Science.gov

Sample records for 131i whole-body scan

  1. Pulmonary sequestration: a (131)I whole body scintigraphy false-positive result.

    PubMed

    Spinapolice, Elena Giulia; Chytiris, S; Fuccio, C; Leporati, P; Volpato, G; Villani, L; Trifirò, G; Chiovato, L

    2014-08-01

    A 35-year-old woman affected by a well-differentiated papillary thyroid carcinoma was referred to our hospital to perform a (131)Iodine ((131)I) whole body scintigraphy for restaging purpose. The patient had been previously treated with total thyroidectomy and three subsequent doses of (131)I for the ablation of a remnant jugular tissue and a suspected metastatic focus at the superior left hemi-thorax. In spite of the previous treatments with (131)I, planar and tomographic images showed the persistence of an area of increased uptake at the superior left hemi-thorax. This finding prompted the surgical resection of the lesion. Histological examination of the surgical specimen showed the presence of a pulmonary tissue consistent with pulmonary sequestration. Even though rare, pulmonary sequestration should be included in the potential causes of false-positive results of radioiodine scans.

  2. Utility of 99mTc-Hynic-TOC in 131I Whole-Body Scan Negative Thyroid Cancer Patients with Elevated Serum Thyroglobulin Levels

    PubMed Central

    Shinto, Ajit S.; Kamaleshwaran, K. K.; Mallia, Madhav; Korde, Aruna; Samuel, Grace; Banerjee, Sharmila; Velayutham, Pavanasam; Damodharan, Suresh; Sairam, Madhu

    2015-01-01

    Several studies have reported on the expression of somatostatin receptors (SSTRs) in patients with differentiated thyroid cancer (DTC). The aim of this study was to evaluate the imaging abilities of a recently developed Technetium-99m labeled somatostatin analog, 99mTc-Hynic-TOC, in terms of precise localization of the disease. The study population consisted of 28 patients (16 men, 12 women; age range: 39-72 years) with histologically confirmed DTC, who presented with recurrent or persistent disease as indicated by elevated serum thyroglobulin (Tg) levels after initial treatment (serum Tg > 10 ng/ml off T4 suppression for 4-6 weeks). All patients were negative on the Iodine-131 posttherapy whole-body scans. Fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) was performed in all patients. SSTR scintigraphy was true positive in 23 cases (82.1%), true negative in two cases (7.1%) and false negative in three cases (10.7%) which resulted in a sensitivity of 88.46%, specificity of 100% and an accuracy of 89.2%. Sensitivity of 99mTc-Hynic-TOC scan was higher (93.7%) for patients with advanced stages, that is stages III and IV. 18F-FDG showed a sensitivity of 93.7%, a specificity of 50% and an accuracy of 89.3%. 18F-FDG PET was found to be more sensitive, with lower specificity due to false positive results in 2 patients. Analysis on a lesion basis demonstrated substantial agreement between the two imaging techniques with a Cohen's kappa of 0.66. Scintigraphy with 99mTc-Hynic-TOC might be a promising tool for treatment planning; it is easy to perform and showed sufficient accuracy for localization diagnostics in thyroid cancer patients with recurrent or metastatic disease. PMID:26097420

  3. Utility of (99m)Tc-Hynic-TOC in 131I Whole-Body Scan Negative Thyroid Cancer Patients with Elevated Serum Thyroglobulin Levels.

    PubMed

    Shinto, Ajit S; Kamaleshwaran, K K; Mallia, Madhav; Korde, Aruna; Samuel, Grace; Banerjee, Sharmila; Velayutham, Pavanasam; Damodharan, Suresh; Sairam, Madhu

    2015-01-01

    Several studies have reported on the expression of somatostatin receptors (SSTRs) in patients with differentiated thyroid cancer (DTC). The aim of this study was to evaluate the imaging abilities of a recently developed Technetium-99m labeled somatostatin analog, (99m)Tc-Hynic-TOC, in terms of precise localization of the disease. The study population consisted of 28 patients (16 men, 12 women; age range: 39-72 years) with histologically confirmed DTC, who presented with recurrent or persistent disease as indicated by elevated serum thyroglobulin (Tg) levels after initial treatment (serum Tg > 10 ng/ml off T4 suppression for 4-6 weeks). All patients were negative on the Iodine-131 posttherapy whole-body scans. Fluorine-18 fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) was performed in all patients. SSTR scintigraphy was true positive in 23 cases (82.1%), true negative in two cases (7.1%) and false negative in three cases (10.7%) which resulted in a sensitivity of 88.46%, specificity of 100% and an accuracy of 89.2%. Sensitivity of (99m)Tc-Hynic-TOC scan was higher (93.7%) for patients with advanced stages, that is stages III and IV. (18)F-FDG showed a sensitivity of 93.7%, a specificity of 50% and an accuracy of 89.3%. (18)F-FDG PET was found to be more sensitive, with lower specificity due to false positive results in 2 patients. Analysis on a lesion basis demonstrated substantial agreement between the two imaging techniques with a Cohen's kappa of 0.66. Scintigraphy with (99m)Tc-Hynic-TOC might be a promising tool for treatment planning; it is easy to perform and showed sufficient accuracy for localization diagnostics in thyroid cancer patients with recurrent or metastatic disease.

  4. Estimating 131I biokinetics and radiation doses to the red marrow and whole body in thyroid cancer patients: probe detection versus image quantification*

    PubMed Central

    Willegaignon, José; Pelissoni, Rogério Alexandre; Lima, Beatriz Christine de Godoy Diniz; Sapienza, Marcelo Tatit; Coura-Filho, George Barberio; Queiroz, Marcelo Araújo; Buchpiguel, Carlos Alberto

    2016-01-01

    Objective To compare the probe detection method with the image quantification method when estimating 131I biokinetics and radiation doses to the red marrow and whole body in the treatment of thyroid cancer patients. Materials and Methods Fourteen patients with metastatic thyroid cancer, without metastatic bone involvement, were submitted to therapy planning in order to tailor the therapeutic amount of 131I to each individual. Whole-body scans and probe measurements were performed at 4, 24, 48, 72, and 96 h after 131I administration in order to estimate the effective half-life (Teff) and residence time of 131I in the body. Results The mean values for Teff and residence time, respectively, were 19 ± 9 h and 28 ± 12 h for probe detection, compared with 20 ± 13 h and 29 ± 18 h for image quantification. The average dose to the red marrow and whole body, respectively, was 0.061 ± 0.041 mGy/MBq and 0.073 ± 0.040 mGy/MBq for probe detection, compared with 0.066 ± 0.055 mGy/MBq and 0.078 ± 0.056 mGy/MBq for image quantification. Statistical analysis proved that there were no significant differences between the two methods for estimating the Teff (p = 0.801), residence time (p = 0.801), dose to the red marrow (p = 0.708), and dose to the whole body (p = 0.811), even when we considered an optimized approach for calculating doses only at 4 h and 96 h after 131I administration (p > 0.914). Conclusion There is full agreement as to the feasibility of using probe detection and image quantification when estimating 131I biokinetics and red-marrow/whole-body doses. However, because the probe detection method is inefficacious in identifying tumor sites and critical organs during radionuclide therapy and therefore liable to skew adjustment of the amount of 131I to be administered to patients under such therapy, it should be used with caution. PMID:27403014

  5. Multifocal hot spots demonstrated by whole-body 131I scintigraphy and SPECT/CT after transaxillary endoscopic thyroidectomy.

    PubMed

    Kim, Ho Seong; Kim, Seok Hwi; Kim, Jung Han; Kim, Byung-Tae; Lee, Kyung-Han

    2015-03-01

    A 35-year-old woman received open thyroidectomy for a thyroid nodule that was confirmed as papillary carcinoma. Whole-body 131I scintigraphy during thyroid ablation demonstrated high uptake in the thyroid bed and multiple focal hot spots in the thorax. SPECT/CT localized the hot spots to the right chest wall and axilla, as well as to the left chest wall. The surgeon recognized these sites to concur with the transaxillary tract used during endoscopic thyroidectomy for nodular hyperplasia 8 years previously. Thus, this case illustrates how thyroidal tissue fragments seeded during endoscopic thyroidectomy can be mistaken for thyroid cancer metastasis on 131I scintigraphy.

  6. Intake ratio of 131I to 137Cs derived from thyroid and whole-body doses to Fukushima residents.

    PubMed

    Kim, Eunjoo; Kurihara, Osamu; Tani, Kotaro; Ohmachi, Yasushi; Fukutsu, Kumiko; Sakai, Kazuo; Akashi, Makoto

    2016-03-01

    This study deals with the intake ratio of (131)I to (137)Cs that allows for the utilisation of late whole-body measurements to reconstruct the internal thyroid doses to Fukushima residents. The ratio was derived from the thyroid dose distribution of children and the effective dose distribution of adults based on the assumption that various age groups of persons inhaled the two nuclides at the same activity ratio and at around the same time, while taking into account age-dependent ventilation rates. The two dose distributions were obtained from residents of Iitate village and Kawamata town, located northwest of Fukushima Daiichi nuclear power plant (FDNPP). As a result, the intake ratios for the residents were 2-3, which was much smaller than the activity ratio observed in air sampling. A main reason for this discrepancy presumably lies in the relatively smaller thyroid uptake for iodine in the Japanese subjects than that in the reference persons on whom the biokinetic model promulgated by International Commission on Radiological Protection is based. The actual intake ratio of the two nuclides is believed to have been higher south of the FDNPP; however, this would depend on which of three significant plume events dominantly contributed to the intake for individuals. Further studies are needed to clarify this issue as a part of the reconstruction of early internal doses related to the FDNPP accident. PMID:25982788

  7. Unusual False Positive Radioiodine Uptake on (131)I Whole Body Scintigraphy in Three Unrelated Organs with Different Pathologies in Patients of Differentiated Thyroid Carcinoma: A Case Series.

    PubMed

    Ranade, Rohit; Pawar, Shwetal; Mahajan, Abhishek; Basu, Sandip

    2016-01-01

    Three cases with unusual false positive radioiodine uptake in three different organs and pathologies (infective old fibrotic lesion in the lung, simple liver cyst, and benign breast lesion) on iodine-131 ((131)I) whole body scintigraphy. Clinicoradiological correlation was undertaken in all three cases and the pathologies were ascertained. In all the three cases, single-photon emission computerized tomography-computed tomography (SPECT-CT) and ancillary imaging modalities were employed and were helpful in arriving at the final diagnosis.

  8. Unusual False Positive Radioiodine Uptake on 131I Whole Body Scintigraphy in Three Unrelated Organs with Different Pathologies in Patients of Differentiated Thyroid Carcinoma: A Case Series

    PubMed Central

    Ranade, Rohit; Pawar, Shwetal; Mahajan, Abhishek; Basu, Sandip

    2016-01-01

    Three cases with unusual false positive radioiodine uptake in three different organs and pathologies (infective old fibrotic lesion in the lung, simple liver cyst, and benign breast lesion) on iodine-131 (131I) whole body scintigraphy. Clinicoradiological correlation was undertaken in all three cases and the pathologies were ascertained. In all the three cases, single-photon emission computerized tomography-computed tomography (SPECT-CT) and ancillary imaging modalities were employed and were helpful in arriving at the final diagnosis. PMID:27134566

  9. Whole-body clearance kinetics and external dosimetry of 131I-3F8 monoclonal antibody for radioimmunotherapy of neuroblastoma.

    PubMed

    Dauer, Lawrence T; St Germain, Jean; Williamson, Matthew J; Zanzonico, Pat; Modak, Shakeel; Cheung, Nai-Kong; Divgi, Chaitanya

    2007-01-01

    The purpose of this retrospective study was to evaluate the whole-body clearance kinetics of I-3F8 monoclonal antibody, an anti-ganglioside 2 antibody, used in the treatment of pediatric patients with late-stage neuroblastoma (NB). Serial whole-body dose rate measurements were obtained on pediatric patients participating in phase I dose escalation studies of therapeutic I-3F8. Whole-body retention fractions were derived and fit for each treatment to exponential curves to determine both the effective half-lives and corresponding clearance fractions. 27 patients were administered I-3F8 over the course of cyclical administrations with a median administered activity of 2.5 GBq (range, 1-8.14 GBq), typically every 2-4 d for up to 9 treatment cycles. Based on whole-body dose rate measurements, there was a large variability in the calculated mono-exponential clearance effective half-life time, with a mean of 26.4 h (range, 12.4-45.5 h). The data from a subset of 12 treatments were fit to a bi-exponential curve with a rapid clearance component mean effective half-time of 16.9 h (range, 4.3-26 h) and a slower clearance component mean effective half-time of 65.5 h (range, 16.9-136 h). The use of whole-body dose rate measurements, obtained for patient-release and other radiation safety considerations, can be useful in estimating whole-body clearance kinetics for photon emitting radionuclide labeled mAbs and other therapeutic radiopharmaceuticals. In the case of I-3F8 for pediatric NB therapy, the demonstrated variability in effective half-time suggests the need for patient-specific tracer dosimetry for both optimization of treatment and radiation safety precaution decision-making.

  10. Counting efficiency of whole-body monitoring system using BOMAB and ANSI/IAEA thyroid phantom due to internal contamination of 131I.

    PubMed

    Ghare, V P; Patni, H K; Akar, D K; Rao, D D

    2014-12-01

    In this study, the effect of Indian reference BOttle MAnnikin aBsorber (BOMAB) neck with axial cavity and American National Standards Institute (ANSI)/International Atomic Energy Agency (IAEA) thyroid phantom using pencil sources of (133)Ba ((131)I simulant) on counting efficiency (CE) is seen experimentally in static geometry for whole-body monitoring system comprising 10.16-cm diameter and 7.62-cm-thick NaI(Tl) detector. The CE estimated using the neck part of BOMAB phantom is 50.2% lower in comparison with ANSI phantom. In rest of the studies FLUKA code is used for Monte Carlo simulations using ANSI/IAEA thyroid phantom. The simulation results are validated in static geometries with experimental CE and the differences are within 1.3%. It is observed that CE for pencil source distribution is 3.97% higher for (133)Ba in comparison with CE of (131)I source. Simulated CE for pencil source distribution is 4.7% lower in comparison with uniform source distribution in the volume of thyroid for (131)I. Since the radiation workers are of different physique; overlying tissue thickness (OTT) and neck-to-detector distance play an important role in the calculation of activity in thyroid. The CE decreases with increase in OTT and is found to be 5.5% lower if OTT is changed from 1.1 to 2 cm. Finally, the simulations are carried out to estimate the variation in CE due to variation in the neck-to-detector distance. The CE is 6.2% higher if the neck surface-to-detector distance is decreased from 21.4 to 20.4 cm and it goes on increasing up to 61.9% if the distance is decreased to 15.4 cm. In conclusion, the calibration of whole-body monitoring system for (131)I should be carried out with ANSI/IAEA thyroid phantom, the neck-to-detector distance controlled or the CE corrected for this, and the CE should be corrected for OTT. PMID:24179144

  11. Myeloablative 131I-Tositumomab Radioimmunotherapy in Treating Non-Hodgkin’s Lymphoma: Comparison of Dosimetry Based on Whole-Body Retention and Dose to Critical Organ Receiving the Highest Dose

    SciTech Connect

    Rajendran, Joseph G.; Gopal, Ajay K.; Fisher, Darrell R.; Durack, L. D.; Gooley, Ted; Press, Oliver W.

    2008-05-01

    Objectives: Myeloablative radioimmunotherapy (RIT) using 131I tositumomab (anti-CD 20) monoclonal antibodies is an effective new therapy for B-cell non-Hodgkins lymphoma (NHL). The goal of this work is to determine optimum methods to deliver maximal myeloablative radioactivity without exceeding the radiation tolerance of critical normal organs such as liver and lungs, and avoiding serious toxicity. Methods: We reviewed dosimetry records for 100 consecutive patients who underwent biodistribution and dosimetry after a test infusion of 131I- tositumomab. Serial gamma camera images were used to determine organ and tissue activities over time and to calculate radiation-absorbed doses. Volumes of critical normal organs were determined from CT scans to adjust the dose estimates for the individual patient. These dose estimates helped us determine an appropriate therapy based on projected dose to the critical normal organ receiving a maximum tolerable radiation dose. We compared our method of organ-specific dosimetry for treatment planning with the standard clinical approaches using a whole-body dose-assessment method by assessing the difference in projected amounts of radiation-absorbed doses, as well as the ratios of projected amounts, that would be prescribed for therapy by each of these two strategies. Results: The mean organ doses (mGy/MBq) estimated by both methods were (1) Whole body method: liver = 0.33 and lungs = 0.33; and (2) Organ-specific method: liver 1.52 and lungs 1.72 (p = .0001). The median difference between the radiation-absorbed dose estimates was 3.40 (range of 1.37 to 7.96) for the lungs, 3.05 (range of 1.04 to 6.20) for the liver, and –0.05 for whole body (range of –0.18 to 0.16). The median ratio (OS divided by WB method) of radiation-absorbed dose estimates was 5.12 (range of 2.33 to 10.01) for the lungs, 4.14 (range of 2.16 to 6.67) for the liver, and 0.94 (range of 0.79 to 1.22) for whole body. There was significant difference between the

  12. Whole-body 3D scanner and scan data report

    NASA Astrophysics Data System (ADS)

    Addleman, Stephen R.

    1997-03-01

    With the first whole-body 3D scanner now available the next adventure confronting the user is what to do with all of the data. While the system was built for anthropologists, it has created interest among users from a wide variety of fields. Users with applications in the fields of anthropology, costume design, garment design, entertainment, VR and gaming have a need for the data in formats unique to their fields. Data from the scanner is being converted to solid models for art and design and NURBS for computer graphics applications. Motion capture has made scan data move and dance. The scanner has created a need for advanced application software just as other scanners have in the past.

  13. [Mucocele of the frontal sinus simulating metastasis of follicular thyroid carcinoma in an 131I scan].

    PubMed

    Duque Gallo, J J; Miguel Martínez, M B; Castillo López, L; Ruiz Pérez, E; Rubio Sanz, M J; Zamora Pérez, B; Casado Pérez, C; Rodríguez Salazar, A; Claver Criado, M; Calvo Del Castillo, J I

    1999-12-01

    The 131I scan is the preferred test in the follow-up of differentiated thyroid cancer patients although the many unusual circumstances of radioiodine uptake that can provide false positive results must be identified. We present the case of a woman who had undergone a thyroidectomy and was being treated for follicular carcinoma with an ablative dose os radioiodine whose pre- and post-treatment scans only revealed post-surgical residual thyroid tissues. A total body scan with 131I performed at one year demonstrated the success of the ablation. However, a left supra-orbital pathological deposit was observed during a subsequent routine 131I scan. The thyroglobulin serum level was below the sensitivity level for the assay (< 1 ng/ml) and the serum antibodies against thyroglobulin were not detected. A simple x-ray and bone scintigraphy were inconclusive. The CT and MRI revealed the presence of a mucocele in the left frontal sinus which was confirmed through histological examination. The possibility of a false positive results in an 131I scan must always be kept in mind, especially in the presence of atypical uptakes and undetectable thyroglobulin serum levels. As far as we know, only one similar case has been published previously.

  14. Do Negative 124I Pretherapy Positron Emission Tomography Scans in Patients with Elevated Serum Thyroglobulin Levels Predict Negative 131I Posttherapy Scans?

    PubMed Central

    Khorjekar, Gauri R.; Garcia, Carlos; O'Neil, Jeffrey; Moreau, Shari; Atkins, Francis B.; Mete, Mihriye; Orquiza, Michael H.; Burman, Kenneth; Wartofsky, Leonard

    2014-01-01

    Background: The management of patients with differentiated thyroid cancer (DTC) who have elevated serum thyroglobulin (Tg) levels and negative 131I or 123I scans is problematic, and the decision regarding whether or not to administer 131I therapy (a “blind” therapy) is also problematic. While 124I positron emission tomography (PET) imaging has been shown to detect more foci of residual thyroid tissue and/or metastases secondary to DTC than planar 131I images, the utility of a negative 124I PET scan in deciding whether or not to consider performing blind 131I therapy is unknown. The objective of this study was to determine whether a negative 124I pretherapy PET scan in patients with elevated serum Tg levels and negative 131I or 123I scans predicts a negative 131I posttherapy scan. Methods: Several prospective studies have been performed to compare the radiopharmacokinetics of 124I PET versus 131I planar imaging in patients who 1) had histologically proven DTC, 2) were suspected to have metastatic DTC (e.g., elevated Tg, positive recent fine-needle aspiration cytology, suspicious enlarging mass), and 3) had 131I planar and 124I PET imaging performed. Using these criteria, we retrospectively identified patients who had an elevated Tg, a negative diagnostic 131I/123I scan, a negative diagnostic 124I PET scan, therapy with 131I, a post-therapy 131I scan, and a prior 131I therapy with a subsequent positive post-131I therapy scan. For each scan, two readers categorized every focus of 131I and 124I uptake as positive for thyroid tissue/metastases or physiological. Results: Twelve patients met the above criteria. Ten of these 12 patients (83%) had positive foci on 131I posttherapy scan. Conclusion: In our selected patient population, 131I posttherapy scans are frequently positive in patients with elevated serum Tg levels, a negative diagnostic 131I or 123I scan, and a negative 124I PET scan. Thus, for a patient with elevated serum Tg level, negative diagnostic 131I

  15. Evaluation of whole-body retention of iodine-131 ((131)I) after postoperative remnant ablation for differentiated thyroid carcinoma - thyroxine withdrawal versus rhTSH administration: A retrospective comparison.

    PubMed

    Carvalho, Maria Raquel; Ferreira, Teresa C; Leite, Valeriano

    2012-03-01

    Previous studies demonstrated that preparation with recombinant human thyroid-stimulating hormone (rhTSH) for thyroid remnant ablation results in lower extrathyroidal radiation compared to hypothyroidism. The results of 50 radioiodine therapies (RITs) under rhTSH, regarding iodine half-life, were evaluated and compared with 50 RITs performed on patients with hypothyroidism following thyroxine withdrawal. The patients were treated with 3700 MBq (100 mCi) of (131)I. Forty-eight hours after RIT, patients were measured with a radiation detector at a 1-meter (m) distance for evaluation of the effective dose (μSv/h). TSH and thyroglobulin (Tg) maximal values were also compared. rhTSH-stimulated patients had a significantly lower whole-body retention of (131)I (8.5±7.3 μSv/h), extrapolated from the measurements of the effective dose at a 1-m distance, compared to endogenously stimulated patients (13.6±8.1 μSv/h; p=0.001). Furthermore, TSH mean and Tg median levels were significantly higher in the rhTSH-stimulated patients (89.9±15.3 mU/l and 7.7 ng/ml, respectively) compared to the hypothyroid group (59.2±25.1 mU/l and 3.3 ng/ml; p<0.001 and p=0.003, respectively). Compared to thyroid hormone withdrawal, the use of rhTSH prior to RIT was associated with significantly lower whole-body retention of (131)I and with greater efficacy in reaching TSH levels greater than 30 mU/l, confirming data previously described.

  16. Generating animated sequences from 3D whole-body scans

    NASA Astrophysics Data System (ADS)

    Pargas, Roy P.; Chhatriwala, Murtuza; Mulfinger, Daniel; Deshmukh, Pushkar; Vadhiyar, Sathish

    1999-03-01

    3D images of human subjects are, today, easily obtained using 3D wholebody scanners. 3D human images can provide static information about the physical characteristics of a person, information valuable to professionals such as clothing designers, anthropometrists, medical doctors, physical therapists, athletic trainers, and sculptors. Can 3D human images can be used to provide e more than static physical information. This research described in this paper attempts to answer the question by explaining a way that animated sequences may be generated from a single 3D scan. The process stars by subdividing the human image into segments and mapping the segments to those of a human model defined in a human-motion simulation package. The simulation software provides information used to display movement of the human image. Snapshots of the movement are captured and assembled to create an animated sequence. All of the postures and motion of the human images come from a single 3D scan. This paper describes the process involved in animating human figures from static 3D wholebody scans, presents an example of a generated animated sequence, and discusses possible applications of this approach.

  17. Hologic QDR 2000 whole-body scans: a comparison of three combinations of scan modes and analysis software

    NASA Technical Reports Server (NTRS)

    Spector, E.; LeBlanc, A.; Shackelford, L.

    1995-01-01

    This study reports on the short-term in vivo precision and absolute measurements of three combinations of whole-body scan modes and analysis software using a Hologic QDR 2000 dual-energy X-ray densitometer. A group of 21 normal, healthy volunteers (11 male and 10 female) were scanned six times, receiving one pencil-beam and one array whole-body scan on three occasions approximately 1 week apart. The following combinations of scan modes and analysis software were used: pencil-beam scans analyzed with Hologic's standard whole-body software (PB scans); the same pencil-beam analyzed with Hologic's newer "enhanced" software (EPB scans); and array scans analyzed with the enhanced software (EA scans). Precision values (% coefficient of variation, %CV) were calculated for whole-body and regional bone mineral content (BMC), bone mineral density (BMD), fat mass, lean mass, %fat and total mass. In general, there was no significant difference among the three scan types with respect to short-term precision of BMD and only slight differences in the precision of BMC. Precision of BMC and BMD for all three scan types was excellent: < 1% CV for whole-body values, with most regional values in the 1%-2% range. Pencil-beam scans demonstrated significantly better soft tissue precision than did array scans. Precision errors for whole-body lean mass were: 0.9% (PB), 1.1% (EPB) and 1.9% (EA). Precision errors for whole-body fat mass were: 1.7% (PB), 2.4% (EPB) and 5.6% (EA). EPB precision errors were slightly higher than PB precision errors for lean, fat and %fat measurements of all regions except the head, although these differences were significant only for the fat and % fat of the arms and legs. In addition EPB precision values exhibited greater individual variability than PB precision values. Finally, absolute values of bone and soft tissue were compared among the three combinations of scan and analysis modes. BMC, BMD, fat mass, %fat and lean mass were significantly different between

  18. Adrenal metastasis from differentiated thyroid carcinoma documented on post-therapy 131I scan: A case based discussion

    PubMed Central

    Ranade, Rohit; Thapa, Pradeep; Basu, Sandip

    2014-01-01

    Adrenal metastasis is an unusual site of disease involvement in the natural course of differentiated thyroid carcinoma (DTC). This paper discusses the clinical and imaging features of DTC with adrenal metastasis. An unusual case of unilateral solitary asymptomatic adrenal metastasis in the setting of DTC is described in this report with the imaging features including 131I scintigraphy and Fluorodeoxyglucose- Positron emission tomography/computed tomography. The adrenal metastasis was associated with other sites of metastatic disease involvement and was unidentified on initial pre-treatment evaluation studies. All such suspicious lesions should be further evaluated with clinicoradiological correlation by other imaging modalities. A post-radioiodine therapy scan revealed radioiodine uptake in the thyroid bed, sternum and a focus of intense radioiodine concentration in the left suprarenal region. Spot oblique images and single photon emission computed tomography of the upper abdomen was undertaken to ascertain the position and better characterization of the lesion. A subsequent whole body PET-CT (non-contrast) was done which revealed a well defined 6.5 cm × 5.0 cm left adrenal lesion with a SUVmax (standardized uptake value-maximum) of 9.5 in addition to a fluorodeoxyglucose avid osteolytic sternal lesion. The serum thyroglobulin level was significantly raised (more than 250 ng/mL) with thyroid stimulating hormone being 4.9 μΙU/mL (even following an adequate period of levothyroxine withdrawal), indicating the functioning nature of the metastases. In addition to demonstrating an atypical site of metastatic disease in DTC patients, this case emphasizes the importance of carefully interpreting and correlating a post radio-iodine therapy scan, particularly those with focal abdominal radio-iodine uptake which could aid in detecting metastatic lesions that are not characterized or identified on initial evaluation. The other important feature that can be deciphered from

  19. A solitary large radioiodine accumulative lung lesion in high-dose 131i therapeutic scan: bronchial atresia with mucocele.

    PubMed

    Lee, Won Hyoung; Park, Jung Mi; Kwak, Jeong Ja

    2015-02-01

    We reported a large radioiodine accumulative lung lesion on I therapeutic whole-body scan performed in a 50-year-old woman for thyroid cancer ablation therapy. Previously, her chest radiography and contrast-enhanced chest CT images showed bronchial atresia in the left upper lobar bronchus and mucus-filled dilated distal bronchus. Bronchial mucocele was confirmed by CT-guided percutaneous transthoracic needle aspiration. Bronchial atresia is a rare congenital abnormality associated with the mucocele.

  20. Fully automated shape model positioning for bone segmentation in whole-body CT scans

    NASA Astrophysics Data System (ADS)

    Fränzle, A.; Sumkauskaite, M.; Hillengass, J.; Bäuerle, T.; Bendl, R.

    2014-03-01

    Analysing osteolytic and osteoblastic bone lesions in systematically affected skeletons, e.g. in multiple myeloma or bone metastasis, is a complex task. Quantification of the degree of bone destruction needs segmentation of all lesions but cannot be managed manually. Automatic bone lesion detection is necessary. Our future objective is comparing modified bones with healthy shape models. For applying model based strategies successfully, identification and position information of single bones is necessary. A solution to these requirements based on bone medullary cavities is presented in this paper. Medullary cavities are useful for shape model positioning since they have similar position and orientation as the bone itself but can be separated more easily. Skeleton segmentation is done by simple thresholding. Inside the skeleton medullary cavities are segmented by a flood filling algorithm. The filled regions are considered as medullary cavity objects. To provide automatic shape model selection, medullary cavity objects are assigned to bone structures with pattern recognition. To get a good starting position for shape models, principal component analysis of medullary cavities is performed. Bone identification was tested on 14 whole-body low-dose CT scans of multiple myeloma patients. Random forest classification assigns medullary cavities of long bones to the corresponding bone (overall accuracy 90%). Centroid and first principal component of medullary cavity are sufficiently similar to those of bone (mean centroid difference 21.7 mm, mean difference angle 1.54° for all long bones of one example patient) and therefore suitable for shape model initialization. This method enables locating long bone structures in whole-body CT scans and provides useful information for a reasonable shape model initialization.

  1. Automated prostate segmentation in whole-body MRI scans for epidemiological studies

    NASA Astrophysics Data System (ADS)

    Habes, Mohamad; Schiller, Thilo; Rosenberg, Christian; Burchardt, Martin; Hoffmann, Wolfgang

    2013-09-01

    The whole prostatic volume (PV) is an important indicator for benign prostate hyperplasia. Correlating the PV with other clinical parameters in a population-based prospective cohort study (SHIP-2) requires valid prostate segmentation in a large number of whole-body MRI scans. The axial proton density fast spin echo fat saturated sequence is used for prostate screening in SHIP-2. Our automated segmentation method is based on support vector machines (SVM). We used three-dimensional neighborhood information to build classification vectors from automatically generated features and randomly selected 16 MR examinations for validation. The Hausdorff distance reached a mean value of 5.048 ± 2.413, and a mean value of 5.613 ± 2.897 compared to manual segmentation by observers A and B. The comparison between volume measurement of SVM-based segmentation and manual segmentation of observers A and B depicts a strong correlation resulting in Spearman’s rank correlation coefficients (ρ) of 0.936 and 0.859, respectively. Our automated methodology based on SVM for prostate segmentation can segment the prostate in WBI scans with good segmentation quality and has considerable potential for integration in epidemiological studies.

  2. Whole body and tomographic scan with 111In-pentetreotide: preliminary data.

    PubMed

    Gregianin, M; Macrì, C; Bui, F; Varotto, L; Zucchetta, P

    1995-12-01

    Since December 1993, in the 1st Nuclear Medicine Service of the University of Padua, eleven somatostatin-receptor scintigraphic studies with 111In-labelled pentetreotide have been performed. The patients (6 men and 5 women, age 28-68, mean 45 years) were affected by a variety of tumors which supposedly express somatostatin receptors: 2 meningotheliomatous meningiomas post-surgery; 2 glucagonomas with liver metastases observed on CT; 2 patients with suspicion of insulinoma; 2 carcinoids, one after surgery; 1 ectopic-ACTH Cushing's syndrome; 1 intracranial germinoma, post-surgery, in whom the study was requested to evaluate a doubtful finding of pulmonary metastatic lesion on CT; and 1 acromegaly showing, on MRI, and empty sella turcica occupied by and extraflexion of the lower portion of the chiasmatic cisterna without signs of adenoma and the sphenoidal sinus occupied by tissue wit inflammmatory characteristics. Somatostatin-receptor whole body scintigraphy was performed 4 and 24 hours after intravenous injection of 110 MBq 111In-pentetreotide (Octreoscan 111); spot images were acquired when judged necessary. In one case of glucagonoma, a tomographic scan (SPECT) was also performed to better evaluate the spatial relationship between the primitive pancreatic tumor and surrounding tissues. Focal accumulation of 111In-pentetreotide was scintigraphically detected in 5 of the 11 cases. Intense uptake of the radiopharmaceutical was observed in the meningiomas, in the glucagonomas with liver metastases, and in the case of acromegaly, corresponding to a GH-secreting adenoma. The negative scans seem to be true negative scans with the possible exception of one patient with a still unconfirmed suspicion of insulinoma, still not confirmed.

  3. Vitamin a derivatives labelled with 131I — Potential agents for liver scientigraphy

    NASA Astrophysics Data System (ADS)

    Kadeřávek, J.; Kozempel, J.; Štícha, M.; Petrášek, J.; Jirsa, M.; Taimr, P.; Lešetický, L.

    2006-01-01

    Two retinol derivatives, 4-[(131I)-4-iodobenzoyloxy]retinol propionate and 4-[(131I)-3-iodobenzylcarbamoyl]retinol propionate, were synthesized and their biodistribution in rats was studied in vivo by the whole body scintigraphy.

  4. Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans

    SciTech Connect

    Shiraishi, Junji; Li Qiang; Appelbaum, Daniel; Pu Yonglin; Doi, Kunio

    2007-01-15

    Bone scintigraphy is the most frequent examination among various diagnostic nuclear medicine procedures. It is a well-established imaging modality for the diagnosis of osseous metastasis and for monitoring osseous tumor response to chemotherapy and radiation therapy. Although the sensitivity of bone scan examinations for detection of bone abnormalities has been considered to be relatively high, it is time consuming to identify multiple lesions such as bone metastases of prostate and breast cancers. In addition, it is very difficult to detect subtle interval changes between two successive abnormal bone scans, because of variations in patient conditions, the accumulation of radioisotopes during each examination, and the image quality of gamma cameras. Therefore, we developed a new computer-aided diagnostic (CAD) scheme for the detection of interval changes in successive whole-body bone scans by use of a temporal subtraction image which was obtained with a nonlinear image-warping technique. We carried out 58 pairs of successive bone scans in which each scan included both posterior and anterior views. We determined 107 'gold-standard' interval changes among the 58 pairs based on the consensus of three radiologists. Our computerized scheme consisted of seven steps, i.e., initial image density normalization on each image, image matching for the paired images, temporal subtraction by use of the nonlinear image-warping technique, initial detection of interval changes by use of temporal-subtraction images, image feature extraction of candidates of interval changes, rule-based tests by use of 16 image features for removing some false positives, and display of the computer output for identified interval changes. One hundred seven gold standard interval changes included 71 hot lesions (uptake was increased compared with the previous scan, or there was new uptake in the current scan) and 36 cold lesions (uptake was decreased or disappeared) for anterior and posterior views. The

  5. Dental silver tooth fillings: A source of mercury exposure revealed by whole-body image scan and tissue analysis

    SciTech Connect

    Hahn, L.J.; Kloiber, R.; Vimy, M.J.; Takahashi, Y.; Lorscheider, F.L. )

    1989-12-01

    Mercury (Hg) vapor is released from dental silver tooth fillings into human mouth air after chewing, but its possible uptake routes and distribution among body tissues are unknown. This investigation demonstrates that when radioactive 203Hg is mixed with dental Hg/silver fillings (amalgam) and placed in teeth of adult sheep, the isotope will appear in various organs and tissues within 29 days. Evidence of Hg uptake, as determined by whole-body scanning and measurement of isotope in specific tissues, revealed three uptake sites: lung, gastrointestinal, and jaw tissue absorption. Once absorbed, high concentrations of dental amalgam Hg rapidly localize in kidneys and liver. Results are discussed in view of potential health consequences from long-term exposure to Hg from this dental material.

  6. Estimation of radiation dose to patients from 18FDG whole body PET/CT investigations using dynamic PET scan protocol

    PubMed Central

    Kaushik, Aruna; Jaimini, Abhinav; Tripathi, Madhavi; D’Souza, Maria; Sharma, Rajnish; Mondal, Anupam; Mishra, Anil K.; Dwarakanath, Bilikere S.

    2015-01-01

    Background & objectives: There is a growing concern over the radiation exposure of patients from undergoing 18FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography) whole body investigations. The aim of the present study was to study the kinetics of 18FDG distributions and estimate the radiation dose received by patients undergoing 18FDG whole body PET/CT investigations. Methods: Dynamic PET scans in different regions of the body were performed in 49 patients so as to measure percentage uptake of 18FDG in brain, liver, spleen, adrenals, kidneys and stomach. The residence time in these organs was calculated and radiation dose was estimated using OLINDA software. The radiation dose from the CT component was computed using the software CT-Expo and measured using computed tomography dose index (CTDI) phantom and ionization chamber. As per the clinical protocol, the patients were refrained from eating and drinking for a minimum period of 4 h prior to the study. Results: The estimated residence time in males was 0.196 h (brain), 0.09 h (liver), 0.007 h (spleen), 0.0006 h (adrenals), 0.013 h (kidneys) and 0.005 h (stomach) whereas it was 0.189 h (brain), 0.11 h (liver), 0.01 h (spleen), 0.0007 h (adrenals), 0.02 h (kidneys) and 0.004 h (stomach) in females. The effective dose was found to be 0.020 mSv/MBq in males and 0.025 mSv/MBq in females from internally administered 18FDG and 6.8 mSv in males and 7.9 mSv in females from the CT component. For an administered activity of 370 MBq of 18FDG, the effective dose from PET/CT investigations was estimated to be 14.2 mSv in males and 17.2 mSv in females. Interpretation & conclusions: The present results did not demonstrate significant difference in the kinetics of 18FDG distribution in male and female patients. The estimated PET/CT doses were found to be higher than many other conventional diagnostic radiology examinations suggesting that all efforts should be made to clinically justify and

  7. Whole body diffusion for metastatic disease assessment in neuroendocrine carcinomas: comparison with OctreoScan® in two cases

    PubMed Central

    2012-01-01

    Neuroendocrine tumor (NET) patients must be adequately staged in order to improve a multidisciplinary approach and optimal management for metastatic disease. Currently available imaging studies include somatostatin receptor scintigraphy, like OctreoScan®, computed tomography (CT), scans and magnetic resonance imaging (MRI), which analyze vascular concentration and intravenous contrast enhancement for anatomic tumor localization. However, these techniques require high degree of expertise for interpretation and are limited by their availability, cost, reproducibility, and follow-up imaging comparisons. NETs significantly reduce water diffusion as compared to normal tissue. Diffusion-weighted imaging (DWI) in MRI has an advantageous contrast difference: the tumor is represented with high signal over a black normal surrounding background. The whole-body diffusion (WBD) technique has been suggested to be a useful test for detecting metastasis from various anatomic sites. In this article we report the use of DWI in MRI and WBD in two cases of metastatic pulmonary NET staging in comparison with OctreoScan® in order to illustrate the potential advantage of DWI and WBD in staging NETs. PMID:22591909

  8. Abnormal radioiodine uptake on post-therapy whole body scan and sodium/iodine symporter expression in a dermoid cyst of the ovary: report of a case and review of the literature.

    PubMed

    Campennì, Alfredo; Giovinazzo, Salvatore; Tuccari, Giovanni; Fogliani, Simone; Ruggeri, Rosaria M; Baldari, Sergio

    2015-08-01

    In patients affected by differentiated thyroid cancer, the whole-body scan (WBS) with 131-radioiodine, especially when performed after a therapeutic activity of 131I, represents a sensitive procedure for detecting thyroid remnant and/or metastatic disease. Nevertheless, a wide spectrum of potentially pitfalls has been reported. Herein we describe a 63-year-old woman affected by follicular thyroid cancer, who was accidentally found to have an abdominal mass at post-dose WBS (pWBS). pWBS showed abnormal radioiodine uptake in the upper mediastinum, consistent with lymph-node metastases, and a slight radioiodine uptake in an abdominal focal area. Computed tomography revealed an inhomogeneous mass in the pelvis, previously unrecognized. The lesion, surgically removed, was found to be a typical dermoid cyst of the ovary, without any evidence of thyroid tissue. By immunohistochemistry, a moderate expression of the sodium-iodine symporter (NIS) was demonstrated in the epithelial cells, suggesting a NIS-dependent uptake of radioiodine by the cyst. PMID:26331324

  9. Brain metastases detectability of routine whole body (18)F-FDG PET and low dose CT scanning in 2502 asymptomatic patients with solid extracranial tumors.

    PubMed

    Bochev, Pavel; Klisarova, Aneliya; Kaprelyan, Ara; Chaushev, Borislav; Dancheva, Zhivka

    2012-01-01

    As fluorine-18-fluorodesoxyglucose positron emission tomography/computed tomography ( (18)F-FDG PET/CT) is gaining wider availability, more and more patients with malignancies undergo whole body PET/CT, mostly to assess tumor spread in the rest of the body, but not in the brain. Brain is a common site of metastatic spread in patients with solid extracranial tumors. Gold standard in the diagnosis of brain metastases remains magnetic resonance imaging (MRI). However MRI is not routinely indicated and is not available for all cancer patients. Fluorine-18-FDG PET is considered as having poor sensitivity in detecting brain metastases, but this may not be true for PET/CT. The aim of our study was to assess the value of (18)F-FDG PET/CT in the detection of brain metastases found by whole body scan including the brain, in patients with solid extracranial neoplasms. A total of 2502 patients with solid extracranial neoplasms were studied. All patients underwent a routine whole body (18)F-FDG PET/CT scan with the whole brain included in the scanned field. Patients with known or suspected brain metastases were preliminary excluded from the study. Hypermetabolic and ring-like brain lesions on the PET scan were considered as metastases. Lesions with CT characteristics of brain metastases were regarded as such irrespective of their metabolic pattern. Lesions in doubt were verified by MRI during first testing or on follow-up or by operation. Our results showed that brain lesions, indicative of and verified to be metastases were detected in 25 out of the 2502 patients (1%), with lung cancer being the most common primary. Twenty three out of these 25 patients had no neurological symptoms by the time of the scan. The detection rate of brain metastases was relatively low, but information was obtained with a minimum increase of radiation burden. In conclusion, whole body (18)F-FDG PET/CT detected brain metastases in 1% of the patients if brain was included in the scanned field. Brain

  10. Multi-site thrombus imaging and fibrin content estimation with a single whole-body PET scan in rats

    PubMed Central

    Blasi, Francesco; Oliveira, Bruno L; Rietz, Tyson A.; Rotile, Nicholas J; Naha, Pratap C; Cormode, David P; Izquierdo-Garcia, David; Catana, Ciprian; Caravan, Peter

    2015-01-01

    Objective Thrombosis is a leading cause of morbidity and mortality worldwide. Current diagnostic strategies rely on imaging modalities that are specific for distinct vascular territories, but a thrombus-specific whole-body imaging approach is still missing. Moreover, imaging techniques to assess thrombus composition are underdeveloped, although therapeutic strategies may benefit from such technology. Therefore, our goal was to test whether positron emission tomography (PET) with the fibrin-binding probe 64Cu-FBP8 allows multi-site thrombus detection and fibrin content estimation. Approach and Results Thrombosis was induced in Sprague-Dawley rats (n=32) by ferric chloride application on both carotid artery and femoral vein. 64Cu-FBP8-PET/CT imaging was performed 1, 3 or 7 days after thrombosis to detect thrombus location and to evaluate age-dependent changes in target uptake. Ex vivo biodistribution, autoradiography and histopathology were performed to validate imaging results. Arterial and venous thrombi were localized on fused PET/CT images with high accuracy (97.6%, 95% confidence interval: 92–100%). A single whole-body PET/MR imaging session was sufficient to reveal the location of both arterial and venous thrombi after 64Cu-FBP8 administration. PET imaging showed that probe uptake was greater in younger clots than in older ones for both arterial and venous thrombosis (P<0.0001). Quantitative histopathology revealed an age-dependent reduction of thrombus fibrin content (P<0.001), consistent with PET results. Biodistribution and autoradiography further confirmed the imaging findings. Conclusions We demonstrated that 64Cu-FBP8-PET is a feasible approach for whole-body thrombus detection, and that molecular imaging of fibrin can provide, noninvasively, insight into clot composition. PMID:26272938

  11. College of Radiology, Academy of Medicine of Malaysia position on whole body screening CT scans in healthy asymptomatic individuals (2008)

    PubMed Central

    Ho, ELM; Abdullah, BJJ; Tang, AAL; Nordin, AJ; Nair, AR; Lim, GCC; Samad-Cheung, H; Ng, KH; Ponnusamy, S; Abbas, SF; Bux, SI; Arasaratnam, S; Abdul Aziz, YF; Venugopal, S; Musa, Z; Abdul Manaf, Z

    2008-01-01

    To date, the College of Radiology (CoR) does not see any clear benefit in performing whole body screening computed tomography (CT) examinations in healthy asymptomatic individuals. There are radiation risk issues in CT and principles of screening should be adhered to. There may be a role for targeted cardiac screening CT that derives calcium score, especially for asymptomatic medium-risk individuals and CT colonography when used as part of a strategic programme for colorectal cancer screening in those 50 years and older. However, population based screening CT examinations may become appropriate when evidence emerges regarding a clear benefit for the patient outweighing the associated radiation risks. PMID:21611021

  12. Colon visualization on (99m)Tc-HDP whole-body bone scan due to sigmoid colon cancer-related enterovesical fistula.

    PubMed

    Kim, Sung Hoon; Song, Bong-Il; Won, Kyoung Sook

    2015-01-01

    An abnormally increased uptake of the bone-seeking agent is rarely observed in structures other than the bone and urinary track on bone scintigraphy. The general etiologies of soft tissue uptake can be explained by heterotopic ossification or dystrophic and metastatic calcification. We report a case of serendipitous visualization of the entire colon on bone scintigraphy. Diffuse colonic uptake was detected on the whole-body bone scan in a patient with biopsy-proven sigmoid colon cancer. Additional imaging studies clearly showed direct bladder invasion of the sigmoid colon cancer. Imaging findings with a brief review of the literature are presented in this article.

  13. Nasal visualization on radioiodine whole-body scintigraphy due to benign abnormality.

    PubMed

    Jiang, Xue; Wang, Qiao; Huang, Rui

    2015-04-01

    Nasal iodine activity can be observed on 123Iodine (123I) or 131I whole-body scintigraphy (WBS) commonly as a normal variant caused by nasal or salivary secretion of the tracer. We encountered 2 patients whose increased accumulation of 131I activity was associated with underlying abnormalities. One patient had a nasal polyp, whereas the other had an abscess.

  14. [Ethical issues raised by direct-to-consumer personal genome analysis and whole body scans: discussion and contextualisation of a report by the Nuffield Council on Bioethics].

    PubMed

    Buyx, Alena M; Strech, Daniel; Schmidt, Harald

    2012-01-01

    The paradigm of personalised medicine has many different facets, further to the application of pharmacogenetics. We examine here (direct-to-consumer) personal genome analysis and whole body scans and summarise findings from the Nuffield Council's on Bioethics recent report "Medical profiling and online medicine: the ethics of 'personalised healthcare' in a consumer age". We describe the current situation in Germany with regard to access to such services, and contextualise the Nuffield Council's report with summaries of position statements by German professional bodies. We conclude with three points that merit examination further to the analyses of the Nuffield Council's report and the German professional bodies. These concern the role of indirect evidence in considering restrictive policies, the question of whether regulations should require commercial providers to contribute to the generation of better evidence, and the option of using data from evaluations in combination with indirect evidence in justifying restrictive policies.

  15. Value of combined 67Ga and 99Tc(m)-human immunoglobulin G whole-body scanning in malignant lymphoma.

    PubMed

    Küçük, N O; Aras, G; Soylu, A; Ozcan, M; Ibis, E; Dinçol, D

    2001-03-01

    Human immunoglobulin G labelled with 99Tc(m) (99Tc(m)-HIG) is an agent introduced for the localization of inflammatory lesions. There is also a limited number of reports concerning the uptake of this agent by malignant lesions. The aim of this study was to evaluate the uptake of 99Tc(m)-HIG by lymphoma. Twenty-three patients (five female, 18 male) with known Hodgkin's or non-Hodgkin's lymphoma for a period of 2-6 years (mean 4.2 years) and which, by using computed tomography (CT), showed recurrence, were included in the study. The patients were aged between 32 and 68 years (mean 38 +/- 5 years). No evidence of inflammation or infection was seen in any of these patients. CT, 99Tc(m)-HIG and a 67Ga scan were performed in the same week. CT showed abdominal involvement in 17 patients, pelvic involvement in 11, and thorax involvement in 11. 99Tc(m)-HIG showed higher sensitivity (94.1%) in the abdomen, a similar sensitivity (63.6%) in thorax, but lower (18.1%) in pelvic area than for 67Ga. 99Tc(m)-HIG was found to be more useful for the evaluation of abdominal involvement compared to 67Ga due to gastrointestinal excretion of the latter. The resolution of 67Ga was better than 99Tc(m)-HIG in thorax and pelvis. Using 99Tc(m)-HIG and 67Ga together in lymphoma may increase sensitivity.

  16. Physics-based Simulation of Human Posture Using 3D Whole Body Scanning Technology for Astronaut Space Suit Evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Jung

    2005-01-01

    Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.

  17. In Thyroidectomized Thyroid Cancer Patients, False-Positive I-131 Whole Body Scans Are Often Caused by Inflammation Rather Than Thyroid Cancer

    PubMed Central

    Garger, Yana Basis; Winfeld, Mathew; Friedman, Kent; Blum, Manfred

    2016-01-01

    Objective. To show that I-131 false-positive results on whole-body scans (WBSs) after thyroidectomy for thyroid cancer may be a result of inflammation unassociated with the cancer. Methods. We performed a retrospective image analysis of our database of thyroid cancer patients who underwent WBS from January 2008 to January 2012 to identify and stratify false positives. Results. A total of 564 patients underwent WBS during the study period; 96 patients were referred for 99 I-131 single-photon emission computed tomography (SPECT/CT) scans to better interpret cryptic findings. Among them, 73 scans were shown to be falsely positive; 40/73 or 54.7% of false-positive findings were a result of inflammation. Of the findings, 17 were in the head, 1 in the neck, 4 in the chest, 3 in the abdomen, and 14 in the pelvis; 1 had a knee abscess. Conclusions. In our series, inflammation caused the majority of false-positive WBSs. I-131 SPECT/CT is powerful in the differentiation of inflammation from thyroid cancer. By excluding metastatic disease, one can properly prognosticate outcome and avoid unnecessary, potentially harmful treatment of patients with thyroid cancer. PMID:26977418

  18. In Thyroidectomized Thyroid Cancer Patients, False-Positive I-131 Whole Body Scans Are Often Caused by Inflammation Rather Than Thyroid Cancer.

    PubMed

    Garger, Yana Basis; Winfeld, Mathew; Friedman, Kent; Blum, Manfred

    2016-01-01

    Objective. To show that I-131 false-positive results on whole-body scans (WBSs) after thyroidectomy for thyroid cancer may be a result of inflammation unassociated with the cancer. Methods. We performed a retrospective image analysis of our database of thyroid cancer patients who underwent WBS from January 2008 to January 2012 to identify and stratify false positives. Results. A total of 564 patients underwent WBS during the study period; 96 patients were referred for 99 I-131 single-photon emission computed tomography (SPECT/CT) scans to better interpret cryptic findings. Among them, 73 scans were shown to be falsely positive; 40/73 or 54.7% of false-positive findings were a result of inflammation. Of the findings, 17 were in the head, 1 in the neck, 4 in the chest, 3 in the abdomen, and 14 in the pelvis; 1 had a knee abscess. Conclusions. In our series, inflammation caused the majority of false-positive WBSs. I-131 SPECT/CT is powerful in the differentiation of inflammation from thyroid cancer. By excluding metastatic disease, one can properly prognosticate outcome and avoid unnecessary, potentially harmful treatment of patients with thyroid cancer.

  19. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: A phantom study

    SciTech Connect

    Yang, Ching-Ching; Liu, Shu-Hsin; Mok, Greta S. P.; Wu, Tung-Hsin

    2014-09-15

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  20. The evolution of computed tomography from organ-selective to whole-body scanning in managing unconscious patients with multiple trauma: A retrospective cohort study.

    PubMed

    Hong, Zhi-Jie; Chen, Cheng-Jueng; Yu, Jyh-Cherng; Chan, De-Chuan; Chou, Yu-Ching; Liang, Chia-Ming; Hsu, Sheng-Der

    2016-09-01

    We aimed to evaluate the benefit of whole-body computed tomography (WBCT) scanning for unconscious adult patients suffering from high-energy multiple trauma compared with the conventional stepwise approach of organ-selective CT.Totally, 144 unconscious patients with high-energy multiple trauma from single level I trauma center in North Taiwan were enrolled from January 2009 to December 2013. All patients were managed by a well-trained trauma team and were suitable for CT examination. The enrolled patients are all transferred directly from the scene of an accident, not from other medical institutions with a definitive diagnosis. The scanning regions of WBCT include head, neck, chest, abdomen, and pelvis. We analyzed differences between non-WBCT and WBCT groups, including gender, age, hospital stay, Injury Severity Score, Glasgow Coma Scale, Revised Trauma Score, time in emergency department (ED), medical cost, and survival outcome.Fifty-five patients received the conventional approach for treating trauma, and 89 patients received immediate WBCT scanning after an initial examination. Patients' time in ED was significantly shorter in the WBCT group in comparison with the non-WBCT group (158.62 ± 80.13 vs 216.56 ± 168.32 min, P = 0.02). After adjusting for all possible confounding factors, we also found that survival outcome of the WBCT group was better than that of the non-WBCT group (odds ratio: 0.21, 95% confidence interval: 0.06-0.75, P = 0.016).Early performing WBCT during initial trauma management is a better approach for treating unconscious patients with high-energy multiple trauma. PMID:27631215

  1. False-positive scalp activity in 131I imaging associated with hair coloring.

    PubMed

    Yan, Di; Doss, Mohan; Mehra, Ranee; Parsons, Rosaleen B; Milestone, Barton N; Yu, Jian Q

    2013-03-01

    A patient with metastatic papillary thyroid carcinoma (after surgical resection of tumor and positive lymph nodes) undergoing thyroid ablation therapy with (131)I is described. Whole-body scintigraphy was performed 1 wk after ablation therapy to evaluate the presence of residual disease. The whole-body images demonstrated an artifact caused by tracer accumulation in the patient's scalp related to recent hair coloring. Common etiologies of false-positive (131)I scintigraphic findings are briefly reviewed. The importance of taking preventative measures to decrease the number of false-positive findings and recognizing these findings when they occur is discussed.

  2. Early Adolescence: Whole Body Learning.

    ERIC Educational Resources Information Center

    Cannon, Roger K., Jr.; Padilla, Michael J.

    1982-01-01

    "Whole body" denotes using the entire body to sense and experience a concept or idea. Typical whole body learning activities involve use of several senses: muscle sense, temperature, pain, pressure, and sense of equilibrium. Four whole body science activities are described, including identifying trees by touch. (Author/JN)

  3. Unusual Presentation of Bladder Paraganglioma: Comparison of 131I MIBG SPECT/CT and 68Ga DOTANOC PET/CT

    PubMed Central

    Jain, Tarun Kumar; Basher, Rajender Kumar; Gupta, Nitin; Shukla, Jaya; Singh, Shrawan Kumar; Mittal, Bhagwant Rai

    2016-01-01

    Extraadrenal chromaffin cell-related tumors or paragangliomas are rare, especially in the bladder, accounting for less than 1% of cases. We report a 16-year-old boy who presented with hematuria and paroxysmal headache and was found to have a prostatic growth infiltrating the urinary bladder on anatomical imaging. Iodine-131 (131I) metaiodobenzylguanidine (MIBG) whole-body scanning and subsequently gallium-68 (68Ga) DOTANOC positron emission tomography/computed tomography (PET/CT) were performed. The MIBG scan revealed a non-tracer-avid soft-tissue mass, while DOTANOC PET/CT revealed a tracer-avid primary soft-tissue mass involving the urinary bladder and prostate with metastasis to the iliac lymph nodes. He underwent surgical management; histopathology of the surgical specimen revealed a bladder paraganglioma, whereas the prostate was found to be free of tumor. PMID:26912984

  4. The ORNL whole body counter

    SciTech Connect

    Not Available

    1988-01-01

    This report is a non-technical document intended to provide an individual about to undergo a whole-body radiation count with a general understanding of the counting procedure and with the results obtained. 9 figs. (TEM)

  5. Hanford whole body counting manual

    SciTech Connect

    Palmer, H.E.; Brim, C.P.; Rieksts, G.A.; Rhoads, M.C.

    1987-05-01

    This document, a reprint of the Whole Body Counting Manual, was compiled to train personnel, document operation procedures, and outline quality assurance procedures. The current manual contains information on: the location, availability, and scope of services of Hanford's whole body counting facilities; the administrative aspect of the whole body counting operation; Hanford's whole body counting facilities; the step-by-step procedure involved in the different types of in vivo measurements; the detectors, preamplifiers and amplifiers, and spectroscopy equipment; the quality assurance aspect of equipment calibration and recordkeeping; data processing, record storage, results verification, report preparation, count summaries, and unit cost accounting; and the topics of minimum detectable amount and measurement accuracy and precision. 12 refs., 13 tabs.

  6. Whole body MR imaging: applications in oncology.

    PubMed

    Johnston, C; Brennan, S; Ford, S; Eustace, S

    2006-04-01

    This article reviews technique and clinical applications of whole body MR imaging as a diagnostic tool in cancer staging. In particular the article reviews its role as an alternative to scintigraphy (bone scan and PET) in staging skeletal spread of disease, its role in assessing total tumour burden, its role in multiple myeloma and finally its evolving non oncologic role predominantly assessing total body composition.

  7. Hanford whole body counting manual

    SciTech Connect

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs.

  8. A bioassay experience and lessons learned on the internal contamination of (131)I during a maintenance period in a Korean nuclear power plant.

    PubMed

    Kim, Hee Geun; Kong, Tae Young

    2012-08-01

    During a maintenance period at a Korean nuclear power plant, internal exposure of radiation workers occurred by the inhalation of (131)I that was released into the reactor building from a primary system opening due to defective fuels. The internal activity in radiation workers contaminated by (131)I was immediately measured using a whole body counter (WBC). A whole body counting was performed again a few days later, considering the factors of equilibrium in the body. The intake and the committed effective dose were estimated based on the WBC results. The intake was also calculated by hand, based on both the entrance records to the reactor building, and the counted results of the air concentration for (131)I were compared with the whole body counting results.

  9. Human whole body cold adaptation

    PubMed Central

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  10. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  11. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  12. Strong Neck Accumulation of 131I Is a Predictor of Incomplete Low-Dose Radioiodine Remnant Ablation Using Recombinant Human Thyroid-Stimulating Hormone

    PubMed Central

    Enomoto, Keisuke; Sakata, Yoshiharu; Izumi, Kazuyuki; Takenaka, Yukinori; Nagai, Miki; Takeda, Kazuya; Enomoto, Yukie; Uno, Atsuhiko

    2015-01-01

    Abstract The purpose of this study was to identify the factors that predict incomplete low-dose radioiodine remnant ablation (RRA) with recombinant human thyroid-stimulating hormone (rhTSH) and to report the adverse events associated with this treatment. Between 2012 and 2014, 43 consecutive patients with thyroid cancer received low-dose RRA with rhTSH after total thyroidectomy. We retrospectively investigated the adverse events during low-dose RRA and during diagnostic whole body scan (DxWBS) using rhTSH, and analyzed the rate of RRA completion and the associations between RRA completion and various clinical/pathological factors. Complete RRA was seen in 33 (76.7%) patients, and incomplete RRA was observed in 10 (23.3%). Patients with incomplete RRA had stronger neck accumulation of 131I than those with complete RRA (P < 0.001). Adverse events at RRA and DxWBS were seen in 12 and 9 patients, respectively. All events at RRA were grade 1, with one exception (grade 2 vertigo after rhTSH administration). The rate of adverse events at DxWBS was significantly higher in patients with adverse events seen at RRA (risk ratio, 3.778, P = 0.008). Strong neck accumulation of 131I is significant independent predictor of incomplete low-dose RRA. The risk of adverse events at DxWBS was higher in patients who experienced adverse events at RRA than in those who did not. PMID:26426611

  13. Impact of high 131I-activities on quantitative 124I-PET

    NASA Astrophysics Data System (ADS)

    Braad, P. E. N.; Hansen, S. B.; Høilund-Carlsen, P. F.

    2015-07-01

    Peri-therapeutic 124 I-PET/CT is of interest as guidance for radioiodine therapy. Unfortunately, image quality is complicated by dead time effects and increased random coincidence rates from high 131 I-activities. A series of phantom experiments with clinically relevant 124 I/131 I-activities were performed on a clinical PET/CT-system. Noise equivalent count rate (NECR) curves and quantitation accuracy were determined from repeated scans performed over several weeks on a decaying NEMA NU-2 1994 cylinder phantom initially filled with 25 MBq 124 I and 1250 MBq 131 I. Six spherical inserts with diameters 10-37 mm were filled with 124 I (0.45 MBq ml-1 ) and 131 I (22 MBq ml-1 ) and placed inside the background of the NEMA/IEC torso phantom. Contrast recovery, background variability and the accuracy of scatter and attenuation corrections were assessed at sphere-to-background activity ratios of 20, 10 and 5. Results were compared to pure 124 I-acquisitions. The quality of 124 I-PET images in the presence of high 131 I-activities was good and image quantification unaffected except at very high count rates. Quantitation accuracy and contrast recovery were uninfluenced at 131 I-activities below 1000 MBq, whereas image noise was slightly increased. The NECR peaked at 550 MBq of 131 I, where it was 2.8 times lower than without 131 I in the phantom. Quantitative peri-therapeutic 124 I-PET is feasible.

  14. Whole-body imaging modalities in oncology.

    PubMed

    Carty, Fiona; Shortt, Conor P; Shelly, Martin J; Eustace, Stephen J; O'Connell, Martin J

    2010-03-01

    This article outlines the expanding approaches to whole-body imaging in oncology focusing on whole-body MRI and comparing it to emerging applications of whole-body CT, scintigraphy, and above all PET CT imaging. Whole-body MRI is widely available, non-ionizing and rapidly acquired, and inexpensive relative to PET CT. While it has many advantages, WBMRI is non-specific and, when compared to PET CT, is less sensitive. This article expands each of these issues comparing individual modalities as they refer to specific cancers.

  15. Behavior of Na131I and meta(131I) iodobenzylguanidine (MIBG) in municipal sewerage.

    PubMed

    Fenner, F D; Martin, J E

    1997-08-01

    Behavior of 131I activity in primary sludge at the Ann Arbor, Michigan, Municipal Waste Water Treatment Plant was studied in relation to known radioiodine therapy events at the University of Michigan Hospital complex. The principal compounds administered are Na131I, which has widespread use, and meta (131I) iodobenzylguanidine (MIBG), which is a compound unique to the University of Michigan, although labeled antibodies and other forms are also used in therapy and research. The objectives of the study were to determine the environmental fate of such discharges and to determine radiation exposures to workers and the public when sludges are incinerated. Approximately 17% of the MIBG activity administered in a therapy was found in the primary sludge, whereas only 1.1% of the Na131I was in sludge. When land applied, the short half life of 131I in the sludge presents few radiological health concerns; however, incineration, which is done in winter months, is assumed to release organically bound 131I to the atmosphere. Radiation doses due to incineration of sludge containing measured concentrations were calculated for a maximally exposed worker to be 1.7 microSv (0.17 mrem) of which 0.48 microSv (0.048 mrem) was due to a 2-d upset condition. For a more typically exposed worker, and a member of the public, the committed effective dose equivalents were 1.2 microSv (0.12 mrem) and 0.06 microSv (0.006 mrem), respectively, for a 22-wk incineration period with release of all radioiodine in the sludge. Transport time to the treatment plant for radioiodine was found to be much longer than that of normal sewage, possibly due to organic material in sewer lines that absorb iodine. The residence time of radioiodine in the sewer also appears to be longer than expected; whether other radioactive materials are held up the same way is not known but chemical form is surely a factor.

  16. Individualized 131I-mIBG therapy in the management of refractory and relapsed neuroblastoma

    PubMed Central

    George, Sally L.; Falzone, Nadia; Chittenden, Sarah; Kirk, Stephanie J.; Lancaster, Donna; Vaidya, Sucheta J.; Mandeville, Henry; Saran, Frank; Pearson, Andrew D.J.; Du, Yong; Meller, Simon T.; Denis-Bacelar, Ana M.

    2016-01-01

    Objective Iodine-131-labelled meta-iodobenzylguanidine (131I-mIBG) therapy is an established treatment modality for relapsed/refractory neuroblastoma, most frequently administered according to fixed or weight-based criteria. We evaluate response and toxicity following a dosimetry-based, individualized approach. Materials and methods A review of 44 treatments in 25 patients treated with 131I-mIBG therapy was performed. Patients received 131I-mIBG therapy following relapse (n=9), in refractory disease (n=12), or with surgically unresectable disease despite conventional treatment (n=4). Treatment schedule (including mIBG dose and number of administrations) was individualized according to the clinical status of the patient and dosimetry data from either a tracer study or previous administrations. Three-dimensional tumour dosimetry was also performed for eight patients. Results The mean administered activity was 11089±7222 MBq and the mean whole-body dose for a single administration was 1.79±0.57 Gy. Tumour-absorbed doses varied considerably (3.70±3.37 mGy/MBq). CTCAE grade 3/4 neutropenia was documented following 82% treatments and grade 3/4 thrombocytopenia following 71% treatments. Further acute toxicity was found in 49% of patients. All acute toxicities resolved with appropriate therapy. The overall response rate was 58% (complete or partial response), with a further 29% of patients having stable disease. Conclusion A highly personalized approach combining patient-specific dosimetry and clinical judgement enables delivery of high activities that can be tolerated by patients, particularly with stem cell support. We report excellent response rates and acceptable toxicity following individualized 131I-mIBG therapy. PMID:26813989

  17. Whole-body MRI evaluation of facioscapulohumeral muscular dystrophy

    PubMed Central

    Leung, Doris G.; Carrino, John A.; Wagner, Kathryn R.; Jacobs, Michael A.

    2015-01-01

    Introduction Facioscapulohumeral muscular dystrophy (FSHD) is a hereditary disorder that causes progressive muscle wasting. Increasing knowledge of the pathophysiology of FSHD has stimulated interest in developing biomarkers of disease severity. Methods Two groups of MRI scans were analyzed: whole-body scans from 13 subjects with FSHD, and upper and lower extremity scans from 34 subjects with FSHD who participated in the MYO-029 clinical trial. Muscles were scored for fat infiltration and edema-like changes. Fat infiltration scores were compared to muscle strength and function. Results Our analysis reveals a distinctive pattern of both frequent muscle involvement and frequent sparing in FSHD. Averaged fat infiltration scores for muscle groups in the legs correlated with quantitative muscle strength and 10-meter walk times. Discussion Advances in MRI technology allow for the acquisition of rapid, high-quality whole-body imaging in diffuse muscle disease. This technique offers a promising disease biomarker in FSHD and other muscle diseases. PMID:25641525

  18. Whole-body nanoparticle aerosol inhalation exposures.

    PubMed

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-01-01

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 (5). The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M

  19. European whole body counter measurement intercomparison.

    PubMed

    Thieme, M; Hunt, E L; König, K; Schmitt-Hannig, A; Gödde, R

    1998-04-01

    In order to test the common quality standards for the performance of measurements of internal radioactivity, the European Commission funded a European intercomparison of whole body counters, which was organized and carried out by the Institut fuer Strahlenhygiene (part of the German Bundesamt fuer Strahlenschutz). Forty-four whole body counting facilities from forty-two institutions in nineteen countries (the fifteen member states of the European Union plus Hungary, the Czech Republic, Switzerland and Norway) took part in this intercomparison, which made it the most comprehensive ever carried out in Europe. For the study, the 70 kg tissue equivalent St Petersburg phantom was used with rods containing 40K, 57Co, 60Co, and 137Cs. The overall results of the whole body counter study were rather good.

  20. Limitations of /sup 131/I-MIBG scintigraphy in locating pheochromocytomas

    SciTech Connect

    Gough, I.R.; Thompson, N.W.; Shapiro, B.; Sisson, J.C.

    1985-07-01

    /sup 131/I-metaiodobenzylguanidine (/sup 131/I-MIBG) scintigraphy for the location of pheochromocytomas has proved to be a major advance in patient management. In combination with computerized tomographic scanning, nearly all pheochromocytomas can be located before surgery and invasive investigations are now indicated only in exceptional cases. However, there are still lessons to be learned concerning the optimal administration and interpretation of /sup 131/I-MIBG scintigraphy. With careful attention to detail and an awareness of isotope distribution, false positive studies should be extremely rare. While the incidence of false negative studies is uncommon, these certainly occur. A patient with sporadic bilateral adrenal medullary hyperplasia, bilateral pheochromocytomas, and additional benign pheochromocytomas arising in paraganglia tissue anterior to the abdominal aorta is presented. The right adrenal pheochromocytoma was not identified on /sup 131/I-MIBG imaging. The authors conclude that even with current locating techniques, the traditional surgical approach to pheochromocytoma should not be abandoned. This involves transabdominal exploration of both adrenal glands and careful examination of all possible sites of extra-adrenal pheochromocytomas.

  1. Breast cancer following /sup 131/I therapy for hyperthyroidism

    SciTech Connect

    Hoffman, D.A.; McConahey, W.M.

    1983-01-01

    A retrospective cohort study of women treated for hyperthyroidism at the Mayo Clinic between 1946 and 1964 was conducted to determine if 1,005 women treated with (/sup 131/I) were at increased risk of breast cancer compared with 2,141 women traced, and a response (death certificate or questionnaire) was received for 99% of the traced women. The average duration of follow-up was 15 years for the /sup 131/I-treated women and 21 years for women treated surgically. No increased risk of breast cancer was observed in the /sup 131/I-treated women (adjusted relative risk . 0.8). No patterns were found of increased breast cancer risk by age at first treatment, by time since treatment, or by total exposure to /sup 131/I. Failure to detect an increased risk of breast cancer in the /sup 131/I-treated women was attributed to the moderately low doses from /sup 131/I therapy and the relatively small number of exposed women. The study also failed to find any increased risk of breast cancer associated with hyperthyroidism.

  2. [131I]metaiodobenzylguanidine therapy after conventional therapy for neuroblastoma.

    PubMed

    Hoefnagel, C A; Voûte, P A; De Kraker, J; Valdés Olmos, R A

    1991-01-01

    [131I]Metaiodobenzylguanidine (131I-MIBG) is used for diagnostic scintigraphy and targeted therapy in a range of neural crest tumors, which exhibit an active uptake-1 mechanism at the cell membrane and cytoplasmatic storage in neurosecretory granules. A good and selective concentration and a long retention in the tumor, as is generally the case in neuroblastoma, are the basis for successful 131I-MIBG treatment. At The Netherlands Cancer Institute a phase II study was carried out in 53 patients with progressive recurrent disease after conventional therapy had failed. Despite the unfavorable basis for treatment, 131I-MIBG therapy induced 7 complete remissions, 23 partial remissions and arrest of disease (no change) in 10. Nine patients had progressive disease and one patient was lost to follow-up. The palliative effect of the treatment under these conditions was impressive. The duration of remissions varied from 2 to 38 months. The best results were obtained in patients with voluminous soft tissue disease. In general the treatment was well tolerated by children and the toxicity was mild, provided the bone marrow was not invaded by the disease. It is concluded that 131I-MIBG therapy has a definitive place in the treatment of neuroblastoma after conventional treatment has failed. As the invasiveness and toxicity of this therapy compare favorably with that of chemotherapy, immunotherapy and external beam radiotherapy, 131I-MIBG therapy is the best palliative treatment for patients with advanced recurrent neuroblastoma.

  3. Whole Body Melanoma Transcriptome Response in Medaka

    PubMed Central

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K.; Postlethwait, John; Warren, Wesley C.

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model. PMID

  4. Whole Body Melanoma Transcriptome Response in Medaka.

    PubMed

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K; Postlethwait, John; Warren, Wesley C

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model. PMID

  5. Whole-body hyperthermia induction techniques.

    PubMed

    Milligan, A J

    1984-10-01

    Currently, there are three techniques used for delivery of whole-body hyperthermia. The simplest of these is direct contact between skin and some surrounding fluid. The surrounding fluid can be either water, wax, air, or other fluid medium; heat is transferred from the surrounding fluid to the body surface. Vessels in the skin surface transfer heat to the perfusing blood, which uniformly distributes it throughout the body. The second technique uses irradiation of the body surface with nonionizing radiation to deliver heat to the first few cm from the surface. This heat can be picked up by local blood perfusion and distributed throughout the body. One advantage of this method over direct contact methods is that heat is deposited throughout the first few cm and therefore temperature increases at the surface are lower. The third technique is extracorporeal perfusion which seems the most promising method for delivery of whole-body hyperthermia. This allows for greater control of central temperature via rapid change in temperature of blood passing through the external heat exchanger. The increased ability to control temperature resulting from this advanced instrumentation allows accurate delivery of whole-body hyperthermia. This permits comparison studies of therapeutic effectiveness.

  6. Hepatobiliary kinetics after whole-body irradiation

    SciTech Connect

    Durakovic, A.

    1986-09-01

    The purpose of this investigation was to study hepatobiliary kinetics after whole-body gamma irradiation. Two groups of nine male beagle dogs were irradiated with a single whole body dose of 4- and 8-Gy cobalt-60 photons. Each animal was injected with 2 mCi Tc-99m DISIDA and scintigraphic studies were obtained with a gamma camera with a parallel hole multipurpose collimator. The parameters studied included: peak activity of the liver and gall bladder and gall bladder and intestinal visualization from the time of Tc-99m DISIDA administration. Total and indirect bilirubin, LDH, SGOT, and SGPT determined as baseline studies before irradiation and at different time intervals after irradiation were not changed in irradiated animals. Whole body Co-60 irradiation with 4 and 8 Gy produced no significant changes in the Tc-99m DISIDA visualization of the gall bladder or in the peak activity in the gall bladder or the liver 1 and 7 days after irradiation. Intestinal visualization occurred significantly earlier in 8 Gy Co-60 irradiated animals on both day 1 and day 7 post irradiation, compared to baseline values where it was never observed before 195.0 minutes. Gall bladder emptying is significantly accelerated after 8 Gy but not after 4-Gy Co-60 gamma irradiation. These observations suggest that gamma irradiation stimulates gall bladder contractility without modifying intrahepatic biliary kinetics.

  7. Muscle and whole body metabolism after norepinephrine.

    PubMed

    Kurpad, A V; Khan, K; Calder, A G; Elia, M

    1994-06-01

    The effect of an infusion of norepinephrine (0.42 nmol.kg-1.min-1) on energy metabolism in the whole body (using indirect calorimetry and the arteriovenous forearm catheterization techniques in eight healthy young male adults. The activity of the triglyceride-fatty acid cycle, which mainly operates in nonmuscular tissues, was also assessed by measuring glycerol turnover using [2H5]glycerol (to indicate lipolysis) and indirect calorimetry (to indicate net fat oxidation). Norepinephrine increased whole body oxygen consumption by almost 10% (P < 0.01), but the estimated oxygen consumption of muscles tended to decrease. Muscle blood flow (measured by 133Xe) and forearm blood flow (measured by strain-gauge plethysmography) were not significantly affected by norepinephrine, but the rate of uptake of nonesterified fatty acids and beta-hydroxybutyrate increased severalfold (P < 0.05), whereas that of glucose did not. The activity of the triglyceride-fatty acid cycle increased fourfold after norepinephrine administration, having a marginal effect on resting energy expenditure (approximately 1.5%) but accounting for approximately 15% of the increase in whole body energy expenditure. This study provides no evidence that skeletal muscle is an important site for norepinephrine-induced thermogenesis and suggests that an increase in the activity of the triglyceride-fatty acid cycle contributes to the norepinephrine-induced increase in energy expenditure of nonmuscular tissues.

  8. Long-term complete responses after 131I-tositumomab therapy for relapsed or refractory indolent non-Hodgkin's lymphoma

    PubMed Central

    Buchegger, F; Antonescu, C; Delaloye, A Bischof; Helg, C; Kovacsovics, T; Kosinski, M; Mach, J-P; Ketterer, N

    2006-01-01

    We present the long-term results of 18 chemotherapy relapsed indolent (N=12) or transformed (N=6) NHL patients of a phase II anti-CD20 131I-tositumomab (Bexxar®) therapy study. The biphasic therapy included two injections of 450 mg unlabelled antibody combined with 131I-tositumomab once as dosimetric and once as therapeutic activity delivering 75 or 65 cGy whole-body radiation dose to patients with normal or reduced platelet counts, respectively. Two patients were not treated due to disease progression during dosimetry. The overall response rate was 81% in the 16 patients treated, including 50% CR/CRu and 31% PR. Median progression free survival of the 16 patients was 22.5 months. Median overall survival has not been reached after a median observation of 48 months. Median PFS of complete responders (CR/CRu) has not been reached and will be greater than 51 months. Short-term side effects were mainly haematological and transient. Among the relevant long-term side effects, one patient previously treated with CHOP chemotherapy died from secondary myelodysplasia. Four patients developed HAMA. In conclusion, 131I-tositumomab RIT demonstrated durable responses especially in those patients who achieved a complete response. Six of eight CR/CRu are ongoing after 46–70 months. PMID:16685263

  9. Monte Carlo calculations for efficiency calibration of a whole-body monitor using BOMAB phantoms of different sizes.

    PubMed

    Bhati, S; Patni, H K; Ghare, V P; Singh, I S; Nadar, M Y

    2012-03-01

    Internal contamination due to high-energy photon (HEP) emitters is assessed using a scanning bed whole-body monitor housed in a steel room at the Bhabha Atomic Research Centre (BARC). The monitor consists of a (203 mm diameter × 102 mm thickness) NaI(Tl) detector and is calibrated using a Reference BOMAB phantom representative of an average Indian radiation worker. However, a series of different size physical phantoms are required to account for size variability in workers, which is both expensive and time consuming. Therefore, a theoretical approach based on Monte Carlo techniques has been employed to calibrate the system in scanning geometry with BOMAB phantoms of different sizes characterised by their weight (W) and height (H) for several radionuclides of interest ((131)I, (137)Cs, (60)Co and (40)K). A computer program developed for this purpose generates the detector response and the detection efficiencies (DEs) for the BARC Reference phantom (63 kg/168 cm), ICRP Reference male phantom (70 kg/170 cm) and several of its scaled versions. The results obtained for different size phantoms indicated a decreasing trend of DEs with the increase in W/H values of the phantoms. The computed DEs for uniform distribution of (137)Cs in BOMAB phantom varied from 3.52 × 10(-3) to 2.88 × 10(-3) counts per photon as the W/H values increased from 0.26 to 0.50. The theoretical results obtained for the BARC Reference phantom have been verified with experimental measurements. The Monte Carlo results from this study will be useful for in vivo assessment of HEP emitters in radiation workers of different physiques.

  10. Compensation to whole body active rotation perturbation.

    PubMed

    Rossi, S; Gazzellini, S; Petrarca, M; Patanè, F; Salfa, I; Castelli, E; Cappa, P

    2014-01-01

    The aim of the present study is the exploration of the compensation mechanisms in healthy adults elicited by superimposing a horizontal perturbation, through a rotation of the support base, during a whole body active rotation around the participant's own vertical body axis. Eight healthy participants stood on a rotating platform while executing 90° whole body rotations under three conditions: no concurrent platform rotation (NP), support surface rotation of ± 45° in the same (45-S) and opposite (45-O) directions. Participants' kinematics and CoP displacements were analyzed with an optoelectronic system and a force platform. In both 45-S and 45-O conditions, there was a tendency for the head to be affected by the external perturbation and to be the last and least perturbed segment while the pelvis was the most perturbed. The observed reduced head perturbation in 45-S and 45-O trials is consistent with a goal-oriented strategy mediated by vision and vestibular information, whereas the tuning of lumbar rotation is consistent with control mechanisms mediated by somato-sensory information.

  11. Credibility of Uncertainty Analyses for 131-I Pathway Assessments

    SciTech Connect

    Hoffman, F O.; Anspaugh, L. R.; Apostoaei, A. I.; Beck, Harold L.; Bouville, A; Napier, Bruce A.; Simon, Steven L.

    2004-05-01

    We would like to make your readers aware of numerous concerns we have with respect to the paper by A. A. Simpkins and D. M. Hamby on Uncertainty in transport factors used to calculate historic dose from 131I releases at the Savannah River Site. The paper by Simpkins and Hamby concludes by saying their uncertainty analysis would add credibility to current dose reconstruction efforts of public exposures to historic releases of 131I from the operations at the Savannah River Site, yet we have found their paper to be afflicted with numerous errors in assumptions and methodology, which in turn lead to grossly misleading conclusions. Perhaps the most egregious errors are their conclusions, which state that: a. the vegetable pathway, not the ingestion of fresh milk, was the main contributor to thyroid dose for exposure to 131I (even though dietary intake of vegetables was less in the past than at present), and b. the probability distribution assigned to the fraction of iodine released in the elemental form (Uniform 0, 0.6) is responsible for 64.6% of the total uncertainty in thyroid dose, given a unit release of 131I to the atmosphere. The assumptions used in the paper by Simpkins and Hamby lead to a large overestimate of the contamination of vegetables by airborne 131I. The interception by leafy and non-leafy vegetables of freshly deposited 131I is known to be highly dependent on the growth form of the crop and the standing crop biomass of leafy material. Unrealistic assumptions are made for losses of 131I from food processing, preparation, and storage prior to human consumption. These assumptions tend to bias their conclusions toward an overestimate of the amount of 131I retained by vegetation prior to consumption. For example, the generic assumption of a 6-d hold-up time is used for the loss from radioactive decay for the time period from harvest to human consumption of fruits, vegetables, and grains. We anticipate hold-up times of many weeks, if not months, between

  12. Whole-body FDG-PET imaging for staging of Hodgkin`s disease and lymphoma

    SciTech Connect

    Hoh, C.K.; Glaspy, J.; Rosen, P.

    1997-03-01

    Accurate staging of Hodgkin`s disease (HD) and non-Hodgkin`s lymphoma (NHL) is important for treatment management. In this study, the utility of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (FDG) wholebody PET was evaluated as an imaging modality for initial staging or restaging of 7 HD and 11 NHL patients. Whole-body PET-based staging results were compared to the patient`s clinical stage based on conventional staging studies, which included combinations of CT of the chest, abdomen and pelvis, MRI scans, gallium scans, lymphangiograms, staging laparatomies and bone scans. Accurate staging was performed in 17 of 18 patients using a whole-body PET-based staging algorithm compared to the conventional staging algorithm in 15 of 18 patients. In 5 of 18 patients, whole-body PET-based staging showed additional lesions not detected by conventional staging modalities, whereas conventional staging demonstrated additional lesions in 4 of 18 patients not detected by whole-body PET. The total cost of conventional staging was $66,292 for 16 CT chest scans, 16 CT abdominal/pelvis scans, three limited MRI scans, four bone scans, give gallium scans, two laparotomies and one lymphangiogram. In contrast, scans cost $36,250 for 18 whole-body PET studies and additional selected correlative studies: one plain film radiograph, one limited CT, one bone marrow san, one upper GI and one endoscopy. A whole-body FDG-PET-based staging algorithm may be an accurate and cost-effective method for staging or restaging HD and NHL. 10 refs., 7 figs., 2 tabs.

  13. Pediatric whole-body MRI: A review of current imaging techniques and clinical applications.

    PubMed

    Davis, Joseph T; Kwatra, Neha; Schooler, Gary R

    2016-10-01

    There are many congenital, neoplastic, inflammatory, and infectious processes in the pediatric patient for which whole-body imaging may be of benefit diagnostically and prognostically. With recent improvements in magnetic resonance imaging (MRI) hardware and software and resultant dramatically reduced scan times, imaging of the whole body with MRI has become a much more practicable technique in children. Whole-body MRI can provide a high level of soft tissue and skeletal detail while avoiding the exposure to ionizing radiation inherent to computed tomography and nuclear medicine imaging techniques. This article reviews the more common current whole-body MRI techniques in children and the primary pathologies for which this imaging modality may be most useful to the radiologists and referring clinicians. J. MAGN. RESON. IMAGING 2016;44:783-793.

  14. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section...

  15. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  16. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  17. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  18. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  19. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  20. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  1. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  2. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  3. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  4. Whole-body magnetic resonance imaging: assessment of skeletal metastases.

    PubMed

    Moynagh, Michael R; Colleran, Gabrielle C; Tavernaraki, Katarina; Eustace, Stephen J; Kavanagh, Eoin C

    2010-03-01

    The concept of a rapid whole-body imaging technique with high resolution and the absence of ionizing radiation for the assessment of osseous metastatic disease is a desirable tool. This review article outlines the current perspective of whole-body magnetic resonance imaging in the assessment of skeletal metastatic disease, with comparisons made to alternative whole-body imaging modalities.

  5. (/sup 131/I) iodocholesterol scintiscan and a rare functional black adenoma of the adrenal cortex

    SciTech Connect

    Dixon, R.M.; Lieberman, L.M.; Gould, H.R.; Hafez, G.R.

    1983-06-01

    A rare functional black adenoma (FBA) of the adrenal cortex was found to be the cause of hypertension and cushingoid features in a 34-yr-old white female., Preoperative studies included (/sup 131/I)iodocholesterol scanning (ICS) of the adrenal glands, which demonstrated the increased release of cortisol from the affected adrenal gland, with the failure of the opposite adrenal gland to record. This is evidence that cortisol was suppressing adrenocorticotropin (ACTH) output by the pituitary gland. This case documents the clinical utility of functional imaging techniques in this clinical setting.

  6. Assessment of internal exposure doses in Fukushima by a whole body counter within one month after the nuclear power plant accident.

    PubMed

    Matsuda, Naoki; Kumagai, Atsushi; Ohtsuru, Akira; Morita, Naoko; Miura, Miwa; Yoshida, Masahiro; Kudo, Takashi; Takamura, Noboru; Yamashita, Shunichi

    2013-06-01

    Information on early internal radiation doses in Fukushima after the nuclear power plant accident on March 11, 2011, is quite limited due to initial organizational difficulties, high background radiation and contamination of radiation measuring devices. In Nagasaki, approximately 1,200 km away from Fukushima, the internal radioactivity in evacuees and short-term visitors to Fukushima has been measured by a whole body counter (WBC) since March 15, 2011. A horizontal bed-type scanning WBC equipped with two NaI(Tl) scintillation detectors was used for 173 people who stayed in the Fukushima prefecture between March 11 and April 10, 2011. The average length of stay was 4.8 days. The internal radioactivity was converted to an estimated amount of intake according to the scenario of acute inhalation, and then the committed effective dose and the thyroid dose were evaluated. (131)I, (134)Cs and (137)Cs were detected in more than 30% of examined individuals. In subjects who stayed in Fukushima from March 12 to March 18, the detection rate was approximately 50% higher for each radionuclide and 44% higher for all three nuclides. The maximum committed effective dose and thyroid equivalent dose were 1 mSv and 20 mSv, respectively. Although the number of subjects and settlements in the study are limited, the results suggest that the internal radiation exposure in Fukushima due to the intake of radioactive materials shortly after the accident will probably not result in any deterministic or stochastic health effects.

  7. NUMERICAL ASSESSMENT OF 131I DEPOSITED IN THYROID FOR NON-STANDARD SITUATIONS.

    PubMed

    Moraleda, M; Gómez-Ros, J M

    2016-09-01

    At the CIEMAT whole-body counter, a low-energy germanium detector is used for the in vivo assessment of (131)I activity in thyroid, mainly for the individual monitoring programmes of workers. The detector is calibrated with a cylindrical neck phantom made of polymethyl methacrylate that mimics the neck of an adult, containing a vial with a radioactive solution. For an accurate activity assessment, it is necessary to perform the calibration of the detector with phantoms that closely reproduce the anatomy of a real person. Nevertheless, it is not affordable to count on a variety of physical phantoms covering the different anatomical characteristics that could be found over the whole population, including children. An alternative approach to face this situation is offered by the numerical calibration procedure based on Monte Carlo calculations in conjunction with realistic voxel phantoms. A series of computational voxel phantoms of different ages and dimensions have been used in this work to simulate an internal contamination of the thyroid and to estimate the response of the detector for measurements involving individuals whose anatomical characteristics differ from the reference adult man. PMID:26705352

  8. Observation of radioactive iodine ((131)I, (129)I) in cropland soil after the Fukushima nuclear accident.

    PubMed

    Fujiwara, Hideshi

    2016-10-01

    During the early stages of the Fukushima nuclear accident, the temporal variations of (131)I deposited on the ground and of (131)I accumulated in cropland soil were monitored at a fixed location in Japan. Moreover, concentrations of long-lived radioactive iodine ((129)I) in atmospheric deposits and soil were measured to examine the feasibility of retrospectively reconstructing (131)I levels from the levels of accident-derived (129)I. The exceptionally high levels of (131)I in deposits and soil were attributed to rainfall-related deposition of radionuclides. In the crop field studied, the losses of deposited (131)I and (129)I due to volatilization were small. The atomic ratio (129)I/(131)I in the topsoil corresponded to the same ratio in deposits. The (131)I concentrations measured in the topsoil were very consistent with the (131)I concentrations reconstructed from the (129)I concentrations in the soil. PMID:27320744

  9. Observation of radioactive iodine ((131)I, (129)I) in cropland soil after the Fukushima nuclear accident.

    PubMed

    Fujiwara, Hideshi

    2016-10-01

    During the early stages of the Fukushima nuclear accident, the temporal variations of (131)I deposited on the ground and of (131)I accumulated in cropland soil were monitored at a fixed location in Japan. Moreover, concentrations of long-lived radioactive iodine ((129)I) in atmospheric deposits and soil were measured to examine the feasibility of retrospectively reconstructing (131)I levels from the levels of accident-derived (129)I. The exceptionally high levels of (131)I in deposits and soil were attributed to rainfall-related deposition of radionuclides. In the crop field studied, the losses of deposited (131)I and (129)I due to volatilization were small. The atomic ratio (129)I/(131)I in the topsoil corresponded to the same ratio in deposits. The (131)I concentrations measured in the topsoil were very consistent with the (131)I concentrations reconstructed from the (129)I concentrations in the soil.

  10. 131I-metaiodobenzylguanidine (131I-MIBG) therapy for residual neuroblastoma: a mono-institutional experience with 43 patients

    PubMed Central

    Garaventa, A; Bellagamba, O; Piccolo, M S Lo; Milanaccio, C; Lanino, E; Bertolazzi, L; Villavecchia, G P; Cabria, M; Scopinaro, G; Claudiani, F; Bernardi, B De

    1999-01-01

    Incomplete response to therapy may compromise the outcome of children with advanced neuroblastoma. In an attempt to improve tumour response we incorporated 131I-metaiodobenzylguanidine (131I-MIBG) in the treatment regimens of selected stage 3 and stage 4 patients. Between 1986 and 1997, 43 neuroblastoma patients older than 1 year at diagnosis, 13 with stage 3 (group A) and 30 with stage 4 disease (group B) who had completed the first-line protocol without achieving complete response entered in this study. 131I-MIBG dose/course ranged from 2.5 to 5.5 Gbq (median, 3.7). The number of courses ranged from 1 to 5 (median 3) depending on the tumour response and toxicity. The most common acute side-effect was thrombocytopenia. Later side-effects included severe interstitial pneumonia in one patient, acute myeloid leukaemia in two, reduced thyroid reserve in 21. Complete response was documented in one stage 4 patient, partial response in 12 (two stage 3, 10 stage 4), mixed or no response in 25 (ten stage 3, 15 stage 4) and disease progression in five (one stage 3, four stage 4) Twenty-four patients (12/13 stage 3, 12/30 stage 4) are alive at 22–153 months (median, 59) from diagnosis. 131I-MIBG therapy may increase the cure rate of stage 3 and improve the response of stage 4 neuroblastoma patients with residual disease after first-line therapy. A larger number of patients should be treated to confirm these results but logistic problems hamper prospective and coordinated studies. Long-term toxicity can be severe. © 1999 Cancer Research Campaign PMID:10604736

  11. Local metabolic rate during whole body vibration.

    PubMed

    Friesenbichler, Bernd; Nigg, Benno M; Dunn, Jeff F

    2013-05-15

    Whole body vibration (WBV) platforms are currently used for muscle training and rehabilitation. However, the effectiveness of WBV training remains elusive, since scientific studies vary largely in the vibration parameters used. The origin of this issue may be related to a lack in understanding of the training intensity that is imposed on individual muscles by WBV. Therefore, this study evaluates the training intensity in terms of metabolic rate of two lower-extremity muscles during WBV under different vibration parameters. Fourteen healthy male subjects were randomly exposed to 0 (control)-, 10-, 17-, and 28-Hz vibrations while standing upright on a vibration platform. A near-infrared spectrometer was used to determine the gastrocnemius medialis (GM) and vastus lateralis (VL) muscles' metabolic rates during arterial occlusion. The metabolic rates during each vibration condition were significantly higher compared with control for both muscles (P < 0.05). Each increase in vibration frequency translated into a significantly higher metabolic rate than the previous lower frequency (P < 0.05) for both muscles. The current study showed that the local metabolic rate during WBV at 28 Hz was on average 5.4 times (GM) and 3.7 times (VL) of the control metabolic rate. The substantial changes in local metabolic rate indicate that WBV may represent a significant local training stimulus for particular leg muscles.

  12. Whole-body MRI in paediatric oncology.

    PubMed

    Nievelstein, Rutger A J; Littooij, Annemieke S

    2016-05-01

    Imaging plays a crucial role in the diagnosis and follow-up of paediatric malignancies. Until recently, computed tomography (CT) has been the imaging technique of choice in children with cancer, but nowadays there is an increasing interest in the use of functional imaging techniques like positron emission tomography and single-photon emission tomography. These later techniques are often combined with CT allowing for simultaneous acquisition of image data on the biological behaviour of tumour, as well as the anatomical localisation and extent of tumour spread. Because of the small but not negligible risk of radiation induced secondary cancers and the significantly improved overall survival rates of children with cancer, there is an increasing interest in the use of alternative imaging techniques that do not use ionising radiation. Magnetic resonance imaging (MRI) is a radiation-free imaging tool that allows for acquiring images with a high spatial resolution and excellent soft tissue contrast throughout the body. Moreover, recent technological advances have resulted in fast diagnostic sequences for whole-body MR imaging (WB-MRI), including functional techniques such as diffusion weighted imaging. In this review, the current status of the technique and major clinical applications of WB-MRI in children with cancer will be discussed.

  13. Noninvasive allograft imaging of acute rejection: evaluation of (131)I-anti-CXCL10 mAb.

    PubMed

    Cheng, Dayan; Sun, Hukui; Liang, Ting; Zhang, Chao; Song, Jing; Hou, Guihua

    2015-02-01

    The purpose of this study was to investigate the use of iodine-131-labeled anti-CXCL10 mAb as tracer targeted at CXCL10 to detect acute rejection (AR) with mice model. Expression of CXCL10 was proved by RT-PCR, ELISA, and immunochemistry staining. All groups were submitted to whole-body autoradioimaging and ex vivo biodistribution studies after tail vein injection of (131)I-anti-CXCL10 mAb. The highest concentration/expression of CXCL10 was detected in allograft tissue compared with allograft treated with tacrolimus and isograft control. Tacrolimus could obviously inhibit the rejection of allograft. Allograft could be obviously imaged at all checking points, much clearer than the other two groups. The biodistribution results showed the highest uptake of radiotracer in allograft. T/NT (target/nontarget) ratio was 4.15 ± 0.25 at 72 h, apparently different from allograft treated with tacrolimus (2.29 ± 0.10), P < 0.05. These data suggest that CXCL10 is a promising target for early stage AR imaging and (131)I-CXCL10 mAb can successfully image AR and monitor the effect of immunosuppressant.

  14. Whole-body vibration perception thresholds

    NASA Astrophysics Data System (ADS)

    Parsons, K. C.; Griffin, M. J.

    1988-03-01

    This paper presents the results of a series of laboratory experiments concerned with perception thresholds for whole-body vibration. The nature of absolute perception thresholds is discussed and a method of determining vibration thresholds, based upon signal detection theory, is proposed. Thresholds of subjects exposed to x-, y- and z-axis sinusoidal vibration were determined for sitting and standing subjects (from 2 to 100 Hz). Perception thresholds have also been determined for supine subjects exposed to vertical ( x-axis) sinusoidal vibration (10-63 Hz). In additional experiments the effects of complex (e.g., random) vibration and the effects of duration on the perception thresholds were investigated. The relation between perception thresholds and vibration levels, said by subjects to be unacceptable if they occurred in their own homes, was investigated as well as the effects of subjects' personality and the visual and acoustic conditions in the laboratory. For the vertical vibration of seated subjects no significant differences were found between the responses of male and female subjects. Significant differences were found between perception thresholds for sitting and standing postures. The median threshold was approximately 0·01 m/s 2 r.m.s. between 2 and 100 Hz. Perception thresholds for x-axis and y-axis vibration were not significantly different in either sitting or standing subjects but significant differences in thresholds were found between sitting and standing positions for both x-axis and y-axis vibration. Subjects tended to be more sensitive to vibration when lying than when sitting or standing. The results suggested that the perception of random vibrations can be predicted from a knowledge of the perception of its component vibrations. The number of cycles of vibration did not affect perception thresholds for vibration durations of more than about 0·25 s. Some assessments suggested that vibration at more than twice the perception threshold may not

  15. Comparison of Radiation Dose Estimation for Myeloablative Radioimmunotherapy for Relapsed or Recurrent Mantle Cell Lymphoma using 131I Tositumomab to that of Other Types of Non-Hodgkin's Lymphoma

    SciTech Connect

    Rajendran, Joseph G.; Gopal, Ajay K.; Durack, Larry; Fisher, Darrell R.; Press, Oliver W.; Eary, Janet F.

    2004-12-01

    Patients with relapsed or refractory mantle cell lymphoma (MCL) demonstrate poor survival after standard treatment. Myeloablative radioimmunotherapy (RIT) using 131I tositumomab (anti-CD20) has the ability to deliver specific radiation absorbed dose to antigen bearing tumor. We reviewed normal organ radiation absorbed doses in MCL patients. METHODS: Records of patients with MCL (n = 25), who received myeloablative RIT between January 1996 and December 2003 were reviewed. Individual patient radiation dosimetry was performed on all patients after a trace labeled infusion of 131I tositumomab (mean = 348 MBq), to calculate the required amount of radioactivity for therapy, based on MIRD schema. RESULTS: Mean organ residence times (hr) corrected for CT derived organ volumes for MCL, were as follows: Lungs:9.0; Liver:12.4; Kidneys:1.7; Spleen:2.17; Whole Body:62.4 and mean radiation absorbed doses mGy/Mbq were: Lungs:1.2; Liver:1.1; Kidneys:0.85; Spleen:1.7; Whole Body: 0.21. This is similar to patients with other NHL. Patients received a mean activity of 21 GBq of 131I (range = 11.5 - 41.4) for therapy estimated to deliver 25 Gy to the normal organ receiving the highest radiation absorbed dose. CONCLUSION: Myeloablative RIT using 131I tositumomab results in normal organ radiation absorbed doses similar to those in patients with other non-Hodgkin's lymphoma, and is suitable for treating patients with relapsed or refractory MCL.

  16. Accurate body composition measures from whole-body silhouettes

    PubMed Central

    Xie, Bowen; Avila, Jesus I.; Ng, Bennett K.; Fan, Bo; Loo, Victoria; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J.; Lappe, Joan; Oberfield, Sharon; Winer, Karen; Zemel, Babette; Shepherd, John A.

    2015-01-01

    Purpose: Obesity and its consequences, such as diabetes, are global health issues that burden about 171 × 106 adult individuals worldwide. Fat mass index (FMI, kg/m2), fat-free mass index (FFMI, kg/m2), and percent fat mass may be useful to evaluate under- and overnutrition and muscle development in a clinical or research environment. This proof-of-concept study tested whether frontal whole-body silhouettes could be used to accurately measure body composition parameters using active shape modeling (ASM) techniques. Methods: Binary shape images (silhouettes) were generated from the skin outline of dual-energy x-ray absorptiometry (DXA) whole-body scans of 200 healthy children of ages from 6 to 16 yr. The silhouette shape variation from the average was described using an ASM, which computed principal components for unique modes of shape. Predictive models were derived from the modes for FMI, FFMI, and percent fat using stepwise linear regression. The models were compared to simple models using demographics alone [age, sex, height, weight, and body mass index z-scores (BMIZ)]. Results: The authors found that 95% of the shape variation of the sampled population could be explained using 26 modes. In most cases, the body composition variables could be predicted similarly between demographics-only and shape-only models. However, the combination of shape with demographics improved all estimates of boys and girls compared to the demographics-only model. The best prediction models for FMI, FFMI, and percent fat agreed with the actual measures with R2 adj. (the coefficient of determination adjusted for the number of parameters used in the model equation) values of 0.86, 0.95, and 0.75 for boys and 0.90, 0.89, and 0.69 for girls, respectively. Conclusions: Whole-body silhouettes in children may be useful to derive estimates of body composition including FMI, FFMI, and percent fat. These results support the feasibility of measuring body composition variables from simple

  17. Solid anthropomorphic infant whole body DXA phantom: Design, evaluation, and multisite testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dual energy X-ray absorptiometry (DXA) requires phantoms for quality control and cross-calibration. No commercially available phantoms are designed specifically for infant whole-body scanning. We fabricated a phantom closely matching a 7-kg human infant in body habitus using PVC, nylon-mix, and poly...

  18. Whole-body turbo STIR MR imaging: controversies and avenues for development.

    PubMed

    Kavanagh, Eoin; Smith, Clare; Eustace, Stephen

    2003-09-01

    The idea of a non-ionizing high-resolution technique to screen the entire body for occult disease is immensely appealing. This article outlines an evolving technique, controversies and clinical application of whole-body scanning using MRI with turbo short tau inversion recovery tissue excitation.

  19. False positive diagnosis on (131)iodine whole-body scintigraphy of differentiated thyroid cancers.

    PubMed

    Triggiani, Vincenzo; Giagulli, Vito Angelo; Iovino, Michele; De Pergola, Giovanni; Licchelli, Brunella; Varraso, Antonio; Dicembrino, Franca; Valle, Guido; Guastamacchia, Edoardo

    2016-09-01

    (131)Iodine is used both to ablate any residual thyroid tissue or metastatic disease and to obtain whole-body diagnostic images after total thyroidectomy for differentiated thyroid cancer (DTC). Even though whole-body scan is highly accurate in showing thyroid residues as well as metastases of DTC, false positive results can be found, possibly leading to diagnostic errors and unnecessary treatments. This paper reviews the physiological and pathological processes involved as well as the strategy to recognize and rule out false positive radioiodine images.

  20. Effect of 131I on the anemia of hyperthyroidism

    SciTech Connect

    Perlman, J.A.; Sternthal, P.M.

    1983-01-01

    Data from the National Thyrotoxicosis Therapy Follow-Up Study (NTTFS) are presented here to document the existence of anemia in hyperthyroidism, a mild and reversible anemia that is simultaneously ameliorated with reversal of the hyperthyroid state. Among 20,600 women entered into the NTTF study with no previous history of hematological disorders, the prevalence of anemia was found to range from 10-15%, appearing to be higher in those selected for treatment with 131I when compared to those selected for surgery. An attempt is made to verify the recent hypothesis that thyroid hormone levels in the supraphysiologic range may suppress erythrogenesis. Two statistically significant regression models are consistent with a hypothesis of thyrotoxic bone marrow suppression. However, both associations are weak enough to suggest that some other physiologic improvement underlies the amelioration of anemia when hyperthyroidism is reversed. The degree of improvement in hematological status is similar for women in both treatment groups. Among 4464 women for whom serial hematological tests are obtained, over 3/4 of anemic patients are no longer anemic after an average 6.2 yr of follow-up. Clinicians are reassured that radioactive iodine exposure causes no further insult to the bone marrow, no matter what the cumulative dosage. The highly fractionated low dose bone marrow exposures to radiation account for the minimal hematological risks of 131I treatment.

  1. The bioconcentration of {sup 131}I in fresh water fish

    SciTech Connect

    Yu, K.N.; Cheung, T.; Young, E.C.M.; Luo, D.L.

    1996-11-01

    The dynamic characteristics of the radionuclide concentration process in fresh water fish have been studied. The experimental data for the tilapias were fitted using a simple compartment model to get characteristics parameters such as concentration factors, elimination rate constants, and initial concentration rates, which are 3.08 Bq kg{sup {minus}1}/Bq L{sup {minus}1}, 0.00573 h{sup {minus}1}, and 12.42 Bq kg{sup {minus}1} h{sup {minus}1}, respectively. The relative concentrations of {sup 131}I in different parts, i.e., head, gills, flesh, bone and internal organs, of the tilapias are also determined, which are found to be 10.8, 15.4, 26.1, 11.0, and 37.0%, respectively. The effects of different factors on the transfer of radionuclides in fresh water fishes are also discussed. Experiments on the tilapias and the common carp show that the variation of concentration factors for different species may be significant even for the same radionuclide and the same ecological system. On the other hand, the variation in the concentration factors for the flesh of the tilapias is not significant for a certain range of {sup 131}I concentrations in the water. 12 refs., 1 fig., 1 tab.

  2. Model Testing Using Data on 131I Released from Hanford

    SciTech Connect

    Thiessen, Kathleen M.; Napier, Bruce A.; Filistovic, Vitold; Homma, Toshimitsu; Kanyar, Bela; Krajewski, Pawel; Kryshev, Alexander I.; Nedveckaite, Tatjana; Nenyei, Arpad; Sazykina, Tatiana G.; Tveten, Ulf; Sjoblom, Kirsti-Liisa; Robinson, Carol

    2005-06-21

    The Hanford test scenario described an accidental release of 131I to the environment from the Hanford Purex Chemical Separations Plant in September 1963. Based on monitoring data collected after the release, this scenario was used by the Dose Reconstruction Working Group of BIOMASS to test models typically used in dose reconstructions. The primary exposure pathway in terms of contribution to human doses was ingestion of contaminated milk and vegetables. Predicted mean doses to the thyroid of reference individuals from ingestion of 131I ranged from 0.0001 to 0.8 mSv. Predicted doses to actual children with high milk consumption ranged from 0.006 to 2 mSv. The predicted deposition at any given location varied among participants by a factor of 5 to 80. Predicted ingestion doses for children, normalized for predicted deposition, varied by about a factor of 10. The exercise provided an opportunity for comparison of assessment methods and conceptual approaches, testing model predictions against measurements, and identifying the most important contributors to uncertainty in the assessment result. Key factors affecting predictions included the approach to handling incomplete data, interpretation of input information, selection of parameter values, adjustment of models for site-specific conditions, and treatment of uncertainties.

  3. Model testing using data on 131I released from Hanford.

    PubMed

    Thiessen, K M; Napier, B A; Filistovic, V; Homma, T; Kanyár, B; Krajewski, P; Kryshev, A I; Nedveckaite, T; Nényei, A; Sazykina, T G; Tveten, U; Sjöblom, K-L; Robinson, C

    2005-01-01

    The Hanford test scenario described an accidental release of 131I to the environment from the Hanford Purex Chemical Separations Plant in September 1963. Based on monitoring data collected after the release, this scenario was used by the Dose Reconstruction Working Group of BIOMASS to test models typically used in dose reconstructions. The primary exposure pathway in terms of contribution to human doses was ingestion of contaminated milk and vegetables. Predicted mean doses to the thyroid of reference individuals from ingestion of 131I ranged from 0.0001 to 0.8 mSv. For one location, predicted doses to the thyroids of two children with high milk consumption ranged from 0.006 to 2 mSv. The predicted deposition at any given location varied among participants by a factor of 5-80. The exercise provided an opportunity for comparison of assessment methods and conceptual approaches, testing model predictions against measurements, and identifying the most important contributors to uncertainty in the assessment result. Key factors affecting predictions included the approach to handling incomplete data, interpretation of input information, selection of parameter values, adjustment of models for site-specific conditions, and treatment of uncertainties. PMID:15975695

  4. Patient-specific biomechanical model as whole-body CT image registration tool.

    PubMed

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Doyle, Barry; Garlapati, Revanth Reddy; Kikinis, Ron; Wittek, Adam

    2015-05-01

    Whole-body computed tomography (CT) image registration is important for cancer diagnosis, therapy planning and treatment. Such registration requires accounting for large differences between source and target images caused by deformations of soft organs/tissues and articulated motion of skeletal structures. The registration algorithms relying solely on image processing methods exhibit deficiencies in accounting for such deformations and motion. We propose to predict the deformations and movements of body organs/tissues and skeletal structures for whole-body CT image registration using patient-specific non-linear biomechanical modelling. Unlike the conventional biomechanical modelling, our approach for building the biomechanical models does not require time-consuming segmentation of CT scans to divide the whole body into non-overlapping constituents with different material properties. Instead, a Fuzzy C-Means (FCM) algorithm is used for tissue classification to assign the constitutive properties automatically at integration points of the computation grid. We use only very simple segmentation of the spine when determining vertebrae displacements to define loading for biomechanical models. We demonstrate the feasibility and accuracy of our approach on CT images of seven patients suffering from cancer and aortic disease. The results confirm that accurate whole-body CT image registration can be achieved using a patient-specific non-linear biomechanical model constructed without time-consuming segmentation of the whole-body images. PMID:25721296

  5. Dosimetric results in treatments of neuroblastoma and neuroendocrine tumors with {sup 131}I-metaiodobenzylguanidine with implications for the activity to administer

    SciTech Connect

    Mínguez, Pablo; Genollá, José; Guayambuco, Sonía; Delgado, Alejandro; Fombellida, José Cruz

    2015-07-15

    Purpose: The aim was to investigate whole-body and red marrow absorbed doses in treatments of neuroblastoma (NB) and adult neuroendocrine tumors (NETs) with {sup 131}I-metaiodobenzylguanidine and to propose a simple method for determining the activity to administer when dosimetric data for the individual patient are not available. Methods: Nine NB patients and six NET patients were included, giving in total 19 treatments as four patients were treated twice. Whole-body absorbed doses were determined from dose-rate measurements and planar gamma-camera imaging. For six NB and five NET treatments, red marrow absorbed doses were also determined using the blood-based method. Results: Dosimetric data from repeated administrations in the same patient were consistent. In groups of NB and NET patients, similar whole-body residence times were obtained, implying that whole-body absorbed dose per unit of administered activity could be reasonably well described as a power function of the patient mass. For NB, this functional form was found to be consistent with dosimetric data from previously published studies. The whole-body to red marrow absorbed dose ratio was similar among patients, with values of 1.4 ± 0.6–1.7 ± 0.7 (1 standard deviation) in NB treatments and between 1.5 ± 0.6 and 1.7 ± 0.7 (1 standard deviation) in NET treatments. Conclusions: The consistency of dosimetric results between administrations for the same patient supports prescription of the activity based on dosimetry performed in pretreatment studies, or during the first administration in a fractionated schedule. The expressions obtained for whole-body absorbed doses per unit of administered activity as a function of patient mass for NB and NET treatments are believed to be a useful tool to estimate the activity to administer at the stage when the individual patient biokinetics has not yet been measured.

  6. Whole-body cryotherapy in athletes.

    PubMed

    Banfi, Giuseppe; Lombardi, Giovanni; Colombini, Alessandra; Melegati, Gianluca

    2010-06-01

    Cold therapy is commonly used as a procedure to relieve pain symptoms, particularly in inflammatory diseases, injuries and overuse symptoms. A peculiar form of cold therapy (or stimulation) was proposed 30 years ago for the treatment of rheumatic diseases. The therapy, called whole-body cryotherapy (WBC), consists of exposure to very cold air that is maintained at -110 degrees C to -140 degrees C in special temperature-controlled cryochambers, generally for 2 minutes. WBC is used to relieve pain and inflammatory symptoms caused by numerous disorders, particularly those associated with rheumatic conditions, and is recommended for the treatment of arthritis, fibromyalgia and ankylosing spondylitis. In sports medicine, WBC has gained wider acceptance as a method to improve recovery from muscle injury. Unfortunately, there are few papers concerning the application of the treatment on athletes. The study of possible enhancement of recovery from injuries and possible modification of physiological parameters, taking into consideration the limits imposed by antidoping rules, is crucial for athletes and sports physicians for judging the real benefits and/or limits of WBC. According to the available literature, WBC is not harmful or detrimental in healthy subjects. The treatment does not enhance bone marrow production and could reduce the sport-induced haemolysis. WBC induces oxidative stress, but at a low level. Repeated treatments are apparently not able to induce cumulative effects; on the contrary, adaptive changes on antioxidant status are elicited--the adaptation is evident where WBC precedes or accompanies intense training. WBC is not characterized by modifications of immunological markers and leukocytes, and it seems to not be harmful to the immunological system. The WBC effect is probably linked to the modifications of immunological molecules having paracrine effects, and not to systemic immunological functions. In fact, there is an increase in anti

  7. High-Dose 131I-Tositumomab (Anti-CD20) Radioimmunotherapy for Non-Hodgkin's Lymphoma: Adjusting Radiation Absorbed Dose to Actual Organ Volumes

    SciTech Connect

    Rajendran, Joseph G.; Fisher, Darrell R.; Gopal, A K.; Durack, L. D.; Press, O. W.; Eary, Janet F.

    2004-06-01

    Radioimmunotherapy (RIT) using 131I-tositumomab has been used successfully to treat relapsed or refractory B-cell non-Hodgin's lymphoma (NHL). Our approach to treatment planning has been to determine limits on radiation absorbed close to critical nonhematopoietic organs. This study demonstrates the feasibility of using CT to adjust for actual organ volumes in calculating organ-specific absorbed dose estimates. Methods: Records of 84 patients who underwent biodistribution studies after a trace-labeled infusion of 131I-tositumomab for RIT (January 1990 and April 2003) were reviewed. Serial planar -camera images and whole-body Nal probe counts were obtained to estimate 131I-antibody source-organ residence times as recommended by the MIRD Committee. The source-organ residence times for standard man or woman were adjusted by the ratio of the MIRD phantom organ mass to the CT-derived organ mass. Results: The mean radiation absorbed doses (in mGy/MBq) for our data using the MIRD model were lungs= 1.67; liver= 1.03; kidneys= 1.08; spleen= 2.67; and whole body= 0.3; and for CT volume-adjusted organ volumes (in mGy/MBq) were lungs= 1.30; liver= 0.92; kidneys= 0.76; spleen= 1.40; and whole body= 0.22. We determined the following correlation coefficients between the 2 methods for the various organs; lungs, 0.49; (P= 0.0001); liver, 0.64 (P= 0.004); kidneys, 0.45 (P= 0.0001), for the residence times. For therapy, patients received mean 131I administered activities of 19.2 GBq (520 mCi) after adjustment for CT-derived organ mass compared with 16.0 GBq (433 mCi) that would otherwise have been given had therapy been based only using standard MIRD organ volumes--a statistically significant difference (P= 0.0001). Conclusion: We observed large variations in organ masses among our patients. Our treatments were planned to deliver the maximally tolerated radiation dose to the dose-limiting normal organ. This work provides a simplified method for calculating patient-specific radiation

  8. Transcript Analysis for Internal Biodosimetry Using Peripheral Blood from Neuroblastoma Patients Treated with (131)I-mIBG, a Targeted Radionuclide.

    PubMed

    Edmondson, David A; Karski, Erin E; Kohlgruber, Ayano; Koneru, Harsha; Matthay, Katherine K; Allen, Shelly; Hartmann, Christine L; Peterson, Leif E; DuBois, Steven G; Coleman, Matthew A

    2016-09-01

    Calculating internal dose from therapeutic radionuclides currently relies on estimates made from multiple radiation exposure measurements, converted to absorbed dose in specific organs using the Medical Internal Radiation Dose (MIRD) schema. As an alternative biodosimetric approach, we utilized gene expression analysis of whole blood from patients receiving targeted radiotherapy. Collected blood from patients with relapsed or refractory neuroblastoma who received (131)I-labeled metaiodobenzylguanidine ((131)I-mIBG) at the University of California San Francisco (UCSF) was used to compare calculated internal dose with the modulation of chosen gene expression. A total of 40 patients, median age 9 years, had blood drawn at baseline, 72 and 96 h after (131)I-mIBG infusion. Whole-body absorbed dose was calculated for each patient based on the cumulated activity determined from injected mIBG activity and patient-specific time-activity curves combined with (131)I whole-body S factors. We then assessed transcripts that were the most significant for describing the mixed therapeutic treatments over time using real-time polymerase chain reaction (RT-PCR). Modulation was evaluated statistically using multiple regression analysis for data at 0, 72 and 96 h. A total of 10 genes were analyzed across 40 patients: CDKN1A; FDXR; GADD45A; BCLXL; STAT5B; BAX; BCL2; DDB2; XPC; and MDM2. Six genes were significantly modulated upon exposure to (131)I-mIBG at 72 h, as well as at 96 h. Four genes varied significantly with absorbed dose when controlling for time. A gene expression biodosimetry model was developed to predict absorbed dose based on modulation of gene transcripts within whole blood. Three transcripts explained over 98% of the variance in the modulation of gene expression over the 96 h (CDKN1A, BAX and DDB2). To our knowledge, this is a novel study, which uses whole blood collected from patients treated with a radiopharmaceutical, to characterize biomarkers that may be useful

  9. Monte Carlo mitochondrial dosimetry and microdosimetry of 131I.

    PubMed

    Carrillo-Cázares, Tomás A; Torres-García, Eugenio

    2013-01-01

    A mitochondrion is an organelle found in most eukaryotic cells, which produces most of the energy needed by a living cell. It has been shown that ionising radiation causes mitochondrial damage leading to apoptosis or cell death. The aim of this work was to calculate, by Monte Carlo simulation, the specific energy (z) into the mitochondria, due to Auger electrons, conversion electrons and beta emission from (131)I, where the radionuclide was carried by a vector to the cell surface and the surrounding environment. A concentric spherical geometry represents a cell and its nucleus. Three different volumes were used to represent the mitochondria; they were placed in random positions within the cytoplasm. The z produced by a single event is due to low-energy electrons (76 %) and beta particles (24 %) and the mitochondria receive a total mean z two orders of magnitude higher than that of the cell nucleus.

  10. Monte Carlo mitochondrial dosimetry and microdosimetry of 131I.

    PubMed

    Carrillo-Cázares, Tomás A; Torres-García, Eugenio

    2013-01-01

    A mitochondrion is an organelle found in most eukaryotic cells, which produces most of the energy needed by a living cell. It has been shown that ionising radiation causes mitochondrial damage leading to apoptosis or cell death. The aim of this work was to calculate, by Monte Carlo simulation, the specific energy (z) into the mitochondria, due to Auger electrons, conversion electrons and beta emission from (131)I, where the radionuclide was carried by a vector to the cell surface and the surrounding environment. A concentric spherical geometry represents a cell and its nucleus. Three different volumes were used to represent the mitochondria; they were placed in random positions within the cytoplasm. The z produced by a single event is due to low-energy electrons (76 %) and beta particles (24 %) and the mitochondria receive a total mean z two orders of magnitude higher than that of the cell nucleus. PMID:22826354

  11. Estimating whole-body fish PCB concentrations from fillet data

    SciTech Connect

    Rigg, D.; Hohreiter, D.; Strause, K.; Brown, M.; Barnes, C.

    1995-12-31

    A study was designed to assess a potentially cost-effective method for generating both types of data from single fish specimens. The method is based on the testable hypothesis that whole-body PCE concentrations are predictable from fillet PCB concentrations and fillet and whole-body lipid concentrations. The study involved the collection of small-mouth bass (Micropterus dolomieui) and carp (Cyprinus carpio) from several locations in the Kalamazoo River (Michigan) watershed to represent a range in PCB exposure. PCB and lipid concentrations were determined in aliquots of homogenized fillets and remaining carcasses. Wet-weight total PCB concentrations in carp ranged from 0.06 to 17 mg/kg in fillets, and from 0.11 to 14 mg/kg for remaining carcass; small-mouth bass ranged from 0.08 to 5.8 mg/kg in fillets, and from 0.21 to 13.2 mg/kg for remaining carcass. Whole-body PCB concentrations predicted using fillet PCB concentrations and fillet and carcass lipid concentrations accounted for 94% and 88% of the variability in measured whole-body small-mouth and whole-body carp concentrations, respectively. Predicted and measured whole-body PCB concentrations had a correlation of 91% for small-mouth bass, and 84% for carp. These results demonstrate that value of the lipid-based model in predicting whole-body PCB concentrations from measured fillet PCB concentrations and lipid concentrations in fillet and remaining carcass.

  12. sup 131 I treatment of thyroid papillary carcinoma in a patient with renal failure

    SciTech Connect

    Morrish, D.W.; Filipow, L.J.; McEwan, A.J.; Schmidt, R.; Murland, K.R.; von Westarp, C.; Betcher, K.B. )

    1990-12-15

    Procedures for {sup 131}I ablation in renal failure are not known. In one patient receiving dialysis, detailed dosimetry and health safety aspects were obtained. The results showed insignificant contamination of equipment, but a surprisingly significant reduction in biologic half-life of {sup 131}I due to efficient dialysis extraction. The data indicate that {sup 131}I ablation can be done safely and easily during dialysis but that much higher {sup 131}I doses must be used to achieve equivalent results to those obtained in patients with normal renal function.

  13. Absolute accuracy of the Cyberware WB4 whole-body scanner

    NASA Astrophysics Data System (ADS)

    Daanen, Hein A. M.; Taylor, Stacie E.; Brunsman, Matthew A.; Nurre, Joseph H.

    1997-03-01

    The Cyberware WB4 whole body scanner is one of the first scanning systems in the world that generates a high resolution data set of the outer surface of the human body. The Computerized Anthropometric Research and Design (CARD) Laboratory of Wright-Patterson AFB intends to use the scanner to enable quick and reliable acquisition of anthropometric data. For this purpose, a validation study was initiated to check the accuracy, reliability and errors of the system. A calibration object, consisting of two boxes and a cylinder, was scanned in several locations in the scanning space. The object dimensions in the resulting scans compared favorably to the actual dimensions of the calibration object.

  14. Biliary and duodenal drainage for reducing the radiotoxic risk of antineoplastic 131I-hypericin in rat models

    PubMed Central

    Li, Yue; Jiang, Cuihua; Jiang, Xiao; Sun, Ziping; Cona, Marlein Miranda; Liu, Wei; Ni, Yicheng

    2015-01-01

    Necrosis targeting radiopharmaceutical 131I-hypericin (131I-Hyp) has been studied for the therapy of solid malignancies. However, serious side effects may be caused by its unwanted radioactivity after being metabolized by the liver and excreted via bile in the digestive tract. Thus the aim of this study was to investigate two kinds of bile draining for reducing them. Thirty-eight normal rats were intravenously injected with 131I-Hyp, 24 of which were subjected to the common bile duct (CBD) drainage for gamma counting of collected bile and tissues during 1–6, 7–12, 13–18, and 19–24 h (n = 6 each group), 12 of which were divided into two groups (n = 6 each group) for comparison of the drainage efficiency between CBD catheterization and duodenum intubation by collecting their bile at the first 4 h. Afterwards the 12 rats together with the last two rats which were not drained were scanned via single-photon emission computerized tomography/computed tomography (SPECT/CT) to check the differences. The images showed that almost no intestinal radioactivity can be found in those 12 drained rats while discernible radioactivity in the two undrained rats. The results also indicated that the most of the radioactivity was excreted from the bile within the first 12 h, accounting to 92% within 24 h. The radioactive metabolites in the small and large intestines peaked at 12 h and 18 h, respectively. No differences were found in those two ways of drainages. Thus bile drainage is highly recommended for the patients who were treated by 131I-Hyp if human being and rats have a similar excretion pattern. This strategy can be clinically achieved by using a nasobiliary or nasoduodenal drainage catheter. PMID:25956680

  15. 131I-tositumomab myeloablative radioimmunotherapy for non-Hodgkin’s lymphoma: radiation dose to the testes

    SciTech Connect

    Hattori, Naoya; Gopal, Ajay K.; Shields, Andrew T.; Fisher, Darrell R.; Gooley, Ted; Pagel, John M.; Press, Oliver W.; Rajendran, Joseph G.

    2012-12-01

    Purpose: To investigate radiation doses to the testes delivered by a radiolabeled anti-CD20 antibody and its effects on male sex hormone levels. Materials and methods: Testicular uptake and retention of 131I-tositumomab were measured, and testicular absorbed doses were calculated for 67 male patients (54+/-11 years of age) with non-Hodgkin's lymphoma who had undergone myeloablative radioimmunotherapy (RIT) using 131I-tositumomab. Time-activity curves for the major organs, testes, and whole body were generated from planar imaging studies. In a subset of patients, male sex hormones were measured before and 1 year after the therapy. Results: The absorbed dose to the testes showed considerable variability (range=4.4-70.2 Gy). Pretherapy levels of total testosterone were below the lower limit of the reference range, and post-therapy evaluation demonstrated further reduction [4.6+/-1.8 nmol/l (pre-RIT) vs. 3.8+/-2.9 nmol/l (post-RIT), P<0.05]. Patients receiving higher radiation doses to the testes (>=25 Gy) showed a greater reduction [4.7+/-1.6 nmol/l (pre-RIT) vs. 3.3+/-2.7 nmol/l (post-RIT), P<0.05] compared with patients receiving lower doses (<25 Gy), who showed no significant change in total testosterone levels. Conclusion: The testicular radiation absorbed dose varied highly among individual patients. Finally, patients receiving higher doses to the testes were more likely to show post-RIT suppression of testosterone levels.

  16. 131I-19-iodocholesterol scintigraphy of the adrenal cortex.

    PubMed

    Dige-Petersen, H; Munkner, T; Fogh, J; Blichert-Toft, M; Lund, J O

    1975-09-01

    131-I-19-iodocholesterol scintigraphy of the adrenal cortex has been carried out in 26 patients. In 4 patients with normal adrenocortical function the tracer was equally accumulated on the two sides. In 7 patients with untreated Cushing's syndrome, bilateral uptake was found in 4 patients with bilateral hyperplasia whereas unilateral visualization was obtained in three cases of cortisol producing adenomas. The side localization was confirmed at operation. Eight patients had been operated for Cushings syndrome prior to the scintigraphy. Remnant adrenocortical tissue with negligible or subnormal function (4 patients) could not be visualized. Normo- or hyperfunctioning remnant tissue was visualized in 3 patients. One patient had recurrent hypercorticism due to metastases from a previously removed adrenocortical carcinoma; a single pelvic accumulation was seen, whereas several metastases in the abdomen and thorax were not visualized. Four patients with aldosteronism were investigated. Three had primary aldosteronism due to an adrenocortical adenoma. In two of these, the site of the adrenal lesion was localized pre-operatively. In the third patient, equal bilateral accumulation of iodocholesterol was seen even after suppression with dexamethasone. At operation a small tumour was found. In 1 patient with indeterminate aldosteronism both glands were visualized and at a second examination the uptake was equally suppressed by dexamethasone.

  17. Hepatoma-Targeted Radionuclide Immune Albumin Nanospheres: (131)I-antiAFPMcAb-GCV-BSA-NPs.

    PubMed

    Lin, Mei; Huang, Junxing; Zhang, Dongsheng; Jiang, Xingmao; Zhang, Jia; Yu, Hong; Xiao, Yanhong; Shi, Yujuan; Guo, Ting

    2016-01-01

    An effective strategy has been developed for synthesis of radionuclide immune albumin nanospheres ((131)I-antiAFPMcAb-GCV-BSA-NPs). In vitro as well as in vivo targeting of (131)I-antiAFPMcAb-GCV-BSA-NPs to AFP-positive hepatoma was examined. In cultured HepG2 cells, the uptake and retention rates of (131)I-antiAFPMcAb-GCV-BSA-NPs were remarkably higher than those of (131)I alone. As well, the uptake rate and retention ratios of (131)I-antiAFPMcAb-GCV-BSA-NPs in AFP-positive HepG2 cells were also significantly higher than those in AFP-negative HEK293 cells. Compared to (131)I alone, (131)I-antiAFPMcAb-GCV-BSA-NPs were much more easily taken in and retained by hepatoma tissue, with a much higher T/NT. Due to good drug-loading, high encapsulation ratio, and highly selective affinity for AFP-positive tumors, the (131)I-antiAFPMcAb-GCV-BSA-NPs are promising for further effective radiation-gene therapy of hepatoma.

  18. Hepatoma-Targeted Radionuclide Immune Albumin Nanospheres: 131I-antiAFPMcAb-GCV-BSA-NPs

    PubMed Central

    Lin, Mei; Huang, Junxing; Zhang, Dongsheng; Jiang, Xingmao; Zhang, Jia; Yu, Hong; Xiao, Yanhong; Shi, Yujuan; Guo, Ting

    2016-01-01

    An effective strategy has been developed for synthesis of radionuclide immune albumin nanospheres (131I-antiAFPMcAb-GCV-BSA-NPs). In vitro as well as in vivo targeting of 131I-antiAFPMcAb-GCV-BSA-NPs to AFP-positive hepatoma was examined. In cultured HepG2 cells, the uptake and retention rates of 131I-antiAFPMcAb-GCV-BSA-NPs were remarkably higher than those of 131I alone. As well, the uptake rate and retention ratios of 131I-antiAFPMcAb-GCV-BSA-NPs in AFP-positive HepG2 cells were also significantly higher than those in AFP-negative HEK293 cells. Compared to 131I alone, 131I-antiAFPMcAb-GCV-BSA-NPs were much more easily taken in and retained by hepatoma tissue, with a much higher T/NT. Due to good drug-loading, high encapsulation ratio, and highly selective affinity for AFP-positive tumors, the 131I-antiAFPMcAb-GCV-BSA-NPs are promising for further effective radiation-gene therapy of hepatoma. PMID:26981334

  19. The preparation and immunological properties of 131I-labelled adrenocorticotrophin

    PubMed Central

    Landon, J.; Livanou, Theodora; Greenwood, F. C.

    1967-01-01

    1. A procedure is described for preparing 131I-labelled adrenocorticotrophin suitable for use in radioimmunoassay. 2. Adsorption of labelled and unlabelled adrenocorticotrophin at low concentrations occurs to various surfaces despite the presence of diluent protein. Adsorption and desorption errors are minimized by low pH and by the use of polystyrene vials. 3. Preparations with low initial damage are obtained if the radioiodination is performed rapidly and the separation of 131I-labelled adrenocorticotrophin from unchanged [131I]iodide is carried out on cellulose columns by using dilute acid. 4. The immunological activity of 131I-labelled α1–24-adrenocorticotrophin, but not of 131I-labelled porcine adrenocorticotrophin, decreases with increasing specific radioactivity. The involvement of tyrosine residues in the immunological specificity of the α1–24-adrenocorticotrophin only is suggested to explain this finding. PMID:16742533

  20. Follow-up of solitary autonomous thyroid nodules treated with /sup 131/I

    SciTech Connect

    Goldstein, R.; Hart, I.R.

    1983-12-15

    A study was made of the long-term effects of /sup 131/I therapy for solitary autonomous thyroid nodules on the size of the nodule and on thyroid function. Twenty-three patients with autonomous thyroid adenomas that had been treated with /sup 131/I from 4 to 16.5 years earlier (mean, 8.5) were examined, and their thyroid function was tested. In 12 patients (54 per cent), the nodules were still palpable, and in 2 they had increased in size. Eight patients (36 per cent) had become hypothyroid. The incidence of hypothyroidism was not related to nodule size or the level of thyroid function before therapy with /sup 131/I or to the total dose of /sup 131/I that had been given. We conclude that /sup 131/I therapy for autonomous thyroid adenoma often causes hypothyroidism and in many cases does not eradicate the offending nodule.

  1. Red marrow and blood dosimetry in 131I treatment of metastatic thyroid carcinoma: pre-treatment versus in-therapy results

    NASA Astrophysics Data System (ADS)

    Giostra, A.; Richetta, E.; Pasquino, M.; Miranti, A.; Cutaia, C.; Brusasco, G.; Pellerito, R. E.; Stasi, M.

    2016-06-01

    Treatment with radioiodine is a standard procedure for patients with well-differentiated thyroid cancer, but the main approach to the therapy is still empiric, consisting of the administration of fixed activities. A predictive individualized dosimetric study may represent an important tool for physicians to determine the best activity to prescribe. The aim of this work is to compare red marrow and blood absorbed dose values obtained in the pre-treatment (PT) dosimetry phase with those obtained in the in-treatment (IT) dosimetry phase in order to estimate the predictive power of PT trial doses and to determine if they can be used as a decision-making tool to safely administer higher 131I activity to potentially increase the efficacy of treatment. The PT and IT dosimetry for 50 patients has been evaluated using three different dosimetric approaches. In all three approaches blood and red marrow doses, are calculated as the sum of two components, the dose from 131I activity in the blood and the dose from 131I activity located in the remainder of the body (i.e. the blood and whole-body contributions to the total dose). PT and IT dose values to blood and red marrow appear to be well correlated irrespective of the dosimetric approach used. Linear regression analyses of PT and IT total doses, for blood and red marrow, and the whole-body contribution to these doses, showed consistent best fit slope and correlation coefficient values of approximately 0.9 and 0.6, respectively: analyses of the blood dose contribution to the total doses also yielded similar values for the best fit slope but with correlation coefficient values of approximately 0.4 reflecting the greater variance in these dose estimates. These findings suggest that pre-treatment red marrow dose assessments may represent an important tool to personalize metastatic thyroid cancer treatment, removing the constraints of a fixed activity approach and permitting potentially more effective higher 131I activities to be

  2. Alternate electrode placement for whole body and segmental bioimpedance spectroscopy.

    PubMed

    Grisbrook, T L; Kenworthy, P; Phillips, M; Gittings, P M; Wood, F M; Edgar, D W

    2015-10-01

    Bioimpedance spectroscopy (BIS) is frequently used to monitor body fluid and body composition in healthy and clinical populations. BIS guidelines state that there should be no skin lesions at the site of electrodes, and if lesions are present, electrode positions should be changed. However, alternate electrode positions are yet to be reported. This study aimed to determine if ventral electrode placements were suitable alternatives for whole body and segmental BIS measurements. Three alternate electrode placements were assessed for whole body BIS using a combination of ventral hand and foot electrode placements. An alternate position was assessed for upper and lower body segmental BIS. The results demonstrated that for whole body BIS, if drive and sense electrodes on the hand are moved to ventral positions, but foot electrodes remain in standard positions, then whole body BIS variables were comparable to standard electrode positioning (percentage difference range  =  0.01 to 1.65%, p  =  0.211-0.937). The alternate electrode placement for upper limb segmental BIS, results in BIS variables that are comparable to that of the standard positioning (percentage difference range  =  0.24-3.51%, p  =  0.393-0.604). The alternate lower limb electrode position significantly altered all resistance and predicted BIS variables for whole body and lower limb segmental BIS (percentage difference range  =  1.06-12.09%, p  <  0.001). If wounds are present on the hands and/or wrist, then the alternate electrode position described in this study is valid, for whole body and upper limb segmental BIS.

  3. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting

    SciTech Connect

    James, H.M.; Fabricius, P.J.; Dykes, P.W.

    1987-09-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition.

  4. Design specification for the whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1974-01-01

    The necessary requirements and guidelines for the construction of a computer program of the whole-body algorithm are presented. The minimum subsystem models required to effectively simulate the total body response to stresses of interest are (1) cardiovascular (exercise/LBNP/tilt); (2) respiratory (Grodin's model); (3) thermoregulatory (Stolwijk's model); and (4) long-term circulatory fluid and electrolyte (Guyton's model). The whole-body algorithm must be capable of simulating response to stresses from CO2 inhalation, hypoxia, thermal environmental exercise (sitting and supine), LBNP, and tilt (changing body angles in gravity).

  5. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    PubMed

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    BMD and BMC agreement, did not detect substantial lean and fat differences observed using BBCP and in vivo assessments. Consequently, spine phantoms are inadequate for dual-energy X-ray absorptiometry whole body composition cross-calibration.

  6. Occupational exposure to 131I-a case study.

    PubMed

    Muikku, Maarit; Huikari, Jussi; Korpela, Helinä; Lindholm, Carita; Paile, Wendla; Parviainen, Teuvo

    2014-10-01

    In a laboratory in a company manufacturing radiopharmaceuticals, a laboratory technician was contaminated with I. The employee was preparing I capsules for thyroid carcinoma treatment. The employee was wearing two pairs of protective gloves and, when changing gloves, noticed a rupture in the right inner glove but no visible rupture in the outer glove. Only 3-4 h later, routine monitoring revealed heavy contamination of the back of the right hand. Immediate actions to decontaminate the hand were taken on-site. Stable iodine was not administered. On the next day, besides persisting heavy contamination of the hand, I was also detected in the thyroid gland. Based on original measurements on-site and later follow-up at STUK, including surface contamination measurements and whole body counting, the original I activity on the hand was estimated at 12 MBq and the superficial skin dose at 33 Gy, affecting a skin area of about 10 cm. The thyroid dose was estimated at 430 mGy. Eleven days after the incident, the skin was dry and slightly desquamated. After 15 d, the skin was intact with no desquamation left. No further signs of skin damage have occurred. Cytogenetic analysis of circulating lymphocytes indicated a slight elevation of chromosomal aberrations.

  7. Biodistribution and dosimetry of free 211At, 125I- and 131I- in rats.

    PubMed

    Spetz, Johan; Rudqvist, Nils; Forssell-Aronsson, Eva

    2013-11-01

    131I is widely used for therapy in the clinic and 125I and 131I, and increasingly 211At, are often used in experimental studies. It is important to know the biodistribution and dosimetry for these radionuclides to determine potential risk organs when using radiopharmaceuticals containing these radionuclides. The purpose of this study was to investigate the biodistribution of 125I-, 131I-, and free 211At in rats and to determine absorbed doses to various organs and tissues. Male Sprague Dawley rats were injected simultaneously with 0.1-0.3 MBq 125I- and 0.1-0.3 MBq 131I-, or 0.05-0.2 MBq 211At and sacrificed 1 hour to 7 days after injection. The activities and activity concentrations in organs and tissues were determined and mean absorbed doses were calculated. The biodistribution of 125I- was similar to that of 131I- but the biodistribution of free 211At was different compared to 125I- and 131I-. The activity concentration of radioiodine was higher compared with 211At in the thyroid and lower in all extrathyroidal tissues. The mean absorbed dose per unit injected activity was highest to the thyroid. 131I gave the highest absorbed dose to the thyroid, and 211At gave the highest absorbed dose to all other tissues studied. PMID:23789969

  8. Biodistribution and dosimetry of free 211At, 125I- and 131I- in rats.

    PubMed

    Spetz, Johan; Rudqvist, Nils; Forssell-Aronsson, Eva

    2013-11-01

    131I is widely used for therapy in the clinic and 125I and 131I, and increasingly 211At, are often used in experimental studies. It is important to know the biodistribution and dosimetry for these radionuclides to determine potential risk organs when using radiopharmaceuticals containing these radionuclides. The purpose of this study was to investigate the biodistribution of 125I-, 131I-, and free 211At in rats and to determine absorbed doses to various organs and tissues. Male Sprague Dawley rats were injected simultaneously with 0.1-0.3 MBq 125I- and 0.1-0.3 MBq 131I-, or 0.05-0.2 MBq 211At and sacrificed 1 hour to 7 days after injection. The activities and activity concentrations in organs and tissues were determined and mean absorbed doses were calculated. The biodistribution of 125I- was similar to that of 131I- but the biodistribution of free 211At was different compared to 125I- and 131I-. The activity concentration of radioiodine was higher compared with 211At in the thyroid and lower in all extrathyroidal tissues. The mean absorbed dose per unit injected activity was highest to the thyroid. 131I gave the highest absorbed dose to the thyroid, and 211At gave the highest absorbed dose to all other tissues studied.

  9. Predictive value of tracer studies for /sup 131/I treatment in hyperthyroid cats

    SciTech Connect

    Broome, M.R.; Turrel, J.M.; Hays, M.T.

    1988-02-01

    In 76 cats with hyperthyroidism, peak thyroidal radioiodine (/sup 131/I) uptakes and effective half-lives were determined after administration of tracer and therapeutic activities of /sup 131/I. In 6 additional hyperthyroid cats, only peak thyroidal uptakes after administration of tracer and therapeutic activities of /sup 131/I were determined. Good correlation was found between peak thyroidal uptakes of tracer and therapeutic /sup 131/I; however, only fair correlation was observed between effective half-lives. In 79% of the cats, the effective half-life for therapeutic /sup 131/I was longer than that for tracer /sup 131/I. After administration of therapeutic activity of /sup 131/I, monoexponential and biphasic decay curves were observed in 51 and 16 cats, respectively. Using therapeutic kinetic data, radiation doses to the thyroid gland were calculated retrospectively on the basis of 2 methods for determining the activity of /sup 131/I administered: (1) actual administration of tracer-compensated activity and (2) hypothetic administration of uniform activity (3 mCi). Because of the good predictive ability of tracer kinetic data for the therapeutic kinetic data, the tracer-compensated radiation doses came significantly (P = 0.008) closer to the therapeutic goal than did the uniform-activity doses. In addition, the use of tracer kinetic information reduced the extent of the tendency for consistently high uniform-activity doses. A manual method for acquiring tracer kinetic data was developed and was an acceptable alternative to computerized techniques. Adoption of this method gives individuals and institutions with limited finances the opportunity to characterize the iodine kinetics in cats before proceeding with administration of therapeutic activities of /sup 131/I.

  10. Radiation dosimetry of 131I-chlorotoxin for targeted radiotherapy in glioma-bearing mice.

    PubMed

    Shen, Sui; Khazaeli, M B; Gillespie, G Yancey; Alvarez, Vernon L

    2005-01-01

    Chlorotoxin, or TM-601, is a peptide derived from the venom of the scorpionLeiurus Quinquestriatus that specifically binds to malignant brain tumors, but not to normal tissues. Targeted radiotherapy using 131I-Chlorotoxin is promising for post-surgery treatment of brain tumors. This study reports dosimetry results of 131I-Chlorotoxin in athymic nude mice with intracranially implanted human glioma xenografts and projected radiation doses in patients receiving 370 MBq of 131I-Chlorotoxin. 125I/131I-Chlorotoxin were injected into the right brain where D54 MG xenografts were implanted. Mice were sacrificed 24-96 h later. The blood, normal organs, and tumors were weighed and counted to determine 131I-Chlorotoxin concentration. The radiation dose from 131I was calculated based on non-penetrating radiation in the mouse model. Assuming similar tissue uptake in mice and patients, radiation doses for patients were extrapolated. Distributions of 125I/131I-Chlorotoxin were only significant in tumor, stomach, kidneys, and brain (injection site), reflecting non-specific uptake of Chlorotoxin in normal tissues. Mean radiation dose (cGy/37 kBq) was 58.2 for tumor, 17.9 for brains, 1.8 for marrow, 27.1 for stomach, 16.0 for kidneys in mice. For intracranial injection of 370 MBq 131I-Chlorotoxin in patients, extrapolated patient dose (cGy) was 70 for brains, 6 for marrow, 35 for stomach, 60 to kidneys, 227 to tumor, suggesting that 3.7 GBq of 131I-Chlorotoxin can be safely administrated to patients. These promising results demonstrated potential in improving patient survival using this novel targeting agent.

  11. Whole body bone tissue and cardiovascular risk in rheumatoid arthritis.

    PubMed

    Popescu, Claudiu; Bojincă, Violeta; Opriş, Daniela; Ionescu, Ruxandra

    2014-01-01

    Introduction. Atherosclerosis and osteoporosis share an age-independent bidirectional correlation. Rheumatoid arthritis (RA) represents a risk factor for both conditions. Objectives. The study aims to evaluate the connection between the estimated cardiovascular risk (CVR) and the loss of bone tissue in RA patients. Methods. The study has a prospective cross-sectional design and it includes female in-patients with RA or without autoimmune diseases; bone tissue was measured using whole body dual X-ray absorptiometry (wbDXA); CVR was estimated using SCORE charts and PROCAM applications. Results. There were 75 RA women and 66 normal women of similar age. The wbDXA bone indices correlate significantly, negatively, and age-independently with the estimated CVR. The whole body bone percent (wbBP) was a significant predictor of estimated CVR, explaining 26% of SCORE variation along with low density lipoprotein (P < 0.001) and 49.7% of PROCAM variation along with glycemia and menopause duration (P < 0.001). Although obese patients had less bone relative to body composition (wbBP), in terms of quantity their bone content was significantly higher than that of nonobese patients. Conclusions. Female patients with RA and female patients with cardiovascular morbidity have a lower whole body bone percent. Obese female individuals have higher whole body bone mass than nonobese patients.

  12. Age Modulates Attitudes to Whole Body Donation among Medical Students

    ERIC Educational Resources Information Center

    Perry, Gary F.; Ettarh, Raj R.

    2009-01-01

    Managing a whole body donor program is necessary for facilitating a traditional dissection-based anatomy curriculum in medicine and health sciences. Factors which influence body donations to medical science can therefore affect dissection-based anatomy teaching. In order to determine whether age influences the attitudes of medical students to…

  13. Kappa Delta Award. Low back pain and whole body vibration.

    PubMed

    Pope, M H; Magnusson, M; Wilder, D G

    1998-09-01

    The investigators describe their multifaceted approach to the study of the relationship between whole body vibration and low back pain. The epidemiologic study was a two center study of drivers and sedentary workers in the United States and Sweden. The vibration exposure was measured in the vehicles. It was found that the career vibration exposure was related to low back, neck, and shoulder pain. However, disability was related to job satisfaction. In vivo experiments, using percutaneous pin mounted accelerometers have shown that the natural frequency is at 4.5 Hz. The frequency response is affected by posture, seating, and seat back inclination. The response appears to be determined largely by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration, should be reduced for those recovering from these problems. Vibration attenuating seats and correct ergonomic layout of the cabs may reduce the risks of recurrence. PMID:9755785

  14. Student Attitudes to Whole Body Donation Are Influenced by Dissection

    ERIC Educational Resources Information Center

    Cahill, Kevin C.; Ettarh, Raj R.

    2008-01-01

    Given the important role that anatomical dissection plays in the shaping of medical student attitudes to life and death, these attitudes have not been evaluated in the context of whole body donation for medical science. First year students of anatomy in an Irish university medical school were surveyed by questionnaire before and after the initial…

  15. [A case of malignant pheochromocytoma treated with 131I-metaiodobenzylguanidine and CVD regimen].

    PubMed

    Ukimura, O; Kojima, M; Hosoi, S; Itoh, H; Watanabe, H; Minamikawa, T

    1994-05-01

    A 44-year-old male had multiple metastasis to the lung, liver, kidney and paraaortic lymph node from primary adrenal malignant pheochromocytoma. Radiation therapy with 131I-metaiodobenzylguanidine (131I-MIBG), was first performed, which was followed by chemotherapy with cyclophosphamide, vincristine and dacarbazine (CVD). A total amount of 4810 MBq of 131I-MIBG was administered then 7 cycles of CVD regimen were added. He was survived for sixteen months with tumor response in primary tumor, paraaortic lymph node and liver metastasis tumors, in addition to hormonal response. It was considered that the survival was prolonged in spite of advanced case with inoperative primary tumor.

  16. Radiation Exposure Levels in Diagnostic Patients Injected with 99mTc, 67Ga and 131I at the Mexican National Institute of Cancerology Nuclear Medicine Department

    NASA Astrophysics Data System (ADS)

    Trujillo-Zamudio, F. E.; Gómez-Argumosa, E.; Estrada-Lobato, E.; Medina, L. A.

    2006-09-01

    According to the Mexican Radiation Safety regulations for patients treated in a nuclear medicine service, the exposure rate limit at 1 m from the patients is 5 mR/h before leaving the hospital. Three groups of patients have been monitored after: a) whole body bone studies with 740 MBq of 99mTc-MDP (207 patients); b) infection studies after i.v. administration of 185 MBq of 67Ga (207 patients); and c) thyroid studies with 185 MBq of 131I (142 patients). The results indicated that the average exposure rate levels in each group were: a) 0.57 ± 0.17 mR/h, b) 0.47 ± 0.20 mR/h, and c) 0.86 ± 0.14 mR/h. This study has shown that the Nuclear Medicine Department at INCAN complies with the NOM-013-NUCL-1995 Mexican regulation.

  17. Whole-Body and Hepatic Insulin Resistance in Obese Children

    PubMed Central

    Ibarra-Reynoso, Lorena del Rocío; Pisarchyk, Liudmila; Pérez-Luque, Elva Leticia; Garay-Sevilla, Ma. Eugenia; Malacara, Juan Manuel

    2014-01-01

    Background Insulin resistance may be assessed as whole body or hepatic. Objective To study factors associated with both types of insulin resistance. Methods Cross-sectional study of 182 obese children. Somatometric measurements were registered, and the following three adiposity indexes were compared: BMI, waist-to-height ratio and visceral adiposity. Whole-body insulin resistance was evaluated using HOMA-IR, with 2.5 as the cut-off point. Hepatic insulin resistance was considered for IGFBP-1 level quartiles 1 to 3 (<6.67 ng/ml). We determined metabolite and hormone levels and performed a liver ultrasound. Results The majority, 73.1%, of obese children had whole-body insulin resistance and hepatic insulin resistance, while 7% did not have either type. HOMA-IR was negatively associated with IGFBP-1 and positively associated with BMI, triglycerides, leptin and mother's BMI. Girls had increased HOMA-IR. IGFBP-1 was negatively associated with waist-to-height ratio, age, leptin, HOMA-IR and IGF-I. We did not find HOMA-IR or IGFBP-1 associated with fatty liver. Conclusion In school-aged children, BMI is the best metric to predict whole-body insulin resistance, and waist-to-height ratio is the best predictor of hepatic insulin resistance, indicating that central obesity is important for hepatic insulin resistance. The reciprocal negative association of IGFBP-1 and HOMA-IR may represent a strong interaction of the physiological processes of both whole-body and hepatic insulin resistance. PMID:25411786

  18. Absorbed Dose in the Uterus of a Three Months Pregnant Woman Due to 131I

    NASA Astrophysics Data System (ADS)

    Vega-Carrillo, Héctor René; Manzanares-Acuña, Eduardo; Hernández-Dávila, Víctor Martín; Arcos-Pichardo, Areli; Barquero, Raquel; Iñiguez, M. Pilar

    2006-09-01

    The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organs and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation.

  19. Monitoring 90Sr contamination in terms of 131I contamination in imported food.

    PubMed

    Yu, K N

    1993-09-01

    This paper describes a method for monitoring 90Sr contamination in terms of 131I contamination in food imported from a country with a recent nuclear power plant accident. For imported food, the guideline levels set by the Codex Alimentarius Commission will be applied, which requires that the contamination in food by beta emitters (typically strontium) be monitored. However, the measurement of strontium contamination cannot be made within a reasonably short time as it requires rather time-consuming chemical extraction and sample preparation procedures in advance. We propose here to use the contamination level of 131I in these foodstuffs as indicators of 90Sr contamination levels. Possible accident scenarios are employed to estimate the abundance ratio of 131I and 90Sr deposited on soil and intercepted by plants. Using a dynamic food chain model, we can calculate their relative activities in the food products which, when combined with the 131I levels present, give the theoretical 90Sr levels present.

  20. Absorbed Dose in the Uterus of a Three Months Pregnant Woman Due to 131I

    SciTech Connect

    Vega-Carrillo, Hector Rene; Manzanares-Acuna, Eduardo; Hernandez-Davila, Victor Martin; Arcos-Pichardo, Areli; Barquero, Raquel; Iniguez, M. Pilar

    2006-09-08

    The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organs and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation.

  1. Two-phase whole-body skeletal scintigraphy in children--revisiting the usefulness of the early blood pool phase.

    PubMed

    Kwatra, Neha; Shalaby-Rana, Eglal; Majd, Massoud

    2013-10-01

    The usefulness of whole-body blood pool imaging as part of Tc-99m methylene diphosphonate (MDP) skeletal scintigraphy in detection of marrow infiltrative processes and unexpected soft-tissue and visceral abnormalities is demonstrated via illustrative case examples. Technical aspects of this simple and fast scanning technique are also highlighted.

  2. Local delivery of (131)I-MIBG to treat peritoneal neuroblastoma.

    PubMed

    Kinuya, Seigo; Li, Xiao-Feng; Yokoyama, Kunihiko; Mori, Hirofumi; Shiba, Kazuhiro; Watanabe, Naoto; Shuke, Noriyuki; Bunko, Hisashi; Michigishi, Takatoshi; Tonami, Norihisa

    2003-09-01

    Internal radiotherapy involving systemic administration of iodine-131 metaiodobenzylguanidine ((131)I-MIBG) in neural crest tumours such as neuroblastoma has shown considerable success. Although peritoneal seeding of neuroblastoma occurs less often than metastases to organs such as the liver, no effective treatments exist in this clinical setting. Previous reports have demonstrated the effectiveness of peritoneal application of chemotherapeutic drugs or radiolabelled monoclonal antibodies in several kinds of carcinomas. Local delivery of (131)I-MIBG should produce more favourable dosimetry in comparison with its systemic administration in the treatment of peritoneal neuroblastoma. In the current investigation, a peritoneal model of neuroblastoma was established in Balb/c nu/nu mice by i.p. injection of SK-N-SH neuroblastoma cells. Two weeks after cell inoculation, comparative biodistribution studies were performed following i.v. or i.p. administration of (131)I-MIBG. Mice were treated with 55.5 MBq of (131)I-MIBG administered either i.v. or i.p. at 2 weeks. Intraperitoneal injection of (131)I-MIBG produced significantly higher tumour accumulation than did i.v. injection ( P<0.01). Therapeutic ratios of i.p. injection were 4- to 14-fold higher than those of i.v. injection. Radiotherapy with i.v. administered (131)I-MIBG failed to improve the survival of mice; mean survival of untreated mice and mice treated with i.v. administration of (131)I-MIBG was 59.3+/-3.9 days and 60.6+/-2.8 days, respectively. On the other hand, radiotherapy delivered via i.p. administration of (131)I-MIBG prolonged survival of mice to 94.7+/-17.5 days ( P<0.02 vs untreated controls and mice treated with i.v. (131)I-MIBG therapy). Radiation doses absorbed by tumours at 55.5 MBq of (131)I-MIBG were estimated to be 4,140 cGy with i.p. injection and 450 cGy with i.v. injection. These results indicate the benefits of locoregional delivery of (131)I-MIBG in the treatment of peritoneal

  3. Parameters Influencing Curative Effect of 131I Therapy on Pediatric Differentiated Thyroid Carcinoma: A Retrospective Study.

    PubMed

    Xu, Lu; Liu, Qiong; Liu, Ying; Pang, Hua

    2016-01-01

    BACKGROUND This study aimed to investigate the parameters influencing the effectiveness of first 131I thyroid remnant ablation and then 131I treatment of metastatic lesions in children and adolescents with differentiated thyroid carcinoma (DTC). MATERIAL AND METHODS A total of 88 children and adolescents with DTC were divided into 2 groups: 56 in the complete-ablation group and 32 in the incomplete-ablation group for the first 131I ablation; 32 in the incomplete-ablation group were further divided: 19 in the complete-remission group and 13 in the incomplete-remission group for subsequent 131I treatment of metastatic lesions. Influential parameters were analyzed using t test, t' test, rank-sum test, χ2-test, and Fisher exact test, and logistic regression analysis was performed. Radioactive iodine uptake (RAIU), lymph node metastases, and pulmonary metastases were selected as influential parameters. RESULTS After logistic regression analysis, RAIU, only lymph node metastases, and pulmonary metastasis were significantly associated with the complete-ablation rate. High levels of RAIU and serum thyroglobulin (Tg) were not conducive to disease remission after subsequent 131I treatment of metastatic lesions. The remission rate of patients with pulmonary metastasis was lower than the rate of patients with lymph node metastases or no metastases. CONCLUSIONS Results demonstrated that a high remission rate is associated with low postoperative RAIU and Tg. Lymph node metastasis and pulmonary metastasis reduce the complete-remission rate of first 131I ablation therapy. Pulmonary metastasis reduces the remission rate of subsequent 131I treatment. Also, 131I treatment for pediatric DTC with pulmonary metastasis achieved progression-free survival. PMID:27576533

  4. Retrospective evaluation of 131I deposition density and thyroid dose in Poland after the Chernobyl accident.

    PubMed

    Pietrzak-Flis, Zofia; Krajewski, Pawel; Radwan, Irena; Muramatsu, Yasuyuki

    2003-06-01

    The 131I deposition in Poland after the Chernobyl accident on 26 April 1986 was evaluated from the determined 129I deposition and the estimated 129I/131I ratio at the time of the arrival of fallout. Concentrations of 129I and 127I were determined by neutron activation analysis in uncultivated soils from 16 locations in Poland. Determination of 137Cs in soils was carried out by gamma spectrometry. The atomic ratio of 129I/131I at the time of fallout arrival was estimated using the 129I/131I ratio at the time of the accident, which, on the basis of the core inventory data, was assumed to be 22.8. It was estimated from the time of fallout arrival and from the weighed mean atomic ratio that the 129I/131I ratio for Poland was 32.8. The calculated 131I deposition ranged from 63.2 to 729 kBq m(-2). High deposition of 131I occurred in the locations with rainfall but occasionally also in locations without rainfall. Committed equivalent doses from 131I were evaluated for 5-y-old children, 10-y-old children, and adults using the computer model CLRP for the situations with and without countermeasures including iodine prophylaxis. The highest thyroid doses from inhalation and ingestion without countermeasures were 178 mSv, 120 mSv, and 45 mSv for 5-y-old children, 10-y-old children, and adults, respectively. The countermeasures reduced these doses by about 30%. PMID:12822579

  5. Simulating 131I pathways from Fukushima to Kanto: a case study for March 2011

    NASA Astrophysics Data System (ADS)

    Lee Zhi Yi, A.; Yoshimura, K.; Oki, T.

    2015-12-01

    An estimated 150PBq of 131I was released from the FDNPP accident, partially deposited into rivers and affected the water treatment plants (WTPs) of Japan. Due to the elevated 131I concentration in tap water, a restriction on drinking water was placed in 15 of 47 prefectures; of those limited, the densely populated Kanto region was significantly affected during this period. In order to better understand the existence of and to investigate the pathways of 131I for future risk and water resource management in the Kanto region, the IsoMATTRIP land surface and river model was developed. Half-life considerations of radiotracers were implemented and a river map of the Kanto region was manually created. Few simulation studies on the pathways of 131I have been conducted due to its short half-life and limited validation data. The development of the IsoMATTRIP model serves as an initial step to address this gap in knowledge. Preliminary runs on the IsoMATTRIP showed that river discharge has a significant effect on 131I concentration found in WTPs. River discharge was underestimated (by average of 55 m3/s) while 131I concentration was overestimated (by 301 Bq/kg). However, the model was able to simulate varying response of 131I concentration for fallout according to basin size. The discrepancy between observed and simulated river discharge is potentially caused by the model's usage of natural land parameters to simulate an urban environment. Effective river velocity, input precipitation, and discharge were calibrated to successfully identify optimized settings for the current model setup. The IsoMATTRIP simulated comparable values of 131I to that from the observed in WTPs of the Kanto region.

  6. A new method for calculating the distribution of radioactivity in man measured with a whole-body counter

    SciTech Connect

    Novario, R.; Conte, L. )

    1990-05-01

    A whole-body counter with a scanning bed and two opposite (antero-posterior) probes was used to obtain profiles of count rates of radioactivity held in the whole body. The distribution of the activity in the patient was calculated by solving an overdetermined system (more equations than unknowns) of linear equations with the Chebyshev method, the least-squares method, and an iterative method. The iterative method gave the best results, especially in the case of distributions with peaks of radioactivity. Some in-vivo applications of the method are presented.

  7. Gamma camera imaging for studying intestinal absorption and whole-body distribution of selenomethionine.

    PubMed

    Madsen, Jan L; Sjögreen-Gleisner, Katarina; Elema, Dennis R; Søndergaard, Lasse R; Rasmussen, Palle; Fuglsang, Stefan; Ljungberg, Michael; Damgaard, Morten

    2014-02-01

    Se metabolism in humans is not well characterised. Currently, the estimates of Se absorption, whole-body retention and excretion are being obtained from balance and tracer studies. In the present study, we used gamma camera imaging to evaluate the whole-body retention and distribution of radiolabelled selenomethionine (SeMet), the predominant form of Se present in foods. A total of eight healthy young men participated in the study. After consumption of a meal containing 4 MBq [⁷⁵Se]L-SeMet ([⁷⁵Se]SeMet), whole-body gamma camera scanning was performed for 45 min every hour over a 6 h period, every second hour for the next 18 h and once on each of the subsequent 6 d. Blood, urine and faecal samples were collected to determine the plasma content of [⁷⁵Se]SeMet as well as its excretion in urine and faeces. Imaging showed that 87·9 (sd 3·3)% of the administered activity of [⁷⁵Se]SeMet was retained within the body after 7 d. In contrast, the measured excretion in urine and faeces for the 7 d period was 8·2 (sd 1·1)% of the activity. Time-activity curves were generated for the whole body, stomach, liver, abdomen (other than the stomach and the liver), brain and femoral muscles. Gamma camera imaging allows for the assessment of the postprandial absorption of SeMet. This technique may also permit concurrent studies of organ turnover of SeMet.

  8. Measurement of Whole-Body Vibration Exposure from Garbage Trucks

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Morioka, M.

    1998-08-01

    Japanese garbage truck drivers are exposed to mechanical whole-body vibration during their work. Some drivers have suffered from low back pain from this vibration. However, there is no evidence of a relationship between the whole-body vibration from the garbage trucks and low back pain or occupational disease, due to the lack of investigations. A field study was conducted in order to characterize the health risks associated with garbage truck work. Three different types of truck were tested at different loadings and on different road surfaces, with the vibrations measured at the driver/seat interface (x,y, andz-axes). The vibrations were compared with the health risk guidance according to Annex B of ISO 2631-1 [1]. The findings of this study indicated that Japanese garbage truck drivers should not operate trucks for 2.5 h in a day, under current working conditions.

  9. The development of a whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Kay, F. J.

    1973-01-01

    The whole-body algorithm is envisioned as a mathematical model that utilizes human physiology to simulate the behavior of vital body systems. The objective of this model is to determine the response of selected body parameters within these systems to various input perturbations, or stresses. Perturbations of interest are exercise, chemical unbalances, gravitational changes and other abnormal environmental conditions. This model provides for a study of man's physiological response in various space applications, underwater applications, normal and abnormal workloads and environments, and the functioning of the system with physical impairments or decay of functioning components. Many methods or approaches to the development of a whole-body algorithm are considered. Of foremost concern is the determination of the subsystems to be included, the detail of the subsystems and the interaction between the subsystems.

  10. Simplified segmented human models for whole body and localised SAR evaluation of 20 MHz to 6 GHz electromagnetic field exposures.

    PubMed

    Wu, Tongning; Shao, Qing; Yang, Lei

    2013-03-01

    The digital human model is a key element in evaluating the electromagnetic field (EMF) exposure. This paper proposes the application of simplified segmented human models for EMF exposure compliance evaluation with the whole body and the localised limits. The method is based on the fact that most of the EMF power absorption is concentrated in several major tissues. Two kinds of human models were simply (the proposed method) and precisely segmented from two sets of whole body magnetic resonance imaging (MRI) scanned images. The whole body average-specific absorption rate (WBA-SAR) and the peak localised SAR averaging over 10 g tissues for the two kinds of models are calculated for various exposure configurations. The results confirmed the efficiency and the validity of the proposed method. The application as evaluating the MRI radiofrequency EMF exposure is also discussed in the paper.

  11. Whole-body kinetics and dosimetry of L-3--123I-iodo-alpha-methyltyrosine.

    PubMed

    Schmidt, D; Langen, K J; Herzog, H; Wirths, J; Holschbach, M; Kiwit, J C; Ziemons, K; Coenen, H H; Müller-Gärtner, H

    1997-09-01

    The synthetic amino acid L-3--123I-iodo-alpha-methyltyrosine (IMT) is currently under clinical evaluation as a single-photon emission tomography (SPET) tracer of amino acid uptake in brain tumours. So far, dosimetric data in respect of IMT are not available. Therefore we investigated the whole-body distribution of IMT in six patients with cerebral gliomas and the radiation doses were estimated. Whole-body scans were acquired at 1.5, 3 and 5 h after i.v. injection of 370-550 MBq IMT. The bladder was voided prior to each scan and the radioactivity excreted in the urine was measured. Based on the MIRD-11 method and the updated MIRDOSE3, the mean absorbed doses for various organs and the effective dose were calculated from geometric means of the anterior and posterior whole-body scans using seven source organs and the residence time. IMT was predominantly excreted by the kidneys (52.8%+/-11.5% at 1.5 h p.i., 63.0%+/-15.7% at 3 h p.i. and 74.6%+/-9.8% at 5 h p.i.). No organ system other than the urinary tract showed significant retention of the tracer. Early whole-body scans revealed slightly increased tracer uptake in the liver and in the bowel. Highest absorbed doses were found for the urinary bladder wall (0.047 mGy/MBq), the kidneys (0.010 mGy/MBq), the lower large intestinal wall (0.011 mGy/MBq) and the upper large intestinal wall (0.008 mGy/MBq). The effective dose according to ICRP 60 was estimated to be 0.0073 mSv/MBq for adults. This leads to an effective dose of 3.65 mSv in a typical brain SPET study using 500 MBq IMT. The MIRDOSE3 scheme yielded similar results. Thus, in spite of the relatively high tracer dose required for optimal brain scanning, radiation exposure in SPET studies with IMT is in the normal range of routine nuclear medicine investigations. PMID:9283111

  12. Whole-body angular momentum during stair ascent and descent.

    PubMed

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent.

  13. Behavior of 131I and 137Cs in environments released from the Fukushima nuclear disaster

    NASA Astrophysics Data System (ADS)

    Ohta, T.; Mahara, Y.; Kubota, T.; Igarashi, T.

    2011-12-01

    The devastating tsunami that caused by the great earthquake (M = 9.0) off the coast of northeastern Honshu on 11 March 2011 destroyed large coastal areas of Tohoku and north Kanto, Japan. Radionuclides, including 131I, 134Cs, and 137Cs, were released into the atmosphere from the Fukushima Daiichi plants. Concentration of levels of 131I, 134Cs, and 137Cs in Ibaraki Prefecture, Japan, released from the Fukushima Daiichi plant were investigated in the soil and precipitation. The concentrations of 131I and 137Cs in the soil from the surface to 1 cm depth in Ibaraki Prefecture were 9360-13,400 Bq/kg and 720-3250 Bq/kg, respectively. The concentration of 137Cs at this soil observation site originating from the Fukushima plant was 8.4 to 21 times that found locally after the Nagasaki atomic bomb explosion. Most of the 134Cs and 137Cs from rainwater were trapped by the surface soil and sand to a depth of 1 cm, whereas only about 30% of the 131I was collected by the surface soil, suggesting that 131I would move deeper than 137Cs and 134Cs. The 131I in the rainwater was in the anion exchangeable form, and all of it could be collected by anion exchangeable mechanisms, whereas 30% of the 131I that had passed through the soil could not be trapped by the anion exchange resin, suggesting that the chemical form of this 30% was in a changeable, organic-bound form. The 131I, 134Cs, and 137Cs that were absorbed on soil were difficult to be dissolved into water. As the half-life of 131I is short and 137Cs is strongly adsorbed on the surface soil and sand, these radionuclides would be unlikely to reach the groundwater before completely decaying; contamination of groundwater with 131I and 137Cs supplied from rainwater to the surface soil is therefore exceedingly unlikely. As the 137Cs is likely to migrate only 0.6 cm in 10 years, people living in the Fukushima and Kanto areas will be exposed to radiation from 137Cs in the surface soil and sand. For protection, surface soils and sands

  14. Contralateral subtraction technique for detection of asymmetric abnormalities on whole-body bone scintigrams

    NASA Astrophysics Data System (ADS)

    Shiraishi, Junji; Li, Qiang; Appelbaum, Daniel; Pu, Yonglin; Doi, Kunio

    2007-03-01

    We developed a computer-aided diagnostic (CAD) scheme for assisting radiologists in the detection of asymmetric abnormalities on a single whole-body bone scintigram by applying a contralateral subtraction (CS) technique. Twenty whole-body bone scans including 107 abnormal lesions in anterior and/or posterior images (the number of lesions per case ranged from 1 to 16, mean 5.4) were used in this study. In our scheme, the original bone scan image was flipped horizontally to provide a mirror image. The mirror image was first rotated and shifted globally to match the original image approximately, and then was nonlinearly warped by use of an elastic matching technique in order to match the original image accurately. We applied a nonlinear lookup table to convert the difference in pixel values between the original and the warped images to new pixel values for a CS image, in order to enhance dark shadows at the locations of abnormal lesions where uptake of radioisotope was asymmetrically high, and to suppress light shadows of the lesions on the contralateral side. In addition, we applied a CAD scheme for the detection of asymmetric abnormalities by use of rule-based tests and sequential application of artificial neural networks with 25 image features extracted from the original and CS images. The performance of the CAD scheme, which was evaluated by a leave-one-case-out method, indicated an average sensitivity of 80.4 % with 3.8 false positives per case. This CAD scheme with the contralateral subtraction technique has the potential to improve radiologists' diagnostic accuracy and could be used for computerized identification of asymmetric abnormalities on whole-body bone scans.

  15. Effect of sway on image fidelity in whole-body digitizing

    NASA Astrophysics Data System (ADS)

    Corner, Brian D.; Hu, Anmin

    1998-03-01

    For 3D digitizers to be useful data collection tools in scientific and human factors engineering applications, the models created from scan data must match the original object very closely. Factors such as ambient light, characteristics of the object's surface, and object movement, among others can affect the quality of the image produced by any 3D digitizing system. Recently, Cyberware has developed a whole body digitizer for collecting data on human size and shape. With a digitizing time of about 15 seconds, the effect subject movement, or sway, on model fidelity is an important issue to be addressed. The effect of sway is best measured by comparing the dimensions of an object of known geometry to the model of the same object captured by the digitizer. Since it is difficult to know the geometry of a human body accurately, it was decided to compare an object of simple geometry to its digitized counterpart. Preliminary analysis showed that a single cardboard tube would provide the best artifact for detecting sway. A tube was attached to the subjects using supports that allowed the cylinder to stand away from the body. The stand-off was necessary to minimize occluded areas. Multiple scans were taken of 1 subject and the cylinder extracted from the images. Comparison of the actual cylinder dimensions to those extracted from the whole body images found the effect of sway to be minimal. This follows earlier findings that anthropometric dimensions extracted from whole body scans are very close to the same dimensions measured using standard manual methods. Recommendations for subject preparation and stabilization are discussed.

  16. Radionuclide (131)I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors.

    PubMed

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-11-21

    We report the synthesis, characterization, and utilization of radioactive (131)I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5·NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 ((131)I). The generated multifunctional (131)I-G5·NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to (131)I labeling, the G5·NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive (131)I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.

  17. Dose Calculations for [131I] Meta-Iodobenzylguanidine-Induced Bystander Effects

    PubMed Central

    Gow, M. D.; Seymour, C. B.; Boyd, M.; Mairs, R. J.; Prestiwch, W. V.; Mothersill, C. E.

    2014-01-01

    Targeted radiotherapy is a potentially useful treatment for some cancers and may be potentiated by bystander effects. However, without estimation of absorbed dose, it is difficult to compare the effects with conventional external radiation treatment. Methods: Using the Vynckier – Wambersie dose point kernel, a model for dose rate evaluation was created allowing for calculation of absorbed dose values to two cell lines transfected with the noradrenaline transporter (NAT) gene and treated with [131I]MIBG. Results: The mean doses required to decrease surviving fractions of UVW/NAT and EJ138/NAT cells, which received medium from [131I]MIBG-treated cells, to 25 – 30% were 1.6 and 1.7 Gy respectively. The maximum mean dose rates achieved during [131I]MIBG treatment were 0.09 – 0.75 Gy/h for UVW/NAT and 0.07 – 0.78 Gy/h for EJ138/NAT. These were significantly lower than the external beam gamma radiation dose rate of 15 Gy/h. In the case of control lines which were incapable of [131I]MIBG uptake the mean absorbed doses following radiopharmaceutical were 0.03 – 0.23 Gy for UVW and 0.03 – 0.32 Gy for EJ138. Conclusion: [131I]MIBG treatment for ICCM production elicited a bystander dose-response profile similar to that generated by external beam gamma irradiation but with significantly greater cell death. PMID:24659931

  18. Directional acuity of whole-body perturbations during standing balance.

    PubMed

    Puntkattalee, M Jane; Whitmire, Clarissa J; Macklin, Alix S; Stanley, Garrett B; Ting, Lena H

    2016-07-01

    The ability to perceive the direction of whole-body motion during standing may be critical to maintaining balance and preventing a fall. Our first goal was to quantify kinesthetic perception of whole-body motion by estimating directional acuity thresholds of support-surface perturbations during standing. The directional acuity threshold to lateral deviations in backward support-surface motion in healthy, young adults was quantified as 9.5±2.4° using the psychometric method (n=25 subjects). However, inherent limitations in the psychometric method, such as a large number of required trials and the predetermined stimulus set, may preclude wider use of this method in clinical populations. Our second goal was to validate an adaptive algorithm known as parameter estimation by sequential testing (PEST) as an alternative threshold estimation technique to minimize the required trial count without predetermined knowledge of the relevant stimulus space. The directional acuity threshold was estimated at 11.7±3.8° from the PEST method (n=11 of 25 subjects, psychometric threshold=10.1±3.1°) using only one-third the number of trials compared to the psychometric method. Furthermore, PEST estimates of the direction acuity threshold were highly correlated with the psychometric estimates across subjects (r=0.93) suggesting that both methods provide comparable estimates of the perceptual threshold. Computational modeling of both techniques revealed similar variance in the estimated thresholds across simulations of about 1°. Our results suggest that the PEST algorithm can be used to more quickly quantify whole-body directional acuity during standing in individuals with balance impairments. PMID:27477713

  19. Whole-body vibration and disorders of the spine.

    PubMed

    Dupuis, H; Zerlett, G

    1987-01-01

    This cross-sectional study is based on interviews and medical examinations of 352 operators of earth-moving machines who had been exposed to whole-body vibrations for at least three years. In addition, available X-rays showing different parts of the spines of 251 machine operators who had been exposed to vibration for at least ten years were used for evaluation. One hundred and forty-nine of the operators were asked about discomfort occurring immediately after an eight-hour work shift. The group of exposed persons was compared with a control group of 215 non-exposed persons. The percentage of subjects reporting spinal discomfort was much higher for the exposed group than for the non-exposed group. 68.7% of the operators complained of spinal discomfort in the lumbar spine, 6.8% in the thoracic column and 18.2% in the cervical column. The discomfort reported immediately after an eight-hour exposure to whole-body vibration was highly age-dependent. The epidemiological study resulted in an objective conformation of the spinal discomfort reported, 2/3 of which were related by the operators to the lumbar syndrome. Lumbar syndrome (81%) accounted for by far the highest number of spinal disorders. Examinations of the operators with at least ten years of exposure to whole-body vibrations showed that morphological changes in the lumbar spine occur earlier and much more frequently than in the case of non-exposed persons. Problems of etiology and pathogenesis are discussed.

  20. Physiological responses during whole body suspension of adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Fell, R. D.; Musacchia, X. J.

    1987-01-01

    The objective of this study was to characterize responses of adult rats to one and two weeks of whole body suspension. Body weights and food and water intakes were initially reduced during suspension, but, while intake of food and water returned to presuspension levels, body weight remained depressed. Diuresis was evident, but only during week two. Hindlimb muscle responses were differential, with the soleus exhibiting the greatest atrophy and the EDL a relative hypertrophy. These findings suggest that adult rats respond qualitatively in a manner similar to juveniles during suspension.

  1. Transfer of /sup 131/I and /sup 95m/Tc from pasture to goat milk

    SciTech Connect

    Bondietti, E.A.; Garten, C.T. Jr.

    1984-01-01

    Field measurements were made in 1983 on the transfer of /sup 131/I and /sup 95m/Tc from spray-contaminated pasture to goat's milk. The transfer of /sup 131/I to milk was similar to that used for mathematical models in US Nuclear Regulatory Commission Regulatory Guide 1.109, which was derived from stall-feeding experiments using capsulized doses. Compared to /sup 131/I, the /sup 95m/Tc transferred to milk was about 5600 times less. The lower transfer resulted from both immobilization of technetium on pasture prior to ingestion as well as reduced gastrointestinal absorption. The results show that the food chain transfer of technetium to milk is much less than that previously expected based on inferences made from metabolism studies. 6 references, 4 figures, 1 table.

  2. Central nervous system effects of whole-body proton irradiation.

    PubMed

    Sweet, Tara Beth; Panda, Nirlipta; Hein, Amy M; Das, Shoshana L; Hurley, Sean D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2014-07-01

    Space missions beyond the protection of Earth's magnetosphere expose astronauts to an environment that contains ionizing proton radiation. The hazards that proton radiation pose to normal tissues, such as the central nervous system (CNS), are not fully understood, although it has been shown that proton radiation affects the neurogenic environment, killing neural precursors and altering behavior. To determine the time and dose-response characteristics of the CNS to whole-body proton irradiation, C57BL/6J mice were exposed to 1 GeV/n proton radiation at doses of 0-200 cGy and behavioral, physiological and immunohistochemical end points were analyzed over a range of time points (48 h-12 months) postirradiation. These experiments revealed that proton radiation exposure leads to: 1. an acute decrease in cell division within the dentate gyrus of the hippocampus, with significant differences detected at doses as low as 10 cGy; 2. a persistent effect on proliferation in the subgranular zone, at 1 month postirradiation; 3. a decrease in neurogenesis at doses as low as 50 cGy, at 3 months postirradiation; and 4. a decrease in hippocampal ICAM-1 immunoreactivity at doses as low as 10 cGy, at 1 month postirradiation. The data presented contribute to our understanding of biological responses to whole-body proton radiation and may help reduce uncertainty in the assessment of health risks to astronauts. These findings may also be relevant to clinical proton beam therapy. PMID:24937778

  3. Neural systemic impairment from whole-body vibration.

    PubMed

    Yan, Ji-Geng; Zhang, Lin-ling; Agresti, Michael; LoGiudice, John; Sanger, James R; Matloub, Hani S; Havlik, Robert

    2015-05-01

    Insidious brain microinjury from motor vehicle-induced whole-body vibration (WBV) has not yet been investigated. For a long time we have believed that WBV would cause cumulative brain microinjury and impair cerebral function, which suggests an important risk factor for motor vehicle accidents and secondary cerebral vascular diseases. Fifty-six Sprague-Dawley rats were divided into seven groups (n = 8): 1) 2-week normal control group, 2) 2-week sham control group (restrained in the tube without vibration), 3) 2-week vibration group (exposed to whole-body vibration at 30 Hz and 0.5g acceleration for 4 hr/day, 5 days/week, for 2 weeks), 4) 4-week sham control group, 5) 4-week vibration group, 6) 8-week sham control group, and 7) 8-week vibration group. At the end point, all rats were evaluated in behavior, physiological, and brain histopathological studies. The cerebral injury from WBV is a cumulative process starting with vasospasm squeezing of the endothelial cells, followed by constriction of the cerebral arteries. After the 4-week vibration, brain neuron apoptosis started. After the 8-week vibration, vacuoles increased further in the brain arteries. Brain capillary walls thickened, mean neuron size was obviously reduced, neuron necrosis became prominent, and wide-ranging chronic cerebral edema was seen. These pathological findings are strongly correlated with neural functional impairments.

  4. Whole-body vibration exercise in postmenopausal osteoporosis.

    PubMed

    Weber-Rajek, Magdalena; Mieszkowski, Jan; Niespodziński, Bartłomiej; Ciechanowska, Katarzyna

    2015-03-01

    The report of the World Health Organization (WHO) of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the mechanical vibrations are transmitted to the body of the patient. According to the piezoelectric theory, pressure induces bone formation in the electrical potential difference, which acts as a stimulant of the process of bone formation. Whole body vibration increases the level of growth hormone and testosterone in serum, preventing sarcopenia and osteoporosis. The aim of this study was to review the literature on vibration exercise in patients with postmenopausal osteoporosis based on the PubMed and Medline database. While searching the database, the following key words were used 'postmenopausal osteoporosis' and 'whole-body vibration exercise'.

  5. Uncertainty of historical measurements of {sup 131}I in Hanford-area vegetation

    SciTech Connect

    Gilbert, R.O.; Strenge, D.L.; Miley, T.B.

    1996-02-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was conducted to estimate the radiation dose that individuals could have received as a result of emissions to the air and water from Hanford Site operations since 1944. The largest doses were to the human thyroid gland from {sup 131}I released into the atmosphere from Hanford facilities in the 1945-1947 time period. In support of the dose reconstruction effort, a database of historical environmental radioactivity measurements was constructed. This database includes measurements of total radioactivity for vegetation samples collected from 1945-1948 and counted using a Geiger-Mueller (GM) detector system. Because the factors used at that time to convert the GM counts to {sup 131}I activity did not take all parameters into account, and because some parameter values were inaccurate, more accurate conversion factors were developed as part of the HEDR Project. These factors can be used to estimate the actual historical activity levels. This paper summarizes the Monte Carlo uncertainty and sensitivity analysis methods used to assess the uncertainty of the newly reconstructed historical vegetation {sup 131}I activities and to identify the parameters that contributed the most uncertainty to these reconstructed activities. Based on the study of two vegetation (sagebrush) samples collected in the mid-1940`s, it appears that the true {sup 131}I activity of the historical vegetation samples should be within a factor of three of the reconstructed activity. Also, the uncertainty in the parameter I{sub cf} (the fraction of the background-corrected GM measurement of a vegetation sample that resulted from {sup 131}I) was found to contribute the most uncertainty to the reconstructed {sup 131}I activities when the uncertainty in I{sub cf} was large. 30 refs., 9 figs., 3 tabs.

  6. Uncertainty of historical measurements of 131I in Hanford-area vegetation.

    PubMed

    Gilbert, R O; Mart, E I; Denham, D H; Strenge, D L; Miley, T B

    1996-02-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was conducted to estimate the radiation dose that individuals could have received as a result of emissions to the air and water from Hanford Site operations since 1944. The largest doses were to the human thyroid gland from 131I released into the atmosphere from Hanford facilities in the 1945-1947 time period. In support of the dose reconstruction effort, a database of historical environmental radioactivity measurements was constructed. This database includes measurements of total radioactivity for vegetation samples collected from 1945-1948 and counted using a Geiger-Mueller (GM) detector system. Because the factors used at that time to convert the GM counts to 131I activity did not take all parameters into account, and because some parameter values were inaccurate, more accurate conversion factors were developed as part of the HEDR Project. These factors can be used to estimate the actual historical activity levels. This paper summarizes the Monte Carlo uncertainty and sensitivity analysis methods used to assess the uncertainty of the newly reconstructed historical vegetation 131I activities and to identify the parameters that contributed the most uncertainty to these reconstructed activities. Based on the study of two vegetation (sagebrush) samples collected in the mid-1940's, it appears that the true 131I activity of the historical vegetation samples should be within a factor of three of the reconstructed activity. Also, the uncertainty in the parameter Icf (the fraction of the background-corrected GM measurement of a vegetation sample that resulted from 131I) was found to contribute the most uncertainty to the reconstructed 131I activities when the uncertainty in Icf was large. PMID:8567282

  7. S values for 131I based on the ICRP adult voxel phantoms.

    PubMed

    Lamart, Stephanie; Simon, Steven L; Bouville, Andre; Moroz, Brian E; Lee, Choonsik

    2016-01-01

    To improve the estimates of organ doses from nuclear medicine procedures using (131)I, the authors calculated a comprehensive set of (131)I S values, defined as absorbed doses in target tissues per unit of nuclear transition in source regions, for different source and target combinations. The authors used the latest reference adult male and female voxel phantoms published by the International Commission on Radiological Protection (ICRP Publication 110) and the (131)I photon and electron spectra from the ICRP Publication 107 to perform Monte Carlo radiation transport calculations using MCNPX2.7 to compute the S values. For each phantom, the authors simulated 55 source regions with an assumed uniform distribution of (131)I. They computed the S values for 42 target tissues directly, without calculating specific absorbed fractions. From these calculations, the authors derived a comprehensive set of S values for (131)I for 55 source regions and 42 target tissues in the ICRP male and female voxel phantoms. Compared with the stylised phantoms from Oak Ridge National Laboratory (ORNL) that consist of 22 source regions and 24 target regions, the new data set includes 1662 additional S values corresponding to additional combinations of source-target tissues that are not available in the stylised phantoms. In a comparison of S values derived from the ICRP and ORNL phantoms, the authors found that the S values to the radiosensitive tissues in the ICRP phantoms were 1.1 (median, female) and 1.3 (median, male) times greater than the values based on the ORNL phantoms. However, for several source-target pairs, the difference was up to 10-fold. The new set of S values can be applied prospectively or retrospectively to the calculation of radiation doses in adults internally exposed to (131)I, including nuclear medicine patients treated for thyroid cancer or hyperthyroidism.

  8. 131I therapy for 345 patients with refractory severe hyperthyroidism: Without antithyroid drug pretreatment

    PubMed Central

    Xing, Jialiu; Fang, Yi; Wang, Yong; Zhang, Youren; Long, Yahong

    2015-01-01

    The aim of this study is to evaluate the safety and long-term results of 131I therapy alone for patients with refractory severe hyperthyroidism without antithyroid drug pretreatment. From January 2002 to December 2012, 408 patients with refractory severe hyperthyroidism were treated with 131I alone. Among them, 345 were followed up for 1 to 10 years for physical examination, thyroid function, and thyroid ultrasound. Complete Blood Count (CBC) liver function, electrocardiogram, echocardiogram, and Emission Computed Tomography (ECT) thyroid imaging were performed as indicated. The 345 patients had concomitant conditions including thyrotoxic heart disease, severe liver dysfunction, enlarged thyroid weighing 80 to 400 g, severe cytopenia, and vasculitis. One to two weeks prior to 131I therapy, all patients were given low-iodine diet. The dose of 131I therapy was 2.59 to 6.66 MBq (70 to180 µCi) per gram of thyroid with an average of 3.83 ± 0.6 MBq (103.6 ± 16.4 µCi); and the total 131I activity administrated for the individuals was 111 to 3507.6 MBq (3.0 to 94.8 mCi, mean 444 ± 336.7 MBq (12.0 ± 9.1 mCi)). Out of the 408 patients, 283 were cured, 15 with complete remission, and 47 with incomplete remission. No treatment failure or significant clinical worsening was noted in these patients. Our data indicated that 131I therapy alone for patients with refractory severe hyperthyroidism without antithyroid drug pretreatment is safe and effective. PMID:26341470

  9. A pioneer experience in Malaysia on In-house Radio-labelling of (131)I-rituximab in the treatment of Non-Hodgkin's Lymphoma and a case report of high dose (131)I-rituximab-BEAM conditioning autologous transplant.

    PubMed

    Kuan, Jew Win; Law, Chiong Soon; Wong, Xiang Qi; Ko, Ching Tiong; Awang, Zool Hilmi; Chew, Lee Ping; Chang, Kian Meng

    2016-10-01

    Radioimmunotherapy is an established treatment modality in Non-Hodgkin's lymphoma. The only two commercially available radioimmunotherapies - (90)Y-ibritumomab tiuxetan is expensive and (131)I-tositumomab has been discontinued from commercial production. In resource limited environment, self-labelling (131)I-rituximab might be the only viable practical option. We reported our pioneer experience in Malaysia on self-labelling (131)I-rituximab, substituting autologous haematopoietic stem cell transplantation (HSCT) and a patient, the first reported case, received high dose (131)I-rituximab (6000MBq/163mCi) combined with BEAM conditioning for autologous HSCT.

  10. A pioneer experience in Malaysia on In-house Radio-labelling of (131)I-rituximab in the treatment of Non-Hodgkin's Lymphoma and a case report of high dose (131)I-rituximab-BEAM conditioning autologous transplant.

    PubMed

    Kuan, Jew Win; Law, Chiong Soon; Wong, Xiang Qi; Ko, Ching Tiong; Awang, Zool Hilmi; Chew, Lee Ping; Chang, Kian Meng

    2016-10-01

    Radioimmunotherapy is an established treatment modality in Non-Hodgkin's lymphoma. The only two commercially available radioimmunotherapies - (90)Y-ibritumomab tiuxetan is expensive and (131)I-tositumomab has been discontinued from commercial production. In resource limited environment, self-labelling (131)I-rituximab might be the only viable practical option. We reported our pioneer experience in Malaysia on self-labelling (131)I-rituximab, substituting autologous haematopoietic stem cell transplantation (HSCT) and a patient, the first reported case, received high dose (131)I-rituximab (6000MBq/163mCi) combined with BEAM conditioning for autologous HSCT. PMID:27472826

  11. Internal dosimetry of nuclear medicine workers through the analysis of (131)I in aerosols.

    PubMed

    Carneiro, Luana Gomes; de Lucena, Eder Augusto; Sampaio, Camilla da Silva; Dantas, Ana Letícia Almeida; Sousa, Wanderson Oliveira; Santos, Maristela Souza; Dantas, Bernardo Maranhão

    2015-06-01

    (131)I is widely used in nuclear medicine for diagnostic and therapy of thyroid diseases. Depending of workplace safety conditions, routine handling of this radionuclide may result in a significant risk of exposure of the workers subject to chronic intake by inhalation of aerosols. A previous study including in vivo and in vitro measurements performed recently among nuclear medicine personnel in Brazil showed the occurrence of (131)I incorporation by workers involved in the handling of solutions used for radioiodine therapy. The present work describes the development, optimization and application of a methodology to collect and analyze aerosol samples aiming to assess internal doses based on the activity of (131)I present in a radiopharmacy laboratory. Portable samplers were positioned at one meter distant from the place where non-sealed liquid sources of (131)I are handled. Samples were collected over 1h using high-efficiency filters containing activated carbon and analyzed by gamma spectrometry with a high-purity germanium detection system. Results have shown that, although a fume hood is available in the laboratory, (131)I in the form of vapor was detected in the workplace. The average activity concentration was found to be of 7.4Bq/m(3). This value is about three orders of magnitude below the Derived Air Concentration (DAC) of 8.4kBq/m(3). Assuming that the worker is exposed by inhalation of iodine vapor during 1h, (131)I concentration detected corresponds to an intake of 3.6Bq which results in a committed effective dose of 7.13×10(-5)mSv. These results show that the radiopharmacy laboratory evaluated is safe in terms of internal exposure of the workers. However it is recommended that the presence of (131)I should be periodically re-assessed since it may increase individual effective doses. It should also be pointed out that the results obtained so far reflect a survey carried out in a specific workplace. Thus, it is suggested to apply the methodology

  12. Internal dosimetry of nuclear medicine workers through the analysis of (131)I in aerosols.

    PubMed

    Carneiro, Luana Gomes; de Lucena, Eder Augusto; Sampaio, Camilla da Silva; Dantas, Ana Letícia Almeida; Sousa, Wanderson Oliveira; Santos, Maristela Souza; Dantas, Bernardo Maranhão

    2015-06-01

    (131)I is widely used in nuclear medicine for diagnostic and therapy of thyroid diseases. Depending of workplace safety conditions, routine handling of this radionuclide may result in a significant risk of exposure of the workers subject to chronic intake by inhalation of aerosols. A previous study including in vivo and in vitro measurements performed recently among nuclear medicine personnel in Brazil showed the occurrence of (131)I incorporation by workers involved in the handling of solutions used for radioiodine therapy. The present work describes the development, optimization and application of a methodology to collect and analyze aerosol samples aiming to assess internal doses based on the activity of (131)I present in a radiopharmacy laboratory. Portable samplers were positioned at one meter distant from the place where non-sealed liquid sources of (131)I are handled. Samples were collected over 1h using high-efficiency filters containing activated carbon and analyzed by gamma spectrometry with a high-purity germanium detection system. Results have shown that, although a fume hood is available in the laboratory, (131)I in the form of vapor was detected in the workplace. The average activity concentration was found to be of 7.4Bq/m(3). This value is about three orders of magnitude below the Derived Air Concentration (DAC) of 8.4kBq/m(3). Assuming that the worker is exposed by inhalation of iodine vapor during 1h, (131)I concentration detected corresponds to an intake of 3.6Bq which results in a committed effective dose of 7.13×10(-5)mSv. These results show that the radiopharmacy laboratory evaluated is safe in terms of internal exposure of the workers. However it is recommended that the presence of (131)I should be periodically re-assessed since it may increase individual effective doses. It should also be pointed out that the results obtained so far reflect a survey carried out in a specific workplace. Thus, it is suggested to apply the methodology

  13. Radionuclide studies of chronic schistosomal uropathy. [/sup 99m/Tc-DTPA; /sup 131/I-hippuran

    SciTech Connect

    Lamki, L.M.; Lamki, N.

    1981-08-01

    Fifty patients with chronic urinary tract schistosomiasis were studied with /sup 99m/Tc-DTPA. All had a flow study, sequential analog imaging, and digital imaging for 25 to 35 min (20-sec frames). Time-activity curves (DTPA renograms) were extracted; 12 patients had /sup 131/I-Hippuran probe renograms as well. Renal changes included diminished perfusion and structural abnormalities ranging from minor calyceal dilatation to overt hydronephrosis. Ureteral changes included dilatation, tortuosity, and kinking. Marked distortion of the ureterovesical junction was seen in some patients due to periureteral and perivesicular fibrosis, which is a major factor in upper urinary tract damage. Renograms showed varying obstruction and parenchymal damage. Nuclear medicine complements excretory urography and is sometimes preferable for visualization of the ureters. After the initial urogram, sequential DTPA scanning and renography are sufficient for follow-up.

  14. Multimodal Correlative Preclinical Whole Body Imaging and Segmentation

    PubMed Central

    Akselrod-Ballin, Ayelet; Dafni, Hagit; Addadi, Yoseph; Biton, Inbal; Avni, Reut; Brenner, Yafit; Neeman, Michal

    2016-01-01

    Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem for quantitative image analysis in preclinical research. This paper presents a novel approach for whole body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The algorithm integrates multiple imaging sequences into a machine learning framework, which generates supervoxels by an efficient hierarchical agglomerative strategy and utilizes multiple SVM-kNN classifiers each constrained by a heatmap prior region to compose the segmentation. We demonstrate results showing segmentation of mice images into several structures including the heart, lungs, liver, kidneys, stomach, vena cava, bladder, tumor, and skeleton structures. Experimental validation on a large set of mice and organs, indicated that our system outperforms alternative state of the art approaches. The system proposed can be generalized to various tissues and imaging modalities to produce automatic atlas-free segmentation, thereby enabling a wide range of applications in preclinical studies of small animal imaging. PMID:27325178

  15. Conceptual design of a whole body pet machine

    SciTech Connect

    Rogers, J.G.; Harrop, R.; Kinahan, P.E.; Wilkinson, N.A.; Coombes, G.H.; Doherty, P.W.; Saylor, D.P.

    1988-02-01

    The authors are designing a whole body Positron Emission Tomography (PET) machine based on a new type of large area sodium iodide (NaI) detector. As pointed out in earlier publications, a tomograph based on these new detectors can have several advantages over conventional PET machines, which are based on small Bismuth Germanate (BGO) detectors. Monte Carlo computer simulations have been used to compare some of the performance parameters of a tomograph based on the new detectors to similar parameters of conventional small crystal machines. Three different variants of prototype detectors have been constructed and many tests performed, including measurements of transverse spatial resolution, depth-of-interaction resolution, energy resolution, time resolution, and high counting-rate capabilities.

  16. Preoperative whole body disinfection--a controlled clinical study.

    PubMed

    Hayek, L J; Emerson, J M

    1988-04-01

    Preoperative whole body washing with chlorhexidine scrub was compared with soap for its effect on prevention of wound infection in clean surgery. Two thousand and fifteen patients were studied using chlorhexidine scrub, placebo or plain soap. The overall infection rate in the control and placebo groups was 12.8% (p less than 0.05) and 11.7% as opposed to 9% (p less than 0.05) in the treated group. Three per cent fewer infections were found in treated 'clean surgery' patients, and the incidence of Staphylococcus aureus infections was reduced from 6% (bar soap) to 3% (chlorhexidine). The saving in bed occupancy from prevention of infection is a significant cost-saving.

  17. Applications of quantitative whole body autoradiographic technique in radiopharmaceutical research

    SciTech Connect

    Som, P.; Oster, Z.H.; Yonekura, Y.; Meyer, M.A.; Fand, I.; Brill, A.B.

    1982-01-01

    The routine evaluation of radiopharmaceuticals involves dissecting tissue distribution studies (DTDS) and gamma or positron imaging. DTDS have the following disadvantages: since not all tissues can always be sampled, sites of radiopharmaceutical uptake may be missed and because the procedure involves weighing of dissected tissue samples, the spatial resolution of this method is low and determined by the smallest amount that can be weighed accurately. Gamma camera imaging and positron emission tomography though more comprehensive in evaluating the global distribution of a compound, have relative low spatial resolution. Whole body autoradiography of small animals has a much higher spatial resolution as compared to the above and depicts the global distribution of radiopharmaceuticals. A computer-assisted quantification method of WBARG applied to positron, beta, and gamma emitters will complement the method by producing quantitative values comparable to those obtained by dissection and direct tissue counting, with the advantages of depicting the global distribution at high spatial resolution.

  18. Whole-body mathematical model for simulating intracranial pressure dynamics

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Penar, Paul L. (Inventor); Stevens, Scott A. (Inventor); Tranmer, Bruce I. (Inventor)

    2007-01-01

    A whole-body mathematical model (10) for simulating intracranial pressure dynamics. In one embodiment, model (10) includes 17 interacting compartments, of which nine lie entirely outside of intracranial vault (14). Compartments (F) and (T) are defined to distinguish ventricular from extraventricular CSF. The vasculature of the intracranial system within cranial vault (14) is also subdivided into five compartments (A, C, P, V, and S, respectively) representing the intracranial arteries, capillaries, choroid plexus, veins, and venous sinus. The body's extracranial systemic vasculature is divided into six compartments (I, J, O, Z, D, and X, respectively) representing the arteries, capillaries, and veins of the central body and the lower body. Compartments (G) and (B) include tissue and the associated interstitial fluid in the intracranial and lower regions. Compartment (Y) is a composite involving the tissues, organs, and pulmonary circulation of the central body and compartment (M) represents the external environment.

  19. Computational Fluid Dynamics of Whole-Body Aircraft

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh

    1999-01-01

    The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  20. Multimodal Correlative Preclinical Whole Body Imaging and Segmentation.

    PubMed

    Akselrod-Ballin, Ayelet; Dafni, Hagit; Addadi, Yoseph; Biton, Inbal; Avni, Reut; Brenner, Yafit; Neeman, Michal

    2016-01-01

    Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem for quantitative image analysis in preclinical research. This paper presents a novel approach for whole body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The algorithm integrates multiple imaging sequences into a machine learning framework, which generates supervoxels by an efficient hierarchical agglomerative strategy and utilizes multiple SVM-kNN classifiers each constrained by a heatmap prior region to compose the segmentation. We demonstrate results showing segmentation of mice images into several structures including the heart, lungs, liver, kidneys, stomach, vena cava, bladder, tumor, and skeleton structures. Experimental validation on a large set of mice and organs, indicated that our system outperforms alternative state of the art approaches. The system proposed can be generalized to various tissues and imaging modalities to produce automatic atlas-free segmentation, thereby enabling a wide range of applications in preclinical studies of small animal imaging. PMID:27325178

  1. Measurement of the /sup 129/I//sup 131/I ratio in Chernobyl fallout

    SciTech Connect

    Kutschera, W.; Fink, D.; Paul, M.; Hollos, G.; Kaufman, A.

    1986-01-01

    Rainwater collected in the Munich area approximately one week after the Chernobyl reactor accident was investigated for its content of the radioisotopes /sup 129/I (T/sub 1/2/ = 1.6 x 10/sup 7/ y) and /sup 131/I (T/sub 1/2/ = 8.04 d). For the time of release, an isotopic ratio of /sup 129/I//sup 131/I = 19 +- 5 was found. This value was obtained from a gamma-ray activity measurement of /sup 131/I with a GE detector and a concentration measurement of /sup 129/I with accelerator mass spectrometry. From the measured ratio an operating time of the reactor prior to the accident in the vicinity of two years can be estimated, which is in fair agreement with estimates from other long-lived to short-lived radioisotope ratios in the Chernobyl fallout. Some measurements of /sup 131/I activity in thyroids of persons living in the Munich area is also reported.

  2. Uptake and depuration of 131I by the edible periwinkle Littorina littorea: uptake from seawater.

    PubMed

    Vives i Batlle, J; Wilson, R C; McDonald, P; Parker, T G

    2005-01-01

    Uptake and depuration experiments for the edible periwinkle Littorina littorea have been performed using 131I-labelled seawater. Throughout the experimental phase the winkles were fed on unlabelled Chondrus crispus. 131I concentrations in winkles during uptake followed linear first-order kinetics with an uptake half-time of 11 days, whereas for depuration a triphasic sequence with biological half-lives of 4, 23 and 56 days was determined. In general, iodine turnover in winkles via labelled seawater appears to be slower than observed for other molluscs (2-3 days). Most of the activity prior to and after depuration is found to be in the shell, with indications that shell and soft parts accumulate and depurate 131I at a similar rate. The operculum displays the highest specific activity of all fractions with a concentration factor of 750 l kg(-1). Concentration factors for whole winkle, shell, soft parts and digestive gland are in the order of 40-60 l kg(-1), higher than the IAEA recommended CF value for iodine in molluscs of 10 l kg(-1). The 131I CF in winkles is closer to that of the conservative radionuclides 99Tc and 137Cs than the CF of the particle reactive radionuclides (239,240)Pu and 241Am. PMID:15465179

  3. Failure to visualize adrenal glands in a patient with bilateral adrenal hyperplasia. [/sup 131/I

    SciTech Connect

    Gordon, L.; Mayfield, R.K.; Levine, J.H.; Lopes-Virella, M.F.; Sagel, J.; Buse, M.G.

    1980-01-01

    A patient with clinical and biochemical evidence of Cushing's disease and severe hyperlipidemia underwent an adrenal imaging procedure with NP-59 (6..beta..-(/sup 131/I)iodomethyl-19-norcholesterol), without visualization of either gland. Correction of the hyperlipidemia followed by repeated adrenal imaging resulted in bilateral visualization. A pituitary tumor was removed at surgery, confirming the diagnosis of Cushing's disease.

  4. Cancer risks after diagnostic doses of 131I with special reference to thyroid cancer

    SciTech Connect

    Holm, L.E. )

    1991-01-01

    Between 1951 and 1969 a total of 35,074 patients less than 75 years of age (mean = 44 years) were examined with diagnostic doses of 131I. The mean administered activity of 131I was 52 microCi and the radiation dose to the thyroid gland was on the average of 0.5 Gy. The cohort was matched with the Swedish Cancer Register for the years 1958-1984. During this period, 3746 cancers occurred more than 5 years after the 131I examination, and the resulting standardized incidence ratio (SIR) was 1.01 (95% confidence interval (CI) = 0.98 to 1.04). SIR for thyroid cancer was 1.18 (95% CI = 0.88 to 1.56). The risks for both cancer of all sites and for thyroid cancer were highest 5 to 9 years after examination (SIR = 1.07 and 2.06, respectively) and did not differ from unity thereafter. With greater than or equal to 10 years of follow-up, risk was not statistically associated with the dose of 131I.

  5. Tumor immunotherapy in the mouse with the use of 131I-labeled monoclonal antibodies

    SciTech Connect

    Zalcberg, J.R.; Thompson, C.H.; Lichtenstein, M.; McKenzie, I.F.

    1984-03-01

    This report describes the use of 131I-labeled monoclonal antibodies in two experimental models for tumor immunotherapy. In vitro treatment of the radiation-induced murine thymoma ITT-1-75NS with radiolabeled anti-Ly-2.1 significantly impaired subsequent tumor growth in vivo. However, in vivo treatment of this tumor, which previously had been injected into C57BL/6 mice, was unsuccessful. By contrast, in vitro treatment of a human colorectal tumor cell line (COLO 205) with 131I-labeled 250-30.6--a monoclonal antibody directed against a secretory component of normal and malignant gastrointestinal epithelium--completely inhibited subsequent tumor growth in BALB/c nude (nu/nu) mice. Furthermore, in vivo treatment of preexisting human colorectal tumor xenografts significantly impaired progressive tumor growth. Although some tumor inhibition was also produced by unlabeled 250-30.6 antibody, this response was considerably amplified by treatment with (131I)-labeled 250-30.6 (P less than .05), suggesting that in vivo treatment of human tumors with the use of 131I-labeled monoclonal antibodies may be clinically beneficial. The antithyroid drug propylthiouracil was used to reduce dehalogenation of the radiolabeled immunoglobulins in an attempt to improve their therapeutic efficacy.

  6. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically

  7. Feasibility of intrafraction whole-body motion tracking for total marrow irradiation

    NASA Astrophysics Data System (ADS)

    Sharma, Manju; Santos, Troy Dos; Papanikolopoulos, Nikolaos P.; Hui, Susanta Kumar

    2011-05-01

    With image-guided tomotherapy, highly targeted total marrow irradiation (TMI) has become a feasible alternative to conventional total body irradiation. The uncertainties in patient localization and intrafraction motion of the whole body during hour-long TMI treatment may pose a risk to the safety and accuracy of targeted radiation treatment. The feasibility of near-infrared markers and optical tracking system (OTS) is accessed along with a megavoltage scanning system of tomotherapy. Three near-infrared markers placed on the face of a rando phantom are used to evaluate the capability of OTS in measuring changes in the markers' positions as the rando is moved in the translational direction. The OTS is also employed to determine breathing motion related changes in the position of 16 markers placed on the chest surface of human volunteers. The maximum uncertainty in locating marker position with the OTS is 1.5 mm. In the case of normal and deep breathing motion, the maximum marker position change is observed in anterior-posterior direction with the respective values of 4 and 12 mm. The OTS is able to measure surface changes due to breathing motion. The OTS may be optimized to monitor whole body motion during TMI to increase the accuracy of treatment delivery and reduce the radiation dose to the lungs.

  8. Feasibility of intrafraction whole-body motion tracking for total marrow irradiation.

    PubMed

    Sharma, Manju; Dos Santos, Troy; Papanikolopoulos, Nikolaos P; Hui, Susanta Kumar

    2011-05-01

    With image-guided tomotherapy, highly targeted total marrow irradiation (TMI) has become a feasible alternative to conventional total body irradiation. The uncertainties in patient localization and intrafraction motion of the whole body during hour-long TMI treatment may pose a risk to the safety and accuracy of targeted radiation treatment. The feasibility of near-infrared markers and optical tracking system (OTS) is accessed along with a megavoltage scanning system of tomotherapy. Three near-infrared markers placed on the face of a rando phantom are used to evaluate the capability of OTS in measuring changes in the markers' positions as the rando is moved in the translational direction. The OTS is also employed to determine breathing motion related changes in the position of 16 markers placed on the chest surface of human volunteers. The maximum uncertainty in locating marker position with the OTS is 1.5 mm. In the case of normal and deep breathing motion, the maximum marker position change is observed in anterior-posterior direction with the respective values of 4 and 12 mm. The OTS is able to measure surface changes due to breathing motion. The OTS may be optimized to monitor whole body motion during TMI to increase the accuracy of treatment delivery and reduce the radiation dose to the lungs.

  9. Calibration of the Accuscan II In Vivo System for Whole Body Counting

    SciTech Connect

    Orval R. Perry; David L. Georgeson

    2011-08-01

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for whole body counting. The source used for the calibration was a NIST traceable BOMAB manufactured by DOE as INL2006 BOMAB containing Eu-154, Eu-155, Eu-152, Sb-125 and Y-88 with energies from 27 keV to 1836 keV with a reference date of 11/29/2006. The actual usable energy range was 86.5 keV to 1597 keV on 4/21/2011. The BOMAB was constructed inside the Accuscan II counting 'tub' in the order of legs, thighs, abdomen, thorax/arms, neck, and head. Each piece was taped to the backwall of the counter. The arms were taped to the thorax. The phantom was constructed between the v-ridges on the backwall of the Accuscan II counter. The energy and efficiency calibrations were performed using the INL2006 BOMAB. The calibrations were performed with the detectors in the scanning mode. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for whole body counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  10. Whole-body dynamic imaging with continuous bed motion PET/CT

    PubMed Central

    Acuff, Shelley

    2016-01-01

    Most dynamic imaging protocols require long scan times that are beyond the range of what can be supported in a routine clinical environment and suffer from various difficulties related to step and shoot imaging techniques. In this short communication, we describe continuous bed motion (CBM) imaging techniques to create clinically relevant 15 min whole-body dynamic PET imaging protocols. We also present initial data that suggest that these CBM methods may be sufficient for quantitative analysis of uptake rates and rates of glucose metabolism. Multipass CBM PET was used in conjunction with a population-based input function to perform Patlak modeling of normal tissue. Net uptake rates were estimated and metabolic rates of glucose were calculated. Estimations of k3 (Ki/Vd) were calculated along with modeling of liver regions of interest to assess model stability. Calculated values of metabolic rates of glucose were well within normal ranges found in the previous literature. CBM techniques can potentially be used clinically to obtain reliable, quantitative multipass whole-body dynamic PET data. Values calculated for normal brain were shown to be within previously published values for normal brain glucose metabolism. PMID:26629770

  11. Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-10-01

    We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 (131I). The generated multifunctional 131I-G5.NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to 131I labeling, the G5.NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive 131I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and

  12. Evaluation of therapeutic effectiveness of 131I-antiEGFR-BSA-PCL in a mouse model of colorectal cancer

    PubMed Central

    Li, Wei; Ji, Yan-Hui; Li, Cheng-Xia; Liu, Zhong-Yun; Li, Ning; Fang, Lei; Chang, Jin; Tan, Jian

    2016-01-01

    AIM: To investigate the biological effects of internal irradiation, and the therapeutic effectiveness was assessed of 131I-labeled anti-epidermal growth factor receptor (EGFR) liposomes, derived from cetuximab, when used as a tumor-targeting carrier in a colorectal cancer mouse model. METHODS: We described the liposomes and characterized their EGFR-targeted binding and cellular uptake in EGFR-overexpressing LS180 colorectal cancer cells. After intra-tumor injections of 74 MBq (740 MBq/mL) 131I-antiEGFR-BSA-PCL, we investigated the biological effects of internal irradiation and the therapeutic efficacy of 131I-antiEGFR-BSA-PCL on colorectal cancer in a male BALB/c mouse model. Tumor size, body weight, histopathology, and SPECT imaging were monitored for 33 d post-therapy. RESULTS: The rapid radioiodine uptake of 131I-antiEGFR-BSA-PCL and 131I-BSA-PCL reached maximum levels at 4 h after incubation, and the 131I uptake of 131I-antiEGFR-BSA-PCL was higher than that of 131I-BSA-PCL in vitro. The 131I tissue distribution assay revealed that 131I-antiEGFR-BSA-PCL was markedly taken up by the tumor. Furthermore, a tissue distribution assay revealed that 131I-antiEGFR-BSA-PCL was markedly taken up by the tumor and reached its maximal uptake value of 21.0 ± 1.01 %ID/g (%ID/g is the percentage injected dose per gram of tissue) at 72 h following therapy; the drug concentration in the tumor was higher than that in the liver, heart, colon, or spleen. Tumor size measurements showed that tumor development was significantly inhibited by treatments with 131I-antiEGFR-BSA-PCL and 131I-BSA-PCL. The volume of tumor increased, and treatment rate with 131I-antiEGFR-BSA-PCL was 124% ± 7%, lower than that with 131I-BSA-PCL (127% ± 9%), 131I (143% ± 7%), and normal saline (146% ± 10%). The percentage losses in original body weights were 39% ± 3%, 41% ± 4%, 49% ± 5%, and 55% ± 13%, respectively. The best survival and cure rates were obtained in the group treated with 131I

  13. Whole-Body MRI in Children: Current Imaging Techniques and Clinical Applications

    PubMed Central

    2015-01-01

    Whole-body magnetic resonance imaging (MRI) is increasingly used in children to evaluate the extent and distribution of various neoplastic and non-neoplastic diseases. Not using ionizing radiation is a major advantage of pediatric whole-body MRI. Coronal and sagittal short tau inversion recovery imaging is most commonly used as the fundamental whole-body MRI protocol. Diffusion-weighted imaging and Dixon-based imaging, which has been recently incorporated into whole-body MRI, are promising pulse sequences, particularly for pediatric oncology. Other pulse sequences may be added to increase diagnostic capability of whole-body MRI. Of importance, the overall whole-body MRI examination time should be less than 30-60 minutes in children, regardless of the imaging protocol. Established and potentially useful clinical applications of pediatric whole-body MRI are described. PMID:26355493

  14. Therapy to target renal cell carcinoma using 131I-labeled B7-H3 monoclonal antibody

    PubMed Central

    Li, Xueqin; Zhang, Guangbo; Hou, Jianquan

    2016-01-01

    B7-H3 is a tumor-associated antigen that plays a critical role in potential tumor-targeted therapy. In this study, we aimed to assess the radiobiological effect of 131I-labeled B7-H3 monoclonal antibody (131I-4H7) in nude mice with human renal cell carcinoma (RCC) and evaluate the effect of 131I-4H7 on RCC treatment. The radiobiological activity and tumor uptake of 131I-4H7, and its effect on tumor growth were measured. 131I-4H7 was absorbed by the tumor and reached its maximal uptake rate (3.32% injected dose [ID]/g) at 24 h, at which point the drug concentration in the tumor was 7.36-, 2.06-, 1.80-, and 2.78-fold higher than that in muscle, kidneys, liver, and heart, respectively. Measurements and positron emission tomography–computed tomography imaging showed that tumor development was significantly inhibited by 131I-4H7. HE staining revealed that 131I-4H7 significantly injures tumor cells. Our results suggest that 131I-4H7 is markedly absorbed by the tumor and did suppress the development of RCC xenografted tumors in nude mice, which might provide a new candidate for antibody-mediated targeted radiotherapy in human RCC. PMID:27058890

  15. Kinetic brain analysis and whole-body imaging in monkey of [11C]MNPA: a dopamine agonist radioligand.

    PubMed

    Seneca, Nicholas; Skinbjerg, Mette; Zoghbi, Sami S; Liow, Jeih-San; Gladding, Robert L; Hong, Jinsoo; Kannan, Pavitra; Tuan, Edward; Sibley, David R; Halldin, Christer; Pike, Victor W; Innis, Robert B

    2008-09-01

    With a view to future extension of the use of the agonist radioligand [(11)C]MNPA ([O-methyl-(11)C]2-methoxy-N-propylnorapomorphine) from animals to humans, we performed two positron emission tomography (PET) studies in monkeys. First, we assessed the ability to quantify the brain uptake of [(11)C]MNPA with compartmental modeling. Second, we estimated the radiation exposure of [(11)C]MNPA to human subjects based on whole-body imaging in monkeys. Brain PET scans were acquired for 90 min and included concurrent measurements of the plasma concentration of unchanged radioligand. Time-activity data from striatum and cerebellum were quantified with two methods, a reference tissue model and distribution volume. Whole-body PET scans were acquired for 120 min using four bed positions from head to mid thigh. Regions of interest were drawn on compressed planar whole-body images to identify organs with the highest radiation exposures. After injection of [(11)C]MNPA, the highest concentration of radioactivity in brain was in striatum, with lowest levels in cerebellum. Distribution volume was well identified with a two-tissue compartmental model and was quite stable from 60 to 90 min. Whole-body PET scans showed the organ with the highest radiation burden (muSv/MBq) was the urinary bladder wall (26.0), followed by lungs (22.5), gallbladder wall (21.9), and heart wall (16.1). With a 2.4-h voiding interval, the effective dose was 6.4 muSv/MBq (23.5 mrem/mCi). In conclusion, brain uptake of [(11)C]MNPA reflected the density of D(2/3) receptors, quantified relative to serial arterial measurements, and caused moderate to low radiation exposure.

  16. Abatacept Improves Whole-Body Insulin Sensitivity in Rheumatoid Arthritis

    PubMed Central

    Ursini, Francesco; Russo, Emilio; Letizia Hribal, Marta; Mauro, Daniele; Savarino, Francesca; Bruno, Caterina; Tripolino, Cesare; Rubino, Mariangela; Naty, Saverio; Grembiale, Rosa Daniela

    2015-01-01

    Abstract Rheumatoid arthritis (RA) is characterized by increased insulin resistance, a well-known risk factor for diabetes and cardiovascular diseases. The aim of the present study was to evaluate the effect of abatacept on insulin sensitivity in RA patients with moderate to severe disease despite treatment with methotrexate. Fifteen RA patients were recruited for the present study. Patients were evaluated at time 0 and after 6 months of the treatment with i.v. abatacept at the dosage recommended for weight range. Evaluation included oral glucose tolerance test (OGTT) at both time points. Insulin sensitivity was estimated with insulin sensitivity index (ISI) by Matsuda, a measure of whole-body insulin sensitivity. ISI significantly increased after the treatment with abatacept from 3.7 ± 2.6 to 5.0 ± 3.2 (P = 0.003) with a mean difference of 1.23. Analysis of glucose and insulin values during OGTT revealed a reduction of both glucose (303.9 ± 73.4 mg/dL min versus 269.2 ± 69.5 mg/dL min, P = 0.009) and insulin (208.4 ± 119.7 mg/dL min versus 158.0 ± 95.3 mg/dL min, P = 0.01) area under the curves (AUCs). Accordingly also glycated hemoglobin significantly improved (5.5 ± 0.4% versus 5.3 ± 0.3%, P = 0.04). No significant differences were found for measures of β-cell function insulinogenic index (1.11 ± 1.19 versus 1.32 ± 0.82, P = 0.77) and oral disposition index (2.0 ± 5.4 versus 6.0 ± 6.0, P = 0.25). Treatment with abatacept seems to be able to improve whole-body insulin sensitivity in RA patients without affecting β-cell function. PMID:26020396

  17. Model Testing Using Data from Accidental Releases of 131I and 137Cs: 1: Model Testing Using Data on 131I Released from Hanford

    SciTech Connect

    Thiessen, Kathleen M.; Napier, Bruce A.; Filistovic, Vitold; Homma, Toshimitsu; Kanyar, Bela; Krajewski, Pawel; Kryshev, Alexander I.; Nedveckaite, Tatjana; Nenyei, Arpad; Sazykina, Tatiana G.; Tveten, Ulf; Sjoblom, Kirsti-Liisa; Robinson, Carol

    2002-09-01

    Two major areas of emphasis in the BIOMASS (Biosphere Modelling and Assessment Methods) programme were the improvement of the accuracy of model predictions and the improvement of modelling procedures within the general area of environmental assessment. Theme 2 of BIOMASS, Environmental Releases, focused specifically on issues of dose reconstruction and remediation assessment. Within Theme 2, the Dose Reconstruction Working Group was concerned with the evaluation of the reliability of methods and models used for dose reconstruction for specific individuals and members of specific population subgroups. The Dose Reconstruction Working Group of BIOMASS carried out model testing exercises. The present paper describes the first one, which was based on an accidental release of 131I from the Hanford Purex Chemical Separations Plant in the northwestern United States in September 1963 (BIOMASS, 1999). The scenario made use of monitoring data originally collected during the two months following the release (Soldat, 1965) and further evaluated as part of the Hanford Environmental Dose Reconstruction (HEDR) project in the 1990s (Farris et al., 1994). Radioiodine releases are important for many radiation accidents, and because data on the results of these releases are often incomplete, models for estimating 131I transport and exposure are essential in dose reconstruction efforts. The Hanford scenario therefore provided a valuable opportunity to intercompare modelling approaches and model predictions among several assessors, to compare model predictions with data, and to identify the most important sources of bias and uncertainty in the model results.

  18. Optoacoustic 3D whole-body tomography: experiments in nude mice

    NASA Astrophysics Data System (ADS)

    Brecht, Hans-Peter; Su, Richard; Fronheiser, Matt; Ermilov, Sergey A.; Conjusteau, André; Liopo, Anton; Motamedi, Massoud; Oraevsky, Alexander A.

    2009-02-01

    We developed a 3D whole-body optoacoustic tomography system for applications in preclinical research on mice. The system is capable of generating images with resolution better than 0.6 mm. Two pulsed lasers, an Alexandrite laser operating at 755 nm and a Nd:YAG laser operating at 532 nm and 1064nm were used for light delivery. The tomographic images were obtained while the objects of study (phantoms or mice) were rotated within a sphere outlined by a concave arc-shaped array of 64 piezo-composite transducers. During the scan, the mouse was illuminated orthogonally to the array with two wide beams of light from a bifurcated fiber bundle. Illumination at 532 nm showed superficial vasculature, but limited penetration depth at this wavelength prevented the detection of deeper structures. Illumination at 755 and 1064 nm showed organs and blood vessels, respectively. Filtering of the optoacoustic signals using high frequency enhancing wavelets further emphasized the smaller blood vessels.

  19. Design Study of a Whole-Body PET Scanner with Improved Spatial and Timing Resolution

    PubMed Central

    Surti, S.; Shore, Adam R.; Karp, Joel S.

    2013-01-01

    Current state-of-art whole-body PET scanners achieve a system spatial resolution of 4–5 mm with limited sensitivity. Since the reconstructed spatial resolution and image quality are limited by the count statistics, there has not been a significant push for developing higher resolution whole-body PET scanners. Our goal in this study is to investigate the impact of improved spatial resolution together with time-of-flight (TOF) capability on lesion uptake estimation and lesion detectability, two important tasks in whole-body oncologic studies. The broader goal of this project is the development of a new state-of-art TOF PET scanner operating within an MRI while pushing the technology in PET system design. We performed Monte Carlo simulations to test the effects of crystal size (4 mm and 2.6 mm wide crystals), TOF timing resolution (300ps and 600ps), and 2-level depth-of-interaction (DOI) capability. Spatial resolution was calculated by simulating point sources in air at multiple positions. Results show that smaller crystals produced improved resolution, while degradation of resolution due to parallax error could be reduced with a 2-level DOI detector. Lesion phantoms were simulated to measure the contrast recovery coefficient (CRC) and area under the LROC curve (ALROC) for 0.5 cm diameter lesions with 6:1 activity uptake relative to the background. Smaller crystals produce higher CRC, leading to increased ALROC values or a reduction in scan time. Improved timing resolution provides faster CRC convergence and once again leads to an increase in ALROC value or reduced scan time. Based on our choice of timing resolution and crystal size, improved timing resolution (300ps) with larger crystals (4 mm wide) has similar ALROC as smaller crystals (2.6 mm wide) with 600ps timing resolution. A 2-level DOI measurement provides some CRC and ALROC improvement for lesions further away from the center, leading to a more uniform performance within the imaging field-of-view (FOV

  20. Prevention of DNA Double-Strand Breaks Induced by Radioiodide-131I in FRTL-5 Thyroid Cells

    PubMed Central

    Okunyan, Armen; Rivina, Yelena; Cannon, Sophie; Hogen, Victor

    2011-01-01

    Radioiodine-131 released from nuclear reactor accidents has dramatically increased the incidence of papillary thyroid cancer in exposed individuals. The deposition of ionizing radiation in cells results in double-strand DNA breaks (DSB) at fragile sites, and this early event can generate oncogenic rearrangements that eventually cause cancer. The aims of this study were to develop a method to show DNA DSBs induced by 131I in thyroid cells; to test monovalent anions that are transported by the sodium/iodide symporter to determine whether they prevent 131I-induced DSB; and to test other radioprotective agents for their effect on irradiated thyroid cells. Rat FRTL-5 thyroid cells were incubated with 131I. DSBs were measured by nuclear immunofluorescence using antibodies to p53-binding protein 1 or γH2AX. Incubation with 1–10 μCi 131I per milliliter for 90 min resulted in a dose-related increase of DSBs; the number of DSBs increased from a baseline of 4–15% before radiation to 65–90% after radiation. GH3 or CHO cells that do not transport iodide did not develop DSBs when incubated with 131I. Incubation with 20–100 μm iodide or thiocyanate markedly attenuated DSBs. Perchlorate was about 6 times more potent than iodide or thiocyanate. The effects of the anions were much greater when each was added 30–120 min before the 131I. Two natural organic compounds recently shown to provide radiation protection partially prevented DSBs caused by 131I and had an additive effect with perchlorate. In conclusion, we developed a thyroid cell model to quantify the mitogenic effect of 131I. 131I causes DNA DSBs in FRTL-5 cells and had no effect on cells that do not transport iodide. Perchlorate, iodide, and thiocyanate protect against DSBs induced by 131I. PMID:21190956

  1. Tendon reflex is suppressed during whole-body vibration.

    PubMed

    Karacan, Ilhan; Cidem, Muharrem; Yilmaz, Gizem; Sebik, Oguz; Cakar, Halil Ibrahim; Türker, Kemal Sıtkı

    2016-10-01

    In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11±498.99µV before vibration. It decreased significantly during WBV (p<0.0001). The maximum PP amplitude of T-reflex was 1333±515μV before vibration. It decreased significantly during WBV (p<0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies. PMID:27485766

  2. Whole-body angular momentum in incline and decline walking.

    PubMed

    Silverman, Anne K; Wilken, Jason M; Sinitski, Emily H; Neptune, Richard R

    2012-04-01

    Angular momentum is highly regulated over the gait cycle and is important for maintaining dynamic stability and control of movement. However, little is known regarding how angular momentum is regulated on irregular surfaces, such as slopes, when the risk of falling is higher. This study examined the three-dimensional whole-body angular momentum patterns of 30 healthy subjects walking over a range of incline and decline angles. The range of angular momentum was either similar or reduced on decline surfaces and increased on incline surfaces relative to level ground, with the greatest differences occurring in the frontal and sagittal planes. These results suggest that angular momentum is more tightly controlled during decline walking when the risk of falling is greater. In the frontal plane, the range of angular momentum was strongly correlated with the peak hip and knee abduction moments in early stance. In the transverse plane, the strongest correlation occurred with the knee external rotation peak in late stance. In the sagittal plane, all external moment peaks were correlated with the range of angular momentum. The peak ankle plantarflexion, knee flexion and hip extension moments were also strongly correlated with the sagittal-plane angular momentum. These results highlight how able-bodied subjects control angular momentum differently on sloped surfaces relative to level walking and provide a baseline for comparison with pathological populations that are more susceptible to falling. PMID:22325978

  3. Whole-body counting in the Marshall Islands

    SciTech Connect

    Sun, L.C.; Clinton, J.; Kaplan, E.; Meinhold, C.B.

    1991-01-01

    In 1978 the Marshall Islands Radiological Safety Program was organized to perform radiation measurements and assess radiation doses for the people of the Bikini, Enewetak, Rongelap and Utirik Atolls. One of the major field components of this program is whole- body counting (WBC). WBC is used to monitor the quantity of gamma- emitting radionuclides present in individuals. A primary objective of the program was to establish {sup 137}Cesium body contents among the Enewetak, Rongelap and Utirik populations. {sup 137}Cs was the only gamma-emitting fission radionuclide detected in the 1,967 persons monitored. {sup 137}Cs body burdens tended to increase with age for both sexes, and were higher in males. The average {sup 137}Cs dose Annual Effective Dose for the three populations was as follows: For Enewetak, the dose was 22{+-}4 {mu}Sv. For Utirik, the dose was 33{+-} 3 {mu}Sv. Since 1985 the Rongelap people have been self-exiled to Mejatto. Biological elimination should have reduced their dose to virtually zero, and the measured dose was 2{+-}2 {mu}Sv. If they had remained on Rongelap Island, the calculated dose would have been 99 {mu}Sv, which is about one-third of the background dose. 7 refs., 1 tab. (MHB)

  4. Acoustical method of whole-body hydration status monitoring

    NASA Astrophysics Data System (ADS)

    Sarvazyan, A. P.; Tsyuryupa, S. N.; Calhoun, M.; Utter, A.

    2016-07-01

    An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

  5. Whole body vibration improves cognition in healthy young adults.

    PubMed

    Regterschot, G Ruben H; Van Heuvelen, Marieke J G; Zeinstra, Edzard B; Fuermaier, Anselm B M; Tucha, Lara; Koerts, Janneke; Tucha, Oliver; Van Der Zee, Eddy A

    2014-01-01

    This study investigated the acute effects of passive whole body vibration (WBV) on executive functions in healthy young adults. Participants (112 females, 21 males; age: 20.5±2.2 years) underwent six passive WBV sessions (frequency 30 Hz, amplitude approximately 0.5 mm) and six non-vibration control sessions of two minutes each while sitting on a chair mounted on a vibrating platform. A passive WBV session was alternated with a control session. Directly after each session, performance on the Stroop Color-Block Test (CBT), Stroop Color-Word Interference Test (CWIT), Stroop Difference Score (SDS) and Digit Span Backward task (DSBT) was measured. In half of the passive WBV and control sessions the test order was CBT-CWIT-DSBT, and DSBT-CBT-CWIT in the other half. Passive WBV improved CWIT (p = 0.009; effect size r = 0.20) and SDS (p = 0.034; r = 0.16) performance, but only when the CBT and CWIT preceded the DSBT. CBT and DSBT performance did not change. This study shows that two minutes passive WBV has positive acute effects on attention and inhibition in young adults, notwithstanding their high cognitive functioning which could have hampered improvement. This finding indicates the potential of passive WBV as a cognition-enhancing therapy worth further evaluation, especially in persons unable to perform active forms of exercise. PMID:24949870

  6. Whole-body angular momentum in incline and decline walking.

    PubMed

    Silverman, Anne K; Wilken, Jason M; Sinitski, Emily H; Neptune, Richard R

    2012-04-01

    Angular momentum is highly regulated over the gait cycle and is important for maintaining dynamic stability and control of movement. However, little is known regarding how angular momentum is regulated on irregular surfaces, such as slopes, when the risk of falling is higher. This study examined the three-dimensional whole-body angular momentum patterns of 30 healthy subjects walking over a range of incline and decline angles. The range of angular momentum was either similar or reduced on decline surfaces and increased on incline surfaces relative to level ground, with the greatest differences occurring in the frontal and sagittal planes. These results suggest that angular momentum is more tightly controlled during decline walking when the risk of falling is greater. In the frontal plane, the range of angular momentum was strongly correlated with the peak hip and knee abduction moments in early stance. In the transverse plane, the strongest correlation occurred with the knee external rotation peak in late stance. In the sagittal plane, all external moment peaks were correlated with the range of angular momentum. The peak ankle plantarflexion, knee flexion and hip extension moments were also strongly correlated with the sagittal-plane angular momentum. These results highlight how able-bodied subjects control angular momentum differently on sloped surfaces relative to level walking and provide a baseline for comparison with pathological populations that are more susceptible to falling.

  7. Tendon reflex is suppressed during whole-body vibration.

    PubMed

    Karacan, Ilhan; Cidem, Muharrem; Yilmaz, Gizem; Sebik, Oguz; Cakar, Halil Ibrahim; Türker, Kemal Sıtkı

    2016-10-01

    In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11±498.99µV before vibration. It decreased significantly during WBV (p<0.0001). The maximum PP amplitude of T-reflex was 1333±515μV before vibration. It decreased significantly during WBV (p<0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies.

  8. A methodology for auto-monitoring of internal contamination by 131I in nuclear medicine workers.

    PubMed

    Vidal, M V S; Dantas, A L A; Dantas, B M

    2007-01-01

    The manipulation of 131I in Nuclear Medicine involves significant risks of internal contamination of the staff. In the event of an accidental contamination, or when the Radiological Protection Program includes routine individual monitoring of internal contamination, it is necessary to implement internal dose estimation through in vivo and in vitro bioassay techniques. Due to the huge extension of the Brazilian country, this type of monitoring becomes unfeasible if all measurements have to be performed at the institutes of the CNEN. Thus, if the Nuclear Medicine Centres (NMC) become able to conduct the monitoring of their employees, this skill would be of great significance. The methodology proposed in this work consists in a simple and inexpensive protocol for auto-monitoring the internal contamination by 131I, using the resources available at the NMC. In order to verify the influence of the phantom in the calibration factor for the measurement of 131I in thyroid, it was performed a comparison among a variety of phantoms commercially available, including the Neck-Thyroid Phantom developed in IRD. A protocol for performing in vivo and in vitro measurements by the NMC was established. The applicability of the individual monitoring techniques was also evaluated by comparing the detection limits with the derived limits associated with the annual dose limits for workers.

  9. NOTE: Monte Carlo microdosimetry of 188Re- and 131I-labelled anti-CD20

    NASA Astrophysics Data System (ADS)

    Torres-García, E.; Garnica-Garza, H. M.; Ferro-Flores, G.

    2006-10-01

    The radiolabelled monoclonal antibody anti-CD20 has the property of binding to the CD20 antigen expressed on the cell surface of B-lymphocytes, thus making it a useful tool in the treatment of non-Hodgkin's lymphoma. In this work, the event-by-event Monte Carlo code NOREC is used to calculate the single-event distribution function f1(z) in the cell nucleus using the beta spectra of the 188Re and 131I radionuclides. The simulated geometry consists of two concentric spheres representing the nucleus and the cell surface embedded in a semi-infinite water medium. An isotropic point source was placed on the cell surface to simulate the binding of the anti-CD20 labelled with either 188Re or 131I. The simulations were carried out for two combinations of cell surface and nucleus radii. A method was devised that allows one to calculate the contribution of betas of energy greater than 1 MeV, which cannot be simulated by the NOREC code, to the single-event distribution function. It is shown that disregarding this contribution leads to an overestimation of the frequency-mean specific energy of the order of 9 12%. In general, the antibody radiolabelled with 131I produces single-event distribution functions that yield higher frequency-mean specific energies.

  10. Automatic aortic root segmentation in CTA whole-body dataset

    NASA Astrophysics Data System (ADS)

    Gao, Xinpei; Kitslaar, Pieter H.; Scholte, Arthur J. H. A.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Reiber, Johan H. C.

    2016-03-01

    Trans-catheter aortic valve replacement (TAVR) is an evolving technique for patients with serious aortic stenosis disease. Typically, in this application a CTA data set is obtained of the patient's arterial system from the subclavian artery to the femoral arteries, to evaluate the quality of the vascular access route and analyze the aortic root to determine if and which prosthesis should be used. In this paper, we concentrate on the automated segmentation of the aortic root. The purpose of this study was to automatically segment the aortic root in computed tomography angiography (CTA) datasets to support TAVR procedures. The method in this study includes 4 major steps. First, the patient's cardiac CTA image was resampled to reduce the computation time. Next, the cardiac CTA image was segmented using an atlas-based approach. The most similar atlas was selected from a total of 8 atlases based on its image similarity to the input CTA image. Third, the aortic root segmentation from the previous step was transferred to the patient's whole-body CTA image by affine registration and refined in the fourth step using a deformable subdivision surface model fitting procedure based on image intensity. The pipeline was applied to 20 patients. The ground truth was created by an analyst who semi-automatically corrected the contours of the automatic method, where necessary. The average Dice similarity index between the segmentations of the automatic method and the ground truth was found to be 0.965±0.024. In conclusion, the current results are very promising.

  11. Whole Body Vibration Training - Improving Balance Control and Muscle Endurance

    PubMed Central

    Ritzmann, Ramona; Kramer, Andreas; Bernhardt, Sascha; Gollhofer, Albert

    2014-01-01

    Exercise combined with whole body vibration (WBV) is becoming increasingly popular, although additional effects of WBV in comparison to conventional exercises are still discussed controversially in literature. Heterogeneous findings are attributed to large differences in the training designs between WBV and “control” groups in regard to training volume, load and type. In order to separate the additional effects of WBV from the overall adaptations due to the intervention, in this study, a four-week WBV training setup was compared to a matched intervention program with identical training parameters in both training settings except for the exposure to WBV. In a repeated-measures matched-subject design, 38 participants were assigned to either the WBV group (VIB) or the equivalent training group (CON). Training duration, number of sets, rest periods and task-specific instructions were matched between the groups. Balance, jump height and local static muscle endurance were assessed before and after the training period. The statistical analysis revealed significant interaction effects of group×time for balance and local static muscle endurance (p<0.05). Hence, WBV caused an additional effect on balance control (pre vs. post VIB +13%, p<0.05 and CON +6%, p = 0.33) and local static muscle endurance (pre vs. post VIB +36%, p<0.05 and CON +11%, p = 0.49). The effect on jump height remained insignificant (pre vs. post VIB +3%, p = 0.25 and CON ±0%, p = 0.82). This study provides evidence for the additional effects of WBV above conventional exercise alone. As far as balance and muscle endurance of the lower leg are concerned, a training program that includes WBV can provide supplementary benefits in young and well-trained adults compared to an equivalent program that does not include WBV. PMID:24587114

  12. Contribution of anaerobic energy expenditure to whole body thermogenesis

    PubMed Central

    Scott, Christopher B

    2005-01-01

    Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production) although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis). An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure. PMID:15958171

  13. Ultra-high field magnets for whole-body MRI

    NASA Astrophysics Data System (ADS)

    Warner, Rory

    2016-09-01

    For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200–870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000–20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.

  14. Whole-Body Clinical Applications of Digital Tomosynthesis.

    PubMed

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Ishikawa, Takuya; Tate, Etsuko; Ueno, Eiko; Nye, Katelyn; Sabol, John M

    2016-01-01

    With flat-panel detector mammography, radiography, and fluoroscopy systems, digital tomosynthesis (DT) has been recently introduced as an advanced clinical application that removes overlying structures, enhances local tissue separation, and provides depth information about structures of interest by providing high-quality tomographic images. DT images are generated from projection image data, typically using filtered back-projection or iterative reconstruction. These low-dose x-ray projection images are easily and swiftly acquired over a range of angles during a single linear or arc sweep of the x-ray tube assembly. DT is advantageous in a variety of clinical contexts, including breast, chest, head and neck, orthopedic, emergency, and abdominal imaging. Specifically, compared with conventional mammography, radiography, and fluoroscopy, as a result of reduced tissue overlap DT can improve detection of breast cancer, pulmonary nodules, sinonasal mucosal thickening, and bone fractures and delineation of complex anatomic structures such as the ostiomeatal unit, atlantoaxial joint, carpal and tarsal bones, and pancreatobiliary and gastrointestinal tracts. Compared with computed tomography, DT offers reduced radiation exposure, better in-plane resolution to improve assessment of fine bony changes, and less metallic artifact, improving postoperative evaluation of patients with metallic prostheses and osteosynthesis materials. With more flexible patient positioning, DT is also useful for functional, weight-bearing, and stress tests. To optimize patient management, a comprehensive understanding of the clinical applications and limitations of whole-body DT applications is important for improvement of diagnostic quality, workflow, and cost-effectiveness. Online supplemental material is available for this article. (©)RSNA, 2016.

  15. Whole-Body Clinical Applications of Digital Tomosynthesis.

    PubMed

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Ishikawa, Takuya; Tate, Etsuko; Ueno, Eiko; Nye, Katelyn; Sabol, John M

    2016-01-01

    With flat-panel detector mammography, radiography, and fluoroscopy systems, digital tomosynthesis (DT) has been recently introduced as an advanced clinical application that removes overlying structures, enhances local tissue separation, and provides depth information about structures of interest by providing high-quality tomographic images. DT images are generated from projection image data, typically using filtered back-projection or iterative reconstruction. These low-dose x-ray projection images are easily and swiftly acquired over a range of angles during a single linear or arc sweep of the x-ray tube assembly. DT is advantageous in a variety of clinical contexts, including breast, chest, head and neck, orthopedic, emergency, and abdominal imaging. Specifically, compared with conventional mammography, radiography, and fluoroscopy, as a result of reduced tissue overlap DT can improve detection of breast cancer, pulmonary nodules, sinonasal mucosal thickening, and bone fractures and delineation of complex anatomic structures such as the ostiomeatal unit, atlantoaxial joint, carpal and tarsal bones, and pancreatobiliary and gastrointestinal tracts. Compared with computed tomography, DT offers reduced radiation exposure, better in-plane resolution to improve assessment of fine bony changes, and less metallic artifact, improving postoperative evaluation of patients with metallic prostheses and osteosynthesis materials. With more flexible patient positioning, DT is also useful for functional, weight-bearing, and stress tests. To optimize patient management, a comprehensive understanding of the clinical applications and limitations of whole-body DT applications is important for improvement of diagnostic quality, workflow, and cost-effectiveness. Online supplemental material is available for this article. (©)RSNA, 2016. PMID:27163590

  16. Ultra-high field magnets for whole-body MRI

    NASA Astrophysics Data System (ADS)

    Warner, Rory

    2016-09-01

    For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200-870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000-20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.

  17. Human perceptual overestimation of whole body roll tilt in hypergravity

    PubMed Central

    Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2014-01-01

    Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally. PMID:25540216

  18. Methimazole, but not betamethasone, prevents 131I treatment-induced rises in thyrotropin receptor autoantibodies in hyperthyroid Graves' disease

    SciTech Connect

    Gamstedt, A.; Wadman, B.; Karlsson, A.

    1986-04-01

    The effects of methimazole or betamethasone therapy on the TSH receptor antibody response to radioiodine therapy were compared in a prospective randomized study of 60 patients with hyperthyroidism due to Graves' disease. The patients were followed for 1 yr after treatment with 131I. Twenty-three patients received 131I alone, 17 were treated with methimazole for 2 months before and 3 months after 131I therapy, and 20 patients were treated with betamethasone for 3 weeks before and 4 weeks after 131I therapy. 131I induced a transient rise in the mean serum level of TSH receptor autoantibodies, measured as TSH binding inhibitory immunoglobulin (TBII), but in patients receiving methimazole treatment, no such rise occurred. In the betamethasone-treated patients, TBII increased similarly to that in patients treated with 131I alone. In addition, in patients given betamethasone, there was an early decrease in total serum immunoglobulin G, which persisted throughout the follow-up period. In the other 2 groups, no changes in total immunoglobulin G were found. The results demonstrate that in hyperthyroid Graves' disease, TBII production is influenced by therapy. Methimazole abolished the 131I-induced increase in TBII, whereas betamethasone did not have such an inhibitory effect.

  19. Polyarteritis nodosa: MDCT as a 'One-Stop Shop' Modality for Whole-Body Arterial Evaluation

    SciTech Connect

    Tsai, W.-L.; Tsai, I-C.; Lee Tain; Hsieh, C.-W.

    2008-07-15

    Polyarteritis nodosa is a rare disease, which is characterized by aneurysm formation and occlusion in the arteries of multiple systems. Due to its extensive involvement, whole-body evaluation is necessary for diagnosis and treatment monitoring. We report a case of polyarteritis nodosa using multidetector-row computed tomography (MDCT) as a 'one-stop shop' modality for whole-body arterial evaluation. With precise protocol design, MDCT can be used as a reliable noninvasive modality providing comprehensive whole-body arterial evaluation.

  20. Whole-body MR imaging. Practical issues, clinical applications, and future directions.

    PubMed

    Eustace, S J; Walker, R; Blake, M; Yucel, E K

    1999-05-01

    Whole-body MR imaging is in evolution, and although accepting and recognizing limitations, it is likely that both technique and incurred acquisition times will shorten over the next decade. Although the development of dedicated whole-body MR scanners appears to offer the greatest promise for the future, the development of moving table tops, optimized pulse sequences, and advances in gradient technology now facilitate practical whole-body MR imaging using existing clinical systems.

  1. Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice

    NASA Astrophysics Data System (ADS)

    Patwardhan, Sachin V.; Bloch, Sharon R.; Achilefu, Samuel; Culver, Joseph P.

    2005-04-01

    We present a fast scanning fluorescence optical tomography system for imaging the kinetics of probe distributions through out the whole body of small animals. Configured in a plane parallel geometry, the system scans a source laser using a galvanometer mirror pair (τswitch~1ms) over flexible source patterns, and detects excitation and emission light using a high frame rate low noise, 5 MHz electron multiplied charge-coupled device (EMCCD) camera. Phantom studies were used to evaluate resolution, linearity, and sensitivity. Time dependent (δt=2.2 min.) in vivo imaging of mice was performed following injections of a fluorescing probe (indocyanine green). The capability to detect differences in probe delivery route was demonstrated by comparing an intravenous injection, versus an injection into a fat pocket (retro orbital injection). Feasibility of imaging the distribution of tumor-targeted molecular probes was demonstrated by imaging a breast tumor-specific near infrared polypeptide in MDA MB 361 tumor bearing nude mice. A tomography scan, at 24 hour post injection, revealed preferential uptake in the tumor relative to surrounding tissue.

  2. Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice.

    PubMed

    Patwardhan, Sachin; Bloch, Sharon; Achilefu, Samuel; Culver, Joseph

    2005-04-01

    We present a fast scanning fluorescence optical tomography system for imaging the kinetics of probe distributions through out the whole body of small animals. Configured in a plane parallel geometry, the system scans a source laser using a galvanometer mirror pair (tauswitch~1ms) over flexible source patterns, and detects excitation and emission light using a high frame rate low noise, 5 MHz electron multiplied charge-coupled device (EMCCD) camera. Phantom studies were used to evaluate resolution, linearity, and sensitivity. Time dependent (deltat=2.2 min.) in vivo imaging of mice was performed following injections of a fluorescing probe (indocyanine green). The capability to detect differences in probe delivery route was demonstrated by comparing an intravenous injection, versus an injection into a fat pocket (retro orbital injection). Feasibility of imaging the distribution of tumor-targeted molecular probes was demonstrated by imaging a breast tumor-specific near infrared polypeptide in MDA MB 361 tumor bearing nude mice. A tomography scan, at 24 hour post injection, revealed preferential uptake in the tumor relative to surrounding tissue. PMID:19495147

  3. Estimation of signal and noise for a whole-body photon counting research CT system

    NASA Astrophysics Data System (ADS)

    Li, Zhoubo; Leng, Shuai; Yu, Zhicong; Kappler, Steffen; McCollough, Cynthia H.

    2016-03-01

    Photon-counting CT (PCCT) may yield potential value for many clinical applications due to its relative immunity to electronic noise, increased geometric efficiency relative to current scintillating detectors, and the ability to resolve energy information about the detected photons. However, there are a large number of parameters that require optimization, particularly the energy thresholds configuration. Fast and accurate estimation of signal and noise in PCCT can benefit the optimization of acquisition parameters for specific diagnostic tasks. Based on the acquisition parameters and detector response of our research PCCT system, we derived mathematical models for both signal and noise. The signal model took the tube spectrum, beam filtration, object attenuation, water beam hardening, and detector response into account. The noise model considered the relationship between noise and radiation dose, as well as the propagation of noise as threshold data are subtracted to yield energy bin data. To determine the absolute noise value, a noise look-up table (LUT) was acquired using a limited number of calibration scans. The noise estimation algorithm then used the noise LUT to estimate noise for scans with a variety of combination of energy thresholds, dose levels, and object attenuation. Validation of the estimation algorithms was performed on our whole-body research PCCT system using semianthropomorphic water phantoms and solutions of calcium and iodine. The algorithms achieved accurate estimation of signal and noise for a variety of scanning parameter combinations. The proposed method can be used to optimize energy thresholds configuration for many clinical applications of PCCT.

  4. Draft guidelines regarding appropriate use of (131)I-MIBG radiotherapy for neuroendocrine tumors : Guideline Drafting Committee for Radiotherapy with (131)I-MIBG, Committee for Nuclear Oncology and Immunology, The Japanese Society of Nuclear Medicine.

    PubMed

    Kinuya, Seigo; Yoshinaga, Keiichiro; Higuchi, Tetsuya; Jinguji, Megumi; Kurihara, Hiroaki; Kawamoto, Hiroshi

    2015-07-01

    Since the 1980s when clinical therapeutic trials were initiated, (131)I-MIBG radiotherapy has been used in foreign countries for unresectable neuroendocrine tumors including malignant pheochromocytomas and neuroblastomas. In Japan, (131)I-MIBG radiotherapy has not been approved by the Ministry of Health, Labour and Welfare; however, personally imported (131)I-MIBG is now available for therapeutic purposes in a limited number of institutions. These updated draft guidelines aim to provide useful information concerning (131)I-MIBG radiotherapy, to help prevent side effects and protect physicians, nurses, other health care professionals, patients and their families from radiation exposure. The committee has also provided appendices on topics such as practical guidance for attending physicians, patient management, and referring physicians.

  5. Draft guidelines regarding appropriate use of (131)I-MIBG radiotherapy for neuroendocrine tumors : Guideline Drafting Committee for Radiotherapy with (131)I-MIBG, Committee for Nuclear Oncology and Immunology, The Japanese Society of Nuclear Medicine.

    PubMed

    Kinuya, Seigo; Yoshinaga, Keiichiro; Higuchi, Tetsuya; Jinguji, Megumi; Kurihara, Hiroaki; Kawamoto, Hiroshi

    2015-07-01

    Since the 1980s when clinical therapeutic trials were initiated, (131)I-MIBG radiotherapy has been used in foreign countries for unresectable neuroendocrine tumors including malignant pheochromocytomas and neuroblastomas. In Japan, (131)I-MIBG radiotherapy has not been approved by the Ministry of Health, Labour and Welfare; however, personally imported (131)I-MIBG is now available for therapeutic purposes in a limited number of institutions. These updated draft guidelines aim to provide useful information concerning (131)I-MIBG radiotherapy, to help prevent side effects and protect physicians, nurses, other health care professionals, patients and their families from radiation exposure. The committee has also provided appendices on topics such as practical guidance for attending physicians, patient management, and referring physicians. PMID:25773397

  6. Cytokine production after whole body and localized hyperthermia.

    PubMed

    Haveman, J; Geerdink, A G; Rodermond, H M

    1996-01-01

    The levels of TNF, IL-1 and IL-6 in circulating blood female WAG/Ry rats were assessed in relation to treatment with localized hyperthermia of the right hind leg or with whole-body hyperthermia (WBH). After a localized treatment for 30 min at 43 or 44 degrees C no detectable increase in levels of IL-6 or TNF was obtained. Hyperthermia for 30 min at 45 degrees C led to an elevated level of IL-6 of 19.4 +/- 5.2 U/ml above the control level of 24 h after treatment. Levels of IL-1 were never higher than those in control animals that received only anaesthesia. Anaesthesia induced a peak level of approximately 131 U/ml IL-1 6 h after treatment. Serum levels of IL-1 and IL-6 are enhanced after WBH. IL-1 reaches a peak level already during WBH about 15 after reaching 41.5 degrees C. IL-6 levels were not enhanced during WBH but 1 h after WBH a clear peak was observed. Anaesthesia with sham WBH did not lead to enhanced IL-6 levels but enhanced IL-1 levels were clearly detected. We did not detect TNF in any sample after WBH. It is concluded from the present results that IL-6 is not induced by a 'standard' treatment of localized hyperthermia as used in oncotherapy (i.e. 60 min at 43 degrees C) to such a high level locally that this is reflected in increased levels in circulating blood. WBH at clinically relevant temperatures leads to enhanced levels of IL-1 and IL-6. The difference in IL-6 response after WBH or localized hyperthermia probably is related to the fact that in WBH also the bone marrow is treated. This may lead to stimulation of this important stem cell compartment of the peripheral blood. The sequence of appearance of IL-1 and IL-6 after hyperthermia is akin to the sequence in an inflammatory response. However, the experiments with sham treatment show that IL-1 may appear in the circulating blood not followed by IL-6. These results indicate that enhanced IL-1 levels may reflect a stress reaction of the animal related to the (sham) treatment. Enhanced levels of IL

  7. Guidelines for Whole-Body Vibration Health Surveillance

    NASA Astrophysics Data System (ADS)

    POPE, M.; MAGNUSSON, M.; LUNDSTRÖM, R.; HULSHOF, C.; VERBEEK, J.; BOVENZI, M.

    2002-05-01

    examination, which includes recording any change in exposure to WBV. The findings for the individual should be compared with previous examinations. Group data should also be compiled periodically. Medical removal may be considered along with re-placement in working practices without exposure to WBV. This paper presents opinions on health surveillance for whole-body vibration developed within a working group of partners funded on a European Community Network (BIOMED2 concerted action BMH4-CT98-3251: Research network on detection and prevention of injuries due to occupational vibration exposures). The health surveillance protocol and the draft questionnaire with explanation comments are presented for wider consideration by the science community and others before being considered appropriate for implementation.

  8. Reconstruction of (131)I radioactive contamination in Ukraine caused by the Chernobyl accident using atmospheric transport modelling.

    PubMed

    Talerko, Nikolai

    2005-01-01

    The evaluation of (131)I air and ground contamination field formation in the territory of Ukraine was made using the model of atmospheric transport LEDI (Lagrangian-Eulerian DIffusion model). The (131)I atmospheric transport over the territory of Ukraine was simulated during the first 12 days after the accident (from 26 April to 7 May 1986) using real aerological information and rain measurement network data. The airborne (131)I concentration and ground deposition fields were calculated as the database for subsequent thyroid dose reconstruction for inhabitants of radioactive contaminated regions. The small-scale deposition field variability is assessed using data of (137)Cs detailed measurements in the territory of Ukraine. The obtained results are compared with available data of radioiodine daily deposition measurements made at the network of meteorological stations in Ukraine and data of the assessments of (131)I soil contamination obtained from the (129)I measurements. PMID:16024139

  9. Calculation of. beta. -ray absorbed dose rate for /sup 131/I applied to the inflorescence of Tradescantia

    SciTech Connect

    Bingo, K.; Tano, S.; Numakunai, T.; Yoshida, Y.; Yamaguchi, H.

    1981-03-01

    Effects of /sup 131/I applied to the inflorescence on the induction of somatic mutations in Tradescantia stamen hairs were previously investigated, and the doubling dose (activity) was estimated to be 4 nCi. In the present paper, the absorbed dose rate in stamen hairs of Tradescantia for ..beta.. rays from the applied /sup 131/I was calculated. The doubling dose for the /sup 131/I (4 nCi) applied to the inflorescence was estimated to be higher than 0.3 rad (assuming uniform distribution of /sup 131/I on the surface of the buds and assuming that the shape of the buds was a sphere) and lower than 1.0 rad.

  10. Prediction of groundwater contamination with 137Cs and 131I from the Fukushima nuclear accident in the Kanto district.

    PubMed

    Ohta, Tomoko; Mahara, Yasunori; Kubota, Takumi; Fukutani, Satoshi; Fujiwara, Keiko; Takamiya, Koichi; Yoshinaga, Hisao; Mizuochi, Hiroyuki; Igarashi, Toshifumi

    2012-09-01

    We measured the concentrations of (131)I, (134)Cs, and (137)Cs released from the Fukushima nuclear accident in soil and rainwater samples collected March 30-31, 2011, in Ibaraki Prefecture, Kanto district, bordering Fukushima Prefecture to the south. Column experiments revealed that all (131)I in rainwater samples was adsorbed onto an anion-exchange resin. However, 30% of (131)I was not retained by the resin after it passed through a soil layer, suggesting that a portion of (131)I became bound to organic matter from the soil. The (137)Cs migration rate was estimated to be approximately 0.6 mm/y in the Kanto area, which indicates that contamination of groundwater by (137)Cs is not likely to occur in rainwater infiltrating into the surface soil after the Fukushima accident.

  11. Validation of 131I ecological transfer models and thyroid dose assessments using Chernobyl fallout data from the Plavsk district, Russia.

    PubMed

    Zvonova, I; Krajewski, P; Berkovsky, V; Ammann, M; Duffa, C; Filistovic, V; Homma, T; Kanyar, B; Nedveckaite, T; Simon, S L; Vlasov, O; Webbe-Wood, D

    2010-01-01

    Within the project "Environmental Modelling for Radiation Safety" (EMRAS) organized by the IAEA in 2003 experimental data of (131)I measurements following the Chernobyl accident in the Plavsk district of Tula region, Russia were used to validate the calculations of some radioecological transfer models. Nine models participated in the inter-comparison. Levels of (137)Cs soil contamination in all the settlements and (131)I/(137)Cs isotopic ratios in the depositions in some locations were used as the main input information. 370 measurements of (131)I content in thyroid of townspeople and villagers, and 90 measurements of (131)I concentration in milk were used for validation of the model predictions. A remarkable improvement in models performance comparing with previous inter-comparison exercise was demonstrated. Predictions of the various models were within a factor of three relative to the observations, discrepancies between the estimates of average doses to thyroid produced by most participant not exceeded a factor of ten.

  12. Incidence and risk factors for secondary malignancy in patients with neuroblastoma after treatment with (131)I-metaiodobenzylguanidine.

    PubMed

    Huibregtse, Kelly E; Vo, Kieuhoa T; DuBois, Steven G; Fetzko, Stephanie; Neuhaus, John; Batra, Vandana; Maris, John M; Weiss, Brian; Marachelian, Araz; Yanik, Greg A; Matthay, Katherine K

    2016-10-01

    Several reports of second malignant neoplasm (SMN) in patients with relapsed neuroblastoma after treatment with (131)I-MIBG suggest the possibility of increased risk. Incidence of and risk factors for SMN after (131)I-MIBG have not been defined. This is a multi-institutional retrospective review of patients with neuroblastoma treated with (131)I-MIBG therapy. A competing risk approach was used to calculate the cumulative incidence of SMN from time of first exposure to (131)I-MIBG. A competing risk regression was used to identify potential risk factors for SMN. The analytical cohort included 644 patients treated with (131)I-MIBG. The cumulative incidence of SMN was 7.6% (95% confidence interval [CI], 4.4-13.0%) and 14.3% (95% CI, 8.3-23.9%) at 5 and 10 years from first (131)I-MIBG, respectively. No increase in SMN risk was found with increased number of (131)I-MIBG treatments or higher cumulative activity per kilogram of (131)I-MIBG received (p = 0.72 and p = 0.84, respectively). Thirteen of the 19 reported SMN were haematologic. In a multivariate analysis controlling for variables with p < 0.1 (stage, age at first (131)I-MIBG, bone disease, disease status at time of first (131)I-MIBG), patients with relapsed/progressive disease had significantly lower risk of SMN (subdistribution hazard ratio 0.3, 95% CI, 0.1-0.8, p = 0.023) compared to patients with persistent/refractory neuroblastoma. The cumulative risk of SMN after (131)I-MIBG therapy for patients with relapsed or refractory neuroblastoma is similar to the greatest published incidence for high-risk neuroblastoma after myeloablative therapy, with no dose-dependent increase. As the number of patients treated and length of follow-up time increase, it will be important to reassess this risk.

  13. Incidence and risk factors for secondary malignancy in patients with neuroblastoma after treatment with (131)I-metaiodobenzylguanidine.

    PubMed

    Huibregtse, Kelly E; Vo, Kieuhoa T; DuBois, Steven G; Fetzko, Stephanie; Neuhaus, John; Batra, Vandana; Maris, John M; Weiss, Brian; Marachelian, Araz; Yanik, Greg A; Matthay, Katherine K

    2016-10-01

    Several reports of second malignant neoplasm (SMN) in patients with relapsed neuroblastoma after treatment with (131)I-MIBG suggest the possibility of increased risk. Incidence of and risk factors for SMN after (131)I-MIBG have not been defined. This is a multi-institutional retrospective review of patients with neuroblastoma treated with (131)I-MIBG therapy. A competing risk approach was used to calculate the cumulative incidence of SMN from time of first exposure to (131)I-MIBG. A competing risk regression was used to identify potential risk factors for SMN. The analytical cohort included 644 patients treated with (131)I-MIBG. The cumulative incidence of SMN was 7.6% (95% confidence interval [CI], 4.4-13.0%) and 14.3% (95% CI, 8.3-23.9%) at 5 and 10 years from first (131)I-MIBG, respectively. No increase in SMN risk was found with increased number of (131)I-MIBG treatments or higher cumulative activity per kilogram of (131)I-MIBG received (p = 0.72 and p = 0.84, respectively). Thirteen of the 19 reported SMN were haematologic. In a multivariate analysis controlling for variables with p < 0.1 (stage, age at first (131)I-MIBG, bone disease, disease status at time of first (131)I-MIBG), patients with relapsed/progressive disease had significantly lower risk of SMN (subdistribution hazard ratio 0.3, 95% CI, 0.1-0.8, p = 0.023) compared to patients with persistent/refractory neuroblastoma. The cumulative risk of SMN after (131)I-MIBG therapy for patients with relapsed or refractory neuroblastoma is similar to the greatest published incidence for high-risk neuroblastoma after myeloablative therapy, with no dose-dependent increase. As the number of patients treated and length of follow-up time increase, it will be important to reassess this risk. PMID:27573428

  14. A high protein diet upregulated whole-body protein turnover during energy deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of higher protein diets and sustained energy deficit (ED) on whole-body protein turnover (WBPTO) are not well described. This study examined whether dietary protein level influences whole-body protein breakdown (Ra), non-oxidative leucine disposal (NOLD), and oxidation (Ox) during ED. ...

  15. Oak Ridge National Laboratory whole-body counter: internal operating procedure manual

    SciTech Connect

    Berger, C.D.; Lane, B.H.

    1982-08-01

    The general purpose of the ORNL Whole Body Counter is to provide a rapid estimation of the type and quantity of radionuclide deposited in the human body. This report contains a review of the equipment in use at the facility and the procedure for its operation, the standard procedure for performing a routine whole body count, and a discussion of interpretation of results.

  16. Effects of Whole Body Vibration Training on Body Composition in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Matute-Llorente, Angel; Gomez-Cabello, Alba; Casajus, Jose A.; Vicente-Rodriguez, German

    2013-01-01

    The present study aimed to determine the effect of 20 weeks of whole body vibration (WBV) on the body composition of adolescents with Down syndrome (DS). Thirty adolescent with DS were divided into two groups: control and WBV. Whole body, upper and lower limbs body fat and lean body mass were measured with dual energy X-ray absorptiometry (DXA)…

  17. Treatment of neuroblastoma stage 4 with 131I-meta-iodo-benzylguanidine, high-dose chemotherapy and immunotherapy. A pilot study.

    PubMed

    Klingebiel, T; Bader, P; Bares, R; Beck, J; Hero, B; Jürgens, H; Lang, P; Niethammer, D; Rath, B; Handgretinger, R

    1998-08-01

    Disseminated neuroblastoma after infancy has a prognosis of approximately 10-20% with conventional therapy. We investigated the role of high-dose chemotherapy (HDCT) with peripheral blood stem cell (PBSC) rescue in combination with 131I-metaiodobenzylguanidine ([131I-m]IBG). 11 children with neuroblastoma stage 4 were pretreated within the German Neuroblastoma Trial NB90 and included in a high-dose concept for consolidation. Remission was documented by ultrasound, CT, NMR, or [123I-m]IBG scanning. HDCT was a combination of melphalan (180 mg/m2), carboplatin (1,500 mg/m2) and etoposide (40 mg/kg). All children were treated by [131I-m]IBG (0.58 GBq/kg) prior to high-dose treatment. All 11 children were additionally treated with antiGD2 murine- or chimeric-antibody (ch14.18). 4 children had no change to their remission status but three achieved a complete response (from a partial response to first line) and one a partial response (from no response to first line). The other 3 children progressed, 2 dying of their disease. Using Kaplan-Meier analysis, the probability of progression-free survival was 0.70 +/- 0.15 with a median observation time of 19 months. 9/11 children are alive, 8 without progression or relapse, whilst 2 have died of their disease. The combination of mIBG plus high-dose chemotherapy with PBSC support supplemented by immunotherapy with antiGD2 antibody appears to be a feasible and effective treatment regimen for disseminated neuroblastoma in this limited series. Larger numbers of patients should be treated to confirm these results.

  18. Determination of {sup 125}I and {sup 131}I in radioisotope wastes

    SciTech Connect

    Sang Hoon Kang; Ke Chon Choi; Lee, Heung N.; Sun Ho Han; Kwang Yong Jee

    2007-07-01

    In order to measure a low activity of {sup 125}I and {sup 131}I in radioisotope wastes, we took into consideration various sample preparation and separation methods, such as an acid decomposition, an acid leaching and a combustion method. In a previous study, the maximum chemical yield of iodine by an acid leaching was found to be 78.0 %. However, in this study, the maximum chemical yield of the acid decomposition method and the combustion method with a radioiodine reference solution was found to be 99.1 % and 84.5 %, respectively. We selected the acid decomposition method for the analysis of radioisotope waste samples due to its high chemical yield and short preparation and separation time. The chemical yield of the acid decomposition method depends on the reaction time at each experimental stage, added amount of H{sub 3}PO{sub 3} and H{sub 2}O{sub 2}, and the pH of the condensed solution and the condition of the AgI precipitation. The important point for the highest recovery rate from a acid decomposition method is to maintain enough reaction time and pour 10 ml of 30 % H{sub 3}PO{sub 3} before a distillation, and drop 1 ml of H{sub 2}O{sub 2} when the condensed solution is trapped in the Florence flask. Through a study of the acid decomposition method we found an optimal preparation and separation method of {sup 125}I and {sup 131}I in radioisotope wastes due to the merits of a short reaction time and high recovery rate, and a counting system was applied to LEPS for the {sup 125}I and HP Ge gamma-ray spectrometer for {sup 131}I. (authors)

  19. Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer.

    PubMed

    Chen, Lei; Zhong, Xiaoyan; Yi, Xuan; Huang, Min; Ning, Ping; Liu, Teng; Ge, Cuicui; Chai, Zhifang; Liu, Zhuang; Yang, Kai

    2015-10-01

    Nano-graphene and its derivatives have attracted great attention in biomedicine, including their applications in cancer theranostics. In this work, we develop 131I labeled, polyethylene glycol (PEG) coated reduced nano-graphene oxide (RGO), obtaining 131I-RGO-PEG for nuclear imaging guided combined radiotherapy and photothermal therapy of cancer. Compared with free 131I, 131IRGO- PEG exhibits enhanced cellular uptake and thus improved radio-therapeutic efficacy against cancer cells. As revealed by gamma imaging, efficient tumor accumulation of 131I-RGO-PEG is observed after its intravenous injection. While RGO exhibits strong near-infrared (NIR) absorbance and could induce effective photothermal heating of tumor under NIR light irradiation, 131I is able to emit high-energy X-ray to induce cancer killing as the result of radio ionization effect. By utilizing the combined photothermal therapy and radiotherapy, both of which are delivered by a single agent 131IRGO- PEG, effective elimination of tumors is achieved in our animal tumor model experiments. Toxicology studies further indicate that 131I-RGO-PEG induces no appreciable toxicity to mice at the treatment dose. Our work demonstrates the great promise of combing nuclear medicine and photothermal therapy as a novel therapeutic strategy to realize synergistic efficacy in cancer treatment.

  20. Radiobiological effects of /sup 131/I and /sup 125/I on the DNA of the rat thyroid

    SciTech Connect

    Abdel-Nabi, H.; Ortman, J.A.

    1983-03-01

    One of the major disadvantages of the use of /sup 131/I in the treatment of thyrotoxicosis is the development of hypothyroidism. Alternatively, /sup 125/I has been proposed for thyrotoxicosis therapy, and was thought to be preferable to /sup 131/I because of the short range of its emitted soft electrons.Several studies have shown /sup 125/I to be as effective as /sup 131/I in the treatment of thyrotoxicosis, and equally likely to produce hupothyroidism. This work compared the radiobiological effects of /sup 131/I and /sup 125/I given in doses to deliver the same amount of radiation to the rat thyroid gland.These effects were studied by in vivo determination of single-strand DNA breaks by alkaline sucrose gradient sedimentation using the DABA fluorescent technique to detect the DNA. Serum T/sub 4/ and TSH concentrations and percentage T/sub 3/ uptake were determined by RIA. The incidence of hypothyroidism following /sup 131/I and /sup 125/I therapy was found to be the same (10% in each group). The extent of DNA damage following /sup 125/I therapy was greater than the damage induced by a larger dose of /sup 131/I.

  1. Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer.

    PubMed

    Chen, Lei; Zhong, Xiaoyan; Yi, Xuan; Huang, Min; Ning, Ping; Liu, Teng; Ge, Cuicui; Chai, Zhifang; Liu, Zhuang; Yang, Kai

    2015-10-01

    Nano-graphene and its derivatives have attracted great attention in biomedicine, including their applications in cancer theranostics. In this work, we develop 131I labeled, polyethylene glycol (PEG) coated reduced nano-graphene oxide (RGO), obtaining 131I-RGO-PEG for nuclear imaging guided combined radiotherapy and photothermal therapy of cancer. Compared with free 131I, 131IRGO- PEG exhibits enhanced cellular uptake and thus improved radio-therapeutic efficacy against cancer cells. As revealed by gamma imaging, efficient tumor accumulation of 131I-RGO-PEG is observed after its intravenous injection. While RGO exhibits strong near-infrared (NIR) absorbance and could induce effective photothermal heating of tumor under NIR light irradiation, 131I is able to emit high-energy X-ray to induce cancer killing as the result of radio ionization effect. By utilizing the combined photothermal therapy and radiotherapy, both of which are delivered by a single agent 131IRGO- PEG, effective elimination of tumors is achieved in our animal tumor model experiments. Toxicology studies further indicate that 131I-RGO-PEG induces no appreciable toxicity to mice at the treatment dose. Our work demonstrates the great promise of combing nuclear medicine and photothermal therapy as a novel therapeutic strategy to realize synergistic efficacy in cancer treatment. PMID:26188609

  2. Comparison of surface contamination monitors for in vivo measurement of 131I in the thyroid

    NASA Astrophysics Data System (ADS)

    Oliveira, S. M.; Dantas, A. L. A.; Dantas, B. M.

    2016-07-01

    The routine handling of radiopharmaceuticals in nuclear medicine represents a significant risk of internal exposure to the staff. The IAEA recommends the implementation of monitoring plans for all workers subject to a risk of exposures above 1 mSv per year. However, in Brazil, such recommendation is practically unfeasible due to the lack of a sufficient number of qualified internal dosimetry services over the country. This work presents an alternative based on a simple and inexpensive methodology aimed to perform in vivo monitoring of 131I in the thyroid using portable surface contamination probes. Results show that all models evaluated in this work present enough sensitivity for the evaluation of accidental intakes.

  3. Determining thyroid {sup 131}I effective half-life for the treatment planning of Graves' disease

    SciTech Connect

    Willegaignon, Jose; Sapienza, Marcelo T.; Barberio Coura Filho, George; Buchpiguel, Carlos A.; Traino, Antonio C.

    2013-02-15

    Purpose: Thyroid {sup 131}I effective half-life (T{sub eff}) is an essential parameter in patient therapy when accurate radiation dose is desirable for producing an intended therapeutic outcome. Multiple {sup 131}I uptake measurements and resources from patients themselves and from nuclear medicine facilities are requisites for determining T{sub eff}, these being limiting factors when implementing the treatment planning of Graves' disease (GD) in radionuclide therapy. With the aim of optimizing this process, this study presents a practical, propitious, and accurate method of determining T{sub eff} for dosimetric purposes. Methods: A total of 50 patients with GD were included in this prospective study. Thyroidal {sup 131}I uptake was measured at 2-h, 6-h, 24-h, 48-h, 96-h, and 220-h postradioiodine administration. T{sub eff} was calculated by considering sets of two measured points (24-48-h, 24-96-h, and 24-220-h), sets of three (24-48-96-h, 24-48-220-h, and 24-96-220-h), and sets of four (24-48-96-220-h). Results: When considering all the measured points, the representative T{sub eff} for all the patients was 6.95 ({+-}0.81) days, whereas when using such sets of points as (24-220-h), (24-96-220-h), and (24-48-220-h), this was 6.85 ({+-}0.81), 6.90 ({+-}0.81), and 6.95 ({+-}0.81) days, respectively. According to the mean deviations 2.2 ({+-}2.4)%, 2.1 ({+-}2.0)%, and 0.04 ({+-}0.09)% found in T{sub eff}, calculated based on all the measured points in time, and with methods using the (24-220-h), (24-48-220-h), and (24-96-220-h) sets, respectively, no meaningful statistical difference was noted among the three methods (p > 0.500, t test). Conclusions: T{sub eff} obtained from only two thyroid {sup 131}I uptakes measured at 24-h and 220-h, besides proving to be sufficient, accurate enough, and easily applicable, attributes additional major cost-benefits for patients, and facilitates the application of the method for dosimetric purposes in the treatment planning of

  4. Unusual Adrenal and Brain Metastases From Follicular Thyroid Carcinoma Revealed by 131I SPECT/CT.

    PubMed

    Zhao, Zhen; Shen, Guo-hua; Liu, Bin; Kuang, An-ren

    2016-01-01

    The adrenal metastasis from differentiated thyroid carcinoma is uncommon. Metastatic involvement of both adrenal and brain in the same patient from differentiated thyroid carcinoma is rare. Here, we described an unusual case with iodine-avid lung, bone, adrenal, liver, and brain metastases from follicular thyroid carcinoma confirmed by 131I SPECT/CT. The utilization of SPECT/CT in thyroid cancer patients can detect the presence of metastases and also exclude potential false-positive lesions. Our case demonstrates that SPECT/CT is helpful in localizing and confirming metastatic lesions from differentiated thyroid carcinoma in rare and unusual sites.

  5. Improving Outcomes in the Patient with Polytrauma: A Review of the Role of Whole-Body Computed Tomography.

    PubMed

    Gunn, Martin L; Kool, Digna R; Lehnert, Bruce E

    2015-07-01

    Whole-body computed tomography (WBCT) is used for the workup of the patient with blunt polytrauma. WBCT is associated with improved patient survival and reduces the emergency department length of stay. However, randomized studies are needed to determine whether early WBCT improves survival, to clarify which patients benefit the most, and to model the costs of this technique compared with traditional workup. Advancements in modern multidetector computed tomography technology and an improved understanding of optimal protocols have enabled one to scan the entire body and achieve adequate image quality for a comprehensive trauma assessment in a short period. PMID:26046503

  6. Organ Dose Estimates for Hyperthyroid Patients Treated with (131)I: An Update of the Thyrotoxicosis Follow-Up Study.

    PubMed

    Melo, Dunstana R; Brill, Aaron B; Zanzonico, Pat; Vicini, Paolo; Moroz, Brian; Kwon, Deukwoo; Lamart, Stephanie; Brenner, Alina; Bouville, André; Simon, Steven L

    2015-12-01

    The Thyrotoxicosis Therapy Follow-up Study (TTFUS) is comprised of 35,593 hyperthyroid patients treated from the mid-1940s through the mid-1960s. One objective of the TTFUS was to evaluate the long-term effects of high-dose iodine-131 ((131)I) treatment (1-4). In the TTFUS cohort, 23,020 patients were treated with (131)I, including 21,536 patients with Graves disease (GD), 1,203 patients with toxic nodular goiter (TNG) and 281 patients with unknown disease. The study population constituted the largest group of hyperthyroid patients ever examined in a single health risk study. The average number (± 1 standard deviation) of (131)I treatments per patient was 1.7 ± 1.4 for the GD patients and 2.1 ± 2.1 for the TNG patients. The average total (131)I administered activity was 380 ± 360 MBq for GD patients and 640 ± 550 MBq for TNG patients. In this work, a biokinetic model for iodine was developed to derive organ residence times and to reconstruct the radiation-absorbed doses to the thyroid gland and to other organs resulting from administration of (131)I to hyperthyroid patients. Based on (131)I data for a small, kinetically well-characterized sub-cohort of patients, multivariate regression equations were developed to relate the numbers of disintegrations of (131)I in more than 50 organs and tissues to anatomical (thyroid mass) and clinical (percentage thyroid uptake and pulse rate) parameters. These equations were then applied to estimate the numbers of (131)I disintegrations in the organs and tissues of all other hyperthyroid patients in the TTFUS who were treated with (131)I. The reference voxel phantoms adopted by the International Commission on Radiological Protection (ICRP) were then used to calculate the absorbed doses in more than 20 organs and tissues of the body. As expected, the absorbed doses were found to be highest in the thyroid (arithmetic means of 120 and 140 Gy for GD and TNG patients, respectively). Absorbed doses in organs other than the thyroid

  7. Organ Dose Estimates for Hyperthyroid Patients Treated with (131)I: An Update of the Thyrotoxicosis Follow-Up Study.

    PubMed

    Melo, Dunstana R; Brill, Aaron B; Zanzonico, Pat; Vicini, Paolo; Moroz, Brian; Kwon, Deukwoo; Lamart, Stephanie; Brenner, Alina; Bouville, André; Simon, Steven L

    2015-12-01

    The Thyrotoxicosis Therapy Follow-up Study (TTFUS) is comprised of 35,593 hyperthyroid patients treated from the mid-1940s through the mid-1960s. One objective of the TTFUS was to evaluate the long-term effects of high-dose iodine-131 ((131)I) treatment (1-4). In the TTFUS cohort, 23,020 patients were treated with (131)I, including 21,536 patients with Graves disease (GD), 1,203 patients with toxic nodular goiter (TNG) and 281 patients with unknown disease. The study population constituted the largest group of hyperthyroid patients ever examined in a single health risk study. The average number (± 1 standard deviation) of (131)I treatments per patient was 1.7 ± 1.4 for the GD patients and 2.1 ± 2.1 for the TNG patients. The average total (131)I administered activity was 380 ± 360 MBq for GD patients and 640 ± 550 MBq for TNG patients. In this work, a biokinetic model for iodine was developed to derive organ residence times and to reconstruct the radiation-absorbed doses to the thyroid gland and to other organs resulting from administration of (131)I to hyperthyroid patients. Based on (131)I data for a small, kinetically well-characterized sub-cohort of patients, multivariate regression equations were developed to relate the numbers of disintegrations of (131)I in more than 50 organs and tissues to anatomical (thyroid mass) and clinical (percentage thyroid uptake and pulse rate) parameters. These equations were then applied to estimate the numbers of (131)I disintegrations in the organs and tissues of all other hyperthyroid patients in the TTFUS who were treated with (131)I. The reference voxel phantoms adopted by the International Commission on Radiological Protection (ICRP) were then used to calculate the absorbed doses in more than 20 organs and tissues of the body. As expected, the absorbed doses were found to be highest in the thyroid (arithmetic means of 120 and 140 Gy for GD and TNG patients, respectively). Absorbed doses in organs other than the thyroid

  8. 131I-Zn-Chlorophyll derivative photosensitizer for tumor imaging and photodynamic therapy.

    PubMed

    Ocakoglu, Kasim; Er, Ozge; Kiyak, Guven; Lambrecht, Fatma Yurt; Gunduz, Cumhur; Kayabasi, Cagla

    2015-09-30

    In recent years, the photodynamic therapy studies have gained considerable attention as an alternative method to surgery, chemotherapy and radiotherapy which is commonly used to fight cancer. In this study, biological potentials of a benzyloxy bearing zinc(II) pheophorbide-a (Zn-PH-A) were investigated via in vivo and in vitro experiments. Zn-PH-A was labeled with (131)I with high efficiency (95.3 ± 2.7%) and its biodistribution studies were investigated on female Albino Wistar rats. The radiolabeled photosensitizer had been intravenously injected into the tail vein, and then the animals were sacrificed at 30, 60 and 120 min post injection. The percent of radioactivity per gram of organs (%ID/g) was determined. The radiolabeled Zn-PH-A showed high uptake in ovary. In addition, photodynamic therapy studies of the photosensitizer were conducted in EMT6, murine mammary carcinoma and HeLa, human cervix carcinoma cell lines. For the photodynamic therapy studies, the cells with Zn-PH-A were exposed to red light (650 nm) at the doses of 10-30 J/cm(2). The results showed that Zn-PH-A has stronger PDT effect in EMT6 than HeLa cell. Our present work demonstrates (131)I-labeled photosensitizer as a bifunctional agent (PDT and nuclear imaging) which could be improved in future by using EMT6 growing tumor in nude mice.

  9. Active transport of 131I across the blood—brain barrier

    PubMed Central

    Davson, Hugh; Hollingsworth, Jillian R.

    1973-01-01

    The ventricular space of rabbits was perfused with a low-viscosity silicone oil for the purpose of (1) collecting freshly secreted cerebrospinal fluid (c.s.f.) uninfluenced by diffusional exchanges with the brain and (2) studying passage of solutes from the blood into the brain, uncomplicated by exchanges with c.s.f. The freshly secreted c.s.f. appeared as fine droplets suspended in the less dense silicone, and accumulated at the bottom of the collected silicone. Studies on the penetration of 24Na from blood into this fluid indicated that considerable exchanges with the brain had occurred between its secretion and collection, in spite of this method of collection. The second objective was attained, in that the exchanges between the freshly secreted fluid and the brain were quantitatively insufficient to affect the measure of kinetics of uptake by brain from the blood. In consequence, it was possible to demonstrate unequivocally that the increased uptake by brain of 131I, when treated with perchlorate, was due to inhibition of an active process occurring across the blood—brain barrier. Other studies, involving ventriculo-cisternal perfusion with artificial c.s.f., lent further support to this concept. 131I distribution is some 32% of the brain weight, a figure close to the `chloride-space'. PMID:4355804

  10. Traces of radioactive 131I in rainwater and milk samples in Romania

    NASA Astrophysics Data System (ADS)

    Mărgineanu, Romul; Mitrică, Bogdan; Apostu, Ana; Gomoiu, Claudia

    2011-07-01

    Measurements of 131I (T1/2 = 8.04 days) activities have been performed in the IFIN HH (Horia Hulubei National Institute of Physics and Nuclear Engineering) underground laboratory situated in Unirea salt mine, Slănic-Prahova, Romania. The rainwater samples were collected starting on 27 March from Braşov and Slănic-Prahova. Also sheep and goat milk samples were collected in the Slănic, Braşov and Iaşi areas and measurements were subsequently made on them. The measurements on the samples were made at the IFIN HH's underground laboratory in an ultra-low radiation background, using a high resolution gamma-ray spectrometer equipped with a GeHP (hyperpure) detector having a full width at half-maximum of 1.80 keV at 1332.48 keV for the second 60Co gamma ray and a relative efficiency of 22.8%. The results show a specific activity of 131I from < 0.063 to 0.75 Bq l - 1 for rain. In the milk samples the specific activity varied from < 0.12 to 5.2 Bq l - 1.

  11. [131I]-metaiodobenzylguanidine in the treatment of metastatic neuroblastoma. Clinical, pharmacological and dosimetric aspects.

    PubMed

    Klingebiel, T; Treuner, J; Ehninger, G; Keller, K D; Dopfer, R; Feine, U; Niethammer, D

    1989-01-01

    Ten children with stage III or IV neuroblastoma that had either relapsed or was refractory were treated with [131I]-metaiodobenzylguanidine (MIBG) from 1984 to 1986. The total dose ranged from 4,365 to 21,900 MBq and was given in one to five courses. Two patients achieved a complete remission (CR), two, a partial remission (PR), and three, an arrest of the disease. Pharmacological studies showed that 93% of detectable radioactivity was attributable to MIBG at the beginning of the infusion. However, by the end of the infusion this had decreased to 88%. The terminal half-life of MIBG was 37.0 h, whereas that of non-MIBG-bound iodine was 71.6 h. Therefore, the radioactivity-time product of non-MIBG-bound 131I was much higher than that of MIBG. Dosimetric studies showed a mean level of absorbed radiation for the total body of 160 microGy/MBq, a liver irradiation of 540 microGy/MBq and a mean tumour radiation of 10,500 microGy/MBq.

  12. 131I-Zn-Chlorophyll derivative photosensitizer for tumor imaging and photodynamic therapy.

    PubMed

    Ocakoglu, Kasim; Er, Ozge; Kiyak, Guven; Lambrecht, Fatma Yurt; Gunduz, Cumhur; Kayabasi, Cagla

    2015-09-30

    In recent years, the photodynamic therapy studies have gained considerable attention as an alternative method to surgery, chemotherapy and radiotherapy which is commonly used to fight cancer. In this study, biological potentials of a benzyloxy bearing zinc(II) pheophorbide-a (Zn-PH-A) were investigated via in vivo and in vitro experiments. Zn-PH-A was labeled with (131)I with high efficiency (95.3 ± 2.7%) and its biodistribution studies were investigated on female Albino Wistar rats. The radiolabeled photosensitizer had been intravenously injected into the tail vein, and then the animals were sacrificed at 30, 60 and 120 min post injection. The percent of radioactivity per gram of organs (%ID/g) was determined. The radiolabeled Zn-PH-A showed high uptake in ovary. In addition, photodynamic therapy studies of the photosensitizer were conducted in EMT6, murine mammary carcinoma and HeLa, human cervix carcinoma cell lines. For the photodynamic therapy studies, the cells with Zn-PH-A were exposed to red light (650 nm) at the doses of 10-30 J/cm(2). The results showed that Zn-PH-A has stronger PDT effect in EMT6 than HeLa cell. Our present work demonstrates (131)I-labeled photosensitizer as a bifunctional agent (PDT and nuclear imaging) which could be improved in future by using EMT6 growing tumor in nude mice. PMID:26226337

  13. Estimation of whole body fat from appendicular soft tissue from peripheral quantitative computed tomography in adolescent girls

    PubMed Central

    Lee, Vinson R.; Blew, Rob M.; Farr, Josh N.; Tomas, Rita; Lohman, Timothy G.; Going, Scott B.

    2013-01-01

    Objective Assess the utility of peripheral quantitative computed tomography (pQCT) for estimating whole body fat in adolescent girls. Research Methods and Procedures Our sample included 458 girls (aged 10.7 ± 1.1y, mean BMI = 18.5 ± 3.3 kg/m2) who had DXA scans for whole body percent fat (DXA %Fat). Soft tissue analysis of pQCT scans provided thigh and calf subcutaneous percent fat and thigh and calf muscle density (muscle fat content surrogates). Anthropometric variables included weight, height and BMI. Indices of maturity included age and maturity offset. The total sample was split into validation (VS; n = 304) and cross-validation (CS; n = 154) samples. Linear regression was used to develop prediction equations for estimating DXA %Fat from anthropometric variables and pQCT-derived soft tissue components in VS and the best prediction equation was applied to CS. Results Thigh and calf SFA %Fat were positively correlated with DXA %Fat (r = 0.84 to 0.85; p <0.001) and thigh and calf muscle densities were inversely related to DXA %Fat (r = −0.30 to −0.44; p < 0.001). The best equation for estimating %Fat included thigh and calf SFA %Fat and thigh and calf muscle density (adj. R2 = 0.90; SEE = 2.7%). Bland-Altman analysis in CS showed accurate estimates of percent fat (adj. R2 = 0.89; SEE = 2.7%) with no bias. Discussion Peripheral QCT derived indices of adiposity can be used to accurately estimate whole body percent fat in adolescent girls. PMID:25147482

  14. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M.; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F.; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L.; McCollough, Cynthia H.

    2016-02-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  15. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-01-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  16. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array.

    PubMed

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-02-21

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  17. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array.

    PubMed

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-02-21

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  18. {sup 129}I, {sup 131}I and {sup 127}I in animal thyroids after the Chernobyl nuclear accident

    SciTech Connect

    VanMiddleworth, L.; Handle, J.

    1997-10-01

    A small number of animal thyroids from Bad Hall, Austria; Ulm, Germany; and Steinkjer, Norway had {sup 131}I (half-life 8.06 d) measured between 21 and 72 d following the nuclear accident at Chernobyl on 26 April 1986. Nine years later {sup 129}I (half-life 1.57 x 10{sup 7} y) fission product and natural {sup 127}I were measured in the same thyroids. The mass ratios, {sup 129}I/{sup 131}I were calculated to the date of the Chernobyl accident and they ranged between 13 and 71. These ratios are compared to the expected ratios within an operating nuclear reactor during 2 y of operation, where the {sup 129}I/{sup 131}I{sup -1} ratio never exceeded 30. The observed ratio of {sup 129}I to natural {sup 127}I in thyroids ranged from 5 to 200 times the ratio before the accident, except that the Norwegian thyroids had {sup 129}I/{sup 127}I ratios which were less than the ratios of pre-Chernobyl thyroids from Ulm. These studies show the {sup 129}I and {sup 131}I from the Chernobyl accident were accumulated with natural {sup 127}I in animal thyroids but the isotope ratios, calculated to the release date, had wide ranges. The {sup 131}I radioactive exposure might be estimated from a fission product mixture by measuring {sup 129}I in thyroids long after the exposure to {sup 131}I, but the results would probably show a wide range of possibilities. The determining variables should be evaluated. We know of no previous data regarding both {sup 131}I and {sup 129}I in thyroid glands during the first 3 mo after the Chernobyl accident. 16 refs., 1 fig., 2 tabs.

  19. Uncertainties in estimated body burdens of caesium-137 by whole-body counting.

    PubMed

    Kinase, S; Noguchi, H

    2001-01-01

    It is very important to evaluate the uncertainties in individual monitoring for internal exposure of workers. The uncertainties in estimated body burdens of 137Cs with the JAERI whole-body counter were investigated using Monte Carlo simulation and measurements. It was found that the uncertainties of estimated body burdens with the whole-body counter are strongly dependent on various sources of uncertainty, such as radioactivity distribution within the body and counting statistics and that the 137Cs body burden assessed from the result of the whole-body count can be within +/- 60% in error.

  20. Intramyocardial capillary blood volume estimated by whole-body CT: validation by micro-CT

    NASA Astrophysics Data System (ADS)

    Dong, Yue; Beighley, Patricia E.; Eaker, Diane R.; Zamir, Mair; Ritman, Erik L.

    2008-03-01

    Fast CT has shown that myocardial perfusion (F) is related to myocardial intramuscular blood volume (Bv) as Bv=A*F+B*F 1/2 where A,B are constant coefficients. The goal of this study was to estimate the range of diameters of the vessels that are represented by the A*F term. Pigs were placed in an Electron Beam CT (EBCT) scanner for a perfusion CT scan sequence over 40 seconds after an IV contrast agent injection. Intramyocardial blood volume (Bv) and flow (F) were calculated in a region of the myocardium perfused by the LAD. Coefficients A and B were estimated over the range of F=1-5ml/g/min. After the CT scan, the LAD was injected with Microfil (R) contrast agent following which the myocardium was scanned by micro-CT at 20μm, 4μm and 2.5 μm cubic voxel resolutions. The Bv of the intramyocardial vessels was calculated for diameter ranges d=0-5, 5-10, 10-15, 15-20μm, etc. EBCT-derived data were presented so that it could be directly compared the micro-CT data. The results indicated that the blood in vessels less than 10μm in lumen diameter occupied 0.27-0.42 of total intravascular blood volume, which is in good agreement with EBCT-based values 0.28-0.48 (R2 =0.96). We conclude that whole-body CT image data obtained during the passage of a bolus of IV contrast agent can provide a measure of the intramyocardial intracapillary blood volume.

  1. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    SciTech Connect

    Frohwein, Lynn J. Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  2. Feasibility of using sup 129 I concentrations in human tissue to estimate radiation dose from sup 131 I

    SciTech Connect

    McCormack, W.D.

    1989-10-01

    To use data on {sup 129}I in human tissue to estimate an individual's past exposure to that radionuclide, it is necessary to know when and how the exposure occurred, and to know about any other prior and/or ongoing exposures. Moreover, to use {sup 129}I data to estimate past exposure to {sup 131}I, it is also necessary to know the relationship of the two radionuclides at the time of exposure. The relative quantities of {sup 131}I and {sup 129}I in gaseous effluents from Hanford Site facilities varied significantly because of the large variations in elapsed time between discharge of irradiated fuel from Hanford production reactors and initiation of chemical processing. The relationship of the two radionuclides also varied in the environment because the shorter-lived {sup 131}I decayed and the longer-lived {sup 129}I accumulated. Because of its extremely long half-life, {sup 129}I from both Hanford and non-Hanford sources (such as fallout from weapons testing) has accumulated in the environment. Without an associated exposure to {sup 131}I, chronic exposure to {sup 129}I deposited in the environment has contributed and continues to contribute to thyroid burdens. Based on investigations conducted to date, measured levels of {sup 129}I in human tissue will not provide a viable alternative for reconstruction of historical exposure to {sup 131}I. 5 refs.

  3. Possible Mechanisms of Low Back Pain due to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Pope, M. H.; Wilder, D. G.; Magnusson, M.

    1998-08-01

    The investigators describe their multifaceted approach to the study of the relationship between whole-body vibration and low back pain.In vitroexperiments, using percutaneous pin-mounted accelerometers have shown that the natural frequency is at 4·5 Hz. The frequency response was affected by posture, seating, and seat-back inclination. The response appears to be largely determined by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration should be reduced for those recovering from these problems. Vibration attenuating seats, and correct ergonomic layout of the cabs may reduce the risks of recurrence.

  4. Optimization of Whole-Body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    EPA Science Inventory

    Mass spectrometry imaging methods and protocols have become widely adapted to a variety of tissues and species. However, the mass spectrometry imaging literature contains minimal information on whole-body cryosection preparation for the zebrafish (Danio rerio), a model organism ...

  5. Signal Processing Methods for Removing the Effects of Whole Body Vibration upon Speech

    NASA Technical Reports Server (NTRS)

    Bitner, Rachel M.; Begault, Durand R.

    2014-01-01

    Humans may be exposed to whole-body vibration in environments where clear speech communications are crucial, particularly during the launch phases of space flight and in high-performance aircraft. Prior research has shown that high levels of vibration cause a decrease in speech intelligibility. However, the effects of whole-body vibration upon speech are not well understood, and no attempt has been made to restore speech distorted by whole-body vibration. In this paper, a model for speech under whole-body vibration is proposed and a method to remove its effect is described. The method described reduces the perceptual effects of vibration, yields higher ASR accuracy scores, and may significantly improve intelligibility. Possible applications include incorporation within communication systems to improve radio-communication systems in environments such a spaceflight, aviation, or off-road vehicle operations.

  6. Effect of whole body vibration on stereotypy of young children with autism

    PubMed Central

    Bressel, Eadric; Gibbons, Mandi W; Samaha, Andrew

    2011-01-01

    The objective of this case was report on the effects of acute whole body vibration exposure on stereotyped behaviour of young children with autism. Four young boys (ages 4–5 years) diagnosed with autism participated. The children were participants in an early intensive behavioural intervention clinic and during downtimes stood on a whole body vibration platform with the machine turned off (control condition) and on (treatment condition) for three to four, 30 s periods (frequency=28 Hz; amplitude 0.97 mm). The outcome measure was frequency of stereotypic behaviour, which was evaluated for 5 min before and after standing on the vibration platform. The results revealed that whole body vibration was not able to uniformly decrease the rates of all types of stereotypy; that is, some stereotypy decreased while others were unchanged. Subjectively, the children enjoyed whole body vibration which was easy to integrate into the behavioural programme. PMID:22696626

  7. Targeted contrast agents--an adjunct to whole-body imaging: current concepts.

    PubMed

    Foran, Paul; Bolster, Ferdia; Crosbie, Ian; MacMahon, Peter; O'Kennedy, Richard; Eustace, Stephen J

    2010-03-01

    This article reviews the potential use of a combination of whole-body imaging and targeted contrast agents in improving diagnostics, with a particular focus on oncology imaging. It looks at the rationale for nanoparticles and their development as targeted contrast agents. It subsequently describes many of the advances made thus far in developing tissue-specific contrast agents capable of targeting tumors that combined with whole-body imaging may enable superior cancer detection and characterization.

  8. Whole-body magnetic resonance imaging: techniques, clinical indications, and future applications.

    PubMed

    Walker, R E; Eustace, S J

    2001-01-01

    This article reviews developments in both pulse sequence design and gradient technology that facilitate rapid imaging of the whole body. It discusses its application in patients with bone marrow neoplasms, including metastases, lymphoma, and myeloma and emphasizes the value of whole-body magnetic resonance imaging in patients with known vertebral lesions to detect other bone lesions that are easier to biopsy. It outlines possible applications in well-defined clinical situations, including pregnancy and unknown primary tumor.

  9. Whole-body multispectral photoacoustic imaging of adult zebrafish

    PubMed Central

    Huang, Na; Guo, Heng; Qi, Weizhi; Zhang, Zhiwei; Rong, Jian; Yuan, Zhen; Ge, Wei; Jiang, Huabei; Xi, Lei

    2016-01-01

    The zebrafish, an ideal vertebrate for studying developmental biology and genetics, is increasingly being used to understand human diseases, due to its high similarity to the human genome and its optical transparency during embryonic stages. Once the zebrafish has fully developed, especially wild-type breeds, conventional optical imaging techniques have difficulty in imaging the internal organs and structures with sufficient resolution and penetration depth. Even with established mutant lines that remain transparent throughout their life cycle, it is still challenging for purely optical imaging modalities to visualize the organs of juvenile and adult zebrafish at a micro-scale spatial resolution. In this work, we developed a non-invasive three-dimensional photoacoustic imaging platform with an optimized illumination pattern and a cylindrical-scanning-based data collection system to image entire zebrafish with micro-scale resolutions of 80 μm and 600 μm in the lateral and axial directions, respectively. In addition, we employed a multispectral strategy that utilized excitation wavelengths from 690 nm to 930 nm to statistically quantify the relative optical absorption spectrum of major organs. PMID:27699119

  10. Whole-body multispectral photoacoustic imaging of adult zebrafish

    PubMed Central

    Huang, Na; Guo, Heng; Qi, Weizhi; Zhang, Zhiwei; Rong, Jian; Yuan, Zhen; Ge, Wei; Jiang, Huabei; Xi, Lei

    2016-01-01

    The zebrafish, an ideal vertebrate for studying developmental biology and genetics, is increasingly being used to understand human diseases, due to its high similarity to the human genome and its optical transparency during embryonic stages. Once the zebrafish has fully developed, especially wild-type breeds, conventional optical imaging techniques have difficulty in imaging the internal organs and structures with sufficient resolution and penetration depth. Even with established mutant lines that remain transparent throughout their life cycle, it is still challenging for purely optical imaging modalities to visualize the organs of juvenile and adult zebrafish at a micro-scale spatial resolution. In this work, we developed a non-invasive three-dimensional photoacoustic imaging platform with an optimized illumination pattern and a cylindrical-scanning-based data collection system to image entire zebrafish with micro-scale resolutions of 80 μm and 600 μm in the lateral and axial directions, respectively. In addition, we employed a multispectral strategy that utilized excitation wavelengths from 690 nm to 930 nm to statistically quantify the relative optical absorption spectrum of major organs.

  11. Whole-body irradiation transiently diminishes the adrenocorticotropin response to recombinant human interleukin-1{alpha}

    SciTech Connect

    Perlstein, R.S.; Mehta, N.R.; Neta, R.; Whitnall, M.H.; Mougey, E.H.

    1995-03-01

    Recombinant human interleukin-1{alpha} (rhIL-1{alpha}) has significant potential as a radioprotector and/or treatment for radiation-induced hematopoietic injury. Both IL-1 and whole-body ionizing irradiation acutely stimulate the hypothalamic-pituitary-adrenal axis. We therefore assessed the interaction of whole-body irradiation and rhIL-1{alpha} in altering the functioning of the axis in mice. Specifically, we determined the adrenocorticotropin (ACTH) and corticosterone responses to rhIL-1{alpha} administered just before and hours to days after whole-body or sham irradiation. Our results indicate that whole-body irradiation does not potentiate the rhIL-1{alpha}-induced increase in ACTH levels at the doses used. In fact, the rhIL-1{alpha}-induced increase in plasma ACTH is transiently impaired when the cytokine is administered 5 h after, but not 1 h before, exposure to whole-body irradiation. The ACTH response may be inhibited by elevated corticosterone levels after whole-body irradiation, or by other radiation-induced effects on the pituitary gland and hypothalamus. 36 refs., 3 figs.

  12. An adaptive diffusion-weighted whole-body magnetic resonance imaging scheme using the multistation approach

    NASA Astrophysics Data System (ADS)

    Han, Yeji

    2016-02-01

    Whole-body diffusion-weighted imaging (DWI) is a useful tool in oncology, which enables fast screening of disseminated tumors, lymph nodes or abscesses in the body. Multistation magnetic resonance imaging (MRI) or continuously moving table (CMT) MRI can be performed to overcome the limited field of view (FOV) of the magnet bore in whole-body DWI. Although CMT-MRI is regarded as a more advanced form of whole-body MRI, it cannot be widely used because most of the available MR systems are not equipped with the required hardware/software to perform CMT. Thus, optimizing the multistation approach for whole-body DWI, which is more widely available and easier to perform with the existing MR systems, is worthwhile. To improve the quality of DW images acquired with the multistation approach, we used different combinations of the built-in body RF coil and the phased-array surface RF coils for reception of the signals in whole-body DWI in this work. If different coils are selectively used in the extended FOV and appropriate reconstruction algorithms are exploited, the screening ability of whole-body DWI can be improved while minimizing the patient's discomfort and the artifacts due to physiological motions.

  13. Localized beta dosimetry of sup 131 I -labeled antibodies in follicular lymphoma

    SciTech Connect

    Hui, T.E.; Fisher, D.R. ); Press, O.W.; Eary, J.F. ); Weinstein, J.N. ); Badger, C.C.; Bernstein, I.D. )

    1992-01-01

    The purpose of this study is to assess the multicellular dosimetry of {sup 131}I -labeled antibody in follicular lymphoma based on histological measurements on human tumor biopsy tissue. Photomicrographs of lymph node specimens were analyzed by first-order treatment to determine the mean values and statistical variations of the radii of follicles (260{plus minus}90 {mu}m), interfollicular distances (740{plus minus}160 {mu}m), and the number density of follicles (60{plus minus}18 in a volume of (2{times}1480 {mu}m){sup 3}). Based on these measurements, two geometrical models were developed for localized beta dosimetry. The first, a regular cubic lattice model, assumes no variation in follicular radius of follicles and interfollicular distance. The second, a randomized distribution model, is a more complicated but more realistic representation of observed histological specimens. In this model, Monte Carlo methods were used to reconstruct the spatial distribution of follicles by simulating the distribution of the radii of follicles, interfollicular distances, and the number density of follicles. Dose calculations were performed using Berger's point kernels for absorbed-dose distribution for beta particles in water, assuming the {sup 131}I -labeled antibodies as point sources. It was assumed that the activity concentration of the labeled antibody within the follicles was ten times the activity concentration in the interfollicular spaces. The spatial distribution of localized dose was calculated for a tumor having an average dose of 40 Gy. The localized dose was found to be highly nonuniform, ranging from 20 to 90 Gy, and varying by a factor of about 2 from the average tumor dose.

  14. Laboratory evaluation of interception and translocation of {sup 131}I in fenugreek and Okra plants

    SciTech Connect

    Singhal, R.K.; Narayanan, U.; Bhat, I.S.

    1994-11-01

    The work reported here deals with the study of interception and translocation of airborne {sup 131}I in fenugreek (Trigonella foenum-graecum) and okra (Hibiscus esculentus), two very common vegetables in India. Activity was injected into the experimental chamber in the form of iodide aerosols having a size distribution of 0.3 to 5.0 {mu}m (AMAD). Samples of plants were collected over a period of a few days at different time intervals after injection of the aerosols. Evaluation of interception with deposition and translocation of {sup 131}I was done from the activity measured in air and in plant parts. For the deposition factor, the values are 1.22 m{sup 3} kg{sup -1} for fenugreek leaves, and 1.49 m{sup 3} kg{sup -1} for the plant as a whole. For okra plants these values are 0.02 and 0.16 m{sup 3} kg{sup -1} in edible okra and leaves, respectively. For the okra plant as a whole, the value is 0.19 m{sup 3} kg{sup -1}. The translocation factors vary from 0.62 to 0.86 and 0.47 to 0.87 for leaves and stem, respectively, in the case of fenugreek plants. For okra plants, the translocation factor varies from 0.21 to 0.82, 0.53 to 0.93, and 0.42 to 0.81 in edible okra, leaves, and stems, respectively. 13 refs., 6 figs., 2 tabs.

  15. Accumulation and tissue distribution of radioiodine ( sup 131 I) from algal phytoplankton by the freshwater clam Corbicula manilensis

    SciTech Connect

    Cuvin-Aralar, Ma.L.A. ); Umaly, R.C. )

    1991-12-01

    Radioactive wastes discharged from establishments involved in the use of radioisotopes such as nuclear-powered industries, tracer research and nuclear medicine are a potential public health hazard. Such wastes contain radionuclides, particularly Iodine-131 ({sup 131}I), produced in fission with a yield of about 3%. Radionuclides in waste waters are known to be taken up by molluscs such as mussels, oysters, and clams. This study aims to determine the uptake of {sup 131}I from algal phytoplankton (Chroococcus dispersus) fed to the freshwater clam Corbicula manilensis as well as the organ/tissue distribution. The results will be compared with a previous study on {sup 131}I uptake from water by the same clams.

  16. Effect of antilymphoma antibody, 131I-Lym-1, on peripheral blood lymphocytes in patients with non-Hodgkin's lymphoma.

    PubMed

    Schillaci, Orazio; DeNardo, Gerald L; DeNardo, Sally J; Goldstein, Desiree S; Kroger, Linda A; O'Donnell, Robert T; Lamborn, Kathleen R

    2007-08-01

    Anti-CD20 monoclonal antibodies (mAbs), unlabeled rituximab (Rituxan, Biogen Idec Inc., Cambridge, MA; and Genentech Inc., South San Francisco, CA) or radiolabeled 90Y-ibritumomab (Zevalin, Biogen Idec Inc., Cambridge, MA) and 131I-tositumomab (Bexxar; Glaxo Smith Kline, Research Triangle Park, NC), have proven to be effective therapy for non-Hodgkin's lymphoma (NHL), but also induce immediate and persistent decreases in normal peripheral blood lymphocytes (PBLs). Lym-1, a mAb that selectively targets malignant lymphocytes, also has induced therapeutic responses and prolonged survival in patients with NHL when labeled with iodine-131 (131I). We have retrospectively examined its effect on PBLs in 41 NHL patients that had received 131I-Lym-1 therapy. Absolute lymphocyte counts (ALCs) were evaluated before and after the first and last 131I-Lym-1 infusion. Modest decreases in PBLs were observed in most of the patients. Using strict criteria to define recovery, time to recovery was determined for 19 patients, with the remainder censored because of insufficient follow-up (median follow up for censored patients: 22 days). Using Kaplan-Meier estimates, it would be predicted that 31% of patients would recover by 28 days and that median time to recovery would be 44 days after the last 131I-Lym-1 infusion. No predictors were found for time to recovery, considering such factors as the administered Lym-1 or 131I dose, spleen volume, or radiation doses to the body, marrow, or spleen. The data suggest that the effect of 131I-Lym-1 on ALC is the result of a nonspecific radiation effect, rather than a specific Lym-1 mAb effect. The shorter time required for ALC recovery after 131I-Lym-1 when compared to that reported for anti-CD20 mAbs, whether radiolabeled or otherwise, is probably related to differing mechanisms for lymphocytotoxicity and lesser Lym-1 antigenic density on normal B-lymphocytes.

  17. Pharmacodynamic study of 131I-labeled CA215 antibody on an animal model of estrogen-resistant OC-3-VGH ovarian cancer

    PubMed Central

    LIU, XIANG-YUN; SU, XIN; XIE, CHEN-JING; LI, LEI; YAN, JIAN-YAN; SUN, ZU-YUE

    2015-01-01

    The aim of the present study was to explore the inhibitory effect of 131I-labeled ovarian cancer antigen 215 (131I-CA215) antibody on human OC-3-VGH ovarian cancer. A subcutaneous transplanted tumor model of estrogen-resistant human OC-3-VGH ovarian cancer in nude mice was established. The model mice were randomly divided into seven groups, which were the negative control (NC), positive control (PC; 60 mg/kg cyclophosphamide), high-dose CA215 antibody (HA; 10 mg/kg), low-dose CA215 antibody (LA; 2 mg/kg), high-dose 131I-CA215 antibody (131I-HA; 10 mg/kg + 125 μCi), medium-dose 131I-CA215 antibody (131I-MA; 6 mg/kg + 75 μCi) and low-dose 131I-CA215 antibody (131I-LA; 2 mg/kg + 25 μCi) groups. Each group received intraperitoneal administration for 14 consecutive days. At 24 h after the final administration, the tumor was removed and weighed to calculate the tumor inhibition rate (TIR) and the relative tumor increase rate (T/C). Compared with the NC group, the HA group, as well as the 31I-HA and 131I-MA antibody groups, exhibited significantly inhibited tumor growth. The relative T/C values were 54, 30 and 48%, respectively, and the TIRs were 33.59, 64.89 and 45.80%, respectively. All differences were statistically significant. The difference between the HA and 131I-HA groups also presented statistical significance. CA215 and 131I-CA215 antibodies can markedly inhibit OC-3-VGH ovarian cancer. The high-dose 131I-CA215 antibody demonstrated a clear synergetic effect. PMID:26622356

  18. Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes.

    PubMed

    Baker, Lindsay B; Barnes, Kelly A; Anderson, Melissa L; Passe, Dennis H; Stofan, John R

    2016-01-01

    The purpose of this study was to establish normative data for regional sweat sodium concentration ([Na+]) and whole-body sweating rate in athletes. Data from 506 athletes (367 adults, 139 youth; 404 male, 102 female) were compiled from observational athlete testing for a retrospective analysis. The participants were skill/team-sport (including American football, baseball, basketball, soccer and tennis) and endurance (including cycling, running and triathlon) athletes exercising in cool to hot environmental conditions (15-50 °C) during training or competition in the laboratory or field. A standardised regional absorbent patch technique was used to determine sweat [Na+] on the dorsal mid-forearm. Whole-body sweat [Na+] was predicted using a published regression equation (y = 0.57x+11.05). Whole-body sweating rate was calculated from pre- to post-exercise change in body mass, corrected for fluid/food intake (ad libitum) and urine output. Data are expressed as mean ± SD (range). Forearm sweat [Na+] and predicted whole-body sweat [Na+] were 43.6 ± 18.2 (12.6-104.8) mmol · L(-1) and 35.9 ± 10.4 (18.2-70.8) mmol · L(-1), respectively. Absolute and relative whole-body sweating rates were 1.21 ± 0.68 (0.26-5.73) L · h(-1) and 15.3 ± 6.8 (3.3-69.7) ml · kg(-1) · h(-1), respectively. This retrospective analysis provides normative data for athletes' forearm and predicted whole-body sweat [Na+] as well as absolute and relative whole-body sweating rate across a range of sports and environmental conditions.

  19. Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes.

    PubMed

    Baker, Lindsay B; Barnes, Kelly A; Anderson, Melissa L; Passe, Dennis H; Stofan, John R

    2016-01-01

    The purpose of this study was to establish normative data for regional sweat sodium concentration ([Na+]) and whole-body sweating rate in athletes. Data from 506 athletes (367 adults, 139 youth; 404 male, 102 female) were compiled from observational athlete testing for a retrospective analysis. The participants were skill/team-sport (including American football, baseball, basketball, soccer and tennis) and endurance (including cycling, running and triathlon) athletes exercising in cool to hot environmental conditions (15-50 °C) during training or competition in the laboratory or field. A standardised regional absorbent patch technique was used to determine sweat [Na+] on the dorsal mid-forearm. Whole-body sweat [Na+] was predicted using a published regression equation (y = 0.57x+11.05). Whole-body sweating rate was calculated from pre- to post-exercise change in body mass, corrected for fluid/food intake (ad libitum) and urine output. Data are expressed as mean ± SD (range). Forearm sweat [Na+] and predicted whole-body sweat [Na+] were 43.6 ± 18.2 (12.6-104.8) mmol · L(-1) and 35.9 ± 10.4 (18.2-70.8) mmol · L(-1), respectively. Absolute and relative whole-body sweating rates were 1.21 ± 0.68 (0.26-5.73) L · h(-1) and 15.3 ± 6.8 (3.3-69.7) ml · kg(-1) · h(-1), respectively. This retrospective analysis provides normative data for athletes' forearm and predicted whole-body sweat [Na+] as well as absolute and relative whole-body sweating rate across a range of sports and environmental conditions. PMID:26070030

  20. Estimated dose rates to members of the public from external exposure to patients with {sup 131}I thyroid treatment

    SciTech Connect

    Dewji, S. Bellamy, M.; Leggett, R.; Eckerman, K.; Hertel, N.; Sherbini, S.; Saba, M.

    2015-04-15

    Purpose: Estimated dose rates that may result from exposure to patients who had been administered iodine-131 ({sup 131}I) as part of medical therapy were calculated. These effective dose rate estimates were compared with simplified assumptions under United States Nuclear Regulatory Commission Regulatory Guide 8.39, which does not consider body tissue attenuation nor time-dependent redistribution and excretion of the administered {sup 131}I. Methods: Dose rates were estimated for members of the public potentially exposed to external irradiation from patients recently treated with {sup 131}I. Tissue attenuation and iodine biokinetics were considered in the patient in a larger comprehensive effort to improve external dose rate estimates. The external dose rate estimates are based on Monte Carlo simulations using the Phantom with Movable Arms and Legs (PIMAL), previously developed by Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission. PIMAL was employed to model the relative positions of the {sup 131}I patient and members of the public in three exposure scenarios: (1) traveling on a bus in a total of six seated or standing permutations, (2) two nursing home cases where a caregiver is seated at 30 cm from the patient’s bedside and a nursing home resident seated 250 cm away from the patient in an adjacent bed, and (3) two hotel cases where the patient and a guest are in adjacent rooms with beds on opposite sides of the common wall, with the patient and guest both in bed and either seated back-to-back or lying head to head. The biokinetic model predictions of the retention and distribution of {sup 131}I in the patient assumed a single voiding of urinary bladder contents that occurred during the trip at 2, 4, or 8 h after {sup 131}I administration for the public transportation cases, continuous first-order voiding for the nursing home cases, and regular periodic voiding at 4, 8, or 12 h after administration for the hotel room cases. Organ

  1. Estimated dose rates to members of the public from external exposure to patients with 131I thyroid treatment

    DOE PAGES

    Dewji, S.; Bellamy, M.; Hertel, N.; Leggett, R.; Sherbini, S.; Saba, M.; Eckerman, K.

    2015-03-25

    The purpose of this study is to estimate dose rates that may result from exposure to patients who had been administered iodine-131 (131I) as part of medical therapy were calculated. These effective dose rate estimates were compared with simplified assumptions under United States Nuclear Regulatory Commission Regulatory Guide 8.39, which does not consider body tissue attenuation nor time-dependent redistribution and excretion of the administered 131I. Methods: Dose rates were estimated for members of the public potentially exposed to external irradiation from patients recently treated with 131I. Tissue attenuation and iodine biokinetics were considered in the patient in a larger comprehensivemore » effort to improve external dose rate estimates. The external dose rate estimates are based on Monte Carlo simulations using the Phantom with Movable Arms and Legs (PIMAL), previously developed by Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission. PIMAL was employed to model the relative positions of the 131I patient and members of the public in three exposure scenarios: (1) traveling on a bus in a total of six seated or standing permutations, (2) two nursing home cases where a caregiver is seated at 30 cm from the patient’s bedside and a nursing home resident seated 250 cm away from the patient in an adjacent bed, and (3) two hotel cases where the patient and a guest are in adjacent rooms with beds on opposite sides of the common wall, with the patient and guest both in bed and either seated back-to-back or lying head to head. The biokinetic model predictions of the retention and distribution of 131I in the patient assumed a single voiding of urinary bladder contents that occurred during the trip at 2, 4, or 8 h after 131I administration for the public transportation cases, continuous first-order voiding for the nursing home cases, and regular periodic voiding at 4, 8, or 12 h after administration for the hotel room cases. Organ

  2. Ewing sarcoma dissemination and response to T-cell therapy in mice assessed by whole-body magnetic resonance imaging

    PubMed Central

    Liebsch, L; Kailayangiri, S; Beck, L; Altvater, B; Koch, R; Dierkes, C; Hotfilder, M; Nagelmann, N; Faber, C; Kooijman, H; Ring, J; Vieth, V; Rossig, C

    2013-01-01

    Background: Novel treatment strategies in Ewing sarcoma include targeted cellular therapies. Preclinical in vivo models are needed that reflect their activity against systemic (micro)metastatic disease. Methods: Whole-body magnetic resonance imaging (WB-MRI) was used to monitor the engraftment and dissemination of human Ewing sarcoma xenografts in mice. In this model, we evaluated the therapeutic efficacy of T cells redirected against the Ewing sarcoma-associated antigen GD2 by chimeric receptor engineering. Results: Of 18 mice receiving intravenous injections of VH-64 Ewing sarcoma cells, all developed disseminated tumour growth detectable by WB-MRI. All mice had lung tumours, and the majority had additional manifestations in the bone, soft tissues, and/or kidney. Sequential scans revealed in vivo growth of tumours. Diffusion-weighted whole-body imaging with background signal suppression effectively visualised Ewing sarcoma growth in extrapulmonary sites. Animals receiving GD2-targeted T-cell therapy had lower numbers of pulmonary tumours than controls, and the median volume of soft tissue tumours at first detection was lower, with a tumour growth delay over time. Conclusion: Magnetic resonance imaging reliably visualises disseminated Ewing sarcoma growth in mice. GD2-retargeted T cells can noticeably delay tumour growth and reduce pulmonary Ewing sarcoma manifestations in this aggressive disease model. PMID:23839490

  3. Statistical determination of whole-body average SARs in a 2 GHz whole-body exposure system for unrestrained pregnant and newborn rats

    NASA Astrophysics Data System (ADS)

    Wang, Jianqing; Wake, Kanako; Kawai, Hiroki; Watanabe, Soichi; Fujiwara, Osamu

    2012-01-01

    A 2 GHz whole-body exposure to rats over a multigeneration has been conducted as part of bio-effect research in Japan. In this study, the rats moved freely in the cage inside the exposure system. From observation of the activity of rats in the cage, we found that the rats do not stay in each position with uniform possibility. In order to determine the specific absorption rate (SAR) during the entire exposure period with high accuracy, we present a new approach to statistically determine the SAR level in an exposure system. First, we divided the rat cage in the exposure system into several small areas, and derived the fraction of time the rats spent in each small area based on the classification of the documentary photos of rat activity. Then, using the fraction of time spent in each small area as a weighting factor, we calculated the statistical characteristics of the whole-body average SAR for pregnant rats and young rats during the entire exposure period. As a result, this approach gave the statistical distribution as well as the corresponding mean value, median value and mode value for the whole-body SAR so that we can reasonably clarify the relationship between the exposure level and possible biological effect.

  4. Effect of whole-body and local heating on cutaneous vasoconstrictor responses in humans

    NASA Technical Reports Server (NTRS)

    Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Animal studies suggest that alpha-adrenergic-mediated vasoconstriction is compromised during whole-body heating. The purpose of this study was to identify whether whole-body heating and/or local surface heating reduce cutaneous alpha-adrenergic vasoconstrictor responsiveness in human skin. Protocol I: Six subjects were exposed to neutral skin temperature (i.e., 34 degrees C), whole-body heating, and local heating of forearm skin to increase skin blood flow to the same relative magnitude as that observed during whole-body heating. Protocol II: In eight subjects forearm skin was locally heated to 34, 37, 40, and 42 degrees C. During both protocols, alpha-adrenergic vasoconstrictor responsiveness was assessed by local delivery of norepinephrine (NE) via intradermal microdialysis. Skin blood flow was continuously monitored over each microdialysis membrane via laser-Doppler flowmetry. In protocol I, whole-body and local heating caused similar increases in cutaneous vascular conductance (CVC). The EC50 (log NE dose) of the dose-response curves for both whole body (-4.2 +/- 0.1 M) and local heating (-4.7 +/- 0.4 M) were significantly greater (i.e., high dose required to cause 50% reduction in CVC) relative to neutral skin temperature (- 5.6 +/- 0.0 M; P<0.05 for both). In both local and whole-body heated conditions CVC did not return to pre-heating values even at the highest dose of NE. In protocol II, calculated EC50 for 34, 37, 40, and 42 degrees C local heating was - 5.5 +/- 0.4, -4.6 +/- 0.3, -4.5 +/- 0.3, - 4.2 +/- 0.4 M, respectively. Statistical analyses revealed that the EC50 for 37,40 and 42 degrees C were significantly greater than the EC50 for 34 degrees C. These results indicate that even during administration of high concentrations of NE, alpha-adrenergic vasoconstriction does not fully compensate for local heating and whole-body heating induced vasodilatation in young, healthy subjects. Moreover, these data suggest that elevated local temperatures, above 37

  5. Whole-body MRI for full assessment and characterization of diffuse inflammatory myopathy

    PubMed Central

    Elessawy, Saleh Saleh; Abdel Razek, Eman; Tharwat, Samar

    2016-01-01

    Background Conventional magnetic resonance imaging (MRI) is a highly valuable tool for full assessment of the extent of bilateral symmetrical diffuse inflammatory myopathy, owing to its high sensitivity in the detection of edema which correlates with, and sometimes precedes, clinical findings. Purpose To evaluate the use of whole-body (WB)-MRI in characterization and full assessment of the extent and distribution of diffuse inflammatory myopathy. Material and Methods A prospective study on 15 patients presenting with clinical evidence of inflammatory myopathy. It included 4 boys/men and 11 girls/women (age range, 6–44 years; mean age, 25.5 years). 1.5 T WB-MRI was performed and the distribution and extent of disease severity was assessed according to muscle edema on STIR images. Results Four cases of dermatomyositis showed lower limb disease predilection with edema in gluteal, thigh, and calf muscles. The same finding was seen in one case with recurrent polymyositis and three cases with overlap myositis with systemic lupus erythematosus (SLE). Bilateral upper and lower limb myositis was demonstrated in three cases of polymyositis and one case of overlap myositis with scleroderma. Bilateral edema involving all scanned muscle groups was detected in three cases of polymyositis with paraneoplastic syndrome, SLE, and severe active dermatomyositis (including the neck muscles). Conclusion WB-MRI is the diagnostic modality of choice for cases of inflammatory myopathy. It accurately detects the most severely affected muscles candidate for biopsy and provides a reliable baseline study for follow-up of disease progression as well as response to treatment. PMID:27708860

  6. Whole body exposure at 2100 MHz induced by plane wave of random incidences in a population

    NASA Astrophysics Data System (ADS)

    Conil, Emmanuelle; Hadjem, Abdelhamid; El Habachi, Aimad; Wiart, J.

    2010-11-01

    In this article, the whole body exposure induced by plane wave coming from a random direction of arrival is analyzed at 2100 MHz. This work completes previous studies on the influence of different parameters on the whole body exposure (such as morphology, frequency or usage in near field). The Visible Human phantom has been used to build a surrogate model to predict the whole body exposure depending on the highlighted surface of the phantom and on the direction of arrival of the incident plane wave. For the Visible Human, the error on the whole body averaged Specific Absorption Rate (SAR) is on average 4%. The surrogate model is applied to other 3D anthropomorphic phantoms for a frontal incidence with an averaged error of 10%. The great interest of the surrogate model is the possibility to apply a Monte Carlo process to assess probability distribution function of a population. A recent French anthropometric database of more than 3500 adults is used to build the probability distribution function of the whole body SAR for a random direction of arrival.

  7. Reciprocal influence of masticatory apparatus, craniofacial structure and whole body homeostasis.

    PubMed

    Lee, Yong-Keun; Moon, Hyung-Joo

    2012-12-01

    There are evidences that the evolution into Homo erectus was partially induced by masticatory muscular dystrophy caused by a gene mutation, which in turn increased brain capacity and led to bipedalism. It is generally accepted that the morphology and function of mammalian skull are partially controlled by epigenetic mechanisms. Archeologic evidences support that the masticatory apparatus have influenced the mechanical stress distribution in hominin skull, and consequently changed craniofacial morphology and function. Even after evolution into H. erectus, alterations in food properties by civilization and cultural preferences have caused modification of human masticatory pattern and accordingly craniofacial structure. Since there are evidences that prehuman and human masticatory apparatus has been influenced the craniofacial and whole body morphology and function, this apparatus in turn might influence whole body homeostasis. Plausible reciprocal influencing mechanisms of the masticatory apparatus on the whole body homeostasis might be (1) direct mechanical influence on the craniofacial structure, (2) distortion of cerebrospinal fluid circulation, and/or (3) several neural/humoral routes. Based on these backgrounds, the hypothesis of the present study is that the morphology and function of masticatory apparatus influence the whole body homeostasis and these interactions are reciprocal. Therefore, human masticatory apparatus, at the present time, should be kept in its physiological status to maintain the whole body homeostasis. We recommend basic and clinical approaches to confirm this hypothesis.

  8. Whole body mechanics differ among running and cutting maneuvers in skilled athletes.

    PubMed

    Havens, Kathryn L; Sigward, Susan M

    2015-09-01

    Quick changes of direction during running (cutting) represent a whole body mechanical challenge, as they require deceleration and translation of the body during ongoing movement. While much is known with respect to whole body demands during walking turns, whole body mechanics and anticipatory adjustments necessary for cutting are unclear. As the ability to rapidly change direction is critical to athletes' success in many sports, a better understanding of whole body adjustments made during cuts is needed. Whole body center of mass velocity and position during the approach and execution steps of three tasks (straight running, 45° sidestep cut, and 90° sidestep cut) performed as fast as possible were compared in 25 healthy soccer athletes. Repeated measure ANOVA revealed that overall, braking and translation were greater during the cuts compared to the straight run. Interestingly, with systematically increased cut angle, disproportionately greater braking but proportionately greater translation was observed. Anticipatory adjustments made prior to the execution of the cuts suggested that individuals evenly distributed the deceleration and redirection demands across steps of the 45° cut but prioritized deceleration over translation during the approach step of the 90° cut. PMID:25149902

  9. Specific energy from Auger and conversion electrons of 131I, 188Re-anti-CD20 to a lymphocyte's nucleus

    NASA Astrophysics Data System (ADS)

    Torres-García, E.; Carrillo-Cazares, T. A.

    2011-01-01

    The typical radionuclides used to label anti-CD20 in the treatment of non-Hodgkin's lymphoma are 90Y, 131I, and 188Re, with the emission of beta particles, Auger electrons, and conversion electrons for the latter two. The aim of the present work was to calculate the contribution of high linear energy transfer radiation as Auger electrons (AE) and conversion electrons (CE) of 131I and 188Re-anti-CD20 to mean specific energy into the cell nucleus by Monte Carlo simulation (MCS), so as to infer therapeutic effectiveness on a dosimetric basis. MCS was used to quantify the frequency-mean specific energy into the cell nucleus, where the cell was modeled by two concentric spheres, considering two cell models. The results showed that 10% and 33% of the mean-specific energies (z¯) per disintegration imparted to the cell nucleus for both geometries are due to AE and CE; on the other hand, if the hit of AE and CE occurs, the contribution to (z¯) is about 64% and 86% for 131I and 188Re, respectively. According to the amount of specific energy from AE and CE into the cell nucleus by positive event, they can cause catastrophic effects in the nuclear DNA in the treatment of non-Hodgkin's lymphoma with 131I, 188Re-anti-CD20.

  10. Synergistic antitumor effects of 131I-LC-1 IgM and IL-12 vaccine on Lewis lung carcinoma.

    PubMed

    Yin, Xiao Ling; Yan, Xuexian; Wen, Ming; Peng, Zhi Ping; Li, Shao Lin

    2010-03-01

    This study was designed to determine the antitumor effects of iodine-131 labeled monoclonal antibody LC-1 ((131)I-LC-1), interleukin-12 (IL-12) vaccine, or the combination of both on C57BL/6 mice bearing Lewis lung carcinoma (LLC) tumors. Tumor-bearing mice models were randomly divided into 4 groups that were respectively injected intratumorally with phosphate buffered solution (PBS), IL-12 vaccine gene therapy (GT), (131)I-LC-1 radioimmuno-therapy (RIT), or GT+RIT. Tumor volumes were measured before and after treatment. ELISA and RT-PCR determined the expression of IL-l2. LC-1 monoclonal antibody (Mab) was labeled with Na(131)I. Cytolytic T lymphocyte (CTL) activity assay, Natural Killer cell (NK) activity assay and apoptosis analysis were performed. Intratumoral (131)I-LC-1 injection leads to higher delivery of the antibody to the tumor. Tumor apoptosis occurred in the GT, RIT and GT+RIT groups. Tumor growth was inhibited in the GT, RIT and GT+RIT groups. Compared with other groups, the combination of GT+RIT up-regulated the expression of IL-l2 gene and inhibited the tumor growth more effectively than either GT or RIT alone (p<0.05). These results suggest that GT+RIT have the synergistic antitumor effects on tumor-bearing mice.

  11. Long-term follow-up study of compensated low-dose /sup 131/I therapy for Graves' disease

    SciTech Connect

    Sridama, V.; McCormick, M.; Kaplan, E.L.; Fauchet, R.; DeGroot, L.J.

    1984-08-16

    We treated 187 patients who had Graves' disease with low-dose radioactive iodide (/sup 131/I), using a protocol that included a compensation for thyroid size. The incidence of early hypothyroidism (12 per cent) was acceptably low in the first year after /sup 131/I treatment, but we found a cumulative high incidence (up to 76 per cent) at the end of the 11th year. In contrast, the incidence of permanent hypothyroidism was relatively stable in 166 surgically treated patients, increasing from 19 to 27 per cent at the end of 11 years. Among 122 medically treated patients, only 40 per cent entered remission, and hypothyroidism developed in 2 per cent during the same period of follow-up. The long-term incidence of hypothyroidism in our patients treated with low-dose /sup 131/I therapy was much higher than that found in earlier studies using a comparable dose. Our study suggests that it will be difficult to modify therapy with /sup 131/I alone to produce both early control of thyrotoxicosis and a low incidence of hypothyroidism.

  12. Nuclear Factor-Kappa B Inhibition Can Enhance Apoptosis of Differentiated Thyroid Cancer Cells Induced by 131I

    PubMed Central

    Tan, Jian; Xu, Ke; Jia, Qiang; Zheng, Wei

    2012-01-01

    Objective To evaluate changes of nuclear factor-kappa B (NF-κB) during radioiodine 131 (131I) therapy and whether NF-κB inhibition could enhance 131I-induced apoptosis in differentiated thyroid cancer (DTC) cells in a synergistic manner. Methods Three human DTC cell lines were used. NF-κB inhibition was achieved by using a NF-κB inhibitor (Bay 11-7082) or by p65 siRNA transfection. Methyl-thiazolyl-tetrazolium assay was performed for cell viability assessment. DNA-binding assay, luciferase reporter assay, and Western blot were adopted to determine function and expression changes of NF-κB. Then NF-κB regulated anti-apoptotic factors XIAP, cIAP1, and Bcl-xL were measured. Apoptosis was analyzed by Western blot for caspase 3 and PARP, and by flow cytometry as well. An iodide uptake assay was performed to determine whether NF-κB inhibition could influence radioactive iodide uptake. Results The methyl-thiazolyl-tetrazolium assay showed significant decrease of viable cells by combination therapy than by mono-therapies. The DNA-binding assay and luciferase reporter assay showed enhanced NF-κB function and reporter gene activities due to 131I, yet significant suppression was achieved by NF-κB inhibition. Western blot proved 131I could increase nuclear NF-κB concentration, while NF-κB inhibition reduced NF-κB concentration. Western blot also demonstrated significant up-regulation of XIAP, cIAP1, and Bcl-xL after 131I therapy. And inhibition of NF-κB could significantly down-regulate these factors. Finally, synergism induced by combined therapy was displayed by significant enhancements of cleaved caspase 3 and PARP from Western blot, and of Annexin V positively staining from flow cytometry. The iodine uptake assay did not show significant changes when NF-κB was inhibited. Conclusion We demonstrated that 131I could induce NF-κB activation, which would attenuate 131I efficacy in DTC cells. NF-κB inhibition by Bay 11-7082 or by p65 siRNA transfection was

  13. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans.

    PubMed

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Porter, Craig; Annamalai, Palam; Enerbäck, Sven; Lidell, Martin E; Saraf, Manish K; Labbe, Sebastien M; Hurren, Nicholas M; Yfanti, Christina; Chao, Tony; Andersen, Clark R; Cesani, Fernando; Hawkins, Hal; Sidossis, Labros S

    2014-12-01

    Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT(+)) men and five BAT-negative (BAT(-)) men under thermoneutral conditions and after prolonged (5-8 h) cold exposure (CE). The two groups were similar in age, BMI, and adiposity. CE significantly increased resting energy expenditure, whole-body glucose disposal, plasma glucose oxidation, and insulin sensitivity in the BAT(+) group only. These results demonstrate a physiologically significant role of BAT in whole-body energy expenditure, glucose homeostasis, and insulin sensitivity in humans, and support the notion that BAT may function as an antidiabetic tissue in humans.

  14. Wearable Ballistocardiography: Preliminary Methods for Mapping Surface Vibration Measurements to Whole Body Forces

    PubMed Central

    Wiens, Andrew; Etemadi, Mozziyar; Klein, Liviu; Roy, Shuvo; Inan, Omer T.

    2015-01-01

    The recent resurgence of ballistocardiogram (BCG) measurement and interpretation technologies has led to a wide range of powerful tools available for unobtrusively assessing mechanical aspects of cardiovascular health at home. Researchers have demonstrated a multitude of modern BCG measurement modalities, including beds, chairs, weighing scales, and wearable approaches. However, many modalities produce significant variations in the morphology of the measured BCG, creating confusion in the analysis and interpretation of the signals. This paper creates a framework for comparing wearable BCG measurements to whole body measurements—such as taken with a weighing scale system—to eventually allow the same analysis and interpretation tools that have been developed for whole body systems to be applied in the future to wearable systems. To the best of our knowledge, it represents the first attempt to morphologically compare vertical acceleration recordings measured on different locations on the torso to whole body displacements measured by BCG instrumentation. PMID:25571158

  15. Wearable ballistocardiography: preliminary methods for mapping surface vibration measurements to whole body forces.

    PubMed

    Wiens, Andrew; Etemadi, Mozziyar; Klein, Liviu; Roy, Shuvo; Inan, Omer T

    2014-01-01

    The recent resurgence of ballistocardiogram (BCG) measurement and interpretation technologies has led to a wide range of powerful tools available for unobtrusively assessing mechanical aspects of cardiovascular health at home. Researchers have demonstrated a multitude of modern BCG measurement modalities, including beds, chairs, weighing scales, and wearable approaches. However, many modalities produce significant variations in the morphology of the measured BCG, creating confusion in the analysis and interpretation of the signals. This paper creates a framework for comparing wearable BCG measurements to whole body measurements--such as taken with a weighing scale system--to eventually allow the same analysis and interpretation tools that have been developed for whole body systems to be applied in the future to wearable systems. To the best of our knowledge, it represents the first attempt to morphologically compare vertical acceleration recordings measured on different locations on the torso to whole body displacements measured by BCG instrumentation. PMID:25571158

  16. Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects.

    PubMed

    Macaluso, T; Bourdin, C; Buloup, F; Mille, M-L; Sainton, P; Sarlegna, F R; Taillebot, V; Vercher, J-L; Weiss, P; Bringoux, L

    2016-07-01

    Astronauts' training is conventionally performed in a pool to reproduce weightlessness by exploiting buoyancy which is supposed to reduce the impact of gravity on the body. However, this training method has not been scientifically validated yet, and requires first to study the effects of underwater exposure on motor behavior. We examined the influence of neutral buoyancy on kinematic features of whole-body reaching underwater and compared them with those produced on land. Eight professional divers were asked to perform arm reaching movements toward visual targets while standing. Targets were presented either close or far from the subjects (requiring in the latter case an additional whole-body displacement). Reaching movements were performed on land or underwater in two different contexts of buoyancy. The divers either wore a diving suit only with neutral buoyancy applied to their center of mass or were additionally equipped with a submersible simulated space suit with neutral buoyancy applied to their body limbs. Results showed that underwater exposure impacted basic movement features, especially movement speed which was reduced. However, movement kinematics also differed according to the way buoyancy was exerted on the whole-body. When neutral buoyancy was applied to the center of mass only, some focal and postural components of whole-body reaching remained close to land observations, notably when considering the relative deceleration duration of arm elevation and concomitant forward trunk bending when reaching the far target. On the contrary, when neutral buoyancy was exerted on body segments, movement kinematics were close to those reported in weightlessness, as reflected by the arm deceleration phase and the whole-body forward displacement when reaching the far target. These results suggest that astronauts could benefit from the application of neutral buoyancy across the whole-body segments to optimize underwater training and acquire specific motor skills which

  17. Whole body heat stress attenuates baroreflex control of muscle sympathetic nerve activity during postexercise muscle ischemia

    PubMed Central

    Cui, Jian; Shibasaki, Manabu; Davis, Scott L.; Low, David A.; Keller, David M.; Crandall, Craig G.

    2009-01-01

    Both whole body heat stress and stimulation of muscle metabolic receptors activate muscle sympathetic nerve activity (MSNA) through nonbaroreflex pathways. In addition to stimulating muscle metaboreceptors, exercise has the potential to increase internal temperature. Although we and others report that passive whole body heating does not alter the gain of the arterial baroreflex, it is unknown whether increased body temperature, often accompanying exercise, affects baroreflex function when muscle metaboreceptors are stimulated. This project tested the hypothesis that whole body heating alters the gain of baroreflex control of muscle sympathetic nerve activity (MSNA) and heart rate during muscle metaboreceptor stimulation engaged via postexercise muscle ischemia (PEMI). MSNA, blood pressure (BP, Finometer), and heart rate were recorded from 11 healthy volunteers. The volunteers performed isometric handgrip exercise until fatigue, followed by 2.5 min of PEMI. During PEMI, BP was acutely reduced and then raised pharmacologically using the modified Oxford technique. This protocol was repeated two to three times when volunteers were normothermic, and again during heat stress (increase core temperature ∼ 0.7°C) conditions. The slope of the relationship between MSNA and BP during PEMI was less negative (i.e., decreased baroreflex gain) during whole body heating when compared with the normothermic condition (−4.34 ± 0.40 to −3.57 ± 0.31 units·beat−1·mmHg−1, respectively; P = 0.015). The gain of baroreflex control of heart rate during PEMI was also decreased during whole body heating (P < 0.001). These findings indicate that whole body heat stress reduces baroreflex control of MSNA and heart rate during muscle metaboreceptor stimulation. PMID:19213933

  18. Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects.

    PubMed

    Macaluso, T; Bourdin, C; Buloup, F; Mille, M-L; Sainton, P; Sarlegna, F R; Taillebot, V; Vercher, J-L; Weiss, P; Bringoux, L

    2016-07-01

    Astronauts' training is conventionally performed in a pool to reproduce weightlessness by exploiting buoyancy which is supposed to reduce the impact of gravity on the body. However, this training method has not been scientifically validated yet, and requires first to study the effects of underwater exposure on motor behavior. We examined the influence of neutral buoyancy on kinematic features of whole-body reaching underwater and compared them with those produced on land. Eight professional divers were asked to perform arm reaching movements toward visual targets while standing. Targets were presented either close or far from the subjects (requiring in the latter case an additional whole-body displacement). Reaching movements were performed on land or underwater in two different contexts of buoyancy. The divers either wore a diving suit only with neutral buoyancy applied to their center of mass or were additionally equipped with a submersible simulated space suit with neutral buoyancy applied to their body limbs. Results showed that underwater exposure impacted basic movement features, especially movement speed which was reduced. However, movement kinematics also differed according to the way buoyancy was exerted on the whole-body. When neutral buoyancy was applied to the center of mass only, some focal and postural components of whole-body reaching remained close to land observations, notably when considering the relative deceleration duration of arm elevation and concomitant forward trunk bending when reaching the far target. On the contrary, when neutral buoyancy was exerted on body segments, movement kinematics were close to those reported in weightlessness, as reflected by the arm deceleration phase and the whole-body forward displacement when reaching the far target. These results suggest that astronauts could benefit from the application of neutral buoyancy across the whole-body segments to optimize underwater training and acquire specific motor skills which

  19. Intercomparison of 131I and 99mTc activity measurements in Brazilian nuclear medicine services.

    PubMed

    Iwahara, A; De Oliveira, A E; Tauhata, L; da Silva, C J; Lopes, R T

    2001-03-01

    This work outlines the quality assurance program for the activity measurements of the most used radionuclides at Brazilian Nuclear Medicine Services (NMS). The program aims to guarantee that the patient is given the correct prescribed amount of activity in diagnostic or therapeutic applications. This accurate administration depends upon proper use and calibration of the activity meters by the NMS. Underestimation of administered activity in diagnostic practices could delay correct diagnosis disturbing the value of the investigation. On the other hand, the overestimation would be worse, mainly in therapeutic applications, because an unnecessarily high absorbed dose would be delivered to the patient. The preliminary results of intercomparison for 131I and 99mTc showed that many activity meters used at NMS's present problems giving results up to 41% greater than the reference values determined at the National Metrology Laboratory for Ionizing Radiation (LNMRI) which is recognized as the Brazilian authorized metrology laboratory for ionizing radiation. These results have demonstrated that the NMS should improve the accuracy of the activity measurements of the radionuclides administered to the patients and establish the traceability to the national standards of measurements. These standards are based on a pressurized well-type ionization chamber installed at LNMRI and calibrated with reference sources standardized by absolute methods. The protocol of the intercomparison and recommendations made in order to minimize errors in measuring procedures are described and results are discussed.

  20. National intercomparisons of 131I radioactivity measurements in nuclear medicine centres in India.

    PubMed

    Joseph, Leena; Anuradha, R; Nathuram, R; Shaha, V V; Abani, M C

    2003-01-01

    National intercomparisons of activity measurements of 131I, a radioisotope widely used for diagnosis and therapy of thyroid related ailments, were initiated in 1979 as a quality assurance program, towards improving radiation safety procedures and related dosimetry in Nuclear Medicine Centres (NMCs) in India. Oral administration of a known quantity of radioiodine to patients requires accurate radioactivity measurements to be performed on a well-calibrated isotope calibrators. Under or over estimation of the activity due to a faulty or uncalibrated isotope calibrator could provide misleading results. Calibration of isotope calibrators and the traceablity of subsequent measurements to the national standards laboratory is one of the essential basic radiation safety requirement of the IAEA. In view of the stringent quality assurance requirements for activity measurements imposed by Atomic Energy Regulatory Board, a National Intercomparison Program was initiated and to date ten such intercomparison programs have been conducted by the Radiation Safety Systems Division, of the Bhabha Atomic Research Centre. This program has benefited the participants by making their measurements traceable to the National Primary Standards. Over the years there has been a marked increase in the number of NMCs participating in the intercomparison programs. As a result, the number of institution showing large deviation from the correct value has decreased considerably over the years. This program thus, has enabled participating NMCs to check their isotope calibrators so as to ensure proper delivery of radiation dose to the patients and hence to optimise patient exposure.

  1. Whole-body autoradiographic microimaging: Applications in radiopharmaceutical and drug research

    SciTech Connect

    Som, P.; Sacker, D.F.

    1991-01-01

    The whole-body autoradiographic (WBARG) microimaging technique is used for evaluation of the temporo-spatial distribution of radiolabeled molecules in intact animals as well as to determine the sites of accumulation of parent compounds and their metabolites. This technique is also very useful to determine the metabolism of a compound, toxicity, and effects of therapeutic interventions on the distribution of a compound in the whole body, by studying animals at different time intervals after injection of the radiolabeled compound. This report discusses various aspects of WBARG.

  2. Whole-body autoradiographic microimaging: Applications in radiopharmaceutical and drug research

    SciTech Connect

    Som, P.; Sacker, D.F.

    1991-12-31

    The whole-body autoradiographic (WBARG) microimaging technique is used for evaluation of the temporo-spatial distribution of radiolabeled molecules in intact animals as well as to determine the sites of accumulation of parent compounds and their metabolites. This technique is also very useful to determine the metabolism of a compound, toxicity, and effects of therapeutic interventions on the distribution of a compound in the whole body, by studying animals at different time intervals after injection of the radiolabeled compound. This report discusses various aspects of WBARG.

  3. Animal physiology. Whole-body endothermy in a mesopelagic fish, the opah, Lampris guttatus.

    PubMed

    Wegner, Nicholas C; Snodgrass, Owyn E; Dewar, Heidi; Hyde, John R

    2015-05-15

    Endothermy (the metabolic production and retention of heat to warm body temperature above ambient) enhances physiological function, and whole-body endothermy generally sets mammals and birds apart from other animals. Here, we describe a whole-body form of endothermy in a fish, the opah (Lampris guttatus), that produces heat through the constant "flapping" of wing-like pectoral fins and minimizes heat loss through a series of counter-current heat exchangers within its gills. Unlike other fish, opah distribute warmed blood throughout the body, including to the heart, enhancing physiological performance and buffering internal organ function while foraging in the cold, nutrient-rich waters below the ocean thermocline.

  4. Intercomparison of whole-body counters using a multinuclide calibration phantom.

    PubMed

    Fenwick, J D; McKenzie, A L; Boddy, K

    1991-02-01

    Whole-body counters in the UK have been compared using a multinuclide anthropomorphic phantom. A standard Bush phantom was modified by inserting channels into the long axis of each section. Radionuclide sources sealed in a urea-formaldehyde polymer were then inserted into the channels to simulate distributions of radioactivity in a human. The phantom was taken to 10 whole-body counters in the UK and estimates of 134Cs, 137Cs and 40K were obtained both separately and as mixtures. Results showed close agreement between the median estimates and the known activities. The technique also allowed diagnosis of particular problems in calibration for several of the counters.

  5. Whole-body MR angiography using variable density sampling and dual-injection bolus-chase acquisition.

    PubMed

    Du, Jiang; Korosec, Frank R; Wu, Yijing; Grist, Thomas M; Mistretta, Charles A

    2008-02-01

    Conventional bolus-chase acquisition generates peripheral runoff images using a single injection of the contrast material. Low spatial resolution, small slice coverage and venous contamination are major problems especially in the distal stations. A technique is presented herein in which whole-body magnetic resonance angiography is performed using a dual-contrast-injection four-station acquisition protocol. Bolus sharing was performed between two stations: the abdomen and calf stations share the first bolus injection, while the thorax and thigh stations share the second bolus injection. The combination of variable density sampling and elliptical centric acquisition order was applied to the abdomen and thorax stations. The scan time was extended to generate high spatial resolution arterial phase images with broad slice coverage for the calf and thigh stations. The feasibility of this technique was demonstrated using phantom and in vivo human volunteer studies.

  6. Very low-dose adult whole-body tumor imaging with F-18 FDG PET/CT

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Naveed, Muhammad; McGrath, Mary; Lisi, Michele; Lavalley, Cathy; Feiglin, David

    2015-03-01

    The aim of this study was to evaluate if effective radiation dose due to PET component in adult whole-body tumor imaging with time-of-flight F-18 FDG PET/CT could be significantly reduced. We retrospectively analyzed data for 10 patients with the body mass index ranging from 25 to 50. We simulated F-18 FDG dose reduction to 25% of the ACR recommended dose via reconstruction of simulated shorter acquisition time per bed position scans from the acquired list data. F-18 FDG whole-body scans were reconstructed using time-of-flight OSEM algorithm and advanced system modeling. Two groups of images were obtained: group A with a standard dose of F-18 FDG and standard reconstruction parameters and group B with simulated 25% dose and modified reconstruction parameters, respectively. Three nuclear medicine physicians blinded to the simulated activity independently reviewed the images and compared diagnostic quality of images. Based on the input from the physicians, we selected optimal modified reconstruction parameters for group B. In so obtained images, all the lesions observed in the group A were visible in the group B. The tumor SUV values were different in the group A, as compared to group B, respectively. However, no significant differences were reported in the final interpretation of the images from A and B groups. In conclusion, for a small number of patients, we have demonstrated that F-18 FDG dose reduction to 25% of the ACR recommended dose, accompanied by appropriate modification of the reconstruction parameters provided adequate diagnostic quality of PET images acquired on time-of-flight PET/CT.

  7. SCAN+

    SciTech Connect

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  8. Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer

    NASA Astrophysics Data System (ADS)

    Wetterling, Friedrich; Corteville, Dominique M.; Kalayciyan, Raffi; Rennings, Andreas; Konstandin, Simon; Nagel, Armin M.; Stark, Helmut; Schad, Lothar R.

    2012-07-01

    Sodium magnetic resonance imaging (23Na MRI) is a non-invasive technique which allows spatial resolution of the tissue sodium concentration (TSC) in the human body. TSC measurements could potentially serve to monitor early treatment success of chemotherapy on patients who suffer from whole body metastases. Yet, the acquisition of whole body sodium (23Na) images has been hampered so far by the lack of large resonators and the extremely low signal-to-noise ratio (SNR) achieved with existing resonator systems. In this study, a 23Na resonator was constructed for whole body 23Na MRI at 3T comprising of a 16-leg, asymmetrical birdcage structure with 34 cm height, 47.5 cm width and 50 cm length. The resonator was driven in quadrature mode and could be used either as a transceiver resonator or, since active decoupling was included, as a transmit-only resonator in conjunction with a receive-only (RO) surface resonator. The relative B1-field profile was simulated and measured on phantoms, and 3D whole body 23Na MRI data of a healthy male volunteer were acquired in five segments with a nominal isotropic resolution of (6 × 6 × 6) mm3 and a 10 min acquisition time per scan. The measured SNR values in the 23Na-MR images varied from 9 ± 2 in calf muscle, 15 ± 2 in brain tissue, 23 ± 2 in the prostate and up to 42 ± 5 in the vertebral discs. Arms, legs, knees and hands could also be resolved with applied resonator and short time-to-echo (TE) (0.5 ms) radial sequence. Up to fivefold SNR improvement was achieved through combining the birdcage with local RO surface coil. In conclusion, 23Na MRI of the entire human body provides sub-cm spatial resolution, which allows resolution of all major human body parts with a scan time of less than 60 min.

  9. Comparison of Drug Distribution Images from Thin Tissue Sections Obtained Using Desorption Electrospray Ionization Tandem Mass Spectrometry and Whole-Body Autoradiography

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J; Vavek, Marissa; Koeplinger, Kenneth A.; Schneider, Bradley B; Covey, Thomas R.

    2008-01-01

    Desorption electrospray ionization tandem mass spectrometry (DESI-MS/MS) and whole-body autoradiography (WBA) were used for chemical imaging of whole-body thin tissue sections of mice intravenously dosed with propranolol (7.5 mg/kg). DESI-MS/MS imaging utilized selected reaction monitoring detection performed on an AB/MDS SCIEX 4000 QTRAP mass spectrometer equipped with a prototype extended length particle discriminator interface. Propranolol images of the tissue sections using DESI-MS/MS were obtained at surface scan rates of 0.1, 0.5, 2 and 7 mm/s. Although signal decreased with increasing scan rate, useful whole-body images for propranolol were obtained from the tissues even at 7 mm/s, which required just 79 min of analysis time. Attempts to detect and image the distribution of the known propranolol metabolites were unsuccessful. Regions of the tissue sections showing the most radioactivity from WBA sections were excised and analyzed by HPLC with radiochemical detection to determine relative levels of propranolol and metabolites present. Comparison of the DESI-MS/MS signal for propranolol and the radioactivity attributed to propranolol from WBA sections indicated nominal agreement between the two techniques for the amount of propranolol in the brain, lung, and liver. Data from the kidney showed an unexplained disparity between the two techniques. The results of this study show the feasibility of using DESI-MS/MS to obtain useful chemical images of a drug in whole-body thin tissue sections following drug administration at a pharmacologically relevant level. Further optimization to improve sensitivity and enable detection of the drug metabolites will be among the requirements necessary to move DESI-MS/MS chemical imaging forward as a practical tool in drug discovery.

  10. Moving along the Mental Number Line: Interactions between Whole-Body Motion and Numerical Cognition

    ERIC Educational Resources Information Center

    Hartmann, Matthias; Grabherr, Luzia; Mast, Fred W.

    2012-01-01

    Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants…

  11. Human and animal studies: portals into the whole body and whole population response

    EPA Science Inventory

    Human and animal studies: portals into the whole body and whole population response Michael C. Madden1 and Brett Winters21US Environmental Protection Agency and 2University of North Carolina Human Studies Facility, Chapel Hill, North Carolina, USA Studies involving collection and...

  12. Knowledge, Attitude, and Practices regarding Whole Body Donation among Medical Professionals in a Hospital in India

    ERIC Educational Resources Information Center

    Ballala, Kirthinath; Shetty, Avinash; Malpe, Surekha Bhat

    2011-01-01

    Voluntary body donation has become an important source of cadavers for anatomical study and education. The objective of this study was to assess knowledge, attitude, and practice (KAP) regarding whole body donation among medical professionals in a medical institute in India. A cross sectional study was conducted at Kasturba Hospital, Manipal,…

  13. Effects of Whole-Body Vibration Therapy in Patients with Fibromyalgia: A Systematic Literature Review

    PubMed Central

    Collado-Mateo, Daniel; Adsuar, Jose C.; Olivares, Pedro R.; del Pozo-Cruz, Borja; Parraca, Jose A.; del Pozo-Cruz, Jesus; Gusi, Narcis

    2015-01-01

    Objective. To review the literature on the effects of whole-body vibration therapy in patients with fibromyalgia. Design. Systematic literature review. Patients. Patients with fibromyalgia. Methods. An electronic search of the literature in four medical databases was performed to identify studies on whole-body vibration therapy that were published up to the 15th of January 2015. Results. Eight articles satisfied the inclusion and exclusion criteria and were analysed. According to the Dutch CBO guidelines, all selected trials had a B level of evidence. The main outcomes that were measured were balance, fatigue, disability index, health-related quality of life, and pain. Whole-body vibration appeared to improve the outcomes, especially balance and disability index. Conclusion. Whole-body vibration could be an adequate treatment for fibromyalgia as a main therapy or added to a physical exercise programme as it could improve balance, disability index, health-related quality of life, fatigue, and pain. However, this conclusion must be treated with caution because the paucity of trials and the marked differences between existing trials in terms of protocol, intervention, and measurement tools hampered the comparison of the trials. PMID:26351517

  14. Optimization of Whole-body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    EPA Science Inventory

    Mass spectrometry imaging (MSI) methods and protocols have become widely adapted to a variety of tissues and species. However, the MSI literature lacks information on whole-body cryosection preparation for the zebrafish (ZF; Danio rerio), a model organism routinely used in devel...

  15. Insulin and amino acids stimulate whole body protein synthesis in neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin and amino acids (AA) stimulate muscle protein synthesis in neonatal pigs. To determine the effects of insulin and AA on whole body protein turnover, hyperinsulinemic (0 and 100 ng/(kg[0.66]/min))-euglycemic-AA clamps were performed during euaminoacidemia or hyperaminoacidemia in fasted 7-d-...

  16. DETECTION OF WHOLE BODY OXIDATIVE STRESS IN URINE USING OXYGEN-18 LABELING

    EPA Science Inventory

    DETECTION OF WHOLE BODY OXIDATIVE STRESS IN URINE USING OXYGEN-18 LABELING. R Slade, J L McKee and G E Hatch. PTB, ETD, NHEERL, ORD, USEPA, Research Triangle Park, NC, USA.
    Reliable non-invasive markers for detecting oxidative stress in vivo are currently not available. We pr...

  17. Prolonged bed rest decreases skeletal muscle and whole body protein synthesis

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Lane, H. W.; Stuart, C. A.; Davis-Street, J.; Wolfe, R. R.

    1996-01-01

    We sought to determine the extent to which the loss of lean body mass and nitrogen during inactivity was due to alterations in skeletal muscle protein metabolism. Six male subjects were studied during 7 days of diet stabilization and after 14 days of stimulated microgravity (-6 degrees bed rest). Nitrogen balance became more negative (P < 0.03) during the 2nd wk of bed rest. Leg and whole body lean mass decreased after bed rest (P < 0.05). Serum cortisol, insulin, insulin-like growth factor I, and testosterone values did not change. Arteriovenous model calculations based on the infusion of L-[ring-13C6]-phenylalanine in five subjects revealed a 50% decrease in muscle protein synthesis (PS; P < 0.03). Fractional PS by tracer incorporation into muscle protein also decreased by 46% (P < 0.05). The decrease in PS was related to a corresponding decrease in the sum of intracellular amino acid appearance from protein breakdown and inward transport. Whole body protein synthesis determined by [15N]alanine ingestion on six subjects also revealed a 14% decrease (P < 0.01). Neither model-derived nor whole body values for protein breakdown change significantly. These results indicate that the loss of body protein with inactivity is predominantly due to a decrease in muscle PS and that this decrease is reflected in both whole body and skeletal muscle measures.

  18. Effects of Whole-Body Vibration Therapy in Patients with Fibromyalgia: A Systematic Literature Review.

    PubMed

    Collado-Mateo, Daniel; Adsuar, Jose C; Olivares, Pedro R; Del Pozo-Cruz, Borja; Parraca, Jose A; Del Pozo-Cruz, Jesus; Gusi, Narcis

    2015-01-01

    Objective. To review the literature on the effects of whole-body vibration therapy in patients with fibromyalgia. Design. Systematic literature review. Patients. Patients with fibromyalgia. Methods. An electronic search of the literature in four medical databases was performed to identify studies on whole-body vibration therapy that were published up to the 15th of January 2015. Results. Eight articles satisfied the inclusion and exclusion criteria and were analysed. According to the Dutch CBO guidelines, all selected trials had a B level of evidence. The main outcomes that were measured were balance, fatigue, disability index, health-related quality of life, and pain. Whole-body vibration appeared to improve the outcomes, especially balance and disability index. Conclusion. Whole-body vibration could be an adequate treatment for fibromyalgia as a main therapy or added to a physical exercise programme as it could improve balance, disability index, health-related quality of life, fatigue, and pain. However, this conclusion must be treated with caution because the paucity of trials and the marked differences between existing trials in terms of protocol, intervention, and measurement tools hampered the comparison of the trials. PMID:26351517

  19. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation.

    PubMed

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C ± 1.3°C and -8.3 ± 0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ± 0.11°C), while it only decreased at P20 (-0.14 ± 0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than

  20. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation

    PubMed Central

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C±1.3°C and -8.3±0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ±0.11°C), while it only decreased at P20 (-0.14±0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than PBC

  1. Initial plasma disappearance and tissue uptake of 131I-albumin in normal rabbits

    SciTech Connect

    Bent-Hansen, L. )

    1991-05-01

    The simultaneous plasma disappearance curves of 131I-albumin and 125I-fibrinogen were recorded in normal rabbits for 1 hr. Using fibrinogen as a plasma reference, the disappearance curves of albumin were shown to contain two separate phases of efflux: one fast from zero to 10 min. comprising 8% of the total tracer; and one slow appearing in the interval of 10 to 60 min. containing another 9% of the tracer. Total albumin escape was analyzed to yield an initial slope of 0.024 {plus minus} 0.004 min-1, corresponding to a wholebody unidirectional albumin clearance (Cl(0)) of 0.090 {plus minus} 0.009 ml(min{asterisk}100 g)-1. The distribution of efflux was assessed by biopsy uptakes using the same tracers in spleen, kidney, heart, lung, liver, intestine, skin, muscle, and brain. The disappearance curve generally reflects a biphasic pattern of uptake in peripheral tissue, predominantly by muscle and lung. The rapid phase has contributions from the fast near equilibration of liver, and intestine and skin are significant codeterminants of the slow phase. Due to their low body masses highly perfused organs such as kidney, spleen, and heart have little influence on the plasma disappearance. In accordance, the Cl(0) determined for the wholebody was higher than initial clearances found in skin (0.053 ml(min{asterisk}100 g)-1) and muscle (0.054 ml(min{asterisk}100 g)-1), but much lower than those found in the highly perfused organs. The initial (unidirectional) rates of peripheral albumin transfer demonstrated, ranged from 10 to 30 times higher than estimates of lymphatic return, suggesting that transcapillary albumin exchange is mediated by high-rate bidirectional diffusion. The rapid decrease of net albumin exchange rates suggests a second, highly significant barrier located within the interstitial matrix, which restricts plasma escape and reduces plasma to lymph albumin transport.

  2. A physiologically based pharmacokinetic model for lactational transfer of Na-131I

    NASA Astrophysics Data System (ADS)

    Turner, Anita Loretta

    The excretion of radionuclides in human breast milk after administration of radiopharmaceuticals is a concern as a radiation risk to nursing infants. It is not uncommon to administer radiopharmaceuticals to lactating patients due to emergency nuclear medicine investigations such as thyroid complications, kidney failure, and pulmonary embolism. There is a need to quantify the amount of radioactivity translocated into breast milk in cases of ingestion by a breast-fed infant. A physiologically based pharmacokinetic model (PBPK) and a modified International Commission on Radiological Protection (ICRP) model have been developed to predict iodine concentrations in breast milk after ingestion of radioiodine by the mother. In the PBPK model, all compartments are interconnected by blood flow and represent real anatomic tissue regions in the body. All parameters involved are measurable values with physiological or physiochemical meaning such as tissue masses, blood flow rates, partition coefficients and cardiac output. However, some of the parameters such as the partition coefficients and metabolic constants are not available for iodine and had to be inferred from other information. The structure of the PBPK model for the mother consists of the following tissue compartments: gastrointestinal tract, blood, kidney, thyroid, milk, and other tissues. With the exception of the milk compartment, the model for the nursing infant is structured similarly to the mother. The ICRP model describing iodine metabolism in a standard 70-kg man was modified to represent iodine metabolism in a lactating woman and nursing infant. The parameters involved in this model are transfer rates and biological half-lives which are based on experimental observations. The results of the PBPK model and the modified ICRP model describing the lactational transfer of iodine were compared. When administering 1 mCi of Na131I to the lactating mother, the concentration reaches a maximum of 0.1 mCi/liter in 24

  3. An information theoretic view of the scheduling problem in whole-body CAD

    NASA Astrophysics Data System (ADS)

    Zhan, Yiqiang; Zhou, Xiang Sean; Krishnan, Arun

    2008-03-01

    Emerging whole-body imaging technologies push computer aided detection/diagnosis (CAD) to scale up to a whole-body level, which involves multiple organs or anatomical structure. To be exploited in this paper is the fact that the various tasks in whole-body CAD are often highly dependent (e.g., the localization of the femur heads strongly predicts the position of the iliac bifurcation of the aorta). One way to effectively employ task dependency is to schedule the tasks such that outputs of some tasks are used to guide the others. In this sense, optimal task scheduling is key to improve overall performance of a whole-body CAD system. In this paper, we propose a method for task scheduling that is optimal in an information-theoretic sense. The central idea is to schedule tasks in such an order that each operation achieves maximum expected information gain over all the tasks. The formulation embeds two intuitive principles: (1) a task with higher confidence tends to be scheduled earlier; (2) a task with higher predictive power for other tasks tends to be scheduled earlier. More specifically, task dependency is modeled by conditional probability; the outcome of each task is assumed to be probabilistic as well; and the objective function is based on the reduction of the summed conditional entropy over all tasks. The validation is carried out on a challenging CAD problem, multi-organ localization in whole-body CT. Compared to unscheduled and ad hoc scheduled organ detection/localization, our scheduled execution achieves higher accuracy with much less computation time.

  4. Improvement in the accuracy of dual energy x-ray absorptiometry for whole body and regional analysis of body composition: validation using piglets and methodologic considerations in infants.

    PubMed

    Brunton, J A; Weiler, H A; Atkinson, S A

    1997-04-01

    Previously, we conducted dual energy x-ray absorptiometry (DXA) (Hologic QDR-1000/W) scans and carcass analysis of piglets to evaluate the Pediatric Whole Body software (PedWB) (V5.35) for use in infants. A software upgrade designed for infant whole body (InfWB) (V5.56) led to a reassessment of DXA by: 1) reanalysis of the original scans using InfWB software and 2) comparison of InfWB-estimates of bone mineral content (BMC) and lean and fat mass with chemical analysis. Other assessments included 1) methods of regional analysis and 2) artifacts and the Infant Table Pad in the scan field. The mean coefficients of variation for InfWB whole body measures in small piglets (n = 10, weight 1575 +/- 73 g) and large piglets (n = 10, weight 5894 +/- 208 g) were less than 2.6% except for fat mass which was higher (8.0% versus 6.3% and 6.6% versus 3.5%, respectively) compared with PedWB. In large piglets InfWB produced good estimates of BMC, lean and fat masses. In small piglets, fat mass by InfWB was correlated with chemical analysis, but not by PedWB. There was improvement in the estimation of BMC with InfWB, from 27 +/- 2.2 g to 32 +/- 2.3 g (carcass ash = 38 +/- 3.3 g). Femur BMC analysis by InfWB was precise and was accurate when compared with chemical analysis. Artifacts in the DXA scan field (diapers and blankets) resulted in an increase of the DXA-estimated fat and lean masses. The Infant Table Pad increased the estimate of fat mass in a small piglet by 50%, thus further study is required before it is used routinely. Improvements of the DXA technology have resulted in a more accurate tool, if scanning procedures are carefully implemented. PMID:9098865

  5. EURADOS INTERCOMPARISONS IN EXTERNAL RADIATION DOSIMETRY: SIMILARITIES AND DIFFERENCES AMONG EXERCISES FOR WHOLE-BODY PHOTON, WHOLE-BODY NEUTRON, EXTREMITY, EYE-LENS AND PASSIVE AREA DOSEMETERS.

    PubMed

    Romero, Ana M; Grimbergen, Tom; McWhan, Andrew; Stadtmann, Hannes; Fantuzzi, Elena; Clairand, Isabelle; Neumaier, Stefan; Figel, Markus; Dombrowski, Harald

    2016-09-01

    The European Radiation Dosimetry Group (EURADOS) has been organising dosimetry intercomparisons for many years in response to an identified requirement from individual monitoring services (IMS) for independent performance tests for dosimetry systems. The participation in intercomparisons gives IMS the opportunity to show compliance with their own quality management system, compare results with other participants and develop plans for improving their dosimetry systems. In response to growing demand, EURADOS has increased the number of intercomparisons for external radiation dosimetry. Most of these fit into the programme of self-financing intercomparisons for dosemeters routinely used by IMS. This programme is being coordinated by EURADOS working group 2 (WG2). Up to now, this programme has included four intercomparisons for whole-body dosemeters in photon fields, one for extremity dosemeters in photon and beta fields, and one for whole-body dosemeters in neutron fields. Other EURADOS working groups have organised additional intercomparisons including events in 2014 for eye-lens dosemeters and passive area dosemeters for environmental monitoring. In this paper, the organisation and achievements of these intercomparisons are compared in detail focusing on the similarities and differences in their execution. PMID:26759475

  6. Measurement of caesium-137 in the human body using a whole body counter

    NASA Astrophysics Data System (ADS)

    Elessawi, Elkhadra Abdulmula

    Gamma radiation in the environment is mainly due to naturally occurring radionuclides. However, there is also a contribution from anthropogenic radionuclides such as 137Cs which originate from nuclear fission processes. Since 1986, the accident at the Chernobyl power plant has been a significant source of artificial environmental radioactivity. In order to assess the radiological impact of these radionuclides, it is necessary to measure their activities in samples drawn from the environment and in plants and animals including human populations. The whole body counter (WBC) at the University Hospital of Wales in Cardiff makes in vivo measurements of gamma emitting radionuclides using a scanning ring of six large-volume thallium-doped sodium iodide (Nal(Tl)) scintillation detectors. In this work the WBC was upgraded by the addition of two high purity germanium (HPGe) detectors. The performance and suitability of the detection systems were evaluated by comparing the detection limits for Cs. Sensitivities were measured using sources of known activity in a water filled anthropomorphic phantom and theoretical minimum detectable count-rates were estimated from phantom background pulse height spectra. The theoretical minimum detectable activity was about 24 Bq for the combination of six Nal(Tl) detectors whereas for the individual HPGe detectors it was 64 Bq and 65 Bq, despite the much improved energy resolution Activities of 137Cs in the human body between 1993 and 2007 were estimated from the background Nal(Tl) spectra of 813 patients and compared with recent measurements in 14 volunteers. The body burden of Cs in Cardiff patients increased from an average of about 60 Bq in the early and mid 1990s to a maximum of about 100 Bq in 2000. By 2007 it had decreased to about 40 Bq. This latter value was similar to that of Cardiff residents at the time of the Chernobyl accident and to that of the volunteers measured in 2007 (51 Bq). However, it was less than the mean activity of

  7. Nothing but NET: A review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy

    PubMed Central

    Streby, Keri A; Shah, Nilay; Ranalli, Mark A; Kunkler, Anne; Cripe, Timothy P

    2015-01-01

    Neuroblastoma is unique amongst common pediatric cancers for its expression of the norepinephrine transporter (NET), enabling tumor-selective imaging and therapy with radioactive analogues of norepinephrine. The majority of neuroblastoma tumors are avid for 123I-metaiodobenzaguanidine (mIBG) on imaging, yet the therapeutic response to 131I-mIBG is only 30% in clinical trials, and off-target effects cause short- and long-term morbidity. We review the contemporary understanding of the tumor-selective uptake, retention, and efflux of meta-iodobenzylguanidine (mIBG) and strategies currently in development for improving its efficacy. Combination treatment strategies aimed at enhancing NET are likely necessary to reach the full potential of 131I-mIBG therapy. PMID:25175627

  8. Treatment of intracranial human glioma xenografts with 131I-labeled anti-tenascin monoclonal antibody 81C6.

    PubMed

    Lee, Y; Bullard, D E; Humphrey, P A; Colapinto, E V; Friedman, H S; Zalutsky, M R; Coleman, R E; Bigner, D D

    1988-05-15

    Lack of tumor specificity renders current modalities for treating malignant glioma ineffective. The administration of 131I-labeled monoclonal antibody (Mab) 81C6, which reacts with the glioma-associated extracellular matrix antigen, tenascin, to nude mice carrying s.c. human glioma xenografts has resulted in significant tumor growth delay and tumor regression. In this study, we evaluated the therapeutic efficacy of 131I-labeled 81C6 in athymic rats bearing intracranial human glioma xenografts, a more appropriate model for human gliomas. Mab 81C6, an IgG2b immunoglobulin, and an isotype-matched control Mab, 45.6, were labeled at 12.5-23.6 mCi/mg with chloramine-T. The Mabs were given i.v. at 1.25 and 2.5 mCi/animal for 131I-labeled 81C6, and 1.25 mCi for 131I-labeled 45.6 control. Therapeutic response was evaluated by survival prolongation using Wilcoxon rank sum analysis. Three experiments were done. No significant survival prolongation was found in the trial in which the average tumor size at the time of Mab administration was 60 +/- 14 mm3, two-thirds the size which causes animal death. In experiment 2, Mab was given at 16 +/- 14 mm3 average intracranial tumor volume. Statistically significant (P less than or equal to 0.005) survival prolongation was found for animals treated with 2.5 mCi 131I-labeled 81C6. In that experiment, male animals with intracranial xenografts had significantly shorter survival than females (P less than or equal to 0.005). When only female animals were used in the analysis, the 1.25-mCi 81C6 group also was found to have longer survival benefit (P less than or equal to 0.01). In the third experiment, only female animals were used and the tumor size at the initiation of treatment was 20 +/- 9 mm3. Highly significant survival prolongation again was found in both 1.25 (P = 0.001) and 2.5 mCi (P less than 0.001) 131I-labeled 81C6 groups. The estimated dose to intracranial tumors from 1.25 mCi of 131I-labeled Mab was 1585 rads for 81C6 and 168

  9. Aerial Survey Results for 131I Deposition on the Ground after the Fukushima Daiichi Nuclear Power Plant Accident

    SciTech Connect

    Torii, Tatsuo; Sugita, Takeshi; Okada, Colin E.; Reed, Michael S.; Blumenthal, Daniel J.

    2013-08-01

    In March 2011 the second largest accidental release of radioactivity in history occurred at the Fukushima Daiichi nuclear power plant following a magnitude 9.0 earthquake and subsequent tsunami. Teams from the U.S. Department of Energy, National Nuclear Security Administration Office of Emergency Response performed aerial surveys to provide initial maps of the dispersal of radioactive material in Japan. The initial results from the surveys did not report the concentration of 131I. This work reports on analyses performed on the initial survey data by a joint Japan-US collaboration to determine 131I ground concentration. This information is potentially useful in reconstruction of the inhalation and external exposure doses from this short-lived radionuclide. The deposited concentration of 134Cs is also reported.

  10. The feasibility of using {sup 129}I to reconstruct {sup 131}I desposition from the Chernobyl reactor accident

    SciTech Connect

    Straume, T.; Marchetti, A.A.; Anspaugh, L.R.

    1996-11-01

    Radioiodine released to the atmosphere from the accident at the Chernobyl nuclear power station in the spring of 1986 resulted in large-scale thyroid-gland exposure of populations in Ukraine, Belarus, and Russia. Because of the short half life of {sup 131}I (8.04 d), adequate data on the intensities and patterns of iodine deposition were not collected, especially in the regions where the incidence of childhood-thyroid cancer is now increasing. Results are presented from a feasibility study that show that accelerator-mass-spectrometry measurements of {sup 129}I (half life 16 {times} 10{sup 6}y) in soil can be used to reconstruct {sup 131}I-deposition density and thus help in the thyroid-dosimetry effort that is now urgently needed to support epidemiologic studies of childhood-thyroid cancer in the affected regions. 32refs., 9 figs., 3 tabs.

  11. Measurement of airborne 131I, 134)Cs and 137Cs due to the Fukushima reactor incident in Milan (Italy).

    PubMed

    Clemenza, M; Fiorini, E; Previtali, E; Sala, E

    2012-12-01

    After the earthquake and the tsunami occurred in Japan on March 2011, four of the Fukushima reactors had released in air a large amount of radioactive isotopes that diffused all over the world. The presence of airborne (131)I, (134)Cs, and (137)Cs in air particulate due to this accident were detected and measured in the Low Radioactivity Laboratory operating in the Department of Environmental Sciences of the University of Milano-Bicocca. The sensitivity of the detecting apparatus is of 0.2 uBq/m(3) of air. Concentration and time distribution of these radiocontaminations ranging from a few to 400 uBq/m(3) for the (131)I and of a few tens of uBq/m(3) for the (137)Cs and (134)Cs.

  12. Problem on estimation of the content of 131I in milk in the ``iodine'' period of the Chernobyl accident

    NASA Astrophysics Data System (ADS)

    Khrushchinskii, A. A.; Kuten', S. A.; Budevich, N. M.; Minenko, V. F.; Zhukova, O. M.; Luk'yanov, N. K.

    2007-11-01

    Measurements of the beta-activity of milk, serving as the main source of information on the radioactive contamination of the environment by the iodine isotope 131I, carried out on a DP-100 radiometer in the early post-Chernobyl period (1986) in Belarus, have been mathematically simulated. The results obtained allow the conclusion that the indicated measurements should be analyzed again with consideration for all of the nuclides present in milk.

  13. Long-range transport of gaseous 131I and other radionuclides from Fukushima accident to Southern Poland

    NASA Astrophysics Data System (ADS)

    Mietelski, Jerzy W.; Kierepko, Renata; Brudecki, Kamil; Janowski, Paweł; Kleszcz, Krzysztof; Tomankiewicz, Ewa

    2014-07-01

    A serious accident at Fukushima Dai-Ichi NPP triggered radioactive emission to the atmosphere on 12 March 2011. The results of gamma spectrometric measurements of both gaseous and aerosol fraction of the air, collected in Krakow over the period from March 21 till the end of May 2011, as well as wet and dry deposition recorded from March till the end of October 2011, are presented in this paper. Krakow happened to be the first Polish location where radioactive isotopes characteristic for reactor releases, such as 131I, 132I, 129mTe, 132Te, 134Cs, 136Cs, and 137Cs, were detected. The maximum activity for aerosols equal to (5.73 ± 0.35) mBq/m3, (0.461 ± 0.041) mBq/m3 and (0.436 ± 0.038) mBq/m3 for 131I, 134Cs and 137Cs, respectively, was recorded for March 29, 2011. The data on the fallout are also given. The results of the radiochemical analysis of aerosol samples showed no traces of plutonium or americium isotopes associated with the disaster to be detected. The results of air activity concentration from Fukushima accident observed in Central Europe, Poland, in comparison to those of Chernobyl accident observed in Japan are presented and discussed. The comparison has revealed a discrepancy in the recognized relative scale of both accidents, and important difference in long distance transport of contamination, to exist. An attempt to explain the variation in the activity ratios between the aerosol fraction for 131I and 137Cs as resulting from exchange between the gaseous and aerosol fractions of 131I while the contamination had been propagating, is made.

  14. Assessment of the effect of vasodilators on the distribution of cardiac output by whole-body Thallium imaging

    SciTech Connect

    Juni, J.E.; Wallis, J.; Diltz, E.; Nicholas, J.; Lahti, D.; Pitt, B.

    1985-05-01

    Vasodilator therapy (tx) of congestive heart failure (CHF) has been shown to be effective in increasing cardiac output (CO) and lowering vascular resistance. Unfortunately, these hemodynamic effects are not usually accompanied by improved peripheral circulation of exercise capacity. To assess the effect of a new vasodilator, Cl-914, on the redistribution of CO to the peripheral circulation, the authors performed testing whole-body thallium scanning (WB-Th) on 6 patients (pts) with severe CHF. Immediately following i.v. injection of 1.5 mCi Th-201, WB scanning was performed from anterior and posterior views. Regions of interest were defined for the peripheral (P) muscles (legs and arms), central torso (C), and splanchnic bed (S). The geometric mean of activity in these regions was calculated from both views. Each pt was studied before tx and again, after 1 week on tx. Invasive measurements revealed that all pts had significant improvements in resting cardiac output (mean increase 49%) and vascular resistance (mean decrease 30%). Unlike other vasodilators, all CI-914 pts had a significant improvement in treadmill exercise capacity (mean increase 54%). WB-Th revealed a significant shift in CO to the peripheral circulation with P:C increased 33.2% (rho= .001) and P:S increased 29% (rho=.01). Vasoactive drugs may significantly alter the relative distribution of cardiac output. WB-Th scanning provides a simple quantitative means of following such changes.

  15. Behaviour of 125I-fibrinogen and 131I-albumin in experimental galactosamine-induced hepatitis.

    PubMed Central

    Mahn, I; Merkel, H; Sattler, E L; Müller-Berghaus, G

    1977-01-01

    The turnover of 125I-labelled fibrinogen and 131I-labelled albumin was studied in the course of galactosamine-induced hepatitis in rabbits. In addition to galactosamine, some animals were treated with epsilon-aminocaproic acid (EACA) to inhibit the activation of the fibrinolytic system. The infusion of galactosamine and EACA caused generation of fibrin-rich microclots in the renal glomerular capillaries in seven out of 12 rabbits. Correspondingly, the incorporation of 125I-radioactivity into liver, spleen, and kidneys was pronounced in galactosamine- and EACA-treated rabbits compared with control animals treated with EACA. An acceleration of the 125I-fibrinogen elimination from the plasma was observed between eight and 12 hours after the start of the galactosamine infusion. The administration of heparin in addition to galactosamine and EACA prevented the occurrence of intravascular coagulation, but shortened the survival times of the animals because of bleeding into visceral organs. The elimination of 131I-albumin in plasma as well as the distribution of 131I-radioactivity in organs were similar in all the rabbits independent of the treatment with galactosamine, EACA, or heparin. The experiments indicate that, in addition to diminished synthesis of coagulation factors, disseminated intravascular coagulation is involved in galactosamine-induced hepatitis and contributes to the haemostatic disorder. PMID:873336

  16. Uptake and localization of /sup 131/I-labeled anti-calcitonin immunoglobulins in rat medullary thyroid carcinoma tissue

    SciTech Connect

    Gautvik, K.M.; Svindahl, K.; Skretting, A.; Stenberg, B.; Myhre, L.; Ekeland, A.; Johannesen, J.V.

    1982-09-15

    A medullary carcinoma of the thyroid gland (MCT) which has been transplanted repeatedly under the kidney capsule of Wag/Rij rats secretes calcitonin (CT) spontaneously. From 10--20 weeks after transplantation, immunoreactive serum calcitonin (iCT) is abnormally elevated and continues to rise parallel to tumor growth. The immunoglobulin fraction of the rabbit anti-CT antiserum raised against intact synthetic hormone, was purified and iodinated electrolytically. Specific activities of /sup 131/I-labeled immunoglobulin of 0.008--0.014 mCi/microgram protein were obtained with 80% preservation of CT binding activity. Wag/Rig rats with MCT tumor and increased serum iCT concentrations received intravenous injections of /sup 131/I-labeled immunoglobulins (0.054--0.811 mCi). The distribution of radioactivity in the rats was followed for 14 days using external scintigraphy in combination with radioactivity measurements of blood and different organs at the end of the observation period. The distribution of /sup 113/mIn was used as a marker for blood distribution. When the radioactivity ratios (/sup 131/I//sup 113/mIn) in tumor and different organs were related to that of blood which was set equal to unity, tumor tissue contained 3--6 times higher activity. Nonhyperimmune rabbit immunoglobulins or rabbit antirat prolactin immunoglobulins were not concentrated in MCT tissue, nor did anti-CT immunoglobulins localize in rat prolactin adenomas.

  17. Thyroid Dose Estimates for a Cohort of Belarusian Children Exposed to (131)I from the Chernobyl Accident: Assessment of Uncertainties.

    PubMed

    Drozdovitch, Vladimir; Minenko, Victor; Golovanov, Ivan; Khrutchinsky, Arkady; Kukhta, Tatiana; Kutsen, Semion; Luckyanov, Nickolas; Ostroumova, Evgenia; Trofimik, Sergey; Voillequé, Paul; Simon, Steven L; Bouville, André

    2015-08-01

    Deterministic thyroid radiation doses due to iodine-131 ((131)I) intake were reconstructed in a previous article for 11,732 participants of the Belarusian-American cohort study of thyroid cancer and other thyroid diseases in individuals exposed during childhood or adolescence to fallout from the Chernobyl accident. The current article describes an assessment of uncertainties in reconstructed thyroid doses that accounts for the shared and unshared errors. Using a Monte Carlo simulation procedure, 1,000 sets of cohort thyroid doses due to (131)I intake were calculated. The arithmetic mean of the stochastic thyroid doses for the entire cohort was 0.68 Gy. For two-thirds of the cohort the arithmetic mean of individual stochastic thyroid doses was less than 0.5 Gy. The geometric standard deviation of stochastic doses varied among cohort members from 1.33 to 5.12 with an arithmetic mean of 1.76 and a geometric mean of 1.73. The uncertainties in thyroid dose were driven by the unshared errors associated with the estimates of values of thyroid mass and of the (131)I activity in the thyroid of the subject; the contribution of shared errors to the overall uncertainty was small. These multiple sets of cohort thyroid doses will be used to evaluate the radiation risks of thyroid cancer and noncancer thyroid diseases, taking into account the structure of the errors in the dose estimates.

  18. Uptake and depuration of 131I from labelled diatoms (Skeletonema costatum) to the edible periwinkle (Littorina littorea).

    PubMed

    Wilson, R C; Vives I Batlle, J; Watts, S J; McDonald, P; Parker, T G

    2007-01-01

    Uptake and depuration of (131)I into winkles through consumption of the diatom Skeletonema costatum is described. The work follows on from previous studies that investigated the uptake of iodine into winkles from seawater and seaweed. Incorporation of (131)I in S. costatum from labelled seawater followed linear first-order kinetics with an uptake half-time of 0.40 days. Iodine uptake in winkles from labelled S. costatum also followed linear first-order kinetics, with a calculated equilibrium concentration (C(infinity)) of 42Bqkg(-1) and a transfer factor (TF) of 1.1x10(-4) with respect to labelled diatom food. This TF is lower than that observed for uptake of (131)I in winkles from labelled seaweed. For the depuration stage, a biphasic sequence with biological half-lives of 1.3 and 255 days was determined. The first phase is biokinetically important, given that winkles can lose two-thirds of their activity during that period. This study shows that, whilst winkles can obtain radioactive iodine from phytoplankton consumption, they do not retain the majority of that activity for very long. Hence, compared with other exposure pathways, such as uptake from seawater and macroalgae, incorporation from phytoplankton is a relatively minor exposure route. PMID:17442468

  19. Thyroid Dose Estimates for a Cohort of Belarusian Children Exposed to 131I from the Chernobyl Accident: Assessment of Uncertainties

    PubMed Central

    Drozdovitch, Vladimir; Minenko, Victor; Golovanov, Ivan; Khrutchinsky, Arkady; Kukhta, Tatiana; Kutsen, Semion; Luckyanov, Nickolas; Ostroumova, Evgenia; Trofimik, Sergey; Voillequé, Paul; Simon, Steven L.; Bouville, André

    2015-01-01

    Deterministic thyroid radiation doses due to iodine-131 (131I) intake were reconstructed in a previous article for 11,732 participants of the Belarusian–American cohort study of thyroid cancer and other thyroid diseases in individuals exposed during childhood or adolescence to fallout from the Chernobyl accident. The current article describes an assessment of uncertainties in reconstructed thyroid doses that accounts for the shared and unshared errors. Using a Monte Carlo simulation procedure, 1,000 sets of cohort thyroid doses due to 131I intake were calculated. The arithmetic mean of the stochastic thyroid doses for the entire cohort was 0.68 Gy. For two-thirds of the cohort the arithmetic mean of individual stochastic thyroid doses was less than 0.5 Gy. The geometric standard deviation of stochastic doses varied among cohort members from 1.33 to 5.12 with an arithmetic mean of 1.76 and a geometric mean of 1.73. The uncertainties in thyroid dose were driven by the unshared errors associated with the estimates of values of thyroid mass and of the 131I activity in the thyroid of the subject; the contribution of shared errors to the overall uncertainty was small. These multiple sets of cohort thyroid doses will be used to evaluate the radiation risks of thyroid cancer and non-cancer thyroid diseases, taking into account the structure of the errors in the dose estimates. PMID:26207684

  20. A dynamic model to estimate the activity concentration and whole body dose rate of marine biota as consequences of a nuclear accident.

    PubMed

    Keum, Dong-Kwon; Jun, In; Kim, Byeong-Ho; Lim, Kwang-Muk; Choi, Yong-Ho

    2015-02-01

    This paper describes a dynamic compartment model (K-BIOTA-DYN-M) to assess the activity concentration and whole body dose rate of marine biota as a result of a nuclear accident. The model considers the transport of radioactivity between the marine biota through the food chain, and applies the first order kinetic model for the sedimentation of radionuclides from seawater onto sediment. A set of ordinary differential equations representing the model are simultaneously solved to calculate the activity concentration of the biota and the sediment, and subsequently the dose rates, given the seawater activity concentration. The model was applied to investigate the long-term effect of the Fukushima nuclear accident on the marine biota using (131)I, (134)Cs, and, (137)Cs activity concentrations of seawater measured for up to about 2.5 years after the accident at two locations in the port of the Fukushima Daiichi Nuclear Power Station (FDNPS) which was the most highly contaminated area. The predicted results showed that the accumulated dose for 3 months after the accident was about 4-4.5Gy, indicating the possibility of occurrence of an acute radiation effect in the early phase after the Fukushima accident; however, the total dose rate for most organisms studied was usually below the UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation)'s bench mark level for chronic exposure except for the initial phase of the accident, suggesting a very limited radiological effect on the marine biota at the population level. The predicted Cs sediment activity by the first-order kinetic model for the sedimentation was in a good agreement with the measured activity concentration. By varying the ecological parameter values, the present model was able to predict the very scattered (137)Cs activity concentrations of fishes measured in the port of FDNPS. Conclusively, the present dynamic model can be usefully applied to estimate the activity concentration and whole

  1. SCAN+

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determinemore » the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.« less

  2. [Clinical evaluation of renoscintigraphy using 123I-orthoiodohippurate--comparison with 131I-OIH and measurement of the effective renal blood flow].

    PubMed

    Ishii, K; Tadokoro, K; Nishimaki, H; Nakazawa, K; Matsubayashi, T; Ishibashi, A; Ishida, H

    1990-01-25

    Renoscintigraphy using 123I-orthoiodohipprate (123I-OIH) was conducted, and the dynamic imaging study results and the renograms were analyzed. The results using 123I-OIH were compared with those using 131I-OIH in 22 of 33 patients. Measurement of the effective renal blood flow (ERBF) was also performed using 123I-OIH by the single blood-sample method. 123I is a more suitable nuclide for gamma-camera scintigraphy than 131I in terms of physical characteristics, and a larger dose of 123I-OIH is possible than 131I-OIH because of its lesser radiation. These are the reasons why clearer dynamic images of the blood flow phase, functional phase and excretion phase can be obtained. These make possible diagnoses associated with the organic changes and functions. No essential differences could be found in the functional study results of renogram between the two drugs because on the nuclide of 131I is replaced by 123I, but a renogram with less statistical noise could be obtained using 123I-OIH than 131I-OIH. The radiation dose of 123I-OIH is less than that of 131I-OHI, and clearer dynamic images and functional indexes can be easily obtained in scintigraphy using 123I-OIH. It is concluded that 123I-OIH is a useful radiopharmaceutical for renal examination, and it should replace 131I-OIH. PMID:2330288

  3. Potential third-party radiation exposure from outpatients treated with {sup 131}I for hyperthyroidism

    SciTech Connect

    Matheoud, Roberta; Reschini, Eugenio; Canzi, Cristina; Voltini, Franco; Gerundini, Paolo

    2004-12-01

    Thirty-three hyperthyroid patients treated with radioiodine (mean administered activity 414 MBq, range 163-555) were studied to determine if pretreatment dosimetry could be used to give radiation protection advice that could assure compliance with the effective dose constraints suggested by the European Commission. Effective doses to travelers, co-workers, and sleeping partners were estimated by integrating the effective dose rate-versus-time curve obtained by fitting the dose rates measured several times after radioiodine administration to a biexponential function. The mean estimated effective doses to travelers, co-workers, and sleeping partners were 0.11 mSv (0.05-0.24), 0.24 mSv (0.07-0.52), and 1.8 mSv (0.6-4.1), respectively. The best correlation was found between effective dose (D) in mSv and maximum activity (AU{sub max}) in MBq taken up in the thyroid: D{sub traveler}=0.0005*(AU{sub max})+0.04 (r=0.88,p<0.01); D{sub co-worker}=0.0013*(AU{sub max})+0.03(r=0.89,p<0.01); D{sub sleepingpartners}=0.0105*(AU{sub max})+0.16 (r=0.93,p<0.01). Private/public transports are always allowed. For the co-workers the effective dose constraint of 0.3 mSv is met without restrictions and with 3 days off work if AU{sub max} is lower or higher than 185 MBq, respectively. For the sleeping partners the effective dose constraint of 3 mSv is met without restriction and with 4 nights separate sleeping arrangements if AU{sub max} is lower or higher than 185 MBq, respectively. The potential for contamination by the patients was determined from perspiration samples taken from the patient's hands, forehead, and neck and in saliva at 4, 24, and 48 h after radioiodine treatment. The mean highest {sup 131}I activity levels for hands, forehead, neck, and saliva were 4.1 Bq/cm{sup 2}, 1.9 Bq/cm{sup 2}, 0.9 Bq/cm{sup 2}, and 796 kBq/g, respectively. The results indicate that there is minimal risk of contamination from these patients.

  4. A predictive mathematical model for the calculation of the final mass of Graves' disease thyroids treated with 131I

    NASA Astrophysics Data System (ADS)

    Traino, Antonio C.; Di Martino, Fabio; Grosso, Mariano; Monzani, Fabio; Dardano, Angela; Caraccio, Nadia; Mariani, Giuliano; Lazzeri, Mauro

    2005-05-01

    Substantial reductions in thyroid volume (up to 70-80%) after radioiodine therapy of Graves' hyperthyroidism are common and have been reported in the literature. A relationship between thyroid volume reduction and outcome of 131I therapy of Graves' disease has been reported by some authors. This important result could be used to decide individually the optimal radioiodine activity A0 (MBq) to administer to the patient, but a predictive model relating the change in gland volume to A0 is required. Recently, a mathematical model of thyroid mass reduction during the clearance phase (30-35 days) after 131I administration to patients with Graves' disease has been published and used as the basis for prescribing the therapeutic thyroid absorbed dose. It is well known that the thyroid volume reduction goes on until 1 year after therapy. In this paper, a mathematical model to predict the final mass of Graves' diseased thyroids submitted to 131I therapy is presented. This model represents a tentative explanation of what occurs macroscopically after the end of the clearance phase of radioiodine in the gland (the so-called second-order effects). It is shown that the final thyroid mass depends on its basal mass, on the radiation dose absorbed by the gland and on a constant value α typical of thyroid tissue. α has been evaluated based on a set of measurements made in 15 reference patients affected by Graves' disease and submitted to 131I therapy. A predictive equation for the calculation of the final mass of thyroid is presented. It is based on macroscopic parameters measurable after a diagnostic 131I capsule administration (0.37-1.85 MBq), before giving the therapy. The final mass calculated using this equation is compared to the final mass of thyroid measured 1 year after therapy administration in 22 Graves' diseased patients. The final masses calculated and measured 1 year after therapy are in fairly good agreement (R = 0.81). The possibility, for the physician, to decide a

  5. [Usefulness of top-hat transform processing in whole body bone scintigraphy].

    PubMed

    Kita, Akinobu; Sugimoto, Katsuya; Tsuchida, Tatsurou; Kishimoto, Takahiro; Toi, Akiko; Shimada, Masato; Adachi, Toshiki

    2013-01-01

    To assess the usefulness of top-hat transform processing in whole body bone scintigraphy, five radiological technicians interpreted both original and top-hat processed images to determine the improvement of lesion detectability and interpretation time. For the evaluation of detectability, receiver operating characteristic (ROC) analysis was performed. The area under the curve (AUC) calculated from the ROC curve was improved in all observers (from 0.786 to 0.864 in average), although no significant difference was observed. However, the interpretation time was improved significantly (from 24.5 to 16.2 s in average). Top-hat transform processing in whole body bone scintigraphy is thought to be useful for the improvement of lesion detectability and interpretation time.

  6. Measurement of whole-body human centers of gravity and moments of inertia.

    PubMed

    Albery, C B; Schultz, R B; Bjorn, V S

    1998-06-01

    With the inclusion of women in combat aircraft, the question of safe ejection seat operation has been raised. The potential expanded population of combat pilots would include both smaller and larger ejection seat occupants, which could significantly affect seat performance. The method developed to measure human whole-body CG and MOI used a scale, a knife edge balance, and an inverted torsional pendulum. Subjects' moments of inertia were measured along six different axes. The inertia tensor was calculated from these values, and principal moments of inertia were then derived. Thirty-eight antropometric measurements were also taken for each subject to provide a means for direct correlation of inertial properties to body dimensions and for modeling purposes. Data collected in this study has been used to validate whole-body mass properties predictions. In addition, data will be used to improve Air Force and Navy ejection seat trajectory models for the expanded population. PMID:11542768

  7. MRI compatible small animal monitoring and trigger system for whole body scanners.

    PubMed

    Herrmann, Karl-Heinz; Pfeiffer, Norman; Krumbein, Ines; Herrmann, Lutz; Reichenbach, Jürgen R

    2014-03-01

    Performing magnetic resonance imaging (MRI) experiments with small animals requires continuous monitoring of vital parameters, especially the respiration rate. Clinical whole-body MR scanners represent an attractive option for preclinical imaging as dedicated animal scanners are cost-intensive in both investment and maintenance, thus limiting their availability. Even though impressive image quality is achievable with clinical MR systems in combination with special coils, their built-in physiologic monitoring and triggering units are often not suited for small animal imaging. In this work, we present a simple, MRI compatible low cost solution to monitor the respiration and heart rate of small animals in a clinical whole-body MR scanner. The recording and processing of the biosignals as well as the optimisation of the respiratory trigger generation is decribed. Additionally rat and mouse in-vivo MRI experiments are presented to illustrate the effectiveness of the monitoring and respiratory trigger system in suppressing motion artifacts.

  8. Brain-machine interfacing control of whole-body humanoid motion

    PubMed Central

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  9. Brain-machine interfacing control of whole-body humanoid motion.

    PubMed

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-Ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task.

  10. Brain-machine interfacing control of whole-body humanoid motion.

    PubMed

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-Ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  11. Design, fabrication and acceptance testing of a zero gravity whole body shower

    NASA Technical Reports Server (NTRS)

    Schumacher, E. A.; Lenda, J. A.

    1974-01-01

    Recent research and development programs have established the ability of the zero gravity whole body shower to maintain a comfortable environment in which the crewman can safely cleanse and dry the body. The purpose of this program was to further advance the technology of whole body bathing and to demonstrate technological readiness including in-flight maintenance by component replacement for flight applications. Three task efforts of this program are discussed. Conceptual designs and system tradeoffs were accomplished in task 1. Task 2 involved the formulation of preliminary and final designs for the shower, while task 3 included the fabrication and test of the shower assembly. Particular attention is paid to the evaluation and correction of test anomalies during the final phase of the program.

  12. Whole body and tissue blood volumes of two strains of rainbow trout (Oncorhynchus mykiss )

    USGS Publications Warehouse

    Gingerich, W.H.; Pityer, R.A.; Rach, J.J.

    1990-01-01

    1. Estimates of apparent packed cell, plasma and total blood volumes for the whole body and for 13 selected tissues were compared between Kamloops and Wytheville strains of rainbow trout (Oncorhynchus mykiss) by the simultaneous injection of two vascular tracers, radiolabeled trout erythrocytes (51Cr-RBC) and radioiodated bovine serum albumin (125I-BSA). 2. Whole body total blood volume, plasma volume and packed cell volume were slightly, but not significantly greater in the Wytheville trout, whereas, the apparent plasma volumes and total blood volumes in 4 of 13 tissues were significantly greater in the Kamloops strain. 3. Differences were most pronounced in highly perfused organs, such as the liver and kidney and in organs of digestion such as the stomach and intestines. 4. Differences in blood volumes between the two strains may be related to the greater permeability of the vascular membranes in the Kamloops strain fish.

  13. Postmortem whole-body magnetic resonance imaging as an adjunct to autopsy: preliminary clinical experience.

    PubMed

    Patriquin, L; Kassarjian, A; Barish, M; Casserley, L; O'Brien, M; Andry, C; Eustace, S

    2001-02-01

    The purpose of this study was to evaluate whole-body magnetic resonance imaging (MRI) of cadavers as an adjunct to autopsy. Eight consecutive patients underwent both whole-body MRI and autopsy [either conventional (six), limited (one), or percutaneous (one)] within 24 hours of death. Comparison was made of major and minor abnormalities and predicted cause of death recorded by independent readers at both MRI and autopsy. Major discrepancies between the recorded primary cause of death at imaging and autopsy occurred in five (5) patients. These included a myocardial infarction found at autopsy alone, bowel infarction and portal venous gas found at MRI alone, and aortic dissection and occipital infarct found at MRI alone in a patient on whom only limited autopsy was performed. Postmortem MRI may represent a useful adjunct to autopsy, particularly in patients in whom autopsy is limited due to patient/family consent, inoculation risks, and ethnic doctrines.

  14. Stability of Phase Relationships While Coordinating Arm Reaches with Whole Body Motion.

    PubMed

    Bakker, Romy S; Selen, Luc P J; Medendorp, W Pieter

    2015-01-01

    The human movement repertoire is characterized by the smooth coordination of several body parts, including arm movements and whole body motion. The neural control of this coordination is quite complex because the various body parts have their own kinematic and dynamic properties. Behavioral inferences about the neural solution to the coordination problem could be obtained by examining the emerging phase relationship and its stability. Here, we studied the phase relationships that characterize the coordination of arm-reaching movements with passively-induced whole-body motion. Participants were laterally translated using a vestibular chair that oscillated at a fixed frequency of 0.83 Hz. They were instructed to reach between two targets that were aligned either parallel or orthogonal to the whole body motion. During the first cycles of body motion, a metronome entrained either an in-phase or an anti-phase relationship between hand and body motion, which was released at later cycles to test phase stability. Results suggest that inertial forces play an important role when coordinating reaches with cyclic whole-body motion. For parallel reaches, we found a stable in-phase and an unstable anti-phase relationship. When the latter was imposed, it readily transitioned or drifted back toward an in-phase relationship at cycles without metronomic entrainment. For orthogonal reaches, we did not find a clear difference in stability between in-phase and anti-phase relationships. Computer simulations further show that cost models that minimize energy expenditure (i.e. net torques) or endpoint variance of the reach cannot fully explain the observed coordination patterns. We discuss how predictive control and impedance control processes could be considered important mechanisms underlying the rhythmic coordination of arm reaches and body motion. PMID:26720413

  15. Whole-Body Reaching Movements Formulated by Minimum Muscle-Tension Change Criterion.

    PubMed

    Kudo, Naoki; Choi, Kyuheong; Kagawa, Takahiro; Uno, Yoji

    2016-05-01

    It is well known that planar reaching movements of the human shoulder and elbow joints have invariant features: roughly straight hand paths and bell-shaped velocity profiles. The optimal control models with the criteria of smoothness or precision, which determine a unique movement pattern, predict such features of hand trajectories. In this letter on expanding the research on simple arm reaching movements, we examine whether the smoothness criteria can be applied to whole-body reaching movements with many degrees of freedom. Determining a suitable joint trajectory in the whole-body reaching movement corresponds to the optimization problem with constraints, since body balance must be maintained during a motion task. First, we measured human joint trajectories and ground reaction forces during whole-body reaching movements, and confirmed that subjects formed similar movements with common characteristics in the trajectories of the hand position and body center of mass. Second, we calculated the optimal trajectories according to the criteria of torque and muscle-tension smoothness. While the minimum torque change trajectories were not consistent with the experimental data, the minimum muscle-tension change model was able to predict the stereotyped features of the measured trajectories. To explore the dominant effects of the extension from the torque change to the muscle-tension change, we introduced a weighted torque change cost function. Considering the maximum voluntary contraction (MVC) force of the muscle as the weighting factor of each joint torque, we formulated the weighted torque change cost as a simplified version of the minimum muscle-tension change cost. The trajectories owing to the minimum weighted torque change criterion also showed qualitative agreement with the common features of the measured data. Proper estimation of the MVC forces in the body joints is essential to reproduce human whole-body movements according to the minimum muscle-tension change

  16. Stability of Phase Relationships While Coordinating Arm Reaches with Whole Body Motion

    PubMed Central

    Bakker, Romy S.; Selen, Luc P. J.; Medendorp, W. Pieter

    2015-01-01

    The human movement repertoire is characterized by the smooth coordination of several body parts, including arm movements and whole body motion. The neural control of this coordination is quite complex because the various body parts have their own kinematic and dynamic properties. Behavioral inferences about the neural solution to the coordination problem could be obtained by examining the emerging phase relationship and its stability. Here, we studied the phase relationships that characterize the coordination of arm-reaching movements with passively-induced whole-body motion. Participants were laterally translated using a vestibular chair that oscillated at a fixed frequency of 0.83 Hz. They were instructed to reach between two targets that were aligned either parallel or orthogonal to the whole body motion. During the first cycles of body motion, a metronome entrained either an in-phase or an anti-phase relationship between hand and body motion, which was released at later cycles to test phase stability. Results suggest that inertial forces play an important role when coordinating reaches with cyclic whole-body motion. For parallel reaches, we found a stable in-phase and an unstable anti-phase relationship. When the latter was imposed, it readily transitioned or drifted back toward an in-phase relationship at cycles without metronomic entrainment. For orthogonal reaches, we did not find a clear difference in stability between in-phase and anti-phase relationships. Computer simulations further show that cost models that minimize energy expenditure (i.e. net torques) or endpoint variance of the reach cannot fully explain the observed coordination patterns. We discuss how predictive control and impedance control processes could be considered important mechanisms underlying the rhythmic coordination of arm reaches and body motion. PMID:26720413

  17. Stability of Phase Relationships While Coordinating Arm Reaches with Whole Body Motion.

    PubMed

    Bakker, Romy S; Selen, Luc P J; Medendorp, W Pieter

    2015-01-01

    The human movement repertoire is characterized by the smooth coordination of several body parts, including arm movements and whole body motion. The neural control of this coordination is quite complex because the various body parts have their own kinematic and dynamic properties. Behavioral inferences about the neural solution to the coordination problem could be obtained by examining the emerging phase relationship and its stability. Here, we studied the phase relationships that characterize the coordination of arm-reaching movements with passively-induced whole-body motion. Participants were laterally translated using a vestibular chair that oscillated at a fixed frequency of 0.83 Hz. They were instructed to reach between two targets that were aligned either parallel or orthogonal to the whole body motion. During the first cycles of body motion, a metronome entrained either an in-phase or an anti-phase relationship between hand and body motion, which was released at later cycles to test phase stability. Results suggest that inertial forces play an important role when coordinating reaches with cyclic whole-body motion. For parallel reaches, we found a stable in-phase and an unstable anti-phase relationship. When the latter was imposed, it readily transitioned or drifted back toward an in-phase relationship at cycles without metronomic entrainment. For orthogonal reaches, we did not find a clear difference in stability between in-phase and anti-phase relationships. Computer simulations further show that cost models that minimize energy expenditure (i.e. net torques) or endpoint variance of the reach cannot fully explain the observed coordination patterns. We discuss how predictive control and impedance control processes could be considered important mechanisms underlying the rhythmic coordination of arm reaches and body motion.

  18. Proprioceptive deficits of the lower limb following anterior cruciate ligament deficiency affect whole body steering control.

    PubMed

    Reed-Jones, Rebecca J; Vallis, Lori Ann

    2007-09-01

    The role of lower limb proprioception in the steering control of locomotion is still unclear. The purpose of the current study was to determine whether steering control is altered in individuals with reduced lower limb proprioception. Anterior cruciate ligament deficiency (ACLD) results in a decrease in proprioceptive information from the injured knee joint (Barrack et al. 1989). Therefore the whole body kinematics were recorded for eight unilateral ACLD individuals and eight CONTROL individuals during the descent of a 20 degrees incline ramp followed by either a redirection using a side or cross cutting maneuver or a continuation straight ahead. Onset of head and trunk yaw, mediolateral displacement of a weighted center of mass (COM(HT)) and mediolateral displacement of the swing foot were analyzed to evaluate differences in the steering control. Timing analyses revealed that ACLD individuals delayed the reorientation of body segments compared to CONTROL individuals. In addition, ACLD did not use a typical steering synergy where the head leads whole body reorientation; rather ACLD individuals reoriented the head, trunk and COM(HT) in the new direction at the same time. These results suggest that when lower limb proprioceptive information is reduced, the central nervous system (CNS) may delay whole body reorientation to the new travel direction, perhaps in order to integrate existing sensory information (vision, vestibular and proprioception) with the reduced information from the injured knee joint. This control strategy is maintained when visual information is present or reduced in a low light environment. Additionally, the CNS may move the head and trunk segments as, effectively, one segment to decrease the number of degrees of freedom that must be controlled and increase whole body stability during the turning task.

  19. Using consumer electronic devices to estimate whole-body vibration exposure.

    PubMed

    Wolfgang, Rebecca; Burgess-Limerick, Robin

    2014-01-01

    The cost and complexity of commercially available devices for measuring whole-body vibration is a barrier to the systematic collection of the information required to manage this hazard at workplaces. The potential for a consumer electronic device to be used to estimate whole-body vibration was assessed by use of an accelerometer calibrator, and by collecting 42 simultaneous pairs of measurements from a fifth-generation iPod Touch and one of two gold standard vibration measurement devices (Svantech SV111 [Svantech, Warsaw, Poland] or Brüel & Kjær 4447 [Brüel & Kjær Sound & Vibration Measurement A/S, Nærum, Denmark]) while driving light vehicles on a variety of different roadway surfaces. While sampling rate limitations make the accelerometer data collected from the iPod Touch unsuitable for frequency analysis, the vibration amplitudes recorded are sufficiently accurate (errors less than 0.1 m/s(2)) to assist workplaces manage whole-body vibration exposures.

  20. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    PubMed Central

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2016-01-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future. PMID:26938468

  1. Role of stearoyl-CoA desaturase-1 in skin integrity and whole body energy balance.

    PubMed

    Sampath, Harini; Ntambi, James M

    2014-01-31

    The skin is the single largest organ in humans, serving as a major barrier to infection, water loss, and abrasion. The functional diversity of skin requires the synthesis of large amounts of lipids, such as triglycerides, wax esters, squalene, ceramides, free cholesterol, free fatty acids, and cholesterol and retinyl esters. Some of these lipids are used as cell membrane components, signaling molecules, and a source of energy. An important class of lipid metabolism enzymes expressed in skin is the Δ(9)-desaturases, which catalyze the synthesis in Δ(9)-monounsaturated lipids, primarily oleoyl-CoA (18:1n-9) and palmitoyl-CoA (16:1n-7), the major monounsaturated fatty acids in cutaneous lipids. Mice with a deletion of the Δ(9)-desaturase-1 isoform (SCD1) either globally (Scd1(-/-)) or specifically in the skin (skin-specific Scd1-knockout; SKO) present with marked changes in cutaneous lipids and skin integrity. Interestingly, these mice also exhibit increased whole body energy expenditure, protection against diet-induced adiposity, hepatic steatosis, and glucose intolerance. The increased energy expenditure in skin-specific Scd1-knockout (SKO) mice is a surprising phenotype, as it links cutaneous lipid homeostasis with whole body energy balance. This minireview summarizes the role of skin SCD1 in regulating skin integrity and whole body energy homeostasis and offers a discussion of potential pathways that may connect these seemingly disparate phenotypes.

  2. Whole Body Vibration Immediately Decreases Lower Extremity Loading During the Drop Jump.

    PubMed

    Chen, Zong-Rong; Peng, Hsien-Te; Siao, Sheng-Wun; Hou, Yan-Ting; Wang, Li-I

    2016-09-01

    Chen, Z-R, Peng, H-T, Siao, S-W, Hou, Y-T, and Wang, L-I. Whole body vibration immediately decreases lower extremity loading during the drop jump. J Strength Cond Res 30(9): 2476-2481, 2016-The purpose of this study was to evaluate the acute effect of whole body vibration (WBV) on lower extremity loading during the drop jump (DJ). Fifteen male collegiate physical education students randomly completed 3 experimental sessions on 3 separate days with 4 days interval between sessions (performing 3 trials of DJ from 30-, 40-, and 50-cm drop heights before WBV and 4 minutes after WBV). Eight cameras and 2 force platforms were used to record kinematic and kinetic data, respectively. Peak impact force and loading rate significantly decreased after WBV during DJ from 40 and 50 cm. Knee angular displacements significantly increased after WBV during DJ from 30, 40, and 50 cm. Whole body vibration may help immediately reduce lower extremity loading. PMID:26849793

  3. Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Zhang, R.; Levine, B. D.

    2000-01-01

    The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P < 0.001) without significantly affecting the gain in the low-frequency range (P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.

  4. Acute Whole-Body Vibration does not Facilitate Peak Torque and Stretch Reflex in Healthy Adults

    PubMed Central

    Yeung, Ella W.; Lau, Cheuk C.; Kwong, Ada P.K.; Sze, Yan M.; Zhang, Wei Y.; Yeung, Simon S.

    2014-01-01

    The acute effect of whole-body vibration (WBV) training may enhance muscular performance via neural potentiation of the stretch reflex. The purpose of this study was to investigate if acute WBV exposure affects the stretch induced knee jerk reflex [onset latency and electromechanical delay (EMD)] and the isokinetic knee extensor peak torque performance. Twenty-two subjects were randomly assigned to the intervention or control group. The intervention group received WBV in a semi-squat position at 30° knee flexion with an amplitude of 0.69 mm, frequency of 45 Hz, and peak acceleration of 27.6 m/s2 for 3 minutes. The control group underwent the same semii-squatting position statically without exposure of WBV. Two-way mixed repeated measures analysis of variance revealed no significant group effects differences on reflex latency of rectus femoris (RF) and vastus lateralis (VL; p = 0.934 and 0.935, respectively) EMD of RF and VL (p = 0.474 and 0.551, respectively) and peak torque production (p = 0.483) measured before and after the WBV. The results of this study indicate that a single session of WBV exposure has no potentiation effect on the stretch induced reflex and peak torque performance in healthy young adults. Key Points There is no acute potentiation of stretch reflex right after whole body vibration. Acute whole body vibration does not improve mus-cle peak torque performance in healthy young adults. PMID:24570602

  5. Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo.

    PubMed

    Jeon, Mansik; Kim, Jeesu; Kim, Chulhong

    2016-03-01

    We have successfully developed a multiscale acoustic-resolution photoacoustic tomography system in a single imaging platform. By switching between ultrasound transducers (center frequencies 5 and 40 MHz) and optical condensers, we have photoacoustically imaged microvasculatures of small animals in vivo at different scales. Further, we have extended the field of view of our imaging system to entire bodies of small animals. At different imaging planes, we have noninvasively imaged the major blood vessels (e.g., descending aorta, intercostal vessels, cephalic vessels, brachial vessels, femoral vessels, popliteal vessels, lateral marginal vessels, cranial mesenteric vessels, mammalian vessels, carotid artery, jugular vein, subclavian vessels, iliac vessels, and caudal vessels) as well as intact internal organs (e.g., spleen, liver, kidney, intestine, cecum, and spinal cord) of the animals in vivo. The spectroscopic whole-body photoacoustic imaging clearly reveals the spectral responses of the internal structures. Similar to other existing preclinical whole-body imaging systems, this whole-body photoacoustic tomography can be a useful tool for small-animal research.

  6. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates.

    PubMed

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2016-01-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair's translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future. PMID:26938468

  7. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure.

  8. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure. PMID:25264920

  9. Analysis of adipose tissue distribution using whole-body magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Wald, Diana; Schwarz, Tobias; Dinkel, Julien; Delorme, Stefan; Teucher, Birgit; Kaaks, Rudolf; Meinzer, Hans-Peter; Heimann, Tobias

    2011-03-01

    Obesity is an increasing problem in the western world and triggers diseases like cancer, type two diabetes, and cardiovascular diseases. In recent years, magnetic resonance imaging (MRI) has become a clinically viable method to measure the amount and distribution of adipose tissue (AT) in the body. However, analysis of MRI images by manual segmentation is a tedious and time-consuming process. In this paper, we propose a semi-automatic method to quantify the amount of different AT types from whole-body MRI data with less user interaction. Initially, body fat is extracted by automatic thresholding. A statistical shape model of the abdomen is then used to differentiate between subcutaneous and visceral AT. Finally, fat in the bone marrow is removed using morphological operators. The proposed method was evaluated on 15 whole-body MRI images using manual segmentation as ground truth for adipose tissue. The resulting overlap for total AT was 93.7% +/- 5.5 with a volumetric difference of 7.3% +/- 6.4. Furthermore, we tested the robustness of the segmentation results with regard to the initial, interactively defined position of the shape model. In conclusion, the developed method proved suitable for the analysis of AT distribution from whole-body MRI data. For large studies, a fully automatic version of the segmentation procedure is expected in the near future.

  10. Therapeutic effects of whole-body devices applying pulsed electromagnetic fields (PEMF): a systematic literature review.

    PubMed

    Hug, Kerstin; Röösli, Martin

    2012-02-01

    Pulsed electromagnetic fields (PEMF) delivered by whole-body mats are promoted in many countries for a wide range of therapeutic applications and for enhanced well-being. However, neither the therapeutic efficacy nor the potential health hazards caused by these mats have been systematically evaluated. We conducted a systematic review of trials investigating the therapeutic effects of low-frequency PEMF devices. We were interested in all health outcomes addressed so far in randomized, sham-controlled, double-blind trials. In total, 11 trials were identified. They were focused on osteoarthritis of the knee (3 trials) or the cervical spine (1), fibromyalgia (1), pain perception (2), skin ulcer healing (1), multiple sclerosis-related fatigue (2), or heart rate variability and well-being (1). The sample sizes of the trials ranged from 12 to 71 individuals. The observation period lasted 12 weeks at maximum, and the applied magnetic flux densities ranged from 3.4 to 200 µT. In some trials sporadic positive effects on health were observed. However, independent confirmation of such singular findings was lacking. We conclude that the scientific evidence for therapeutic effects of whole-body PEMF devices is insufficient. Acute adverse effects have not been reported. However, adverse effects occurring after long-term application have not been studied so far. In summary, the therapeutic use of low-frequency whole-body PEMF devices cannot be recommended without more scientific evidence from high-quality, double-blind trials.

  11. An MR-compatible bicycle ergometer for in-magnet whole-body human exercise testing.

    PubMed

    Jeneson, Jeroen A L; Schmitz, Joep P J; Hilbers, Peter A J; Nicolay, Klaas

    2010-01-01

    An MR-compatible ergometer was developed for in-magnet whole-body human exercise testing. Designed on the basis of conventional mechanically braked bicycle ergometers and constructed from nonferrous materials, the ergometer was implemented on a 1.5-T whole-body MR scanner. A spectrometer interface was constructed using standard scanner hardware, complemented with custom-built parts and software to enable gated data acquisition during exercise. High-quality 31P NMR spectra were reproducibly obtained from the medial head of the quadriceps muscle of the right leg of eight healthy subjects during two-legged high-frequency pedaling (80 revolutions per minute) at three incremental workloads, including maximal. Muscle phosphocreatine content dropped 82%, from 32.2+/-1.0 mM at rest to 5.7+/-1.1 mM at maximal workload (mean+/-standard error; n=8), indicating that the majority of quadriceps motor units were recruited. The cardiovascular load of the exercise was likewise significant, as evidenced by heart rates of 150 (+/-10%) beats per minute, measured immediately afterward. As such, the newly developed MR bicycling exercise equipment offers a powerful new tool for clinical musculoskeletal and cardiovascular MR investigation. The basic design of the ergometer is highly generic and adaptable for application on a wide selection of whole-body MR scanners.

  12. Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling.

    PubMed

    Srivastava, Mansi; Mazza-Curll, Kathleen L; van Wolfswinkel, Josien C; Reddien, Peter W

    2014-05-19

    Whole-body regeneration is widespread in the Metazoa, yet little is known about how underlying molecular mechanisms compare across phyla. Acoels are an enigmatic phylum of invertebrate worms that can be highly informative about many questions in bilaterian evolution, including regeneration. We developed the three-banded panther worm, Hofstenia miamia, as a new acoelomorph model system for molecular studies of regeneration. Hofstenia were readily cultured, with accessible embryos, juveniles, and adults for experimentation. We developed molecular resources and tools for Hofstenia, including a transcriptome and robust systemic RNAi. We report the identification of molecular mechanisms that promote whole-body regeneration in Hofstenia. Wnt signaling controls regeneration of the anterior-posterior axis, and Bmp-Admp signaling controls regeneration of the dorsal-ventral axis. Perturbation of these pathways resulted in regeneration-abnormal phenotypes involving axial feature duplication, such as the regeneration of two heads following Wnt perturbation or the regeneration of ventral cells in place of dorsal ones following bmp or admp RNAi. Hofstenia regenerative mechanisms are strikingly similar to those guiding regeneration in planarians. However, phylogenetic analyses using the Hofstenia transcriptome support an early branching position for acoels among bilaterians, with the last common ancestor of acoels and planarians being the ancestor of the Bilateria. Therefore, these findings identify similar whole-body regeneration mechanisms in animals separated by more than 550 million years of evolution.

  13. Whole-Body Vibration to Treat Low Back Pain: Fact or Fad?

    PubMed Central

    Perraton, Luke; Machotka, Zuzana

    2011-01-01

    ABSTRACT Purpose: The purpose of this systematic review was to evaluate the current evidence base for whole-body vibration as a treatment for low back pain (LBP). Summary of key points: Whole-body vibration through occupational exposure has previously been recognized as an aetiological factor in LBP. Previous studies have identified whole-body vibration (WBV) as a cause of LBP in various sitting-based occupations that involve machinery and repetitive vibration. In the last decade, however, WBV has been advocated as a safe and effective treatment for LBP. Despite the growing popularity of WBV in clinical practice, this systematic review of the literature identified only two studies that investigated the effectiveness of WBV as a treatment option for LBP, and an assessment of the quality of these studies demonstrated several methodological problems that may have biased their findings. While there is emerging evidence for the effectiveness of WBV in treating some medical conditions, the evidence for WBV as a treatment for LBP remains equivocal. Recommendations: Based on the current body of evidence, routine use of WBV to treat LBP should be undertaken with caution. Further rigorous research designed to investigate the effectiveness of WBV as a safe and high-quality treatment for LBP is required. PMID:22210985

  14. Effects of whole-body vibration after eccentric exercise on muscle soreness and muscle strength recovery

    PubMed Central

    Timon, Rafael; Tejero, Javier; Brazo-Sayavera, Javier; Crespo, Carmen; Olcina, Guillermo

    2016-01-01

    [Purpose] The aim of this study was to investigate whether or not a single whole-body vibration treatment after eccentric exercise can reduce muscle soreness and enhance muscle recovery. [Subjects and Methods] Twenty untrained participants were randomly assigned to two groups: a vibration group (n=10) and control group (n=10). Participants performed eccentric quadriceps training of 4 sets of 5 repetitions at 120% 1RM, with 4 min rest between sets. After that, the vibration group received 3 sets of 1 min whole body vibration (12 Hz, 4 mm) with 30 s of passive recovery between sets. Serum creatine kinase, blood urea nitrogen, muscle soreness (visual analog scale) and muscle strength (peak isometric torque) were assessed. [Results] Creatine kinase was lower in the vibration group than in the control group at 24 h (200.2 ± 8.2 vs. 300.5 ± 26.1 U/L) and at 48 h (175.2 ± 12.5 vs. 285.2 ± 19.7 U/L) post-exercise. Muscle soreness decreased in vibration group compared to control group at 48 h post-exercise (34.1 ± 11.4 vs. 65.2 ± 13.2 mm). [Conclusion] Single whole-body vibration treatment after eccentric exercise reduced delayed onset muscle soreness but it did not affect muscle strength recovery. PMID:27390415

  15. Retrospective respiration-gated whole-body photoacoustic computed tomography of mice

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chen, Wanyi; Maslov, Konstantin; Anastasio, Mark A.; Wang, Lihong V.

    2014-01-01

    Photoacoustic tomography (PAT) is an emerging technique that has a great potential for preclinical whole-body imaging. To date, most whole-body PAT systems require multiple laser shots to generate one cross-sectional image, yielding a frame rate of <1 Hz. Because a mouse breathes at up to 3 Hz, without proper gating mechanisms, acquired images are susceptible to motion artifacts. Here, we introduce, for the first time to our knowledge, retrospective respiratory gating for whole-body photoacoustic computed tomography. This new method involves simultaneous capturing of the animal's respiratory waveform during photoacoustic data acquisition. The recorded photoacoustic signals are sorted and clustered according to the respiratory phase, and an image of the animal at each respiratory phase is reconstructed subsequently from the corresponding cluster. The new method was tested in a ring-shaped confocal photoacoustic computed tomography system with a hardware-limited frame rate of 0.625 Hz. After respiratory gating, we observed sharper vascular and anatomical images at different positions of the animal body. The entire breathing cycle can also be visualized at 20 frames/cycle.

  16. Whole-body vibration training effects on the physical performance of basketball players.

    PubMed

    Colson, Serge S; Pensini, Manuela; Espinosa, Julien; Garrandes, Frederic; Legros, Patrick

    2010-04-01

    The aim of this study was to investigate the influence of 4 weeks of whole-body vibration training added to the conventional training of basketball players. Eighteen competitive basketball players (13 male symbol, 5 female symbol, 18-24 years old) were randomly assigned to a whole-body vibration group (WBVG, n = 10; 7 male symbol and 3 female symbol) or a control group (CG, n = 8; 6 male symbol and 2 female symbol). During the 4-week period, all subjects maintained their conventional basketball training program. The members of WBVG were additionally trained 3 times a week for 20 minutes on a vibration platform (10 unloaded static lower limb exercises, 40-Hz, 4-mm, Silverplate). Testing was performed before and after the 4-week period and comprised strength assessment, vertical jump performance, and a 10-m sprint test. The maximal voluntary isometric strength of the knee extensors significantly increased (p < 0.001) after vibration training, as did squat jump (SJ) height (p < 0.05), whereas performance of the countermovement jump, drop jump, 30-second rebound jump, and 10-m sprint remained unchanged. The results of the present study indicated that a 4-week whole-body vibration training program added to the conventional training of basketball players during the preseason is an effective short-term stimulus to enhance knee extensor strength and slightly SJ performance.

  17. A high-resolution imaging technique using a whole-body, research photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-03-01

    A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.

  18. Segmentation and Visual Analysis of Whole-Body Mouse Skeleton microSPECT

    PubMed Central

    Khmelinskii, Artem; Groen, Harald C.; Baiker, Martin; de Jong, Marion; Lelieveldt, Boudewijn P. F.

    2012-01-01

    Whole-body SPECT small animal imaging is used to study cancer, and plays an important role in the development of new drugs. Comparing and exploring whole-body datasets can be a difficult and time-consuming task due to the inherent heterogeneity of the data (high volume/throughput, multi-modality, postural and positioning variability). The goal of this study was to provide a method to align and compare side-by-side multiple whole-body skeleton SPECT datasets in a common reference, thus eliminating acquisition variability that exists between the subjects in cross-sectional and multi-modal studies. Six whole-body SPECT/CT datasets of BALB/c mice injected with bone targeting tracers 99mTc-methylene diphosphonate (99mTc-MDP) and 99mTc-hydroxymethane diphosphonate (99mTc-HDP) were used to evaluate the proposed method. An articulated version of the MOBY whole-body mouse atlas was used as a common reference. Its individual bones were registered one-by-one to the skeleton extracted from the acquired SPECT data following an anatomical hierarchical tree. Sequential registration was used while constraining the local degrees of freedom (DoFs) of each bone in accordance to the type of joint and its range of motion. The Articulated Planar Reformation (APR) algorithm was applied to the segmented data for side-by-side change visualization and comparison of data. To quantitatively evaluate the proposed algorithm, bone segmentations of extracted skeletons from the correspondent CT datasets were used. Euclidean point to surface distances between each dataset and the MOBY atlas were calculated. The obtained results indicate that after registration, the mean Euclidean distance decreased from 11.5±12.1 to 2.6±2.1 voxels. The proposed approach yielded satisfactory segmentation results with minimal user intervention. It proved to be robust for “incomplete” data (large chunks of skeleton missing) and for an intuitive exploration and comparison of multi-modal SPECT/CT cross

  19. Spectrum of brain abnormalities detected on whole body F-18 FDG PET/CT in patients undergoing evaluation for non-CNS malignancies

    PubMed Central

    Tripathi, Madhavi; Jaimini, Abhinav; D’Souza, Maria M; Sharma, Rajnish; Jain, Jyotika; Garg, Gunjan; Singh, Dinesh; Kumar, Nitin; Mishra, Anil K; Grover, Rajesh K; Mondal, Anupam

    2011-01-01

    We present the pattern of metabolic brain abnormalities detected in patients undergoing whole body (WB) F-18 flurodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) examination for non-central nervous system (CNS) malignancies. Knowledge of the PET/CT appearance of various intracranial metabolic abnormalities enables correct interpretation of PET scans in oncological patients where differentiation of metastasis from benign intracranial pathologies is important and improves specificity of the PET study. A complete clinical history and correlation with CT and MRI greatly helps in arriving at a correct imaging diagnosis. PMID:22174526

  20. The 131I Ortho-iodohippurate Photoscan in Human Renal Allografts

    PubMed Central

    Dossetor, J. B.; Zweig, S. M.; Treves, S.; Ross, W. M.

    1970-01-01

    Nine examples, in seven patients, from a large cadaver renal allograft program, illustrate the value of radio-hippuran photoscans in differentiating causes of post-implant oliguria. Hippuran scans are shown to be more valuable than chlormerodrin scans when renal function is acutely depressed. Hippuran scans aided in the decision to remove kidneys in four cases of severe oliguria and to retain kidneys in two others. In two further examples, extravasation of urine was detected by scanning after radio-hippuran injection when other tests had failed to do so. The technique of radio-hippuran scanning has a place in the differentiation of acute and subacute renal dysfunction and has proved particularly valuable in the early oliguric complications of a cadaver renal transplant program. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8FIG. 9 PMID:4912294

  1. NUMERICAL SIMULATION OF DIRECT MEASUREMENT TO DETERMINE THYROID 131I CONTENT OF TWO TEPCO WORKERS CONSIDERING INDIVIDUAL TISSUE THICKNESS.

    PubMed

    Tani, Kotaro; Kurihara, Osamu; Kim, Eunjoo; Sakai, Kazuo; Akashi, Makoto

    2016-09-01

    After the Fukushima Daiichi Nuclear Power Station accident, the National Institute of Radiological Sciences examined seven heavily exposed emergency workers and performed internal dose estimations. The largest dose contributor was found to be (131)I, which was detected by thyroid monitor with an HPGe detector. Different energy peaks from (131)I were simultaneously identified in the pulse-height spectra of the two subjects with the highest doses regardless of late measurements. A closer look at the spectra indicated that the count ratio of the two peak areas at 80.2 and 365 keV differed somewhat between the individual workers, suggesting a difference in attenuation in the overlaying soft tissue and in the thyroid itself. In this study, the relationship between the count ratio (80.2/365 keV) and the thickness of soft tissue overlying the thyroid was investigated by means of numerical simulations performed using the Japanese Male (JM) phantom varying the thickness of the overlaying tissue. From the measured count ratios, it was possible to estimate that the overlaying tissue was thinner for Worker 1 (difference from the JM phantom: -0.34±1.29 cm) and thicker for Worker 2 (diff.: 2.5±1.2 cm). The thyroid (131)I contents evaluated taking into account the individual thicknesses were 4.3 kBq for Worker 1 and 8.4 kBq for Worker 2, resulting in a significant increase for Worker 2 compared with the content based on the default counting efficiency at 365 keV of the original JM phantom. However, the results have large uncertainty factors of 1.4 for Worker 1 and 1.3 for Worker 2 and should be carefully considered together with other factors influencing the attenuation. PMID:26868011

  2. NUMERICAL SIMULATION OF DIRECT MEASUREMENT TO DETERMINE THYROID 131I CONTENT OF TWO TEPCO WORKERS CONSIDERING INDIVIDUAL TISSUE THICKNESS.

    PubMed

    Tani, Kotaro; Kurihara, Osamu; Kim, Eunjoo; Sakai, Kazuo; Akashi, Makoto

    2016-09-01

    After the Fukushima Daiichi Nuclear Power Station accident, the National Institute of Radiological Sciences examined seven heavily exposed emergency workers and performed internal dose estimations. The largest dose contributor was found to be (131)I, which was detected by thyroid monitor with an HPGe detector. Different energy peaks from (131)I were simultaneously identified in the pulse-height spectra of the two subjects with the highest doses regardless of late measurements. A closer look at the spectra indicated that the count ratio of the two peak areas at 80.2 and 365 keV differed somewhat between the individual workers, suggesting a difference in attenuation in the overlaying soft tissue and in the thyroid itself. In this study, the relationship between the count ratio (80.2/365 keV) and the thickness of soft tissue overlying the thyroid was investigated by means of numerical simulations performed using the Japanese Male (JM) phantom varying the thickness of the overlaying tissue. From the measured count ratios, it was possible to estimate that the overlaying tissue was thinner for Worker 1 (difference from the JM phantom: -0.34±1.29 cm) and thicker for Worker 2 (diff.: 2.5±1.2 cm). The thyroid (131)I contents evaluated taking into account the individual thicknesses were 4.3 kBq for Worker 1 and 8.4 kBq for Worker 2, resulting in a significant increase for Worker 2 compared with the content based on the default counting efficiency at 365 keV of the original JM phantom. However, the results have large uncertainty factors of 1.4 for Worker 1 and 1.3 for Worker 2 and should be carefully considered together with other factors influencing the attenuation.

  3. Metal exposures to native populations of the caddisfly Hydropsyche (Trichoptera: Hydropsychidae) determined from cytosolic and whole body metal concentrations

    USGS Publications Warehouse

    Cain, D.J.; Luoma, S.N.

    1998-01-01

    Metal concentrations of the soluble fraction of the cytoplasm (cytosol) and the whole body were determined in the caddisfly Hydropsyche spp. (Trichoptera). Metal accumulation in the cytosol and the whole body were compared in samples collected along 380 kms of a contamination gradient in the Clark Fork river in four consecutive years (1992-1995), and from a contaminated tributary (Flint Creek). Samples from the contaminated sites were compared to an uncontaminated tributary (Blackfoot River). Relations between cytosolic metal concentration and cytosolic protein (used as a general biomarker of protein metabolism) also were examined in 1994 and 1995. Relative to whole body concentrations, cytosolic metal concentrations varied among metals and years. Spatial patterns in whole body and cytosolic Cd, Cu and Pb concentrations were qualitatively similar each year, and these concentrations generally corresponded to contamination levels measured in bed sediments. The proportions of metals recovered in the cytosol of ranged from 12 to 64% for Cd and Cu and from 2 to 38% for Pb. Zinc in the whole body also was consistent with contamination levels, but cytosolic Zn concentrations increased only at the highest whole body Zn concentrations. As a result, the proportion of Zn recovered in the cytosol ranged from 16 to 63% and tended to be inversely related to whole body Zn concentrations. The proportions of cytosolic metals varied significantly among years and, as a result, interannual differences in metal concentrations were greater in the cytosol than in the whole body. The results demonstrated that Hydropsyche in the river were chronically exposed to biologically available metals. Some features of this exposure were not evident from whole body concentrations. In general, protein levels did not correspond to cytosolic metal concentrations. A variety of environmental factors could interact with metal exposures to produce complex responses in protein metabolism. Systematic study

  4. Performance Evaluation of Whole Body Counting Facilities in the Marshall Islands (2002-2005)

    SciTech Connect

    Kehl, S R; Hamilton, T; Jue, T; Hickman, D

    2007-04-03

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands (https://eed.llnl.gov/mi/). Local atoll governments have been actively engaged in developing shared responsibilities for protecting the health and safety of resettled and resettling population at risk from exposure to elevated levels of residual fallout contamination in the environment. Under the program, whole body counting facilities have been established at three locations in the Marshall Islands. These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing technical support services including data quality assurance and performance testing. We have also established a mirror whole body counting facility at the Lawrence Livermore National Laboratory as a technician training center. The LLNL facility also allows program managers to develop quality assurance and operational procedures, and test equipment and corrective actions prior to deployment at remote stations in the Marshall Islands. This document summarizes the results of external performance evaluation exercises conducted at each of the facilities (2002-2005) under the umbrella of the Oak Ridge National Laboratory Intercomparison Studies Program (ISP). The ISP was specifically designed to meet intercomparison requirements of the United States (U.S.) Department of Energy Laboratory Accreditation Program (DOELAP). In this way, the Marshall Islands Radiological Surveillance Program has attempted to establish quality assurance measures in whole body counting that are consistent with standard requirements used to monitor DOE workers in the United States. Based on ANSI N13.30, the acceptable performance criteria for relative measurement bias and precision for radiobioassay service laboratory quality control

  5. Whole body massage for reducing anxiety and stabilizing vital signs of patients in cardiac care unit

    PubMed Central

    Adib-Hajbaghery, Mohsen; Abasi, Ali; Rajabi-Beheshtabad, Rahman

    2014-01-01

    Background: Patients admitted in coronary care units face various stressors. Ambiguity of future life conditions and unawareness of caring methods intensifies the patients’ anxiety and stress. This study was conducted to assess the effects of whole body massage on anxiety and vital signs of patients with acute coronary disorders. Methods: A randomized controlled trial was conducted on 120 patients. Patients were randomly allocated into two groups. The intervention group received a session of whole body massage and the control group received routine care. The levels of State, Trait and overall anxiety and vital signs were assessed in both groups before and after intervention. Independent sample t-test, paired t-test, Chi-square and Fischer exact tests were used for data analysis. Results: The baseline overall mean score of anxiety was 79.43±29.34 in the intervention group and was decreased to 50.38±20.35 after massage therapy (p=0.001). However, no significant changes were occurred in the overall mean anxiety in the control group during the study. The baseline diastolic blood pressure was 77.05±8.12 mmHg and was decreased to 72.18±9.19 mmHg after the intervention (p=0.004). Also, significant decreases were occurred in heart rate and respiration rate of intervention group after massage therapy (p=0.001). However, no significant changes were occurred in vital signs of the control group during the study. Conclusion: The results suggest that whole body massage was effective in reducing anxiety and stabilizing vital signs of patients with acute coronary disorders. PMID:25405113

  6. Muscle contributions to whole-body sagittal plane angular momentum during walking.

    PubMed

    Neptune, R R; McGowan, C P

    2011-01-01

    Walking is a complex dynamic task that requires the regulation of whole-body angular momentum to maintain dynamic balance while performing walking subtasks such as propelling the body forward and accelerating the leg into swing. In human walking, the primary mechanism to regulate angular momentum is muscle force generation. Muscles accelerate body segments and generate ground reaction forces that alter angular momentum about the body's center-of-mass to restore and maintain dynamic stability. In addition, gravity contributes to whole-body angular momentum through its contribution to the ground reaction forces. The purpose of this study was to generate a muscle-actuated forward dynamics simulation of normal walking to quantify how individual muscles and gravity contribute to whole-body angular momentum in the sagittal plane. In early stance, the uniarticular hip and knee extensors (GMAX and VAS), biarticular hamstrings (HAM) and ankle dorsiflexors (TA) generated backward angular momentum while the ankle plantar flexors (SOL and GAS) generated forward momentum. In late stance, SOL and GAS were the primary contributors and generated angular momentum in opposite directions. SOL generated primarily forward angular momentum while GAS generated backward angular momentum. The difference between muscles was due to their relative contributions to the horizontal and vertical ground reaction forces. Gravity contributed to the body's angular momentum in early stance and to a lesser extent in late stance, which was counteracted primarily by the plantar flexors. These results may provide insight into balance and movement disorders and provide a basis for developing locomotor therapies that target specific muscle groups.

  7. Is there evidence for nonthermal modulation of whole body heat loss during intermittent exercise?

    PubMed

    Kenny, Glen P; Gagnon, Daniel

    2010-07-01

    This study compared the effect of active, passive, and inactive recoveries on whole body evaporative and dry heat loss responses during intermittent exercise at an air temperature of 30 degrees C and a relative humidity of 20%. Nine males performed three 15-min bouts of upright seated cycling at a fixed external workload of 150 W. The exercise bouts were separated by three 15-min recoveries during which participants 1) performed loadless pedaling (active recovery), 2) had their lower limbs passively compressed with inflatable sleeves (passive recovery), or 3) remained upright seated on the cycle ergometer (inactive recovery). Combined direct and indirect calorimetry was employed to measure rates of whole body evaporative heat loss (EHL) and metabolic heat production (M-W). Mean body temperature (T(b)) was calculated from esophageal and mean skin temperatures, and mean arterial pressure (MAP) was measured continuously. Active and passive recoveries both reversed the reduction in MAP associated with inactive recovery (P whole body

  8. Ocular torsion induced by static and dynamic visual stimulation and static whole body roll.

    PubMed

    Kingma, H; Stegeman, P; Vogels, R

    1997-01-01

    By means of real-time infra-red video-oculography we studied eye torsion in 12 normal healthy subjects. Ocular torsion was induced by visual stimulation or static whole body roll with and without visual orientation ("head-fixed" or "earth-fixed"). Visual stimulation was achieved by a horizontal grating that oscillated sinusoidally in a frontal plane. The oscillation frequency varied from 0 to 0.6 Hz while amplitude varied from 6 degrees to 33 degrees. Visual orientation during whole body roll was established by mounting a 32 lx illuminated horizontal grating either on a tilting device (head-fixed) or on the wall in the frontal plane (earth-fixed). Maximum visual-induced eye torsion gain was reached at about 0.2 Hz. No eye torsion was observed in static (0 Hz) visual tilts of the grating. Maximum gain was about 0.36 at amplitudes between 6 degrees and 10 degrees. Eye torsion gain decreased with increasing amplitude and increasing frequency (> 0.2 Hz). Static whole body roll in the dark up to 180 degrees clockwise and counterclockwise induced static ocular counter rolling with a maximum amplitude of 12 degrees and a maximum gain of 0.22. Gain decreased with increasing roll down to zero at 180 degrees. Visual orientation with either head or earth fixed did not affect the amplitude or gain of the body roll induced ocular counter-rolling. The results are interpreted in terms of improving the reliability of clinical statolith testing and understanding the processes involved in motion sickness.

  9. Quantitative analysis of drug effects at the whole-body level: a case study for glucose metabolism in malaria patients.

    PubMed

    Snoep, Jacky L; Green, Kathleen; Eicher, Johann; Palm, Daniel C; Penkler, Gerald; du Toit, Francois; Walters, Nicolas; Burger, Robert; Westerhoff, Hans V; van Niekerk, David D

    2015-12-01

    We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker. PMID:26614654

  10. A Quantitative Evaluation of Hepatic Uptake on I-131 Whole-Body Scintigraphy for Postablative Therapy of Thyroid Carcinoma.

    PubMed

    Nakayama, Michihiro; Okizaki, Atsutaka; Sakaguchi, Miki; Ishitoya, Shunta; Uno, Takahiro; Sato, Junichi; Takahashi, Koji

    2015-07-01

    This study aimed to determine clinical association between quantitative hepatic uptake on postablative whole-body scan (WBS) with differentiated thyroid cancer (DTC) prognosis. We analyzed 541 scans of 216 DTC patients who were divided into 3 groups based on radioactive iodine (I-131) WBS uptake and clinical follow-up: group 1 (completion of ablation), group 2 (abnormal uptake in the cervical region), and group 3 (abnormal uptake with distant metastases). For each group, we calculated the ratio of I-131 WBS hepatic uptake (H) to cranial uptake as background (B); this ratio was defined as H/B. Furthermore, we made a distinction between group 1, as having completed radioactive iodine therapy (RIT) (CR), and group 2 and 3, as requiring subsequent RIT (RR). The average H/B scores were 1.34 (median, 1.36; range 1.00-2.1) for group 1; 1.89 (median, 1.75; range 1.41-4.20) for group 2; and 2.09 (median, 1.90; range 1.50-4.32) for group 3. Bonferroni multiple comparisons revealed significant differences in H/B among these groups. The H/B of group 1 was significantly smaller than that of other 2 groups (P < 0.0001). The precise cutoff value of H/B for therapeutic effect was ≤1.5. Moreover, 159 of 160 scans in the CR and 375 of 381 patients in the RR were correctly diagnosed using this cutoff value in the final outcome of RIT, yielding a sensitivity, specificity, positive predictive value, and negative predictive value of 99.4%, 98.4%, 99.7%, and 96.3%, respectively. Increased hepatic uptake of I-131 on WBS may predict disease-related progression.

  11. Whole-Body Pediatric Neuroblastoma Imaging: 123I-mIBG and Beyond.

    PubMed

    Pai Panandiker, Atmaram S; Coleman, Jamie; Shulkin, Barry

    2015-09-01

    Pediatric cancer imaging stands to benefit from higher tumor detection sensitivity without ionizing radiation exposure. A prospective protocol compared diagnostic I-metaiodobenzylguanidine (I-mIBG) with whole-body diffusion-weighted MRI (DWI) to validate adjunctive methods of identifying small-volume oligometastatic neuroblastoma tumor deposits. Dual-modality imaging (I-mIBG and DWI) was obtained within a 3- and 25-day window at baseline and again at one year in the first enrolled patient. MRI was able to define the full extent of metastatic disease foci with improved resolution. These findings may provide critical information for definitive locoregional surgery and radiotherapy for high-risk neuroblastoma treatment.

  12. Effect of Whole-Body Vibration on Speech. Part 2; Effect on Intelligibility

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    2011-01-01

    The effect on speech intelligibility was measured for speech where talkers reading Diagnostic Rhyme Test material were exposed to 0.7 g whole body vibration to simulate space vehicle launch. Across all talkers, the effect of vibration was to degrade the percentage of correctly transcribed words from 83% to 74%. The magnitude of the effect of vibration on speech communication varies between individuals, for both talkers and listeners. A worst case scenario for intelligibility would be the most sensitive listener hearing the most sensitive talker; one participant s intelligibility was reduced by 26% (97% to 71%) for one of the talkers.

  13. Whole-Body Vibration and Blood Flow and Muscle Oxygenation: A Meta-Analysis

    PubMed Central

    Games, Kenneth E.; Sefton, JoEllen M.; Wilson, Alan E.

    2015-01-01

    Context: The use and popularity of whole-body vibration (WBV) has increased in recent years, but there is a lack of consensus in the literature about the effectiveness of the treatment. Objective: To quantitatively examine the effects of WBV on muscle oxygenation and peripheral blood flow in healthy adults. Data Sources: We searched Web of Science and PubMed databases and reference lists from relevant articles using the key terms whole body vibration, whole-body vibration, WBV, blood flow, peripheral blood flow, oxygenation, muscle oxygenation, circulation, circulatory, near infrared spectroscopy, NIRS, and power Doppler. Key terms were searched using single word and combination searches. No date range was specified. Study Selection: Criteria for inclusion were (1) use of a commercially available WBV device, (2) a human research model, (3) a pre-WBV condition and at least 1 WBV experimental condition, and (4) reporting of unstandardized means and standard deviations of muscle oxygenation or peripheral blood flow. Data Extraction: Means, standard deviations, and sample sizes were extracted from the text, tables, and figures of included studies. A total of 35 and 90 data points were extracted for the muscle-oxygenation and blood-flow meta-analyses, respectively. Data for each meta-analysis were combined and analyzed using meta-analysis software. Weighted, random-effects meta-analyses using the Hedges g metric were completed for muscle oxygenation and blood flow. We then conducted follow-up analyses using the moderator variables of vibration type, vibration time, vibration frequency, measurement location, and sample type. Data Synthesis: We found 18 potential articles. Further examination yielded 10 studies meeting the inclusion criteria. Whole-body vibration was shown to positively influence peripheral blood flow. Additionally, the moderators of vibration type and frequency altered the influence of WBV on blood flow. Overall, WBV did not alter muscle oxygenation

  14. Local versus whole-body sweating adaptations following 14 days of traditional heat acclimation.

    PubMed

    Poirier, Martin P; Gagnon, Daniel; Kenny, Glen P

    2016-08-01

    The purpose of this study was to examine if local changes in sweat rate following 14 days of heat acclimation reflect those that occur at the whole-body level. Both prior to and following a 14-day traditional heat acclimation protocol, 10 males exercised in the heat (35 °C, ∼20% relative humidity) at increasing rates of heat production equal to 300 (Ex1), 350 (Ex2), and 400 (Ex3) W·m(-2). A 10-min recovery period followed Ex1, while a 20-min recovery period separated Ex2 and Ex3. The exercise protocol was performed in a direct calorimeter to measure whole-body sweat rate and, on a separate day, in a thermal chamber to measure local sweat rate (LSR), sweat gland activation (SGA), and sweat gland output (SGO) on the upper back, chest, and mid-anterior forearm. Post-acclimation, whole-body sweat rate was greater during each exercise bout (Ex1: 14.3 ± 0.9; Ex2: 17.3 ± 1.2; Ex3: 19.4 ± 1.3 g·min(-1), all p ≤ 0.05) relative to pre-acclimation (Ex1: 13.1 ± 0.6; Ex2: 15.4 ± 0.8; Ex3: 16.5 ± 1.3 g·min(-1)). In contrast, only LSR on the forearm increased with acclimation, and this increase was only observed during Ex2 (Post: 1.32 ± 0.33 vs. Pre: 1.06 ± 0.22 mg·min(-1)·cm(-2), p = 0.03) and Ex3 (Post: 1.47 ± 0.41 vs. Pre: 1.17 ± 0.23 mg·min(-1)·cm(-2), p = 0.05). The greater forearm LSR post-acclimation was due to an increase in SGO, as no changes in SGA were observed. Overall, these data demonstrate marked regional variability in the effect of heat acclimation on LSR, such that not all local measurements of sweat rate reflect the improvements observed at the whole-body level. PMID:27467216

  15. Whole-body effective half-lives for radiolabeled antibodies and related issues

    SciTech Connect

    Kaurin, D.G.L.; Carsten, A.L.; Baum, J.W.; Barber, D.E.

    1996-08-01

    Radiolabeled antibodies (RABs) are being developed and used in medical imaging and therapy in rapidly increasing numbers. Data on the whole body half effective half-lives were calculated from external dose rates obtained from attending physicians and radiation safety officers at participating institutions. Calculations were made using exponential regression analysis of data from patients receiving single and multiple administrations. Theses data were analyzed on the basis of age, sex, isotope label, radiation energy, antibody type, disease treated, administration method, and number of administrations.

  16. Ring-shaped confocal photoacoustic computed tomography for small-animal whole-body imaging

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Guo, Zijian; Anastasio, Mark; Wang, Lihong V.

    2012-02-01

    We report herein a novel three-dimensional photoacoustic computed tomography (PACT) system for small-animal whole-body imaging. The PACT system, based on a 512-element full-ring ultrasonic transducer array, was cylindrically focused and capable of forming a two-dimensional image in 1.6 seconds. The pulsed laser could either illuminate directly from the top or be reshaped to illuminate the sample from the side. Top illumination was mainly used for mouse brain and mouse embryo imaging. Side illumination provided in vivo anatomical images of an adult mouse. By translating the mouse along the elevational direction, the system provided serial cross-sectional images.

  17. Estimation of body fat in rats by whole-body counting.

    PubMed

    Pommer, A M; Lakshmanan, F L

    1975-07-01

    A method for determining body fat in vivo in rats by whole-body counting of 40K is described. The technique utilizes a Nuclear Chicago Corporation TOBOR system with 5-in thallium-activated sodium iodide crystals. To test the method a regression equation was developed using the 40K counts and body weight of young adult rats weighing 333-788 g; the results were compared with those obtained from the gravimetric determination of fat in the carcass. The correlation coefficient between the two methods was 0.945.

  18. Waveform-Sampling Electronics for a Whole-Body Time-of-Flight PET Scanner

    PubMed Central

    Ashmanskas, W. J.; LeGeyt, B. C.; Newcomer, F. M.; Panetta, J. V.; Ryan, W. A.; Van Berg, R.; Wiener, R. I.; Karp Fellow, J. S.

    2014-01-01

    Waveform sampling is an appealing technique for instruments requiring precision time and pulse-height measurements. Sampling each PMT waveform at oscilloscope-like rates of several gigasamples per second enables one to process PMT signals digitally, which in turn makes it straightforward to optimize timing resolution and amplitude (energy and position) resolution in response to calibration effects, pile-up effects, and other systematic sources of waveform variation. We describe a system design and preliminary implementation that neatly maps waveform-sampling technology onto the LaPET prototype whole-body time-of-flight PET scanner that serves as the platform for testing this new technology. PMID:25484379

  19. A comparison of skeletal uptakes of three diphosphonates by whole-body retention: concise communication.

    PubMed

    Fogelman, I; Pearson, D W; Bessent, R G; Tofe, A J; Francis, M D

    1981-10-01

    Twenty normal volunteers had measurements of 24-hr whole-body retention (WBR) of three structurally related Tc-99m-labeled phosphonate skeletal imaging agents: (1-hydroxyethylidene) diphosphonate (HEDP), methylene diphosphonate (MDP), and hydroxymethylene diphosphonate (HMDP). The average WBR values, reflecting skeletal uptake, were 18.4, 30.3, and 36.6%, respectively. These results clearly illustrate that slight alterations in diphosphonate molecular structure have a significant effect upon specificity for osseous tissue, and thus may affect skeletal image quality and the usefulness of the WBR technique in diagnosing metabolic bone disease.

  20. Anatomical and metabolic small-animal whole-body imaging using ring-shaped confocal photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.

    2013-03-01

    Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.

  1. Usefulness of Whole-Body Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography in Patients with Neurofibromatosis Type 1: A Systematic Review

    PubMed Central

    Treglia, Giorgio; Taralli, Silvia; Bertagna, Francesco; Salsano, Marco; Muoio, Barbara; Novellis, Pierluigi; Vita, Maria Letizia; Maggi, Fabio; Giordano, Alessandro

    2012-01-01

    Aim. To systematically review the role of positron emission tomography (PET) with fluorine-18-fluorodeoxyglucose (FDG) in patients with neurofibromatosis type 1 (NF1). Methods. A comprehensive literature search of published studies regarding FDG-PET and PET/CT in patients with NF1 was performed. No beginning date limit and language restriction were used; the search was updated until December 2011. Only those studies or subsets in studies including whole-body FDG-PET or PET/CT scans performed in patients with NF1 were included. Results. We identified 12 studies including 352 NF1 patients. Qualitative evaluation was performed in about half of the studies and semiquantitative analysis, mainly based on different values of SUV cutoff, in the others. Most of the studies evaluated the role of FDG-PET for differentiating benign from malignant peripheral nerve sheath tumors (MPNSTs). Malignant lesions were detected with a sensitivity ranging between 100% and 89%, but with lower specificity, ranging between 100% and 72%. Moreover, FDG-PET seems to be an important imaging modality for predicting the progression to MPNST and the outcome in patients with MPNST. Two studies evaluated the role of FDG-PET in pediatric patients with NF1. Conclusions. FDG-PET and PET/CT are useful methods to identify malignant change in neurogenic tumors in NF1 and to discriminate malignant from benign neurogenic lesions. PMID:22991664

  2. The development of a phantom to determine foetal organ doses from 131I in the foetal thyroid

    NASA Astrophysics Data System (ADS)

    O'Hare, N.; Murphy, D.; Malone, J. F.

    2000-09-01

    Iodine can accumulate in the foetal thyroid from the twelfth week of gestation onwards. If the iodine taken up by the foetal thyroid is in the form of 131I then the thyroid and its proximal tissues and organs will be irradiated. Several mathematical models exist in the literature on foetal/maternal iodine kinetics. However, very few studies have been performed where the foetal thyroid had been physically modelled thus allowing the determination of foetal organ dosimetry from 131I in the foetal thyroid. Here, the development of such a physical model or phantom is described and dosimetry results obtained from the phantom are discussed. The phantom is of Perspex construction, the dimensions of which are sufficient to incorporate models of the foetus at 16, 24 and 36 weeks' gestational age. The dosimetry of two organs is presented, that of the brain and the thymus. The results show that the measured absorbed dose is comparable with that calculated using modified MIRD dosimetry and traditional methods. The results also show that the dose to the thymus is greater than that of the brain by a factor of almost 30 for 16 weeks' gestational age.

  3. Evidence of 131I and (134,137)Cs activities in Bordeaux, France due to the Fukushima nuclear accident.

    PubMed

    Perrot, F; Hubert, Ph; Marquet, Ch; Pravikoff, M S; Bourquin, P; Chiron, H; Guernion, P-Y; Nachab, A

    2012-12-01

    Following the Fukushima nuclear accident, low-background gamma spectrometry measurements were performed with HPGe detectors at the PRISNA platform located at the CENBG laboratory in Bordeaux, France. Different kinds of samples were collected and measured between March 26 and May 14, 2011. The first fission product observed was (131)I with maximum activity values of 2.4 mBq/m(3) in atmospheric dusts in air, 3.5 Bq/L in rain water, 15 Bq/kg in grass and 0.9 Bq/L in cow milk. The (134,137)Cs isotopes were also detected in air and in grass at a maximum level of 0.2 mBq/m(3) and 0.7 Bq/kg respectively, around one order of magnitude less than (131)I activity, but they were below detection limits in the other samples. All these activity values were consistent with others measured in France by IRSN and were well below those reported in May 1986 after the Chernobyl accident. PMID:22257694

  4. Thyroid tumors following /sup 131/I or localized x irradiation to the thyroid and pituitary glands in rats

    SciTech Connect

    Lee, W.; Chiacchierini, R.P.; Shleien, B.; Telles, N.C.

    1982-11-01

    Three thousand 6-week-old female Long-Evans rats were randomly assigned to 10 equal treatment groups. Three groups were injected intraperitoneally with 0.48, 1.9, and 5.4 ..mu..Ci of Na /sup 131/I yielding mean thyroid doses of 30, 330, and 850 rad, respectively. Three groups were irradiated with 94, 410, and 1060 rad from localized X ray to the thyroid. One group was irradiated with 410 rad to the pituitary, and another group was given 410 rad to both the thyroid and the pituitary with localized X rays. The remaining two groups of animals were used as separate sham-irradiated controls for the two types of radiation. All the surviving animals were killed 2 years later. Results derived from this study indicate that: (a) The proportion of animals with thyroid carcinoma is similar for /sup 131/I and X irradiation within the dose range of 0-1000 rad. (b) The thryoid carcinoma dose-response functions fitted by the least-squares method are nearly proportional to the square root of the thyroid dose. (c) Thyroid carcinoma induction appears to be independent of the dose rates resulting from the radiations used in this study. (d) A localized X-ray dose of 410 rad to the pituitary, whether the dose was administered concomitantly with thyroid irradiation or without thyroid irradiation, did not modify the risk of thyroid tumor.

  5. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner

    NASA Astrophysics Data System (ADS)

    Surti, S.; Karp, J. S.

    2015-07-01

    Current generation of commercial time-of-flight (TOF) PET scanners utilize 20-25 mm thick LSO or LYSO crystals and have an axial FOV (AFOV) in the range of 16-22 mm. Longer AFOV scanners would provide increased intrinsic sensitivity and require fewer bed positions for whole-body imaging. Recent simulation work has investigated the sensitivity gains that can be achieved with these long AFOV scanners, and has motivated new areas of investigation such as imaging with a very low dose of injected activity as well as providing whole-body dynamic imaging capability in one bed position. In this simulation work we model a 72 cm long scanner and prioritize the detector design choices in terms of timing resolution, crystal size (spatial resolution), crystal thickness (detector sensitivity), and depth-of-interaction (DOI) measurement capability. The generated list data are reconstructed with a list-mode OSEM algorithm using a Gaussian TOF kernel that depends on the timing resolution and blob basis functions for regularization. We use lesion phantoms and clinically relevant metrics for lesion detectability and contrast measurement. The scan time was fixed at 10 min for imaging a 100 cm long object assuming a 50% overlap between adjacent bed positions. Results show that a 72 cm long scanner can provide a factor of ten reduction in injected activity compared to an identical 18 cm long scanner to get equivalent lesion detectability. While improved timing resolution leads to further gains, using 3 mm (as opposed to 4 mm) wide crystals does not show any significant benefits for lesion detectability. A detector providing 2-level DOI information with equal crystal thickness also does not show significant gains. Finally, a 15 mm thick crystal leads to lower lesion detectability than a 20 mm thick crystal when keeping all other detector parameters (crystal width, timing resolution, and DOI capability) the same. However, improved timing performance with 15

  6. Estimation of patient radiation dose from whole body 18F- FDG PET/CT examination in cancer imaging: a preliminary study

    NASA Astrophysics Data System (ADS)

    Mahmud, M. H.; Nordin, A. J.; Saad, F. F. Ahmad; Fattah Azman, A. Z.

    2014-11-01

    This study aims to estimate the radiation effective dose resulting from whole body fluorine-18 flourodeoxyglucose Positron Emission Tomography (18F-FDG PET) scanning as compared to conservative Computed Tomography (CT) techniques in evaluating oncology patients. We reviewed 19 oncology patients who underwent 18F-FDG PET/CT at our centre for cancer staging. Internal and external doses were estimated using radioactivity of injected FDG and volume CT Dose Index (CTDIvol), respectively with employment of the published and modified dose coefficients. The median differences of dose among the conservative CT and PET protocols were determined using Kruskal Wallis test with p < 0.05 considered as significant. The median (interquartile range, IQR) effective doses of non-contrasted CT, contrasted CT and PET scanning protocols were 7.50 (9.35) mSv, 9.76 (3.67) mSv and 6.30 (1.20) mSv, respectively, resulting in the total dose of 21.46 (8.58) mSv. Statistically significant difference was observed in the median effective dose between the three protocols (p < 0.01). The effective doses of whole body 18F-FDG PET technique may be effective the lowest amongst the conventional CT imaging techniques.

  7. Expected and unexpected head yaw movements result in different modifications of gait and whole body coordination strategies.

    PubMed

    Vallis, Lori Ann; Patla, Aftab E

    2004-07-01

    the central nervous system. Overall safety is ensured by maintaining the same travel path. In the second experiment, an unexpected perturbation was applied to the head during locomotion to determine how the absence of an efferent copy of the movement pattern influences the level of control over body segments during locomotion. Whole body responses similar to those observed during steering tasks were observed following application of this unexpected head perturbation. It is proposed that the CNS interprets an unexpected yaw movement of the head as a change in the frame of reference, and global modifications of the walking trajectory, similar to that observed during steering tasks, are made in the perceived new direction of travel. Collectively this work extends our understanding of how the CNS establishes a head based orientation frame for locomotion. The CNS interprets and integrates anticipated and unexpected changes in sensory information from the head segment and subsequently modifies locomotion patterns according to the perceived whole body orientation in space. The sequence of control following these head movements appears to be part of a movement repertoire that is not immutable; maintaining whole body stability during locomotion is paramount.

  8. Comparative tissue distribution in mice of the alpha-emitter 211At and 131I as labels of a monoclonal antibody and F(ab')2 fragment.

    PubMed

    Garg, P K; Harrison, C L; Zalutsky, M R

    1990-06-15

    Because it decays by the emission of short-range, high-energy alpha-particles, the radiohalogen 211At might be a particularly useful nuclide for some types of radioimmunotherapy. However, no suitable gamma-emitting nuclide of astatine exists which would permit either imaging prior to therapy to obtain radiation dosimetry estimates or performing experiments in paired-label format. Since iodine is the halogen above astatine in the periodic table, we investigated whether the in vivo distribution of 131I could be used to mimic the biodistribution of 211At. In this study, the N-succinimidyl 3-(trialkylstannyl)benzoate method was used to label C110 IgG, an antibody directed against carcinoembryonic antigen, and its (Fab')2 fragment with 211At and 131I. Paired-label experiments were performed in normal mice comparing the tissue distribution of 211At- versus 131I-labeled C110 IgG and F(ab')2 as well as [211At]astatide versus [131I]iodide and m-[211At]astatobenzoic acid versus m-[131I]iodobenzoic acid, potential catabolites of proteins radiohalogenated via the N-succinimidyl 3-(trialkylstannyl)benzoate method. With the exception of thyroid, retention of astatide in tissues was higher than that of iodide; and, with the halobenzoic acids, uptake of 211At was higher than 135I in thyroid, stomach, and spleen. Use of the N-succinimidyl 3-(trialkylstannyl)benzoate method to label C110 IgG with 211At and 131I resulted in similar distributions of the two nuclides. In contrast, loss of 211At from the F(ab')2 fragment was considerably more rapid than 131I, suggesting that different astatination methods may be required for use with F(ab')2 fragments. PMID:2340501

  9. Values of 99mTc-methoxyisobutylisonitrile imaging after first-time large-dose 131I therapy in treating differentiated thyroid cancer

    PubMed Central

    Pan, Xiaomei; Duan, Dong; Zhu, Yuquan; Pang, Hua; Guan, Lili; Lv, Zhixiang

    2016-01-01

    Objective The aim of this study is to investigate the use of 99mTc-methoxyisobutylisonitrile (MIBI) imaging for evaluating the treatment response of differentiated thyroid cancer (DTC) after the first administration of a high dose of 131I. Methods Patients with DTC who received 131I therapy underwent 99mTc-MIBI imaging after successive increases in the therapeutic dose of 131I, and the serum levels of thyroglobulin (Tg) were measured. Results A total of 191 patients were enrolled in the final analysis, including 65 metastases and/or thyroid remnant-positive patients (22 patients with metastases and 43 patients with thyroid remnants). The sensitivity of 99mTc-MIBI imaging for detecting positive cases and thyroid remnants was 56.9% and 39.5%, respectively, which was significantly lower than that of 131I imaging (92.3% and 100%, respectively, P<0.01 for both). The sensitivity of 99mTc-MIBI imaging for detecting metastases was 90.9%, which was slightly higher than that of 131I imaging (77.3%, P>0.05). The Tg levels in the positive group were significantly higher than that in the negative group (P<0.01). In addition, the Tg levels in the 99mTc-MIBI+/131I− group were significantly higher than that in the 131I+/99mTc-MIBI group (P<0.05). Conclusion After the first 131I therapy, although 99mTc-MIBI imaging was able to detect the existence of metastatic lesions in patients with DTC better, its assessment for the removal efficiency of thyroid remnants was unsatisfactory. The results of 99mTc-MIBI imaging showed good correlations with the Tg level. PMID:26929643

  10. Whole body vibration and posture as risk factors for low back pain among forklift truck drivers

    NASA Astrophysics Data System (ADS)

    Hoy, J.; Mubarak, N.; Nelson, S.; Sweerts de Landas, M.; Magnusson, M.; Okunribido, O.; Pope, M.

    2005-06-01

    A cross-sectional study was conducted to investigate the risks from whole-body vibration and posture demands for low back pain (LBP) among forklift truck (forklift) drivers. Using a validated questionnaire, information about health history was obtained over a period of two weeks in face-to-face interviews. The forklift drivers were observed in respect of their sitting posture, including frequency with which different positions were adopted (bending, leaning and twisting) and postural analyses were conducted using the OWAS and RULA techniques. Forklift vibrations at the seat (exposure) were measured in the three orthogonal axes ( x-fore and aft, y-lateral and z-vertical) under actual working conditions according to the recommendations of ISO 2631-1. The results showed that LBP was more prevalent amongst forklift drivers than among non-drivers and driving postures in which the trunk is considerably twisted or bent forward associated with greatest risk. Furthermore, forklift drivers showed to be exposed to acceptable levels of vibration in the x- and y-directions (i.e., below the EU Physical Agents Directive on Vibration Exposure recommended action level—0.5 m/s 2), but not in the z-direction. There were indications that whole-body vibration acts associatively with other factors (not independently) to precipitate LBP.

  11. Coffee polyphenols modulate whole-body substrate oxidation and suppress postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidaemia.

    PubMed

    Murase, Takatoshi; Yokoi, Yuka; Misawa, Koichi; Ominami, Hideo; Suzuki, Yasuto; Shibuya, Yusuke; Hase, Tadashi

    2012-06-01

    Postprandial energy metabolism, including postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidaemia, is related to the risk for developing obesity and CVD. In the present study, we examined the effects of polyphenols purified from coffee (coffee polyphenols (CPP)) on postprandial carbohydrate and lipid metabolism, and whole-body substrate oxidation in C57BL/6J mice. In mice that co-ingested CPP with a lipid-carbohydrate (sucrose or starch)-mixed emulsion, the respiratory quotient determined by indirect calorimetry was significantly lower than that in control mice, whereas there was no difference in VO2 (energy expenditure), indicating that CPP modulates postprandial energy partitioning. CPP also suppressed postprandial increases in plasma glucose, insulin, glucose-dependent insulinotropic polypeptide and TAG levels. Inhibition experiments on digestive enzymes revealed that CPP inhibits maltase and sucrase, and, to a lesser extent, pancreatic lipase in a concentration-dependent manner. Among the nine kinds of polyphenols (caffeoyl quinic acids (CQA), di-CQA, feruloyl quinic acids (FQA)) contained in CPP, di-CQA showed more potent inhibitory activity than CQA or FQA on these digestive enzymes, suggesting a predominant role of di-CQA in the regulation of postprandial energy metabolism. These results suggest that CPP modulates whole-body substrate oxidation by suppressing postprandial hyperglycaemia and hyperinsulinaemia, and these effects are mediated by inhibiting digestive enzymes.

  12. Measurement of whole-body vibration exposure from speed control humps

    NASA Astrophysics Data System (ADS)

    Khorshid, E.; Alkalby, F.; Kamal, H.

    2007-07-01

    The main objective of speed control humps is to introduce shocks and high vibration levels when a car passes over them if its speed is higher than the allowable limit. Hump geometry is a major factor in altering the level of these shocks and specifying the speed limit. However, there is no study of the relationship between whole body vibration due to passing over a speed control hump and lower back pain or occupational diseases. In this study, an experimental investigation is conducted to evaluate health risks associated with different geometry speed control humps. Vibration levels and shocks are measured by a seat pad accelerometer placed under the driver's seat to evaluate hazard risks on the human body's lower back. The assessment is based on two standard methods of measuring whole body vibration: the British standard BS 6841 and the new ISO/DIS standard 2631-5. These methods are used to assess the effects of vehicle type, passenger location in the vehicle, vehicle speed, and speed control hump geometry. It was found that circular speed control humps currently installed on many public roads should be modified in order to eliminate hazards. Two newly designed speed humps were proved to be less hazardous than circular speed control humps.

  13. Creatine transporter deficiency leads to increased whole body and cellular metabolism.

    PubMed

    Perna, Marla K; Kokenge, Amanda N; Miles, Keila N; Udobi, Kenea C; Clark, Joseph F; Pyne-Geithman, Gail J; Khuchua, Zaza; Skelton, Matthew R

    2016-08-01

    Creatine (Cr) is a guanidino compound required for rapid replenishment of ATP in cells with a high-energy demand. In humans, mutations in the Cr transporter (CRT;SLC6A8) prevent Cr entry into tissue and result in a significant intellectual impairment, epilepsy, and aphasia. The lack of Cr on both the whole body and cellular metabolism was evaluated in Crt knockout (Crt (-/y) ) mice, a high-fidelity model of human CRT deficiency. Crt (-/y) mice have reduced body mass and, however, show a twofold increase in body fat. There was increased energy expenditure in a home cage environment and during treadmill running in Crt (-/y) mice. Consistent with the increases in the whole-body metabolic function, Crt (-/y) mice show increased cellular metabolism as well. Mitochondrial respiration increased in skeletal muscle fibers and hippocampal lysates from Crt (-/y) mice. In addition, Crt (-/y) mice had increased citrate synthase activity, suggesting a higher number of mitochondria instead of an increase in mitochondrial activity. To determine if the increase in respiration was due to increased mitochondrial numbers, we measured oxygen consumption in an equal number of mitochondria from Crt (+/y) and Crt (-/y) mice. There were no changes in mitochondrial respiration when normalized to mitochondrial number, suggesting that the increase in respiration observed could be to higher mitochondrial content in Crt (-/y) mice.

  14. Late response to whole-lung irradiation alone and with whole-body hyperthermia in dogs

    SciTech Connect

    Gillette, S.M.; Gillette, E.L.; Dawson, C.A.

    1997-02-01

    The late effects of whole-lung irradiation with and without whole-body hyperthermia were studied in beagle dogs. The reference doses ranged from 18 to 49.5 Gy given in 1.5-Gy fractions over 6 weeks. Whole-body hyperthermia was given in three 2-h treatments to a deep rectal temperature of 42.0{degrees}C. Radiation was given simultaneously with hyperthermia on those days. Physiological and histopathological responses were evaluated. Physiological changes included decreases in cardiac output, systemic blood pressure, dynamic compliance and serotonin uptake. Early changes included an increase in extravascular water and total protein in the lavage. These changes were considered mild, were compensated for and occurred only in dogs receiving doses of 40.5 Gy or greater given in 1.5-Gy fractions over 6 weeks. Histopathological change were typical of irradiated lung and included pleural fibrosis, interstitial fibrosis, fibrotic foci, and peribronchial and perivascular fibrosis. There was no enhancement of late injury to lung by hyperthermia seen in this study. 17 refs., 3 figs., 2 tabs.

  15. Suitability of Kinect for measuring whole body movement patterns during exergaming.

    PubMed

    van Diest, Mike; Stegenga, Jan; Wörtche, Heinrich J; Postema, Klaas; Verkerke, Gijsbertus J; Lamoth, Claudine J C

    2014-09-22

    Exergames provide a challenging opportunity for home-based training and evaluation of postural control in the elderly population, but affordable sensor technology and algorithms for assessment of whole body movement patterns in the home environment are yet to be developed. The aim of the present study was to evaluate the use of Kinect, a commonly available video game sensor, for capturing and analyzing whole body movement patterns. Healthy adults (n=20) played a weight shifting exergame under five different conditions with varying amplitudes and speed of sway movement, while 3D positions of ten body segments were recorded in the frontal plane using Kinect and a Vicon 3D camera system. Principal Component Analysis (PCA) was used to extract and compare movement patterns and the variance in individual body segment positions explained by these patterns. Using the identified patterns, balance outcome measures based on spatiotemporal sway characteristics were computed. The results showed that both Vicon and Kinect capture >90% variance of all body segment movements within three PCs. Kinect-derived movement patterns were found to explain variance in trunk movements accurately, yet explained variance in hand and foot segments was underestimated and overestimated respectively by as much as 30%. Differences between both systems with respect to balance outcome measures range 0.3-64.3%. The results imply that Kinect provides the unique possibility of quantifying balance ability while performing complex tasks in an exergame environment.

  16. Development of an anatomically based whole-body musculoskeletal model of the Japanese macaque (Macaca fuscata).

    PubMed

    Ogihara, Naomichi; Makishima, Haruyuki; Aoi, Shinya; Sugimoto, Yasuhiro; Tsuchiya, Kazuo; Nakatsukasa, Masato

    2009-07-01

    We constructed a three-dimensional whole-body musculoskeletal model of the Japanese macaque (Macaca fuscata) based on computed tomography and dissection of a cadaver. The skeleton was modeled as a chain of 20 bone segments connected by joints. Joint centers and rotational axes were estimated by joint morphology based on joint surface approximation using a quadric function. The path of each muscle was defined by a line segment connecting origin to insertion through an intermediary point if necessary. Mass and fascicle length of each were systematically recorded to calculate physiological cross-sectional area to estimate the capacity of each muscle to generate force. Using this anatomically accurate model, muscle moment arms and force vectors generated by individual limb muscles at the foot and hand were calculated to computationally predict muscle functions. Furthermore, three-dimensional whole-body musculoskeletal kinematics of the Japanese macaque was reconstructed from ordinary video sequences based on this model and a model-based matching technique. The results showed that the proposed model can successfully reconstruct and visualize anatomically reasonable, natural musculoskeletal motion of the Japanese macaque during quadrupedal/bipedal locomotion, demonstrating the validity and efficacy of the constructed musculoskeletal model. The present biologically relevant model may serve as a useful tool for comprehensive understanding of the design principles of the musculoskeletal system and the control mechanisms for locomotion in the Japanese macaque and other primates.

  17. Creatine transporter deficiency leads to increased whole body and cellular metabolism.

    PubMed

    Perna, Marla K; Kokenge, Amanda N; Miles, Keila N; Udobi, Kenea C; Clark, Joseph F; Pyne-Geithman, Gail J; Khuchua, Zaza; Skelton, Matthew R

    2016-08-01

    Creatine (Cr) is a guanidino compound required for rapid replenishment of ATP in cells with a high-energy demand. In humans, mutations in the Cr transporter (CRT;SLC6A8) prevent Cr entry into tissue and result in a significant intellectual impairment, epilepsy, and aphasia. The lack of Cr on both the whole body and cellular metabolism was evaluated in Crt knockout (Crt (-/y) ) mice, a high-fidelity model of human CRT deficiency. Crt (-/y) mice have reduced body mass and, however, show a twofold increase in body fat. There was increased energy expenditure in a home cage environment and during treadmill running in Crt (-/y) mice. Consistent with the increases in the whole-body metabolic function, Crt (-/y) mice show increased cellular metabolism as well. Mitochondrial respiration increased in skeletal muscle fibers and hippocampal lysates from Crt (-/y) mice. In addition, Crt (-/y) mice had increased citrate synthase activity, suggesting a higher number of mitochondria instead of an increase in mitochondrial activity. To determine if the increase in respiration was due to increased mitochondrial numbers, we measured oxygen consumption in an equal number of mitochondria from Crt (+/y) and Crt (-/y) mice. There were no changes in mitochondrial respiration when normalized to mitochondrial number, suggesting that the increase in respiration observed could be to higher mitochondrial content in Crt (-/y) mice. PMID:27401086

  18. EURADOS INTERCOMPARISONS ON WHOLE-BODY DOSEMETERS FOR PHOTONS FROM 2008 TO 2014.

    PubMed

    Figel, Markus; Stadtmann, Hannes; Grimbergen, Tom W M; McWhan, Andrew; Romero, Ana M

    2016-09-01

    Starting in 2008 the European Dosimetry Group (EURADOS) has been performing international intercomparisons on photon whole-body dosemeters for individual monitoring services. These intercomparisons were organised (on a biannual basis) in 2008, 2010, 2012 and 2014, each time with a similar set-up but with small alterations in the subsequent irradiation plans. With an increasing number of participants and participating systems, this intercomparison action has become an important tool for individual monitoring services to test their whole-body dosimetry systems, compare their results with other services or systems and to improve the quality of their dosimetry. The paper presents and compares the results of these four intercomparisons and compares the dosimetric results for the participating system types. Major dosimetric problems of the individual monitoring services are identified, and trends in the dosimetric performance of the different systems are shown. This gives the opportunity to identify some dosimetry issues that should be improved by application of the monitoring services' quality assurance systems and QA procedures.

  19. THE RESULTS OF THE EURADOS INTERCOMPARISON IC2014 FOR WHOLE-BODY DOSEMETERS IN PHOTON FIELDS.

    PubMed

    Stadtmann, H; Grimbergen, T W M; Figel, M; Romero, A M; McWhan, A F; Gärtner, C

    2016-09-01

    The European Dosimetry Group (EURADOS) first started performing international intercomparisons for whole-body dosemeters for individual monitoring services in 1998. Since 2008, these whole-body intercomparisons have been performed on a regular basis. In this latest intercomparison (IC2014), 96 monitoring services from 35 countries (mostly European) participated with 112 dosimetry systems. Unlike in the previous intercomparisons, the whole registration, communication and data exchange process was handled by a new on-line platform. All dosemeter irradiations were carried out in the Seibersdorf accredited dosimetry laboratory. The irradiation plan consisted of nine irradiation setups with five different photon radiation qualities (S-Cs, S-Co, RQR7, W-80 and W-150) and two different angles of radiation incidence (0° and 60°). The paper describes and analyses the individual results for the personal dose equivalent quantities Hp(10) and if requested, Hp(0.07), for all participating systems and compares these results with the ISO 14146 'trumpet curve' performance criteria. The results show that 100 systems (89 % of all systems) do fulfil the general ISO 14146 performance criteria. This paper gives an overview on the performance of the participating individual monitoring services and the influence of the dosemeter type on the observed response values.

  20. Whole-body protein kinetics in marasmus and kwashiorkor during acute infection.

    PubMed

    Manary, M J; Broadhead, R L; Yarasheski, K E

    1998-06-01

    Marasmus and kwashiorkor are clinically distinct manifestations of severe malnutrition. This study tested the hypothesis that rates of whole-body protein synthesis and breakdown are higher in marasmus than in kwashiorkor during acute infection. We measured whole-body protein kinetics using stable isotope tracers in eight children with marasmus and acute infection (pneumonia or malaria) to determine the rate of appearance of urea and leucine in plasma. Serum concentrations of total protein, albumin, and C-reactive protein were also measured. These findings were compared with those reported previously for 13 children with kwashiorkor (including marasmic kwashiorkor) and acute infection who were studied with the same methods. HIV infection was present in 10 of 21 children. Rates of protein breakdown and synthesis were higher in marasmus than in kwashiorkor (227 +/- 59 compared with 103 +/- 30 micromol leucine x kg(-1) x h(-1) and 216 +/- 60 compared with 97 +/- 30 micromol leucine x kg(-1) x h(-1), P < 0.001). The concentration of globulin (total protein minus albumin) was higher in marasmus than kwashiorkor (40 +/- 17 compared with 25 +/- 7 g/L, P < or = 0.01), but C-reactive protein was not different (73 +/- 79 compared with 83 +/- 89 mg/L). HIV infection and body composition did not explain the differences between marasmus and kwashiorkor. The accelerated rate of protein turnover in children with marasmus and acute infection requires further investigation.

  1. Rat cardiovascular responses to whole body suspension - Head-down and non-head-down tilt

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, Joseph M.; Dombrowski, Judy

    1992-01-01

    Two experiments aimed at examining the versatility of the whole body suspension (WBS) system as a ground-based model for cardiovascular effects of microgravity are described. The first experiment studied heart rate and arterial pressure responses in rats during a 7-day period of head-down tilt (HDT) or nonhead-down tilt (NHDT) and after removal from whole body suspension (WBS). Mean arterial (MAP), systolic, and diastolic pressures increased about 20 percent in HDT rats on the fist day, heart rates were elevated about 10 percent. During postsuspension most cardiovascular parameters returned to presuspension levels. The second experiment evaluated responses to rapid head-up tilt in HDT and NHDT rats. It was observed that, while pulse pressures remained unchanged, MAP, systolic and diastolic pressures, and HR were elevated in HDT and NHDT rats during head-up tilt after one day of suspension. The WBS rats are considered to be useful as a model to better understand responses of rats exposed to microgravity.

  2. A whole body counting facility in a remote Enewetak Island setting.

    PubMed

    Bell, Thomas R; Hickman, David; Yamaguchi, Lance; Jackson, William; Hamilton, Terry

    2002-08-01

    The U.S. Department of Energy (DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection programs for resettled and resettling populations. As part of this new initiative, DOE agreed to design and construct a radiological laboratory on Enewetak Island, and help develop the necessary local resources to maintain and operate the facility. This cooperative effort was formalized in August 2000 between the DOE, the Republic of the Marshall Islands (RMI), and the Enewetak/Ujelang Local Atoll Government (EULGOV). The laboratory facility was completed in May 2001. The laboratory incorporates both a permanent whole body counting system to assess internal exposures to 137Cs, and clean living space for people providing 24-h void urine samples. DOE continues to provide on-going technical assistance, training, and data quality review while EULGOV provides manpower and infrastructure development to sustain facility operations on a full-time basis. This paper will detail the special construction, transportation and installation issues in establishing a whole body counting facility in an isolated, harsh environmental setting.

  3. Design and operation of a whole-body monitoring system for the Goiania radiation accident

    SciTech Connect

    Oliveira, C.A.; Lourenco, M.C.; Dantas, B.M.; Lucena, E.A. )

    1991-01-01

    With as many individuals involved in the Goiania 137Cs accident who had high levels of internal contamination, it was necessary to improvise a whole-body counter installation in loco. The in-vivo counting system was located in a 4.0 X 3.5 X 3.5-m room, where seven layers of 2-mm lead sheets with dimensions of 2.0 m X 1.0 m were overlaid on the floor at loci that were equidistant from the walls. A 20-cm diameter NaI (Tl) detector was installed at a height of 2.05 m above the floor at the center of the room. The detector was shielded and collimated with 5 cm of lead. The enormous amounts of activity in the subjects required the detector to be positioned at a height of 2.05 m. Subjects were required to wear disposable clothing and lie on a reclining, fiberglass chair. Counting time for the subjects was 2 min (live-time). The minimum detectable 137Cs activity for this counting time was 7.3 kBq* (0.05 significance level). Besides the accident victims, all individuals who had direct or indirect contact with contaminated people or areas were also monitored. More than 300 people of both sexes, with ages varying from a few months to 72 y, were measured for whole-body radioactivity. The observed activities ranged from less than the minimum detectable activity (MDA) to 59 MBq.

  4. Visually evoked whole-body turning responses during stepping in place in a virtual environment.

    PubMed

    Reed-Jones, Rebecca J; Hollands, Mark A; Reed-Jones, James G; Vallis, Lori Ann

    2009-10-01

    Humans use a specific sequence of reorientation of the eyes, head and body to perform turning and redirections while walking. Gaze (eye and head) rotation in a new direction of travel precedes body rotation by as much as 1.5s and provides a stable reference frame that guides subsequent whole-body redirection. The purpose of the current study was to determine whether a visually presented rotation of the external environment can induce whole-body turning lead by gaze redirection in a new travel direction. Five healthy young adults performed a stepping in place task while watching a virtual scene that moved as if they were walking down a hallway, thus providing participants with a perception of forward self motion. While "forward" stepping, the virtual scene would gradually turn around a 90 degrees corner. As a result the turn could be anticipated by the participants. Significant horizontal eye movements and head and body rotation magnitudes were observed in response to the virtual visual turning cue. Onset of eye, head and body redirection revealed a sequenced order and timing of segment rotation that is characteristic of steering behaviour in real world turning situations. The results of this study provide support for the hypothesis that gaze redirection may be an essential subcomponent to steering behaviour. The link between visual redirection and coordinated body turning implies instability when turning may result from visual and/or oculomotor deficits.

  5. Typical whole body vibration exposure magnitudes encountered in the open pit mining industry.

    PubMed

    Howard, Bryan; Sesek, Richard; Bloswick, Don

    2009-01-01

    According to recent research, a causal link has been established between occupational exposure to whole body vibration and an increased occurrence of low back pain. To aid in the further development of an in-house health and safety program for a large open pit mining facility interested in reducing back pain among its operators, whole body vibration magnitudes were characterized for a range of jobs. Specifically, thirty-five individual jobs from five different areas across the facility were evaluated for tri-axial acceleration levels during normal operating conditions. Tri-axial acceleration magnitudes were categorized into thirteen job groups. Job groups were ranked according to exposure and compared to the ISO 2631-1 standard for health risk assessment. Three of the thirteen job groups produced tri-axial acceleration magnitudes below the ISO 2631-1 low/moderate health caution limit for a twelve hour exposure. Six of the thirteen job groups produced exposures within the moderate health risk range. Four job groups were found to subject operators to WBV acceleration magnitudes above the moderate/high health caution limit. PMID:20037244

  6. Between-country comparison of whole-body SAR from personal exposure data in Urban areas.

    PubMed

    Joseph, Wout; Frei, Patrizia; Röösli, Martin; Vermeeren, Günter; Bolte, John; Thuróczy, György; Gajšek, Peter; Trček, Tomaž; Mohler, Evelyn; Juhász, Péter; Finta, Viktoria; Martens, Luc

    2012-12-01

    In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), personal radio frequency electromagnetic field measurements were performed in different microenvironments such as homes, public transports, or outdoors using the same exposure meters. From the mean personal field exposure levels (excluding mobile phone exposure), whole-body absorption values in a 1-year-old child and adult male model were calculated using a statistical multipath exposure method and compared for the five countries. All mean absorptions (maximal total absorption of 3.4 µW/kg for the child and 1.8 µW/kg for the adult) were well below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) basic restriction of 0.08 W/kg for the general public. Generally, incident field exposure levels were well correlated with whole-body absorptions (SAR(wb) ), although the type of microenvironment, frequency of the signals, and dimensions of the considered phantom modify the relationship between these exposure measures. Exposure to the television and Digital Audio Broadcasting band caused relatively higher SAR(wb) values (up to 65%) for the 1-year-old child than signals at higher frequencies due to the body size-dependent absorption rates. Frequency Modulation (FM) caused relatively higher absorptions (up to 80%) in the adult male. PMID:22674152

  7. THE RESULTS OF THE EURADOS INTERCOMPARISON IC2014 FOR WHOLE-BODY DOSEMETERS IN PHOTON FIELDS.

    PubMed

    Stadtmann, H; Grimbergen, T W M; Figel, M; Romero, A M; McWhan, A F; Gärtner, C

    2016-09-01

    The European Dosimetry Group (EURADOS) first started performing international intercomparisons for whole-body dosemeters for individual monitoring services in 1998. Since 2008, these whole-body intercomparisons have been performed on a regular basis. In this latest intercomparison (IC2014), 96 monitoring services from 35 countries (mostly European) participated with 112 dosimetry systems. Unlike in the previous intercomparisons, the whole registration, communication and data exchange process was handled by a new on-line platform. All dosemeter irradiations were carried out in the Seibersdorf accredited dosimetry laboratory. The irradiation plan consisted of nine irradiation setups with five different photon radiation qualities (S-Cs, S-Co, RQR7, W-80 and W-150) and two different angles of radiation incidence (0° and 60°). The paper describes and analyses the individual results for the personal dose equivalent quantities Hp(10) and if requested, Hp(0.07), for all participating systems and compares these results with the ISO 14146 'trumpet curve' performance criteria. The results show that 100 systems (89 % of all systems) do fulfil the general ISO 14146 performance criteria. This paper gives an overview on the performance of the participating individual monitoring services and the influence of the dosemeter type on the observed response values. PMID:26763903

  8. Effect of whole-body vibration warm-up on bat speed in women softball players.

    PubMed

    Dabbs, Nicole C; Brown, Lee E; Coburn, Jared W; Lynn, Scott K; Biagini, Matt S; Tran, Tai T

    2010-09-01

    Whole-body vibration (WBV) may enhance human performance via augmented muscular strength and motor function if used before performance. Because warm-up is a crucial aspect of preparation for performance, it remains unknown if WBV may enhance bat speed. The purpose of this study was to investigate the effect of WBV warm-up on bat speed. Eleven National Collegiate Athletic Association division I and 11 recreationally trained female softball players volunteered to participate. Subjects randomly performed 3 different warm-up conditions consisting of WBV alone, dry swings alone (DS), and WBV with dry swings (WBVDS). Whole-body vibration was performed on a pivotal vibration platform at a frequency of 25 Hz and an amplitude of 13 mm for one 30-second bout. Thirty seconds after each warm-up condition, 5 maximal bat swings were recorded. There was no significant (p > 0.05) difference between groups by training status, and there was no significant (p > 0.05) difference between WBV (42.39 +/- 9.83 mph), DS (40.45 +/- 11.00 mph), or WBVDS (37.98 +/- 12.40 mph) conditions. These results indicate that WBV warm-up may be used in place of DS to achieve similar bat speeds. Future research should investigate different combinations of WBV warm-up using various frequencies, durations, amplitudes, and rest times.

  9. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice

    PubMed Central

    Machado, Ana S; Darmohray, Dana M; Fayad, João; Marques, Hugo G; Carey, Megan R

    2015-01-01

    The coordination of movement across the body is a fundamental, yet poorly understood aspect of motor control. Mutant mice with cerebellar circuit defects exhibit characteristic impairments in locomotor coordination; however, the fundamental features of this gait ataxia have not been effectively isolated. Here we describe a novel system (LocoMouse) for analyzing limb, head, and tail kinematics of freely walking mice. Analysis of visibly ataxic Purkinje cell degeneration (pcd) mice reveals that while differences in the forward motion of individual paws are fully accounted for by changes in walking speed and body size, more complex 3D trajectories and, especially, inter-limb and whole-body coordination are specifically impaired. Moreover, the coordination deficits in pcd are consistent with a failure to predict and compensate for the consequences of movement across the body. These results isolate specific impairments in whole-body coordination in mice and provide a quantitative framework for understanding cerebellar contributions to coordinated locomotion. DOI: http://dx.doi.org/10.7554/eLife.07892.001 PMID:26433022

  10. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    SciTech Connect

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-11-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood.

  11. Rat Cardiovascular Responses to Whole Body Suspension: Head-down and Non-Head-Down Tilt

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, Joseph M.; Dombrowski, Judy

    1992-01-01

    The rat whole body suspension technique mimics responses seen during exposure to microgravity and was evaluated as a model for cardiovascular responses with two series of experiments. In one series, changes were monitored in chronically catheterized rats during 7 days of Head-Down Tilt (HDT) or Non-Head-Down Tilt (N-HDT) and after several hours of recovery. Elevations of mean arterial (MAP), systolic, and diastolic pressures of approx. 20 % (P less than 0.05) in HDT rats began as early as day 1 and were maintained for the duration of suspension. Pulse pressures were relatively unaffected, but heart rates were elevated approx. 10 %. During postsuspension (2-7 h), most cardiovascular parameters returned to presuspension levels. N-HDT rats exhibited elevations chiefly on days 3 and 7. In the second series, blood pressure was monitored in 1- and 3-day HDT and N-HDT rats to evaluate responses to rapid head-up tilt. MAP, systolic and diastolic pressures, and HR were elevated (P less than 0.05) in HDT and N-HDT rats during head-up tilt after 1 day of suspension, while pulse pressures remained un changed. HDT rats exhibited elevated pretilt MAP and failed to respond to rapid head-up tilt with further increase of MAP on day 3, indicating some degree of deconditioning. The whole body suspended rat may be useful as a model to better understand responses of rats exposed to microgravity.

  12. Whole-Body Prepulse Inhibition Protocol to Test Sensorymotor Gating Mechanisms in Monkeys

    PubMed Central

    Saletti, Patricia G.; Maior, Rafael S.; Hori, Etsuro; de Almeida, Ricardo Miyasaka; Nishijo, Hisao; Tomaz, Carlos

    2014-01-01

    Prepulse inhibition (PPI) is the decrease of startle reflex amplitude when a slight stimulus is previously generated. This paradigm may provide valuable information about sensorimotor gating functionality. Here we aimed at determining the inhibited and uninhibited startle response of capuchin monkeys (Sapajus spp.), and to evaluate the role of the superior colliculus in PPI. Capuchin monkeys were tested in a whole-body protocol, to determine the best startle amplitude and interstimuli interval. Additionally we tested two subjects with bilateral superior colliculus damage in this protocol. Results show that 115 dB auditory pulse has induced the best startle response. In contrast to reports in other species, no habituation to the auditory stimuli was observed here in capuchins. Also, startle reflex inhibition was optimal after 120 msec interstimuli interval. Finally, there was a downward tendency of percentage inhibition in superior colliculus-lesioned monkeys. Our data provides the possibility of further studies with whole-body protocol in capuchin monkeys and reinforces the importance of the superior colliculus in PPI. PMID:25144368

  13. Between-country comparison of whole-body SAR from personal exposure data in Urban areas.

    PubMed

    Joseph, Wout; Frei, Patrizia; Röösli, Martin; Vermeeren, Günter; Bolte, John; Thuróczy, György; Gajšek, Peter; Trček, Tomaž; Mohler, Evelyn; Juhász, Péter; Finta, Viktoria; Martens, Luc

    2012-12-01

    In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), personal radio frequency electromagnetic field measurements were performed in different microenvironments such as homes, public transports, or outdoors using the same exposure meters. From the mean personal field exposure levels (excluding mobile phone exposure), whole-body absorption values in a 1-year-old child and adult male model were calculated using a statistical multipath exposure method and compared for the five countries. All mean absorptions (maximal total absorption of 3.4 µW/kg for the child and 1.8 µW/kg for the adult) were well below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) basic restriction of 0.08 W/kg for the general public. Generally, incident field exposure levels were well correlated with whole-body absorptions (SAR(wb) ), although the type of microenvironment, frequency of the signals, and dimensions of the considered phantom modify the relationship between these exposure measures. Exposure to the television and Digital Audio Broadcasting band caused relatively higher SAR(wb) values (up to 65%) for the 1-year-old child than signals at higher frequencies due to the body size-dependent absorption rates. Frequency Modulation (FM) caused relatively higher absorptions (up to 80%) in the adult male.

  14. Transient infiltration of neutrophils into the thymus following whole-body X-ray irradiation in IL-10 knockout mice

    SciTech Connect

    Fujiwara, Hiroya; Yamazaki, Takahiro; Uzawa, Akiko; Nagata, Kisaburo; Kobayashi, Yoshiro

    2008-05-02

    IL-10 is known to suppress the inflammatory responses in a variety of experimental models. Because we previously found that whole-body X-irradiation causes massive apoptosis in the thymus and transient infiltration of neutrophils, in this study, we examined whether or not IL-10 is involved in the regulation of neutrophil infiltration upon whole-body X-ray irradiation using IL-10 knockout mice. Although IL-10 was induced in the thymus on whole-body X-ray irradiation, apoptosis of thymocytes, neutrophil infiltration, and MIP-2 and KC production in the thymus were not affected by an IL-10 deficiency. Coculturing of bone marrow-derived macrophages with late apoptotic cells caused MIP-2 production, which was also not affected by an IL-10 deficiency. These results suggest the uniqueness of the inflammatory response induced by whole-body X-ray irradiation, which does not seem to be regulated by IL-10.

  15. On the Health Risk of the Lumbar Spine due to Whole-Body VIBRATION—THEORETICAL Approach, Experimental Data and Evaluation of Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Seidel, H.; Blüthner, R.; Hinz, B.; Schust, M.

    1998-08-01

    The guidance on the effects of vibration on health in standards for whole-body vibration (WBV) does not provide quantitative relationships between WBV and health risk. The paper aims at the elucidation of exposure-response relationships. An analysis of published data on the static and dynamic strength of vertebrae and bone, loaded with various frequencies under different conditions, provided the basis for a theoretical approach to evaluate repetitive loads on the lumbar spine (“internal loads”). The approach enabled the calculation of “equivalent”—with respect to cumulative fatigue failure—combinations of amplitudes and numbers of internal cyclic stress. In order to discover the relation between external peak accelerations at the seat and internal peak loads, biodynamic data of experiments (36 subjects, three somatotypes, two different postures—relaxed and bent forward; random WBV,aw, r.m.s. 1·4 ms-2, containing high transients) were used as input to a biomechanical model. Internal pressure changes were calculated using individual areas of vertebral endplates. The assessment of WBV was based on the quantitative relations between peak accelerations at the seat and pressures predicted for the disk L5/S1. For identical exposures clearly higher rates of pressure rise in the bent forward compared to the relaxed posture were predicted. The risk assessment for internal forces considered the combined internal static and dynamic loads, in relation to the predicted individual strength, and Miner's hypothesis. For exposure durations between 1 min and 8 h, energy equivalent vibration magnitudes (formula B.1, ISO 2631-1, 1997) and equivalent vibration magnitudes according to formula B.2 (time dependence over-energetic) were compared with equivalent combinations of upward peak accelerations and exposure durations according to predicted cumulative fatigue failures of lumbar vertebrae. Formula B.1 seems to underestimate the health risk caused by high magnitudes

  16. Is there an added clinical value of "true"whole body(18)F-FDG PET/CT imaging in patients with malignant melanoma?

    PubMed

    Tan, Julie C; Chatterton, Barry E

    2012-01-01

    Accurate and reliable staging of disease extent in patients with malignant MM is essential to ensure appropriate treatment planning. The detection of recurrent or residual malignancy after primary treatment is important to allow for early intervention and to optimise patient survival. 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) PET or PET computed tomography (PET/CT) is indicated for surveillance of malignant MM due to its high sensitivity and specificity for soft-tissue or nodal recurrences and metastases. It has been claimed that including lower extremities and skull in addition to 'eyes to thigh' images in PET/CT evaluation of metastatic MM routinely is warranted. We have studied retrospectively the reports of whole-body PET/CT scans in all patients with MM scanned in our Department from April 2005 to December 2010. All PET abnormalities in the brain/scalp and lower extremities were tabulated by location and whether they were 'expected' or 'unexpected'. Findings were correlated with pathology, other imaging studies, and clinical follow-up. In this study, 398 PET/CT examinations in 361 patients with MM were included. Results showed that twelve of the 398 (3%) scans had brain/scalp abnormalities, with only 4 (1.0%) showing unexpected abnormalities. Twenty nine of the 398 (7.2%) scans showed lower extremity abnormalities, with only 5 (1.2%) showing unexpected abnormalities. In no case was an isolated unexpected malignant lesion identified in the brain/scalp or lower extremities. In conclusion, whole body PET/CT scan showed about 1% unexpected primary or metastatic MM lesions involving the head or lower extremities, which seldom offered significant additional clinical benefit and were unlikely to change clinical management. No clinically significant change in staging would have occurred. Routine 'eyes to thighs' images were adequate for this subset of patients. PMID:23106051

  17. Effects of whole body vibration training on muscle strength and sprint performance in sprint-trained athletes.

    PubMed

    Delecluse, C; Roelants, M; Diels, R; Koninckx, E; Verschueren, S

    2005-10-01

    Despite the expanding use of Whole Body Vibration training among athletes, it is not known whether adding Whole Body Vibration training to the conventional training of sprint-trained athletes will improve speed-strength performance. Twenty experienced sprint-trained athletes (13 male symbol, 7 female symbol, 17-30 years old) were randomly assigned to a Whole Body Vibration group (n=10: 6 male symbol and 4 female symbol) or a Control group (n=10: 7 male symbol, 3 female symbol). During a 5-week experimental period all subjects continued their conventional training program, but the subjects of the Whole Body Vibration group additionally performed three times weekly a Whole Body Vibration training prior to their conventional training program. The Whole Body Vibration program consisted of unloaded static and dynamic leg exercises on a vibration platform (35-40 Hz, 1.7-2.5 mm, Power Plate). Pre and post isometric and dynamic (100 degrees/s) knee-extensor and -flexor strength and knee-extension velocity at fixed resistances were measured by means of a motor-driven dynamometer (Rev 9000, Technogym). Vertical jump performance was measured by means of a contact mat. Force-time characteristics of the start action were assessed using a load cell mounted on each starting block. Sprint running velocity was recorded by means of a laser system. Isometric and dynamic knee-extensor and knee-flexor strength were unaffected (p>0.05) in the Whole Body Vibration group and the Control group. As well, knee-extension velocity remained unchanged (p>0.05). The duration of the start action, the resulting start velocity, start acceleration, and sprint running velocity did not change (>0.05) in either group. In conclusion, this specific Whole Body Vibration protocol of 5 weeks had no surplus value upon the conventional training program to improve speed-strength performance in sprint-trained athletes. PMID:16158372

  18. Whole-body magnetic resonance imaging featuring moving table continuous data acquisition with high-precision position feedback.

    PubMed

    Zenge, Michael O; Ladd, Mark E; Vogt, Florian M; Brauck, Katja; Barkhausen, Joerg; Quick, Harald H

    2005-09-01

    A novel setup for whole-body MR imaging with moving table continuous data acquisition has been developed and evaluated. The setup features a manually positioned moving table platform with integrated phased-array surface radiofrequency coils. A high-precision laser position sensor was integrated into the system to provide real-time positional data that were used to compensate for nonlinear manual table translation. This setup enables continuous 2D and 3D whole-body data acquisition during table movement with surface coil image quality. The concept has been successfully evaluated with whole-body steady-state free precession (TrueFISP) anatomic imaging in five healthy volunteers. Seamless coronal and sagittal slices of continually acquired whole-body data during table movement were accurately reconstructed. The proposed strategy is potentially useful for a variety of applications, including whole-body metastasis screening, whole-body MR angiography, large field-of-view imaging in short bore systems, and for moving table applications during MR-guided interventions.

  19. An iOS Application for Evaluating Whole-body Vibration Within a Workplace Risk Management Process.

    PubMed

    McGlothlin, James; Burgess-Limerick, R; Lynas, D

    2015-01-01

    Workplace management of whole-body vibration exposure requires systematic collection of whole-body vibration data in conjunction with the numerous variables which influence vibration amplitudes. The cost and complexity of commercially available measurement devices is an impediment to the routine collection of such data by workplaces. An iOS application (WBV) has been developed which allows an iPod Touch to be used to measure whole-body vibration exposures. The utility of the application was demonstrated by simultaneously obtaining 98 pairs of whole-body vibration measurements from both the iPod Touch application and a commercially available whole-body vibration device during the operation of a variety of vehicles and mobile plant in operation at a surface coal mine. The iOS application installed on a fifth-generation iPod Touch was shown to provide a 95% confidence of +/- 0.077 m/s(2) r.m.s. constant error for the vertical direction. Situations in which vibration levels lay within the ISO2631.1 health guidance caution zone were accurately identified, and the qualitative features of the frequency spectra were reproduced. The low cost and relative simplicity of the application has potential to facilitate its use as a screening tool to identify situations in which musculoskeletal disorders may arise as a consequence of exposure to whole-body vibration.

  20. The accumulation of whole body skeletal mass in third- and fourth-grade children: effects of age, gender, ethnicity, and body composition.

    PubMed

    Nelson, D A; Simpson, P M; Johnson, C C; Barondess, D A; Kleerekoper, M

    1997-01-01

    The purpose of this longitudinal study is to describe bone mass and body composition, and the annual changes in these measurements, among third grade students recruited from a suburban school district. Whole body bone mineral content (WBBMC), bone mineral density (WBBMD), fat, and lean mass were measured by dual-energy X-ray absorptiometry. Bone mass in the lumbar spine (LBMC) region of the whole body scan was also utilized. 773 students (38% white, 57% black, 5% other) had baseline visits; 561 had a second measurement a year later. At baseline, black children have significantly higher WBBMC, WBBMD, height, and lean mass than whites. Black males, but not black females, have a greater LBMC. There are no significant gender differences in body size, WBBMC, or WBBMD, although girls have a greater LBMC and fat mass, and boys have a higher lean mass. Most of these differences persist in visit 2. The annual change in bone and lean mass is greater in blacks. Stepwise linear regression analyses of bone mass on body size, gender, and ethnicity and their interactions indicate that log-transformed weight explains most of the variance in both WBBMC and WBBMD (multiple r2 = 0.90 and 0.64, respectively). There are significant black/white differences in intercepts and slopes. Other variables explain only another 1%-2% of the variance. The strongest Pearson correlations are between changes in bone mass and changes in lean mass and log-transformed weight (r ranging from 0.62 to 0.84, p = 0.0001). We conclude that there is a significant black/white, but not male/female difference in whole body bone mass and bone density before puberty. Ethnic and gender differences in bone and body composition suggest that the lean component may contribute to a greater peak bone mass in blacks vs. whites, and perhaps in males vs. females.

  1. Effective method of measuring the radioactivity of [131I]-capsule prior to radioiodine therapy with significant reduction of the radiation exposure to the medical staff.

    PubMed

    Lützen, Ulf; Zhao, Yi; Marx, Malies; Imme, Thea; Assam, Isong; Siebert, Frank-Andre; Culman, Juaraj; Zuhayra, Maaz

    2016-07-08

    Radiation Protection in Radiology, Nuclear Medicine and Radio Oncology is of the utmost importance. Radioiodine therapy is a frequently used and effective method for the treatment of thyroid disease. Prior to each therapy the radioactivity of the [131I]-capsule must be determined to prevent misadministration. This leads to a significant radiation exposure to the staff. We describe an alternative method, allowing a considerable reduction of the radiation exposure. Two [131I]-capsules (A01 = 2818.5; A02 = 7355.0 MBq) were measured multiple times in their own delivery lead containers - that is to say, [131I]-capsules remain inside the containers during the measurements (shielded measurement) using a dose calibrator and a well-type and a thyroid uptake probe. The results of the shielded measurements were correlated linearly with the [131I]-capsules radioactivity to create calibration curves for the used devices. Additional radioactivity measurements of 50 [131I]-capsules of different radioactivities were done to validate the shielded measuring method. The personal skin dose rate (HP(0.07)) was determined using calibrated thermo luminescent dosimeters. The determination coefficients for the calibration curves were R2 > 0.9980 for all devices. The relative uncertainty of the shielded measurement was < 6.8%. At a distance of 10 cm from the unshielded capsule the HP(0.07) was 46.18 μSv/(GBq•s), and on the surface of the lead container containing the [131I]-capsule the HP(0.07) was 2.99 and 0.27 μSv/(GBq•s) for the two used container sizes. The calculated reduction of the effective dose by using the shielded measuring method was, depending on the used container size, 74.0% and 97.4%, compared to the measurement of the unshielded [131I]-capsule using a dose calibrator. The measured reduction of the effective radiation dose in the practice was 56.6% and 94.9 for size I and size II containers. The shielded [131I]-capsule measurement reduces the radiation exposure to the

  2. Radioimmunotherapy of human colon cancer xenografts by using {sup 131}I labeled-CAb{sub 1} F(ab'){sub 2}

    SciTech Connect

    Li Ling; Xu Huiyun; Mi Li; Bian Huijie; Qin Jun; Xiong Hua; Feng Qiang; Wen Ning; Tian Rong; Xu Liqing; Shen Xiaomei; Tang Hao; Chen Zhinan . E-mail: znchen@fmmu.edu.cn

    2006-11-15

    Purpose: Therapeutic efficacy, suitable dose, and administration times of {sup 131}I-CAb{sub 1} F(ab'){sub 2}, a new monoclonal antibody therapeutics specifically directed against a cell surface-associated glycoprotein of colon cancer, were investigated in this article. Methods and Materials: In human colon cancer xenografts, {sup 131}I-CAb{sub 1} F(ab'){sub 2} at the dose of 125 {mu}Ci, 375 {mu}Ci, and 1125 {mu}Ci were administrated intraperitoneally on Days 6 and 18 after implantation of HR8348 cells with CAb{sub 1} high reactivity. Survival time and tumor growth inhibition rate were used to evaluate the efficacy and safety of {sup 131}I-CAb{sub 1} F(ab'){sub 2} in treatment of colon cancer xenografts. Results: Treatment of 125, 375, and 1125 {mu}Ci {sup 131}I-CAb1 F(ab'){sub 2} did not significantly decrease the mean survival time of nude mice when compared with nontreated groups (p = 0.276, 0.865, 0.582, respectively). Moreover, the mean survival times of nude mice receiving 375 {mu}Ci and 1125 {mu}Ci {sup 131}I-CAb1 F(ab'){sub 2} were significantly longer than that of 5-FU-treated groups (p 0.018 and 0.042). Tumor growth inhibition rates of the first therapy were 35.67% and 41.37%, with corresponding {sup 131}I-labeled antibody dosage of 375 {mu}Ci and 1125 {mu}Ci. After single attack dosage, second reinforcement therapy may rise efficacy significantly. Tumor growth inhibition rates of 125 {mu}Ci, 375 {mu}Ci, and 1125 {mu}Ci {sup 131}I-labeled antibody on Day 20 posttherapy were 42.65%, 56.56%, and 84.41%, respectively. Histopathology examination revealed that tissue necrosis of various degrees was found in {sup 131}I-CAb1 F(ab'){sub 2}-treated groups. Conclusion: {sup 131}I-CAb{sub 1} F(ab'){sub 2} is safe and effective for colon cancer. It may be a novel and potentially adjuvant therapeutics for colon cancer.

  3. Effective method of measuring the radioactivity of [131I]-capsule prior to radioiodine therapy with significant reduction of the radiation exposure to the medical staff.

    PubMed

    Lützen, Ulf; Zhao, Yi; Marx, Malies; Imme, Thea; Assam, Isong; Siebert, Frank-Andre; Culman, Juaraj; Zuhayra, Maaz

    2016-01-01

    Radiation Protection in Radiology, Nuclear Medicine and Radio Oncology is of the utmost importance. Radioiodine therapy is a frequently used and effective method for the treatment of thyroid disease. Prior to each therapy the radioactivity of the [131I]-capsule must be determined to prevent misadministration. This leads to a significant radiation exposure to the staff. We describe an alternative method, allowing a considerable reduction of the radiation exposure. Two [131I]-capsules (A01 = 2818.5; A02 = 7355.0 MBq) were measured multiple times in their own delivery lead containers - that is to say, [131I]-capsules remain inside the containers during the measurements (shielded measurement) using a dose calibrator and a well-type and a thyroid uptake probe. The results of the shielded measurements were correlated linearly with the [131I]-capsules radioactivity to create calibration curves for the used devices. Additional radioactivity measurements of 50 [131I]-capsules of different radioactivities were done to validate the shielded measuring method. The personal skin dose rate (HP(0.07)) was determined using calibrated thermo luminescent dosimeters. The determination coefficients for the calibration curves were R2 > 0.9980 for all devices. The relative uncertainty of the shielded measurement was < 6.8%. At a distance of 10 cm from the unshielded capsule the HP(0.07) was 46.18 μSv/(GBq•s), and on the surface of the lead container containing the [131I]-capsule the HP(0.07) was 2.99 and 0.27 μSv/(GBq•s) for the two used container sizes. The calculated reduction of the effective dose by using the shielded measuring method was, depending on the used container size, 74.0% and 97.4%, compared to the measurement of the unshielded [131I]-capsule using a dose calibrator. The measured reduction of the effective radiation dose in the practice was 56.6% and 94.9 for size I and size II containers. The shielded [131I]-capsule measurement reduces the radiation exposure to the

  4. Second antibody clearance of /sup 131/I-labeled anti-carcinoembryonic antigen for improved tumor imaging

    SciTech Connect

    Sharkey, R.M.; Primus, F.J.; Goldenberg, D.M.

    1985-05-01

    The authors have investigated the use of a second antibody (SA) directed against the radiolabeled primary anti-tumor antibody (PA) to enhance the clearance rate of the PA from the circulation and nontarget tissues. Administration of 50 or 250 ..mu..g of anti-goat IgG (SA) hr after the administration of 10 ..mu..g of /sup 131/I-goat anti-carcinoembryonic antigen antibody (PA) to hamsters bearing human colonic tumor xenografts resulted in a 5-fold reduction in the level of circulating PA after 4 hr in comparison to the control group only given /sup 131/I-PA. The percentage of PA in the blood decreased rapidly over 72 hr in animals given 250 ..mu..g of the SA, but at 50 ..mu..g of SA the level of activity in the blood after 24 hr was similar to the control. Tumor accretion was identical after 4 hr, but after 24 hr the animals given 250 ..mu..g of SA had 2-3 fold less PA in the tumor than either the control group or the 50 ..mu..g dose of SA. Tumor/nontumor ratios for all major organs but the spleen improved 6-8 fold within 48 hr after injection of 250 ..mu..g of the SA with tumor/blood ratios as high as 40:1. A SA dose of 50 ..mu..g resulted in a significantly higher tumor/blood ratio after only 4 hr; tumor/nontumor ratios at later times were similar to the control group. Tumors located in the hind legs were visible in all groups by imaging 24 hr after injection of the SA, but only the 250 ..mu..g dose of SA showed a significant reduction in total body activity. These results suggest that the SA approach may be used to reduce the total background radioactivity while maintaining tumor accretion of /sup 131/I-PA to allow for selective tumor imaging.

  5. Co-delivery of doxorubicin and (131)I by thermosensitive micellar-hydrogel for enhanced in situ synergetic chemoradiotherapy.

    PubMed

    Huang, Pingsheng; Zhang, Yumin; Wang, Weiwei; Zhou, Junhui; Sun, Yu; Liu, Jinjian; Kong, Deling; Liu, Jianfeng; Dong, Anjie

    2015-12-28

    Combined chemoradiotherapy is potent to defeat malignant tumor. Concurrent delivery of radioisotope with chemotherapeutic drugs, which also act as the radiosensitizer, to tumor tissues by a single vehicle is essential to achieve this objective. To this end, a macroscale injectable and thermosensitive micellar-hydrogel (MHg) depot was constructed by thermo-induced self-aggregation of poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)-poly(ethyleneglycol)-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT) triblock copolymer micelles (Ms), which could not only serve as a micellar drug reservoir to locally deliver concentrated nano chemotherapeutic drugs, but also immobilize radioisotopes at the internal irradiation hot focus. Doxorubicin (DOX) and iodine-131 labeled hyaluronic acid ((131)I-HA) were used as the model therapeutic agents. The aqueous mixture of drug-loaded PECT micelles and (131)I-HA exhibited sol-to-gel transition around body temperature. In vitro drug release study indicated that PECT/DOX Ms were sustainedly shed from the native PECT/DOX MHg formulation, which could be internalized by tumor cells with rapid intracellular DOX release. This hydrogel formulation demonstrated considerable in vitro antitumor effect as well as remarkable radiosensitization. In vivo subcutaneous injection of PECT MHg demonstrated that (131)I isotope was immobilized stably at the injection location and no obvious indication of damage to major organs were observed as indicated by the histopathological analysis. Furthermore, the peritumoral injection of chemo-radiation therapeutic agents-encapsulated MHg formulation on tumor-bearing nude mice resulted in the desired combined treatment effect, which significantly improved the tumor growth inhibition efficiency with minimized drug-associated side effects to major organs. Consequently, such a thermosensitive MHg formulation, which enabled the precise control over the dosage and ratio of combination

  6. Occult Candida thyroid abscess diagnosed by gallium-67 scanning

    SciTech Connect

    Bach, M.C.; Blattner, S. )

    1990-06-01

    A clinically silent fungal thyroid abscess was identified by Ga-67 citrate scanning and successfully drained surgically in a young leukemic patient. Whole-body radionuclide scanning remains a valuable method to help diagnose persistent fever in the immunocompromised host.

  7. Gene Expression Changes in Mouse Intestinal Tissue Following Whole-Body Proton or Gamma-Irradiation

    NASA Technical Reports Server (NTRS)

    Purgason, Ashley; Zhang, Ye; Mangala, Lingegowda; Nie, Ying; Gridley, Daila; Hamilton, Stanley R.; Seidel, Derek V.; Wu, Honglu

    2014-01-01

    Crew members face potential consequences following exposure to the space radiation environment including acute radiation syndrome and cancer. The space radiation environment is ample with protons, and numerous studies have been devoted to the understanding of the health consequences of proton exposures. In this project, C57BL/6 mice underwent whole-body exposure to 250 MeV of protons at doses of 0, 0.1, 0.5, 2 and 6 Gy and the gastrointestinal (GI) tract of each animal was dissected four hours post-irradiation. Standard H&E staining methods to screen for morphologic changes in the tissue showed an increase in apoptotic lesions for even the lowest dose of 0.1 Gy, and the percentage of apoptotic cells increased with increasing dose. Results of gene expression changes showed consistent up- or down- regulation, up to 10 fold, of a number of genes across exposure doses that may play a role in proton-induced oxidative stress including Gpx2. A separate study in C57BL/6 mice using the same four hour time point but whole-body gamma-irradiation showed damage to the small intestine with lesions appearing at the smallest dose of 0.05 Gy and increasing with increasing absorbed dose. Expressions of genes associated with oxidative stress processes were analyzed at four hours and twenty-four hours after exposure to gamma rays. We saw a much greater number of genes with significant up- or down-regulation twenty-four hours post-exposure as compared to the four hour time point. At both four hours and twenty-four hours post-exposure, Duox1 and Mpo underwent up-regulation for the highest dose of 6 Gy. Both protons and gamma rays lead to significant variation in gene expressions and these changes may provide insight into the mechanism of injury seen in the GI tract following radiation exposure. We have also completed experiments using a BALB/c mouse model undergoing whole-body exposure to protons. Doses of 0, 0.1, 1 and 2 Gy were used and results will be compared to the work mentioned

  8. Responses of primate caudal parabrachial nucleus and Kolliker-fuse nucleus neurons to whole body rotation

    NASA Technical Reports Server (NTRS)

    Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.

    2002-01-01

    The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components

  9. Flexible Muscle Modes and Synergies in Challenging Whole-Body Tasks

    PubMed Central

    Danna-dos-Santos, Alessander; Degani, Adriana M.; Latash, Mark L.

    2008-01-01

    We used the idea of hierarchical control to study multi-muscle synergies during a whole-body sway task performed by a standing person. Within this view, at the lower level of the hierarchy, muscles are united into groups (M-modes). At the higher level, gains at the M-modes are co-varied by the controller in a task specific way to ensure low variability of important physical variables. In particular, we hypothesized that (1) the composition of M-modes could adjust and (2) an index of M-mode co-variation would become weaker in more challenging conditions. Subjects were required to perform a whole-body sway at 0.5 Hz paced by a metronome. They performed the task with eyes open and closed, while standing on both feet or on one foot only, with and without vibration applied to the Achilles tendons. Integrated indices of muscle activation were subjected to principal component analysis to identify M-modes. An increase in the task complexity led to an increase in the number of principal components that contained significantly loaded indices of muscle activation from 3 to 5. Hence, in more challenging tasks, the controller manipulated a larger number of variables. Multiple regression analysis was used to define the Jacobian of the system mapping small changes in M-mode gains onto shifts of the center of pressure (COP) in the anterior-posterior direction. Further, the variance in the M-mode space across sway cycles was partitioned into two components, one that did not affect an average across cycles COP coordinate and the other that did (good and bad variance, respectively). Under all conditions, the subjects showed substantially more good variance than bad variance interpreted as a multi-M-mode synergy stabilizing the COP trajectory. An index of the strength of the synergy was comparable across all conditions, and there was no modulation of this index over the sway cycle. Hence, our first hypothesis that the composition of M-modes could adjust under challenging conditions

  10. Whole body and regional body composition changes following 10-day hypoxic confinement and unloading-inactivity.

    PubMed

    Debevec, Tadej; McDonnell, Adam C; Macdonald, Ian A; Eiken, Ola; Mekjavic, Igor B

    2014-03-01

    Future planetary habitats will expose inhabitants to both reduced gravity and hypoxia. This study investigated the effects of short-term unloading and normobaric hypoxia on whole body and regional body composition (BC). Eleven healthy, recreationally active, male participants with a mean (SD) age of 24 (2) years and body mass index of 22.4 (3.2) kg·m(-2) completed the following 3 10-day campaigns in a randomised, cross-over designed protocol: (i) hypoxic ambulatory confinement (HAMB; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), (ii) hypoxic bed rest (HBR; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), and (iii) normoxic bed rest (NBR; FIO2 = 0.209; PIO2 = 133.5 (0.7) mm Hg). Nutritional requirements were individually precalculated and the actual intake was monitored throughout the study protocol. Body mass, whole body, and regional BC were assessed before and after the campaigns using dual-energy X-ray absorptiometry. The calculated daily targeted energy intake values were 2071 (170) kcal for HBR and NBR and 2417 (200) kcal for HAMB. In both HBR and NBR campaigns the actual energy intake was within the targeted level, whereas in the HAMB the intake was lower than targeted (-8%, p < 0.05). Body mass significantly decreased in all 3 campaigns (-2.1%, -2.8%, and -2.0% for HAMB, HBR, and NBR, respectively; p < 0.05), secondary to a significant decrease in lean mass (-3.8%, -3.8%, -4.3% for HAMB, HBR, and NBR, respectively; p < 0.05) along with a slight, albeit not significant, increase in fat mass. The same trend was observed in the regional BC regardless of the region and the campaign. These results demonstrate that, hypoxia per se, does not seem to alter whole body and regional BC during short-term bed rest. PMID:24552383

  11. Three-dimensional modeling of supine human and transport system under whole-body vibration.

    PubMed

    Wang, Yang; Rahmatalla, Salam

    2013-06-01

    The development of predictive computer human models in whole-body vibration has shown some success in predicting simple types of motion, mostly for seated positions and in the uniaxial vertical direction. The literature revealed only a handful of papers that tackled supine human modeling in response to vertical vibration. The objective of this work is to develop a predictive, multibody, three-dimensional human model to simulate the supine human and underlying transport system in response to multidirectional whole-body vibration. A three-dimensional dynamic model of a supine human and its underlying transport system is presented in this work to predict supine-human biodynamic response under three-dimensional input random whole-body vibration. The proposed supine-human model consists of three interconnected segments representing the head, torso-arms, and pelvis-legs. The segments are connected via rotational and translational joints that have spring-damper components simulating the three-dimensional muscles and tissuelike connecting elements in the three x, y, and z directions. Two types of transport systems are considered in this work, a rigid support and a long spinal board attached to a standard military litter. The contact surfaces between the supine human and the underlying transport system are modeled using spring-damper components. Eight healthy supine human subjects were tested under combined-axis vibration files with a magnitude of 0.5 m/s2 (rms) and a frequency content of 0.5-16 Hz. The data from seven subjects were used in parameter identification for the dynamic model using optimization schemes in the frequency domain that minimize the differences between the magnitude and phase of the predicted and experimental transmissibility. The predicted accelerations in the time and frequency domains were comparable to those gathered from experiments under different anthropometric, input vibration, and transport conditions under investigation. Based on the

  12. Further studies of the turnover of dog antithrombin III. Study of /sup 131/I-labelled antithrombin protease complexes

    SciTech Connect

    Leonard, B.; Bies, R.; Carlson, T.; Reeve, E.B.

    1983-04-15

    Fresh plasma containing /sup 131/I-antithrombin III (*I-AT) was coagulated and incubated at 37 degrees C for 2 hr. A ''complex peak,'' separated on heparin-agarose contained AT and *I-AT antigen but no heparin cofactor activity. Crossed immunoelectrophoresis showed only AT complexes. SDS PAGE showed 80% of the *I-AT in a major band (approximately 80,000 daltons), 15% in a minor band (approximately 100,000 daltons) and the rest in trace bands (approximately 60,000 and/or 115,000 daltons). Ammonia treatment of the complex peak released alpha-thrombin. After i.v. injection 80% of the complexed *I-AT, chiefly as the major band, left the plasma with t 1/2 approximately 15 min and was almost immediately catabolized to low molecular weight breakdown products. A major catabolic site was the liver. A simple kinetic model describes the findings approximately.

  13. Uptake and depuration of 131I by the edible periwinkle Littorina littorea: uptake from labelled seaweed (Chondrus crispus).

    PubMed

    Wilson, R C; Vives i Batlle, J; McDonald, P; Parker, T G

    2005-01-01

    Uptake and depuration experiments of (131)I from labelled seaweed (Chondrus crispus) by the edible periwinkle Littorina littorea have been performed. Radioiodine concentrations in winkles during uptake followed first-order kinetics with an uptake half-time of 1 day, and a calculated equilibrium concentration (C(infinity)) of 21 000 Bq kg(-1) resulting in a transfer factor of 0.07 with respect to the labelled seaweed used as food. For depuration, a biphasic sequence with biological half-lives of 1 and 24 days was determined. The results suggest that in general, iodine turnover in periwinkles is slower than observed for other molluscs (monophasic biological half-lives in the order of 2-3 days). Both environmental media, food and seawater, can be significant sources of radioiodine for the winkle. PMID:15725502

  14. [Mean elimination time of the impulse radiotracer (131I-hippurate) as a marker of renal function].

    PubMed

    Kowalczyk, M

    1990-01-01

    A possibility of assessment of renal excretory function using mean time of the impulse tracer (131I-hippurate) dose elimination has been shown on the basis of theoretical analysis of hippurate kinetics. Such an index was calculated during classic hippurate renography from time/activity curve over precordium. Other traces and different regions of monitoring might also be employed. The mean time of tracer elimination obtained in this manner only indirectly reflects the hippurate clearance, yet can be easily achieved. Moreover, this entity is not influenced by errors related to quantitative measurements of radioactivity and to hypothetical assumptions, which are common for more sophisticated isotope clearance methods. The enlisted characteristics seem to predispose the proposed method of renal function evaluation for application in screening isotope tests. PMID:2135901

  15. Whole body retention in rats of different 191Pt compounds following inhalation exposure.

    PubMed Central

    Moore, W; Malanchuk, M; Crocker, W; Hysell, D; Cohen, A; Stara, J F

    1975-01-01

    The whole body retention, excretion, lung clearance, distribution, and concentration of 191Pt in other tissues was determined in rats following a single inhalation exposure to different chemical forms of 191Pt. The chemical forms of 191Pt used in study were 191PtCl4, 191Pt(SO4)2, 191PtO, and 191Pt metal. Immediately after exposure most of the 191Pt was found in the gastrointestinal and respiratory tract. Movement of the 191Pt through the gastrointestinal tract was rapid, most of the 191Pt being eliminated within 24 hr after exposure. Lung clearance was much slower, with a clearance half-time of about 8 days. In addition to the lungs, kidney and bone contained the highest concentrations of 191Pt. PMID:1227859

  16. Intercomparison of whole-body averaged SAR in European and Japanese voxel phantoms

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter J.; Hirata, Akimasa; Nagaoka, Tomoaki

    2008-10-01

    This paper provides an intercomparison of the HPA male and female models, NORMAN and NAOMI with the National Institute of Information and Communications Technology (NICT) male and female models, TARO and HANAKO. The calculations of the whole-body SAR in these four phantoms were performed at the HPA, at NICT and at the Nagoya Institute of Technology (NIT). These were for a plane wave with a vertically aligned electric field incident upon the front of the body from 30 MHz to 3 GHz for isolated conditions. As well as investigating the general differences through this frequency range, particular emphasis was placed on the assumptions of how dielectric properties are assigned to tissues (particularly skin and fat) and the consequence of using different algorithms for calculating SAR at the higher frequencies.

  17. Design of POSICAM: A high resolution multislice whole body positron camera

    SciTech Connect

    Mullani, N.A.; Wong, W.H.; Hartz, R.K.; Bristow, D.; Gaeta, J.M.; Yerian, K.; Adler, S.; Gould, K.L.

    1985-01-01

    A high resolution (6mm), multislice (21) whole body positron camera has been designed with innovative detector and septa arrangement for 3-D imaging and tracer quantitation. An object of interest such as the brain and the heart is optimally imaged by the 21 simultaneous image planes which have 12 mm resolution and are separated by 5.5 mm to provide adequate sampling in the axial direction. The detector geometry and the electronics are flexible enough to allow BaF/sub 2/, BGO, GSO or time of flight BaF/sub 2/ scintillators. The mechanical gantry has been designed for clinical applications and incorporates several features for patient handling and comfort. A large patient opening of 58 cm diameter with a tilt of +-30/sup 0/ and rotation of +-20/sup 0/ permit imaging from different positions without moving the patient. Multiprocessor computing systems and user-friendly software make the POSICAM a powerful 3-D imaging device. 7 figs.

  18. Role of Whole-Body MR with DWIBS in child's Bartonellosis.

    PubMed

    Rossi, E; Perrone, A; Narese, D; Cangelosi, M; Sollai, S; Semeraro, A; Mortilla, M; Defilippi, C

    2016-01-01

    Cat-scratch disease (CSD) is a zoonosis in children, result of infection by Bartonella henselae, a gram-negative bacillus. Infection is generally characterized by regional and self-limited lymphadenopathy after exposure to a scratch or bite from a cat. Rarely, B. henselae is cause of fever of unknown origin (FUO), with dissemination to various organs, most often involving the reticuloendothelial system (liver, spleen, bone marrow), mimicking an inflammatory rather than a lymphoproliferative disease. Whole-body Magnetic Resonance Imaging (WBMRI), in association with diffusion-weighted imaging (DWIBS), allows a comprehensive evaluation of pediatric patients, without the risks inherent to ionizing radiation. It is a rapid and sensitive method for detecting and monitoring multifocal lesions such as proliferative or inflammatory and infectious processes. We report a case of systemic CDS in an immunocompetent young boy with fever of unknown origin, without history of cat contact, investigated by WBMRI. PMID:27598022

  19. A Monte Carlo calibration of a whole body counter using the ICRP computational phantoms.

    PubMed

    Nilsson, Jenny; Isaksson, Mats

    2015-03-01

    A fast and versatile calibration of a whole body counter (WBC) is presented. The WBC, consisting of four large plastic scintillators, is to be used for measurements after accident or other incident involving ionising radiation. The WBC was calibrated using Monte Carlo modelling and the ICRP computational phantoms. The Monte Carlo model of the WBC was made in GATE, v6.2 (Geant4 Application for Tomographic Emission) and MATLAB. The Monte Carlo model was verified by comparing simulated energy spectrum and simulated counting efficiency with experimental energy spectrum and experimental counting efficiency for high-energy monoenergetic gamma-emitting point sources. The simulated results were in good agreement with experimental results except when compared with experimental results from high dead-time (DT) measurements. The Monte Carlo calibration was made for a heterogeneous source distribution of (137)Cs and (40)K, respectively, inside the ICRP computational phantoms. The source distribution was based on the biokinetic model for (137)Cs.

  20. WearDY: Wearable dynamics. A prototype for human whole-body force and motion estimation

    NASA Astrophysics Data System (ADS)

    Latella, Claudia; Kuppuswamy, Naveen; Nori, Francesco

    2016-06-01

    Motion capture is a powerful tool used in a large range of applications towards human movement analysis. Although it is a well-established technique, its main limitation is the lack of dynamic information such as forces and torques during the motion capture. In this paper, we present a novel approach for human wearable dynamic (WearDY) motion capture for the simultaneous estimation of whole-body forces along with the motion. Our conceptual framework encompasses traditional passive markers based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational framework for estimating dynamic quantities originally proposed in the domain of humanoid robot control. We present preliminary experimental analysis of our framework on subjects performing a two Degrees-of-Freedom bowing task and we estimate the motion and dynamic quantities. We discuss the implication of our proposal towards the design of a novel wearable force and motion capture suit and its applications.

  1. Ergometer within a whole-body plethysmograph to evaluate performance of guinea pigs under toxic atmospheres

    SciTech Connect

    Malek, D.E.; Alarie, Y. )

    1989-11-01

    A guinea pig ergometer was constructed within an enclosure, with inlet and outlet ports for continuous ventilation, designed so that the enclosure would work as a whole-body plethysmograph as well as an inhalation exposure chamber. This system provided continuous measurement of tidal volume, respiratory frequency, oxygen uptake, and carbon dioxide output which enabled an evaluation of performance in terms of distance traveled over time with the animals running at a known speed and constant oxygen uptake. The effects of CO or HCl in running versus sedentary animals were investigated using this apparatus. For CO, exercise increased the rapidity of the onset of incapacitation as would be predicted by the increase in metabolic rate. HCl produced a more severe incapacitating effect in exercising animals that was out of proportion with the increase in minute volume induced by exercise.

  2. Congenital diaphragmatic hernia repair during whole body hypothermia for neonatal hypoxic ischemic encephalopathy.

    PubMed

    Buratti, S; Lampugnani, E; Tuo, P; Moscatelli, A

    2012-12-01

    Major malformations, surgery and persistent pulmonary hypertension (PHT) have been considered contraindications to therapeutic hypothermia (TH) in newborns with hypoxic-ischemic encephalopathy (HIE). We report two patients with undiagnosed congenital diaphragmatic hernia (CDH) who developed HIE after birth. Diagnosis of moderate HIE was formulated based on clinical, laboratory and electroencephalographic criteria. The patients were treated with whole body hypothermia (33.5 °C) for 72 h. During hypothermia the patients underwent surgical repair with regular perioperative course. Ventilatory support with high-frequency oscillatory ventilation, oxygen requirements and inotropic support remained stable during hypothermia. Serial echocardiographic evaluations did not demonstrate any change in pulmonary pressure values. In our experience TH did not increase the risk of hemodynamic instability, PHT or bleeding. Hypothermia may be considered in patients with HIE and CDH or other surgical conditions with favorable prognosis.

  3. Whole-Body Lifetime Occupational Lead Exposure and Risk of Parkinson’s Disease

    SciTech Connect

    Coon , Steven; Stark, Azadeh; Peterson, Edward; Gloi, Aime; Kortsha, Gene; Pounds, Joel G.; Chettle, D. R.; Gorell, Jay M.

    2006-12-01

    We enrolled 121 PD patients and 414 age-, sex-, and race-, frequency-matched controls in a case–control study. As an indicator of chronic Pb exposure, we measured concentrations of tibial and calcaneal bone Pb stores using 109Cadmium excited K-series X-ray fluorescence. As an indicator of recent exposure, we measured blood Pb concentration. We collected occupational data on participants from 18 years of age until the age at enrollment, and an industrial hygienist determined the duration and intensity of environmental Pb exposure. We employed physiologically based pharmacokinetic modeling to combine these data, and we estimated whole-body lifetime Pb exposures for each individual. Logistic regression analysis produced estimates of PD risk by quartile of lifetime Pb exposure.

  4. Skeletal muscle response to spaceflight, whole body suspension, and recovery in rats

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Fell, R. D.; Dombrowski, M. J.

    1990-01-01

    The effects of a 7-day spaceflight (SF), 7- and 14-day-long whole body suspension (WBS), and 7-day-long recovery on the muscle weight and the morphology of the soleus and the extensor digitorum longus (EDL) of rats were investigated. It was found that the effect of 7-day-long SF and WBS were highly comparable for both the soleus and the EDL, although the soleus muscle from SF rats showed greater cross-sectional area reduction than that from WBS rats. With a longer duration of WBS, there was a continued reduction in cross-sectional fast-twitch fiber area. Muscle plasticity, in terms of fiber and capillary responses, showed differences in responses of the two types of muscles, indicating that antigravity posture muscles are highly susceptible to unloading.

  5. Thresholds for the perception of whole-body linear sinusoidal motion in the horizontal plane

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Young, Laurence R.; Steele, Charles R.; Schubert, Earl D.

    1989-01-01

    An improved linear sled has been developed to provide precise motion stimuli without generating perceptible extraneous motion cues (a noiseless environment). A modified adaptive forced-choice method was employed to determine perceptual thresholds to whole-body linear sinusoidal motion in 25 subjects. Thresholds for the detection of movement in the horizontal plane were found to be lower than those reported previously. At frequencies of 0.2 to 0.5 Hz, thresholds were shown to be independent of frequency, while at frequencies of 1.0 to 3.0 Hz, thresholds showed a decreasing sensitivity with increasing frequency, indicating that the perceptual process is not sensitive to the rate change of acceleration of the motion stimulus. The results suggest that the perception of motion behaves as an integrating accelerometer with a bandwidth of at least 3 Hz.

  6. Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis☆

    PubMed Central

    Konige, Manige; Wang, Hong; Sztalryd, Carole

    2015-01-01

    Excess or insufficient lipid storage in white adipose tissue lipid droplets is associated with dyslipidemia, insulin resistance and increased risk for diabetes type 2. Thus, maintenance of adipose lipid droplet growth and function is critical to preserve whole body insulin sensitivity and energy homeostasis. Progress in understanding biology of lipid droplets has underscored the role of proteins that interact with lipid droplets. Here, we review the current knowledge of adipose specific lipid droplet proteins, which share unique functions controlling adipocyte lipid storage, limiting lipid spill-over and lipotoxic effects thought to contribute to disease. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. PMID:23688782

  7. Effects of whole body vibration training on body composition, skeletal muscle strength, and cardiovascular health

    PubMed Central

    Park, Song-Young; Son, Won-Mok; Kwon, Oh-Sung

    2015-01-01

    Whole body vibration training (WBVT) has been used as a supplement to conventional exercise training such as resistance exercise training to improve skeletal muscle strength, specifically, in rehabilitation field. Recently, this exercise modality has been utilized by cardiovascular studies to examine whether WBVT can be a useful exercise modality to improve cardiovascular health. These studies reported that WBVT has not only beneficial effects on muscular strength but also cardiovascular health in elderly and disease population. However, its mechanism underlying the beneficial effects of WBVT in cardiovascular health has not been well documented. Therefore, this review highlighted the impacts of WBVT on cardiovascular health, and its mechanisms in conjunction with the improved muscular strength and body composition in various populations. PMID:26730378

  8. Risks of exposure to ionizing and millimeter-wave radiation from airport whole-body scanners.

    PubMed

    Moulder, John E

    2012-06-01

    Considerable public concern has been expressed around the world about the radiation risks posed by the backscatter (ionizing radiation) and millimeter-wave (nonionizing radiation) whole-body scanners that have been deployed at many airports. The backscatter and millimeter-wave scanners currently deployed in the U.S. almost certainly pose negligible radiation risks if used as intended, but their safety is difficult-to-impossible to prove using publicly accessible data. The scanners are widely disliked and often feared, which is a problem made worse by what appears to be a veil of secrecy that covers their specifications and dosimetry. Therefore, for these and future similar technologies to gain wide acceptance, more openness is needed, as is independent review and regulation. Publicly accessible, and preferably peer-reviewed evidence is needed that the deployed units (not just the prototypes) meet widely-accepted safety standards. It is also critical that risk-perception issues be handled more competently.

  9. A Whole Body Nuclear Magnetic Resonance (NMR) Imaging System With Full Three-Dimensional Capabilities

    NASA Astrophysics Data System (ADS)

    Simon, Howard E.

    1981-07-01

    A description of the nuclear magnetic resonance imaging system at Stony Brook with whole body capabilities based on a .1 Tesla air-core magnet with a 62 cm bore will be given. Important considerations for full three-dimensional (3D) imaging from projections include static field homogeneity, linear field gradient strength and uniformity, adequate trans-mitter and receiver capabilities and rapid data collection and processing. Preliminary results of our efforts to achieve a flexible system with potential clinical applications will be shown along with images of the head and breast from living human subjects. Since the 3D image has isotropic resolution, the image may be viewed from any desired direction.

  10. Whole-body imaging of the distribution of mercury released from dental fillings into monkey tissues

    SciTech Connect

    Hahn, L.J.; Kloiber, R.; Leininger, R.W.; Vimy, M.J.; Lorscheider, F.L. )

    1990-11-01

    The fate of mercury (Hg) released from dental silver amalgam tooth fillings into human mouth air is uncertain. A previous report about sheep revealed uptake routes and distribution of amalgam Hg among body tissues. The present investigation demonstrates the bodily distribution of amalgam Hg in a monkey whose dentition, diet, feeding regimen, and chewing pattern closely resemble those of humans. When amalgam fillings, which normally contain 50% Hg, are made with a tracer of radioactive {sup 203}Hg and then placed into monkey teeth, the isotope appears in high concentration in various organs and tissues within 4 wk. Whole-body images of the monkey revealed that the highest levels of Hg were located in the kidney, gastrointestinal tract, and jaw. The dental profession's advocacy of silver amalgam as a stable tooth restorative material is not supported by these findings.

  11. Whole-Body Pediatric Neuroblastoma Imaging: 123I-mIBG and Beyond.

    PubMed

    Pai Panandiker, Atmaram S; Coleman, Jamie; Shulkin, Barry

    2015-09-01

    Pediatric cancer imaging stands to benefit from higher tumor detection sensitivity without ionizing radiation exposure. A prospective protocol compared diagnostic I-metaiodobenzylguanidine (I-mIBG) with whole-body diffusion-weighted MRI (DWI) to validate adjunctive methods of identifying small-volume oligometastatic neuroblastoma tumor deposits. Dual-modality imaging (I-mIBG and DWI) was obtained within a 3- and 25-day window at baseline and again at one year in the first enrolled patient. MRI was able to define the full extent of metastatic disease foci with improved resolution. These findings may provide critical information for definitive locoregional surgery and radiotherapy for high-risk neuroblastoma treatment. PMID:26053707

  12. Fluid dynamic aspects of cardiovascular behavior during low-frequency whole-body vibration

    NASA Technical Reports Server (NTRS)

    Nerem, R. M.

    1973-01-01

    The behavior of the cardiovascular system during low frequency whole-body vibration, such as encountered by astronauts during launch and reentry, is examined from a fluid mechanical viewpoint. The vibration characteristics of typical manned spacecraft and other vibration environments are discussed, and existing results from in vivo studies of the hemodynamic aspects of this problem are reviewed. Recent theoretical solutions to related fluid mechanical problems are then used in the interpretation of these results and in discussing areas of future work. The results are included of studies of the effects of vibration on the work done by the heart and on pulsatile flow in blood vessels. It is shown that important changes in pulse velocity, the instantaneous velocity profile, mass flow rate, and wall shear stress may occur in a pulsatile flow due to the presence of vibration. The significance of this in terms of changes in peripheral vascular resistance and possible damage to the endothelium of blood vessels is discussed.

  13. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V.

    2012-07-01

    With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose.

  14. ALARA considerations for the whole body neutron irradiation facility source removal project at Brookhaven National Laboratory.

    PubMed

    Sullivan, Patrick T

    2006-02-01

    This paper describes the activities that were involved with the safe removal of fourteen PuBe sources from the Brookhaven National Laboratory (BNL) Whole Body Neutron Irradiation Facility (WBNIF). As part of a Department of Energy and BNL effort to reduce the radiological inventory, the WBNIF was identified as having no future use. In order to deactivate the facility and eliminate the need for nuclear safety management and long-term surveillance, it was decided to remove the neutron sources and dismantle the facility. In addition, the sources did not have DOT Special Form documentation so they would need to be encapsulated once removed for offsite storage or disposal. The planning and the administrative as well as engineering controls put in place enabled personnel to safely remove and encapsulate the sources while keeping exposure as low as reasonably achievable (ALARA). PMID:16404183

  15. The effect of gamma-rays on the hemoglobin of whole-body irradiated mice

    NASA Astrophysics Data System (ADS)

    Ashry, H. A.; Selim, N. S.; El-Behay, A. Z.

    1994-07-01

    Changes in the UV-visible absorption spectrum of mouse hemoglobin as a result of whole body irradiation were studied. White albino adult mice were exposed to a Cs-137 γ-source at a dose rate of 47.5 Gy/h to different absorbed dose values ranging from 1 to 8 Gy. Blood specimens were taken 24 h after irradiation. The UV-visible absorption spectra of hemoglobin of irradiated and control mice were measured in the wavelength range from 200 to 700 nm. The obtained results showed significant changes in the bands measured at 340 nm, in the Soret band measured at 410 nm, also, the α- and β-bands measured at 537 and 572 nm showed significant decrease in intensity with the absorbed dose increase. The absorbance measured at 630 nm showed no significant changes. The radiation effect on the animal hemoglobin was discussed on the basis of the obtained results.

  16. Assessment of disc injury in subjects exposed to long-term whole-body vibration.

    PubMed

    Drerup, B; Granitzka, M; Assheuer, J; Zerlett, G

    1999-01-01

    Long-term exposure to whole-body vibration is known to increase the risk of low back problems. The chain of events leading from repeated loading of the lumbar spine to back complaints and the exact nature of the vibration-induced damage are, however, obscure. Fluid in- and outflow as well as viscoelastic deformation are important aspects of the physiological function of the lumbar disc. Precision measurement of stature, termed 'stadiometry', has previously been applied in healthy subjects to document changes in disc height in relation to the load on the lumbar spine. The purpose of this study was to explore the relation between spinal loading and stature in a cohort of 20 subjects with long-term exposure to whole-body vibration. If the change of stature (and thus the change of disc height) caused by changes in spinal loading differed between exposed and normal subjects, this would point to vibration-induced changes in structure and material properties of the discs. For this purpose, four hypotheses were tested: (1) the viscoelastic deformation and fluid exchange of intervertebral discs during phases of spinal loading and unloading differs from normal; (2) the water content of lumbar discs of subjects exposed to long-term whole-body vibration deviates from normal; (3) the mean disc height of the lumbar spine depends on the total time of vibration exposure; (4) repeated loading influences trabecular bone density of vertebrae in the lumbar spine. A cohort of 20 operators of heavy earth-moving machinery was enrolled. Back complaints suspected to be due to long-term exposure (mean 17.6 +/- 2.1 years) to whole-body vibration and application for early retirement were the selection criteria used. Change of stature during a regular 8-h shift and change of stature in standing, carrying and sitting activities were measured. The stadiometric investigations were supplemented by magnetic resonance imaging (MRI) of the lumbar spine to assess whether the water content of the discs

  17. Design and evaluation of HEADTOME-IV, a whole-body positron emission tomograph

    SciTech Connect

    Iida, H.; Miura, S.; Kanno, I.; Murakami, M.; Takahashi, K.; Uemura, K.

    1989-02-01

    A whole body positron emission tomograph HEADTOME-IV has been developed, and its physical performances were investigated. The in-plane spatial resolution of 4.5 mm was realized with stationary-sampling at the center of the field-of-view. The axial slice thickness was 9.5 and 9.0-mm for direct and cross planes, respectively. By moving the gantry framework axially, transaxial images of 14 or 21 slices are obtained quasi-simultaneously. The realtime-operation large-scale cache memory system was effective to realize realtime corrections for deadtime and radionuclide decay, and realtime weighted integration for the purpose of a rapid calculation of rate-constant images.

  18. Perinatal risk factors for severe injury in neonates treated with whole-body hypothermia for encephalopathy

    PubMed Central

    Wayock, Christopher P.; Meserole, Rachel L.; Saria, Suchi; Jennings, Jacky M.; Huisman, Thierry A. G. M.; Northington, Frances J.; Graham, Ernest M.

    2016-01-01

    Objective Our objective was to identify perinatal risk factors that are available within 1 hour of birth that are associated with severe brain injury after hypothermia treatment for suspected hypoxic-ischemic encephalopathy. Study Design One hundred nine neonates at ≥35 weeks' gestation who were admitted from January 2007 to September 2012 with suspected hypoxic-ischemic encephalopathy were treated with whole-body hypothermia; 98 of them (90%) underwent brain magnetic resonance imaging (MRI) at 7-10 days of life. Eight neonates died before brain imaging. Neonates who had severe brain injury, which was defined as death or abnormal MRI results (cases), were compared with surviving neonates with normal MRI (control subjects). Logistic regression models were used to identify risk factors that were predictive of severe injury. Results Cases and control subjects did not differ with regard to gestational age, birthweight, mode of delivery, or diagnosis of non-reassuring fetal heart rate before delivery. Cases were significantly (P ≤ .05) more likely to have had an abruption, a cord and neonatal arterial gas level that showed metabolic acidosis, lower platelet counts, lower glucose level, longer time to spontaneous respirations, intubation, chest compressions in the delivery room, and seizures. In multivariable logistic regression, lower initial neonatal arterial pH (P = .004), spontaneous respiration at >30 minutes of life (P = .002), and absence of exposure to oxytocin (P = .033) were associated independently with severe injury with 74.3% sensitivity and 74.4% specificity. Conclusion Worsening metabolic acidosis at birth, longer time to spontaneous respirations, and lack of exposure to oxytocin correlated with severe brain injury in neonates who were treated with whole-body hypothermia. These risk factors may help quickly identify neonatal candidates for time-sensitive investigational therapies for brain neuroprotection. PMID:24657795

  19. Entrepreneurial ventures and whole-body donations: a regional perspective from the United States.

    PubMed

    Anteby, Michel; Hyman, Mikell

    2008-02-01

    Human cadavers are crucial to medical science. While the debate on how to secure sufficient cadavers has focused primarily on donors' behaviors, procuring organizations' roles in increasing donations remain less explored. The United States offers a unique setting in which to examine this question since entrepreneurial ventures supplying cadavers for medical science have recently emerged alongside traditional academic-housed programs, raising both hopes and fears about their impact on whole-body donations. To assess their potential impact, an archival survey of voluntary, in-state whole-body donors to two programs procuring in the same U.S. state was conducted. The programs' specimen recipients were also analyzed. One program is academic-housed and the other is an entrepreneurial venture. Both offered equal levels of financial support to donating parties. Eighty donations and 120 specimen shipping invoices from 2005 were analyzed in each program. Donations to the two programs did not significantly differ in terms of donors' sex, marital status, maximum educational level, and estimated hourly wage. The entrepreneurial venture's donors were, however, significantly younger, more likely to be from a minority group, and more likely to have died from cancer. For-profit organizations, continuing medical training organizations, and medical device companies were more likely recipients of the entrepreneurial venture's specimens. Non-profit and academic organizations were more likely recipients of the academic-housed program's specimens. These findings suggest that although the programs procured from a somewhat similar pool of donors, they also complemented one another. The entrepreneurial program procured donations that the academic-housed program often did not attract. Specimen recipients' distinct demands partly explain these procurement behaviors. Thus, organizational efforts to meet demands seem to shape the supply. Examining organizations alongside donors might provide

  20. Compact whole-body fluorescent imaging of nude mice bearing EGFP expressing tumor

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Xiong, Tao; Chu, Jun; Yu, Li; Zeng, Shaoqun; Luo, Qingming

    2005-01-01

    Issue of tumor has been a hotspot of current medicine. It is important for tumor research to detect tumors bearing in animal models easily, fast, repetitively and noninvasivly. Many researchers have paid their increasing interests on the detecting. Some contrast agents, such as green fluorescent protein (GFP) and Discosoma red fluorescent protein (Dsred) were applied to enhance image quality. Three main kinds of imaging scheme were adopted to visualize fluorescent protein expressing tumors in vivo. These schemes based on fluorescence stereo microscope, cooled charge-coupled-device (CCD) or camera as imaging set, and laser or mercury lamp as excitation light source. Fluorescence stereo microscope, laser and cooled CCD are expensive to many institutes. The authors set up an inexpensive compact whole-body fluorescent imaging tool, which consisted of a Kodak digital camera (model DC290), fluorescence filters(B and G2;HB Optical, Shenyang, Liaoning, P.R. China) and a mercury 50-W lamp power supply (U-LH50HG;Olympus Optical, Japan) as excitation light source. The EGFP was excited directly by mercury lamp with D455/70 nm band-pass filter and fluorescence was recorded by digital camera with 520nm long-pass filter. By this easy operation tool, the authors imaged, in real time, fluorescent tumors growing in live mice. The imaging system is external and noninvasive. For half a year our experiments suggested the imaging scheme was feasible. Whole-body fluorescence optical imaging for fluorescent expressing tumors in nude mouse is an ideal tool for antitumor, antimetastatic, and antiangiogenesis drug screening.

  1. Vibration energy absorption in the whole-body system of a tractor operator.

    PubMed

    Szczepaniak, Jan; Tanaś, Wojciech; Kromulski, Jacek

    2014-01-01

    Many people are exposed to whole-body vibration (WBV) in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primarily associated with the vibration power absorption distributed in that substructure. The vibration power absorbed by the exposed body is a measure that combines both the vibration hazard and the biodynamic response of the body. The article presents measurement method for determining vibration power dissipated in the human whole body system called Vibration Energy Absorption (VEA). The vibration power is calculated from the real part of the force-velocity cross-spectrum. The absorbed power in the frequency domain can be obtained from the cross-spectrum of the force and velocity. In the context of the vibration energy transferred to a seated human body, the real component reflects the energy dissipated in the biological structure per unit of time, whereas the imaginary component reflects the energy stored/released by the system. The seated human is modeled as a series/parallel 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator has been determined as a function of the agricultural combination operating speed 1.39 - 4.16 ms(-1). PMID:24959797

  2. The effect of whole-body cooling on hematological and coagulation parameters in asphyxic newborns.

    PubMed

    Oncel, Mehmet Yekta; Erdeve, Omer; Calisici, Erhan; Oguz, Serife Suna; Canpolat, Fuat Emre; Uras, Nurdan; Dilmen, Ugur

    2013-04-01

    Although moderate therapeutic hypothermia is the only proven neuroprotective therapy in neonatal hypoxic ischemic encephalopathy secondary to perinatal asphyxia (PA), there is lack of data for its effect on hemostasis. To investigate the effect of neonatal asphyxia on hemostasis and to evaluate the effect of whole body cooling on hematological parameters. Hematological parameters evaluated on the first day of patients with PA before start of hypothermia were compared with those of healthy controls. The effects of whole body cooling on the same parameters were also evaluated on the fourth day. A total of 17 neonates with PA and 15 healthy controls were included. Mean values for prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), and d-dimer obtained on the first day were significantly higher in the PA group compared to healthy controls (P ≤ .001 for all comparisons), whereas platelet count, levels of fibrinogen, factors II, V, VII, IX, X, and XI were significantly lower (P ≤ .005 for all comparisons). Levels of factor XIII were normal in both groups. In the study group, mean values for PT, INR, aPTT, and d-dimer evaluated on postnatal day 4 were significantly lower compared to values obtained on the first day of birth in PA group (P < .05 for all comparisons), with statistically significant increases in mean levels of fibrinogen, factor II, V, VII, IX, X, and XII (P < .05 for all comparisons). PA results in significant reductions in levels of factors of the extrinsic pathway and has been associated with thrombocytopenia and disseminated intravascular coagulation. Hypothermia may actually improve the clinical picture in such patients rather than aggravating the hemostatic disturbance, particularly with the implementation of supportive treatment.

  3. Complement C3 Is the Strongest Predictor of Whole-Body Insulin Sensitivity in Psoriatic Arthritis

    PubMed Central

    D’Angelo, Salvatore; Russo, Emilio; Nicolosi, Kassandra; Gallucci, Antonio; Chiaravalloti, Agostino; Bruno, Caterina; Naty, Saverio; De Sarro, Giovambattista; Olivieri, Ignazio; Grembiale, Rosa Daniela

    2016-01-01

    Objectives To evaluate the correlation between inflammatory measures and whole-body insulin sensitivity in psoriatic arthritis (PsA) patients. Methods For the present study, 40 nondiabetic PsA patients were recruited. A standard oral glucose tolerance test (OGTT) was performed. The insulin sensitivity index (ISI), insulinogenic index (IGI) and oral disposition index (ODI) were calculated from dynamic values of glucose and insulin obtained during OGTT. Results In our study population, mean ISI was 3.5 ± 2.5, median IGI was 1.2 (0.7–1.8), mean ODI 4.5 ± 4.5. In univariate correlation analysis, ISI correlated inversely with systolic blood pressure (sBP) (R = -0.52, p = 0.001), diastolic blood pressure (dBP) (R = -0.45, p = 0.004) and complement C3 (R = -0.43, p = 0.006) and ODI correlated inversely with sBP (R = -0.38, p = 0.02), dBP (R = -0.35, p = 0.03) and complement C3 (R = -0.37, p = 0.02). No significant correlations were found between analyzed variables and IGI. In a stepwise multiple regression, only complement C3 entered in the regression equation and accounted for approximately 50% of the variance of ISI. Using a receiver operating characteristic (ROC) curve we identified the best cut-off for complement C3 of 1.32 g/L that yielded a sensitivity of 56% and a specificity of 96% for classification of insulin resistant patients. Conclusions In conclusion, our data suggest that serum complement C3 could represent a useful marker of whole-body insulin sensitivity in PsA patients. PMID:27656896

  4. Influence of copper exposure on whole-body sodium levels in larval fathead minnows (Pimephales promelas).

    PubMed

    Van Genderen, Eric J; Tomasso, Joseph R; Klaine, Stephen J

    2008-06-01

    Because metals such as Cu inhibit ionoregulation, the increased energy requirement to counter passive diffusive losses in soft water may translate into increased sensitivity to metal exposure. We developed a method to determine whole-body Na concentrations of larval fathead minnows (Pimephales promelas) as a physiological indicator of health. This method was used to characterize net rates of Na flux from fish exposed to Cu in the presence of varying levels of hardness and alkalinity. In extremely soft waters (hardness, < or = 10 mg/L as CaCO(3)), larval fish experienced rates of n