge is maintained over a length of 0.10 m, bounded by two infinite parallel plates, with the coherent heating field localized at the center of the discharge over a distance of 0.05 m and applied perpendicularly along the y and z directions. On varying the excitation frequency f (={omega}/2{pi}) in the range 0.01-50 MHz, it is observed that for f {<=} 5 MHz the EEDF shows a trend toward a convex (Druyvesteyn-like) distribution. For f > 5 MHz, the distribution resembles more like a Maxwellian with the familiar break energy visible in most of the distributions. A prominent ''hot tail'' is observed at f{>=} 20 MHz and the temperature of the tail is seen to decrease with further increase in frequency (e.g., at 30 MHz and 50 MHz). The mechanism for the generation of the ''hot tail'' is considered to be due to preferential transit time heating of energetic electrons as a function of {omega}, in the antenna heating field. There exists an optimum frequency for which high energy electrons are maximally heated. The occurrence of the Druyvesteyn-like distributions at lower {omega} may be explained by a balance between the heating of the electrons in the effective electric field and elastic cooling due to electron neutral collision frequency {nu}{sub en}; the transition being dictated by {omega} {approx} 2{pi}{nu}{sub en}.

  2. The surface chemistry resulting from low-pressure plasma treatment of polystyrene: The effect of residual vessel bound oxygen

    NASA Astrophysics Data System (ADS)

    Dhayal, Marshal; Alexander, Morgan R.; Bradley, James W.

    2006-09-01

    The surface chemistry of plasma treated polystyrene samples has been studied in a specially designed low-pressure argon discharge system incorporating in situ XPS analysis. By using an electrostatic grid biasing technique, the plasma source can also be used in a mode preventing ion interactions with the sample. The system, which utilizes a vacuum transfer chamber between plasma and XPS analysis has allowed us to differentiate between the level of oxygen incorporated at the polystyrene surface from residual gas during treatment and that from the exposure of the treated sample to the laboratory atmosphere. Using typical base pressures of about 5 × 10 -3 Pa (4 × 10 -5 Torr) the XPS results show that significant oxygen surface incorporation resulted from oxygen containing species in the plasma itself (i.e. water vapour with 2 × 10 -3 Pa partial pressure). The surface concentration of O was measured at 7.6 at.%. Subsequent atmospheric exposure of the treated samples resulted in only a small increase (of 0.6 at.%) in oxygen incorporation in the form of acid anhydride functionalities. XPS measurements of PS samples exposed to plasmas with no ion-surface component (i.e. exposure from VUV, UV and excited neutral species only) showed no appreciable change in oxygen incorporation compared to those with low-energy ion bombardment from the plasma (<20 eV). Given the energetics of the remaining bombarding species, it indicates that VUV radiation may be chiefly responsible for the production of free radical sites in this discharge regime.

  3. End-boundary sheath potential, electron and ion energy distribution in the low-pressure non-ambipolar electron plasma

    NASA Astrophysics Data System (ADS)

    Chen, Lee; Chen, Zhiying; Funk, Merritt

    2013-12-01

    The end-boundary floating-surface sheath potential, electron and ion energy distribution functions (EEDf, IEDf) in the low-pressure non-ambipolar electron plasma (NEP) are investigated. The NEP is heated by an electron beam extracted from an inductively coupled electron-source plasma (ICP) through a dielectric injector by an accelerator located inside the NEP. This plasma's EEDf has a Maxwellian bulk followed by a broad energy continuum connecting to the most energetic group with energies around the beam energy. The NEP pressure is 1-3 mTorr of N2 and the ICP pressure is 5-15 mTorr of Ar. The accelerator is biased positively from 80 to 600 V and the ICP power range is 200-300 W. The NEP EEDf and IEDf are determined using a retarding field energy analyser. The EEDf and IEDf are measured at various NEP pressures, ICP pressures and powers as a function of accelerator voltage. The accelerator current and sheath potential are also measured. The IEDf reveals mono-energetic ions with adjustable energy and it is proportionally controlled by the sheath potential. The NEP end-boundary floating surface is bombarded by a mono-energetic, space-charge-neutral plasma beam. When the injected energetic electron beam is adequately damped by the NEP, the sheath potential is linearly controlled at almost a 1 : 1 ratio by the accelerator voltage. If the NEP parameters cannot damp the electron beam sufficiently, leaving an excess amount of electron-beam power deposited on the floating surface, the sheath potential will collapse and become unresponsive to the accelerator voltage.

  4. Experimental investigation on the flow instability behavior of a multi-channel boiling natural circulation loop at low-pressures

    SciTech Connect

    Jain, Vikas; Nayak, A.K.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2010-09-15

    Natural circulation as a mode of heat removal is being considered as a prominent passive feature in the innovative nuclear reactor designs, particularly in boiling-water-reactors, due to its simplicity and economy. However, boiling natural circulation system poses many challenges to designer due to occurrence of various kinds of instabilities such as excursive instability, density wave oscillations, flow pattern transition instability, geysering and metastable states in parallel channels. This problem assumes greater significance particularly at low-pressures i.e. during startup, where there is great difference in the properties of two phases. In light of this, a parallel channel loop has been designed and installed that has a geometrical resemblance to the pressure-tube-type boiling-water-reactor, to investigate into the behavior of boiling natural circulation. The loop comprises of four identical parallel channels connected between two common plenums i.e. steam drum and header. The recirculation path is provided by a single downcomer connected between steam drum and header. Experiments have been conducted over a wide range of power and pressures (1-10 bar). Two distinct unstable zones are observed with respect to power i.e. corresponding to low power (Type-I) and high power (Type-II) with a stable zone at intermediate powers. The nature of oscillations in terms of their amplitude and frequency and their evolution for Type-I and Type-II instabilities are studied with respect to the effect of heater power and pressure. This paper discusses the evolution of unstable and stable behavior along with the nature of flow oscillation in the channels and the effect of pressure on it. (author)

  5. Programming MIL-101Cr for selective and enhanced CO2 adsorption at low pressure by postsynthetic amine functionalization.

    PubMed

    Khutia, Anupam; Janiak, Christoph

    2014-01-21

    MIL-101Cr fully or partially (p) postsynthetically modified with nitro (-NO2) or amino (-NH2) groups was shown to be a robust, water stable, selective and enhanced carbon dioxide (CO2) adsorption material with the amine-functionality. The highly microporous amine-modified frameworks (up to 1.6 cm(3) g(-1) total pore volume) exhibit excellent thermal stability (>300 °C) with BET surface areas up to 2680 m(2) g(-1). At 1 bar (at 273 K) the gases CO2, CH4 and N2 are adsorbed up to 22.2 wt%, 1.67 wt% and 2.27 wt%, respectively. The two amine-modified MIL-101Cr-NH2 (4) and MIL-101Cr-pNH2 (5) showed the highest gas uptake capacities in the series with high ratios for the CO2 : N2 and CO2 : CH4 selectivities (up to 119 : 1 and 75 : 1, respectively, at 273 K). Comparison with non-modified MIL-101Cr traces the favorable CO2 adsorption properties of MIL-101Cr-NH2 (4) and MIL-101Cr-pNH2 (5) to the presence of the Lewis-basic amine groups. MIL-101Cr-NH2 (4) has a high isosteric heat of adsorption of 43 kJ mol(-1) at zero surface coverage and also >23 kJ mol(-1) over the entire adsorption range, which is well above the heat of liquefaction of bulk CO2. Large CO2 uptake capacities of amine-functionalized 4 and 5, coupled with high adsorption enthalpy, high selectivities and proven long-term water stability, make them suitable candidates for capturing CO2 at low pressure from gas mixtures including the use as a CO2 sorbent from moist air.

  6. Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery.

    PubMed

    Valladares Linares, R; Li, Z; Yangali-Quintanilla, V; Ghaffour, N; Amy, G; Leiknes, T; Vrouwenvelder, J S

    2016-01-01

    In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis - low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor - reverse osmosis - advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m(3) d(-1) of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m(3) produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and

  7. Dewetting-induced globule-coil transitions of model polymers and possible implications high-temperature and low-pressure unfolding of proteins.

    PubMed

    Sumi, Tomonari; Imazaki, Nobuyuki; Sekino, Hideo

    2010-04-28

    A thermodynamic analysis of high-temperature and low-pressure unfolding of proteins using a coarse-grained multiscale simulation combined with a liquid-state density-functional theory is presented. In this study, a hydrophobic polymer chain is employed as a probe molecule for investigating qualitative changes in a hydration free energy surface acting on proteins with changes in temperature and pressure. When water is heated so that its vapor pressure is equal to the atmospheric pressure, it boils. Long-ranged dewetting or drying caused by a hydrophobic planar wall and a large hydrophobic solute surface is significantly enhanced as it approaches the liquid-vapor coexistence curve of water. In this study, we demonstrate that high-temperature and low-pressure unfolding of the polymer chain is interpreted as dewetting-induced unfolding that occurs as it approaches the liquid-vapor coexistence. The unfolding of proteins due to high-temperature and low-pressure denaturation enhances the long-ranged dewetting or drying around them. The long-ranged dewetting phenomenon is considered to be originating from positive changes in both volume and entropy due to the high-temperature and low-pressure denaturation of the proteins.

  8. Effect of the Content of Retained Austenite and Grain Size on the Fatigue Bending Strength of Steels Carburized in a Low-Pressure Atmosphere

    NASA Astrophysics Data System (ADS)

    Kula, P.; Dybowski, K.; Lipa, S.; Januszewicz, B.; Pietrasik, R.; Atraszkiewicz, R.; Wołowiec, E.

    2014-11-01

    The effect of the content of retained austenite and of the initial austenite grain size on high-cycle fatigue of two low-alloy steels 16MnCr5 and 17CrNi6-6 after carburizing in a low-pressure atmosphere (acetylene, ethylene and hydrogen) and subsequent high-pressure gas quenching is investigated.

  9. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    SciTech Connect

    Not Available

    1980-01-01

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  10. Evaluation of low-pressure gas chromatography-tandem mass spectrometry method for analysis of greater than 140 pesticides in fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-residue method for analysis of 143 pesticide residues in fish was developed and evaluated using fast, low pressure gas chromatography triple quadrupole tandem mass spectrometry (LP-GC/MS-MS). The method was based on a QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction with ace...

  11. High throughput analysis of 150 pesticides in fruits and vegetables using QuEChERS and low-pressure gas chromatography – time-of-flight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we sought to assess the real-world applicability of fast, low-pressure gas chromatography - time-of-flight mass spectrometry (LP-GC/TOFMS) for the identification and quantification of 150 pesticides in tomato, strawberry, potato, orange, and lettuce samples. Buffered and unbuffered v...

  12. Qualitative aspects in the analysis of pesticide residues in fruits and vegetables using fast, low-pressure gas chromatography - time-of-flight mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of qualitative results in analytical methods is needed to estimate selectivity and devise criteria for chemical identification, particularly for mass spectrometric analysis. Low-pressure gas chromatography - mass spectrometry (LP-GC/MS) has been demonstrated to increase the speed of anal...

  13. Fast,low-pressure gas chromatography triple quadrupole tandem mass spectrometry for analysis of 150 pesticide residues in fruits and vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed and evaluated a new method of low-pressure gas chromatography-tandem mass spectrometry (LP-GC/MS-MS) for fast analysis of 150 pesticides in four representative fruits and vegetables. This LP-GC (vacuum outlet) approach entails coupling a 10 m, 0.53 mm i.d., 1 micron film analytical col...

  14. Effects of low pressure radio frequency discharge on the physical and mechanical characteristics and chemical composition of diffusion coating on a surface of complex configuration details

    NASA Astrophysics Data System (ADS)

    Ladianov, V. I.; Gilmutdinov, F. Z.; Nikonova, R. M.; Kashapov, N. F.; Shaekhov, M. F.; Khristoliubova, V. I.

    2017-01-01

    The work deals with the influence of low-pressure radio frequency (RF) discharge on the surface properties of metals and their alloys. As objects of research to study the interaction of the jet low pressure RF discharge into the surface of the material the following materials were chosen: tungsten cobalt alloy, high speed steel, structural steel. In the presence of the materials energy parameters of low pressure RF discharge flows in the discharge chamber and the electrode gap were studied. A quantitative assessment of the gas composition inside the chamber to determine the characteristics of the plasma flow, making the major contribution to the modification of the surface was carried out. The influence of the input parameters of the plasma unit on the discharge characteristics was held. Identification of the main processes responsible for the modification of the surface of metals and alloys with the metal sample in the plasma jet and the effect of samples of products complex configuration on its properties is determined. The results of studies of physical and mechanical characteristics and chemical composition of the surface layers of high-speed steels, alloys and steel before and after treatment by low pressure radio frequency discharges with the instrumental indentation methods and X-ray photo-electron spectroscopy. With the help of the quality control system of the inner surfaces tubular products were studied.

  15. Thermal decomposition of gaseous ammonium nitrate at low pressure: kinetic modeling of product formation and heterogeneous decomposition of nitric acid.

    PubMed

    Park, J; Lin, M C

    2009-12-03

    The thermal decomposition of ammonium nitrate, NH(4)NO(3) (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH(4)NO(3) at 423 K was proposed to produce equal amounts of NH(3) and HNO(3), followed by the decomposition reaction of HNO(3), HNO(3) + M --> OH + NO(2) + M (where M = third-body and reactor surface). The absolute yields of N(2), N(2)O, H(2)O, and NH(3), which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH(3)-NO(2) (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO(3) itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO(3) in our kinetic modeling. The heterogeneous decomposition rate of HNO(3), HNO(3) + (B(2)O(3)/SiO(2)) --> OH + NO(2) + (B(2)O(3)/SiO(2)), was determined by varying its rate to match the modeled result to the measured concentrations of NH(3) and H(2)O; the rate could be represented by k(2b) = 7.91 x 10(7) exp(-12 600/T) s(-1), which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO(3) decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  16. Thermal Decomposition of Gaseous Ammonium Nitrate at Low Pressure: Kinetic Modeling of Product Formation and Heterogeneous Decomposition of Nitric Acid

    NASA Astrophysics Data System (ADS)

    Park, J.; Lin, M. C.

    2009-10-01

    The thermal decomposition of ammonium nitrate, NH4NO3 (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH4NO3 at 423 K was proposed to produce equal amounts of NH3 and HNO3, followed by the decomposition reaction of HNO3, HNO3 + M → OH + NO2 + M (where M = third-body and reactor surface). The absolute yields of N2, N2O, H2O, and NH3, which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH3-NO2 (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO3 itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO3 in our kinetic modeling. The heterogeneous decomposition rate of HNO3, HNO3 + (B2O3/SiO2) → OH + NO2 + (B2O3/SiO2), was determined by varying its rate to match the modeled result to the measured concentrations of NH3 and H2O; the rate could be represented by k2b = 7.91 × 107 exp(-12 600/T) s-1, which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO3 decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  17. Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV-Irradiation conditions, and their relevance to possible Martian life.

    PubMed

    Diaz, Benjamin; Schulze-Makuch, Dirk

    2006-04-01

    Viability rates were determined for microbial populations of Escherichia coli and Deinococcus radiodurans under the environmental stresses of low temperature (-35 degrees C), low-pressure conditions (83.3 kPa), and ultraviolet (UV) irradiation (37 W/m(2)). During the stress tests the organisms were suspended in saltwater soil and freshwater soil media, at variable burial depths, and in seawater. Microbial populations of both organisms were most susceptible to dehydration stress associated with low-pressure conditions, and to UV irradiation. However, suspension in a liquid water medium and burial at larger depths (5 cm) improved survival rates markedly. Our results indicate that planetary surfaces that possess little to no atmosphere and have low water availability do not constitute a favorable environment for terrestrial microorganisms.

  18. Dynamic analysis method for prevention of failure in the first-stage low-pressure turbine blade with two-finger root

    NASA Astrophysics Data System (ADS)

    Park, Jung-Yong; Jung, Yong-Keun; Park, Jong-Jin; Kang, Yong-Ho

    2002-05-01

    Failures of turbine blades are identified as the leading causes of unplanned outages for steam turbine. Accidents of low-pressure turbine blade occupied more than 70 percent in turbine components. Therefore, the prevention of failures for low pressure turbine blades is certainly needed. The procedure is illustrated by the case study. This procedure is used to guide, and support the plant manager's decisions to avoid a costly, unplanned outage. In this study, we are trying to find factors of failures in LP turbine blade and to make three steps to approach the solution of blade failure. First step is to measure natural frequency in mockup test and to compare it with nozzle passing frequency. Second step is to use FEM and to calculate the natural frequencies of 7 blades and 10 blades per group in BLADE code. Third step is to find natural frequencies of grouped blade off the nozzle passing frequency.

  19. Development of a low-pressure diamond anvil cell and analytical tools to monitor microbial activities in situ under controlled P and T.

    PubMed

    Oger, Phil M; Daniel, Isabelle; Picard, Aude

    2006-03-01

    We have designed a new low-pressure Diamond Anvil Cell (DAC), calibrated two novel pressure calibrants and validated the use of semi-quantitative Raman and X-ray spectroscopies to monitor the fate of microbes, their metabolism or their cellular components under controlled pressures and temperatures in the 0.1-1.4 GPa and 20-300 degrees C P,T range. The low-pressure DAC has a 250- to 600-microm-thick observation diamond window to allow for lower detection limits and improved microscopic imaging. This new design allows the determination of cellular growth parameters from automated image analysis, which can be correlated with the spectroscopic data obtained on metabolism, ensuring high quality data collection on microbial activity under pressure. The novel pressure sensors offer the ease of use of the well-known ruby scale, while being more sensitive and reacting to pressure variations instantaneously.

  20. Inactivation of Gram-Negative Bacteria by Low-Pressure RF Remote Plasma Excited in N2-O2 Mixture and SF6 Gases.

    PubMed

    Al-Mariri, Ayman; Saloum, Saker; Mrad, Omar; Swied, Ghayath; Alkhaled, Bashar

    2013-12-01

    The role of low-pressure RF plasma in the inactivation of Escherichia coli O157, Klebsiella pneumoniae, Proteus mirabilis, and Enterobacter sakazakii using N2-O2 and SF6 gases was assessed. 1×10(9) colony-forming units (CFUs) of each bacterial isolate were placed on three polymer foils. The effects of pressure, power, distance from the source, and exposure time to plasma gases were optimized. The best conditions to inactivate the four bacteria were a 91%N2-9%O2 mixture and a 30-minute exposure time. SF6 gas was more efficient for all the tested isolates in as much as the treatment time was reduced to only three minutes. Therefore, low-pressure plasma could be used to sterilize heat and/or moisture-sensitive medical instruments.