Science.gov

Sample records for 131i whole-body scan

  1. Prognostic value of the /sup 131/I whole-body scan in postsurgical therapy for differentiated thyroid cancer

    SciTech Connect

    Pupi, A.; Castagnoli, A.; Morotti, A.; La Cava, G.; Meldolesi, U.

    1983-08-01

    Seventy-two patients affected by differentiated thyroid cancer underwent whole-body scan seven days after the postsurgical thyroablative treatment with /sup 131/I. In 40 patients this scanning did not reveal any area of /sup 131/I uptake outside the residual thyroid parenchyma. During the follow-up period, no signs of functioning tumors were detected in these patients and therefore, there was no need for further therapeutic treatment with radioiodine. From this results it is legitimate to conclude that whole-body scan control can be significantly postponed without diagnostic inaccuracy for those patients whose postthyroablative scans do not reveal diffuse tumor localizations.

  2. Incidental Gallbladder Cancer Visualized From Posttreatment 131I Whole-Body Scan.

    PubMed

    Anongpornjossakul, Yoch; Utamakul, Chirawat; Chamroonrat, Wichana; Kositwattanarerk, Arpakorn; Thamnirat, Kanungnij; Sritara, Chanika

    2016-03-01

    A 72-year-old woman with papillary thyroid cancer post-total thyroidectomy was referred for post-I treatment whole-body scan. Images revealed focal uptake within the gallbladder. Cholecystectomy was subsequently performed, and the pathology report showed well-differentiated adenocarcinoma. Given a history of papillary thyroid cancer, the iodine uptake was reasonably explained as metastasis; however, gallbladder metastasis was extremely infrequent. Literature described the incidental radioiodine retention in the gallbladder as false-positive findings, which can be normal variants or benign hepatobiliary conditions. Primary gallbladder malignancy could be counted for another possibility despite controversial mechanism of uptake. PMID:26447377

  3. Clinical significance of discordant findings between pre-therapy (123)I and post-therapy (131)I whole body scan in patients with thyroid cancer.

    PubMed

    Bravo, Paco E; Goudarzi, Behnaz; Rana, Uzma; Filho, Paulo Togni; Castillo, Raymond; Rababy, Christopher; Ewertz, Marjorie; Ziessman, Harvey A; Cooper, David S; Ladenson, Paul W; Wahl, Richard L

    2013-01-01

    Radioactive therapy with (131)I (RAI) is commonly used during the management of patients with differentiated thyroid cancer (DTC). The aim of this study was to determine the clinical significance of discordant findings between pre-RAI whole body scan (WBS) with (123)I and post-RAI WBS in the management of DTC. We retrospectively evaluated 342 individuals between 2002 and 2008 who had a diagnosis of DTC and underwent RAI. All had WBS one day before RAI and WBS one week after RAI. Patients were divided into 3 groups: 1) RAI-naive subjects without known distant metastatic disease (M1); 2) patients with history of prior RAI and persistent disease (except M1); and 3) patients with known M1. In Group 1 (n=311), 7% of patients (n=22) had discordant scans, but in only 4 of these cases did this represent true disease (3 unsuspected lung and 1 mediastinal node metastasis). In the remaining 18 patients, discordant findings corresponded to physiologic or other benign causes. In group 2 (n=23), 7 subjects (30%) had discordant findings and all of the discrepant sites consisted of loco-regional nodal disease in the neck/upper mediastinum (n=6) and M1 in lung (n=1). In group 3 (n=8), 5 patients (62%) showed discordant uptake in lung and bone which corresponded to the locations of known M1. A total of 12 patients with iodine-avid M1 were identified on post-RAI WBS (3.5% of entire cohort). Pre-RAI WBS was only concordant in 3 of these cases (25%). In conclusion, the significance of pre and post-RAI WBS is highly influenced by the clinical setting. Unsuspected distant metastatic disease is infrequent in RAI-naive patients without known M1, where most discordant findings are usually due to benign explanations, and represent false positive findings in this group. In contrast, in patients with history of previous RAI or known M1, discordant results likely correspond to true disease. In our study, pre-RAI scans showed a low yield to detect iodine-avid distant metastatic disease when

  4. Utility of 99mTc-Hynic-TOC in 131I Whole-Body Scan Negative Thyroid Cancer Patients with Elevated Serum Thyroglobulin Levels

    PubMed Central

    Shinto, Ajit S.; Kamaleshwaran, K. K.; Mallia, Madhav; Korde, Aruna; Samuel, Grace; Banerjee, Sharmila; Velayutham, Pavanasam; Damodharan, Suresh; Sairam, Madhu

    2015-01-01

    Several studies have reported on the expression of somatostatin receptors (SSTRs) in patients with differentiated thyroid cancer (DTC). The aim of this study was to evaluate the imaging abilities of a recently developed Technetium-99m labeled somatostatin analog, 99mTc-Hynic-TOC, in terms of precise localization of the disease. The study population consisted of 28 patients (16 men, 12 women; age range: 39-72 years) with histologically confirmed DTC, who presented with recurrent or persistent disease as indicated by elevated serum thyroglobulin (Tg) levels after initial treatment (serum Tg > 10 ng/ml off T4 suppression for 4-6 weeks). All patients were negative on the Iodine-131 posttherapy whole-body scans. Fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) was performed in all patients. SSTR scintigraphy was true positive in 23 cases (82.1%), true negative in two cases (7.1%) and false negative in three cases (10.7%) which resulted in a sensitivity of 88.46%, specificity of 100% and an accuracy of 89.2%. Sensitivity of 99mTc-Hynic-TOC scan was higher (93.7%) for patients with advanced stages, that is stages III and IV. 18F-FDG showed a sensitivity of 93.7%, a specificity of 50% and an accuracy of 89.3%. 18F-FDG PET was found to be more sensitive, with lower specificity due to false positive results in 2 patients. Analysis on a lesion basis demonstrated substantial agreement between the two imaging techniques with a Cohen's kappa of 0.66. Scintigraphy with 99mTc-Hynic-TOC might be a promising tool for treatment planning; it is easy to perform and showed sufficient accuracy for localization diagnostics in thyroid cancer patients with recurrent or metastatic disease. PMID:26097420

  5. Whole body bone scan. Case report

    SciTech Connect

    Nagle, C.E.; Morayati, S.J.; Carichner, S.; Winkes, B.; Cassisi, R.; McGraw, R.; Schane, E.

    1988-03-01

    The authors present the case example of a patient whose bone scan did not reveal an ulnar abnormality because the ulnae were not included on the whole body scan image. This interesting case demonstrates the importance of positioning the patient for the whole body scan to include the entire skeleton or obtaining additional spot views of the appendicular or axial skeleton not included on whole body images.

  6. Estimating 131I biokinetics and radiation doses to the red marrow and whole body in thyroid cancer patients: probe detection versus image quantification*

    PubMed Central

    Willegaignon, José; Pelissoni, Rogério Alexandre; Lima, Beatriz Christine de Godoy Diniz; Sapienza, Marcelo Tatit; Coura-Filho, George Barberio; Queiroz, Marcelo Araújo; Buchpiguel, Carlos Alberto

    2016-01-01

    Objective To compare the probe detection method with the image quantification method when estimating 131I biokinetics and radiation doses to the red marrow and whole body in the treatment of thyroid cancer patients. Materials and Methods Fourteen patients with metastatic thyroid cancer, without metastatic bone involvement, were submitted to therapy planning in order to tailor the therapeutic amount of 131I to each individual. Whole-body scans and probe measurements were performed at 4, 24, 48, 72, and 96 h after 131I administration in order to estimate the effective half-life (Teff) and residence time of 131I in the body. Results The mean values for Teff and residence time, respectively, were 19 ± 9 h and 28 ± 12 h for probe detection, compared with 20 ± 13 h and 29 ± 18 h for image quantification. The average dose to the red marrow and whole body, respectively, was 0.061 ± 0.041 mGy/MBq and 0.073 ± 0.040 mGy/MBq for probe detection, compared with 0.066 ± 0.055 mGy/MBq and 0.078 ± 0.056 mGy/MBq for image quantification. Statistical analysis proved that there were no significant differences between the two methods for estimating the Teff (p = 0.801), residence time (p = 0.801), dose to the red marrow (p = 0.708), and dose to the whole body (p = 0.811), even when we considered an optimized approach for calculating doses only at 4 h and 96 h after 131I administration (p > 0.914). Conclusion There is full agreement as to the feasibility of using probe detection and image quantification when estimating 131I biokinetics and red-marrow/whole-body doses. However, because the probe detection method is inefficacious in identifying tumor sites and critical organs during radionuclide therapy and therefore liable to skew adjustment of the amount of 131I to be administered to patients under such therapy, it should be used with caution. PMID:27403014

  7. Data on repeated (131)I-WB scans and the incidence of positive Tg and negative (131)I-WBS in DTC patients from a 24 months study.

    PubMed

    Adedapo, Kayode S; Vangu, Mboyo Di Tamba

    2011-01-01

    We present data on repeated iodine-131 whole body scans ((131)I-WBS) in differentiated thyroid cancer patients (DTC) after surgery and (131)I remnant ablation and on increased thyroglobulin (Tg) with negative (131)I-WBS, in a retrospective study at our hospital. A total of 106 patients (91 female and 15 male) treated with (131)I for DTC met the inclusion criteria. The mean age of the patients was 45 years, age range 16-81 years. A total of 101 patients had complete 24 months follow-up following (131)I remnant ablation treatment. The mean (131)I dose administered after the first 6 months of follow- up was 3GBq while mean total dose was 4.9GBq, range 1.1-7.4GBq. Our results showed that at the end of the first 6 months post treatment, 58/101 patients had a negative (131)I-WBS. By the end of the 4th (131)I treatment at 24th months, the remaining 43 patients became negative for (131)I-WBS. We found increased Tg and negative (131)I-WBS in 2 of the 101 patients at the 24th months examination the so called Tg elevated negative (131)I-WBS (TENIS syndrome). The possible explanation of this syndrome is discussed. In conclusion, our study in DTC operated patients does not support the use of repeated diagnostic (131)I-WBS after an undetectable Tg because we found no Tg rebound in patients with negative (131)I-WBS, after 24 months of follow-up with serial measurements of Tg on and of suppression with L thyroxine. PMID:21761014

  8. Intake ratio of 131I to 137Cs derived from thyroid and whole-body doses to Fukushima residents.

    PubMed

    Kim, Eunjoo; Kurihara, Osamu; Tani, Kotaro; Ohmachi, Yasushi; Fukutsu, Kumiko; Sakai, Kazuo; Akashi, Makoto

    2016-03-01

    This study deals with the intake ratio of (131)I to (137)Cs that allows for the utilisation of late whole-body measurements to reconstruct the internal thyroid doses to Fukushima residents. The ratio was derived from the thyroid dose distribution of children and the effective dose distribution of adults based on the assumption that various age groups of persons inhaled the two nuclides at the same activity ratio and at around the same time, while taking into account age-dependent ventilation rates. The two dose distributions were obtained from residents of Iitate village and Kawamata town, located northwest of Fukushima Daiichi nuclear power plant (FDNPP). As a result, the intake ratios for the residents were 2-3, which was much smaller than the activity ratio observed in air sampling. A main reason for this discrepancy presumably lies in the relatively smaller thyroid uptake for iodine in the Japanese subjects than that in the reference persons on whom the biokinetic model promulgated by International Commission on Radiological Protection is based. The actual intake ratio of the two nuclides is believed to have been higher south of the FDNPP; however, this would depend on which of three significant plume events dominantly contributed to the intake for individuals. Further studies are needed to clarify this issue as a part of the reconstruction of early internal doses related to the FDNPP accident. PMID:25982788

  9. Unusual False Positive Radioiodine Uptake on 131I Whole Body Scintigraphy in Three Unrelated Organs with Different Pathologies in Patients of Differentiated Thyroid Carcinoma: A Case Series

    PubMed Central

    Ranade, Rohit; Pawar, Shwetal; Mahajan, Abhishek; Basu, Sandip

    2016-01-01

    Three cases with unusual false positive radioiodine uptake in three different organs and pathologies (infective old fibrotic lesion in the lung, simple liver cyst, and benign breast lesion) on iodine-131 (131I) whole body scintigraphy. Clinicoradiological correlation was undertaken in all three cases and the pathologies were ascertained. In all the three cases, single-photon emission computerized tomography-computed tomography (SPECT-CT) and ancillary imaging modalities were employed and were helpful in arriving at the final diagnosis. PMID:27134566

  10. Counting efficiency of whole-body monitoring system using BOMAB and ANSI/IAEA thyroid phantom due to internal contamination of 131I.

    PubMed

    Ghare, V P; Patni, H K; Akar, D K; Rao, D D

    2014-12-01

    In this study, the effect of Indian reference BOttle MAnnikin aBsorber (BOMAB) neck with axial cavity and American National Standards Institute (ANSI)/International Atomic Energy Agency (IAEA) thyroid phantom using pencil sources of (133)Ba ((131)I simulant) on counting efficiency (CE) is seen experimentally in static geometry for whole-body monitoring system comprising 10.16-cm diameter and 7.62-cm-thick NaI(Tl) detector. The CE estimated using the neck part of BOMAB phantom is 50.2% lower in comparison with ANSI phantom. In rest of the studies FLUKA code is used for Monte Carlo simulations using ANSI/IAEA thyroid phantom. The simulation results are validated in static geometries with experimental CE and the differences are within 1.3%. It is observed that CE for pencil source distribution is 3.97% higher for (133)Ba in comparison with CE of (131)I source. Simulated CE for pencil source distribution is 4.7% lower in comparison with uniform source distribution in the volume of thyroid for (131)I. Since the radiation workers are of different physique; overlying tissue thickness (OTT) and neck-to-detector distance play an important role in the calculation of activity in thyroid. The CE decreases with increase in OTT and is found to be 5.5% lower if OTT is changed from 1.1 to 2 cm. Finally, the simulations are carried out to estimate the variation in CE due to variation in the neck-to-detector distance. The CE is 6.2% higher if the neck surface-to-detector distance is decreased from 21.4 to 20.4 cm and it goes on increasing up to 61.9% if the distance is decreased to 15.4 cm. In conclusion, the calibration of whole-body monitoring system for (131)I should be carried out with ANSI/IAEA thyroid phantom, the neck-to-detector distance controlled or the CE corrected for this, and the CE should be corrected for OTT. PMID:24179144

  11. Myeloablative 131I-Tositumomab Radioimmunotherapy in Treating Non-Hodgkin’s Lymphoma: Comparison of Dosimetry Based on Whole-Body Retention and Dose to Critical Organ Receiving the Highest Dose

    SciTech Connect

    Rajendran, Joseph G.; Gopal, Ajay K.; Fisher, Darrell R.; Durack, L. D.; Gooley, Ted; Press, Oliver W.

    2008-05-01

    Objectives: Myeloablative radioimmunotherapy (RIT) using 131I tositumomab (anti-CD 20) monoclonal antibodies is an effective new therapy for B-cell non-Hodgkins lymphoma (NHL). The goal of this work is to determine optimum methods to deliver maximal myeloablative radioactivity without exceeding the radiation tolerance of critical normal organs such as liver and lungs, and avoiding serious toxicity. Methods: We reviewed dosimetry records for 100 consecutive patients who underwent biodistribution and dosimetry after a test infusion of 131I- tositumomab. Serial gamma camera images were used to determine organ and tissue activities over time and to calculate radiation-absorbed doses. Volumes of critical normal organs were determined from CT scans to adjust the dose estimates for the individual patient. These dose estimates helped us determine an appropriate therapy based on projected dose to the critical normal organ receiving a maximum tolerable radiation dose. We compared our method of organ-specific dosimetry for treatment planning with the standard clinical approaches using a whole-body dose-assessment method by assessing the difference in projected amounts of radiation-absorbed doses, as well as the ratios of projected amounts, that would be prescribed for therapy by each of these two strategies. Results: The mean organ doses (mGy/MBq) estimated by both methods were (1) Whole body method: liver = 0.33 and lungs = 0.33; and (2) Organ-specific method: liver 1.52 and lungs 1.72 (p = .0001). The median difference between the radiation-absorbed dose estimates was 3.40 (range of 1.37 to 7.96) for the lungs, 3.05 (range of 1.04 to 6.20) for the liver, and –0.05 for whole body (range of –0.18 to 0.16). The median ratio (OS divided by WB method) of radiation-absorbed dose estimates was 5.12 (range of 2.33 to 10.01) for the lungs, 4.14 (range of 2.16 to 6.67) for the liver, and 0.94 (range of 0.79 to 1.22) for whole body. There was significant difference between the

  12. Sequential serum thyroglobulin determinations, /sup 131/I scans, and /sup 131/I uptakes after triiodothyronine withdrawal in patients with thyroid cancer

    SciTech Connect

    Schneider, A.B.; Line, B.R.; Goldman, J.M.; Robbins, J.

    1981-12-01

    To develop guidelines for the timing and interpretation of thyroglobulin (TG) measurements in patients with well differentiated thyroid cancer, we performed /sup 131/I whole body scans and uptakes with simultaneous serum TG and TSH determinations in 49 patients with this disease. In 15 patients, TG measurements were obtained initially while the patient was receiving T/sub 3/ therapy and then were repeated serially within a period of up to 35 days after T/sub 3/ withdrawal. In 9 patients with functioning thyroid tissue, the changes in TG paralleled the changes in TSH levels. Before stopping T/sub 3/, TG measurements were a poor indicator of function, since 14 of 15 patients had suppressed TG levels (<10 ng/ml). After 2 weeks off T/sub 3/, TG increased in all 5 patients with scan evidence of metastases, in 2 of 4 subjects with residual thyroid bed uptake, and in 2 of 6 patients with no uptake. In 23 patients, both the scan and serum TG measurements were performed 2 and 4 weeks after stopping T/sub 3/. At 4 weeks, compared to 2 weeks, TG levels were nearly the same in 17 (a change of <5 ng/ml and <50%), decreased in 1, and increased in 5 subjects. In 44 patients whose measurements were free of interference from anti-TG, 106 scans and serum TG determinations were performed after stopping thyroid hormone replacement. Scan evidence of metastases was always (22 scans) associated with high serum TG levels (>10 ng/ml), but high serum TG levels did not distinguish metastases from residual thyroid tissue. The serum TG level was greater than 10 ng/ml in 5 of 28 instances (18%) of negative scans, while scans were positive in 14 of 32 instances (44%) where TG levels were less than 2 ng/ml.

  13. Whole-body 3D scanner and scan data report

    NASA Astrophysics Data System (ADS)

    Addleman, Stephen R.

    1997-03-01

    With the first whole-body 3D scanner now available the next adventure confronting the user is what to do with all of the data. While the system was built for anthropologists, it has created interest among users from a wide variety of fields. Users with applications in the fields of anthropology, costume design, garment design, entertainment, VR and gaming have a need for the data in formats unique to their fields. Data from the scanner is being converted to solid models for art and design and NURBS for computer graphics applications. Motion capture has made scan data move and dance. The scanner has created a need for advanced application software just as other scanners have in the past.

  14. Hologic QDR 2000 whole-body scans: a comparison of three combinations of scan modes and analysis software

    NASA Technical Reports Server (NTRS)

    Spector, E.; LeBlanc, A.; Shackelford, L.

    1995-01-01

    This study reports on the short-term in vivo precision and absolute measurements of three combinations of whole-body scan modes and analysis software using a Hologic QDR 2000 dual-energy X-ray densitometer. A group of 21 normal, healthy volunteers (11 male and 10 female) were scanned six times, receiving one pencil-beam and one array whole-body scan on three occasions approximately 1 week apart. The following combinations of scan modes and analysis software were used: pencil-beam scans analyzed with Hologic's standard whole-body software (PB scans); the same pencil-beam analyzed with Hologic's newer "enhanced" software (EPB scans); and array scans analyzed with the enhanced software (EA scans). Precision values (% coefficient of variation, %CV) were calculated for whole-body and regional bone mineral content (BMC), bone mineral density (BMD), fat mass, lean mass, %fat and total mass. In general, there was no significant difference among the three scan types with respect to short-term precision of BMD and only slight differences in the precision of BMC. Precision of BMC and BMD for all three scan types was excellent: < 1% CV for whole-body values, with most regional values in the 1%-2% range. Pencil-beam scans demonstrated significantly better soft tissue precision than did array scans. Precision errors for whole-body lean mass were: 0.9% (PB), 1.1% (EPB) and 1.9% (EA). Precision errors for whole-body fat mass were: 1.7% (PB), 2.4% (EPB) and 5.6% (EA). EPB precision errors were slightly higher than PB precision errors for lean, fat and %fat measurements of all regions except the head, although these differences were significant only for the fat and % fat of the arms and legs. In addition EPB precision values exhibited greater individual variability than PB precision values. Finally, absolute values of bone and soft tissue were compared among the three combinations of scan and analysis modes. BMC, BMD, fat mass, %fat and lean mass were significantly different between

  15. Implemented myeloma management with whole-body low-dose CT scan: a real life experience.

    PubMed

    Mangiacavalli, Silvia; Pezzatti, Sara; Rossini, Fausto; Doni, Elisa; Cocito, Federica; Bolis, Silvia; Corso, Alessandro

    2016-07-01

    A total of 318 consecutive myeloma patients underwent whole-body low-dose CT scan (WBLDCT) at baseline and during follow-up as a radiological assessment of lytic lesions in place of skeletal X-ray survey. After WBLDCT baseline assessment, 60% had bone involvement. The presence of lytic lesions represented the only met CRAB (hyperCalcaemia, Renal insufficiency, Anaemia, Bone lesions) criteria in 29% of patients. Patients presenting with extramedullary masses were 10%. Radiological progression was documented in 9% of the population with available follow-up. Additional pathological incidental findings were detected in 28 patients (14.5%), most located in the chest region (68%). In conclusion, our real-life data shows that WBLDCT scan represents a reliable imaging tool for decision-making process for multiple myeloma management in different disease phases, providing significant additional information on the presence of soft tissues plasmacytomas detection as well as the presence of pathological incidental findings. PMID:26788613

  16. Fully automated shape model positioning for bone segmentation in whole-body CT scans

    NASA Astrophysics Data System (ADS)

    Fränzle, A.; Sumkauskaite, M.; Hillengass, J.; Bäuerle, T.; Bendl, R.

    2014-03-01

    Analysing osteolytic and osteoblastic bone lesions in systematically affected skeletons, e.g. in multiple myeloma or bone metastasis, is a complex task. Quantification of the degree of bone destruction needs segmentation of all lesions but cannot be managed manually. Automatic bone lesion detection is necessary. Our future objective is comparing modified bones with healthy shape models. For applying model based strategies successfully, identification and position information of single bones is necessary. A solution to these requirements based on bone medullary cavities is presented in this paper. Medullary cavities are useful for shape model positioning since they have similar position and orientation as the bone itself but can be separated more easily. Skeleton segmentation is done by simple thresholding. Inside the skeleton medullary cavities are segmented by a flood filling algorithm. The filled regions are considered as medullary cavity objects. To provide automatic shape model selection, medullary cavity objects are assigned to bone structures with pattern recognition. To get a good starting position for shape models, principal component analysis of medullary cavities is performed. Bone identification was tested on 14 whole-body low-dose CT scans of multiple myeloma patients. Random forest classification assigns medullary cavities of long bones to the corresponding bone (overall accuracy 90%). Centroid and first principal component of medullary cavity are sufficiently similar to those of bone (mean centroid difference 21.7 mm, mean difference angle 1.54° for all long bones of one example patient) and therefore suitable for shape model initialization. This method enables locating long bone structures in whole-body CT scans and provides useful information for a reasonable shape model initialization.

  17. Automated prostate segmentation in whole-body MRI scans for epidemiological studies

    NASA Astrophysics Data System (ADS)

    Habes, Mohamad; Schiller, Thilo; Rosenberg, Christian; Burchardt, Martin; Hoffmann, Wolfgang

    2013-09-01

    The whole prostatic volume (PV) is an important indicator for benign prostate hyperplasia. Correlating the PV with other clinical parameters in a population-based prospective cohort study (SHIP-2) requires valid prostate segmentation in a large number of whole-body MRI scans. The axial proton density fast spin echo fat saturated sequence is used for prostate screening in SHIP-2. Our automated segmentation method is based on support vector machines (SVM). We used three-dimensional neighborhood information to build classification vectors from automatically generated features and randomly selected 16 MR examinations for validation. The Hausdorff distance reached a mean value of 5.048 ± 2.413, and a mean value of 5.613 ± 2.897 compared to manual segmentation by observers A and B. The comparison between volume measurement of SVM-based segmentation and manual segmentation of observers A and B depicts a strong correlation resulting in Spearman’s rank correlation coefficients (ρ) of 0.936 and 0.859, respectively. Our automated methodology based on SVM for prostate segmentation can segment the prostate in WBI scans with good segmentation quality and has considerable potential for integration in epidemiological studies.

  18. Automated prostate segmentation in whole-body MRI scans for epidemiological studies.

    PubMed

    Habes, Mohamad; Schiller, Thilo; Rosenberg, Christian; Burchardt, Martin; Hoffmann, Wolfgang

    2013-09-01

    The whole prostatic volume (PV) is an important indicator for benign prostate hyperplasia. Correlating the PV with other clinical parameters in a population-based prospective cohort study (SHIP-2) requires valid prostate segmentation in a large number of whole-body MRI scans. The axial proton density fast spin echo fat saturated sequence is used for prostate screening in SHIP-2. Our automated segmentation method is based on support vector machines (SVM). We used three-dimensional neighborhood information to build classification vectors from automatically generated features and randomly selected 16 MR examinations for validation. The Hausdorff distance reached a mean value of 5.048 ± 2.413, and a mean value of 5.613 ± 2.897 compared to manual segmentation by observers A and B. The comparison between volume measurement of SVM-based segmentation and manual segmentation of observers A and B depicts a strong correlation resulting in Spearman's rank correlation coefficients (ρ) of 0.936 and 0.859, respectively. Our automated methodology based on SVM for prostate segmentation can segment the prostate in WBI scans with good segmentation quality and has considerable potential for integration in epidemiological studies. PMID:23920310

  19. Practice Trends in Patients with Persistent Detectable Thyroglobulin and Negative Diagnostic Radioiodine Whole Body Scans: A Survey of American Thyroid Association Members

    PubMed Central

    Diehl, Nancy; Bernet, Victor

    2014-01-01

    Background: Management of patients with thyroglobulin (Tg)-positive/scan-negative thyroid cancer remains challenging. American Thyroid Association (ATA) guidelines recommend potential use of empiric 131I therapy and various scanning modalities, but no standard for managing such cases exists. Methods: We surveyed ATA members to assess current practice in management of patients with Tg-positive/scan-negative disease. Members participated in a web-based survey of six case scenarios of Tg elevations but iodine scan negativity. Results: A total of 288 ATA members (80% male) participated. Patient age, sex, and basal and stimulated Tg varied between the cases. Respondents were asked their opinion regarding empiric 131I therapy use, including 131I dose, use and duration of low-iodine diet, thyroxine withdrawal or recombinant human thyrotropin (rhTSH), and utilization of additional imaging (neck ultrasound (US) or positron emission tomography/computed tomography (PET/CT)) and reconsideration of 131I therapy. Between 16% and 51% recommended initial use of empiric 131I for the various scenarios. The majority chose a 131I dose between 75 and 150 mCi, and 73% employed a low-iodine diet for two or more weeks. Preference between thyroxine withdrawal versus rhTSH was evenly split. More than 98% obtained a neck US if empiric 131I was not given; 52–89% would proceed to PET/CT if US was negative. Only 44% used rhTSH stimulation in PET scan preparation. 131I use was more common with stimulated Tg significantly >10 ng/mL. 131I therapy was slightly more likely with PET-positive (56%) than PET-negative status (45%). Respondents were split regarding empiric 131I if basal and stimulated Tg increased ≥150% over two years. Providers in North America less commonly utilized 131I treatment than those from other areas. In the face of possible heterophilic antibody interference in the Tg assay, the majority did not recommend 131I therapy. Conclusions: Empiric 131I therapy is still utilized

  20. Bone and lymph node metastases from neuroblastoma detected by 18F-DOPA-PET/CT and confirmed by posttherapy 131I-MIBG but negative on diagnostic 123I-MIBG scan.

    PubMed

    Piccardo, Arnoldo; Lopci, Egesta; Conte, Massimo; Cabria, Manlio; Cistaro, Angelina; Garaventa, Alberto; Villavecchia, Giampiero

    2014-01-01

    We report the case of a 6-year-old child with stage 4 neuroblastoma, previously treated with chemotherapy, which relapsed in the right mandibular branch, right submandibular lymph nodes, and bone marrow. These sites of recurrence were detected on diagnostic (123)I-MIBG and confirmed by (18)F-DOPA-PET/CT, which revealed the following 2 additional sites of disease: in the skull base and the left supraclavicular lymph nodes. The patient was scheduled for radioiodine therapy and received a total dose of 7400 MBq (200 mCi) of (131)I-MIBG. The whole-body scan, acquired 72 hours later, revealed all sites of disease detected by (18)F-DOPA-PET/CT, including those negative on (123)I-MIBG scan. PMID:23579975

  1. Vitamin a derivatives labelled with 131I — Potential agents for liver scientigraphy

    NASA Astrophysics Data System (ADS)

    Kadeřávek, J.; Kozempel, J.; Štícha, M.; Petrášek, J.; Jirsa, M.; Taimr, P.; Lešetický, L.

    2006-01-01

    Two retinol derivatives, 4-[(131I)-4-iodobenzoyloxy]retinol propionate and 4-[(131I)-3-iodobenzylcarbamoyl]retinol propionate, were synthesized and their biodistribution in rats was studied in vivo by the whole body scintigraphy.

  2. Is there a role of whole-body bone scan in patients with esophageal squamous cell carcinoma

    PubMed Central

    2012-01-01

    Background Correct detection of bone metastases in patients with esophageal squamous cell carcinoma is pivotal for prognosis and selection of an appropriate treatment regimen. Whole-body bone scan for staging is not routinely recommended in patients with esophageal squamous cell carcinoma. The aim of this study was to investigate the role of bone scan in detecting bone metastases in patients with esophageal squamous cell carcinoma. Methods We retrospectively evaluated the radiographic and scintigraphic images of 360 esophageal squamous cell carcinoma patients between 1999 and 2008. Of these 360 patients, 288 patients received bone scan during pretreatment staging, and sensitivity, specificity, positive predictive value, and negative predictive value of bone scan were determined. Of these 360 patients, surgery was performed in 161 patients including 119 patients with preoperative bone scan and 42 patients without preoperative bone scan. Among these 161 patients receiving surgery, 133 patients had stages II + III disease, including 99 patients with preoperative bone scan and 34 patients without preoperative bone scan. Bone recurrence-free survival and overall survival were compared in all 161 patients and 133 stages II + III patients, respectively. Results The diagnostic performance for bone metastasis was as follows: sensitivity, 80%; specificity, 90.1%; positive predictive value, 43.5%; and negative predictive value, 97.9%. In all 161 patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0.009, univariately). In multivariate comparison, absence of preoperative bone scan (P = 0.012, odds ratio: 5.053) represented the independent adverse prognosticator for bone recurrence-free survival. In 133 stages II + III patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0

  3. Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans

    SciTech Connect

    Shiraishi, Junji; Li Qiang; Appelbaum, Daniel; Pu Yonglin; Doi, Kunio

    2007-01-15

    Bone scintigraphy is the most frequent examination among various diagnostic nuclear medicine procedures. It is a well-established imaging modality for the diagnosis of osseous metastasis and for monitoring osseous tumor response to chemotherapy and radiation therapy. Although the sensitivity of bone scan examinations for detection of bone abnormalities has been considered to be relatively high, it is time consuming to identify multiple lesions such as bone metastases of prostate and breast cancers. In addition, it is very difficult to detect subtle interval changes between two successive abnormal bone scans, because of variations in patient conditions, the accumulation of radioisotopes during each examination, and the image quality of gamma cameras. Therefore, we developed a new computer-aided diagnostic (CAD) scheme for the detection of interval changes in successive whole-body bone scans by use of a temporal subtraction image which was obtained with a nonlinear image-warping technique. We carried out 58 pairs of successive bone scans in which each scan included both posterior and anterior views. We determined 107 'gold-standard' interval changes among the 58 pairs based on the consensus of three radiologists. Our computerized scheme consisted of seven steps, i.e., initial image density normalization on each image, image matching for the paired images, temporal subtraction by use of the nonlinear image-warping technique, initial detection of interval changes by use of temporal-subtraction images, image feature extraction of candidates of interval changes, rule-based tests by use of 16 image features for removing some false positives, and display of the computer output for identified interval changes. One hundred seven gold standard interval changes included 71 hot lesions (uptake was increased compared with the previous scan, or there was new uptake in the current scan) and 36 cold lesions (uptake was decreased or disappeared) for anterior and posterior views. The

  4. Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans.

    PubMed

    Shiraishi, Junji; Li, Qiang; Appelbaum, Daniel; Pu, Yonglin; Doi, Kunio

    2007-01-01

    Bone scintigraphy is the most frequent examination among various diagnostic nuclear medicine procedures. It is a well-established imaging modality for the diagnosis of osseous metastasis and for monitoring osseous tumor response to chemotherapy and radiation therapy. Although the sensitivity of bone scan examinations for detection of bone abnormalities has been considered to be relatively high, it is time consuming to identify multiple lesions such as bone metastases of prostate and breast cancers. In addition, it is very difficult to detect subtle interval changes between two successive abnormal bone scans, because of variations in patient conditions, the accumulation of radioisotopes during each examination, and the image quality of gamma cameras. Therefore, we developed a new computer-aided diagnostic (CAD) scheme for the detection of interval changes in successive whole-body bone scans by use of a temporal subtraction image which was obtained with a nonlinear image-warping technique. We carried out 58 pairs of successive bone scans in which each scan included both posterior and anterior views. We determined 107 "gold-standard" interval changes among the 58 pairs based on the consensus of three radiologists. Our computerized scheme consisted of seven steps, i.e., initial image density normalization on each image, image matching for the paired images, temporal subtraction by use of the nonlinear image-warping technique, initial detection of interval changes by use of temporal-subtraction images, image feature extraction of candidates of interval changes, rule-based tests by use of 16 image features for removing some false positives, and display of the computer output for identified interval changes. One hundred seven gold standard interval changes included 71 hot lesions (uptake was increased compared with the previous scan, or there was new uptake in the current scan) and 36 cold lesions (uptake was decreased or disappeared) for anterior and posterior views. The

  5. Estimation of radiation dose to patients from 18FDG whole body PET/CT investigations using dynamic PET scan protocol

    PubMed Central

    Kaushik, Aruna; Jaimini, Abhinav; Tripathi, Madhavi; D’Souza, Maria; Sharma, Rajnish; Mondal, Anupam; Mishra, Anil K.; Dwarakanath, Bilikere S.

    2015-01-01

    Background & objectives: There is a growing concern over the radiation exposure of patients from undergoing 18FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography) whole body investigations. The aim of the present study was to study the kinetics of 18FDG distributions and estimate the radiation dose received by patients undergoing 18FDG whole body PET/CT investigations. Methods: Dynamic PET scans in different regions of the body were performed in 49 patients so as to measure percentage uptake of 18FDG in brain, liver, spleen, adrenals, kidneys and stomach. The residence time in these organs was calculated and radiation dose was estimated using OLINDA software. The radiation dose from the CT component was computed using the software CT-Expo and measured using computed tomography dose index (CTDI) phantom and ionization chamber. As per the clinical protocol, the patients were refrained from eating and drinking for a minimum period of 4 h prior to the study. Results: The estimated residence time in males was 0.196 h (brain), 0.09 h (liver), 0.007 h (spleen), 0.0006 h (adrenals), 0.013 h (kidneys) and 0.005 h (stomach) whereas it was 0.189 h (brain), 0.11 h (liver), 0.01 h (spleen), 0.0007 h (adrenals), 0.02 h (kidneys) and 0.004 h (stomach) in females. The effective dose was found to be 0.020 mSv/MBq in males and 0.025 mSv/MBq in females from internally administered 18FDG and 6.8 mSv in males and 7.9 mSv in females from the CT component. For an administered activity of 370 MBq of 18FDG, the effective dose from PET/CT investigations was estimated to be 14.2 mSv in males and 17.2 mSv in females. Interpretation & conclusions: The present results did not demonstrate significant difference in the kinetics of 18FDG distribution in male and female patients. The estimated PET/CT doses were found to be higher than many other conventional diagnostic radiology examinations suggesting that all efforts should be made to clinically justify and

  6. Whole body diffusion for metastatic disease assessment in neuroendocrine carcinomas: comparison with OctreoScan® in two cases.

    PubMed

    Cossetti, Rachel Jorge D; Bezerra, Regis Otaviano França; Gumz, Brenda; Telles, Adriana; Costa, Frederico P

    2012-01-01

    Neuroendocrine tumor (NET) patients must be adequately staged in order to improve a multidisciplinary approach and optimal management for metastatic disease. Currently available imaging studies include somatostatin receptor scintigraphy, like OctreoScan®, computed tomography (CT), scans and magnetic resonance imaging (MRI), which analyze vascular concentration and intravenous contrast enhancement for anatomic tumor localization. However, these techniques require high degree of expertise for interpretation and are limited by their availability, cost, reproducibility, and follow-up imaging comparisons. NETs significantly reduce water diffusion as compared to normal tissue. Diffusion-weighted imaging (DWI) in MRI has an advantageous contrast difference: the tumor is represented with high signal over a black normal surrounding background. The whole-body diffusion (WBD) technique has been suggested to be a useful test for detecting metastasis from various anatomic sites. In this article we report the use of DWI in MRI and WBD in two cases of metastatic pulmonary NET staging in comparison with OctreoScan® in order to illustrate the potential advantage of DWI and WBD in staging NETs. PMID:22591909

  7. Whole body diffusion for metastatic disease assessment in neuroendocrine carcinomas: comparison with OctreoScan® in two cases

    PubMed Central

    2012-01-01

    Neuroendocrine tumor (NET) patients must be adequately staged in order to improve a multidisciplinary approach and optimal management for metastatic disease. Currently available imaging studies include somatostatin receptor scintigraphy, like OctreoScan®, computed tomography (CT), scans and magnetic resonance imaging (MRI), which analyze vascular concentration and intravenous contrast enhancement for anatomic tumor localization. However, these techniques require high degree of expertise for interpretation and are limited by their availability, cost, reproducibility, and follow-up imaging comparisons. NETs significantly reduce water diffusion as compared to normal tissue. Diffusion-weighted imaging (DWI) in MRI has an advantageous contrast difference: the tumor is represented with high signal over a black normal surrounding background. The whole-body diffusion (WBD) technique has been suggested to be a useful test for detecting metastasis from various anatomic sites. In this article we report the use of DWI in MRI and WBD in two cases of metastatic pulmonary NET staging in comparison with OctreoScan® in order to illustrate the potential advantage of DWI and WBD in staging NETs. PMID:22591909

  8. Uncertainty budget for a whole body counter in the scan geometry and computer simulation of the calibration phantoms.

    PubMed

    Schlagbauer, M; Hrnecek, E; Rollet, S; Fischer, H; Brandl, A; Kindl, P

    2007-01-01

    At the Austrian Research Centers Seibersdorf (ARCS), a whole body counter (WBC) in the scan geometry is used to perform routine measurements for the determination of radioactive intake of workers. The calibration of the WBC is made using bottle phantoms with a homogeneous activity distribution. The same calibration procedures have been simulated using Monte Carlo N-Particle (MCNP) code and FLUKA and the results of the full energy peak efficiencies for eight energies and five phantoms have been compared with the experimental results. The deviation between experiment and simulation results is within 10%. Furthermore, uncertainty budget evaluations have been performed to find out which parameters make substantial contributions to these differences. Therefore, statistical errors of the Monte Carlo simulation, uncertainties in the cross section tables and differences due to geometrical considerations have been taken into account. Comparisons between these results and the one with inhomogeneous distribution, for which the activity is concentrated only in certain parts of the body (such as head, lung, arms and legs), have been performed. The maximum deviation of 43% from the homogeneous case has been found when the activity is concentrated on the arms. PMID:17656442

  9. Extremity Radioactive Iodine Uptake on Post-therapeutic Whole Body Scan in Patients with Differentiated Thyroid Cancer

    PubMed Central

    Wakabayashi, Hiroshi; Taki, Junichi; Inaki, Anri; Toratani, Ayane; Kayano, Daiki; Kinuya, Seigo

    2015-01-01

    Objective(s): We investigated a frequency of lower extremity uptake on the radioactive iodine (RAI) whole body scan (WBS) after RAI treatment in patients with differentiated thyroid cancer, in order to retrospectively examine whether or not the frequency was pathological. Methods: This retrospective study included 170 patients with thyroid cancer, undergoing RAI treatment. Overall, 99(58%) and 71(42%) patients received single and multiple RAI treatments, respectively. Post-therapeutic WBS was acquired after 3 days of RAI administration. For patients with multiple RAI treatments, the WBS of their last RAI treatment was evaluated. Lower extremity uptake on post-therapeutic WBS was classified into 3 categories: bilateral femoral uptake (type A), bilateral femoral and tibia uptake (type B), and uptake in bilateral upper and lower extremities (type C). Then, the patients with RAI uptake in the lower extremities on WBS were analyzed with clinical parameters. Results: Overall, 99 patients (58%) had the extremity uptake on their posttherapeutic RAI WBS. As the results indicated, 42, 53, and 4 patients had type A, type B, and type C uptakes, respectively. Lower extremity uptake was significantly associated with younger age, not only in subjects with multiple RAI treatments but also in all the patients (P<0.05). Accumulation in patients with multiple RAI treatments was more frequent than patients with single RAI treatment (P<0.05). Lower extremity uptake was not associated with counts of the white blood cell count, hemoglobin level, platelet count, estimated glomerular filtration rate, effective half-time of RAI, serum TSH level, and anti-Tg concentration. Conclusion: About half of the patients had lower extremity uptake on the posttherapeutic RAI WBS, especially younger patients and those with multiple courses of RAI treatment. Bilateral lower extremity’s RAI uptake on the posttherapeutic WBS should be considered as physiological RAI distribution in bone marrow.

  10. Abnormal radioiodine uptake on post-therapy whole body scan and sodium/iodine symporter expression in a dermoid cyst of the ovary: report of a case and review of the literature.

    PubMed

    Campennì, Alfredo; Giovinazzo, Salvatore; Tuccari, Giovanni; Fogliani, Simone; Ruggeri, Rosaria M; Baldari, Sergio

    2015-08-01

    In patients affected by differentiated thyroid cancer, the whole-body scan (WBS) with 131-radioiodine, especially when performed after a therapeutic activity of 131I, represents a sensitive procedure for detecting thyroid remnant and/or metastatic disease. Nevertheless, a wide spectrum of potentially pitfalls has been reported. Herein we describe a 63-year-old woman affected by follicular thyroid cancer, who was accidentally found to have an abdominal mass at post-dose WBS (pWBS). pWBS showed abnormal radioiodine uptake in the upper mediastinum, consistent with lymph-node metastases, and a slight radioiodine uptake in an abdominal focal area. Computed tomography revealed an inhomogeneous mass in the pelvis, previously unrecognized. The lesion, surgically removed, was found to be a typical dermoid cyst of the ovary, without any evidence of thyroid tissue. By immunohistochemistry, a moderate expression of the sodium-iodine symporter (NIS) was demonstrated in the epithelial cells, suggesting a NIS-dependent uptake of radioiodine by the cyst. PMID:26331324

  11. College of Radiology, Academy of Medicine of Malaysia position on whole body screening CT scans in healthy asymptomatic individuals (2008)

    PubMed Central

    Ho, ELM; Abdullah, BJJ; Tang, AAL; Nordin, AJ; Nair, AR; Lim, GCC; Samad-Cheung, H; Ng, KH; Ponnusamy, S; Abbas, SF; Bux, SI; Arasaratnam, S; Abdul Aziz, YF; Venugopal, S; Musa, Z; Abdul Manaf, Z

    2008-01-01

    To date, the College of Radiology (CoR) does not see any clear benefit in performing whole body screening computed tomography (CT) examinations in healthy asymptomatic individuals. There are radiation risk issues in CT and principles of screening should be adhered to. There may be a role for targeted cardiac screening CT that derives calcium score, especially for asymptomatic medium-risk individuals and CT colonography when used as part of a strategic programme for colorectal cancer screening in those 50 years and older. However, population based screening CT examinations may become appropriate when evidence emerges regarding a clear benefit for the patient outweighing the associated radiation risks. PMID:21611021

  12. Imaging of experimental amyloidosis with /sup 131/I-labeled serum amyloid P component

    SciTech Connect

    Caspi, D.; Zalzman, S.; Baratz, M.; Teitelbaum, Z.; Yaron, M.; Pras, M.; Baltz, M.L.; Pepys, M.B.

    1987-11-01

    /sup 131/I-labeled human serum amyloid P component, which was injected into mice with experimentally induced systemic AA amyloidosis and into controls, became specifically localized and was retained in amyloidotic organs. In comparison, it was rapidly and completely eliminated from unaffected tissues and from control animals. Distinctive images of this amyloid-specific deposition of labeled serum amyloid P component were derived from whole body scanning, in vivo, of amyloidotic mice. These findings suggest that such imaging may have applications for the diagnosis and quantitation of amyloid deposits in humans.

  13. Thyroid Remnant Estimation by Diagnostic Dose 131I Scintigraphy or 99mTcO4− Scintigraphy after Thyroidectomy: A Comparison with Therapeutic Dose 131I Imaging

    PubMed Central

    2016-01-01

    In this clinical study, we have compared routine diagnostic dose 131I scan and 99mTcO4− thyroid scintigraphy with therapeutic dose 131I imaging for accurate thyroid remnant estimation after total thyroidectomy. We conducted a retrospective review of the patients undergoing total thyroidectomy for differentiated thyroid carcinoma (DTC) and subsequently receiving radioactive iodine (RAI) treatment to ablate remnant thyroid tissue. All patients had therapeutic dose RAI whole body scan, which was compared with that of diagnostic dose RAI, 99mTcO4− thyroid scan, and ultrasound examination. We concluded that therapeutic dose RAI scan reveals some extent thyroid remnant in all DTC patients following total thyroidectomy. Diagnostic RAI scan is much superior to ultrasound and 99mTcO4− thyroid scan for the postoperative estimation of thyroid remnant. Ultrasound and 99mTcO4− thyroid scan provide little information for thyroid remnant estimation and, therefore, would not replace diagnostic RAI scan. PMID:27034938

  14. Estimating radiation effective doses from whole body computed tomography scans based on U.S. soldier patient height and weight

    PubMed Central

    2011-01-01

    Background The purpose of this study is to explore how a patient's height and weight can be used to predict the effective dose to a reference phantom with similar height and weight from a chest abdomen pelvis computed tomography scan when machine-based parameters are unknown. Since machine-based scanning parameters can be misplaced or lost, a predictive model will enable the medical professional to quantify a patient's cumulative radiation dose. Methods One hundred mathematical phantoms of varying heights and weights were defined within an x-ray Monte Carlo based software code in order to calculate organ absorbed doses and effective doses from a chest abdomen pelvis scan. Regression analysis was used to develop an effective dose predictive model. The regression model was experimentally verified using anthropomorphic phantoms and validated against a real patient population. Results Estimates of the effective doses as calculated by the predictive model were within 10% of the estimates of the effective doses using experimentally measured absorbed doses within the anthropomorphic phantoms. Comparisons of the patient population effective doses show that the predictive model is within 33% of current methods of estimating effective dose using machine-based parameters. Conclusions A patient's height and weight can be used to estimate the effective dose from a chest abdomen pelvis computed tomography scan. The presented predictive model can be used interchangeably with current effective dose estimating techniques that rely on computed tomography machine-based techniques. PMID:22004072

  15. [Ethical issues raised by direct-to-consumer personal genome analysis and whole body scans: discussion and contextualisation of a report by the Nuffield Council on Bioethics].

    PubMed

    Buyx, Alena M; Strech, Daniel; Schmidt, Harald

    2012-01-01

    The paradigm of personalised medicine has many different facets, further to the application of pharmacogenetics. We examine here (direct-to-consumer) personal genome analysis and whole body scans and summarise findings from the Nuffield Council's on Bioethics recent report "Medical profiling and online medicine: the ethics of 'personalised healthcare' in a consumer age". We describe the current situation in Germany with regard to access to such services, and contextualise the Nuffield Council's report with summaries of position statements by German professional bodies. We conclude with three points that merit examination further to the analyses of the Nuffield Council's report and the German professional bodies. These concern the role of indirect evidence in considering restrictive policies, the question of whether regulations should require commercial providers to contribute to the generation of better evidence, and the option of using data from evaluations in combination with indirect evidence in justifying restrictive policies. PMID:22325105

  16. Physics-based Simulation of Human Posture Using 3D Whole Body Scanning Technology for Astronaut Space Suit Evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Jung

    2005-01-01

    Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.

  17. In Thyroidectomized Thyroid Cancer Patients, False-Positive I-131 Whole Body Scans Are Often Caused by Inflammation Rather Than Thyroid Cancer

    PubMed Central

    Garger, Yana Basis; Winfeld, Mathew; Friedman, Kent; Blum, Manfred

    2016-01-01

    Objective. To show that I-131 false-positive results on whole-body scans (WBSs) after thyroidectomy for thyroid cancer may be a result of inflammation unassociated with the cancer. Methods. We performed a retrospective image analysis of our database of thyroid cancer patients who underwent WBS from January 2008 to January 2012 to identify and stratify false positives. Results. A total of 564 patients underwent WBS during the study period; 96 patients were referred for 99 I-131 single-photon emission computed tomography (SPECT/CT) scans to better interpret cryptic findings. Among them, 73 scans were shown to be falsely positive; 40/73 or 54.7% of false-positive findings were a result of inflammation. Of the findings, 17 were in the head, 1 in the neck, 4 in the chest, 3 in the abdomen, and 14 in the pelvis; 1 had a knee abscess. Conclusions. In our series, inflammation caused the majority of false-positive WBSs. I-131 SPECT/CT is powerful in the differentiation of inflammation from thyroid cancer. By excluding metastatic disease, one can properly prognosticate outcome and avoid unnecessary, potentially harmful treatment of patients with thyroid cancer. PMID:26977418

  18. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: A phantom study

    SciTech Connect

    Yang, Ching-Ching; Liu, Shu-Hsin; Mok, Greta S. P.; Wu, Tung-Hsin

    2014-09-15

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  19. Early Adolescence: Whole Body Learning.

    ERIC Educational Resources Information Center

    Cannon, Roger K., Jr.; Padilla, Michael J.

    1982-01-01

    "Whole body" denotes using the entire body to sense and experience a concept or idea. Typical whole body learning activities involve use of several senses: muscle sense, temperature, pain, pressure, and sense of equilibrium. Four whole body science activities are described, including identifying trees by touch. (Author/JN)

  20. Radiofrequency Ablation Before Intratumoral Injection of 131I-chTNT Improves the Tumor-to-Normal Tissue Ratio in Solid VX2 Tumor

    PubMed Central

    Zheng, Shu-Guang; Lu, Ming-De; Yue, Dian-Chao; Xie, Xiao-Yan; Liu, Guang-Jian

    2013-01-01

    Abstract Purpose This study was aimed to investigate whether the tumor necrosis induced by radiofrequency ablation (RFA) can improve the ratio of tumor-to-normal tissue (T/NT) after intratumoral injection of 131I-chTNT. Materials and Method Eighteen New Zealand rabbits bearing VX2 tumor on the thigh were randomly divided into two treatment groups (control group: intratumoral injection of 131I-chTNT alone; RFA group: RFA + intratumoral injection of 131I-chTNT 3 days after RFA) and each group was further divided into three subgroups I, II, and III (1–2 cm, 2–3 cm, and 3–4 cm in maximum diameter, respectively), by the tumor size. SPECT was performed to evaluate the T/NT on days 1, 8, and 15 after 131I-chTNT injection. Results After treatment, all rabbits underwent the SPECT whole-body scan and the T/NT was analyzed. The results showed that T/NT in the RFA group (55.45±41.83) was significantly higher compared with the control group (7.23±5.61) (F=18.89, p=0.001). Meanwhile, a linear ascending trend was found for T/NT in the RFA group along with the follow-up time (r=0.47, p=0.01). The tumor size or the dose of 131I-TNT injection had no significant effect on the variation of T/NT in both groups (p>0.05). Conclusion RFA before intratumoral injection of 131I-chTNT can dramatically improve T/NT, demonstrating the potential application of this combination therapy. PMID:23964639

  1. A Phase 1 Study of 131I-CLR1404 in Patients with Relapsed or Refractory Advanced Solid Tumors: Dosimetry, Biodistribution, Pharmacokinetics, and Safety

    PubMed Central

    Grudzinski, Joseph J.; Titz, Benjamin; Kozak, Kevin; Clarke, William; Allen, Ernest; Trembath, LisaAnn; Stabin, Michael; Marshall, John; Cho, Steve Y.; Wong, Terence Z.; Mortimer, Joanne; Weichert, Jamey P.

    2014-01-01

    Introduction 131I-CLR1404 is a small molecule that combines a tumor-targeting moiety with a therapeutic radioisotope. The primary aim of this phase 1 study was to determine the administered radioactivity expected to deliver 400 mSv to the bone marrow. The secondary aims were to determine the pharmacokinetic (PK) and safety profiles of 131I-CLR1404. Methods Eight subjects with refractory or relapsed advanced solid tumors were treated with a single injection of 370 MBq of 131I-CLR1404. Whole body planar nuclear medicine scans were performed at 15–35 minutes, 4–6, 18–24, 48, 72, 144 hours, and 14 days post injection. Optional single photon emission computed tomography imaging was performed on two patients 6 days post injection. Clinical laboratory parameters were evaluated in blood and urine. Plasma PK was evaluated on 127I-CLR1404 mass measurements. To evaluate renal clearance of 131I-CLR1404, urine was collected for 14 days post injection. Absorbed dose estimates for target organs were determined using the RADAR method with OLINDA/EXM software. Results Single administrations of 370 MBq of 131I-CLR1404 were well tolerated by all subjects. No severe adverse events were reported and no adverse event was dose-limiting. Plasma 127I-CLR1404 concentrations declined in a bi-exponential manner with a mean t½ value of 822 hours. Mean Cmax and AUC(0-t) values were 72.2 ng/mL and 15753 ng•hr/mL, respectively. An administered activity of approximately 740 MBq is predicted to deliver 400 mSv to marrow. Conclusions Preliminary data suggest that 131I-CLR1404 is well tolerated and may have unique potential as an anti-cancer agent. Trial Registration ClinicalTrials.gov NCT00925275 PMID:25402488

  2. Unusual Presentation of Bladder Paraganglioma: Comparison of 131I MIBG SPECT/CT and 68Ga DOTANOC PET/CT

    PubMed Central

    Jain, Tarun Kumar; Basher, Rajender Kumar; Gupta, Nitin; Shukla, Jaya; Singh, Shrawan Kumar; Mittal, Bhagwant Rai

    2016-01-01

    Extraadrenal chromaffin cell-related tumors or paragangliomas are rare, especially in the bladder, accounting for less than 1% of cases. We report a 16-year-old boy who presented with hematuria and paroxysmal headache and was found to have a prostatic growth infiltrating the urinary bladder on anatomical imaging. Iodine-131 (131I) metaiodobenzylguanidine (MIBG) whole-body scanning and subsequently gallium-68 (68Ga) DOTANOC positron emission tomography/computed tomography (PET/CT) were performed. The MIBG scan revealed a non-tracer-avid soft-tissue mass, while DOTANOC PET/CT revealed a tracer-avid primary soft-tissue mass involving the urinary bladder and prostate with metastasis to the iliac lymph nodes. He underwent surgical management; histopathology of the surgical specimen revealed a bladder paraganglioma, whereas the prostate was found to be free of tumor. PMID:26912984

  3. Dose esclation in radioimmunotherapy based on projected whole body dose

    SciTech Connect

    Wahl, R.L.; Kaminski, M.S.; Regan, D.

    1994-05-01

    A variety of approaches have been utilized in conducting phase I radioimmunotherapy dose-escalation trials. Escalation of dose has been based on graded increases in administered mCi; mCi/kg; or mCi/m2. It is also possible to escalate dose based on tracer-projected marrow, blood or whole body radiation dose. We describe our results in performing a dose-escalation trial in patients with non-Hodgkin lymphoma based on escalating administered whole-body radiation dose. The mCi dose administered was based on a patient-individualized tracer projected whole-body dose. 25 patients were entered on the study. RIT with 131 I anti-B-1 was administered to 19 patients. The administered dose was prescribed based on the projected whole body dose, determined from patient-individualized tracer studies performed prior to RIT. Whole body dose estimates were based on the assumption that the patient was an ellipsoid, with 131 antibody kinetics determined using a whole-body probe device acquiring daily conjugate views of 1 minute duration/view. Dose escalation levels proceeded with 10 cGy increments from 25 cGy whole-body and continues, now at 75 cGy. The correlation among potential methods of dose escalation and toxicity was assessed. Whole body radiation dose by probe was strongly correlated with the blood radiation dose determined from sequential blood sampling during tracer studies (r=.87). Blood radiation dose was very weakly correlated with mCi dose (r=.4) and mCi/kg (r=.45). Whole body radiation dose appeared less well-correlated with injected dose in mCi (r=.6), or mCi/kg (r=.64). Toxicity has been infrequent in these patients, but appears related to increasing whole body dose. Non-invasive determination of whole-body radiation dose by gamma probe represents a non-invasive method of estimating blood radiation dose, and thus of estimating bone marrow radiation dose.

  4. Hanford whole body counting manual

    SciTech Connect

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs.

  5. Body image, shape, and volumetric assessments using 3D whole body laser scanning and 2D digital photography in females with a diagnosed eating disorder: preliminary novel findings.

    PubMed

    Stewart, Arthur D; Klein, Susan; Young, Julie; Simpson, Susan; Lee, Amanda J; Harrild, Kirstin; Crockett, Philip; Benson, Philip J

    2012-05-01

    We piloted three-dimensional (3D) body scanning in eating disorder (ED) patients. Assessments of 22 ED patients (including nine anorexia nervosa (AN) patients, 12 bulimia nervosa (BN) patients, and one patient with eating disorder not otherwise specified) and 22 matched controls are presented. Volunteers underwent visual screening, two-dimensional (2D) digital photography to assess perception and dissatisfaction (via computerized image distortion), and adjunctive 3D full-body scanning. Patients and controls perceived themselves as bigger than their true shape (except in the chest region for controls and anorexia patients). All participants wished to be smaller across all body regions. Patients had poorer veridical perception and greater dissatisfaction than controls. Perception was generally poorer and dissatisfaction greater in bulimia compared with anorexia patients. 3D-volume:2D-area relationships showed that anorexia cases had least tissue on the torso and most on the arms and legs relative to frontal area. The engagement of patients with the scanning process suggests a validation study is viable. This would enable mental constructs of body image to be aligned with segmental volume of body areas, overcoming limitations, and errors associated with 2D instruments restricted to frontal (coronal) shapes. These novel data could inform the design of clinical trials in adjunctive treatments for eating disorders. PMID:22506746

  6. Effect of 131I ‘clear residual thyroid tissue’ after surgery on the function of parathyroid gland in differentiated thyroid cancer

    PubMed Central

    ZHAO, ZHI-HUA; LI, FENG-QI; HAN, JIAN-KUI; LI, XIAN-JUN

    2015-01-01

    Thyroid cancer is a common malignant tumor of the endocrine glands. Although surgery is the optimal treatment utilized, the disease is characterized by recurrence and metastasis. The aim of the present study was to determine the effect of iodine-131 (131I) ‘clear residual thyroid tissue’ following surgery on the treatment of differentiated thyroid cancer (DTC) and its effect on the function of the parathyroid gland. A total of 160 patients diagnosed with DTC, who were consecutively admitted to our Hospital between June 2012 and June 2014 and underwent total thyroidectomy or subtotal resection, were included in the present study. After three months, the patients were administered 131I ‘clear residual thyroid tissue’ treatment and underwent a whole body scan after 1 week to determine whether ‘clear residual thyroid tissue’ treatment was successful or not. The treatment was repeated within 3 months if not successful. Of the 160 patients, 24 patients had cancer metastasis (15.0%). The average dose of 131I used for the first time was 6.4+1.2 GBq and the treatment was successful in 66 cases (41.3%). The average treatment time was 2.8±0.6 therapy sessions. The results showed that, prior to and following the first treatment and at the end of the follow up, levels of the parathyroid hormone, serum calcium and phosphorus were compared, and no statistically significant difference (P>0.05) was observed. There were 5 patients with persistent hypothyroidism and 8 patients with transient hypothyroidism. The levels of thyroglobulin were significantly decreased, and the difference was statistically significant (P<0.05). A total of 48 patients (30%) with hypothyroidism were identified. In conclusion, the results have shown that DTC resection and 131I ‘clear residual thyroid tissue’ treatment did not significantly impair the parathyroid function, thereby improving the treatment effect. PMID:26668598

  7. A bioassay experience and lessons learned on the internal contamination of (131)I during a maintenance period in a Korean nuclear power plant.

    PubMed

    Kim, Hee Geun; Kong, Tae Young

    2012-08-01

    During a maintenance period at a Korean nuclear power plant, internal exposure of radiation workers occurred by the inhalation of (131)I that was released into the reactor building from a primary system opening due to defective fuels. The internal activity in radiation workers contaminated by (131)I was immediately measured using a whole body counter (WBC). A whole body counting was performed again a few days later, considering the factors of equilibrium in the body. The intake and the committed effective dose were estimated based on the WBC results. The intake was also calculated by hand, based on both the entrance records to the reactor building, and the counted results of the air concentration for (131)I were compared with the whole body counting results. PMID:22323659

  8. Human whole body cold adaptation

    PubMed Central

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  9. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  10. Minimizing nuclear medicine technologist radiation exposure during 131I-MIBG therapy.

    PubMed

    Turpin, Brian K; Morris, Victoria R; Lemen, Lisa; Weiss, Brian D; Gelfand, Michael J

    2013-02-01

    131I-metaiodobenzylguanidine is a norepinephrine analog that concentrates in adrenergic tissue and has been shown to be an effective radiotherapeutic agent used to treat tumors of neural crest origin, particularly neuroblastoma, a sympathetic nervous system malignancy of children. The purpose of this study was to determine the radiation dose received by nuclear medicine technologists while preparing and administering 131I-metaiodobenzylguanidine therapy dosages, and if any changes could be implemented that would reduce a technologist's dose. The study involves the collection of total whole body doses received by technologists during the treatment of six patients. Patient dosages ranged from 9.25 to 31.1 GBq, with radiation exposures to the nuclear medicine technologists averaging 0.024 μSv per MBq administered to the patient. Subsequently, the doses received by the technologists were analyzed with respect to specific process steps performed during 131I-metaiodobenzylguanidine therapy including package receipt, dosage preparation, and dosage administration. Results show that the largest contribution to the technologist's whole body radiation dose (>83%) is received during the dosage administration process step. After additional shielding was installed for use during the dosage administration process step, technologists' doses decreased 80%. PMID:23287519

  11. Monte Carlo simulation of NaI(TL) detector in a shadow-shield scanning bed whole-body monitor for uniform and axial cavity activity distribution in a BOMAB phantom.

    PubMed

    Akar, D K; Patni, H K; Nadar, M Y; Ghare, V P; Rao, D D

    2013-07-01

    This study presents the simulation results for 10.16 cm diameter and 7.62 cm thickness NaI(Tl) detector response, which is housed in a partially shielded scanning bed whole-body monitor (WBM), due to activity distributed in the axial cavities provided in the Indian reference BOMAB phantom. Experimental detection efficiency (DE) for axial cavity activity distribution (ACAD) in this phantom for photon emissions of (133)Ba, (137)Cs and (60)Co is used to validate DEs estimated using Monte Carlo code FLUKA. Simulations are also carried out to estimate DEs due to uniform activity distribution (UAD) as in the standard BOMAB phantom. The results show that the DE is ∼3.8 % higher for UAD when compared with ACAD in the case of (40)K (1460 keV) and this relative difference increases to ∼7.0 % for (133)Ba (∼356 keV) photons. The corresponding correction factors for calibration with Indian phantom are provided. DEs are also simulated for activity distributed as a planar disc at the centre of the axial cavity in each part of the BOMAB phantom (PDAD) and the deviations of these DEs are within 1 % of the ACAD results. Thus, PDAD can also be used for ACAD in scanning geometry. An analytical solution for transmitted mono-energetic photons from a two-dimensional slab is provided for qualitative explanation of difference in DEs due to variation in activity distributions in the phantom. The effect on DEs due to different phantom part dimensions is also studied and lower DEs are observed for larger parts. PMID:23390143

  12. Phospholipid Topography of Whole-Body Sections of the Anopheles stephensi Mosquito, Characterized by High-Resolution Atmospheric-Pressure Scanning Microprobe Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.

    PubMed

    Khalil, Saleh M; Römpp, Andreas; Pretzel, Jette; Becker, Katja; Spengler, Bernhard

    2015-11-17

    High-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) has been employed to study the molecular anatomical structure of rodent malaria vector Anopheles stephensi mosquitoes. A dedicated sample preparation method was developed which suits both, the special tissue properties of the sample and the requirements of high-resolution MALDI imaging. Embedding in 5% carboxymethylcellulose (CMC) was used to maintain the tissue integrity of the whole mosquitoes, being very soft, fragile, and difficult to handle. Individual lipid compounds, specifically representing certain cell types, tissue areas, or organs, were detected and imaged in 20 μm-thick whole-body tissue sections at a spatial resolution of 12 μm per image pixel. Mass spectrometric data and information quality were based on a mass resolution of 70,000 (at m/z 200) and a mass accuracy of better than 2 ppm in positive-ion mode on an orbital trapping mass spectrometer. A total of 67 imaged lipids were assigned by database search and, in a number of cases, identified via additional MS/MS fragmentation studies directly from tissue. This is the first MSI study at 12 μm spatial resolution of the malaria vector Anopheles. The study provides insights into the molecular anatomy of Anopheles stephensi and the distribution and localization of major classes of glycerophospholipids and sphingolipids. These data can be a basis for future experiments, investigating, e.g., the metabolism of Plasmodium-infected and -uninfected Anopheles mosquitoes. PMID:26491885

  13. Strong Neck Accumulation of 131I Is a Predictor of Incomplete Low-Dose Radioiodine Remnant Ablation Using Recombinant Human Thyroid-Stimulating Hormone

    PubMed Central

    Enomoto, Keisuke; Sakata, Yoshiharu; Izumi, Kazuyuki; Takenaka, Yukinori; Nagai, Miki; Takeda, Kazuya; Enomoto, Yukie; Uno, Atsuhiko

    2015-01-01

    Abstract The purpose of this study was to identify the factors that predict incomplete low-dose radioiodine remnant ablation (RRA) with recombinant human thyroid-stimulating hormone (rhTSH) and to report the adverse events associated with this treatment. Between 2012 and 2014, 43 consecutive patients with thyroid cancer received low-dose RRA with rhTSH after total thyroidectomy. We retrospectively investigated the adverse events during low-dose RRA and during diagnostic whole body scan (DxWBS) using rhTSH, and analyzed the rate of RRA completion and the associations between RRA completion and various clinical/pathological factors. Complete RRA was seen in 33 (76.7%) patients, and incomplete RRA was observed in 10 (23.3%). Patients with incomplete RRA had stronger neck accumulation of 131I than those with complete RRA (P < 0.001). Adverse events at RRA and DxWBS were seen in 12 and 9 patients, respectively. All events at RRA were grade 1, with one exception (grade 2 vertigo after rhTSH administration). The rate of adverse events at DxWBS was significantly higher in patients with adverse events seen at RRA (risk ratio, 3.778, P = 0.008). Strong neck accumulation of 131I is significant independent predictor of incomplete low-dose RRA. The risk of adverse events at DxWBS was higher in patients who experienced adverse events at RRA than in those who did not. PMID:26426611

  14. Impact of high 131I-activities on quantitative 124I-PET

    NASA Astrophysics Data System (ADS)

    Braad, P. E. N.; Hansen, S. B.; Høilund-Carlsen, P. F.

    2015-07-01

    Peri-therapeutic 124 I-PET/CT is of interest as guidance for radioiodine therapy. Unfortunately, image quality is complicated by dead time effects and increased random coincidence rates from high 131 I-activities. A series of phantom experiments with clinically relevant 124 I/131 I-activities were performed on a clinical PET/CT-system. Noise equivalent count rate (NECR) curves and quantitation accuracy were determined from repeated scans performed over several weeks on a decaying NEMA NU-2 1994 cylinder phantom initially filled with 25 MBq 124 I and 1250 MBq 131 I. Six spherical inserts with diameters 10-37 mm were filled with 124 I (0.45 MBq ml-1 ) and 131 I (22 MBq ml-1 ) and placed inside the background of the NEMA/IEC torso phantom. Contrast recovery, background variability and the accuracy of scatter and attenuation corrections were assessed at sphere-to-background activity ratios of 20, 10 and 5. Results were compared to pure 124 I-acquisitions. The quality of 124 I-PET images in the presence of high 131 I-activities was good and image quantification unaffected except at very high count rates. Quantitation accuracy and contrast recovery were uninfluenced at 131 I-activities below 1000 MBq, whereas image noise was slightly increased. The NECR peaked at 550 MBq of 131 I, where it was 2.8 times lower than without 131 I in the phantom. Quantitative peri-therapeutic 124 I-PET is feasible.

  15. Non-invasive imaging of allogeneic transplanted skin graft by 131I-anti-TLR5 mAb.

    PubMed

    Sun, Hukui; Yang, Guangjie; Liang, Ting; Zhang, Chao; Song, Jing; Han, Jiankui; Hou, Guihua

    2014-12-01

    Although (18)F-fluorodeoxyglucose ((18)F-FDG) uptake can be used for the non-invasive detection and monitoring of allograft rejection by activated leucocytes, this non-specific accumulation is easily impaired by immunosuppressants. Our aim was to evaluate a (131)I-radiolabelled anti-Toll-like receptor 5 (TLR5) mAb for non-invasive in vivo graft visualization and quantification in allogeneic transplantation mice model, compared with the non-specific radiotracer (18)F-FDG under using of immunosuppressant. Labelling, binding, and stability studies were performed. BALB/c mice transplanted with C57BL/6 skin grafts, with or without rapamycin treatment (named as allo-treated group or allo-rejection group), were injected with (131)I-anti-TLR5 mAb, (18)F-FDG, or mouse isotype (131)I-IgG, respectively. Whole-body phosphor-autoradiography and ex vivo biodistribution studies were obtained. Whole-body phosphor-autoradiography showed (131)I-anti-TLR5 mAb uptake into organs that were well perfused with blood at 1 hr and showed clear graft images from 12 hrs onwards. The (131)I-anti-TLR5 mAb had significantly higher graft uptake and target-to-non-target ratio in the allo-treated group, as determined by semi-quantification of phosphor-autoradiography images; these results were consistent with ex vivo biodistribution studies. However, high (18)F-FDG uptake was not observed in the allo-treated group. The highest allograft-skin-to-native-skin ratio (A:N) of (131)I-anti-TLR5 mAb uptake was significantly higher than the ratio for (18)F-FDG (7.68 versus 1.16, respectively). (131)I-anti-TLR5 mAb uptake in the grafts significantly correlated with TLR5 expression in the allograft area. The accumulation of (131)I-IgG was comparable in both groups. We conclude that radiolabelled anti-TLR5 mAb is capable of detecting allograft with high target specificity after treatment with the immunosuppressive drug rapamycin. PMID:25283154

  16. Comparison of [123I]MIBG and [131I]MIBG for imaging of neuroblastoma and other neural crest tumors.

    PubMed

    Liu, B; Zhuang, H; Servaes, S

    2013-03-01

    Meta-iodobenzylguanidine (MIBG), an analog of the adrenergic neurotransmitter norepinephrine, has proven a valuable imaging agent for neuroendocrine and neural crest tumors. Over the past 3 decades, MIBG labeled with [131I] or [123I] has been used widely in imaging of neuroblastoma and pheochromocytoma. Before September 2008 [131I]MIBG was approved as a diagnostic agent only in the US. Due to the excellent physical characteristics of [123I] for imaging with modern scintillation cameras, [123I]MIBG is theoretically more suitable than [131I]MIBG in detecting tumors. In practice, use of [123I]MIBG or [131I]MIBG for diagnostic studies depends on availability and local preference. This review compares [123I]MIBG with [131I]MIBG in imaging of neuroblastoma and other neural crest tumors and also the physical properties of relevant radioisotopes. Dosimetry and scanning protocols of [123I]MIBG and [131I]MIBG, along with their value in depicting disease extent, assessing treatment response and predicting survival are also compared. The performance of post-therapy high-activity [131I]MIBG scans in lesion detectability is also addressed. PMID:23474632

  17. Individualized 131I-mIBG therapy in the management of refractory and relapsed neuroblastoma

    PubMed Central

    George, Sally L.; Falzone, Nadia; Chittenden, Sarah; Kirk, Stephanie J.; Lancaster, Donna; Vaidya, Sucheta J.; Mandeville, Henry; Saran, Frank; Pearson, Andrew D.J.; Du, Yong; Meller, Simon T.; Denis-Bacelar, Ana M.

    2016-01-01

    Objective Iodine-131-labelled meta-iodobenzylguanidine (131I-mIBG) therapy is an established treatment modality for relapsed/refractory neuroblastoma, most frequently administered according to fixed or weight-based criteria. We evaluate response and toxicity following a dosimetry-based, individualized approach. Materials and methods A review of 44 treatments in 25 patients treated with 131I-mIBG therapy was performed. Patients received 131I-mIBG therapy following relapse (n=9), in refractory disease (n=12), or with surgically unresectable disease despite conventional treatment (n=4). Treatment schedule (including mIBG dose and number of administrations) was individualized according to the clinical status of the patient and dosimetry data from either a tracer study or previous administrations. Three-dimensional tumour dosimetry was also performed for eight patients. Results The mean administered activity was 11089±7222 MBq and the mean whole-body dose for a single administration was 1.79±0.57 Gy. Tumour-absorbed doses varied considerably (3.70±3.37 mGy/MBq). CTCAE grade 3/4 neutropenia was documented following 82% treatments and grade 3/4 thrombocytopenia following 71% treatments. Further acute toxicity was found in 49% of patients. All acute toxicities resolved with appropriate therapy. The overall response rate was 58% (complete or partial response), with a further 29% of patients having stable disease. Conclusion A highly personalized approach combining patient-specific dosimetry and clinical judgement enables delivery of high activities that can be tolerated by patients, particularly with stem cell support. We report excellent response rates and acceptable toxicity following individualized 131I-mIBG therapy. PMID:26813989

  18. Whole-body nanoparticle aerosol inhalation exposures.

    PubMed

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-01-01

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 (5). The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M

  19. Whole-Body Nanoparticle Aerosol Inhalation Exposures

    PubMed Central

    Yi, Jinghai; Chen, Bean T.; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L.; Stapleton, Phoebe A.; Minarchick, Valerie C.; Nurkiewicz, Timothy R.

    2013-01-01

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 5. The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size 6, which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria 5. A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m3 whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm3) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m3). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpreand Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is

  20. Toward a whole-body neuroprosthetic.

    PubMed

    Lebedev, Mikhail A; Nicolelis, Miguel A L

    2011-01-01

    Brain-machine interfaces (BMIs) hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurological diseases, and limb loss. Considerable progress has been achieved in BMIs that enact arm movements, and initial work has been done on BMIs for lower limb and trunk control. These developments put Duke University Center for Neuroengineering in the position to develop the first BMI for whole-body control. This whole-body BMI will incorporate very large-scale brain recordings, advanced decoding algorithms, artificial sensory feedback based on electrical stimulation of somatosensory areas, virtual environment representations, and a whole-body exoskeleton. This system will be first tested in nonhuman primates and then transferred to clinical trials in humans. PMID:21867793

  1. An unusual 131I-avid adrenal metastasis from follicular thyroid carcinoma identified by 131I-SPECT/CT.

    PubMed

    Xue, Yan-Li; Song, Hong-Jun; Qiu, Zhong-Ling; Luo, Quan-Yong

    2012-09-01

    The adrenal gland is an uncommon site of metastasis from differentiated thyroid carcinoma, and I-avid adrenal metastatic lesions are even rarer. Here, we describe a 54-year-old woman with I-avid adrenal metastasis from follicular thyroid carcinoma identified using I whole-body scan (I-WBS) and I-SPECT/CT. I-SPECT/CT allowed superior localization of the equivocal I uptake in the I-WBS. It provides metabolic and anatomic information about a lesion, resulting in accurate localization and improved definition of I-WBS findings. PMID:22889799

  2. WHOLE BODY COUNTING AND NEUTRON ACTIVATION ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition of the human body can be described using a number of different models. The most basic is the atomic model. This chapter describes several nuclear-based techniques that have been used to obtain direct in vivo chemical assays of the whole body of humans. In particular, the body's co...

  3. Whole Body Melanoma Transcriptome Response in Medaka

    PubMed Central

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K.; Postlethwait, John; Warren, Wesley C.

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model. PMID

  4. Whole Body Melanoma Transcriptome Response in Medaka.

    PubMed

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K; Postlethwait, John; Warren, Wesley C

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model. PMID

  5. Limitations of /sup 131/I-MIBG scintigraphy in locating pheochromocytomas

    SciTech Connect

    Gough, I.R.; Thompson, N.W.; Shapiro, B.; Sisson, J.C.

    1985-07-01

    /sup 131/I-metaiodobenzylguanidine (/sup 131/I-MIBG) scintigraphy for the location of pheochromocytomas has proved to be a major advance in patient management. In combination with computerized tomographic scanning, nearly all pheochromocytomas can be located before surgery and invasive investigations are now indicated only in exceptional cases. However, there are still lessons to be learned concerning the optimal administration and interpretation of /sup 131/I-MIBG scintigraphy. With careful attention to detail and an awareness of isotope distribution, false positive studies should be extremely rare. While the incidence of false negative studies is uncommon, these certainly occur. A patient with sporadic bilateral adrenal medullary hyperplasia, bilateral pheochromocytomas, and additional benign pheochromocytomas arising in paraganglia tissue anterior to the abdominal aorta is presented. The right adrenal pheochromocytoma was not identified on /sup 131/I-MIBG imaging. The authors conclude that even with current locating techniques, the traditional surgical approach to pheochromocytoma should not be abandoned. This involves transabdominal exploration of both adrenal glands and careful examination of all possible sites of extra-adrenal pheochromocytomas.

  6. Whole body radiotherapy: A TBI-guideline

    PubMed Central

    Quast, Ulrich

    2006-01-01

    Total Body Irradiation (TBI) is one main component in the interdisciplinary treatment of widely disseminated malignancies predominantly of haematopoietic diseases. Combined with intensive chemotherapy, TBI enables myeloablative high dose therapy and immuno-ablative conditioning treatment prior to subsequent transplantation of haematopoietic stem cells: bone marrow stem cells or peripheral blood progenitor stem cells. Jointly prepared by DEGRO and DGMP, the German Society of Radio-Oncology, and the German Association of Medical Physicists, this DEGRO/DGMP-Leitlinie Ganzkoerper-Strahlenbehandlung - DEGRO/DGMP Guideline Whole Body Radiotherapy, summarises the concepts, principles, facts and common methods of Total Body Irradiation and poses a set of recommendations for reliable and successful application of high dose large-field radiotherapy as essential part of this interdisciplinary, multi-modality treatment concept. The guideline is geared towards radio-oncologists, medical physicists, haematooncolo-gists, and all contributing to Whole Body Radiotherapy. To guide centres intending to start or actualise TBI criteria are included. The relevant treatment parameters are defined and a sample of a form is given for reporting TBI to international registries. PMID:21206634

  7. Whole-body FDG-PET imaging for staging of Hodgkin`s disease and lymphoma

    SciTech Connect

    Hoh, C.K.; Glaspy, J.; Rosen, P.

    1997-03-01

    Accurate staging of Hodgkin`s disease (HD) and non-Hodgkin`s lymphoma (NHL) is important for treatment management. In this study, the utility of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (FDG) wholebody PET was evaluated as an imaging modality for initial staging or restaging of 7 HD and 11 NHL patients. Whole-body PET-based staging results were compared to the patient`s clinical stage based on conventional staging studies, which included combinations of CT of the chest, abdomen and pelvis, MRI scans, gallium scans, lymphangiograms, staging laparatomies and bone scans. Accurate staging was performed in 17 of 18 patients using a whole-body PET-based staging algorithm compared to the conventional staging algorithm in 15 of 18 patients. In 5 of 18 patients, whole-body PET-based staging showed additional lesions not detected by conventional staging modalities, whereas conventional staging demonstrated additional lesions in 4 of 18 patients not detected by whole-body PET. The total cost of conventional staging was $66,292 for 16 CT chest scans, 16 CT abdominal/pelvis scans, three limited MRI scans, four bone scans, give gallium scans, two laparotomies and one lymphangiogram. In contrast, scans cost $36,250 for 18 whole-body PET studies and additional selected correlative studies: one plain film radiograph, one limited CT, one bone marrow san, one upper GI and one endoscopy. A whole-body FDG-PET-based staging algorithm may be an accurate and cost-effective method for staging or restaging HD and NHL. 10 refs., 7 figs., 2 tabs.

  8. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  9. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  10. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  11. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  12. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body scanner. 892.1330 Section...

  13. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section...

  14. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section...

  15. Action slips during whole-body vibration.

    PubMed

    Ishimatsu, Kazuma; Meland, Anders; Hansen, Tor Are S; Kåsin, Jan Ivar; Wagstaff, Anthony S

    2016-07-01

    Helicopter aircrew members engage in highly demanding cognitive tasks in an environment subject to whole-body vibration (WBV). Sometimes their actions may not be according to plan (e.g. action slips and lapses). This study used a Sustained Attention to Response Task (SART) to examine whether action slips were more frequent during exposure to WBV. Nineteen participants performed the SART in two blocks. In the WBV block participants were exposed to 17 Hz vertical WBV, which is typical of larger helicopter working environments. In the No-WBV block there was no WBV. There were more responses to the rare no-go digit 3 (i.e. action slips) in the WBV block, and participants responded faster in the WBV block. These results suggest that WBV influences response inhibition, and can induce impulsive responding. WBV may increase the likelihood of action slips, mainly due to failure of response inhibition. PMID:26611989

  16. 131I-Metaiodobenzylguanidine therapy in children with advanced neuroblastoma.

    PubMed

    DuBois, S G; Matthay, K K

    2013-03-01

    Neuroblastoma is an aggressive childhood cancer, with a propensity for early widespread metastasis. Approximately 90% of tumors accumulate the norepinephrine analogue metaiodobenzylguanidine (MIBG) avidly, allowing the use of radiolabeled MIBG for targeted imaging and radiotherapy. After preclinical studies demonstrated activity of 131I-MIBG in models of neuroblastoma, clinical development of this agent ensued. Early clinical trials of 131I-MIBG in patients with relapsed or refractory neuroblastoma defined the toxicity profile of this agent, with myelosuppression as the main dose-limiting toxicity. Subsequent trials defined the activity of 131I-MIBG, with response rates of 20-40% in patients with relapsed or refractory disease. More recent clinical trials have tested 131I-MIBG in combination with chemotherapy or as a component of myeloablative therapies. Given the documented activity of 131I-MIBG, future studies will need to evaluate the impact of radiation sensitizers on this activity and define the role of this agent in treating patients with newly diagnosed high-risk neuroblastoma. PMID:23474635

  17. Localization of m-lodo(/sup 131/I)benzylguanidine in neuroblastoma

    SciTech Connect

    Hattner, R.S.; Huberty, J.P.; Engelstad, B.L.; Gooding, C.A.; Ablin, A.R.

    1984-08-01

    Patient survival and the therapeutic strategy for treatment of neuroblastoma are highly dependent on the stage of the tumor at presentation. For routine staging, the Children's Cancer Study group currently recommends a chest radiograph, abdominal CT scan, radionuclide bone scan, bone marrow biopsy, catecholamine metabolite estimations, and surgical determination of tumor extent. A noninvasive method for detectiton of neuroblastoma that avoids surgery and bone marrow biopsy would be a most welcome addition to the armamentarium of the pediatric oncologist. A case of neuroblastoma demonstrated with m-iodo(/sup 131/I)benzylguanidine (MIBG) scintigraphy is reported.

  18. Whole body bone scintigraphy in osseous hydatosis: a case report

    PubMed Central

    Ebrahimi, Abdolali; Assadi, Majid; Saghari, Mohsen; Eftekhari, Mohammad; Gholami, Amir; Ghasemikhah, Reza; Assadi, Sakineh

    2007-01-01

    Hydatid disease is common in many parts of the world, and causes considerable health and economic loss. This disease may develop in almost any part of the body. Bone involvement is often asymptomatic, and its diagnosis is primarily based on radiographic findings. A whole body bone scan is able to show the extent and distribution of lesions. We describe an unusual case of multifocal skeletal hydatosis and also explain the clinical and diagnostic points. We hope to stimulate a high index of suspicion among clinicians to facilitate early diagnosis and to consider this disease as a differential diagnosis in cases of multiple abnormal activity in bone scintigraphy especially among people in endemic areas. PMID:17880713

  19. Whole-body MRI in paediatric oncology.

    PubMed

    Nievelstein, Rutger A J; Littooij, Annemieke S

    2016-05-01

    Imaging plays a crucial role in the diagnosis and follow-up of paediatric malignancies. Until recently, computed tomography (CT) has been the imaging technique of choice in children with cancer, but nowadays there is an increasing interest in the use of functional imaging techniques like positron emission tomography and single-photon emission tomography. These later techniques are often combined with CT allowing for simultaneous acquisition of image data on the biological behaviour of tumour, as well as the anatomical localisation and extent of tumour spread. Because of the small but not negligible risk of radiation induced secondary cancers and the significantly improved overall survival rates of children with cancer, there is an increasing interest in the use of alternative imaging techniques that do not use ionising radiation. Magnetic resonance imaging (MRI) is a radiation-free imaging tool that allows for acquiring images with a high spatial resolution and excellent soft tissue contrast throughout the body. Moreover, recent technological advances have resulted in fast diagnostic sequences for whole-body MR imaging (WB-MRI), including functional techniques such as diffusion weighted imaging. In this review, the current status of the technique and major clinical applications of WB-MRI in children with cancer will be discussed. PMID:26631075

  20. Credibility of Uncertainty Analyses for 131-I Pathway Assessments

    SciTech Connect

    Hoffman, F O.; Anspaugh, L. R.; Apostoaei, A. I.; Beck, Harold L.; Bouville, A; Napier, Bruce A.; Simon, Steven L.

    2004-05-01

    We would like to make your readers aware of numerous concerns we have with respect to the paper by A. A. Simpkins and D. M. Hamby on Uncertainty in transport factors used to calculate historic dose from 131I releases at the Savannah River Site. The paper by Simpkins and Hamby concludes by saying their uncertainty analysis would add credibility to current dose reconstruction efforts of public exposures to historic releases of 131I from the operations at the Savannah River Site, yet we have found their paper to be afflicted with numerous errors in assumptions and methodology, which in turn lead to grossly misleading conclusions. Perhaps the most egregious errors are their conclusions, which state that: a. the vegetable pathway, not the ingestion of fresh milk, was the main contributor to thyroid dose for exposure to 131I (even though dietary intake of vegetables was less in the past than at present), and b. the probability distribution assigned to the fraction of iodine released in the elemental form (Uniform 0, 0.6) is responsible for 64.6% of the total uncertainty in thyroid dose, given a unit release of 131I to the atmosphere. The assumptions used in the paper by Simpkins and Hamby lead to a large overestimate of the contamination of vegetables by airborne 131I. The interception by leafy and non-leafy vegetables of freshly deposited 131I is known to be highly dependent on the growth form of the crop and the standing crop biomass of leafy material. Unrealistic assumptions are made for losses of 131I from food processing, preparation, and storage prior to human consumption. These assumptions tend to bias their conclusions toward an overestimate of the amount of 131I retained by vegetation prior to consumption. For example, the generic assumption of a 6-d hold-up time is used for the loss from radioactive decay for the time period from harvest to human consumption of fruits, vegetables, and grains. We anticipate hold-up times of many weeks, if not months, between

  1. Whole-body vibration perception thresholds

    NASA Astrophysics Data System (ADS)

    Parsons, K. C.; Griffin, M. J.

    1988-03-01

    This paper presents the results of a series of laboratory experiments concerned with perception thresholds for whole-body vibration. The nature of absolute perception thresholds is discussed and a method of determining vibration thresholds, based upon signal detection theory, is proposed. Thresholds of subjects exposed to x-, y- and z-axis sinusoidal vibration were determined for sitting and standing subjects (from 2 to 100 Hz). Perception thresholds have also been determined for supine subjects exposed to vertical ( x-axis) sinusoidal vibration (10-63 Hz). In additional experiments the effects of complex (e.g., random) vibration and the effects of duration on the perception thresholds were investigated. The relation between perception thresholds and vibration levels, said by subjects to be unacceptable if they occurred in their own homes, was investigated as well as the effects of subjects' personality and the visual and acoustic conditions in the laboratory. For the vertical vibration of seated subjects no significant differences were found between the responses of male and female subjects. Significant differences were found between perception thresholds for sitting and standing postures. The median threshold was approximately 0·01 m/s 2 r.m.s. between 2 and 100 Hz. Perception thresholds for x-axis and y-axis vibration were not significantly different in either sitting or standing subjects but significant differences in thresholds were found between sitting and standing positions for both x-axis and y-axis vibration. Subjects tended to be more sensitive to vibration when lying than when sitting or standing. The results suggested that the perception of random vibrations can be predicted from a knowledge of the perception of its component vibrations. The number of cycles of vibration did not affect perception thresholds for vibration durations of more than about 0·25 s. Some assessments suggested that vibration at more than twice the perception threshold may not

  2. Accurate body composition measures from whole-body silhouettes

    PubMed Central

    Xie, Bowen; Avila, Jesus I.; Ng, Bennett K.; Fan, Bo; Loo, Victoria; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J.; Lappe, Joan; Oberfield, Sharon; Winer, Karen; Zemel, Babette; Shepherd, John A.

    2015-01-01

    Purpose: Obesity and its consequences, such as diabetes, are global health issues that burden about 171 × 106 adult individuals worldwide. Fat mass index (FMI, kg/m2), fat-free mass index (FFMI, kg/m2), and percent fat mass may be useful to evaluate under- and overnutrition and muscle development in a clinical or research environment. This proof-of-concept study tested whether frontal whole-body silhouettes could be used to accurately measure body composition parameters using active shape modeling (ASM) techniques. Methods: Binary shape images (silhouettes) were generated from the skin outline of dual-energy x-ray absorptiometry (DXA) whole-body scans of 200 healthy children of ages from 6 to 16 yr. The silhouette shape variation from the average was described using an ASM, which computed principal components for unique modes of shape. Predictive models were derived from the modes for FMI, FFMI, and percent fat using stepwise linear regression. The models were compared to simple models using demographics alone [age, sex, height, weight, and body mass index z-scores (BMIZ)]. Results: The authors found that 95% of the shape variation of the sampled population could be explained using 26 modes. In most cases, the body composition variables could be predicted similarly between demographics-only and shape-only models. However, the combination of shape with demographics improved all estimates of boys and girls compared to the demographics-only model. The best prediction models for FMI, FFMI, and percent fat agreed with the actual measures with R2 adj. (the coefficient of determination adjusted for the number of parameters used in the model equation) values of 0.86, 0.95, and 0.75 for boys and 0.90, 0.89, and 0.69 for girls, respectively. Conclusions: Whole-body silhouettes in children may be useful to derive estimates of body composition including FMI, FFMI, and percent fat. These results support the feasibility of measuring body composition variables from simple

  3. Solid anthropomorphic infant whole body DXA phantom: Design, evaluation, and multisite testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dual energy X-ray absorptiometry (DXA) requires phantoms for quality control and cross-calibration. No commercially available phantoms are designed specifically for infant whole-body scanning. We fabricated a phantom closely matching a 7-kg human infant in body habitus using PVC, nylon-mix, and poly...

  4. Detection and semi-quantitative measurement of lung cancer metabolic activity by whole body PET

    SciTech Connect

    Tse, K.K.M.; Buchpiguel, C.A.; Alavi, J.B.

    1994-05-01

    Conventional radiologic and nuclear medicine techniques have been shown to have a limited role in the staging and monitoring of disease activity in patients with lung cancer. Both qualitative and semi-quantitative position emission tomography (PET) using the F-18 FDG technique have been applied to determine the clinical utility of whole body PET-FDG imaging in lung cancer. Nineteen whole body FDG PET scans were performed in 18 patients; 17 with lung cancer (15 non-small cell and 2 small cell) and 1 with squamous cell carcinoma of the trachea.

  5. Patient-specific biomechanical model as whole-body CT image registration tool.

    PubMed

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Doyle, Barry; Garlapati, Revanth Reddy; Kikinis, Ron; Wittek, Adam

    2015-05-01

    Whole-body computed tomography (CT) image registration is important for cancer diagnosis, therapy planning and treatment. Such registration requires accounting for large differences between source and target images caused by deformations of soft organs/tissues and articulated motion of skeletal structures. The registration algorithms relying solely on image processing methods exhibit deficiencies in accounting for such deformations and motion. We propose to predict the deformations and movements of body organs/tissues and skeletal structures for whole-body CT image registration using patient-specific non-linear biomechanical modelling. Unlike the conventional biomechanical modelling, our approach for building the biomechanical models does not require time-consuming segmentation of CT scans to divide the whole body into non-overlapping constituents with different material properties. Instead, a Fuzzy C-Means (FCM) algorithm is used for tissue classification to assign the constitutive properties automatically at integration points of the computation grid. We use only very simple segmentation of the spine when determining vertebrae displacements to define loading for biomechanical models. We demonstrate the feasibility and accuracy of our approach on CT images of seven patients suffering from cancer and aortic disease. The results confirm that accurate whole-body CT image registration can be achieved using a patient-specific non-linear biomechanical model constructed without time-consuming segmentation of the whole-body images. PMID:25721296

  6. Patient-Specific Biomechanical Model as Whole-Body CT Image Registration Tool

    PubMed Central

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Doyle, Barry; Garlapati, Revanth Reddy; Kikinis, Ron; Wittek, Adam

    2015-01-01

    Whole-body computed tomography (CT) image registration is important for cancer diagnosis, therapy planning and treatment. Such registration requires accounting for large differences between source and target images caused by deformations of soft organs/tissues and articulated motion of skeletal structures. The registration algorithms relying solely on image processing methods exhibit deficiencies in accounting for such deformations and motion. We propose to predict the deformations and movements of body organs/tissues and skeletal structures for whole-body CT image registration using patient-specific non-linear biomechanical modelling. Unlike the conventional biomechanical modelling, our approach for building the biomechanical models does not require time-consuming segmentation of CT scans to divide the whole body into non-overlapping constituents with different material properties. Instead, a Fuzzy C-Means (FCM) algorithm is used for tissue classification to assign the constitutive properties automatically at integration points of the computation grid. We use only very simple segmentation of the spine when determining vertebrae displacements to define loading for biomechanical models. We demonstrate the feasibility and accuracy of our approach on CT images of seven patients suffering from cancer and aortic disease. The results confirm that accurate whole-body CT image registration can be achieved using a patient-specific non-linear biomechanical model constructed without time-consuming segmentation of the whole-body images. PMID:25721296

  7. (/sup 131/I) iodocholesterol scintiscan and a rare functional black adenoma of the adrenal cortex

    SciTech Connect

    Dixon, R.M.; Lieberman, L.M.; Gould, H.R.; Hafez, G.R.

    1983-06-01

    A rare functional black adenoma (FBA) of the adrenal cortex was found to be the cause of hypertension and cushingoid features in a 34-yr-old white female., Preoperative studies included (/sup 131/I)iodocholesterol scanning (ICS) of the adrenal glands, which demonstrated the increased release of cortisol from the affected adrenal gland, with the failure of the opposite adrenal gland to record. This is evidence that cortisol was suppressing adrenocorticotropin (ACTH) output by the pituitary gland. This case documents the clinical utility of functional imaging techniques in this clinical setting.

  8. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body counter. 892.1130 Section 892.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter....

  9. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body counter. 892.1130 Section 892.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter....

  10. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body counter. 892.1130 Section 892.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter....

  11. NUMERICAL ASSESSMENT OF 131I DEPOSITED IN THYROID FOR NON-STANDARD SITUATIONS.

    PubMed

    Moraleda, M; Gómez-Ros, J M

    2016-09-01

    At the CIEMAT whole-body counter, a low-energy germanium detector is used for the in vivo assessment of (131)I activity in thyroid, mainly for the individual monitoring programmes of workers. The detector is calibrated with a cylindrical neck phantom made of polymethyl methacrylate that mimics the neck of an adult, containing a vial with a radioactive solution. For an accurate activity assessment, it is necessary to perform the calibration of the detector with phantoms that closely reproduce the anatomy of a real person. Nevertheless, it is not affordable to count on a variety of physical phantoms covering the different anatomical characteristics that could be found over the whole population, including children. An alternative approach to face this situation is offered by the numerical calibration procedure based on Monte Carlo calculations in conjunction with realistic voxel phantoms. A series of computational voxel phantoms of different ages and dimensions have been used in this work to simulate an internal contamination of the thyroid and to estimate the response of the detector for measurements involving individuals whose anatomical characteristics differ from the reference adult man. PMID:26705352

  12. Whole-body cryotherapy in athletes.

    PubMed

    Banfi, Giuseppe; Lombardi, Giovanni; Colombini, Alessandra; Melegati, Gianluca

    2010-06-01

    Cold therapy is commonly used as a procedure to relieve pain symptoms, particularly in inflammatory diseases, injuries and overuse symptoms. A peculiar form of cold therapy (or stimulation) was proposed 30 years ago for the treatment of rheumatic diseases. The therapy, called whole-body cryotherapy (WBC), consists of exposure to very cold air that is maintained at -110 degrees C to -140 degrees C in special temperature-controlled cryochambers, generally for 2 minutes. WBC is used to relieve pain and inflammatory symptoms caused by numerous disorders, particularly those associated with rheumatic conditions, and is recommended for the treatment of arthritis, fibromyalgia and ankylosing spondylitis. In sports medicine, WBC has gained wider acceptance as a method to improve recovery from muscle injury. Unfortunately, there are few papers concerning the application of the treatment on athletes. The study of possible enhancement of recovery from injuries and possible modification of physiological parameters, taking into consideration the limits imposed by antidoping rules, is crucial for athletes and sports physicians for judging the real benefits and/or limits of WBC. According to the available literature, WBC is not harmful or detrimental in healthy subjects. The treatment does not enhance bone marrow production and could reduce the sport-induced haemolysis. WBC induces oxidative stress, but at a low level. Repeated treatments are apparently not able to induce cumulative effects; on the contrary, adaptive changes on antioxidant status are elicited--the adaptation is evident where WBC precedes or accompanies intense training. WBC is not characterized by modifications of immunological markers and leukocytes, and it seems to not be harmful to the immunological system. The WBC effect is probably linked to the modifications of immunological molecules having paracrine effects, and not to systemic immunological functions. In fact, there is an increase in anti

  13. Treatment of neuroblastoma with /sup 131/I-metaiodobenzylguanidine

    SciTech Connect

    Troncone, L.; Riccardi, R.; Montemaggi, P.; Rufini, V.; Lasorella, A.; Mastrangelo, R.

    1987-01-01

    Seven patients with neuroblastoma (six children and one adult) were treated with therapeutic doses of high specific activity /sup 131/I-metaiodobenzylguanidine (/sup 131/I-MIBG). Six patients were in stage IV and unresponsive to conventional treatment. One patient, in stage III, was treated at diagnosis, an approach never previously reported. Single doses of /sup 131/I-MIBG varying from 70 to 184 mCi split into two parts were administered by slow i.v. infusion (4 to 8 hours) at 2- to 4-day intervals. The following results were obtained in the six evaluable patients: two patients showed transient stabilization of the disease; three had an objective response, with shrinking of the primary tumor and/or regression of the metastatic lesions. Of these three patients, two suffered relapses at 2 and 7 months, respectively, from the first course of MIBG. The third patient, in whom the residual disease almost completely disappeared following MIBG therapy, is still alive in complete remission after autologous bone marrow transplantation with a follow-up of 14 months. The single patient treated at diagnosis showed a dramatic response to a relatively low dosage of MIBG, with histologically proved disappearance of the tumor mass. Our data indicate that MIBG may be useful in the treatment of neuroblastoma unresponsive to conventional chemotherapy. The complete response observed in the patient treated at diagnosis suggests that the full potentiality of MIBG therapy should be explored in untreated patients.

  14. Observation of radioactive iodine ((131)I, (129)I) in cropland soil after the Fukushima nuclear accident.

    PubMed

    Fujiwara, Hideshi

    2016-10-01

    During the early stages of the Fukushima nuclear accident, the temporal variations of (131)I deposited on the ground and of (131)I accumulated in cropland soil were monitored at a fixed location in Japan. Moreover, concentrations of long-lived radioactive iodine ((129)I) in atmospheric deposits and soil were measured to examine the feasibility of retrospectively reconstructing (131)I levels from the levels of accident-derived (129)I. The exceptionally high levels of (131)I in deposits and soil were attributed to rainfall-related deposition of radionuclides. In the crop field studied, the losses of deposited (131)I and (129)I due to volatilization were small. The atomic ratio (129)I/(131)I in the topsoil corresponded to the same ratio in deposits. The (131)I concentrations measured in the topsoil were very consistent with the (131)I concentrations reconstructed from the (129)I concentrations in the soil. PMID:27320744

  15. Comparison of Radiation Dose Estimation for Myeloablative Radioimmunotherapy for Relapsed or Recurrent Mantle Cell Lymphoma using 131I Tositumomab to that of Other Types of Non-Hodgkin's Lymphoma

    SciTech Connect

    Rajendran, Joseph G.; Gopal, Ajay K.; Durack, Larry; Fisher, Darrell R.; Press, Oliver W.; Eary, Janet F.

    2004-12-01

    Patients with relapsed or refractory mantle cell lymphoma (MCL) demonstrate poor survival after standard treatment. Myeloablative radioimmunotherapy (RIT) using 131I tositumomab (anti-CD20) has the ability to deliver specific radiation absorbed dose to antigen bearing tumor. We reviewed normal organ radiation absorbed doses in MCL patients. METHODS: Records of patients with MCL (n = 25), who received myeloablative RIT between January 1996 and December 2003 were reviewed. Individual patient radiation dosimetry was performed on all patients after a trace labeled infusion of 131I tositumomab (mean = 348 MBq), to calculate the required amount of radioactivity for therapy, based on MIRD schema. RESULTS: Mean organ residence times (hr) corrected for CT derived organ volumes for MCL, were as follows: Lungs:9.0; Liver:12.4; Kidneys:1.7; Spleen:2.17; Whole Body:62.4 and mean radiation absorbed doses mGy/Mbq were: Lungs:1.2; Liver:1.1; Kidneys:0.85; Spleen:1.7; Whole Body: 0.21. This is similar to patients with other NHL. Patients received a mean activity of 21 GBq of 131I (range = 11.5 - 41.4) for therapy estimated to deliver 25 Gy to the normal organ receiving the highest radiation absorbed dose. CONCLUSION: Myeloablative RIT using 131I tositumomab results in normal organ radiation absorbed doses similar to those in patients with other non-Hodgkin's lymphoma, and is suitable for treating patients with relapsed or refractory MCL.

  16. Estimating whole-body fish PCB concentrations from fillet data

    SciTech Connect

    Rigg, D.; Hohreiter, D.; Strause, K.; Brown, M.; Barnes, C.

    1995-12-31

    A study was designed to assess a potentially cost-effective method for generating both types of data from single fish specimens. The method is based on the testable hypothesis that whole-body PCE concentrations are predictable from fillet PCB concentrations and fillet and whole-body lipid concentrations. The study involved the collection of small-mouth bass (Micropterus dolomieui) and carp (Cyprinus carpio) from several locations in the Kalamazoo River (Michigan) watershed to represent a range in PCB exposure. PCB and lipid concentrations were determined in aliquots of homogenized fillets and remaining carcasses. Wet-weight total PCB concentrations in carp ranged from 0.06 to 17 mg/kg in fillets, and from 0.11 to 14 mg/kg for remaining carcass; small-mouth bass ranged from 0.08 to 5.8 mg/kg in fillets, and from 0.21 to 13.2 mg/kg for remaining carcass. Whole-body PCB concentrations predicted using fillet PCB concentrations and fillet and carcass lipid concentrations accounted for 94% and 88% of the variability in measured whole-body small-mouth and whole-body carp concentrations, respectively. Predicted and measured whole-body PCB concentrations had a correlation of 91% for small-mouth bass, and 84% for carp. These results demonstrate that value of the lipid-based model in predicting whole-body PCB concentrations from measured fillet PCB concentrations and lipid concentrations in fillet and remaining carcass.

  17. Whole body vibration and cerebral palsy: a systematic review

    PubMed Central

    Duquette, Sean A.; Guiliano, Anthony M.; Starmer, David J.

    2015-01-01

    Purpose: The goal of this review is to evaluate the effects of whole body vibration on outcomes in patients with cerebral palsy. The findings in this review may help clinicians make evidence informed decisions on the use of whole body vibration for cerebral palsy. Methods: A systematic search was conducted on April 29, 2014.The following search terms were used to search of several databases: (whole body vibration OR whole-body vibration OR whole body-vibration OR WBV) AND (cerebral palsy). Articles that met the inclusion criteria were assessed using the Scottish intercollegiate guidelines network (SIGN) rating system to assess the methodology and bias of the articles for randomized control trials. Results: The search produced 25 articles, of which 12 duplicates were identified and removed. Another seven articles were not considered since they did not fit the inclusion criteria, leaving a total of five studies for review. Four of the articles analyzed the effects of WBV in children while the other study focused on adults with cerebral palsy. There was one low quality article, four acceptable quality articles and one high quality article when assessed using the SIGN criteria. Conclusions: It appears that whole body vibration has the potential to provide symptomatic relief for patients with cerebral palsy. Whole body vibration may improve spasticity, muscle strength and coordination. There is a lack of research to conclusively determine whether it does alter bone mineral density. PMID:26500358

  18. Dosimetric results in treatments of neuroblastoma and neuroendocrine tumors with {sup 131}I-metaiodobenzylguanidine with implications for the activity to administer

    SciTech Connect

    Mínguez, Pablo; Genollá, José; Guayambuco, Sonía; Delgado, Alejandro; Fombellida, José Cruz

    2015-07-15

    Purpose: The aim was to investigate whole-body and red marrow absorbed doses in treatments of neuroblastoma (NB) and adult neuroendocrine tumors (NETs) with {sup 131}I-metaiodobenzylguanidine and to propose a simple method for determining the activity to administer when dosimetric data for the individual patient are not available. Methods: Nine NB patients and six NET patients were included, giving in total 19 treatments as four patients were treated twice. Whole-body absorbed doses were determined from dose-rate measurements and planar gamma-camera imaging. For six NB and five NET treatments, red marrow absorbed doses were also determined using the blood-based method. Results: Dosimetric data from repeated administrations in the same patient were consistent. In groups of NB and NET patients, similar whole-body residence times were obtained, implying that whole-body absorbed dose per unit of administered activity could be reasonably well described as a power function of the patient mass. For NB, this functional form was found to be consistent with dosimetric data from previously published studies. The whole-body to red marrow absorbed dose ratio was similar among patients, with values of 1.4 ± 0.6–1.7 ± 0.7 (1 standard deviation) in NB treatments and between 1.5 ± 0.6 and 1.7 ± 0.7 (1 standard deviation) in NET treatments. Conclusions: The consistency of dosimetric results between administrations for the same patient supports prescription of the activity based on dosimetry performed in pretreatment studies, or during the first administration in a fractionated schedule. The expressions obtained for whole-body absorbed doses per unit of administered activity as a function of patient mass for NB and NET treatments are believed to be a useful tool to estimate the activity to administer at the stage when the individual patient biokinetics has not yet been measured.

  19. The calculation of a size correction factor for a whole-body counter

    NASA Astrophysics Data System (ADS)

    Carinou, E.; Koukouliou, V.; Budayova, M.; Potiriadis, C.; Kamenopoulou, V.

    2007-09-01

    Whole-Body counting techniques use radiation detectors in order to evaluate the internal exposure from radionuclides. The Whole-Body Counter (WBC) of the Greek Atomic Energy Commission (GAEC) is used for in vivo measurements of workers for routine purposes as well as for the public in case of an emergency. The system has been calibrated using the phantom provided by CANBERRA (RMC phantom) in combination with solid and point sources. Furthermore, four bottle phantoms of different sizes have been used to calibrate the system to measure potassium, 40K, for different sized workers. However, the use of different phantoms in combination with different sources is time consuming and expensive. Moreover, the purchase and construction of the reference standards need specific knowledge. An alternative option would be the use of Monte Carlo simulation. In this study, the Monte Carlo technique has been firstly validated using the 40K measurements of the four phantoms. After the validation of the methodology, the Monte Carlo code, MCNP, has been used with the same simulated geometries (phantom detector) and different sources in order to calculate the efficiency of the system for different photon energies in the four phantoms. The simulation energies correspond to the following radionuclides: 131I, 137Cs, 60Co, and 88Y. A size correction calibration factor has been defined in order to correct the efficiency of the system for the different phantoms and energies for uniform distribution. The factors vary from 0.64 to 1.51 depending on the phantom size and photon energy.

  20. Skin exposure to I blocks thyroid uptake of 131I.

    PubMed

    Miller, K L; White, W J; Lang, C M; Weidner, W A

    1985-11-01

    Radioisotopes of I pose an important health risk to man in nuclear accidents associated with electric power generation due to their uptake by the thyroid glands. Topical application of tincture of I or povidone-iodine to the skin of rats has been found to be as effective as oral administration of potassium iodide in blocking thyroid uptake of parenterally administered 131I. If the same effectiveness can be demonstrated in humans, this may be an attractive alternative method of mass protection from radioisotopes of I following nuclear accidents. PMID:4066341

  1. Absolute accuracy of the Cyberware WB4 whole-body scanner

    NASA Astrophysics Data System (ADS)

    Daanen, Hein A. M.; Taylor, Stacie E.; Brunsman, Matthew A.; Nurre, Joseph H.

    1997-03-01

    The Cyberware WB4 whole body scanner is one of the first scanning systems in the world that generates a high resolution data set of the outer surface of the human body. The Computerized Anthropometric Research and Design (CARD) Laboratory of Wright-Patterson AFB intends to use the scanner to enable quick and reliable acquisition of anthropometric data. For this purpose, a validation study was initiated to check the accuracy, reliability and errors of the system. A calibration object, consisting of two boxes and a cylinder, was scanned in several locations in the scanning space. The object dimensions in the resulting scans compared favorably to the actual dimensions of the calibration object.

  2. High-Dose 131I-Tositumomab (Anti-CD20) Radioimmunotherapy for Non-Hodgkin's Lymphoma: Adjusting Radiation Absorbed Dose to Actual Organ Volumes

    SciTech Connect

    Rajendran, Joseph G.; Fisher, Darrell R.; Gopal, A K.; Durack, L. D.; Press, O. W.; Eary, Janet F.

    2004-06-01

    Radioimmunotherapy (RIT) using 131I-tositumomab has been used successfully to treat relapsed or refractory B-cell non-Hodgin's lymphoma (NHL). Our approach to treatment planning has been to determine limits on radiation absorbed close to critical nonhematopoietic organs. This study demonstrates the feasibility of using CT to adjust for actual organ volumes in calculating organ-specific absorbed dose estimates. Methods: Records of 84 patients who underwent biodistribution studies after a trace-labeled infusion of 131I-tositumomab for RIT (January 1990 and April 2003) were reviewed. Serial planar -camera images and whole-body Nal probe counts were obtained to estimate 131I-antibody source-organ residence times as recommended by the MIRD Committee. The source-organ residence times for standard man or woman were adjusted by the ratio of the MIRD phantom organ mass to the CT-derived organ mass. Results: The mean radiation absorbed doses (in mGy/MBq) for our data using the MIRD model were lungs= 1.67; liver= 1.03; kidneys= 1.08; spleen= 2.67; and whole body= 0.3; and for CT volume-adjusted organ volumes (in mGy/MBq) were lungs= 1.30; liver= 0.92; kidneys= 0.76; spleen= 1.40; and whole body= 0.22. We determined the following correlation coefficients between the 2 methods for the various organs; lungs, 0.49; (P= 0.0001); liver, 0.64 (P= 0.004); kidneys, 0.45 (P= 0.0001), for the residence times. For therapy, patients received mean 131I administered activities of 19.2 GBq (520 mCi) after adjustment for CT-derived organ mass compared with 16.0 GBq (433 mCi) that would otherwise have been given had therapy been based only using standard MIRD organ volumes--a statistically significant difference (P= 0.0001). Conclusion: We observed large variations in organ masses among our patients. Our treatments were planned to deliver the maximally tolerated radiation dose to the dose-limiting normal organ. This work provides a simplified method for calculating patient-specific radiation

  3. Model Testing Using Data on 131I Released from Hanford

    SciTech Connect

    Thiessen, Kathleen M.; Napier, Bruce A.; Filistovic, Vitold; Homma, Toshimitsu; Kanyar, Bela; Krajewski, Pawel; Kryshev, Alexander I.; Nedveckaite, Tatjana; Nenyei, Arpad; Sazykina, Tatiana G.; Tveten, Ulf; Sjoblom, Kirsti-Liisa; Robinson, Carol

    2005-06-21

    The Hanford test scenario described an accidental release of 131I to the environment from the Hanford Purex Chemical Separations Plant in September 1963. Based on monitoring data collected after the release, this scenario was used by the Dose Reconstruction Working Group of BIOMASS to test models typically used in dose reconstructions. The primary exposure pathway in terms of contribution to human doses was ingestion of contaminated milk and vegetables. Predicted mean doses to the thyroid of reference individuals from ingestion of 131I ranged from 0.0001 to 0.8 mSv. Predicted doses to actual children with high milk consumption ranged from 0.006 to 2 mSv. The predicted deposition at any given location varied among participants by a factor of 5 to 80. Predicted ingestion doses for children, normalized for predicted deposition, varied by about a factor of 10. The exercise provided an opportunity for comparison of assessment methods and conceptual approaches, testing model predictions against measurements, and identifying the most important contributors to uncertainty in the assessment result. Key factors affecting predictions included the approach to handling incomplete data, interpretation of input information, selection of parameter values, adjustment of models for site-specific conditions, and treatment of uncertainties.

  4. Model testing using data on 131I released from Hanford.

    PubMed

    Thiessen, K M; Napier, B A; Filistovic, V; Homma, T; Kanyár, B; Krajewski, P; Kryshev, A I; Nedveckaite, T; Nényei, A; Sazykina, T G; Tveten, U; Sjöblom, K-L; Robinson, C

    2005-01-01

    The Hanford test scenario described an accidental release of 131I to the environment from the Hanford Purex Chemical Separations Plant in September 1963. Based on monitoring data collected after the release, this scenario was used by the Dose Reconstruction Working Group of BIOMASS to test models typically used in dose reconstructions. The primary exposure pathway in terms of contribution to human doses was ingestion of contaminated milk and vegetables. Predicted mean doses to the thyroid of reference individuals from ingestion of 131I ranged from 0.0001 to 0.8 mSv. For one location, predicted doses to the thyroids of two children with high milk consumption ranged from 0.006 to 2 mSv. The predicted deposition at any given location varied among participants by a factor of 5-80. The exercise provided an opportunity for comparison of assessment methods and conceptual approaches, testing model predictions against measurements, and identifying the most important contributors to uncertainty in the assessment result. Key factors affecting predictions included the approach to handling incomplete data, interpretation of input information, selection of parameter values, adjustment of models for site-specific conditions, and treatment of uncertainties. PMID:15975695

  5. Effect of 131I on the anemia of hyperthyroidism

    SciTech Connect

    Perlman, J.A.; Sternthal, P.M.

    1983-01-01

    Data from the National Thyrotoxicosis Therapy Follow-Up Study (NTTFS) are presented here to document the existence of anemia in hyperthyroidism, a mild and reversible anemia that is simultaneously ameliorated with reversal of the hyperthyroid state. Among 20,600 women entered into the NTTF study with no previous history of hematological disorders, the prevalence of anemia was found to range from 10-15%, appearing to be higher in those selected for treatment with 131I when compared to those selected for surgery. An attempt is made to verify the recent hypothesis that thyroid hormone levels in the supraphysiologic range may suppress erythrogenesis. Two statistically significant regression models are consistent with a hypothesis of thyrotoxic bone marrow suppression. However, both associations are weak enough to suggest that some other physiologic improvement underlies the amelioration of anemia when hyperthyroidism is reversed. The degree of improvement in hematological status is similar for women in both treatment groups. Among 4464 women for whom serial hematological tests are obtained, over 3/4 of anemic patients are no longer anemic after an average 6.2 yr of follow-up. Clinicians are reassured that radioactive iodine exposure causes no further insult to the bone marrow, no matter what the cumulative dosage. The highly fractionated low dose bone marrow exposures to radiation account for the minimal hematological risks of 131I treatment.

  6. Fingertip and whole body exposure to nuclear medicine personnel

    SciTech Connect

    Lis, G.A.; Zu'bi, S.M.; Brahmavar, S.M.

    1981-06-01

    We calculate radiation exposure to the nuclear medicine technologist for all common sources of exposure. Special attention is given to exposure received by fingertips. We include typical exposure rates for patient injections, reagent preparations, generator handling and elution, patient positioning, and other phases of nuclear medicine. The cumulative exposure to fingertips and whole body is estimated. When every precaution is taken to minimize exposure in our laboratory, the unavoidable annual exposure to the fingertips is 11 R; to the whole body it is 1 R from all sources. When precautions are not taken, the annual exposure to the fingertips may exceed 170 R and the whole body dose may then approach 2 R. Our nuclear medicine laboratory averages about 1000 injections per technologist per year.

  7. Monte Carlo mitochondrial dosimetry and microdosimetry of 131I.

    PubMed

    Carrillo-Cázares, Tomás A; Torres-García, Eugenio

    2013-01-01

    A mitochondrion is an organelle found in most eukaryotic cells, which produces most of the energy needed by a living cell. It has been shown that ionising radiation causes mitochondrial damage leading to apoptosis or cell death. The aim of this work was to calculate, by Monte Carlo simulation, the specific energy (z) into the mitochondria, due to Auger electrons, conversion electrons and beta emission from (131)I, where the radionuclide was carried by a vector to the cell surface and the surrounding environment. A concentric spherical geometry represents a cell and its nucleus. Three different volumes were used to represent the mitochondria; they were placed in random positions within the cytoplasm. The z produced by a single event is due to low-energy electrons (76 %) and beta particles (24 %) and the mitochondria receive a total mean z two orders of magnitude higher than that of the cell nucleus. PMID:22826354

  8. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting

    SciTech Connect

    James, H.M.; Fabricius, P.J.; Dykes, P.W.

    1987-09-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition.

  9. Design specification for the whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1974-01-01

    The necessary requirements and guidelines for the construction of a computer program of the whole-body algorithm are presented. The minimum subsystem models required to effectively simulate the total body response to stresses of interest are (1) cardiovascular (exercise/LBNP/tilt); (2) respiratory (Grodin's model); (3) thermoregulatory (Stolwijk's model); and (4) long-term circulatory fluid and electrolyte (Guyton's model). The whole-body algorithm must be capable of simulating response to stresses from CO2 inhalation, hypoxia, thermal environmental exercise (sitting and supine), LBNP, and tilt (changing body angles in gravity).

  10. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    PubMed

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    BMD and BMC agreement, did not detect substantial lean and fat differences observed using BBCP and in vivo assessments. Consequently, spine phantoms are inadequate for dual-energy X-ray absorptiometry whole body composition cross-calibration. PMID:26071169

  11. (131)I-Metaiodobenzylguanidine Theranostics in Neuroblastoma: Historical Perspectives; Practical Applications.

    PubMed

    Parisi, Marguerite T; Eslamy, Hedieh; Park, Julie R; Shulkin, Barry L; Yanik, Gregory A

    2016-05-01

    Much efficacy is gained in clinical practice if a single agent can be used for both diagnosis and therapy, a practice termed theranostics. Metaiodobenzylguanidine (mIBG), a norepinephrine analogue with high sensitivity and specificity for neuroblastoma, is an exemplar of theranostics. The physiologic biodistribution of mIBG, with absence of uptake in bone and bone marrow, allows ready detection not only of primary soft tissue tumors but also of disease in bone and marrow, the two most common sites of metastases in those with neuroblastoma. Owing to its increased sensitivity and specificity in disease detection compared to the Technetium-99m methylene diphosphonate bone scan, (123)I-mIBG has become the cornerstone of staging and therapeutic response monitoring in patients with neuroblastoma. More recently, semiquantitative scoring systems have been developed to evaluate disease burden and response to treatment based on (123)I-mIBG scans. Initial data suggest that the use of these semiquantitative scoring methods has prognostic value in assessing outcomes for patients with high-risk neuroblastoma. When labeled with (131)I, mIBG can be used as a systemic therapeutic agent to treat high-risk disease, and to date, over 1000 patients with neuroblastoma have been treated worldwide with this agent. This article reviews the evolution of (131)I-mIBG therapy from its initial use as a single therapeutic agent to modern applications involving high-dose chemotherapy and autologous stem-cell transplant as well as its use as a front-line agent in high-risk neuroblastoma. PMID:27067500

  12. Clinical examination or whole-body magnetic resonance imaging: the Holy Grail of spondyloarthritis imaging

    PubMed Central

    2012-01-01

    Whole-body magnetic resonance imaging allows acquisition of diagnostic images in the shortest scan time, leading to better patient compliance and artifact-free images. Methods of clinical examination of the anterior chest wall joints vary between physician groups and consideration of the rules of rib motion is suggested. The type of joint and its synovial lining may also aid imaging/clinical correlation. This well-written study by experts in the field with a standardized design and methodology allows good scientific analysis and suggests the advantages of whole-body magnetic resonance imaging in anterior chest wall imaging. Selection of clinical examination criteria and specific joints may have had an influence on the study results and the lack of association reported. PMID:22380535

  13. sup 131 I treatment of thyroid papillary carcinoma in a patient with renal failure

    SciTech Connect

    Morrish, D.W.; Filipow, L.J.; McEwan, A.J.; Schmidt, R.; Murland, K.R.; von Westarp, C.; Betcher, K.B. )

    1990-12-15

    Procedures for {sup 131}I ablation in renal failure are not known. In one patient receiving dialysis, detailed dosimetry and health safety aspects were obtained. The results showed insignificant contamination of equipment, but a surprisingly significant reduction in biologic half-life of {sup 131}I due to efficient dialysis extraction. The data indicate that {sup 131}I ablation can be done safely and easily during dialysis but that much higher {sup 131}I doses must be used to achieve equivalent results to those obtained in patients with normal renal function.

  14. 131I-tositumomab myeloablative radioimmunotherapy for non-Hodgkin’s lymphoma: radiation dose to the testes

    SciTech Connect

    Hattori, Naoya; Gopal, Ajay K.; Shields, Andrew T.; Fisher, Darrell R.; Gooley, Ted; Pagel, John M.; Press, Oliver W.; Rajendran, Joseph G.

    2012-12-01

    Purpose: To investigate radiation doses to the testes delivered by a radiolabeled anti-CD20 antibody and its effects on male sex hormone levels. Materials and methods: Testicular uptake and retention of 131I-tositumomab were measured, and testicular absorbed doses were calculated for 67 male patients (54+/-11 years of age) with non-Hodgkin's lymphoma who had undergone myeloablative radioimmunotherapy (RIT) using 131I-tositumomab. Time-activity curves for the major organs, testes, and whole body were generated from planar imaging studies. In a subset of patients, male sex hormones were measured before and 1 year after the therapy. Results: The absorbed dose to the testes showed considerable variability (range=4.4-70.2 Gy). Pretherapy levels of total testosterone were below the lower limit of the reference range, and post-therapy evaluation demonstrated further reduction [4.6+/-1.8 nmol/l (pre-RIT) vs. 3.8+/-2.9 nmol/l (post-RIT), P<0.05]. Patients receiving higher radiation doses to the testes (>=25 Gy) showed a greater reduction [4.7+/-1.6 nmol/l (pre-RIT) vs. 3.3+/-2.7 nmol/l (post-RIT), P<0.05] compared with patients receiving lower doses (<25 Gy), who showed no significant change in total testosterone levels. Conclusion: The testicular radiation absorbed dose varied highly among individual patients. Finally, patients receiving higher doses to the testes were more likely to show post-RIT suppression of testosterone levels.

  15. Kappa Delta Award. Low back pain and whole body vibration.

    PubMed

    Pope, M H; Magnusson, M; Wilder, D G

    1998-09-01

    The investigators describe their multifaceted approach to the study of the relationship between whole body vibration and low back pain. The epidemiologic study was a two center study of drivers and sedentary workers in the United States and Sweden. The vibration exposure was measured in the vehicles. It was found that the career vibration exposure was related to low back, neck, and shoulder pain. However, disability was related to job satisfaction. In vivo experiments, using percutaneous pin mounted accelerometers have shown that the natural frequency is at 4.5 Hz. The frequency response is affected by posture, seating, and seat back inclination. The response appears to be determined largely by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration, should be reduced for those recovering from these problems. Vibration attenuating seats and correct ergonomic layout of the cabs may reduce the risks of recurrence. PMID:9755785

  16. Wireless Network for Measurement of Whole-Body Vibration

    PubMed Central

    Koenig, Diogo; Chiaramonte, Marilda S.; Balbinot, Alexandre

    2008-01-01

    This article presents the development of a system integrated to a ZigBee network to measure whole-body vibration. The developed system allows distinguishing human vibrations of almost 400Hz in three axes with acceleration of almost 50g. The tests conducted in the study ensured the correct functioning of the system for the project's purpose.

  17. BABYSCAN: a whole body counter for small children in Fukushima.

    PubMed

    Hayano, Ryugo S; Yamanaka, Shunji; Bronson, Frazier L; Oginni, Babatunde; Muramatsu, Isamu

    2014-09-01

    BABYSCAN, a whole body counter for small children with a detection limit for (137)Cs of better than 50 Bq/body, was developed, and the first unit has been installed at a hospital in Fukushima, to help families with small children who are very much concerned about internal exposures. The design principles, implementation details and the initial operating experience are described. PMID:25118889

  18. Age Modulates Attitudes to Whole Body Donation among Medical Students

    ERIC Educational Resources Information Center

    Perry, Gary F.; Ettarh, Raj R.

    2009-01-01

    Managing a whole body donor program is necessary for facilitating a traditional dissection-based anatomy curriculum in medicine and health sciences. Factors which influence body donations to medical science can therefore affect dissection-based anatomy teaching. In order to determine whether age influences the attitudes of medical students to…

  19. Student Attitudes to Whole Body Donation Are Influenced by Dissection

    ERIC Educational Resources Information Center

    Cahill, Kevin C.; Ettarh, Raj R.

    2008-01-01

    Given the important role that anatomical dissection plays in the shaping of medical student attitudes to life and death, these attitudes have not been evaluated in the context of whole body donation for medical science. First year students of anatomy in an Irish university medical school were surveyed by questionnaire before and after the initial…

  20. Small-animal whole-body photoacoustic tomography: a review

    PubMed Central

    Xia, Jun; Wang, Lihong V.

    2014-01-01

    With the wide use of small animals for biomedical studies, in vivo small-animal whole-body imaging plays an increasingly important role. Photoacoustic tomography (PAT) is an emerging whole-body imaging modality that shows great potential for preclinical research. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous tissue chromophores, such as oxy-hemoglobin and deoxy-hemoglobin, or exogenous contrast agents. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Using near-infrared light, which has relatively low blood absorption, PAT can image through the whole body of small animals with acoustically defined spatial resolution. Anatomical and vascular structures are imaged with endogenous hemoglobin contrast, while functional and molecular images are enabled by the wide choice of exogenous optical contrasts. This paper reviews the rapidly growing field of small-animal whole-body PAT and highlights studies done in the past decade. PMID:24108456

  1. Biliary and duodenal drainage for reducing the radiotoxic risk of antineoplastic 131I-hypericin in rat models.

    PubMed

    Li, Yue; Jiang, Cuihua; Jiang, Xiao; Sun, Ziping; Cona, Marlein Miranda; Liu, Wei; Zhang, Jian; Ni, Yicheng

    2015-12-01

    Necrosis targeting radiopharmaceutical (131)I-hypericin ((131)I-Hyp) has been studied for the therapy of solid malignancies. However, serious side effects may be caused by its unwanted radioactivity after being metabolized by the liver and excreted via bile in the digestive tract. Thus the aim of this study was to investigate two kinds of bile draining for reducing them. Thirty-eight normal rats were intravenously injected with (131)I-Hyp, 24 of which were subjected to the common bile duct (CBD) drainage for gamma counting of collected bile and tissues during 1-6, 7-12, 13-18, and 19-24 h (n = 6 each group), 12 of which were divided into two groups (n = 6 each group) for comparison of the drainage efficiency between CBD catheterization and duodenum intubation by collecting their bile at the first 4 h. Afterwards the 12 rats together with the last two rats which were not drained were scanned via single-photon emission computerized tomography/computed tomography (SPECT/CT) to check the differences. The images showed that almost no intestinal radioactivity can be found in those 12 drained rats while discernible radioactivity in the two undrained rats. The results also indicated that the most of the radioactivity was excreted from the bile within the first 12 h, accounting to 92% within 24 h. The radioactive metabolites in the small and large intestines peaked at 12 h and 18 h, respectively. No differences were found in those two ways of drainages. Thus bile drainage is highly recommended for the patients who were treated by (131)I-Hyp if human being and rats have a similar excretion pattern. This strategy can be clinically achieved by using a nasobiliary or nasoduodenal drainage catheter. PMID:25956680

  2. Comparison of 123I-Metaiodobenzylguanidine (MIBG) and 131I-MIBG Semi-Quantitative Scores in Predicting Survival in Patients With Stage 4 Neuroblastoma: A Report From the Children’s Oncology Group

    PubMed Central

    Naranjo, Arlene; Parisi, Marguerite T.; Shulkin, Barry L.; London, Wendy B.; Matthay, Katherine K.; Kreissman, Susan G.; Yanik, Gregory A.

    2015-01-01

    Background 123I-metaiodobenzylguanidine (MIBG) scans are preferable to 131I-MIBG for neuroblastoma imaging as they deliver less patient radiation yet have greater sensitivity in disease detection. Both 123I-MIBG and 131I-MIBG scans were used for disease assessments of neuroblastoma patients enrolled on Children’s Oncology Group (COG) high-risk study A3973. The hypothesis was that 123I-MIBG and 131I-MIBG scans were sufficiently similar for clinical purposes in terms of ability to predict survival. Procedure Patients enrolled on COG A3973 with stage 4 disease who completed 123I-MIBG or 131I-MIBG scans at diagnosis, post-induction, post-transplant, or post-biotherapy were analyzed. The performance of the Curie score for each MIBG scan type in predicting survival was evaluated. At each time point, survival curves for 123I-MIBG versus 131I-MIBG were compared using the log-rank test. Results Of the 413 patients on A3973 with at least one MIBG scan, 350 were stage 4. The 5-year event-free survival (EFS) and overall survival (OS) rates were 33.4 ± 3.6% and 45.6 ± 4.0% (N = 350). At post-induction, EFS (P = 0.3501) and OS (P = 0.5337) for 123I-MIBG versus 131I-MIBG were not significantly different. Similarly, comparisons at the three other time points were non-significant. Conclusions We found no evidence of a statistically significant difference in outcome by type of scan. For future survival analyses of MIBG Curie scores, 123I-MIBG and 131I-MIBG results may be combined and analyzed overall, without adjustment for scan type. PMID:21328522

  3. Towards Whole-Body Fluorescence Imaging in Humans

    PubMed Central

    Piper, Sophie K.; Habermehl, Christina; Schmitz, Christoph H.; Kuebler, Wolfgang M.; Obrig, Hellmuth; Steinbrink, Jens; Mehnert, Jan

    2013-01-01

    Dynamic near-infrared fluorescence (DNIF) whole-body imaging of small animals has become a popular tool in experimental biomedical research. In humans, however, the field of view has been limited to body parts, such as rheumatoid hands, diabetic feet or sentinel lymph nodes. Here we present a new whole-body DNIF-system suitable for adult subjects. We explored whether this system (i) allows dynamic whole-body fluorescence imaging and (ii) can detect modulations in skin perfusion. The non-specific fluorescent probe indocyanine green (ICG) was injected intravenously into two subjects, and fluorescence images were obtained at 5 Hz. The in- and out-flow kinetics of ICG have been shown to correlate with tissue perfusion. To validate the system, skin perfusion was modulated by warming and cooling distinct areas on the chest and the abdomen. Movies of fluorescence images show a bolus passage first in the face, then in the chest, abdomen and finally in the periphery (∼10, 15, 20 and 30 seconds, respectively). When skin perfusion is augmented by warming, bolus arrives about 5 seconds earlier than when the skin is cooled and perfusion decreased. Calculating bolus arrival times and spatial fitting of basis time courses extracted from different regions of interest allowed a mapping of local differences in subcutaneous skin perfusion. This experiment is the first to demonstrate the feasibility of whole-body dynamic fluorescence imaging in humans. Since the whole-body approach demonstrates sensitivity to circumscribed alterations in skinperfusion, it may be used to target autonomous changes in polyneuropathy and to screen for peripheral vascular diseases. PMID:24391820

  4. Red marrow and blood dosimetry in (131)I treatment of metastatic thyroid carcinoma: pre-treatment versus in-therapy results.

    PubMed

    Giostra, A; Richetta, E; Pasquino, M; Miranti, A; Cutaia, C; Brusasco, G; Pellerito, R E; Stasi, M

    2016-06-01

    Treatment with radioiodine is a standard procedure for patients with well-differentiated thyroid cancer, but the main approach to the therapy is still empiric, consisting of the administration of fixed activities. A predictive individualized dosimetric study may represent an important tool for physicians to determine the best activity to prescribe. The aim of this work is to compare red marrow and blood absorbed dose values obtained in the pre-treatment (PT) dosimetry phase with those obtained in the in-treatment (IT) dosimetry phase in order to estimate the predictive power of PT trial doses and to determine if they can be used as a decision-making tool to safely administer higher (131)I activity to potentially increase the efficacy of treatment. The PT and IT dosimetry for 50 patients has been evaluated using three different dosimetric approaches. In all three approaches blood and red marrow doses, are calculated as the sum of two components, the dose from (131)I activity in the blood and the dose from (131)I activity located in the remainder of the body (i.e. the blood and whole-body contributions to the total dose). PT and IT dose values to blood and red marrow appear to be well correlated irrespective of the dosimetric approach used. Linear regression analyses of PT and IT total doses, for blood and red marrow, and the whole-body contribution to these doses, showed consistent best fit slope and correlation coefficient values of approximately 0.9 and 0.6, respectively: analyses of the blood dose contribution to the total doses also yielded similar values for the best fit slope but with correlation coefficient values of approximately 0.4 reflecting the greater variance in these dose estimates. These findings suggest that pre-treatment red marrow dose assessments may represent an important tool to personalize metastatic thyroid cancer treatment, removing the constraints of a fixed activity approach and permitting potentially more effective higher (131)I

  5. Red marrow and blood dosimetry in 131I treatment of metastatic thyroid carcinoma: pre-treatment versus in-therapy results

    NASA Astrophysics Data System (ADS)

    Giostra, A.; Richetta, E.; Pasquino, M.; Miranti, A.; Cutaia, C.; Brusasco, G.; Pellerito, R. E.; Stasi, M.

    2016-06-01

    Treatment with radioiodine is a standard procedure for patients with well-differentiated thyroid cancer, but the main approach to the therapy is still empiric, consisting of the administration of fixed activities. A predictive individualized dosimetric study may represent an important tool for physicians to determine the best activity to prescribe. The aim of this work is to compare red marrow and blood absorbed dose values obtained in the pre-treatment (PT) dosimetry phase with those obtained in the in-treatment (IT) dosimetry phase in order to estimate the predictive power of PT trial doses and to determine if they can be used as a decision-making tool to safely administer higher 131I activity to potentially increase the efficacy of treatment. The PT and IT dosimetry for 50 patients has been evaluated using three different dosimetric approaches. In all three approaches blood and red marrow doses, are calculated as the sum of two components, the dose from 131I activity in the blood and the dose from 131I activity located in the remainder of the body (i.e. the blood and whole-body contributions to the total dose). PT and IT dose values to blood and red marrow appear to be well correlated irrespective of the dosimetric approach used. Linear regression analyses of PT and IT total doses, for blood and red marrow, and the whole-body contribution to these doses, showed consistent best fit slope and correlation coefficient values of approximately 0.9 and 0.6, respectively: analyses of the blood dose contribution to the total doses also yielded similar values for the best fit slope but with correlation coefficient values of approximately 0.4 reflecting the greater variance in these dose estimates. These findings suggest that pre-treatment red marrow dose assessments may represent an important tool to personalize metastatic thyroid cancer treatment, removing the constraints of a fixed activity approach and permitting potentially more effective higher 131I activities to be

  6. Hepatoma-Targeted Radionuclide Immune Albumin Nanospheres: 131I-antiAFPMcAb-GCV-BSA-NPs

    PubMed Central

    Lin, Mei; Huang, Junxing; Zhang, Dongsheng; Jiang, Xingmao; Zhang, Jia; Yu, Hong; Xiao, Yanhong; Shi, Yujuan; Guo, Ting

    2016-01-01

    An effective strategy has been developed for synthesis of radionuclide immune albumin nanospheres (131I-antiAFPMcAb-GCV-BSA-NPs). In vitro as well as in vivo targeting of 131I-antiAFPMcAb-GCV-BSA-NPs to AFP-positive hepatoma was examined. In cultured HepG2 cells, the uptake and retention rates of 131I-antiAFPMcAb-GCV-BSA-NPs were remarkably higher than those of 131I alone. As well, the uptake rate and retention ratios of 131I-antiAFPMcAb-GCV-BSA-NPs in AFP-positive HepG2 cells were also significantly higher than those in AFP-negative HEK293 cells. Compared to 131I alone, 131I-antiAFPMcAb-GCV-BSA-NPs were much more easily taken in and retained by hepatoma tissue, with a much higher T/NT. Due to good drug-loading, high encapsulation ratio, and highly selective affinity for AFP-positive tumors, the 131I-antiAFPMcAb-GCV-BSA-NPs are promising for further effective radiation-gene therapy of hepatoma. PMID:26981334

  7. A new method for calculating the distribution of radioactivity in man measured with a whole-body counter

    SciTech Connect

    Novario, R.; Conte, L. )

    1990-05-01

    A whole-body counter with a scanning bed and two opposite (antero-posterior) probes was used to obtain profiles of count rates of radioactivity held in the whole body. The distribution of the activity in the patient was calculated by solving an overdetermined system (more equations than unknowns) of linear equations with the Chebyshev method, the least-squares method, and an iterative method. The iterative method gave the best results, especially in the case of distributions with peaks of radioactivity. Some in-vivo applications of the method are presented.

  8. Gamma camera imaging for studying intestinal absorption and whole-body distribution of selenomethionine.

    PubMed

    Madsen, Jan L; Sjögreen-Gleisner, Katarina; Elema, Dennis R; Søndergaard, Lasse R; Rasmussen, Palle; Fuglsang, Stefan; Ljungberg, Michael; Damgaard, Morten

    2014-02-01

    Se metabolism in humans is not well characterised. Currently, the estimates of Se absorption, whole-body retention and excretion are being obtained from balance and tracer studies. In the present study, we used gamma camera imaging to evaluate the whole-body retention and distribution of radiolabelled selenomethionine (SeMet), the predominant form of Se present in foods. A total of eight healthy young men participated in the study. After consumption of a meal containing 4 MBq [⁷⁵Se]L-SeMet ([⁷⁵Se]SeMet), whole-body gamma camera scanning was performed for 45 min every hour over a 6 h period, every second hour for the next 18 h and once on each of the subsequent 6 d. Blood, urine and faecal samples were collected to determine the plasma content of [⁷⁵Se]SeMet as well as its excretion in urine and faeces. Imaging showed that 87·9 (sd 3·3)% of the administered activity of [⁷⁵Se]SeMet was retained within the body after 7 d. In contrast, the measured excretion in urine and faeces for the 7 d period was 8·2 (sd 1·1)% of the activity. Time-activity curves were generated for the whole body, stomach, liver, abdomen (other than the stomach and the liver), brain and femoral muscles. Gamma camera imaging allows for the assessment of the postprandial absorption of SeMet. This technique may also permit concurrent studies of organ turnover of SeMet. PMID:23930999

  9. The preparation and immunological properties of 131I-labelled adrenocorticotrophin

    PubMed Central

    Landon, J.; Livanou, Theodora; Greenwood, F. C.

    1967-01-01

    1. A procedure is described for preparing 131I-labelled adrenocorticotrophin suitable for use in radioimmunoassay. 2. Adsorption of labelled and unlabelled adrenocorticotrophin at low concentrations occurs to various surfaces despite the presence of diluent protein. Adsorption and desorption errors are minimized by low pH and by the use of polystyrene vials. 3. Preparations with low initial damage are obtained if the radioiodination is performed rapidly and the separation of 131I-labelled adrenocorticotrophin from unchanged [131I]iodide is carried out on cellulose columns by using dilute acid. 4. The immunological activity of 131I-labelled α1–24-adrenocorticotrophin, but not of 131I-labelled porcine adrenocorticotrophin, decreases with increasing specific radioactivity. The involvement of tyrosine residues in the immunological specificity of the α1–24-adrenocorticotrophin only is suggested to explain this finding. PMID:16742533

  10. Follow-up of solitary autonomous thyroid nodules treated with /sup 131/I

    SciTech Connect

    Goldstein, R.; Hart, I.R.

    1983-12-15

    A study was made of the long-term effects of /sup 131/I therapy for solitary autonomous thyroid nodules on the size of the nodule and on thyroid function. Twenty-three patients with autonomous thyroid adenomas that had been treated with /sup 131/I from 4 to 16.5 years earlier (mean, 8.5) were examined, and their thyroid function was tested. In 12 patients (54 per cent), the nodules were still palpable, and in 2 they had increased in size. Eight patients (36 per cent) had become hypothyroid. The incidence of hypothyroidism was not related to nodule size or the level of thyroid function before therapy with /sup 131/I or to the total dose of /sup 131/I that had been given. We conclude that /sup 131/I therapy for autonomous thyroid adenoma often causes hypothyroidism and in many cases does not eradicate the offending nodule.

  11. The development of a whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Kay, F. J.

    1973-01-01

    The whole-body algorithm is envisioned as a mathematical model that utilizes human physiology to simulate the behavior of vital body systems. The objective of this model is to determine the response of selected body parameters within these systems to various input perturbations, or stresses. Perturbations of interest are exercise, chemical unbalances, gravitational changes and other abnormal environmental conditions. This model provides for a study of man's physiological response in various space applications, underwater applications, normal and abnormal workloads and environments, and the functioning of the system with physical impairments or decay of functioning components. Many methods or approaches to the development of a whole-body algorithm are considered. Of foremost concern is the determination of the subsystems to be included, the detail of the subsystems and the interaction between the subsystems.

  12. Acute effects of whole-body vibration. Stabilography and electrogastrography.

    PubMed

    Kjellberg, A; Wikström, B O

    1987-06-01

    The influence of whole-body vibration on postural control and stomach motility was investigated. Fifteen subjects were exposed to two vibration signals (3 and 6 Hz random) while sitting for 1 h on a vibration simulator. A control situation, ie, sitting for 1 h without vibration, was also included. Stabilographic recordings before and 1 and 15 min after the sitting showed that exposure to these frequencies had no effect on postural control. Electrogastrographic (EGG) measurements before and during the sitting showed that, for 3 Hz, there was an initial increase in activity which decreased towards normal values. For 6 Hz there was a significant increase in activity for EGG frequencies of 0.05 and 0.13 Hz. The results imply that stomach motility can be affected by whole-body vibration in certain frequency ranges. PMID:3616553

  13. Whole body simultaneous PET/MRI: one-stop-shop?

    PubMed

    Maseeh-uz-Zaman; Fatima, Nosheen; Sajjad, Zafar; Zaman, Unaiza

    2014-02-01

    Beginning of this century is hallmarked by arrival of hybrid imaging PET/CT (positron emission tomography/computerized tomography) which has become a standard of care primarily in oncology in a short span of time. Continuous research and development by industry and academia for exploiting the excellent soft tissue contrast, spectroscopy and precise measurement of various functional parameters by magnetic resonance imaging (MRI) with PET has resulted in emergence of whole body PET/MRI. It is expected this new hybrid modality would be warmly welcomed due to high magnitude of functional and morphostructural information at molecular level with low radiation dose which is indeed a point of concern for young and paediatric population. This short technical report for nuclear medicine readers will focus upon the various configuration and acquisition sequences of PET/MRI, attenuation correction and clinical applications of whole body simultaneous PET/MRI. PMID:24640813

  14. Quantitative whole-body autoradiography: past, present and future.

    PubMed

    McEwen, Andrew; Henson, Claire

    2015-01-01

    Traditional bioanalytical measurements determine concentrations of drug and metabolites in plasma; however, most drugs exert their effects in defined target tissues. As there is no clear relation between concentrations in plasma and those in tissue, alternative methods must be employed to study the absorption, distribution, metabolism and excretion properties of new therapeutic agents. Quantitative whole-body autoradiography is used in the drug development process to determine the distribution and concentrations of radiolabeled test compounds in laboratory animals. Quantitative whole-body autoradiography can provide information on tissue PKs, penetration, accumulation and retention. Although the technique is considered the industry standard for performing preclinical tissue distribution studies, it is perhaps timely, 60 years after the first reported use of the method, to re-assess the technique against modern alternatives. PMID:25826137

  15. Measurement of Whole-Body Vibration Exposure from Garbage Trucks

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Morioka, M.

    1998-08-01

    Japanese garbage truck drivers are exposed to mechanical whole-body vibration during their work. Some drivers have suffered from low back pain from this vibration. However, there is no evidence of a relationship between the whole-body vibration from the garbage trucks and low back pain or occupational disease, due to the lack of investigations. A field study was conducted in order to characterize the health risks associated with garbage truck work. Three different types of truck were tested at different loadings and on different road surfaces, with the vibrations measured at the driver/seat interface (x,y, andz-axes). The vibrations were compared with the health risk guidance according to Annex B of ISO 2631-1 [1]. The findings of this study indicated that Japanese garbage truck drivers should not operate trucks for 2.5 h in a day, under current working conditions.

  16. Rifaximin diminishes neutropenia following potentially lethal whole-body radiation.

    PubMed

    Jahraus, Christopher D; Schemera, Bettina; Rynders, Patricia; Ramos, Melissa; Powell, Charles; Faircloth, John; Brawner, William R

    2010-07-01

    Terrorist attacks involving radiological or nuclear weapons are a substantial geopolitical concern, given that large populations could be exposed to potentially lethal doses of radiation. Because of this, evaluating potential countermeasures against radiation-induced mortality is critical. Gut microflora are the most common source of systemic infection following exposure to lethal doses of whole-body radiation, suggesting that prophylactic antibiotic therapy may reduce mortality after radiation exposure. The chemical stability, easy administration and favorable tolerability profile of the non-systemic antibiotic, rifaximin, make it an ideal potential candidate for use as a countermeasure. This study evaluated the use of rifaximin as a countermeasure against low-to-intermediate-dose whole-body radiation in rodents. Female Wistar rats (8 weeks old) were irradiated with 550 cGy to the whole body and were evaluated for 30 d. Animals received methylcellulose, neomycin (179 mg/kg/d) or variably dosed rifaximin (150-2000 mg/kg/d) one hour after irradiation and daily throughout the study period. Clinical assessments (e.g. body weight) were made daily. On postirradiation day 30, blood samples were collected and a complete blood cell count was performed. Animals receiving high doses of rifaximin (i.e. 1000 or 2000 mg/kg/d) had a greater increase in weight from the day of irradiation to postirradiation day 30 compared with animals that received placebo or neomycin. For animals with an increase in average body weight from irradiation day within 80-110% of the group average, methylcellulose rendered an absolute neutrophil count (ANC) of 211, neomycin rendered an ANC of 334, rifaximin 300 mg/kg/d rendered an ANC of 582 and rifaximin 1000 mg/kg/d rendered an ANC of 854 (P = 0.05 for group comparison). Exposure to rifaximin after near-lethal whole-body radiation resulted in diminished levels of neutropenia. PMID:20558844

  17. Whole-body kinetics and dosimetry of L-3--123I-iodo-alpha-methyltyrosine.

    PubMed

    Schmidt, D; Langen, K J; Herzog, H; Wirths, J; Holschbach, M; Kiwit, J C; Ziemons, K; Coenen, H H; Müller-Gärtner, H

    1997-09-01

    The synthetic amino acid L-3--123I-iodo-alpha-methyltyrosine (IMT) is currently under clinical evaluation as a single-photon emission tomography (SPET) tracer of amino acid uptake in brain tumours. So far, dosimetric data in respect of IMT are not available. Therefore we investigated the whole-body distribution of IMT in six patients with cerebral gliomas and the radiation doses were estimated. Whole-body scans were acquired at 1.5, 3 and 5 h after i.v. injection of 370-550 MBq IMT. The bladder was voided prior to each scan and the radioactivity excreted in the urine was measured. Based on the MIRD-11 method and the updated MIRDOSE3, the mean absorbed doses for various organs and the effective dose were calculated from geometric means of the anterior and posterior whole-body scans using seven source organs and the residence time. IMT was predominantly excreted by the kidneys (52.8%+/-11.5% at 1.5 h p.i., 63.0%+/-15.7% at 3 h p.i. and 74.6%+/-9.8% at 5 h p.i.). No organ system other than the urinary tract showed significant retention of the tracer. Early whole-body scans revealed slightly increased tracer uptake in the liver and in the bowel. Highest absorbed doses were found for the urinary bladder wall (0.047 mGy/MBq), the kidneys (0.010 mGy/MBq), the lower large intestinal wall (0.011 mGy/MBq) and the upper large intestinal wall (0.008 mGy/MBq). The effective dose according to ICRP 60 was estimated to be 0.0073 mSv/MBq for adults. This leads to an effective dose of 3.65 mSv in a typical brain SPET study using 500 MBq IMT. The MIRDOSE3 scheme yielded similar results. Thus, in spite of the relatively high tracer dose required for optimal brain scanning, radiation exposure in SPET studies with IMT is in the normal range of routine nuclear medicine investigations. PMID:9283111

  18. Contralateral subtraction technique for detection of asymmetric abnormalities on whole-body bone scintigrams

    NASA Astrophysics Data System (ADS)

    Shiraishi, Junji; Li, Qiang; Appelbaum, Daniel; Pu, Yonglin; Doi, Kunio

    2007-03-01

    We developed a computer-aided diagnostic (CAD) scheme for assisting radiologists in the detection of asymmetric abnormalities on a single whole-body bone scintigram by applying a contralateral subtraction (CS) technique. Twenty whole-body bone scans including 107 abnormal lesions in anterior and/or posterior images (the number of lesions per case ranged from 1 to 16, mean 5.4) were used in this study. In our scheme, the original bone scan image was flipped horizontally to provide a mirror image. The mirror image was first rotated and shifted globally to match the original image approximately, and then was nonlinearly warped by use of an elastic matching technique in order to match the original image accurately. We applied a nonlinear lookup table to convert the difference in pixel values between the original and the warped images to new pixel values for a CS image, in order to enhance dark shadows at the locations of abnormal lesions where uptake of radioisotope was asymmetrically high, and to suppress light shadows of the lesions on the contralateral side. In addition, we applied a CAD scheme for the detection of asymmetric abnormalities by use of rule-based tests and sequential application of artificial neural networks with 25 image features extracted from the original and CS images. The performance of the CAD scheme, which was evaluated by a leave-one-case-out method, indicated an average sensitivity of 80.4 % with 3.8 false positives per case. This CAD scheme with the contralateral subtraction technique has the potential to improve radiologists' diagnostic accuracy and could be used for computerized identification of asymmetric abnormalities on whole-body bone scans.

  19. Effect of sway on image fidelity in whole-body digitizing

    NASA Astrophysics Data System (ADS)

    Corner, Brian D.; Hu, Anmin

    1998-03-01

    For 3D digitizers to be useful data collection tools in scientific and human factors engineering applications, the models created from scan data must match the original object very closely. Factors such as ambient light, characteristics of the object's surface, and object movement, among others can affect the quality of the image produced by any 3D digitizing system. Recently, Cyberware has developed a whole body digitizer for collecting data on human size and shape. With a digitizing time of about 15 seconds, the effect subject movement, or sway, on model fidelity is an important issue to be addressed. The effect of sway is best measured by comparing the dimensions of an object of known geometry to the model of the same object captured by the digitizer. Since it is difficult to know the geometry of a human body accurately, it was decided to compare an object of simple geometry to its digitized counterpart. Preliminary analysis showed that a single cardboard tube would provide the best artifact for detecting sway. A tube was attached to the subjects using supports that allowed the cylinder to stand away from the body. The stand-off was necessary to minimize occluded areas. Multiple scans were taken of 1 subject and the cylinder extracted from the images. Comparison of the actual cylinder dimensions to those extracted from the whole body images found the effect of sway to be minimal. This follows earlier findings that anthropometric dimensions extracted from whole body scans are very close to the same dimensions measured using standard manual methods. Recommendations for subject preparation and stabilization are discussed.

  20. Appearance of cell fragments in thymus after a whole-body X-irradiation of rat

    SciTech Connect

    Ohyama, H.; Yamada, T.

    1983-01-01

    Changes in surface architecture and three dimensional structure of rat thymus cortex were examined by scanning electron microscopy (SEM) after a whole-body X-irradiation. The samples of thymus prepared from rats 4 to 8 hr after a 400 R irradiation were observed by SEM. Normal thymocytes, having tiny microvilli and shallow ridges, decreased in number after irradiation, with a corresponding increase in radiation damaged round shaped cells with occasional protrusions and pores. With time after irradiation, smaller spherical fragments of cells having smooth or porous surfaces increased in number.

  1. Radiation Exposure Levels in Diagnostic Patients Injected with 99mTc, 67Ga and 131I at the Mexican National Institute of Cancerology Nuclear Medicine Department

    SciTech Connect

    Trujillo-Zamudio, F. E.; Gomez-Argumosa, E.; Estrada-Lobato, E.; Medina, L. A.

    2006-09-08

    According to the Mexican Radiation Safety regulations for patients treated in a nuclear medicine service, the exposure rate limit at 1 m from the patients is 5 mR/h before leaving the hospital. Three groups of patients have been monitored after: a) whole body bone studies with 740 MBq of 99mTc-MDP (207 patients); b) infection studies after i.v. administration of 185 MBq of 67Ga (207 patients); and c) thyroid studies with 185 MBq of 131I (142 patients). The results indicated that the average exposure rate levels in each group were: a) 0.57 {+-} 0.17 mR/h, b) 0.47 {+-} 0.20 mR/h, and c) 0.86 {+-} 0.14 mR/h. This study has shown that the Nuclear Medicine Department at INCAN complies with the NOM-013-NUCL-1995 Mexican regulation.

  2. Radiation Exposure Levels in Diagnostic Patients Injected with 99mTc, 67Ga and 131I at the Mexican National Institute of Cancerology Nuclear Medicine Department

    NASA Astrophysics Data System (ADS)

    Trujillo-Zamudio, F. E.; Gómez-Argumosa, E.; Estrada-Lobato, E.; Medina, L. A.

    2006-09-01

    According to the Mexican Radiation Safety regulations for patients treated in a nuclear medicine service, the exposure rate limit at 1 m from the patients is 5 mR/h before leaving the hospital. Three groups of patients have been monitored after: a) whole body bone studies with 740 MBq of 99mTc-MDP (207 patients); b) infection studies after i.v. administration of 185 MBq of 67Ga (207 patients); and c) thyroid studies with 185 MBq of 131I (142 patients). The results indicated that the average exposure rate levels in each group were: a) 0.57 ± 0.17 mR/h, b) 0.47 ± 0.20 mR/h, and c) 0.86 ± 0.14 mR/h. This study has shown that the Nuclear Medicine Department at INCAN complies with the NOM-013-NUCL-1995 Mexican regulation.

  3. Biodistribution and dosimetry of free 211At, 125I- and 131I- in rats.

    PubMed

    Spetz, Johan; Rudqvist, Nils; Forssell-Aronsson, Eva

    2013-11-01

    131I is widely used for therapy in the clinic and 125I and 131I, and increasingly 211At, are often used in experimental studies. It is important to know the biodistribution and dosimetry for these radionuclides to determine potential risk organs when using radiopharmaceuticals containing these radionuclides. The purpose of this study was to investigate the biodistribution of 125I-, 131I-, and free 211At in rats and to determine absorbed doses to various organs and tissues. Male Sprague Dawley rats were injected simultaneously with 0.1-0.3 MBq 125I- and 0.1-0.3 MBq 131I-, or 0.05-0.2 MBq 211At and sacrificed 1 hour to 7 days after injection. The activities and activity concentrations in organs and tissues were determined and mean absorbed doses were calculated. The biodistribution of 125I- was similar to that of 131I- but the biodistribution of free 211At was different compared to 125I- and 131I-. The activity concentration of radioiodine was higher compared with 211At in the thyroid and lower in all extrathyroidal tissues. The mean absorbed dose per unit injected activity was highest to the thyroid. 131I gave the highest absorbed dose to the thyroid, and 211At gave the highest absorbed dose to all other tissues studied. PMID:23789969

  4. 131I induced hematological alterations in rat blood: protection by zinc.

    PubMed

    Dani, Vijayta; Malhotra, Anshoo; Dhawan, D

    2007-01-01

    The present study was planned to determine the potential of zinc in attenuating the toxicity induced by 131I in rat blood. Female wistar rats were segregated into four main groups. Animals in Group I served as normal controls; Group II animals were administered a dose of 3.7 Mbq of 131I (carrier free) intraperitoneally, Group III was supplemented with Zinc in the form of ZnSo4.7H2O (227 mg/l drinking water), and Group IV was given a combined treatment of Zinc as well as 131I, in a similar way as was given to Groups IV and II animals, respectively. The effects of different treatments were studied on various parameters in rat blood including hemoglobin (Hb) levels, % hematocrit, zinc protoporphyrins (ZPP), activities of enzymes which included aminolevulinic acid dehydratase (delta-ALAD) and Na+ K+ ATPase and uptake of 65Zn in blood. The study revealed an increase in the levels of hemoglobin, % hematocrit, activities of delta-ALAD, Na+ K+ ATPase and uptake of 65Zn, 7 days after the 131I treatment. On the contrary, the levels of ZPP were found to be significantly decreased after 131I treatment. However, zinc treatment to 131I-treated animals significantly attenuated the various biochemical and hematological indices. Moreover, zinc treatment to the 131I-treated animals could significantly decrease the uptake of 65Zn, which was increased after 131I treatment. Based upon these data, the present study suggests that zinc has the potential to attenuate 131I induced toxicity by restoring the altered hematological indices and biochemical changes. PMID:17916974

  5. Predictive value of tracer studies for /sup 131/I treatment in hyperthyroid cats

    SciTech Connect

    Broome, M.R.; Turrel, J.M.; Hays, M.T.

    1988-02-01

    In 76 cats with hyperthyroidism, peak thyroidal radioiodine (/sup 131/I) uptakes and effective half-lives were determined after administration of tracer and therapeutic activities of /sup 131/I. In 6 additional hyperthyroid cats, only peak thyroidal uptakes after administration of tracer and therapeutic activities of /sup 131/I were determined. Good correlation was found between peak thyroidal uptakes of tracer and therapeutic /sup 131/I; however, only fair correlation was observed between effective half-lives. In 79% of the cats, the effective half-life for therapeutic /sup 131/I was longer than that for tracer /sup 131/I. After administration of therapeutic activity of /sup 131/I, monoexponential and biphasic decay curves were observed in 51 and 16 cats, respectively. Using therapeutic kinetic data, radiation doses to the thyroid gland were calculated retrospectively on the basis of 2 methods for determining the activity of /sup 131/I administered: (1) actual administration of tracer-compensated activity and (2) hypothetic administration of uniform activity (3 mCi). Because of the good predictive ability of tracer kinetic data for the therapeutic kinetic data, the tracer-compensated radiation doses came significantly (P = 0.008) closer to the therapeutic goal than did the uniform-activity doses. In addition, the use of tracer kinetic information reduced the extent of the tendency for consistently high uniform-activity doses. A manual method for acquiring tracer kinetic data was developed and was an acceptable alternative to computerized techniques. Adoption of this method gives individuals and institutions with limited finances the opportunity to characterize the iodine kinetics in cats before proceeding with administration of therapeutic activities of /sup 131/I.

  6. Development of a calibration system for airborne (131)I monitoring devices.

    PubMed

    Zhao, C; Tang, F; He, L; Xu, Y; Lu, X

    2016-03-01

    A prototype calibration system for airborne (131)I monitoring devices was developed at the Shanghai Institute of Measurement and Testing Technology (SIMT). This system consists of a gaseous (131)I2 generator, an airborne storage chamber, an airborne iodine sampler, and an HPGe spectrometer. With this system, (131)I reference samples in the form of charcoal filters and charcoal cartridges, with activities ranging from 100 to 10,000Bq, were produced with overall relative standard uncertainties of 2.8% (for filter samples) and 3.5% (for cartridge samples); the activities range could be extended according to need. PMID:26682896

  7. Whole-body response to pure lateral impact.

    PubMed

    Lessley, David; Shaw, Greg; Parent, Daniel; Arregui-Dalmases, Carlos; Kindig, Matthew; Riley, Patrick; Purtsezov, Sergey; Sochor, Mark; Gochenour, Thomas; Bolton, James; Subit, Damien; Crandall, Jeff; Takayama, Shinichi; Ono, Koshiro; Kamiji, Koichi; Yasuki, Tsuyoshi

    2010-11-01

    The objective of the current study was to provide a comprehensive characterization of human biomechanical response to whole-body, lateral impact. Three approximately 50th-percentile adult male PMHS were subjected to right-side pure lateral impacts at 4.3 ± 0.1 m/s using a rigid wall mounted to a rail-mounted sled. Each subject was positioned on a rigid seat and held stationary by a system of tethers until immediately prior to being impacted by the moving wall with 100 mm pelvic offset. Displacement data were obtained using an optoelectronic stereophotogrammetric system that was used to track the 3D motions of the impacting wall sled; seat sled, and reflective targets secured to the head, spine, extremities, ribcage, and shoulder complex of each subject. Kinematic data were also recorded using 3-axis accelerometer cubes secured to the head, pelvis, and spine at the levels of T1, T6, T11, and L3. Chest deformation in the transverse plane was recorded using a single chestband. Following the impact the subject was captured in an energy-absorbing net that provided a controlled non-injurious deceleration. The wall maintained nearly constant velocity throughout the impact event. One of the tested subjects sustained 16 rib fractures as well as injury to the struck shoulder while the other two tested subjects sustained no injuries. The collected response data suggest that the shoulder injury may have contributed to the rib fractures in the injured subject. The results suggest that the shoulder presents a substantial load path and may play an important role in transmitting lateral forces to the spine, shielding and protecting the ribcage. This characterization of whole-body, lateral impact response provides quantified subject responses and boundary condition interactions that are currently unavailable for whole-body, lateral impacts at impact speeds less than 6.7 m/s. PMID:21512913

  8. A new technological approach to radiant heat whole body hyperthermia.

    PubMed

    Robins, H I; Woods, J P; Schmitt, C L; Cohen, J D

    1994-05-16

    A new methodology for administering radiant heat whole body hyperthermia (WBH) in humans is described. The technology utilized circulates hot water in a cylinder constructed from copper tubing; the design incorporates a counter current distribution system to maintain thermal constancy. The tubing is coated with a temperature resistant high emissivity finish. Other features include a humidification system to eliminate evaporative heat losses. Data accrued from initial evaluation of this apparatus with a canine model shows that there was no detectable WBH-related hematological, biochemical or physiological toxicity. The perceived advantages of this WBH-system are discussed. PMID:8019971

  9. Physiological responses during whole body suspension of adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Fell, R. D.; Musacchia, X. J.

    1987-01-01

    The objective of this study was to characterize responses of adult rats to one and two weeks of whole body suspension. Body weights and food and water intakes were initially reduced during suspension, but, while intake of food and water returned to presuspension levels, body weight remained depressed. Diuresis was evident, but only during week two. Hindlimb muscle responses were differential, with the soleus exhibiting the greatest atrophy and the EDL a relative hypertrophy. These findings suggest that adult rats respond qualitatively in a manner similar to juveniles during suspension.

  10. Absorbed Dose in the Uterus of a Three Months Pregnant Woman Due to 131I

    NASA Astrophysics Data System (ADS)

    Vega-Carrillo, Héctor René; Manzanares-Acuña, Eduardo; Hernández-Dávila, Víctor Martín; Arcos-Pichardo, Areli; Barquero, Raquel; Iñiguez, M. Pilar

    2006-09-01

    The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organs and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation.

  11. Absorbed Dose in the Uterus of a Three Months Pregnant Woman Due to 131I

    SciTech Connect

    Vega-Carrillo, Hector Rene; Manzanares-Acuna, Eduardo; Hernandez-Davila, Victor Martin; Arcos-Pichardo, Areli; Barquero, Raquel; Iniguez, M. Pilar

    2006-09-08

    The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organs and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation.

  12. Considerations on /sup 131/I-metaiodobenzylguanidine therapy of six children with neuroblastoma

    SciTech Connect

    Sanguineti, M.

    1987-01-01

    Six children affected by neuroblastoma at stages III and IV were treated with high-specific-activity /sup 131/I-metaiodobenzylguanidine (MIBG). After /sup 131/I-MIBG treatment three patients died at 12, 10, and 12 weeks, respectively; the other three were still living at 21, 16, and 24 weeks, respectively. Although the assumptions for this therapy were propitious, the results obtained do not correspond to those expected. It is supposed that large tumor volume and previous chemotherapy and/or radiotherapy may impair the effectiveness of /sup 131/I-MIBG therapy. Consequently, /sup 131/I-MIBG therapy is recommended even if the spread of disease is not proven-only, however, when the tumor is small.

  13. Integrating Cellular Metabolism into a Multiscale Whole-Body Model

    PubMed Central

    Krauss, Markus; Schaller, Stephan; Borchers, Steffen; Findeisen, Rolf; Lippert, Jörg; Kuepfer, Lars

    2012-01-01

    Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. PMID:23133351

  14. Neural systemic impairment from whole-body vibration.

    PubMed

    Yan, Ji-Geng; Zhang, Lin-ling; Agresti, Michael; LoGiudice, John; Sanger, James R; Matloub, Hani S; Havlik, Robert

    2015-05-01

    Insidious brain microinjury from motor vehicle-induced whole-body vibration (WBV) has not yet been investigated. For a long time we have believed that WBV would cause cumulative brain microinjury and impair cerebral function, which suggests an important risk factor for motor vehicle accidents and secondary cerebral vascular diseases. Fifty-six Sprague-Dawley rats were divided into seven groups (n = 8): 1) 2-week normal control group, 2) 2-week sham control group (restrained in the tube without vibration), 3) 2-week vibration group (exposed to whole-body vibration at 30 Hz and 0.5g acceleration for 4 hr/day, 5 days/week, for 2 weeks), 4) 4-week sham control group, 5) 4-week vibration group, 6) 8-week sham control group, and 7) 8-week vibration group. At the end point, all rats were evaluated in behavior, physiological, and brain histopathological studies. The cerebral injury from WBV is a cumulative process starting with vasospasm squeezing of the endothelial cells, followed by constriction of the cerebral arteries. After the 4-week vibration, brain neuron apoptosis started. After the 8-week vibration, vacuoles increased further in the brain arteries. Brain capillary walls thickened, mean neuron size was obviously reduced, neuron necrosis became prominent, and wide-ranging chronic cerebral edema was seen. These pathological findings are strongly correlated with neural functional impairments. PMID:25557339

  15. Whole-body vibration exercise in postmenopausal osteoporosis

    PubMed Central

    Mieszkowski, Jan; Niespodziński, Bartłomiej; Ciechanowska, Katarzyna

    2015-01-01

    The report of the World Health Organization (WHO) of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the mechanical vibrations are transmitted to the body of the patient. According to the piezoelectric theory, pressure induces bone formation in the electrical potential difference, which acts as a stimulant of the process of bone formation. Whole body vibration increases the level of growth hormone and testosterone in serum, preventing sarcopenia and osteoporosis. The aim of this study was to review the literature on vibration exercise in patients with postmenopausal osteoporosis based on the PubMed and Medline database. While searching the database, the following key words were used ‘postmenopausal osteoporosis’ and ‘whole-body vibration exercise’. PMID:26327887

  16. A Portable Stereo Vision System for Whole Body Surface Imaging

    PubMed Central

    Yu, Wurong; Xu, Bugao

    2009-01-01

    This paper presents a whole body surface imaging system based on stereo vision technology. We have adopted a compact and economical configuration which involves only four stereo units to image the frontal and rear sides of the body. The success of the system depends on a stereo matching process that can effectively segment the body from the background in addition to recovering sufficient geometric details. For this purpose, we have developed a novel sub-pixel, dense stereo matching algorithm which includes two major phases. In the first phase, the foreground is accurately segmented with the help of a predefined virtual interface in the disparity space image, and a coarse disparity map is generated with block matching. In the second phase, local least squares matching is performed in combination with global optimization within a regularization framework, so as to ensure both accuracy and reliability. Our experimental results show that the system can realistically capture smooth and natural whole body shapes with high accuracy. PMID:20161620

  17. Whole body protein metabolism in children with cancer.

    PubMed Central

    Daley, S E; Pearson, A D; Craft, A W; Kernahan, J; Wyllie, R A; Price, L; Brock, C; Hetherington, C; Halliday, D; Bartlett, K

    1996-01-01

    Whole body protein synthesis and catabolism were measured using the [ring-2H5]phenylalanine and [1-13C]leucine primed constant infusion technique in 32 paediatric patients with cancer at different stages of treatment. Rates of synthesis (S) and catabolism (C) derived from the [ring-2H5]phenylalanine and [1-13C]leucine models were 4.7 (SD 1.3) (S) and 6.0 (1.5) (C) g/d/kg, and 5.5 (0.8) (S) and 6.8 (1.2) (C) g/d/kg, respectively. These results show that these two tracer techniques give similar results in this study population. Comparison of these values with results previously reported for groups of control children using the [ring-2H5]phenylalanine model (S = 3.69 and 3.93; C = 4.09 and 4.28 g/d/kg) and the [1-13C]leucine model (S = 4.32; C = 4.85 g/d/kg) show that rates of synthesis and catabolism were higher in cancer patients than in controls. Thus whole body protein turnover is increased in children under treatment for cancer. Other indices of metabolism such as plasma amino acids and intermediary metabolites were also measured and showed that, although subjects were in isotopic steady state, there were significant metabolic changes during the course of the primed constant infusions used to measure protein turnover. PMID:8984910

  18. Central nervous system effects of whole-body proton irradiation.

    PubMed

    Sweet, Tara Beth; Panda, Nirlipta; Hein, Amy M; Das, Shoshana L; Hurley, Sean D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2014-07-01

    Space missions beyond the protection of Earth's magnetosphere expose astronauts to an environment that contains ionizing proton radiation. The hazards that proton radiation pose to normal tissues, such as the central nervous system (CNS), are not fully understood, although it has been shown that proton radiation affects the neurogenic environment, killing neural precursors and altering behavior. To determine the time and dose-response characteristics of the CNS to whole-body proton irradiation, C57BL/6J mice were exposed to 1 GeV/n proton radiation at doses of 0-200 cGy and behavioral, physiological and immunohistochemical end points were analyzed over a range of time points (48 h-12 months) postirradiation. These experiments revealed that proton radiation exposure leads to: 1. an acute decrease in cell division within the dentate gyrus of the hippocampus, with significant differences detected at doses as low as 10 cGy; 2. a persistent effect on proliferation in the subgranular zone, at 1 month postirradiation; 3. a decrease in neurogenesis at doses as low as 50 cGy, at 3 months postirradiation; and 4. a decrease in hippocampal ICAM-1 immunoreactivity at doses as low as 10 cGy, at 1 month postirradiation. The data presented contribute to our understanding of biological responses to whole-body proton radiation and may help reduce uncertainty in the assessment of health risks to astronauts. These findings may also be relevant to clinical proton beam therapy. PMID:24937778

  19. Parameters Influencing Curative Effect of 131I Therapy on Pediatric Differentiated Thyroid Carcinoma: A Retrospective Study.

    PubMed

    Xu, Lu; Liu, Qiong; Liu, Ying; Pang, Hua

    2016-01-01

    BACKGROUND This study aimed to investigate the parameters influencing the effectiveness of first 131I thyroid remnant ablation and then 131I treatment of metastatic lesions in children and adolescents with differentiated thyroid carcinoma (DTC). MATERIAL AND METHODS A total of 88 children and adolescents with DTC were divided into 2 groups: 56 in the complete-ablation group and 32 in the incomplete-ablation group for the first 131I ablation; 32 in the incomplete-ablation group were further divided: 19 in the complete-remission group and 13 in the incomplete-remission group for subsequent 131I treatment of metastatic lesions. Influential parameters were analyzed using t test, t' test, rank-sum test, χ2-test, and Fisher exact test, and logistic regression analysis was performed. Radioactive iodine uptake (RAIU), lymph node metastases, and pulmonary metastases were selected as influential parameters. RESULTS After logistic regression analysis, RAIU, only lymph node metastases, and pulmonary metastasis were significantly associated with the complete-ablation rate. High levels of RAIU and serum thyroglobulin (Tg) were not conducive to disease remission after subsequent 131I treatment of metastatic lesions. The remission rate of patients with pulmonary metastasis was lower than the rate of patients with lymph node metastases or no metastases. CONCLUSIONS Results demonstrated that a high remission rate is associated with low postoperative RAIU and Tg. Lymph node metastasis and pulmonary metastasis reduce the complete-remission rate of first 131I ablation therapy. Pulmonary metastasis reduces the remission rate of subsequent 131I treatment. Also, 131I treatment for pediatric DTC with pulmonary metastasis achieved progression-free survival. PMID:27576533

  20. Preparation and use of 131I magic gel as a dosimeter for targeted radionuclide therapy.

    PubMed

    Courbon, Frédéric; Love, Peter; Chittenden, Sarah; Flux, Glen; Ravel, Patrice; Cook, Gary

    2006-10-01

    Clinical interest in targeted radiotherapy is increasing, but accurate dosimetry studies are difficult to achieve. The aim of this study was to investigate the preparation and use of a "normoxic" polymer gel (with a tissue-equivalent density), known as MAGIC gel, and magnetic resonance imaging (MRI) for nonsealed source dosimetry. MAGIC gel samples were mixed with deionized water (MAGIC95) or a solution of 131I (131I-MAGIC95). By measuring the radioinduced variations of R2 values (relaxivity) of irradiated gels, we analyzed the response of MAGIC95 and MAGIC samples to external photon beam or 131I irradiation (131I-MAGIC95). MRI showed that a homogeneous dose distribution from 131I can be achieved if the MAGIC gel, at a temperature of approximately 35 degrees C, is mixed in 131I solution and the resulting mixture shaken gently for 30 minutes. It is important that the vials are completely filled, as residual air reduces polymerization and causes spontaneous polymerization stripes. Responses of MAGIC95 or MAGIC gels to external photon beam irradiation are similar. The variations of R2 values for 131I-MAGIC95 gel depend on the absorbed dose and not on the duration of the irradiation being reproducible from one batch of gel to another. MAGIC gel responses to 131I or external beam irradiation (EBI) are different. Our preliminary results suggest that radiolabeled "normoxic" polymer can be easily and safely produced. Radiolabeled MAGIC gel may, therefore, be suitable for the creation of phantoms dedicated to nonsealed source dosimetry. PMID:17105417

  1. Retrospective evaluation of 131I deposition density and thyroid dose in Poland after the Chernobyl accident.

    PubMed

    Pietrzak-Flis, Zofia; Krajewski, Pawel; Radwan, Irena; Muramatsu, Yasuyuki

    2003-06-01

    The 131I deposition in Poland after the Chernobyl accident on 26 April 1986 was evaluated from the determined 129I deposition and the estimated 129I/131I ratio at the time of the arrival of fallout. Concentrations of 129I and 127I were determined by neutron activation analysis in uncultivated soils from 16 locations in Poland. Determination of 137Cs in soils was carried out by gamma spectrometry. The atomic ratio of 129I/131I at the time of fallout arrival was estimated using the 129I/131I ratio at the time of the accident, which, on the basis of the core inventory data, was assumed to be 22.8. It was estimated from the time of fallout arrival and from the weighed mean atomic ratio that the 129I/131I ratio for Poland was 32.8. The calculated 131I deposition ranged from 63.2 to 729 kBq m(-2). High deposition of 131I occurred in the locations with rainfall but occasionally also in locations without rainfall. Committed equivalent doses from 131I were evaluated for 5-y-old children, 10-y-old children, and adults using the computer model CLRP for the situations with and without countermeasures including iodine prophylaxis. The highest thyroid doses from inhalation and ingestion without countermeasures were 178 mSv, 120 mSv, and 45 mSv for 5-y-old children, 10-y-old children, and adults, respectively. The countermeasures reduced these doses by about 30%. PMID:12822579

  2. Simulating 131I pathways from Fukushima to Kanto: a case study for March 2011

    NASA Astrophysics Data System (ADS)

    Lee Zhi Yi, A.; Yoshimura, K.; Oki, T.

    2015-12-01

    An estimated 150PBq of 131I was released from the FDNPP accident, partially deposited into rivers and affected the water treatment plants (WTPs) of Japan. Due to the elevated 131I concentration in tap water, a restriction on drinking water was placed in 15 of 47 prefectures; of those limited, the densely populated Kanto region was significantly affected during this period. In order to better understand the existence of and to investigate the pathways of 131I for future risk and water resource management in the Kanto region, the IsoMATTRIP land surface and river model was developed. Half-life considerations of radiotracers were implemented and a river map of the Kanto region was manually created. Few simulation studies on the pathways of 131I have been conducted due to its short half-life and limited validation data. The development of the IsoMATTRIP model serves as an initial step to address this gap in knowledge. Preliminary runs on the IsoMATTRIP showed that river discharge has a significant effect on 131I concentration found in WTPs. River discharge was underestimated (by average of 55 m3/s) while 131I concentration was overestimated (by 301 Bq/kg). However, the model was able to simulate varying response of 131I concentration for fallout according to basin size. The discrepancy between observed and simulated river discharge is potentially caused by the model's usage of natural land parameters to simulate an urban environment. Effective river velocity, input precipitation, and discharge were calibrated to successfully identify optimized settings for the current model setup. The IsoMATTRIP simulated comparable values of 131I to that from the observed in WTPs of the Kanto region.

  3. An accurate 3D shape context based non-rigid registration method for mouse whole-body skeleton registration

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie C.; Salvado, Olivier

    2011-03-01

    Small animal image registration is challenging because of its joint structure, and posture and position difference in each acquisition without a standard scan protocol. In this paper, we face the issue of mouse whole-body skeleton registration from CT images. A novel method is developed for analyzing mouse hind-limb and fore-limb postures based on geodesic path descriptor and then registering the major skeletons and fore limb skeletons initially by thin-plate spline (TPS) transform based on the obtained geodesic paths and their enhanced correspondence fields. A target landmark correction method is proposed for improving the registration accuracy of the improved 3D shape context non-rigid registration method we previously proposed. A novel non-rigid registration framework, combining the skeleton posture analysis, geodesic path based initial alignment and 3D shape context model, is proposed for mouse whole-body skeleton registration. The performance of the proposed methods and framework was tested on 12 pairs of mouse whole-body skeletons. The experimental results demonstrated the flexibility, stability and accuracy of the proposed framework for automatic mouse whole body skeleton registration.

  4. Automated quantification of adipose and skeletal muscle tissue in whole-body MRI data for epidemiological studies

    NASA Astrophysics Data System (ADS)

    Wald, Diana; Teucher, Birgit; Dinkel, Julien; Kaaks, Rudolf; Delorme, Stefan; Meinzer, Hans-Peter; Heimann, Tobias

    2012-03-01

    The ratio between the amount of adipose and skeletal muscle tissue is an important determinant of metabolic health. Recent developments in MRI technology allow whole body scans to be performed for accurate assessment of body composition. In the present study, a total of 194 participants underwent a 2-point Dixon MRI sequence of the whole body. A fully automated image segmentation method quantifies the amount of adipose and skeletal muscle tissue by applying standard image processing techniques including thresholding, region growing and morphological operators. The adipose tissue is further divided into subcutaneous and visceral adipose tissue by using statistical shape models. All images were visually inspected. The quantitative analysis was performed on 44 whole-body MRI data using manual segmentations as ground truth data. We achieved 3.3% and 6.3% of relative volume difference between the manual and automated segmentation of subcutaneous and visceral adipose tissue, respectively. The validation of skeletal muscle tissue segmentation resulted in a relative volume difference of 7.8 +/- 4.2% and a volumetric overlap error of 6.4 +/- 2.3 %. To our knowledge, we are first to present a fully automated method which quantifies adipose and skeletal muscle tissue in whole-body MRI data. Due to the fully automated approach, results are deterministic and free of user bias. Hence, the software can be used in large epidemiological studies for assessing body fat distribution and the ratio of adipose to skeletal muscle tissue in relation to metabolic disease risk.

  5. Thyroid hormone replacement one day before 131I therapy in patients with well-differentiated thyroid cancer

    PubMed Central

    Kayano, Daiki; Taki, Junichi; Inaki, Anri; Wakabayashi, Hiroshi; Nakamura, Ayane; Fukuoka, Makoto; Kinuya, Seigo

    2013-01-01

    Objective: The current study aimed to determine the efficacy of radioiodine-131 (131I) ablation therapy with thyroid hormone replacement one day before 131I administration in patients with well-differentiated thyroid cancer (DTC). Methods: This retrospective study included 29 patients who underwent 131I therapies twice for DTC during 6-12 months. Since all the patients obviously had residual lesions by their serum thyroglobulin levels or their scintigrams at the first therapies, they underwent the second 131I therapies without diagnostic scintigraphy after the first therapies. After confirming the sufficient elevation of TSH concentration, thyroid hormone replacement was resumed one day before 131I administration (3.7-7.4GBq). The ablation rate of thyroid remnant at the first 131I therapy was evaluated by comparing 131I post-therapeutic images of the two treatments. Results: Three patients were administrated thyroid hormone after 131I therapy because of insufficient TSH concentration under thyroid hormone withdrawal. In the remaining 26 patients, 41 thyroid remnant accumulations were detected in all 26 patients at the first 131I therapy. Based on the second 131I post-therapeutic images, successful ablation was confirmed in 24 of 26 patients (92.3%) and 38 of 41 sites (92.7%), which was comparable with historically reported ablation rates. Conclusion: Thyroid hormone replacement one day before 131I therapy could provide a sufficiently high ablation rate in patients with DTC.

  6. Behavior of 131I and 137Cs in environments released from the Fukushima nuclear disaster

    NASA Astrophysics Data System (ADS)

    Ohta, T.; Mahara, Y.; Kubota, T.; Igarashi, T.

    2011-12-01

    The devastating tsunami that caused by the great earthquake (M = 9.0) off the coast of northeastern Honshu on 11 March 2011 destroyed large coastal areas of Tohoku and north Kanto, Japan. Radionuclides, including 131I, 134Cs, and 137Cs, were released into the atmosphere from the Fukushima Daiichi plants. Concentration of levels of 131I, 134Cs, and 137Cs in Ibaraki Prefecture, Japan, released from the Fukushima Daiichi plant were investigated in the soil and precipitation. The concentrations of 131I and 137Cs in the soil from the surface to 1 cm depth in Ibaraki Prefecture were 9360-13,400 Bq/kg and 720-3250 Bq/kg, respectively. The concentration of 137Cs at this soil observation site originating from the Fukushima plant was 8.4 to 21 times that found locally after the Nagasaki atomic bomb explosion. Most of the 134Cs and 137Cs from rainwater were trapped by the surface soil and sand to a depth of 1 cm, whereas only about 30% of the 131I was collected by the surface soil, suggesting that 131I would move deeper than 137Cs and 134Cs. The 131I in the rainwater was in the anion exchangeable form, and all of it could be collected by anion exchangeable mechanisms, whereas 30% of the 131I that had passed through the soil could not be trapped by the anion exchange resin, suggesting that the chemical form of this 30% was in a changeable, organic-bound form. The 131I, 134Cs, and 137Cs that were absorbed on soil were difficult to be dissolved into water. As the half-life of 131I is short and 137Cs is strongly adsorbed on the surface soil and sand, these radionuclides would be unlikely to reach the groundwater before completely decaying; contamination of groundwater with 131I and 137Cs supplied from rainwater to the surface soil is therefore exceedingly unlikely. As the 137Cs is likely to migrate only 0.6 cm in 10 years, people living in the Fukushima and Kanto areas will be exposed to radiation from 137Cs in the surface soil and sand. For protection, surface soils and sands

  7. Applications of quantitative whole body autoradiographic technique in radiopharmaceutical research

    SciTech Connect

    Som, P.; Oster, Z.H.; Yonekura, Y.; Meyer, M.A.; Fand, I.; Brill, A.B.

    1982-01-01

    The routine evaluation of radiopharmaceuticals involves dissecting tissue distribution studies (DTDS) and gamma or positron imaging. DTDS have the following disadvantages: since not all tissues can always be sampled, sites of radiopharmaceutical uptake may be missed and because the procedure involves weighing of dissected tissue samples, the spatial resolution of this method is low and determined by the smallest amount that can be weighed accurately. Gamma camera imaging and positron emission tomography though more comprehensive in evaluating the global distribution of a compound, have relative low spatial resolution. Whole body autoradiography of small animals has a much higher spatial resolution as compared to the above and depicts the global distribution of radiopharmaceuticals. A computer-assisted quantification method of WBARG applied to positron, beta, and gamma emitters will complement the method by producing quantitative values comparable to those obtained by dissection and direct tissue counting, with the advantages of depicting the global distribution at high spatial resolution.

  8. Multimodal Correlative Preclinical Whole Body Imaging and Segmentation.

    PubMed

    Akselrod-Ballin, Ayelet; Dafni, Hagit; Addadi, Yoseph; Biton, Inbal; Avni, Reut; Brenner, Yafit; Neeman, Michal

    2016-01-01

    Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem for quantitative image analysis in preclinical research. This paper presents a novel approach for whole body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The algorithm integrates multiple imaging sequences into a machine learning framework, which generates supervoxels by an efficient hierarchical agglomerative strategy and utilizes multiple SVM-kNN classifiers each constrained by a heatmap prior region to compose the segmentation. We demonstrate results showing segmentation of mice images into several structures including the heart, lungs, liver, kidneys, stomach, vena cava, bladder, tumor, and skeleton structures. Experimental validation on a large set of mice and organs, indicated that our system outperforms alternative state of the art approaches. The system proposed can be generalized to various tissues and imaging modalities to produce automatic atlas-free segmentation, thereby enabling a wide range of applications in preclinical studies of small animal imaging. PMID:27325178

  9. Whole-body mathematical model for simulating intracranial pressure dynamics

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Penar, Paul L. (Inventor); Stevens, Scott A. (Inventor); Tranmer, Bruce I. (Inventor)

    2007-01-01

    A whole-body mathematical model (10) for simulating intracranial pressure dynamics. In one embodiment, model (10) includes 17 interacting compartments, of which nine lie entirely outside of intracranial vault (14). Compartments (F) and (T) are defined to distinguish ventricular from extraventricular CSF. The vasculature of the intracranial system within cranial vault (14) is also subdivided into five compartments (A, C, P, V, and S, respectively) representing the intracranial arteries, capillaries, choroid plexus, veins, and venous sinus. The body's extracranial systemic vasculature is divided into six compartments (I, J, O, Z, D, and X, respectively) representing the arteries, capillaries, and veins of the central body and the lower body. Compartments (G) and (B) include tissue and the associated interstitial fluid in the intracranial and lower regions. Compartment (Y) is a composite involving the tissues, organs, and pulmonary circulation of the central body and compartment (M) represents the external environment.

  10. Integrated Whole Body MR/PET: Where Are We?

    PubMed Central

    Yoo, Hye Jin; Lee, Jae Sung

    2015-01-01

    Whole body integrated magnetic resonance imaging (MR)/positron emission tomography (PET) imaging systems have recently become available for clinical use and are currently being used to explore whether the combined anatomic and functional capabilities of MR imaging and the metabolic information of PET provide new insight into disease phenotypes and biology, and provide a better assessment of oncologic diseases at a lower radiation dose than a CT. This review provides an overview of the technical background of combined MR/PET systems, a discussion of the potential advantages and technical challenges of hybrid MR/PET instrumentation, as well as collection of possible solutions. Various early clinical applications of integrated MR/PET are also addressed. Finally, the workflow issues of integrated MR/PET, including maximizing diagnostic information while minimizing acquisition time are discussed. PMID:25598673

  11. Vertebrate Growth and Form: A Whole-Body Approach

    NASA Astrophysics Data System (ADS)

    Evans, J.

    The problems of growth and form in organic systems remain largely unsolved. Field methods applied to the whole body provide an alternative to the genetic approach. Cells cohere according to the electrical forces between cell membranes; and an obvious place to begin applying field methods is to the major electrical pathways of the cerebrospinal system. This paper describes the author's private research into morphogenesis, involving computer modelling of AC and DC fields associated with the spinal and autonomic nerve chains. The 2D and 3D models considered here assume the existence of a stable pattern of electrical sources throughout development, and that expresses itself in different ways according to the overall size. The concept of electrical resonance is basic to this study, and has wide implications, involving earth and solar fields. It is also relevant to the growing use of ELF oscillators in medicine.

  12. Integrated whole body MR/PET: where are we?

    PubMed

    Yoo, Hye Jin; Lee, Jae Sung; Lee, Jeong Min

    2015-01-01

    Whole body integrated magnetic resonance imaging (MR)/positron emission tomography (PET) imaging systems have recently become available for clinical use and are currently being used to explore whether the combined anatomic and functional capabilities of MR imaging and the metabolic information of PET provide new insight into disease phenotypes and biology, and provide a better assessment of oncologic diseases at a lower radiation dose than a CT. This review provides an overview of the technical background of combined MR/PET systems, a discussion of the potential advantages and technical challenges of hybrid MR/PET instrumentation, as well as collection of possible solutions. Various early clinical applications of integrated MR/PET are also addressed. Finally, the workflow issues of integrated MR/PET, including maximizing diagnostic information while minimizing acquisition time are discussed. PMID:25598673

  13. Multimodal Correlative Preclinical Whole Body Imaging and Segmentation

    PubMed Central

    Akselrod-Ballin, Ayelet; Dafni, Hagit; Addadi, Yoseph; Biton, Inbal; Avni, Reut; Brenner, Yafit; Neeman, Michal

    2016-01-01

    Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem for quantitative image analysis in preclinical research. This paper presents a novel approach for whole body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The algorithm integrates multiple imaging sequences into a machine learning framework, which generates supervoxels by an efficient hierarchical agglomerative strategy and utilizes multiple SVM-kNN classifiers each constrained by a heatmap prior region to compose the segmentation. We demonstrate results showing segmentation of mice images into several structures including the heart, lungs, liver, kidneys, stomach, vena cava, bladder, tumor, and skeleton structures. Experimental validation on a large set of mice and organs, indicated that our system outperforms alternative state of the art approaches. The system proposed can be generalized to various tissues and imaging modalities to produce automatic atlas-free segmentation, thereby enabling a wide range of applications in preclinical studies of small animal imaging. PMID:27325178

  14. Computational Fluid Dynamics of Whole-Body Aircraft

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh

    1999-01-01

    The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  15. Whole-body imaging at 7T: preliminary results.

    PubMed

    Vaughan, J Thomas; Snyder, Carl J; DelaBarre, Lance J; Bolan, Patrick J; Tian, Jinfeng; Bolinger, Lizann; Adriany, Gregor; Andersen, Peter; Strupp, John; Ugurbil, Kamil

    2009-01-01

    The objective of this study was to investigate the feasibility of whole-body imaging at 7T. To achieve this objective, new technology and methods were developed. Radio frequency (RF) field distribution and specific absorption rate (SAR) were first explored through numerical modeling. A body coil was then designed and built. Multichannel transmit and receive coils were also developed and implemented. With this new technology in hand, an imaging survey of the "landscape" of the human body at 7T was conducted. Cardiac imaging at 7T appeared to be possible. The potential for breast imaging and spectroscopy was demonstrated. Preliminary results of the first human body imaging at 7T suggest both promise and directions for further development. PMID:19097214

  16. Application of whole-body autoradiography in toxicology

    SciTech Connect

    Benard, P.; Burgat, V.; Rico, A.G.

    1985-01-01

    Whole-body autoradiography enables the drugs and toxicants to be distributed throughout the animal. Good results are obtained with this technique. However, certain artifacts can occur that could lead to misinterpretation, and these must be known. These artifacts are described. From the metabolic point of view, autoradiography provides data on the distribution kinetics of a compound and the elimination of radioactivity in various organs. These data are a guide for quantitative research into the metabolism of a compound. From the toxicological point of view, it must be admitted that the main purpose of this technique is to reveal the sites of retention of radioactivity. Such specific organ retention could be the consequence of the activation of a minor metabolite into a very reactive compound. If this is so, it is a specific organ effect which could not be studied by other techniques and could lead the way to a more specific organ effect which could not be studied by other techniques and could lead the way to a more appropriate line of research in the study of chronic toxicity. However, it must be recalled that the fact that a compound is retained by a specific organ does not always mean that the compound exerts a toxic effect upon the said organ. With this technique, distribution study can be performed on pregnant animals, and it provides us with more data concerning the transplacental passage of radioactive metabolites. All these aspects of the technique clearly indicate that whole-body autoradiography should be insisted upon during the early stages of development of new molecules. Successive experiments could then lead to selecting the best experimental conditions for metabolic pharmacokinetics and studies in toxicology. 245 references.

  17. Dual adaptation to sensory conflicts during whole-body rotations.

    PubMed

    Dumontheil, Iroise; Panagiotaki, Panagiota; Berthoz, Alain

    2006-02-01

    A dual adaptation paradigm was used in order to study the adaptation to two conditions of conflicting visual and kinesthetic and vestibular information. Adaptation was induced in humans by modifying visual information during whole-body rotations with the help of a virtual reality set-up. Real rotations' amplitudes were factored by a gain of 0.5 or 1.5. The two conditions were associated to a visual context cue. The aim of the experiment was to provide support for either the feedback or the feedforward model of adaptive states switch. Results show that subjects could adapt to the two conditions of conflict during whole-body rotations. However, the two conflict situations have been found to differ both in their motor dynamics and in their susceptibility to adaptation, as it seems that the adaptation is more complete in the condition of gain 1.5, i.e., faster and more precise. Subjects could be divided into two groups according to their ability to use contextual information to switch between adaptive gains. The visual cues were sufficient for some subjects to switch adaptive state, which corresponds to a context-dependent dual adaptation, or feedforward model of switching. Other subjects showed a switch cost maintained across the experiment, corresponding with a stimulus-dependent adaptation, or feedback model of switching. We are suggesting that the process enabling switching between adaptive states depends on subjects' abilities to use contextual cues of certain types, and thus on their "perceptive styles". This could explain the variability of results obtained in the literature. PMID:16457794

  18. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically

  19. Small-animal whole-body imaging using a photoacoustic full ring array system

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Guo, Zijian; Aguirre, Andres; Zhu, Quing; Wang, Lihong V.

    2011-03-01

    In this report, we present a novel 3D photoacoustic computed tomography (PACT) system for small-animal whole-body imaging. The PACT system, based on a 512-element full-ring transducer array, received photoacoustic signals primarily from a 2-mm-thick slice. The light was generated by a pulse laser, and can either illuminate from the top or be reshaped to illuminate the sample from the side, using a conical lens and an optical condenser. The PACT system was capable of acquiring an in-plane image in 1.6 s; by scanning the sample in the elevational direction, a 3D tomographic image could be constructed. We tested the system by imaging a cylindrical phantom made of human hairs immersed in a scattering medium. The reconstructed image achieved an in-plane resolution of 0.1 mm and an elevational resolution of 1 mm. After deconvolution in the elevational direction, the 3D image was found to match well with the phantom. The system was also used to image a baby mouse in situ; the spinal cord and ribs can be seen easily in the reconstructed image. Our results demonstrate that the PACT system has the potential to be used for fast small-animal whole-body tomographic imaging.

  20. Whole-body dynamic imaging with continuous bed motion PET/CT.

    PubMed

    Osborne, Dustin R; Acuff, Shelley

    2016-04-01

    Most dynamic imaging protocols require long scan times that are beyond the range of what can be supported in a routine clinical environment and suffer from various difficulties related to step and shoot imaging techniques. In this short communication, we describe continuous bed motion (CBM) imaging techniques to create clinically relevant 15 min whole-body dynamic PET imaging protocols. We also present initial data that suggest that these CBM methods may be sufficient for quantitative analysis of uptake rates and rates of glucose metabolism. Multipass CBM PET was used in conjunction with a population-based input function to perform Patlak modeling of normal tissue. Net uptake rates were estimated and metabolic rates of glucose were calculated. Estimations of k3 (Ki/Vd) were calculated along with modeling of liver regions of interest to assess model stability. Calculated values of metabolic rates of glucose were well within normal ranges found in the previous literature. CBM techniques can potentially be used clinically to obtain reliable, quantitative multipass whole-body dynamic PET data. Values calculated for normal brain were shown to be within previously published values for normal brain glucose metabolism. PMID:26629770

  1. Calibration of the Accuscan II In Vivo System for Whole Body Counting

    SciTech Connect

    Orval R. Perry; David L. Georgeson

    2011-08-01

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for whole body counting. The source used for the calibration was a NIST traceable BOMAB manufactured by DOE as INL2006 BOMAB containing Eu-154, Eu-155, Eu-152, Sb-125 and Y-88 with energies from 27 keV to 1836 keV with a reference date of 11/29/2006. The actual usable energy range was 86.5 keV to 1597 keV on 4/21/2011. The BOMAB was constructed inside the Accuscan II counting 'tub' in the order of legs, thighs, abdomen, thorax/arms, neck, and head. Each piece was taped to the backwall of the counter. The arms were taped to the thorax. The phantom was constructed between the v-ridges on the backwall of the Accuscan II counter. The energy and efficiency calibrations were performed using the INL2006 BOMAB. The calibrations were performed with the detectors in the scanning mode. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for whole body counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  2. Whole-body dynamic imaging with continuous bed motion PET/CT

    PubMed Central

    Acuff, Shelley

    2016-01-01

    Most dynamic imaging protocols require long scan times that are beyond the range of what can be supported in a routine clinical environment and suffer from various difficulties related to step and shoot imaging techniques. In this short communication, we describe continuous bed motion (CBM) imaging techniques to create clinically relevant 15 min whole-body dynamic PET imaging protocols. We also present initial data that suggest that these CBM methods may be sufficient for quantitative analysis of uptake rates and rates of glucose metabolism. Multipass CBM PET was used in conjunction with a population-based input function to perform Patlak modeling of normal tissue. Net uptake rates were estimated and metabolic rates of glucose were calculated. Estimations of k3 (Ki/Vd) were calculated along with modeling of liver regions of interest to assess model stability. Calculated values of metabolic rates of glucose were well within normal ranges found in the previous literature. CBM techniques can potentially be used clinically to obtain reliable, quantitative multipass whole-body dynamic PET data. Values calculated for normal brain were shown to be within previously published values for normal brain glucose metabolism. PMID:26629770

  3. Whole-Body MRI in Children: Current Imaging Techniques and Clinical Applications

    PubMed Central

    2015-01-01

    Whole-body magnetic resonance imaging (MRI) is increasingly used in children to evaluate the extent and distribution of various neoplastic and non-neoplastic diseases. Not using ionizing radiation is a major advantage of pediatric whole-body MRI. Coronal and sagittal short tau inversion recovery imaging is most commonly used as the fundamental whole-body MRI protocol. Diffusion-weighted imaging and Dixon-based imaging, which has been recently incorporated into whole-body MRI, are promising pulse sequences, particularly for pediatric oncology. Other pulse sequences may be added to increase diagnostic capability of whole-body MRI. Of importance, the overall whole-body MRI examination time should be less than 30-60 minutes in children, regardless of the imaging protocol. Established and potentially useful clinical applications of pediatric whole-body MRI are described. PMID:26355493

  4. Radionuclide (131)I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors.

    PubMed

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-11-21

    We report the synthesis, characterization, and utilization of radioactive (131)I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5·NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 ((131)I). The generated multifunctional (131)I-G5·NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to (131)I labeling, the G5·NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive (131)I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer. PMID:26477402

  5. Behavior of medically-derived 131I in the tidal Potomac River.

    PubMed

    Rose, Paula S; Smith, Joseph P; Cochran, J Kirk; Aller, Robert C; Swanson, R Lawrence

    2013-05-01

    Iodine-131 (t1/2=8.04 d) is administered to patients for treatment of thyroid disorders, excreted by patients and discharged to surface waters via sewage effluent. Radionuclides generally behave like their stable analogs; therefore, medically-derived (131)I is useful as a transport-reaction tracer of anthropogenic inputs and the aquatic biogeochemistry of iodine. Iodine-131 was measured in Potomac River water and sediments in the vicinity of the Blue Plains Water Pollution Control Plant (WPCP), Washington, DC, USA. Concentrations measured in sewage effluent from Blue Plains WPCP and in the Potomac River suggest a relatively continuous source of this radionuclide. The range of (131)I concentrations detected in surface water was 0.076±0.006 to 6.07±0.07 Bq L(-1). Iodine-131 concentrations in sediments ranged from 1.3±0.8 to 117±2 Bq kg(-1) dry weight. Partitioning in the sewage effluent from Blue Plains and in surface waters indicated that (131)I is associated with colloidal and particulate organic material. The behavior of medically-derived (131)I in the Potomac River is consistent with the nutrient-like behavior of natural iodine in aquatic environments. After discharge to the river via sewage effluent, it is incorporated into biogenic particulate material and deposited in sediments. Solid phase sediment profiles of (131)I indicated rapid mixing or sedimentation of particulate debris and diagenetic remineralization and recycling on short time scales. PMID:23500402

  6. Dose Calculations for [131I] Meta-Iodobenzylguanidine-Induced Bystander Effects

    PubMed Central

    Gow, M. D.; Seymour, C. B.; Boyd, M.; Mairs, R. J.; Prestiwch, W. V.; Mothersill, C. E.

    2014-01-01

    Targeted radiotherapy is a potentially useful treatment for some cancers and may be potentiated by bystander effects. However, without estimation of absorbed dose, it is difficult to compare the effects with conventional external radiation treatment. Methods: Using the Vynckier – Wambersie dose point kernel, a model for dose rate evaluation was created allowing for calculation of absorbed dose values to two cell lines transfected with the noradrenaline transporter (NAT) gene and treated with [131I]MIBG. Results: The mean doses required to decrease surviving fractions of UVW/NAT and EJ138/NAT cells, which received medium from [131I]MIBG-treated cells, to 25 – 30% were 1.6 and 1.7 Gy respectively. The maximum mean dose rates achieved during [131I]MIBG treatment were 0.09 – 0.75 Gy/h for UVW/NAT and 0.07 – 0.78 Gy/h for EJ138/NAT. These were significantly lower than the external beam gamma radiation dose rate of 15 Gy/h. In the case of control lines which were incapable of [131I]MIBG uptake the mean absorbed doses following radiopharmaceutical were 0.03 – 0.23 Gy for UVW and 0.03 – 0.32 Gy for EJ138. Conclusion: [131I]MIBG treatment for ICCM production elicited a bystander dose-response profile similar to that generated by external beam gamma irradiation but with significantly greater cell death. PMID:24659931

  7. Optimization of molecular radiotherapy with [131I]-meta Iodobenzylguanidine for high-risk neuroblastoma.

    PubMed

    Gaze, M N; Gains, J E; Walker, C; Bomanji, J B

    2013-03-01

    Molecular radiotherapy with [131I]-meta Iodobenzylguanidine ([131I]-mIBG) for neuroblastoma has been in clinical use for nearly 30 years. In this time, its role has changed from being an exclusively palliative treatment to one where the intent of treatment is often curative. To achieve this, the treatment has been brought forward from the relapse setting, to the beginning as induction therapy, as a possibility for salvage of those with chemo-refractory disease or as part of consolidation schedules. With the routine use of hemopoietic support, higher than previously standard administered activities are now commonly used. Other attempts to improve outcomes include the concomitant use of chemotherapy and radiation sensitisers and novel formulations such as no-carrier added [131I]-mIBG. Unfortunately, none of these strategies has been evaluated in a randomized controlled trial, so whether the theoretical benefits of these innovative approaches are seen clinically remains a matter of conjecture. Despite the prevalent belief in using higher administered activities, dosimetry has been under-used, hampering the ability to detect the benefit of this strategy. To properly evaluate concepts aiming at the optimisation of molecular radiotherapy with [131I]-mIBG for high-risk neuroblastoma, careful dosimetry in well-designed randomized clinical trials is essential. Only in this way will it be possible for [131I]-mIBG to be used to its best advantage in the complex multimodality treatment schedules required for high-risk neuroblastoma. PMID:23474636

  8. Abatacept Improves Whole-Body Insulin Sensitivity in Rheumatoid Arthritis

    PubMed Central

    Ursini, Francesco; Russo, Emilio; Letizia Hribal, Marta; Mauro, Daniele; Savarino, Francesca; Bruno, Caterina; Tripolino, Cesare; Rubino, Mariangela; Naty, Saverio; Grembiale, Rosa Daniela

    2015-01-01

    Abstract Rheumatoid arthritis (RA) is characterized by increased insulin resistance, a well-known risk factor for diabetes and cardiovascular diseases. The aim of the present study was to evaluate the effect of abatacept on insulin sensitivity in RA patients with moderate to severe disease despite treatment with methotrexate. Fifteen RA patients were recruited for the present study. Patients were evaluated at time 0 and after 6 months of the treatment with i.v. abatacept at the dosage recommended for weight range. Evaluation included oral glucose tolerance test (OGTT) at both time points. Insulin sensitivity was estimated with insulin sensitivity index (ISI) by Matsuda, a measure of whole-body insulin sensitivity. ISI significantly increased after the treatment with abatacept from 3.7 ± 2.6 to 5.0 ± 3.2 (P = 0.003) with a mean difference of 1.23. Analysis of glucose and insulin values during OGTT revealed a reduction of both glucose (303.9 ± 73.4 mg/dL min versus 269.2 ± 69.5 mg/dL min, P = 0.009) and insulin (208.4 ± 119.7 mg/dL min versus 158.0 ± 95.3 mg/dL min, P = 0.01) area under the curves (AUCs). Accordingly also glycated hemoglobin significantly improved (5.5 ± 0.4% versus 5.3 ± 0.3%, P = 0.04). No significant differences were found for measures of β-cell function insulinogenic index (1.11 ± 1.19 versus 1.32 ± 0.82, P = 0.77) and oral disposition index (2.0 ± 5.4 versus 6.0 ± 6.0, P = 0.25). Treatment with abatacept seems to be able to improve whole-body insulin sensitivity in RA patients without affecting β-cell function. PMID:26020396

  9. Optoacoustic 3D whole-body tomography: experiments in nude mice

    NASA Astrophysics Data System (ADS)

    Brecht, Hans-Peter; Su, Richard; Fronheiser, Matt; Ermilov, Sergey A.; Conjusteau, André; Liopo, Anton; Motamedi, Massoud; Oraevsky, Alexander A.

    2009-02-01

    We developed a 3D whole-body optoacoustic tomography system for applications in preclinical research on mice. The system is capable of generating images with resolution better than 0.6 mm. Two pulsed lasers, an Alexandrite laser operating at 755 nm and a Nd:YAG laser operating at 532 nm and 1064nm were used for light delivery. The tomographic images were obtained while the objects of study (phantoms or mice) were rotated within a sphere outlined by a concave arc-shaped array of 64 piezo-composite transducers. During the scan, the mouse was illuminated orthogonally to the array with two wide beams of light from a bifurcated fiber bundle. Illumination at 532 nm showed superficial vasculature, but limited penetration depth at this wavelength prevented the detection of deeper structures. Illumination at 755 and 1064 nm showed organs and blood vessels, respectively. Filtering of the optoacoustic signals using high frequency enhancing wavelets further emphasized the smaller blood vessels.

  10. Whole-body three-dimensional optoacoustic tomography system for small animals

    PubMed Central

    Brecht, Hans-Peter; Su, Richard; Fronheiser, Matthew; Ermilov, Sergey A.; Conjusteau, Andre; Oraevsky, Alexander A.

    2009-01-01

    We develop a system for three-dimensional whole-body optoacoustic tomography of small animals for applications in preclinical research. The tomographic images are obtained while the objects of study (phantoms or mice) are rotated within a sphere outlined by a concave arc-shaped array of 64 piezocomposite transducers. Two pulsed lasers operating in the near-IR spectral range (755 and 1064 nm) with an average pulsed energy of about 100 mJ, a repetition rate of 10 Hz, and a pulse duration of 15 to 75 ns are used as optical illumination sources. During the scan, the mouse is illuminated orthogonally to the array with two wide beams of light from a bifurcated fiber bundle. The system is capable of generating images of individual organs and blood vessels through the entire body of a mouse with spatial resolution of ∼0.5 mm. PMID:20059245

  11. Transfer of /sup 131/I and /sup 95m/Tc from pasture to goat milk

    SciTech Connect

    Bondietti, E.A.; Garten, C.T. Jr.

    1984-01-01

    Field measurements were made in 1983 on the transfer of /sup 131/I and /sup 95m/Tc from spray-contaminated pasture to goat's milk. The transfer of /sup 131/I to milk was similar to that used for mathematical models in US Nuclear Regulatory Commission Regulatory Guide 1.109, which was derived from stall-feeding experiments using capsulized doses. Compared to /sup 131/I, the /sup 95m/Tc transferred to milk was about 5600 times less. The lower transfer resulted from both immobilization of technetium on pasture prior to ingestion as well as reduced gastrointestinal absorption. The results show that the food chain transfer of technetium to milk is much less than that previously expected based on inferences made from metabolism studies. 6 references, 4 figures, 1 table.

  12. Selection of renal background for quantitative 131I-hippurate relative renal function studies.

    PubMed

    Rosenthall, L; Damtew, B; Kloiber, R

    1981-01-01

    In a series of 100 patients with a full range of normal to poor renal function it was found, using 99mTC--albumin, that the zone between the superior poles of the kidneys best approximates the vascular pool in the renal areas. It is therefore possible to perform sufficiently accurate background-corrected relative renal function studies with 131I-hippurate alone. It is most valid in monitoring renal function in follow-up examinations. Both the accumulated 1- to 2-min count and 0- to 3-min count of the estimated net 131I-hippurate renogram were compared to a standard 99mTc-albumin corrected 131I-hippurate renogram for relative renal function measurements and they correlated very well (r = 0.91). The integrated 0- to 3-min count is preferred to the integrated 1- to 2-min count as the former yields better counting statistics, particularly in renal failure. PMID:7261857

  13. Whole-body cryotherapy: empirical evidence and theoretical perspectives

    PubMed Central

    Bleakley, Chris M; Bieuzen, François; Davison, Gareth W; Costello, Joseph T

    2014-01-01

    Whole-body cryotherapy (WBC) involves short exposures to air temperatures below −100°C. WBC is increasingly accessible to athletes, and is purported to enhance recovery after exercise and facilitate rehabilitation postinjury. Our objective was to review the efficacy and effectiveness of WBC using empirical evidence from controlled trials. We found ten relevant reports; the majority were based on small numbers of active athletes aged less than 35 years. Although WBC produces a large temperature gradient for tissue cooling, the relatively poor thermal conductivity of air prevents significant subcutaneous and core body cooling. There is weak evidence from controlled studies that WBC enhances antioxidant capacity and parasympathetic reactivation, and alters inflammatory pathways relevant to sports recovery. A series of small randomized studies found WBC offers improvements in subjective recovery and muscle soreness following metabolic or mechanical overload, but little benefit towards functional recovery. There is evidence from one study only that WBC may assist rehabilitation for adhesive capsulitis of the shoulder. There were no adverse events associated with WBC; however, studies did not seem to undertake active surveillance of predefined adverse events. Until further research is available, athletes should remain cognizant that less expensive modes of cryotherapy, such as local ice-pack application or cold-water immersion, offer comparable physiological and clinical effects to WBC. PMID:24648779

  14. Characterisation of the PSI whole body counter by radiographic imaging.

    PubMed

    Mayer, S; Boschung, M; Meier, K; Laedermann, J-P; Bochud, F O

    2011-03-01

    A joint project between the Paul Scherrer Institut (PSI) and the Institute of Radiation Physics was initiated to characterise the PSI whole body counter in detail through measurements and Monte Carlo simulation. Accurate knowledge of the detector geometry is essential for reliable simulations of human body phantoms filled with known activity concentrations. Unfortunately, the technical drawings provided by the manufacturer are often not detailed enough and sometimes the specifications do not agree with the actual set-up. Therefore, the exact detector geometry and the position of the detector crystal inside the housing were determined through radiographic images. X-rays were used to analyse the structure of the detector, and (60)Co radiography was employed to measure the core of the germanium crystal. Moreover, the precise axial alignment of the detector within its housing was determined through a series of radiographic images with different incident angles. The hence obtained information enables us to optimise the Monte Carlo geometry model and to perform much more accurate and reliable simulations. PMID:21044999

  15. Acoustical method of whole-body hydration status monitoring

    NASA Astrophysics Data System (ADS)

    Sarvazyan, A. P.; Tsyuryupa, S. N.; Calhoun, M.; Utter, A.

    2016-07-01

    An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

  16. Whole-body cryotherapy: empirical evidence and theoretical perspectives.

    PubMed

    Bleakley, Chris M; Bieuzen, François; Davison, Gareth W; Costello, Joseph T

    2014-01-01

    Whole-body cryotherapy (WBC) involves short exposures to air temperatures below -100°C. WBC is increasingly accessible to athletes, and is purported to enhance recovery after exercise and facilitate rehabilitation postinjury. Our objective was to review the efficacy and effectiveness of WBC using empirical evidence from controlled trials. We found ten relevant reports; the majority were based on small numbers of active athletes aged less than 35 years. Although WBC produces a large temperature gradient for tissue cooling, the relatively poor thermal conductivity of air prevents significant subcutaneous and core body cooling. There is weak evidence from controlled studies that WBC enhances antioxidant capacity and parasympathetic reactivation, and alters inflammatory pathways relevant to sports recovery. A series of small randomized studies found WBC offers improvements in subjective recovery and muscle soreness following metabolic or mechanical overload, but little benefit towards functional recovery. There is evidence from one study only that WBC may assist rehabilitation for adhesive capsulitis of the shoulder. There were no adverse events associated with WBC; however, studies did not seem to undertake active surveillance of predefined adverse events. Until further research is available, athletes should remain cognizant that less expensive modes of cryotherapy, such as local ice-pack application or cold-water immersion, offer comparable physiological and clinical effects to WBC. PMID:24648779

  17. Whole-body impedance--what does it measure?

    PubMed

    Foster, K R; Lukaski, H C

    1996-09-01

    Although the bioelectrical impedance technique is widely used in human nutrition and clinical research, an integrated summary of the biophysical and bioelectrical bases of this approach is lacking. We summarize the pertinent electrical phenomena relevant to the application of the impedance technique in vivo and discuss the relations between electrical measurements and biological conductor volumes. Key terms in the derivation of bioelectrical impedance analysis are described and the relation between the electrical properties of tissues and tissue structure is discussed. The relation between the impedance of an object and its geometry, scale, and intrinsic electrical properties is also discussed. Correlations between whole-body impedance measurements and various bioconductor volumes, such as total body water and fat-free mass, are experimentally well established; however, the reason for the success of the impedence technique is much less clear. The bioengineering basis for the technique is critically presented and considerations are proposed that might help to clarify the method and potentially improve its sensitivity. PMID:8780354

  18. Whole-body counting in the Marshall Islands

    SciTech Connect

    Sun, L.C.; Clinton, J.; Kaplan, E.; Meinhold, C.B.

    1991-01-01

    In 1978 the Marshall Islands Radiological Safety Program was organized to perform radiation measurements and assess radiation doses for the people of the Bikini, Enewetak, Rongelap and Utirik Atolls. One of the major field components of this program is whole- body counting (WBC). WBC is used to monitor the quantity of gamma- emitting radionuclides present in individuals. A primary objective of the program was to establish {sup 137}Cesium body contents among the Enewetak, Rongelap and Utirik populations. {sup 137}Cs was the only gamma-emitting fission radionuclide detected in the 1,967 persons monitored. {sup 137}Cs body burdens tended to increase with age for both sexes, and were higher in males. The average {sup 137}Cs dose Annual Effective Dose for the three populations was as follows: For Enewetak, the dose was 22{+-}4 {mu}Sv. For Utirik, the dose was 33{+-} 3 {mu}Sv. Since 1985 the Rongelap people have been self-exiled to Mejatto. Biological elimination should have reduced their dose to virtually zero, and the measured dose was 2{+-}2 {mu}Sv. If they had remained on Rongelap Island, the calculated dose would have been 99 {mu}Sv, which is about one-third of the background dose. 7 refs., 1 tab. (MHB)

  19. Sex differences in whole body gait kinematics at preferred speeds.

    PubMed

    Bruening, Dustin A; Frimenko, Rebecca E; Goodyear, Chuck D; Bowden, David R; Fullenkamp, Adam M

    2015-02-01

    Studies on human perception have identified pelvis and torso motion as key discriminators between male and female gaits. However, while most observers would advocate that men and women walk differently, consistent findings and explanations of sex differences in gait kinematics across modern empirical studies are rare. In the present study we evaluated sex differences in whole body gait kinematics from a large sample of subjects (55 men, 36 women) walking at self selected speeds. We analyzed the data through comparisons of discrete metrics and whole curve analyses. Results showed that in the frontal plane, women walked with greater pelvic obliquity than men, but exhibited a more stable torso and head. Women had greater transverse plane pelvis and torso rotation as well as greater arm swing. Additional sex differences were noted at the hip and ankle. These kinematic results are in line with anectdotal observations and qualitative studies. In order to understand these observations and substantiate some of the explanations previously set forth in the biomechanics literature, we also explored possible reasons for dynamic sex effects, and suggested applications that may benefit from their consideration. PMID:25548119

  20. Whole body vibration improves cognition in healthy young adults.

    PubMed

    Regterschot, G Ruben H; Van Heuvelen, Marieke J G; Zeinstra, Edzard B; Fuermaier, Anselm B M; Tucha, Lara; Koerts, Janneke; Tucha, Oliver; Van Der Zee, Eddy A

    2014-01-01

    This study investigated the acute effects of passive whole body vibration (WBV) on executive functions in healthy young adults. Participants (112 females, 21 males; age: 20.5±2.2 years) underwent six passive WBV sessions (frequency 30 Hz, amplitude approximately 0.5 mm) and six non-vibration control sessions of two minutes each while sitting on a chair mounted on a vibrating platform. A passive WBV session was alternated with a control session. Directly after each session, performance on the Stroop Color-Block Test (CBT), Stroop Color-Word Interference Test (CWIT), Stroop Difference Score (SDS) and Digit Span Backward task (DSBT) was measured. In half of the passive WBV and control sessions the test order was CBT-CWIT-DSBT, and DSBT-CBT-CWIT in the other half. Passive WBV improved CWIT (p = 0.009; effect size r = 0.20) and SDS (p = 0.034; r = 0.16) performance, but only when the CBT and CWIT preceded the DSBT. CBT and DSBT performance did not change. This study shows that two minutes passive WBV has positive acute effects on attention and inhibition in young adults, notwithstanding their high cognitive functioning which could have hampered improvement. This finding indicates the potential of passive WBV as a cognition-enhancing therapy worth further evaluation, especially in persons unable to perform active forms of exercise. PMID:24949870

  1. Effect of whole body vibration applied on upper extremity muscles.

    PubMed

    Gyulai, G; Rácz, L; Di Giminiani, R; Tihanyi, József

    2013-03-01

    The acute residual effect of whole body vibration (WBV) on upper extremity muscles and testosterone secretion was studied. Eight highly (G1), nine moderately trained gymnasts (G2) and seven physically active persons (CG) were recruited for the investigation. The intervention occurred in push-up position with the elbow flexed at 90°. G1 and G2 received 30 s, 30 Hz and 6 mm amplitude vibration repeated five times. Subjects were tested before and after one and ten minutes intervention in push-up movement. Contact time (Tc), fly time (Tf), TF/Tc ratio and impulse was measured from the ground reaction force-time curves recorded during self-selected (SSRM) and full range of motion (FRM). Testosterone level in urine was also determined. Tf increased significantly in SSRM for G1 and decreased in SSRM and FRM for G2. Tf/Tc ratio in FRM and impulse in SSRM increased significantly for G1 only. No significant alteration in testosterone level was observed. We concluded that WBV is a reasonable training modality for influencing dynamic work of upper extremity muscle, but the reaction to WBV is training and individual dependent. It seems that WBV do not influence dynamic work through increased testosterone secretion because of the relatively low mass of the involved muscles. PMID:23232701

  2. Uncertainty of historical measurements of 131I in Hanford-area vegetation.

    PubMed

    Gilbert, R O; Mart, E I; Denham, D H; Strenge, D L; Miley, T B

    1996-02-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was conducted to estimate the radiation dose that individuals could have received as a result of emissions to the air and water from Hanford Site operations since 1944. The largest doses were to the human thyroid gland from 131I released into the atmosphere from Hanford facilities in the 1945-1947 time period. In support of the dose reconstruction effort, a database of historical environmental radioactivity measurements was constructed. This database includes measurements of total radioactivity for vegetation samples collected from 1945-1948 and counted using a Geiger-Mueller (GM) detector system. Because the factors used at that time to convert the GM counts to 131I activity did not take all parameters into account, and because some parameter values were inaccurate, more accurate conversion factors were developed as part of the HEDR Project. These factors can be used to estimate the actual historical activity levels. This paper summarizes the Monte Carlo uncertainty and sensitivity analysis methods used to assess the uncertainty of the newly reconstructed historical vegetation 131I activities and to identify the parameters that contributed the most uncertainty to these reconstructed activities. Based on the study of two vegetation (sagebrush) samples collected in the mid-1940's, it appears that the true 131I activity of the historical vegetation samples should be within a factor of three of the reconstructed activity. Also, the uncertainty in the parameter Icf (the fraction of the background-corrected GM measurement of a vegetation sample that resulted from 131I) was found to contribute the most uncertainty to the reconstructed 131I activities when the uncertainty in Icf was large. PMID:8567282

  3. A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma.

    PubMed

    Wilson, Jayne S; Gains, Jennifer E; Moroz, Veronica; Wheatley, Keith; Gaze, Mark N

    2014-03-01

    The optimal use and effectiveness of (131)I-meta iodobenzylguanidine ((131)I-mIBG) molecular radiotherapy for neuroblastoma remain unclear despite extensive clinical experience. This systematic review aimed to improve understanding of the current data and define uncertainties for future clinical trials. Bibliographic databases were searched for neuroblastoma and (131)I-mIBG. Clinical trials and non-comparative case series of (131)I-mIBG therapy for neuroblastoma were included. Two reviewers assessed papers for inclusion using the title and abstract with consensus achieved by discussion. Data were extracted by one reviewer and checked by a second. Studies with multiple publications were reported as a single study. The searches yielded 1216 citations, of which 51 publications reporting 30 studies met our inclusion criteria. No randomised controlled trials (RCTs) were identified. In two studies (131)I-mIBG had been used as induction therapy and in one study it had been used as consolidation therapy. Twenty-seven studies for relapsed and refractory disease were identified. Publication dates ranged from 1987 to 2012. Total number of patients was 1121 with study sizes ranging from 10 to 164. There was a large amount of heterogeneity between the studies with regard to patient population, treatment schedule and response assessment. Study quality was highly variable. The objective tumour response rate reported in 25 studies ranged from 0% to 75%, mean 32%. We conclude that (131)I-mIBG is an active treatment for neuroblastoma, but its place in the management of neuroblastoma remains unclear. Prospective randomised trials are essential to strengthen the evidence base. PMID:24333097

  4. Internal dosimetry of nuclear medicine workers through the analysis of (131)I in aerosols.

    PubMed

    Carneiro, Luana Gomes; de Lucena, Eder Augusto; Sampaio, Camilla da Silva; Dantas, Ana Letícia Almeida; Sousa, Wanderson Oliveira; Santos, Maristela Souza; Dantas, Bernardo Maranhão

    2015-06-01

    (131)I is widely used in nuclear medicine for diagnostic and therapy of thyroid diseases. Depending of workplace safety conditions, routine handling of this radionuclide may result in a significant risk of exposure of the workers subject to chronic intake by inhalation of aerosols. A previous study including in vivo and in vitro measurements performed recently among nuclear medicine personnel in Brazil showed the occurrence of (131)I incorporation by workers involved in the handling of solutions used for radioiodine therapy. The present work describes the development, optimization and application of a methodology to collect and analyze aerosol samples aiming to assess internal doses based on the activity of (131)I present in a radiopharmacy laboratory. Portable samplers were positioned at one meter distant from the place where non-sealed liquid sources of (131)I are handled. Samples were collected over 1h using high-efficiency filters containing activated carbon and analyzed by gamma spectrometry with a high-purity germanium detection system. Results have shown that, although a fume hood is available in the laboratory, (131)I in the form of vapor was detected in the workplace. The average activity concentration was found to be of 7.4Bq/m(3). This value is about three orders of magnitude below the Derived Air Concentration (DAC) of 8.4kBq/m(3). Assuming that the worker is exposed by inhalation of iodine vapor during 1h, (131)I concentration detected corresponds to an intake of 3.6Bq which results in a committed effective dose of 7.13×10(-5)mSv. These results show that the radiopharmacy laboratory evaluated is safe in terms of internal exposure of the workers. However it is recommended that the presence of (131)I should be periodically re-assessed since it may increase individual effective doses. It should also be pointed out that the results obtained so far reflect a survey carried out in a specific workplace. Thus, it is suggested to apply the methodology

  5. Radionuclide studies of chronic schistosomal uropathy. [/sup 99m/Tc-DTPA; /sup 131/I-hippuran

    SciTech Connect

    Lamki, L.M.; Lamki, N.

    1981-08-01

    Fifty patients with chronic urinary tract schistosomiasis were studied with /sup 99m/Tc-DTPA. All had a flow study, sequential analog imaging, and digital imaging for 25 to 35 min (20-sec frames). Time-activity curves (DTPA renograms) were extracted; 12 patients had /sup 131/I-Hippuran probe renograms as well. Renal changes included diminished perfusion and structural abnormalities ranging from minor calyceal dilatation to overt hydronephrosis. Ureteral changes included dilatation, tortuosity, and kinking. Marked distortion of the ureterovesical junction was seen in some patients due to periureteral and perivesicular fibrosis, which is a major factor in upper urinary tract damage. Renograms showed varying obstruction and parenchymal damage. Nuclear medicine complements excretory urography and is sometimes preferable for visualization of the ureters. After the initial urogram, sequential DTPA scanning and renography are sufficient for follow-up.

  6. Polyarteritis nodosa: MDCT as a 'One-Stop Shop' Modality for Whole-Body Arterial Evaluation

    SciTech Connect

    Tsai, W.-L.; Tsai, I-C.; Lee Tain; Hsieh, C.-W.

    2008-07-15

    Polyarteritis nodosa is a rare disease, which is characterized by aneurysm formation and occlusion in the arteries of multiple systems. Due to its extensive involvement, whole-body evaluation is necessary for diagnosis and treatment monitoring. We report a case of polyarteritis nodosa using multidetector-row computed tomography (MDCT) as a 'one-stop shop' modality for whole-body arterial evaluation. With precise protocol design, MDCT can be used as a reliable noninvasive modality providing comprehensive whole-body arterial evaluation.

  7. Whole-Body Clinical Applications of Digital Tomosynthesis.

    PubMed

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Ishikawa, Takuya; Tate, Etsuko; Ueno, Eiko; Nye, Katelyn; Sabol, John M

    2016-01-01

    With flat-panel detector mammography, radiography, and fluoroscopy systems, digital tomosynthesis (DT) has been recently introduced as an advanced clinical application that removes overlying structures, enhances local tissue separation, and provides depth information about structures of interest by providing high-quality tomographic images. DT images are generated from projection image data, typically using filtered back-projection or iterative reconstruction. These low-dose x-ray projection images are easily and swiftly acquired over a range of angles during a single linear or arc sweep of the x-ray tube assembly. DT is advantageous in a variety of clinical contexts, including breast, chest, head and neck, orthopedic, emergency, and abdominal imaging. Specifically, compared with conventional mammography, radiography, and fluoroscopy, as a result of reduced tissue overlap DT can improve detection of breast cancer, pulmonary nodules, sinonasal mucosal thickening, and bone fractures and delineation of complex anatomic structures such as the ostiomeatal unit, atlantoaxial joint, carpal and tarsal bones, and pancreatobiliary and gastrointestinal tracts. Compared with computed tomography, DT offers reduced radiation exposure, better in-plane resolution to improve assessment of fine bony changes, and less metallic artifact, improving postoperative evaluation of patients with metallic prostheses and osteosynthesis materials. With more flexible patient positioning, DT is also useful for functional, weight-bearing, and stress tests. To optimize patient management, a comprehensive understanding of the clinical applications and limitations of whole-body DT applications is important for improvement of diagnostic quality, workflow, and cost-effectiveness. Online supplemental material is available for this article. (©)RSNA, 2016. PMID:27163590

  8. Measurement of whole-body vibration in taxi drivers.

    PubMed

    Funakoshi, Mitsuhiko; Taoda, Kazushi; Tsujimura, Hiroji; Nishiyama, Katsuo

    2004-03-01

    In a previous epidemiological study we reported that the prevalence (45.8%) of low-back pain (LBP) and the two-year incidence (25.9%) of LBP in 284 male taxi drivers in Japan was comparable with rates reported for other occupational drivers in which LBP frequently occurs. LBP was significantly related with the level of uncomfortable road vibrations, and, importantly, increased with total mileage. The aim of this study was to measure whole-body vibration (WBV) on the driver's seat pan of 12 taxis operating under actual working conditions. The results were evaluated according to the health guidelines in International Standard ISO 2631-1:1997. Finally, the relation between total mileage and WBV was investigated. The majority of the frequency-weighted r.m.s. accelerations of the taxis fell into the "potential health risks" zone, under ISO 2631-1:1997. It was clear that the taxi drivers were exposed to serious WBV magnitudes. Therefore, occupational health and safety management should be carried out to help prevent adverse health effects in taxi drivers. In particular, reduction of WBV in taxis and shortening of driving time to reduce duration of WBV exposure should be considered. Moreover, because many taxi drivers work 18 h every other day, the shortening of working hours and taking of rest breaks while working should be considered. Frequency-weighted r.m.s. accelerations of taxis had a tendency to decrease as total mileage increased. The relation between total mileage and WBV should be investigated by taking measurements on the floor and the back rest in addition to the seat pan. PMID:15090686

  9. Ultra-high field magnets for whole-body MRI

    NASA Astrophysics Data System (ADS)

    Warner, Rory

    2016-09-01

    For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200–870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000–20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.

  10. Human perceptual overestimation of whole body roll tilt in hypergravity

    PubMed Central

    Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2014-01-01

    Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally. PMID:25540216

  11. Treatment of neuroblastoma with /sup 131/I-MIBG: dosimetric problems and perspectives

    SciTech Connect

    Beierwaltes, W.H.

    1987-01-01

    Between 7/3/80 and 5/7/86 we gave 32 of our neuroblastoma patients 62 diagnostic doses of metaiodobenzylguanidine (MIBG) and 12 patients 20 treatment doses. Our conclusion from our diagnostic dose studies is that MIBG should be used for staging the extent of neuroblastoma before therapy is started, because it may change the proposed staging and therapy. In MIBG therapy for neuroblastoma, our criteria for agreeing to treat a patient are based on calculations from a 4-day tracer dose study that assures that the patient will receive from his first therapy dose a tumor dose of at least 2000 rads/100 mCi, with a total body dose of not greater than 200 rads. Under these circumstances in children, the blood dose has been about 50 rads. The platelet count falls routinely with a 150-rad whole-body dose but never to dangerous levels. We have delivered tumor doses of 7000-34,600 rads on the first dose using 150-215 mCi. We have had objective regressions (as shown by before and after CAT scans) of 30-59% in volume of the principal tumor mass in 3 of the first 12 patients treated. All patients had Grade IV neuroblastoma with extensive previous surgery, radiation, and chemotherapy, with and without previous bone marrow transplants. MIBG therapy was most effective in patients with slower-growing tumors for whom initial treatment doses were 200 mCi or more.

  12. Tumor immunotherapy in the mouse with the use of 131I-labeled monoclonal antibodies

    SciTech Connect

    Zalcberg, J.R.; Thompson, C.H.; Lichtenstein, M.; McKenzie, I.F.

    1984-03-01

    This report describes the use of 131I-labeled monoclonal antibodies in two experimental models for tumor immunotherapy. In vitro treatment of the radiation-induced murine thymoma ITT-1-75NS with radiolabeled anti-Ly-2.1 significantly impaired subsequent tumor growth in vivo. However, in vivo treatment of this tumor, which previously had been injected into C57BL/6 mice, was unsuccessful. By contrast, in vitro treatment of a human colorectal tumor cell line (COLO 205) with 131I-labeled 250-30.6--a monoclonal antibody directed against a secretory component of normal and malignant gastrointestinal epithelium--completely inhibited subsequent tumor growth in BALB/c nude (nu/nu) mice. Furthermore, in vivo treatment of preexisting human colorectal tumor xenografts significantly impaired progressive tumor growth. Although some tumor inhibition was also produced by unlabeled 250-30.6 antibody, this response was considerably amplified by treatment with (131I)-labeled 250-30.6 (P less than .05), suggesting that in vivo treatment of human tumors with the use of 131I-labeled monoclonal antibodies may be clinically beneficial. The antithyroid drug propylthiouracil was used to reduce dehalogenation of the radiolabeled immunoglobulins in an attempt to improve their therapeutic efficacy.

  13. Cancer risks after diagnostic doses of 131I with special reference to thyroid cancer

    SciTech Connect

    Holm, L.E. )

    1991-01-01

    Between 1951 and 1969 a total of 35,074 patients less than 75 years of age (mean = 44 years) were examined with diagnostic doses of 131I. The mean administered activity of 131I was 52 microCi and the radiation dose to the thyroid gland was on the average of 0.5 Gy. The cohort was matched with the Swedish Cancer Register for the years 1958-1984. During this period, 3746 cancers occurred more than 5 years after the 131I examination, and the resulting standardized incidence ratio (SIR) was 1.01 (95% confidence interval (CI) = 0.98 to 1.04). SIR for thyroid cancer was 1.18 (95% CI = 0.88 to 1.56). The risks for both cancer of all sites and for thyroid cancer were highest 5 to 9 years after examination (SIR = 1.07 and 2.06, respectively) and did not differ from unity thereafter. With greater than or equal to 10 years of follow-up, risk was not statistically associated with the dose of 131I.

  14. Failure to visualize adrenal glands in a patient with bilateral adrenal hyperplasia. [/sup 131/I

    SciTech Connect

    Gordon, L.; Mayfield, R.K.; Levine, J.H.; Lopes-Virella, M.F.; Sagel, J.; Buse, M.G.

    1980-01-01

    A patient with clinical and biochemical evidence of Cushing's disease and severe hyperlipidemia underwent an adrenal imaging procedure with NP-59 (6..beta..-(/sup 131/I)iodomethyl-19-norcholesterol), without visualization of either gland. Correction of the hyperlipidemia followed by repeated adrenal imaging resulted in bilateral visualization. A pituitary tumor was removed at surgery, confirming the diagnosis of Cushing's disease.

  15. Measurement of the /sup 129/I//sup 131/I ratio in Chernobyl fallout

    SciTech Connect

    Kutschera, W.; Fink, D.; Paul, M.; Hollos, G.; Kaufman, A.

    1986-01-01

    Rainwater collected in the Munich area approximately one week after the Chernobyl reactor accident was investigated for its content of the radioisotopes /sup 129/I (T/sub 1/2/ = 1.6 x 10/sup 7/ y) and /sup 131/I (T/sub 1/2/ = 8.04 d). For the time of release, an isotopic ratio of /sup 129/I//sup 131/I = 19 +- 5 was found. This value was obtained from a gamma-ray activity measurement of /sup 131/I with a GE detector and a concentration measurement of /sup 129/I with accelerator mass spectrometry. From the measured ratio an operating time of the reactor prior to the accident in the vicinity of two years can be estimated, which is in fair agreement with estimates from other long-lived to short-lived radioisotope ratios in the Chernobyl fallout. Some measurements of /sup 131/I activity in thyroids of persons living in the Munich area is also reported.

  16. Uptake and depuration of 131I by the edible periwinkle Littorina littorea: uptake from seawater.

    PubMed

    Vives i Batlle, J; Wilson, R C; McDonald, P; Parker, T G

    2005-01-01

    Uptake and depuration experiments for the edible periwinkle Littorina littorea have been performed using 131I-labelled seawater. Throughout the experimental phase the winkles were fed on unlabelled Chondrus crispus. 131I concentrations in winkles during uptake followed linear first-order kinetics with an uptake half-time of 11 days, whereas for depuration a triphasic sequence with biological half-lives of 4, 23 and 56 days was determined. In general, iodine turnover in winkles via labelled seawater appears to be slower than observed for other molluscs (2-3 days). Most of the activity prior to and after depuration is found to be in the shell, with indications that shell and soft parts accumulate and depurate 131I at a similar rate. The operculum displays the highest specific activity of all fractions with a concentration factor of 750 l kg(-1). Concentration factors for whole winkle, shell, soft parts and digestive gland are in the order of 40-60 l kg(-1), higher than the IAEA recommended CF value for iodine in molluscs of 10 l kg(-1). The 131I CF in winkles is closer to that of the conservative radionuclides 99Tc and 137Cs than the CF of the particle reactive radionuclides (239,240)Pu and 241Am. PMID:15465179

  17. Developing historical food production and consumption data for {sup 131}I dose estimates: The Hanford experience

    SciTech Connect

    Anderson, D.M.; Marsh, T.L.; Deonigi, D.A.

    1996-10-01

    This paper describes the methods used to reconstruct the movement of commercial foods in and through the study area of the Hanford Environmental Dose Reconstruction Project. The most dose-relevant radionuclide released from Hanford separations plants was {sup 131}I via the atmospheric pathway. As a result of atmospheric deposition of {sup 131}I, commercial food supplies may have been contaminated. Because of the half-life of {sup 131}I is relatively short, foods consumed soon after production, such as milk and produce, presented the highest risk. For that reason, this paper deals primarily with the reconstruction of milk and produce production, marketing, and consumption from 1945-1951, the period with the highest known {sup 131}I releases. The reconstructed food production and consumption information was used as input to radiation dose estimates for representative individuals and as default values for real individuals who may not remember where they obtained food or how much they consumed during that period. Specific methods for tracing the movement of commercial milk and produce back from the point of human consumption, through commercial markets, to original production are presented. Results include the characteristics of food consumption exhibited by representative individuals, examples of commercial milk and produce market structures, and a review of commercial milk production and processing practices from 1945-1951.

  18. Radiopharmaceutical evaluation of (131)I-protohypericin as a necrosis avid compound.

    PubMed

    Liu, Xuejiao; Feng, Yuanbo; Jiang, Cuihua; Lou, Bin; Li, Yue; Liu, Wei; Yao, Nan; Gao, Meng; Ji, Yun; Wang, Qingqing; Huang, Dejian; Yin, Zhiqi; Sun, Ziping; Ni, Yicheng; Zhang, Jian

    2015-06-01

    Hypericin is a necrosis avid agent useful for nuclear imaging and tumor therapy. Protohypericin, with a similar structure to hypericin except poorer planarity, is the precursor of hypericin. In this study, we aimed to investigate the impact of this structural difference on self-assembly, and evaluate the necrosis affinity and metabolism in the rat model of reperfused hepatic infarction. Protohypericin appeared less aggregative in solution compared with hypericin by fluorescence analysis. Biodistribution data of (131)I-protohypericin showed the percentage of injected dose per gram of tissues (%ID/g) increased with time and reached to the maximum of 7.03 at 24 h in necrotic liver by gamma counting. The maximum ratio of target/non-target tissues was 11.7-fold in necrotic liver at 72 h. Pharmacokinetic parameters revealed that the half-life of (131)I-protohypericin was 14.9 h, enabling a long blood circulation and constant retention in necrotic regions. SPECT-CT, autoradiography, and histological staining showed high uptake of (131)I-protohypericin in necrotic tissues. These results suggest that (131)I-protohypericin is a promising necrosis avid compound with a weaker aggregation tendency compared with hypericin and it may have a broad application in imaging and oncotherapy. PMID:25655506

  19. [Evaluation of Reproductive Health of Chickens and Their Progeny at a Chronic Effect of 131I].

    PubMed

    Boudarkov, V A

    2015-01-01

    A reproductive health of hens exposed to 131I in a 30-day period with daily quantities ranging from 0.11 to 4.6 MBq/kg and 6 progenies of their offspring was evaluated. We determined that 131I did not change significantly the reproductive potential of hens if administered at a dose of 0.11 MBq, while it raised at 1.1 MBq, progressively decreased after a short-time increase at 2.1 MBq and was inhabited up to its irreversible extinction at 4.6 MBq. Irrespective of the isotope quantity administered, a decline occurred in the birth rate of the progeny where hens dominated in the sex composition. The reproductive potential (i.e., laying capacity) of the offspring of three chicken progenies that had been administered 131I at 0.11 MBq/kg, progenies 3 and 5 that had been administered 1.1 MBq/kg and progeny 1 affected with 2.1 MBq/kg increased, while for chicken progenies 1, 2, 4 and 6 that had been given 131I at 1.1. MBq/kg the reproductive capacity was within the normal range or decreased. PMID:26310019

  20. Whole-body voxel phantoms of paediatric patients—UF Series B

    NASA Astrophysics Data System (ADS)

    Lee, Choonik; Lee, Choonsik; Williams, Jonathan L.; Bolch, Wesley E.

    2006-09-01

    Following the previous development of the head and torso voxel phantoms of paediatric patients for use in medical radiation protection (UF Series A), a set of whole-body voxel phantoms of paediatric patients (9-month male, 4-year female, 8-year female, 11-year male and 14-year male) has been developed through the attachment of arms and legs from segmented CT images of a healthy Korean adult (UF Series B). Even though partial-body phantoms (head-torso) may be used in a variety of medical dose reconstruction studies where the extremities are out-of-field or receive only very low levels of scatter radiation, whole-body phantoms play important roles in general radiation protection and in nuclear medicine dosimetry. Inclusion of the arms and legs is critical for dosimetry studies of paediatric patients due to the presence of active bone marrow within the extremities of children. While the UF Series A phantoms preserved the body dimensions and organ masses as seen in the original patients who were scanned, comprehensive adjustments were made for the Series B phantoms to better match International Commission on Radiological Protection (ICRP) age-interpolated reference body masses, body heights, sitting heights and internal organ masses. The CT images of arms and legs of a Korean adult were digitally rescaled and attached to each phantom of the UF series. After completion, the resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year and 14-year were set at 0.86 mm × 0.86 mm × 3.0 mm, 0.90 mm × 0.90 mm × 5.0 mm, 1.16 mm × 1.16 mm × 6.0 mm, 0.94 mm × 0.94 mm × 6.00 mm and 1.18 mm × 1.18 mm × 6.72 mm, respectively.

  1. Whole-body voxel phantoms of paediatric patients--UF Series B.

    PubMed

    Lee, Choonik; Lee, Choonsik; Williams, Jonathan L; Bolch, Wesley E

    2006-09-21

    Following the previous development of the head and torso voxel phantoms of paediatric patients for use in medical radiation protection (UF Series A), a set of whole-body voxel phantoms of paediatric patients (9-month male, 4-year female, 8-year female, 11-year male and 14-year male) has been developed through the attachment of arms and legs from segmented CT images of a healthy Korean adult (UF Series B). Even though partial-body phantoms (head-torso) may be used in a variety of medical dose reconstruction studies where the extremities are out-of-field or receive only very low levels of scatter radiation, whole-body phantoms play important roles in general radiation protection and in nuclear medicine dosimetry. Inclusion of the arms and legs is critical for dosimetry studies of paediatric patients due to the presence of active bone marrow within the extremities of children. While the UF Series A phantoms preserved the body dimensions and organ masses as seen in the original patients who were scanned, comprehensive adjustments were made for the Series B phantoms to better match International Commission on Radiological Protection (ICRP) age-interpolated reference body masses, body heights, sitting heights and internal organ masses. The CT images of arms and legs of a Korean adult were digitally rescaled and attached to each phantom of the UF series. After completion, the resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year and 14-year were set at 0.86 mm x 0.86 mm x 3.0 mm, 0.90 mm x 0.90 mm x 5.0 mm, 1.16 mm x 1.16 mm x 6.0 mm, 0.94 mm x 0.94 mm x 6.00 mm and 1.18 mm x 1.18 mm x 6.72 mm, respectively. PMID:16953048

  2. Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice.

    PubMed

    Patwardhan, Sachin; Bloch, Sharon; Achilefu, Samuel; Culver, Joseph

    2005-04-01

    We present a fast scanning fluorescence optical tomography system for imaging the kinetics of probe distributions through out the whole body of small animals. Configured in a plane parallel geometry, the system scans a source laser using a galvanometer mirror pair (tauswitch~1ms) over flexible source patterns, and detects excitation and emission light using a high frame rate low noise, 5 MHz electron multiplied charge-coupled device (EMCCD) camera. Phantom studies were used to evaluate resolution, linearity, and sensitivity. Time dependent (deltat=2.2 min.) in vivo imaging of mice was performed following injections of a fluorescing probe (indocyanine green). The capability to detect differences in probe delivery route was demonstrated by comparing an intravenous injection, versus an injection into a fat pocket (retro orbital injection). Feasibility of imaging the distribution of tumor-targeted molecular probes was demonstrated by imaging a breast tumor-specific near infrared polypeptide in MDA MB 361 tumor bearing nude mice. A tomography scan, at 24 hour post injection, revealed preferential uptake in the tumor relative to surrounding tissue. PMID:19495147

  3. Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice

    NASA Astrophysics Data System (ADS)

    Patwardhan, Sachin V.; Bloch, Sharon R.; Achilefu, Samuel; Culver, Joseph P.

    2005-04-01

    We present a fast scanning fluorescence optical tomography system for imaging the kinetics of probe distributions through out the whole body of small animals. Configured in a plane parallel geometry, the system scans a source laser using a galvanometer mirror pair (τswitch~1ms) over flexible source patterns, and detects excitation and emission light using a high frame rate low noise, 5 MHz electron multiplied charge-coupled device (EMCCD) camera. Phantom studies were used to evaluate resolution, linearity, and sensitivity. Time dependent (δt=2.2 min.) in vivo imaging of mice was performed following injections of a fluorescing probe (indocyanine green). The capability to detect differences in probe delivery route was demonstrated by comparing an intravenous injection, versus an injection into a fat pocket (retro orbital injection). Feasibility of imaging the distribution of tumor-targeted molecular probes was demonstrated by imaging a breast tumor-specific near infrared polypeptide in MDA MB 361 tumor bearing nude mice. A tomography scan, at 24 hour post injection, revealed preferential uptake in the tumor relative to surrounding tissue.

  4. Estimation of signal and noise for a whole-body photon counting research CT system

    NASA Astrophysics Data System (ADS)

    Li, Zhoubo; Leng, Shuai; Yu, Zhicong; Kappler, Steffen; McCollough, Cynthia H.

    2016-03-01

    Photon-counting CT (PCCT) may yield potential value for many clinical applications due to its relative immunity to electronic noise, increased geometric efficiency relative to current scintillating detectors, and the ability to resolve energy information about the detected photons. However, there are a large number of parameters that require optimization, particularly the energy thresholds configuration. Fast and accurate estimation of signal and noise in PCCT can benefit the optimization of acquisition parameters for specific diagnostic tasks. Based on the acquisition parameters and detector response of our research PCCT system, we derived mathematical models for both signal and noise. The signal model took the tube spectrum, beam filtration, object attenuation, water beam hardening, and detector response into account. The noise model considered the relationship between noise and radiation dose, as well as the propagation of noise as threshold data are subtracted to yield energy bin data. To determine the absolute noise value, a noise look-up table (LUT) was acquired using a limited number of calibration scans. The noise estimation algorithm then used the noise LUT to estimate noise for scans with a variety of combination of energy thresholds, dose levels, and object attenuation. Validation of the estimation algorithms was performed on our whole-body research PCCT system using semianthropomorphic water phantoms and solutions of calcium and iodine. The algorithms achieved accurate estimation of signal and noise for a variety of scanning parameter combinations. The proposed method can be used to optimize energy thresholds configuration for many clinical applications of PCCT.

  5. Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-10-01

    We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 (131I). The generated multifunctional 131I-G5.NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to 131I labeling, the G5.NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive 131I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and

  6. Guidelines for Whole-Body Vibration Health Surveillance

    NASA Astrophysics Data System (ADS)

    POPE, M.; MAGNUSSON, M.; LUNDSTRÖM, R.; HULSHOF, C.; VERBEEK, J.; BOVENZI, M.

    2002-05-01

    examination, which includes recording any change in exposure to WBV. The findings for the individual should be compared with previous examinations. Group data should also be compiled periodically. Medical removal may be considered along with re-placement in working practices without exposure to WBV. This paper presents opinions on health surveillance for whole-body vibration developed within a working group of partners funded on a European Community Network (BIOMED2 concerted action BMH4-CT98-3251: Research network on detection and prevention of injuries due to occupational vibration exposures). The health surveillance protocol and the draft questionnaire with explanation comments are presented for wider consideration by the science community and others before being considered appropriate for implementation.

  7. Characterization of historical {sup 131}I emissions from Oak Ridge radioactive lanthanum processing

    SciTech Connect

    Widner, T.E.

    1996-06-01

    As part of the Oak Ridge Dose Reconstruction, a detailed assessment of {sup 131}I releases from radioactive lanthanum (RaLa) processing is being conducted. From 1944 through 1956, fuel slugs from Oak Ridge (X-10) and Hanford reactors were dissolved and processed at Oak Ridge to separate {sup 140}La for Los Alamos weapons development. Fuel cooling times were as short as several hours, and dissolver off-gas passed through a caustic scrubber. In an earlier feasibility study, simple screening analyses identified RaLa processing as one of the largest potential contributors to off-site risk from the three Oak Ridge plants, with releases over 3.7 PBq (100,000 Ci) considered likely. With the close proximity of surrounding populations and potential {sup 131}I releases comparable to those established in the Hanford dose reconstruction, a detailed investigation was initiated. Inventories of {sup 131}I and {sup 140}Ba in X-10 slugs were calculated using the ORIGEN 2.1 code, detailed slug exposure records, and neutron flux distributions determined in the X-10 reactor in 1945. Informal expert elicitation was used to estimate a {sup 131}I release fraction for use in the initial iteration of the assessment. For later iterations, a simple numerical model of iodine distribution in RaLa chemical processing was prepared to predict releases from the dissolver and waste neutralizer tank based on five mass-balance equations. The critical caustic scrubber was then modeled with a kinetic-based model of iodine mass transfer. Separate analyses of release fractions are necessary for a number of off-normal conditions and accidents. The models were integrated for estimation of time histories of {sup 131}I release, interfacing with calculations of environmental transport, off-site exposure, and ranges of historical doses and health risks in a manner that reflects the uncertainty of all components.

  8. Evaluation of therapeutic effectiveness of 131I-antiEGFR-BSA-PCL in a mouse model of colorectal cancer

    PubMed Central

    Li, Wei; Ji, Yan-Hui; Li, Cheng-Xia; Liu, Zhong-Yun; Li, Ning; Fang, Lei; Chang, Jin; Tan, Jian

    2016-01-01

    AIM: To investigate the biological effects of internal irradiation, and the therapeutic effectiveness was assessed of 131I-labeled anti-epidermal growth factor receptor (EGFR) liposomes, derived from cetuximab, when used as a tumor-targeting carrier in a colorectal cancer mouse model. METHODS: We described the liposomes and characterized their EGFR-targeted binding and cellular uptake in EGFR-overexpressing LS180 colorectal cancer cells. After intra-tumor injections of 74 MBq (740 MBq/mL) 131I-antiEGFR-BSA-PCL, we investigated the biological effects of internal irradiation and the therapeutic efficacy of 131I-antiEGFR-BSA-PCL on colorectal cancer in a male BALB/c mouse model. Tumor size, body weight, histopathology, and SPECT imaging were monitored for 33 d post-therapy. RESULTS: The rapid radioiodine uptake of 131I-antiEGFR-BSA-PCL and 131I-BSA-PCL reached maximum levels at 4 h after incubation, and the 131I uptake of 131I-antiEGFR-BSA-PCL was higher than that of 131I-BSA-PCL in vitro. The 131I tissue distribution assay revealed that 131I-antiEGFR-BSA-PCL was markedly taken up by the tumor. Furthermore, a tissue distribution assay revealed that 131I-antiEGFR-BSA-PCL was markedly taken up by the tumor and reached its maximal uptake value of 21.0 ± 1.01 %ID/g (%ID/g is the percentage injected dose per gram of tissue) at 72 h following therapy; the drug concentration in the tumor was higher than that in the liver, heart, colon, or spleen. Tumor size measurements showed that tumor development was significantly inhibited by treatments with 131I-antiEGFR-BSA-PCL and 131I-BSA-PCL. The volume of tumor increased, and treatment rate with 131I-antiEGFR-BSA-PCL was 124% ± 7%, lower than that with 131I-BSA-PCL (127% ± 9%), 131I (143% ± 7%), and normal saline (146% ± 10%). The percentage losses in original body weights were 39% ± 3%, 41% ± 4%, 49% ± 5%, and 55% ± 13%, respectively. The best survival and cure rates were obtained in the group treated with 131I

  9. Effects of Whole Body Vibration Training on Body Composition in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Matute-Llorente, Angel; Gomez-Cabello, Alba; Casajus, Jose A.; Vicente-Rodriguez, German

    2013-01-01

    The present study aimed to determine the effect of 20 weeks of whole body vibration (WBV) on the body composition of adolescents with Down syndrome (DS). Thirty adolescent with DS were divided into two groups: control and WBV. Whole body, upper and lower limbs body fat and lean body mass were measured with dual energy X-ray absorptiometry (DXA)…

  10. A high protein diet upregulated whole-body protein turnover during energy deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of higher protein diets and sustained energy deficit (ED) on whole-body protein turnover (WBPTO) are not well described. This study examined whether dietary protein level influences whole-body protein breakdown (Ra), non-oxidative leucine disposal (NOLD), and oxidation (Ox) during ED. ...

  11. (Mis)use of (133)Ba as a calibration surrogate for (131)I in clinical activity calibrators.

    PubMed

    Zimmerman, B E; Bergeron, D E

    2016-03-01

    Using NIST-calibrated solutions of (131)Ba and (131)I in the 5mL NIST ampoule geometry, measurements were made in three NIST-maintained Capintec activity calibrators and the NIST Vinten 671 ionization chamber to evaluate the suitability of using (133)Ba as a calibration surrogate for (131)I. For the Capintec calibrators, the (133)Ba response was a factor of about 300% higher than that of the same amount of (131)I. For the Vinten 671, the Ba-133 response was about 7% higher than that of (131)I. These results demonstrate that (133)Ba is a poor surrogate for (131)I. New calibration factors for these radionuclides in the ampoule geometry for the Vinten 671 and Capintec activity calibrators were also determined. PMID:26653213

  12. The role of meta-iodo ( sup 131 I)benzylguanidine (MIBG) in the diagnosis and follow-up of neuroblastoma

    SciTech Connect

    Miceli, A.; Nespoli, L.; Burgio, G.R.; Aprile, C.; Carena, M.; Saponaro, R. )

    1986-01-01

    Fourteen scans employing the adrenergic blocking agent ({sup 131}I)MIBG were performed on 10 children with neuroblastoma (NB) or ganglioneuroblastoma (GNB). The scans were negative in 5 cases, and 1 further case produced doubtful results in both the MIBG and CT scan tests. In 4 cases, very positive results were obtained with clear vision of the primary tumor and its metastases. In 1 case, which demonstrated partial differentiation of the outer part of the tumor mass toward GNB, a differentiated tumor specimen did not reveal significant uptake of the tracer. Half-lives of the tracer as measured by external detection in the period 24-48 h after injection were reduced after successful therapy. MIBG scanning appears to be a feasible indicator of NB adrenergic activity, and it can assume a primary role in the staging and follow-up of NB. Higher tumor uptake of the ({sup 131}I)MIBG and low background offer new perspectives in the radiometabolic treatment of MIBG.

  13. Prevention of DNA Double-Strand Breaks Induced by Radioiodide-131I in FRTL-5 Thyroid Cells

    PubMed Central

    Okunyan, Armen; Rivina, Yelena; Cannon, Sophie; Hogen, Victor

    2011-01-01

    Radioiodine-131 released from nuclear reactor accidents has dramatically increased the incidence of papillary thyroid cancer in exposed individuals. The deposition of ionizing radiation in cells results in double-strand DNA breaks (DSB) at fragile sites, and this early event can generate oncogenic rearrangements that eventually cause cancer. The aims of this study were to develop a method to show DNA DSBs induced by 131I in thyroid cells; to test monovalent anions that are transported by the sodium/iodide symporter to determine whether they prevent 131I-induced DSB; and to test other radioprotective agents for their effect on irradiated thyroid cells. Rat FRTL-5 thyroid cells were incubated with 131I. DSBs were measured by nuclear immunofluorescence using antibodies to p53-binding protein 1 or γH2AX. Incubation with 1–10 μCi 131I per milliliter for 90 min resulted in a dose-related increase of DSBs; the number of DSBs increased from a baseline of 4–15% before radiation to 65–90% after radiation. GH3 or CHO cells that do not transport iodide did not develop DSBs when incubated with 131I. Incubation with 20–100 μm iodide or thiocyanate markedly attenuated DSBs. Perchlorate was about 6 times more potent than iodide or thiocyanate. The effects of the anions were much greater when each was added 30–120 min before the 131I. Two natural organic compounds recently shown to provide radiation protection partially prevented DSBs caused by 131I and had an additive effect with perchlorate. In conclusion, we developed a thyroid cell model to quantify the mitogenic effect of 131I. 131I causes DNA DSBs in FRTL-5 cells and had no effect on cells that do not transport iodide. Perchlorate, iodide, and thiocyanate protect against DSBs induced by 131I. PMID:21190956

  14. Biodistribution and tumour localisation of 131I SWA11 recognising the cluster w4 antigen in patients with small cell lung cancer.

    PubMed

    Ledermann, J A; Marston, N J; Stahel, R A; Waibel, R; Buscombe, J R; Ell, P J

    1993-07-01

    The biodistribution of radiolabelled SWA11, a mouse monoclonal antibody recognising the cluster w4 group antigen associated with small cell lung cancer (SCLC) was studied in patients with SCLC. Five patients were injected intravenously with approximately 5 mCi of 131I conjugated to 1 mg of SWA11. The half-life of the radiolabel in blood was short but there was a prolonged second phase of clearance with a half-life of about 40 h. Tumour was detected by gamma camera imaging two patients. However, most of the whole body radioactivity was located in the bone marrow. At least 35% of the radioactivity in blood 18 h after injection was bound to circulating granulocytes and this probably accounted for the unusual biodistribution of the radiolabel in man. This study shows that the biodistribution of radiolabelled SWA11 in man differs from human tumour xenograft models and that the antibody in unsuitable for targeting therapy to SCLC in man. PMID:8391302

  15. The feasibility of using 129I to reconstruct 131I deposition from the Chernobyl reactor accident.

    PubMed

    Straume, T; Marchetti, A A; Anspaugh, L R; Khrouch, V T; Gavrilin YuI; Shinkarev, S M; Drozdovitch, V V; Ulanovsky, A V; Korneev, S V; Brekeshev, M K; Leonov, E S; Voigt, G; Panchenko, S V; Minenko, V F

    1996-11-01

    Radioiodine released to the atmosphere from the accident at the Chernobyl nuclear power station in the spring of 1986 resulted in large-scale thyroid-gland exposure of populations in Ukraine, Belarus, and Russia. Because of the short half life of 131I (8.04 d), adequate data on the intensities and patterns of iodine deposition were not collected, especially in the regions where the incidence of childhood-thyroid cancer is now increasing. Results are presented from a feasibility study that show that accelerator-mass-spectrometry measurements of 129I (half life 16 x 106 y) in soil can be used to reconstruct 131I-deposition density and thus help in the thyroid-dosimetry effort that is now urgently needed to support epidemiologic studies of childhood-thyroid cancer in the affected regions. PMID:8887520

  16. Preclinical Evaluation of an 131I-Labeled Benzamide for Targeted Radiotherapy of Metastatic Melanoma

    PubMed Central

    Joyal, John L.; Barrett, John A.; Marquis, John C.; Chen, Jianqing; Hillier, Shawn M.; Maresca, Kevin P.; Boyd, Marie; Gage, Kenneth; Nimmagadda, Sridhar; Kronauge, James F.; Friebe, Matthias; Dinkelborg, Ludger; Stubbs, James B.; Stabin, Michael G.; Mairs, Rob; Pomper, Martin G.; Babich, John W.

    2010-01-01

    Radiolabeled benzamides are attractive candidates for targeted radiotherapy of metastatic melanoma as they bind melanin and exhibit high tumor uptake and retention. One such benzamide, N-(2-diethylamino-ethyl)-4-(4-fluoro-benzamido)-5-iodo-2-methoxy-benzamide (MIP-1145), was evaluated for its ability to distinguish melanin-expressing from amelanotic human melanoma cells, and to localize specifically to melanin containing tumor xenografts. The binding of [131I]MIP-1145 to melanoma cells in vitro was melanin-dependent, increased over time, and insensitive to mild acid treatment, indicating that it was retained within cells. Cold carrier MIP-1145 did not reduce the binding, consistent with the high capacity of melanin binding of benzamides. In human melanoma xenografts, [131 I]MIP-1145 exhibited diffuse tissue distribution and washout from all tissues except melanin expressing tumors. Tumor uptake of 8.82% injected dose per gram (ID/g) was seen at 4 hours post-injection and remained at 5.91% ID/g at 24 hours, with tumor:blood ratios of 25.2 and 197, respectively. Single photon emission computed tomography (SPECT) imaging was consistent with the tissue distribution results. The administration of [131I]MIP-1145 at 25 MBq or 2.5 GBq/m2 in single or multiple doses significantly reduced SK-MEL-3 tumor growth with multiple doses resulting in tumor regression and a durable response for over 125 days. To estimate human dosimetry, gamma camera imaging and pharmacokinetic analysis was performed in cynomolgus monkeys. The melanin-specific binding of [131I]MIP-1145, combined with prolonged tumor retention, the ability to significantly inhibit tumor growth, and acceptable projected human dosimetry, suggest that it may be effective as a radiotherapeutic pharmaceutical for treating patients with metastatic malignant melanoma. PMID:20442292

  17. Subclinical Hypothyroidism after 131I-Treatment of Graves’ Disease: A Risk Factor for Depression?

    PubMed Central

    Yu, Jing; Tian, Ai-Juan; Yuan, Xin; Cheng, Xiao-Xin

    2016-01-01

    Objectives Although it is well accepted that there is a close relationship between hypothyroidism and depression, previous studies provided inconsistent or even opposite results in whether subclinical hypothyroidism (SCH) increased the risk of depression. One possible reason is that the etiology of SCH in these studies was not clearly distinguished. We therefore investigated the relationship between SCH resulting from 131I treatment of Graves’ disease and depression. Design And Methods The incidence of depression among 95 patients with SCH and 121 euthyroid patients following 131I treatment of Graves’ disease was studied. The risk factors of depression were determined with multivariate logistic regression analysis. Thyroid hormone replacement therapy was performed in patients with thyroid-stimulating hormone (TSH) levels exceeding 10 mIU/L. Results Patients with SCH had significantly higher Hamilton Depression Scale scores, serum TSH and thyroid peroxidase antibody (TPOAb) levels compared with euthyroid patients. Multivariate logistic regression analysis revealed SCH, Graves’ eye syndrome and high serum TPO antibody level as risk factors for depression. L-thyroxine treatment is beneficial for SCH patients with serum TSH levels exceeding 10 mIU/L. Conclusions The results of the present study demonstrated that SCH is prevalent among 131I treated Graves’ patients. SCH might increase the risk of developing depression. L-thyroxine replacement therapy helps to resolve depressive disorders in SCH patients with TSH > 10mIU/L. These data provide insight into the relationship between SCH and depression. PMID:27135245

  18. NOTE: Monte Carlo microdosimetry of 188Re- and 131I-labelled anti-CD20

    NASA Astrophysics Data System (ADS)

    Torres-García, E.; Garnica-Garza, H. M.; Ferro-Flores, G.

    2006-10-01

    The radiolabelled monoclonal antibody anti-CD20 has the property of binding to the CD20 antigen expressed on the cell surface of B-lymphocytes, thus making it a useful tool in the treatment of non-Hodgkin's lymphoma. In this work, the event-by-event Monte Carlo code NOREC is used to calculate the single-event distribution function f1(z) in the cell nucleus using the beta spectra of the 188Re and 131I radionuclides. The simulated geometry consists of two concentric spheres representing the nucleus and the cell surface embedded in a semi-infinite water medium. An isotropic point source was placed on the cell surface to simulate the binding of the anti-CD20 labelled with either 188Re or 131I. The simulations were carried out for two combinations of cell surface and nucleus radii. A method was devised that allows one to calculate the contribution of betas of energy greater than 1 MeV, which cannot be simulated by the NOREC code, to the single-event distribution function. It is shown that disregarding this contribution leads to an overestimation of the frequency-mean specific energy of the order of 9 12%. In general, the antibody radiolabelled with 131I produces single-event distribution functions that yield higher frequency-mean specific energies.

  19. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M.; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F.; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L.; McCollough, Cynthia H.

    2016-02-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  20. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-01-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  1. Methimazole, but not betamethasone, prevents 131I treatment-induced rises in thyrotropin receptor autoantibodies in hyperthyroid Graves' disease

    SciTech Connect

    Gamstedt, A.; Wadman, B.; Karlsson, A.

    1986-04-01

    The effects of methimazole or betamethasone therapy on the TSH receptor antibody response to radioiodine therapy were compared in a prospective randomized study of 60 patients with hyperthyroidism due to Graves' disease. The patients were followed for 1 yr after treatment with 131I. Twenty-three patients received 131I alone, 17 were treated with methimazole for 2 months before and 3 months after 131I therapy, and 20 patients were treated with betamethasone for 3 weeks before and 4 weeks after 131I therapy. 131I induced a transient rise in the mean serum level of TSH receptor autoantibodies, measured as TSH binding inhibitory immunoglobulin (TBII), but in patients receiving methimazole treatment, no such rise occurred. In the betamethasone-treated patients, TBII increased similarly to that in patients treated with 131I alone. In addition, in patients given betamethasone, there was an early decrease in total serum immunoglobulin G, which persisted throughout the follow-up period. In the other 2 groups, no changes in total immunoglobulin G were found. The results demonstrate that in hyperthyroid Graves' disease, TBII production is influenced by therapy. Methimazole abolished the 131I-induced increase in TBII, whereas betamethasone did not have such an inhibitory effect.

  2. Estimation of signal and noise for a whole-body photon counting research CT system

    PubMed Central

    Li, Zhoubo; Leng, Shuai; Yu, Zhicong; Kappler, Stephen; McCollough, Cynthia H.

    2016-01-01

    Photon-counting CT (PCCT) may yield potential value for many clinical applications due to its relative immunity to electronic noise, increased geometric efficiency relative to current scintillating detectors, and the ability to resolve energy information about the detected photons. However, there are a large number of parameters that require optimization, particularly the energy thresholds configurations. Fast and accurate estimation of signal and noise in PCCT can benefit the optimization of acquisition parameters for specific diagnostic tasks. Based on the acquisition parameters and detector response of our research PCCT system, we derived mathematical models for both signal and noise. The signal model took the tube spectrum, beam filtration, object attenuation, water beam hardening, and detector response into account. The noise model considered the relationship between noise and radiation dose, as well as the propagation of noise as threshold data are subtracted to yield energy bin data. To determine the absolute noise value, a noise look-up table (LUT) was acquired using a limited number of calibration scans. The noise estimation algorithm then used the noise LUT to estimate noise for scans with a variety of combination of energy thresholds, dose levels, and object attenuation. Validation of the estimation algorithms was performed on our whole-body research PCCT system using semi-anthropomorphic water phantoms and solutions of calcium and iodine. The algorithms achieved accurate estimation of signal and noise for a variety of scanning parameter combinations. The proposed method can be used to optimize energy thresholds configuration for many clinical applications of PCCT. PMID:27346908

  3. Intramyocardial capillary blood volume estimated by whole-body CT: validation by micro-CT

    NASA Astrophysics Data System (ADS)

    Dong, Yue; Beighley, Patricia E.; Eaker, Diane R.; Zamir, Mair; Ritman, Erik L.

    2008-03-01

    Fast CT has shown that myocardial perfusion (F) is related to myocardial intramuscular blood volume (Bv) as Bv=A*F+B*F 1/2 where A,B are constant coefficients. The goal of this study was to estimate the range of diameters of the vessels that are represented by the A*F term. Pigs were placed in an Electron Beam CT (EBCT) scanner for a perfusion CT scan sequence over 40 seconds after an IV contrast agent injection. Intramyocardial blood volume (Bv) and flow (F) were calculated in a region of the myocardium perfused by the LAD. Coefficients A and B were estimated over the range of F=1-5ml/g/min. After the CT scan, the LAD was injected with Microfil (R) contrast agent following which the myocardium was scanned by micro-CT at 20μm, 4μm and 2.5 μm cubic voxel resolutions. The Bv of the intramyocardial vessels was calculated for diameter ranges d=0-5, 5-10, 10-15, 15-20μm, etc. EBCT-derived data were presented so that it could be directly compared the micro-CT data. The results indicated that the blood in vessels less than 10μm in lumen diameter occupied 0.27-0.42 of total intravascular blood volume, which is in good agreement with EBCT-based values 0.28-0.48 (R2 =0.96). We conclude that whole-body CT image data obtained during the passage of a bolus of IV contrast agent can provide a measure of the intramyocardial intracapillary blood volume.

  4. Benefits of helmet-mounted display image stabilisation under whole-body vibration.

    PubMed

    Wells, M J; Griffin, M J

    1984-01-01

    The effects of whole-body vertical vibration in the range 2.5-25 Hz on visual performance with two types of raster scan helmet-mounted display have been determined. The benefit of an image stabilisation system on numeral reading performance during vibration was also assessed with both display systems. Increases in mean reading time of over 130%/m . s-2 R.M.S. and increases in percentage reading error of more than 30%/m . s-2 R.M.S. were recorded with unstabilised displays. With vertical and horizontal image stabilisation, these decrements in performance were reduced to less than 40%/m . s-2 R.M.S. increase in reading time and less than 10%/m . s-2 R.M.S. increase in reading error. Data on the transmission of vibration from the seat to the head and from the head to the helmet were also obtained. These indicate a relation between biodynamic behaviour and visual performance during vibration. PMID:6696690

  5. Splanchnic microcirculation-evaluation with whole body computed tomography

    NASA Astrophysics Data System (ADS)

    Ritman, Erik L.; Pagel, Denise A.; Beighley, Patricia E.

    1995-05-01

    A fast, volume scanning, CT method is used to explore the feasibility of quantitating functional aspects of the in situ splanchnic microcirculation. Anesthetized pigs were scanned during and following the injection of contrast agent into the aorta. The indicator dilution curves generated by the passage of contrast medium through an imaged region of interest in the gut wall or through the liver parenchyma, were used to compute regional tissue perfusion and intravascular blood content of the tissue. Splanchnic perfusion was modulated by intra-arterial injection of Bradykinin and by the intragastric infusion of alcohol or hydrochloric acid. The results are consistent with values obtained with more invasive traditional methods for estimating these parameters under similar experimental conditions. We conclude that the resolution of the CT imaging method permits quantitative evaluation of changes in those splanchnic microcirculation following physiologic stimuli. The importance of bowel motion is apparent in these analyses. Indeed, the poorly periodic motion of the gut, even though it is slower than that of the heart wall, presents a greater problem than does the rapid motion of the heart wall, which is gateable because of its cycle-to-cycle reproducibility.

  6. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    SciTech Connect

    Frohwein, Lynn J. Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  7. Optimization of Whole-Body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    EPA Science Inventory

    Mass spectrometry imaging methods and protocols have become widely adapted to a variety of tissues and species. However, the mass spectrometry imaging literature contains minimal information on whole-body cryosection preparation for the zebrafish (Danio rerio), a model organism ...

  8. Signal Processing Methods for Removing the Effects of Whole Body Vibration upon Speech

    NASA Technical Reports Server (NTRS)

    Bitner, Rachel M.; Begault, Durand R.

    2014-01-01

    Humans may be exposed to whole-body vibration in environments where clear speech communications are crucial, particularly during the launch phases of space flight and in high-performance aircraft. Prior research has shown that high levels of vibration cause a decrease in speech intelligibility. However, the effects of whole-body vibration upon speech are not well understood, and no attempt has been made to restore speech distorted by whole-body vibration. In this paper, a model for speech under whole-body vibration is proposed and a method to remove its effect is described. The method described reduces the perceptual effects of vibration, yields higher ASR accuracy scores, and may significantly improve intelligibility. Possible applications include incorporation within communication systems to improve radio-communication systems in environments such a spaceflight, aviation, or off-road vehicle operations.

  9. Possible Mechanisms of Low Back Pain due to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Pope, M. H.; Wilder, D. G.; Magnusson, M.

    1998-08-01

    The investigators describe their multifaceted approach to the study of the relationship between whole-body vibration and low back pain.In vitroexperiments, using percutaneous pin-mounted accelerometers have shown that the natural frequency is at 4·5 Hz. The frequency response was affected by posture, seating, and seat-back inclination. The response appears to be largely determined by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration should be reduced for those recovering from these problems. Vibration attenuating seats, and correct ergonomic layout of the cabs may reduce the risks of recurrence.

  10. Whole-body magnetic resonance imaging in children: technique and clinical applications.

    PubMed

    Eutsler, Eric P; Khanna, Geetika

    2016-05-01

    Whole-body MR imaging is being increasingly used in children to evaluate the extent of various oncologic and non-oncologic entities. The lack of exposure to ionizing radiation, excellent soft-tissue contrast (even without the use of contrast agents), and functional imaging capabilities make it especially suitable for screening and surveillance in the pediatric population. Technical developments such as moving table platforms, multi-channel/multi-element surface coils, and parallel imaging allow imaging of the entire body with multiple sequences in a reasonable 30- to 40-min time frame, which has facilitated its acceptance in routine clinical practice. The initial investigations in whole-body MR imaging were primarily focused on oncologic applications such as tumor screening and staging. The exquisite sensitivity of fluid-sensitive MR sequences to many different types of pathology has led to new applications of whole-body MR imaging in evaluation of multifocal rheumatologic conditions. Availability of blood pool contrast agents has allowed whole-body MR angiographic imaging of vascular malformations, vasculitides and vasculopathies. Whole-body MRI is being applied for delineating the extent and distribution of systemic and multifocal diseases, establishing diagnoses, assessing treatment response, and surveillance imaging. This article reviews the technique and clinical applications of whole-body MR imaging in children. PMID:27229503

  11. An adaptive diffusion-weighted whole-body magnetic resonance imaging scheme using the multistation approach

    NASA Astrophysics Data System (ADS)

    Han, Yeji

    2016-02-01

    Whole-body diffusion-weighted imaging (DWI) is a useful tool in oncology, which enables fast screening of disseminated tumors, lymph nodes or abscesses in the body. Multistation magnetic resonance imaging (MRI) or continuously moving table (CMT) MRI can be performed to overcome the limited field of view (FOV) of the magnet bore in whole-body DWI. Although CMT-MRI is regarded as a more advanced form of whole-body MRI, it cannot be widely used because most of the available MR systems are not equipped with the required hardware/software to perform CMT. Thus, optimizing the multistation approach for whole-body DWI, which is more widely available and easier to perform with the existing MR systems, is worthwhile. To improve the quality of DW images acquired with the multistation approach, we used different combinations of the built-in body RF coil and the phased-array surface RF coils for reception of the signals in whole-body DWI in this work. If different coils are selectively used in the extended FOV and appropriate reconstruction algorithms are exploited, the screening ability of whole-body DWI can be improved while minimizing the patient's discomfort and the artifacts due to physiological motions.

  12. Whole-body irradiation transiently diminishes the adrenocorticotropin response to recombinant human interleukin-1{alpha}

    SciTech Connect

    Perlstein, R.S.; Mehta, N.R.; Neta, R.; Whitnall, M.H.; Mougey, E.H.

    1995-03-01

    Recombinant human interleukin-1{alpha} (rhIL-1{alpha}) has significant potential as a radioprotector and/or treatment for radiation-induced hematopoietic injury. Both IL-1 and whole-body ionizing irradiation acutely stimulate the hypothalamic-pituitary-adrenal axis. We therefore assessed the interaction of whole-body irradiation and rhIL-1{alpha} in altering the functioning of the axis in mice. Specifically, we determined the adrenocorticotropin (ACTH) and corticosterone responses to rhIL-1{alpha} administered just before and hours to days after whole-body or sham irradiation. Our results indicate that whole-body irradiation does not potentiate the rhIL-1{alpha}-induced increase in ACTH levels at the doses used. In fact, the rhIL-1{alpha}-induced increase in plasma ACTH is transiently impaired when the cytokine is administered 5 h after, but not 1 h before, exposure to whole-body irradiation. The ACTH response may be inhibited by elevated corticosterone levels after whole-body irradiation, or by other radiation-induced effects on the pituitary gland and hypothalamus. 36 refs., 3 figs.

  13. Secondary neurolymphomatosis detected by whole-body diffusion-weighted magnetic resonance imaging: a case report.

    PubMed

    Tanaka, Hiroaki; Yoshino, Kazuhiro; Sakaida, Emiko; Hashimoto, Shinichiro; Takeda, Yusuke; Kawajiri, Chika; Takagi, Toshiyuki; Nakaseko, Chiaki

    2013-01-01

    Neurolymphomatosis (NL) is a rare clinical entity defined as peripheral nervous system infiltration by lymphoma. The diagnosis is difficult and often elusive. Whole-body diffusion-weighted magnetic resonance imaging (DW MRI) was developed to enhance the detection of vaguely delineated tumors. Here, we describe the case of a 71-year-old male with secondary NL of diffuse large B-cell lymphoma (DLBCL) that was successfully detected by whole-body DW MRI. The patient was diagnosed with DLBCL extending from the ethmoidal sinus to the nasal cavity, orbital cavity, and anterior cranial fossa. Although he was administered R-THP-COP chemotherapy and the tumor remarkably decreased in size, he developed painful paresthesia and weakness in the left upper and bilateral lower extremities during treatment. Because lymphoma cells were detected in his spinal fluid, high-dose methotrexate (MTX) and weekly intrathecal MTX and cytarabine injections were administered. Test results for lymphoma cells in the spinal fluid became negative ; however, the neurological disorders progressed. Whole-body DW MRI was performed as whole-body screening and could localize NL at the left cervical and bilateral lumbar nerve roots. Both cervical spine plain MRI and enhanced computed tomography performed around the same time could not detect the cervical lesion. Our case report suggests that whole-body DW MRI is a useful diagnostic imaging procedure, especially as whole-body screening in facilities where PET/CT is not available. PMID:24369224

  14. Calculation of. beta. -ray absorbed dose rate for /sup 131/I applied to the inflorescence of Tradescantia

    SciTech Connect

    Bingo, K.; Tano, S.; Numakunai, T.; Yoshida, Y.; Yamaguchi, H.

    1981-03-01

    Effects of /sup 131/I applied to the inflorescence on the induction of somatic mutations in Tradescantia stamen hairs were previously investigated, and the doubling dose (activity) was estimated to be 4 nCi. In the present paper, the absorbed dose rate in stamen hairs of Tradescantia for ..beta.. rays from the applied /sup 131/I was calculated. The doubling dose for the /sup 131/I (4 nCi) applied to the inflorescence was estimated to be higher than 0.3 rad (assuming uniform distribution of /sup 131/I on the surface of the buds and assuming that the shape of the buds was a sphere) and lower than 1.0 rad.

  15. Reconstruction of (131)I radioactive contamination in Ukraine caused by the Chernobyl accident using atmospheric transport modelling.

    PubMed

    Talerko, Nikolai

    2005-01-01

    The evaluation of (131)I air and ground contamination field formation in the territory of Ukraine was made using the model of atmospheric transport LEDI (Lagrangian-Eulerian DIffusion model). The (131)I atmospheric transport over the territory of Ukraine was simulated during the first 12 days after the accident (from 26 April to 7 May 1986) using real aerological information and rain measurement network data. The airborne (131)I concentration and ground deposition fields were calculated as the database for subsequent thyroid dose reconstruction for inhabitants of radioactive contaminated regions. The small-scale deposition field variability is assessed using data of (137)Cs detailed measurements in the territory of Ukraine. The obtained results are compared with available data of radioiodine daily deposition measurements made at the network of meteorological stations in Ukraine and data of the assessments of (131)I soil contamination obtained from the (129)I measurements. PMID:16024139

  16. Early detection of metastatic disease in asymptomatic breast cancer patients with whole-body imaging and defined tumour marker increase

    PubMed Central

    Di Gioia, D; Stieber, P; Schmidt, G P; Nagel, D; Heinemann, V; Baur-Melnyk, A

    2015-01-01

    Background: Follow-up care in breast cancer is still an issue of debate. Diagnostic methods are more sensitive, and more effective therapeutic options are now available. The risk of recurrence is not only influenced by tumour stage but also by the different molecular subtypes. This study was performed to evaluate the use of whole-body imaging combined with tumour marker monitoring for the early detection of asymptomatic metastatic breast cancer (MBC). Methods: This analysis was performed as part of a follow-up study evaluating 813 patients with a median follow-up of 63 months. After primary therapy, all patients underwent tumour marker monitoring for CEA, CA 15-3 and CA 125 at 6-week intervals within an intensified diagnostic aftercare algorithm. A reproducible previously defined increase was considered as a strong indicator of MBC. From 2007 to 2010, 44 patients with tumour marker increase underwent whole-body magnetic resonance imaging and/or an FDG-PET/CT scan. Histological clarification and/or imaging follow-up were done. Results: Metastases were detected in 65.9% (29/44) of patients, 13.6% (6/44) had secondary malignancies besides breast cancer and 20.5% (9/44) had no detectable malignancy. Limited disease was found in 24.1% (7/29) of patients. Median progression-free survival of MBC was 9.2 months and median overall survival was 41.1 months. The 3- and 5-year survival rates were 64.2% and 40.0%, respectively. Conclusions: A reproducible tumour marker increase followed by whole-body imaging is highly effective for early detection. By consequence, patients might benefit from earlier detection and improved therapeutic options with a prolonged survival. PMID:25647014

  17. Generating and using patient-specific whole-body models for organ dose estimates in CT with increased accuracy: feasibility and validation.

    PubMed

    Kalender, Willi A; Saltybaeva, Natalia; Kolditz, Daniel; Hupfer, Martin; Beister, Marcel; Schmidt, Bernhard

    2014-12-01

    The estimation of patient dose using Monte Carlo (MC) simulations based on the available patient CT images is limited to the length of the scan. Software tools for dose estimation based on standard computational phantoms overcome this problem; however, they are limited with respect to taking individual patient anatomy into account. The purpose of this study was to generate whole-body patient models in order to take scattered radiation and over-scanning effects into account. Thorax examinations were performed on three physical anthropomorphic phantoms at tube voltages of 80 kV and 120 kV; absorbed dose was measured using thermoluminescence dosimeters (TLD). Whole-body voxel models were built as a combination of the acquired CT images appended by data taken from widely used anthropomorphic voxel phantoms. MC simulations were performed both for the CT image volumes alone and for the whole-body models. Measured and calculated dose distributions were compared for each TLD chip position; additionally, organ doses were determined. MC simulations based only on CT data underestimated dose by 8%-15% on average depending on patient size with highest underestimation values of 37% for the adult phantom at the caudal border of the image volume. The use of whole-body models substantially reduced these errors; measured and simulated results consistently agreed to better than 10%. This study demonstrates that combined whole-body models can provide three-dimensional dose distributions with improved accuracy. Using the presented concept should be of high interest for research studies which demand high accuracy, e.g. for dose optimization efforts. PMID:25288527

  18. SPECT imaging of neuropilin receptor type-1 expression with 131I-labeled monoclonal antibody.

    PubMed

    Dou, Xiaofeng; Yan, Jianghua; Zhang, Yafei; Liu, Peng; Jiang, Yizhen; Lv, Sha; Zeng, Fanwei; Chen, Xiaoli; Wang, Shengyu; Zhang, Haipeng; Wu, Hua; Zhang, Hong; Ouyang, Lin; Su, Xinhui

    2016-09-01

    As a novel co-receptor for vascular endothelial growth factor (VEGF), neuropilin receptor type-1 (NRP-1) is overexpressed in several cancers and metastases, and serves as an attractive target for cancer molecular imaging and therapy. Previous single photon emission computerized tomography (SPECT) studies demonstrated that the small NRP-1-targeting peptides 99mTc-MA-ATWLPPR and 99mTc-CK3 showed poor tumor imaging quality, because of their rapid blood clearance and very low tumor uptake. Compared with small peptides, monoclonal antibodies (mAbs) can improve imaging of NRP-1-expression, due to their high affinity, specificity and slow extraction. A6-11-26 is a novel monoclonal antibody against NRP-1 b1b2 domain that exhibits inhibition of tumor growth in NPR-1-expressing preclinical models. The aim of the present study was to develop the 131I-labeled anti-NRP-1 monoclonal antibody A6-11-26 as a SPECT probe for imaging of NRP-1-positive tumor. An anti-NRP-1 monoclonal antibody (A6-11-26) was produced by hybridomas and was labeled with iodine-131 by the iodogen method. In vitro, the radiolabeling efficiency, radiochemical purity, immunoreactive fraction and stability were assessed. Binding affinity and specificity of 131I‑A6-11-26 to NRP-1 were evaluated using human glioblastoma U87MG cells. In vivo, biodistribution and SPECT/CT studies were conducted on mice bearing U87MG xenografts after the injection of 131I-A6-11-26 with or without co-injection of unlabeled A6-11-26 antibody. A6-11-26 was generated successfully by hybridoma with high purity (>95%) and was labeled with iodine-131 within 60 min with high labelling efficiency (95.46±3.34%), radiochemical purity (98.23±1.41%). 131I-A6-11-26 retained its immunoreactivity and also displayed excellent stability in mouse serum and PBS solution during 1 to 96 h. Cell uptake assays showed high NRP-1-specific uptake (15.80±1.30% applied activity at 6 h) in U87MG cells. 131I-A6-11-26 bound to NRP-1 with low nanomolar

  19. Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer.

    PubMed

    Chen, Lei; Zhong, Xiaoyan; Yi, Xuan; Huang, Min; Ning, Ping; Liu, Teng; Ge, Cuicui; Chai, Zhifang; Liu, Zhuang; Yang, Kai

    2015-10-01

    Nano-graphene and its derivatives have attracted great attention in biomedicine, including their applications in cancer theranostics. In this work, we develop 131I labeled, polyethylene glycol (PEG) coated reduced nano-graphene oxide (RGO), obtaining 131I-RGO-PEG for nuclear imaging guided combined radiotherapy and photothermal therapy of cancer. Compared with free 131I, 131IRGO- PEG exhibits enhanced cellular uptake and thus improved radio-therapeutic efficacy against cancer cells. As revealed by gamma imaging, efficient tumor accumulation of 131I-RGO-PEG is observed after its intravenous injection. While RGO exhibits strong near-infrared (NIR) absorbance and could induce effective photothermal heating of tumor under NIR light irradiation, 131I is able to emit high-energy X-ray to induce cancer killing as the result of radio ionization effect. By utilizing the combined photothermal therapy and radiotherapy, both of which are delivered by a single agent 131IRGO- PEG, effective elimination of tumors is achieved in our animal tumor model experiments. Toxicology studies further indicate that 131I-RGO-PEG induces no appreciable toxicity to mice at the treatment dose. Our work demonstrates the great promise of combing nuclear medicine and photothermal therapy as a novel therapeutic strategy to realize synergistic efficacy in cancer treatment. PMID:26188609

  20. Medically-Derived (131)I as a Tool for Investigating the Fate of Wastewater Nitrogen in Aquatic Environments.

    PubMed

    Rose, Paula S; Smith, Joseph P; Aller, Robert C; Cochran, J Kirk; Swanson, R Lawrence; Coffin, Richard B

    2015-09-01

    Medically derived (131)I (t1/2 = 8.04 d) is discharged from water pollution control plants (WPCPs) in sewage effluent. Iodine's nutrient-like behavior and the source-specificity of (131)I make this radionuclide a potentially valuable tracer in wastewater nitrogen studies. Iodine-131 was measured in Potomac River water and sediments in the vicinity of the Blue Plains WPCP, Washington, DC, USA. Dissolved (131)I showed a strong, positive correlation with δ(15)N values of nitrate (δ(15)NO3(-)) in the river, the latter being a traditional indicator of nutrient inputs and recycling. Surface water δ(15)NO3(-) values ranged from 8.7 to 33.4‰; NO3(-) + NO2(-) concentrations were 0.39-2.79 mg N L(-1) (26-186 μM). Sediment profiles of particulate (131)I and δ(15)N indicate rapid mixing or sedimentation and in many cases remineralization of a heavy nitrogen source consistent with wastewater nitrogen. Values of δ(15)N in sediments ranged from 4.7 to 9.3‰. This work introduces (131)I as a tool to investigate the short-term fate of wastewater nitrogen in the Potomac River and demonstrates the general utility of (131)I in aquatic research. PMID:26008140

  1. Radiobiological effects of /sup 131/I and /sup 125/I on the DNA of the rat thyroid

    SciTech Connect

    Abdel-Nabi, H.; Ortman, J.A.

    1983-03-01

    One of the major disadvantages of the use of /sup 131/I in the treatment of thyrotoxicosis is the development of hypothyroidism. Alternatively, /sup 125/I has been proposed for thyrotoxicosis therapy, and was thought to be preferable to /sup 131/I because of the short range of its emitted soft electrons.Several studies have shown /sup 125/I to be as effective as /sup 131/I in the treatment of thyrotoxicosis, and equally likely to produce hupothyroidism. This work compared the radiobiological effects of /sup 131/I and /sup 125/I given in doses to deliver the same amount of radiation to the rat thyroid gland.These effects were studied by in vivo determination of single-strand DNA breaks by alkaline sucrose gradient sedimentation using the DABA fluorescent technique to detect the DNA. Serum T/sub 4/ and TSH concentrations and percentage T/sub 3/ uptake were determined by RIA. The incidence of hypothyroidism following /sup 131/I and /sup 125/I therapy was found to be the same (10% in each group). The extent of DNA damage following /sup 125/I therapy was greater than the damage induced by a larger dose of /sup 131/I.

  2. Determination of {sup 125}I and {sup 131}I in radioisotope wastes

    SciTech Connect

    Sang Hoon Kang; Ke Chon Choi; Lee, Heung N.; Sun Ho Han; Kwang Yong Jee

    2007-07-01

    In order to measure a low activity of {sup 125}I and {sup 131}I in radioisotope wastes, we took into consideration various sample preparation and separation methods, such as an acid decomposition, an acid leaching and a combustion method. In a previous study, the maximum chemical yield of iodine by an acid leaching was found to be 78.0 %. However, in this study, the maximum chemical yield of the acid decomposition method and the combustion method with a radioiodine reference solution was found to be 99.1 % and 84.5 %, respectively. We selected the acid decomposition method for the analysis of radioisotope waste samples due to its high chemical yield and short preparation and separation time. The chemical yield of the acid decomposition method depends on the reaction time at each experimental stage, added amount of H{sub 3}PO{sub 3} and H{sub 2}O{sub 2}, and the pH of the condensed solution and the condition of the AgI precipitation. The important point for the highest recovery rate from a acid decomposition method is to maintain enough reaction time and pour 10 ml of 30 % H{sub 3}PO{sub 3} before a distillation, and drop 1 ml of H{sub 2}O{sub 2} when the condensed solution is trapped in the Florence flask. Through a study of the acid decomposition method we found an optimal preparation and separation method of {sup 125}I and {sup 131}I in radioisotope wastes due to the merits of a short reaction time and high recovery rate, and a counting system was applied to LEPS for the {sup 125}I and HP Ge gamma-ray spectrometer for {sup 131}I. (authors)

  3. 131I-labeled metuximab combined with chemoembolization for unresectable hepatocellular carcinoma

    PubMed Central

    He, Qing; Lu, Wu-Sheng; Liu, Yang; Guan, Yong-Song; Kuang, An-Ren

    2013-01-01

    AIM: To investigate the safety and effectiveness of combined 131I-metuximab and transcatheter arterial chemoembolization (TACE) for hepatocellular carcinoma (HCC). METHODS: One hundred and eighty-five patients (159 men and 26 women) with advanced HCC were enrolled in this study from February 2009 to July 2011. There were 95 patients in the combined metuximab and TACE group, and 90 patients in the TACE only group. The patients were followed for 12 mo. Clinical symptoms, blood cell counts, Karnofsky Performance Score (KPS) evaluation and therapeutic effects according to the Response Evaluation Criteria in Solid Tumors were recorded and evaluated. RESULTS: The 1-mo effective rates (complete response + partial response + stable disease) of the test group and control group were 71.23% and 38.89%, respectively (P < 0.001). The 6-, 9- and 12-mo survival rates were 86.42%, 74.07% and 60.49% for the test group and 60.0%, 42.22% and 34.44% for the control group (P < 0.001). The incidence of adverse events (gastrointestinal symptoms, fever and pain) and blood cell toxicity were significantly higher for the test group than for the control group (P < 0.001). No severe 131I-metuximab-related complications were identified. With respect to efficacy, patients in the test group had greater improvement in tumor-related pain (P = 0.014) and increase in KPS (P < 0.001) than those in the control group. CONCLUSION: Combination of 131I-metuximab and TACE prolonged the survival time in patients with HCC compared with TACE alone. The combination treatment was safe and effective. PMID:24379637

  4. 99mTc-DTPA and /sup 131/I-hippuran findings in liver transplant recipients treated with cyclosporin A

    SciTech Connect

    Klintmalm, G.B.; Klingensmith, W.C.; Iwatsuki, S.; Schroeter, G.P.; Starzl, T.E.

    1982-01-01

    The effects of cyclosporin A (CyA), an immunosuppressive agent that is potentially nephrotoxic, on the kidneys of 9 liver transplant recipients were studied with serial 99mTc-DTPA and 131I-hippuran scans. In addition, renal function was determined by measuring serum creatinine levels during the second postoperative week in the 9 unselected CyA-treated patients and, retrospectively, in a control group of 29 liver transplant recipients who had not been treated with CyA and who were selected because they had survived for at least 3 months postoperatively. The early postoperative creatinine level was significantly greater in the CyA group. Eight of the 9 CyA patients showed imaging abnormalities in all preoperative and postoperative studies. Five of the 8 patients showed a pattern similar to that of acute tubular necrosis (relatively preserved perfusion) in at least one study. Lowering the dosage of CyA permitted the continuation of therapy, and all 9 patients are alive after 8 to 14 months.

  5. Comparison of surface contamination monitors for in vivo measurement of 131I in the thyroid

    NASA Astrophysics Data System (ADS)

    Oliveira, S. M.; Dantas, A. L. A.; Dantas, B. M.

    2016-07-01

    The routine handling of radiopharmaceuticals in nuclear medicine represents a significant risk of internal exposure to the staff. The IAEA recommends the implementation of monitoring plans for all workers subject to a risk of exposures above 1 mSv per year. However, in Brazil, such recommendation is practically unfeasible due to the lack of a sufficient number of qualified internal dosimetry services over the country. This work presents an alternative based on a simple and inexpensive methodology aimed to perform in vivo monitoring of 131I in the thyroid using portable surface contamination probes. Results show that all models evaluated in this work present enough sensitivity for the evaluation of accidental intakes.

  6. Unusual Adrenal and Brain Metastases From Follicular Thyroid Carcinoma Revealed by 131I SPECT/CT.

    PubMed

    Zhao, Zhen; Shen, Guo-hua; Liu, Bin; Kuang, An-ren

    2016-01-01

    The adrenal metastasis from differentiated thyroid carcinoma is uncommon. Metastatic involvement of both adrenal and brain in the same patient from differentiated thyroid carcinoma is rare. Here, we described an unusual case with iodine-avid lung, bone, adrenal, liver, and brain metastases from follicular thyroid carcinoma confirmed by 131I SPECT/CT. The utilization of SPECT/CT in thyroid cancer patients can detect the presence of metastases and also exclude potential false-positive lesions. Our case demonstrates that SPECT/CT is helpful in localizing and confirming metastatic lesions from differentiated thyroid carcinoma in rare and unusual sites. PMID:26018699

  7. The traceability chain of 131I measurements for nuclear medicine in Cuba.

    PubMed

    Oropesa, P; Moreno, Y; Serra, R A; Hernández, A T

    2012-09-01

    The national traceability chain for (131)I activity measurements performed in nuclear medicine in Cuba is described. At the highest (primary) level, liquid scintillation counting employing the CIEMAT/NIST method is used; at the secondary level, a secondary standard radionuclide calibrator is utilized that allows for a quick and simple transference of the measurement unit to the tertiary level of end-users' instruments. The equivalence of Cuban standards and the assessment of measurement uncertainties at the end-user level are determined through the results of measurement comparisons. PMID:22534014

  8. Determining thyroid {sup 131}I effective half-life for the treatment planning of Graves' disease

    SciTech Connect

    Willegaignon, Jose; Sapienza, Marcelo T.; Barberio Coura Filho, George; Buchpiguel, Carlos A.; Traino, Antonio C.

    2013-02-15

    Purpose: Thyroid {sup 131}I effective half-life (T{sub eff}) is an essential parameter in patient therapy when accurate radiation dose is desirable for producing an intended therapeutic outcome. Multiple {sup 131}I uptake measurements and resources from patients themselves and from nuclear medicine facilities are requisites for determining T{sub eff}, these being limiting factors when implementing the treatment planning of Graves' disease (GD) in radionuclide therapy. With the aim of optimizing this process, this study presents a practical, propitious, and accurate method of determining T{sub eff} for dosimetric purposes. Methods: A total of 50 patients with GD were included in this prospective study. Thyroidal {sup 131}I uptake was measured at 2-h, 6-h, 24-h, 48-h, 96-h, and 220-h postradioiodine administration. T{sub eff} was calculated by considering sets of two measured points (24-48-h, 24-96-h, and 24-220-h), sets of three (24-48-96-h, 24-48-220-h, and 24-96-220-h), and sets of four (24-48-96-220-h). Results: When considering all the measured points, the representative T{sub eff} for all the patients was 6.95 ({+-}0.81) days, whereas when using such sets of points as (24-220-h), (24-96-220-h), and (24-48-220-h), this was 6.85 ({+-}0.81), 6.90 ({+-}0.81), and 6.95 ({+-}0.81) days, respectively. According to the mean deviations 2.2 ({+-}2.4)%, 2.1 ({+-}2.0)%, and 0.04 ({+-}0.09)% found in T{sub eff}, calculated based on all the measured points in time, and with methods using the (24-220-h), (24-48-220-h), and (24-96-220-h) sets, respectively, no meaningful statistical difference was noted among the three methods (p > 0.500, t test). Conclusions: T{sub eff} obtained from only two thyroid {sup 131}I uptakes measured at 24-h and 220-h, besides proving to be sufficient, accurate enough, and easily applicable, attributes additional major cost-benefits for patients, and facilitates the application of the method for dosimetric purposes in the treatment planning of

  9. Protein dynamics in whole body and in splanchnic and leg tissues in type I diabetic patients.

    PubMed Central

    Nair, K S; Ford, G C; Ekberg, K; Fernqvist-Forbes, E; Wahren, J

    1995-01-01

    To elucidate the mechanism of insulin's anticatabolic effect in humans, protein dynamics were evaluated in the whole-body, splanchnic, and leg tissues in six C-peptide-negative type I diabetic male patients in the insulin-deprived and insulin-treated states using two separate amino acid models (leucine and phenylalanine). L-(1-13C,15N)leucine, L-(ring-2H5)phenylalanine, and L-(ring-2H2) tyrosine were infused intravenously, and isotopic enrichments of [1-13C,15N]-leucine, (13C)leucine, (13C)ketoisocaproate, (2H5)phenylalanine, [2H4]tyrosine, (2H2)tyrosine, and 13CO2 were measured in arterial, hepatic vein, and femoral vein samples. Whole-body leucine flux, phenylalanine flux, and tyrosine flux were decreased (< 0.01) by insulin treatment, indicating an inhibition of protein breakdown. Moreover, insulin decreased (< 0.05) the rates of leucine oxidation and leucine transamination (P < 0.01), but the percent rate of ketoisocaproate oxidation was increased by insulin (P < 0.01). Insulin also reduced (< 0.01) whole-body protein synthesis estimated from both the leucine model (nonoxidative leucine disposal) and the phenylalanine model (disposal of phenylalanine not accounted by its conversion to tyrosine). Regional studies demonstrated that changes in whole body protein breakdown are accounted for by changes in both splanchnic and leg tissues. The changes in whole-body protein synthesis were not associated with changes in skeletal muscle (leg) protein synthesis but could be accounted for by the splanchnic region. We conclude that though insulin decreases whole-body protein breakdown in patients with type I diabetes by inhibition of protein breakdown in splanchnic and leg tissues, it selectively decreases protein synthesis in splanchnic tissues, which accounted for the observed decrease in whole-body protein synthesis. Insulin also augmented anabolism by decreasing leucine transamination. Images PMID:7769135

  10. Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes.

    PubMed

    Baker, Lindsay B; Barnes, Kelly A; Anderson, Melissa L; Passe, Dennis H; Stofan, John R

    2016-01-01

    The purpose of this study was to establish normative data for regional sweat sodium concentration ([Na+]) and whole-body sweating rate in athletes. Data from 506 athletes (367 adults, 139 youth; 404 male, 102 female) were compiled from observational athlete testing for a retrospective analysis. The participants were skill/team-sport (including American football, baseball, basketball, soccer and tennis) and endurance (including cycling, running and triathlon) athletes exercising in cool to hot environmental conditions (15-50 °C) during training or competition in the laboratory or field. A standardised regional absorbent patch technique was used to determine sweat [Na+] on the dorsal mid-forearm. Whole-body sweat [Na+] was predicted using a published regression equation (y = 0.57x+11.05). Whole-body sweating rate was calculated from pre- to post-exercise change in body mass, corrected for fluid/food intake (ad libitum) and urine output. Data are expressed as mean ± SD (range). Forearm sweat [Na+] and predicted whole-body sweat [Na+] were 43.6 ± 18.2 (12.6-104.8) mmol · L(-1) and 35.9 ± 10.4 (18.2-70.8) mmol · L(-1), respectively. Absolute and relative whole-body sweating rates were 1.21 ± 0.68 (0.26-5.73) L · h(-1) and 15.3 ± 6.8 (3.3-69.7) ml · kg(-1) · h(-1), respectively. This retrospective analysis provides normative data for athletes' forearm and predicted whole-body sweat [Na+] as well as absolute and relative whole-body sweating rate across a range of sports and environmental conditions. PMID:26070030

  11. Ewing sarcoma dissemination and response to T-cell therapy in mice assessed by whole-body magnetic resonance imaging

    PubMed Central

    Liebsch, L; Kailayangiri, S; Beck, L; Altvater, B; Koch, R; Dierkes, C; Hotfilder, M; Nagelmann, N; Faber, C; Kooijman, H; Ring, J; Vieth, V; Rossig, C

    2013-01-01

    Background: Novel treatment strategies in Ewing sarcoma include targeted cellular therapies. Preclinical in vivo models are needed that reflect their activity against systemic (micro)metastatic disease. Methods: Whole-body magnetic resonance imaging (WB-MRI) was used to monitor the engraftment and dissemination of human Ewing sarcoma xenografts in mice. In this model, we evaluated the therapeutic efficacy of T cells redirected against the Ewing sarcoma-associated antigen GD2 by chimeric receptor engineering. Results: Of 18 mice receiving intravenous injections of VH-64 Ewing sarcoma cells, all developed disseminated tumour growth detectable by WB-MRI. All mice had lung tumours, and the majority had additional manifestations in the bone, soft tissues, and/or kidney. Sequential scans revealed in vivo growth of tumours. Diffusion-weighted whole-body imaging with background signal suppression effectively visualised Ewing sarcoma growth in extrapulmonary sites. Animals receiving GD2-targeted T-cell therapy had lower numbers of pulmonary tumours than controls, and the median volume of soft tissue tumours at first detection was lower, with a tumour growth delay over time. Conclusion: Magnetic resonance imaging reliably visualises disseminated Ewing sarcoma growth in mice. GD2-retargeted T cells can noticeably delay tumour growth and reduce pulmonary Ewing sarcoma manifestations in this aggressive disease model. PMID:23839490

  12. Organ Dose Estimates for Hyperthyroid Patients Treated with (131)I: An Update of the Thyrotoxicosis Follow-Up Study.

    PubMed

    Melo, Dunstana R; Brill, Aaron B; Zanzonico, Pat; Vicini, Paolo; Moroz, Brian; Kwon, Deukwoo; Lamart, Stephanie; Brenner, Alina; Bouville, André; Simon, Steven L

    2015-12-01

    The Thyrotoxicosis Therapy Follow-up Study (TTFUS) is comprised of 35,593 hyperthyroid patients treated from the mid-1940s through the mid-1960s. One objective of the TTFUS was to evaluate the long-term effects of high-dose iodine-131 ((131)I) treatment (1-4). In the TTFUS cohort, 23,020 patients were treated with (131)I, including 21,536 patients with Graves disease (GD), 1,203 patients with toxic nodular goiter (TNG) and 281 patients with unknown disease. The study population constituted the largest group of hyperthyroid patients ever examined in a single health risk study. The average number (± 1 standard deviation) of (131)I treatments per patient was 1.7 ± 1.4 for the GD patients and 2.1 ± 2.1 for the TNG patients. The average total (131)I administered activity was 380 ± 360 MBq for GD patients and 640 ± 550 MBq for TNG patients. In this work, a biokinetic model for iodine was developed to derive organ residence times and to reconstruct the radiation-absorbed doses to the thyroid gland and to other organs resulting from administration of (131)I to hyperthyroid patients. Based on (131)I data for a small, kinetically well-characterized sub-cohort of patients, multivariate regression equations were developed to relate the numbers of disintegrations of (131)I in more than 50 organs and tissues to anatomical (thyroid mass) and clinical (percentage thyroid uptake and pulse rate) parameters. These equations were then applied to estimate the numbers of (131)I disintegrations in the organs and tissues of all other hyperthyroid patients in the TTFUS who were treated with (131)I. The reference voxel phantoms adopted by the International Commission on Radiological Protection (ICRP) were then used to calculate the absorbed doses in more than 20 organs and tissues of the body. As expected, the absorbed doses were found to be highest in the thyroid (arithmetic means of 120 and 140 Gy for GD and TNG patients, respectively). Absorbed doses in organs other than the thyroid

  13. Statistical determination of whole-body average SARs in a 2 GHz whole-body exposure system for unrestrained pregnant and newborn rats

    NASA Astrophysics Data System (ADS)

    Wang, Jianqing; Wake, Kanako; Kawai, Hiroki; Watanabe, Soichi; Fujiwara, Osamu

    2012-01-01

    A 2 GHz whole-body exposure to rats over a multigeneration has been conducted as part of bio-effect research in Japan. In this study, the rats moved freely in the cage inside the exposure system. From observation of the activity of rats in the cage, we found that the rats do not stay in each position with uniform possibility. In order to determine the specific absorption rate (SAR) during the entire exposure period with high accuracy, we present a new approach to statistically determine the SAR level in an exposure system. First, we divided the rat cage in the exposure system into several small areas, and derived the fraction of time the rats spent in each small area based on the classification of the documentary photos of rat activity. Then, using the fraction of time spent in each small area as a weighting factor, we calculated the statistical characteristics of the whole-body average SAR for pregnant rats and young rats during the entire exposure period. As a result, this approach gave the statistical distribution as well as the corresponding mean value, median value and mode value for the whole-body SAR so that we can reasonably clarify the relationship between the exposure level and possible biological effect.

  14. Comprehensive diagnosis of whole-body acid-base and fluid-electrolyte disorders using a mathematical model and whole-body base excess.

    PubMed

    Wolf, Matthew B

    2015-08-01

    A mathematical model of whole-body acid-base and fluid-electrolyte balance was used to provide information leading to the diagnosis and fluid-therapy treatment in patients with complex acid-base disorders. Given a set of measured laboratory-chemistry values for a patient, a model of their unique, whole-body chemistry was created. This model predicted deficits or excesses in the masses of Na(+), K(+), Cl(-) and H2O as well as the plasma concentration of unknown or unmeasured species, such as ketoacids, in diabetes mellitus. The model further characterized the acid-base disorder by determining the patient's whole-body base excess and quantitatively partitioning it into ten components, each contributing to the overall disorder. The results of this study showed the importance of a complete set of laboratory measurements to obtain sufficient accuracy of the quantitative diagnosis; having only a minimal set, just pH and PCO2, led to a large scatter in the predicted results. A computer module was created that would allow a clinician to achieve this diagnosis at the bedside. This new diagnostic approach should prove to be valuable in the treatment of the critically ill. PMID:25281215

  15. Effect of whole-body and local heating on cutaneous vasoconstrictor responses in humans

    NASA Technical Reports Server (NTRS)

    Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Animal studies suggest that alpha-adrenergic-mediated vasoconstriction is compromised during whole-body heating. The purpose of this study was to identify whether whole-body heating and/or local surface heating reduce cutaneous alpha-adrenergic vasoconstrictor responsiveness in human skin. Protocol I: Six subjects were exposed to neutral skin temperature (i.e., 34 degrees C), whole-body heating, and local heating of forearm skin to increase skin blood flow to the same relative magnitude as that observed during whole-body heating. Protocol II: In eight subjects forearm skin was locally heated to 34, 37, 40, and 42 degrees C. During both protocols, alpha-adrenergic vasoconstrictor responsiveness was assessed by local delivery of norepinephrine (NE) via intradermal microdialysis. Skin blood flow was continuously monitored over each microdialysis membrane via laser-Doppler flowmetry. In protocol I, whole-body and local heating caused similar increases in cutaneous vascular conductance (CVC). The EC50 (log NE dose) of the dose-response curves for both whole body (-4.2 +/- 0.1 M) and local heating (-4.7 +/- 0.4 M) were significantly greater (i.e., high dose required to cause 50% reduction in CVC) relative to neutral skin temperature (- 5.6 +/- 0.0 M; P<0.05 for both). In both local and whole-body heated conditions CVC did not return to pre-heating values even at the highest dose of NE. In protocol II, calculated EC50 for 34, 37, 40, and 42 degrees C local heating was - 5.5 +/- 0.4, -4.6 +/- 0.3, -4.5 +/- 0.3, - 4.2 +/- 0.4 M, respectively. Statistical analyses revealed that the EC50 for 37,40 and 42 degrees C were significantly greater than the EC50 for 34 degrees C. These results indicate that even during administration of high concentrations of NE, alpha-adrenergic vasoconstriction does not fully compensate for local heating and whole-body heating induced vasodilatation in young, healthy subjects. Moreover, these data suggest that elevated local temperatures, above 37

  16. Whole body mechanics differ among running and cutting maneuvers in skilled athletes.

    PubMed

    Havens, Kathryn L; Sigward, Susan M

    2015-09-01

    Quick changes of direction during running (cutting) represent a whole body mechanical challenge, as they require deceleration and translation of the body during ongoing movement. While much is known with respect to whole body demands during walking turns, whole body mechanics and anticipatory adjustments necessary for cutting are unclear. As the ability to rapidly change direction is critical to athletes' success in many sports, a better understanding of whole body adjustments made during cuts is needed. Whole body center of mass velocity and position during the approach and execution steps of three tasks (straight running, 45° sidestep cut, and 90° sidestep cut) performed as fast as possible were compared in 25 healthy soccer athletes. Repeated measure ANOVA revealed that overall, braking and translation were greater during the cuts compared to the straight run. Interestingly, with systematically increased cut angle, disproportionately greater braking but proportionately greater translation was observed. Anticipatory adjustments made prior to the execution of the cuts suggested that individuals evenly distributed the deceleration and redirection demands across steps of the 45° cut but prioritized deceleration over translation during the approach step of the 90° cut. PMID:25149902

  17. Reciprocal influence of masticatory apparatus, craniofacial structure and whole body homeostasis.

    PubMed

    Lee, Yong-Keun; Moon, Hyung-Joo

    2012-12-01

    There are evidences that the evolution into Homo erectus was partially induced by masticatory muscular dystrophy caused by a gene mutation, which in turn increased brain capacity and led to bipedalism. It is generally accepted that the morphology and function of mammalian skull are partially controlled by epigenetic mechanisms. Archeologic evidences support that the masticatory apparatus have influenced the mechanical stress distribution in hominin skull, and consequently changed craniofacial morphology and function. Even after evolution into H. erectus, alterations in food properties by civilization and cultural preferences have caused modification of human masticatory pattern and accordingly craniofacial structure. Since there are evidences that prehuman and human masticatory apparatus has been influenced the craniofacial and whole body morphology and function, this apparatus in turn might influence whole body homeostasis. Plausible reciprocal influencing mechanisms of the masticatory apparatus on the whole body homeostasis might be (1) direct mechanical influence on the craniofacial structure, (2) distortion of cerebrospinal fluid circulation, and/or (3) several neural/humoral routes. Based on these backgrounds, the hypothesis of the present study is that the morphology and function of masticatory apparatus influence the whole body homeostasis and these interactions are reciprocal. Therefore, human masticatory apparatus, at the present time, should be kept in its physiological status to maintain the whole body homeostasis. We recommend basic and clinical approaches to confirm this hypothesis. PMID:22981594

  18. Whole body exposure at 2100 MHz induced by plane wave of random incidences in a population

    NASA Astrophysics Data System (ADS)

    Conil, Emmanuelle; Hadjem, Abdelhamid; El Habachi, Aimad; Wiart, J.

    2010-11-01

    In this article, the whole body exposure induced by plane wave coming from a random direction of arrival is analyzed at 2100 MHz. This work completes previous studies on the influence of different parameters on the whole body exposure (such as morphology, frequency or usage in near field). The Visible Human phantom has been used to build a surrogate model to predict the whole body exposure depending on the highlighted surface of the phantom and on the direction of arrival of the incident plane wave. For the Visible Human, the error on the whole body averaged Specific Absorption Rate (SAR) is on average 4%. The surrogate model is applied to other 3D anthropomorphic phantoms for a frontal incidence with an averaged error of 10%. The great interest of the surrogate model is the possibility to apply a Monte Carlo process to assess probability distribution function of a population. A recent French anthropometric database of more than 3500 adults is used to build the probability distribution function of the whole body SAR for a random direction of arrival.

  19. Traces of radioactive 131I in rainwater and milk samples in Romania

    NASA Astrophysics Data System (ADS)

    Mărgineanu, Romul; Mitrică, Bogdan; Apostu, Ana; Gomoiu, Claudia

    2011-07-01

    Measurements of 131I (T1/2 = 8.04 days) activities have been performed in the IFIN HH (Horia Hulubei National Institute of Physics and Nuclear Engineering) underground laboratory situated in Unirea salt mine, Slănic-Prahova, Romania. The rainwater samples were collected starting on 27 March from Braşov and Slănic-Prahova. Also sheep and goat milk samples were collected in the Slănic, Braşov and Iaşi areas and measurements were subsequently made on them. The measurements on the samples were made at the IFIN HH's underground laboratory in an ultra-low radiation background, using a high resolution gamma-ray spectrometer equipped with a GeHP (hyperpure) detector having a full width at half-maximum of 1.80 keV at 1332.48 keV for the second 60Co gamma ray and a relative efficiency of 22.8%. The results show a specific activity of 131I from < 0.063 to 0.75 Bq l - 1 for rain. In the milk samples the specific activity varied from < 0.12 to 5.2 Bq l - 1.

  20. A new method to evaluate the residual activity in patients undergoing (131)I thyroid therapy.

    PubMed

    Ostinelli, A; Duchini, M; Conti, V; Bonfanti, P; Rossi, S; Cacciatori, M

    2015-12-01

    The radioiodine administration is a standard therapeutic approach to both benign thyroid diseases, such as hyperthyroidism, and carcinomas. The high administered (131)I activities are of radiation protection concern, due to relevant patient residual contamination. The aim of this work was to develop a new procedure based on external radiometric surveys and on a mathematical model in order to estimate the (131)I activity in patients undergoing hyperthyroidism radioiodine therapy. In the first stage of this study, a suitable detector was chosen and its response vs. activity was characterized. The experimental verification was performed measuring the ambient dose equivalent rate from patients receiving radioiodine administration. The results confirm the reliability of the proposed method, as shown by the slight differences between the administered activities and the ones calculated from external measurements. Furthermore, the same procedure was applied to detect the percentage residual activity in patients at two preset time intervals: 4 hours and 4 days after the radioiodine administration. The obtained results clearly highlight that the method can ensure a level of reliability compatible with the radiation protection purposes. PMID:26429386

  1. Active transport of 131I across the blood—brain barrier

    PubMed Central

    Davson, Hugh; Hollingsworth, Jillian R.

    1973-01-01

    The ventricular space of rabbits was perfused with a low-viscosity silicone oil for the purpose of (1) collecting freshly secreted cerebrospinal fluid (c.s.f.) uninfluenced by diffusional exchanges with the brain and (2) studying passage of solutes from the blood into the brain, uncomplicated by exchanges with c.s.f. The freshly secreted c.s.f. appeared as fine droplets suspended in the less dense silicone, and accumulated at the bottom of the collected silicone. Studies on the penetration of 24Na from blood into this fluid indicated that considerable exchanges with the brain had occurred between its secretion and collection, in spite of this method of collection. The second objective was attained, in that the exchanges between the freshly secreted fluid and the brain were quantitatively insufficient to affect the measure of kinetics of uptake by brain from the blood. In consequence, it was possible to demonstrate unequivocally that the increased uptake by brain of 131I, when treated with perchlorate, was due to inhibition of an active process occurring across the blood—brain barrier. Other studies, involving ventriculo-cisternal perfusion with artificial c.s.f., lent further support to this concept. 131I distribution is some 32% of the brain weight, a figure close to the `chloride-space'. PMID:4355804

  2. {sup 129}I, {sup 131}I and {sup 127}I in animal thyroids after the Chernobyl nuclear accident

    SciTech Connect

    VanMiddleworth, L.; Handle, J.

    1997-10-01

    A small number of animal thyroids from Bad Hall, Austria; Ulm, Germany; and Steinkjer, Norway had {sup 131}I (half-life 8.06 d) measured between 21 and 72 d following the nuclear accident at Chernobyl on 26 April 1986. Nine years later {sup 129}I (half-life 1.57 x 10{sup 7} y) fission product and natural {sup 127}I were measured in the same thyroids. The mass ratios, {sup 129}I/{sup 131}I were calculated to the date of the Chernobyl accident and they ranged between 13 and 71. These ratios are compared to the expected ratios within an operating nuclear reactor during 2 y of operation, where the {sup 129}I/{sup 131}I{sup -1} ratio never exceeded 30. The observed ratio of {sup 129}I to natural {sup 127}I in thyroids ranged from 5 to 200 times the ratio before the accident, except that the Norwegian thyroids had {sup 129}I/{sup 127}I ratios which were less than the ratios of pre-Chernobyl thyroids from Ulm. These studies show the {sup 129}I and {sup 131}I from the Chernobyl accident were accumulated with natural {sup 127}I in animal thyroids but the isotope ratios, calculated to the release date, had wide ranges. The {sup 131}I radioactive exposure might be estimated from a fission product mixture by measuring {sup 129}I in thyroids long after the exposure to {sup 131}I, but the results would probably show a wide range of possibilities. The determining variables should be evaluated. We know of no previous data regarding both {sup 131}I and {sup 129}I in thyroid glands during the first 3 mo after the Chernobyl accident. 16 refs., 1 fig., 2 tabs.

  3. Wearable Ballistocardiography: Preliminary Methods for Mapping Surface Vibration Measurements to Whole Body Forces

    PubMed Central

    Wiens, Andrew; Etemadi, Mozziyar; Klein, Liviu; Roy, Shuvo; Inan, Omer T.

    2015-01-01

    The recent resurgence of ballistocardiogram (BCG) measurement and interpretation technologies has led to a wide range of powerful tools available for unobtrusively assessing mechanical aspects of cardiovascular health at home. Researchers have demonstrated a multitude of modern BCG measurement modalities, including beds, chairs, weighing scales, and wearable approaches. However, many modalities produce significant variations in the morphology of the measured BCG, creating confusion in the analysis and interpretation of the signals. This paper creates a framework for comparing wearable BCG measurements to whole body measurements—such as taken with a weighing scale system—to eventually allow the same analysis and interpretation tools that have been developed for whole body systems to be applied in the future to wearable systems. To the best of our knowledge, it represents the first attempt to morphologically compare vertical acceleration recordings measured on different locations on the torso to whole body displacements measured by BCG instrumentation. PMID:25571158

  4. A non-rigid registration method for mouse whole body skeleton registration

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie Claude; Salvado, Olivier

    2010-03-01

    Micro-CT/PET imaging scanner provides a powerful tool to study tumor in small rodents in response to therapy. Accurate image registration is a necessary step to quantify the characteristics of images acquired in longitudinal studies. Small animal registration is challenging because of the very deformable body of the animal often resulting in different postures despite physical restraints. In this paper, we propose a non-rigid registration approach for the automatic registration of mouse whole body skeletons, which is based on our improved 3D shape context non-rigid registration method. The whole body skeleton registration approach has been tested on 21 pairs of mouse CT images with variations of individuals and time-instances. The experimental results demonstrated the stability and accuracy of the proposed method for automatic mouse whole body skeleton registration.

  5. Whole-body Fluorescent Optical Imaging Based on Power Light Emitting Diode.

    PubMed

    Chen, Yanping; Xiong, Tao; Yu, Li; Zeng, Shaoqun; Luo, Qingming

    2005-01-01

    With complex configuration, the general whole-body fluorescence optical imaging system is power-consuming for it is mainly composed of laser or mercury lamp, filter and fiber-optic cable. In this paper we aimed at setting up a compact imaging system based on power light emitting diode (LED). We first discussed fluorescence excitation efficiency of mercury lamp and LED. Then we developed a compact prototype whole-body fluorescence optical imaging system based on power LED. With the prototype, we monitored the dynamic course of green fluorescence protein (GFP) expressing tumors in the same intact nude mice. We also recorded the temporal behavior of the infectious process of GFP-expressing bacteria from outside intact infected animals. This study puts forward a platform for monitoring tumor growth. The experiment reveals that it is doable to substitute power LED for mercury lamp for whole-body fluorescence optical imaging. PMID:17282471

  6. Whole-body MRI for the staging and follow-up of patients with metastasis.

    PubMed

    Schmidt, Gerwin P; Reiser, Maximilian F; Baur-Melnyk, Andrea

    2009-06-01

    The advent of whole-body MRI (WB-MRI) has introduced tumor imaging with a systemic approach compared to established sequential, multi-modal diagnostic algorithms. Hardware innovations, such as the introduction of multi-receiver channel whole-body scanners at 1.5 T and recently 3T, combined with acquisition acceleration techniques, have made high resolution WB-MRI clinically feasible. Now, a dedicated assessment of individual organs with various soft tissue contrast, spatial resolution and contrast media dynamics can be combined with whole-body anatomic coverage in a multi-planar imaging approach. More flexible protocols, e.g. including T1-weighted TSE- and STIR-imaging, dedicated lung imaging or dynamic contrast-enhanced studies of the abdomen can be performed within less than 45 min. For initial tumor staging PET-CT as a competing whole-body modality in oncologic imaging has proved more accurate for the definition of T-stage and lymph node assessment, using the additional metabolic information of PET for the assessment of tumor viability and therapy response. However, new applications, such as MR-whole-body diffusion imaging, may significantly increase sensitivity in near future. WB-MRI has shown advantages for the detection of distant metastatic disease, especially from tumors frequently spreading to the liver or brain and it is especially useful as a radiation-free alternative for the surveillance of tumor patients with multiple follow-up exams. Furthermore, it has been introduced as a whole-body bone marrow screening application. Within this context WB-MRI is highly accurate for the detection of skeletal metastases and staging of hematologic diseases, such as multiple myeloma or lymphoma. This article summarizes recent developments and applications of WB-MRI and highlights its performance within the scope of systemic oncologic staging and surveillance. PMID:19457631

  7. Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects.

    PubMed

    Macaluso, T; Bourdin, C; Buloup, F; Mille, M-L; Sainton, P; Sarlegna, F R; Taillebot, V; Vercher, J-L; Weiss, P; Bringoux, L

    2016-07-01

    Astronauts' training is conventionally performed in a pool to reproduce weightlessness by exploiting buoyancy which is supposed to reduce the impact of gravity on the body. However, this training method has not been scientifically validated yet, and requires first to study the effects of underwater exposure on motor behavior. We examined the influence of neutral buoyancy on kinematic features of whole-body reaching underwater and compared them with those produced on land. Eight professional divers were asked to perform arm reaching movements toward visual targets while standing. Targets were presented either close or far from the subjects (requiring in the latter case an additional whole-body displacement). Reaching movements were performed on land or underwater in two different contexts of buoyancy. The divers either wore a diving suit only with neutral buoyancy applied to their center of mass or were additionally equipped with a submersible simulated space suit with neutral buoyancy applied to their body limbs. Results showed that underwater exposure impacted basic movement features, especially movement speed which was reduced. However, movement kinematics also differed according to the way buoyancy was exerted on the whole-body. When neutral buoyancy was applied to the center of mass only, some focal and postural components of whole-body reaching remained close to land observations, notably when considering the relative deceleration duration of arm elevation and concomitant forward trunk bending when reaching the far target. On the contrary, when neutral buoyancy was exerted on body segments, movement kinematics were close to those reported in weightlessness, as reflected by the arm deceleration phase and the whole-body forward displacement when reaching the far target. These results suggest that astronauts could benefit from the application of neutral buoyancy across the whole-body segments to optimize underwater training and acquire specific motor skills which

  8. Whole-body autoradiographic microimaging: Applications in radiopharmaceutical and drug research

    SciTech Connect

    Som, P.; Sacker, D.F.

    1991-12-31

    The whole-body autoradiographic (WBARG) microimaging technique is used for evaluation of the temporo-spatial distribution of radiolabeled molecules in intact animals as well as to determine the sites of accumulation of parent compounds and their metabolites. This technique is also very useful to determine the metabolism of a compound, toxicity, and effects of therapeutic interventions on the distribution of a compound in the whole body, by studying animals at different time intervals after injection of the radiolabeled compound. This report discusses various aspects of WBARG.

  9. Whole-body autoradiographic microimaging: Applications in radiopharmaceutical and drug research

    SciTech Connect

    Som, P.; Sacker, D.F.

    1991-01-01

    The whole-body autoradiographic (WBARG) microimaging technique is used for evaluation of the temporo-spatial distribution of radiolabeled molecules in intact animals as well as to determine the sites of accumulation of parent compounds and their metabolites. This technique is also very useful to determine the metabolism of a compound, toxicity, and effects of therapeutic interventions on the distribution of a compound in the whole body, by studying animals at different time intervals after injection of the radiolabeled compound. This report discusses various aspects of WBARG.

  10. Efficiency of whole-body counter for various body size calculated by MCNP5 software.

    PubMed

    Krstic, D; Nikezic, D

    2012-11-01

    The efficiency of a whole-body counter for (137)Cs and (40)K was calculated using the MCNP5 code. The ORNL phantoms of a human body of different body sizes were applied in a sitting position in front of a detector. The aim was to investigate the dependence of efficiency on the body size (age) and the detector position with respect to the body and to estimate the accuracy of real measurements. The calculation work presented here is related to the NaI detector, which is available in the Serbian Whole-body Counter facility in Vinca Institute. PMID:22923253

  11. Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections

    NASA Astrophysics Data System (ADS)

    Stoeckli, Markus; Staab, Dieter; Schweitzer, Alain

    2007-02-01

    The determination of the compound distribution in laboratory animal tissue in early development is a standard process in pharmaceutical research. While this information is traditionally obtained by means of whole-body autoradiography using radiolabeled compounds, this technology does not distinguish between metabolites and parent compound. The technique described in this article, termed matrix-assisted laser desorption/ionization (MALDI) mass spectrometric imaging, can fill this gap by simultaneously measuring compound and multiple metabolites distributed in whole-body tissue sections, using non-labeled compounds.

  12. Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology.

    PubMed

    Schmidt, Gerwin P; Kramer, Harald; Reiser, Maximilian F; Glaser, Christian

    2007-06-01

    The advent of positron emission tomography-computed tomography (PET-CT) and whole-body magnetic resonance imaging (WB-MRI) has introduced tumor imaging with a systemic and functional approach compared with established sequential, multimodal diagnostic algorithms.Whole-body PET with [18F]-fluoro-2-desoxy-glucose is a useful imaging procedure for tumor staging and monitoring that can visualize active tumor tissue by detecting pathological glucose metabolism. The combination of PET with the detailed anatomical information of multislice computed tomography as dual-modality scanners has markedly increased lesion localization and diagnostic accuracy compared with both modalities as standalone applications.Hardware innovations, such as the introduction of multi-receiver channel whole-body MRI scanners at 1.5 and, recently, 3 T, combined with acquisition acceleration techniques, have made high-resolution WB-MRI clinically feasible. Now, a dedicated assessment of individual organs with various soft tissue contrast, spatial resolution, and contrast media dynamics can be combined with whole-body anatomical coverage in a multiplanar imaging approach. More flexible protocols (eg, T1-weighted turbo spin-echo and short inversion recovery imaging, dedicated lung imaging or dynamic contrast-enhanced studies of the abdomen) can be performed within 45 minutes.Whole-body magnetic resonance imaging has recently been proposed for tumor screening of asymptomatic individuals, and potentially life-changing diagnoses, such as formerly unknown malignancy, have been reported. However, larger patient cohort studies will have to show the cost efficiency and the clinical effectiveness of such an approach.For initial tumor staging, PET-CT has proved more accurate for the definition of T-stage and lymph node assessment, mainly because of the missing metabolic information in WB-MRI. However, new applications, such as magnetic resonance whole-body diffusion-weighted imaging or lymphotropic contrast

  13. Phase 1 Study of Vorinostat as a Radiation Sensitizer with 131I-Metaiodobenzylguanidine (131I-MIBG) for Patients with Relapsed or Refractory Neuroblastoma

    PubMed Central

    DuBois, Steven G.; Groshen, Susan; Park, Julie R.; Haas-Kogan, Daphne A.; Yang, Xiaodong; Geier, Ethan; Chen, Eugene; Giacomini, Kathy; Weiss, Brian; Cohn, Susan L.; Granger, M. Meaghan; Yanik, Gregory A.; Hawkins, Randall; Courtier, Jesse; Jackson, Hollie; Goodarzian, Fariba; Shimada, Hiroyuki; Czarnecki, Scarlett; Tsao-Wei, Denice; Villablanca, Judith G.; Marachelian, Araz; Matthay, Katherine K.

    2015-01-01

    Purpose 131I-metaiodobenzylguanidine (MIBG) is a radiopharmaceutical with activity in neuroblastoma. Vorinostat is a histone deacetylase inhibitor that has radiosensitizing properties. The goal of this phase 1 study was to determine the maximum tolerated doses of vorinostat and MIBG in combination. Experimental Design Patients ≤ 30 years with relapsed/refractory MIBG-avid neuroblastoma were eligible. Patients received oral vorinostat (dose levels 180 and 230 mg/m2) daily Days 1–14. MIBG (dose levels 8, 12, 15, and 18 mCi/kg) was given on Day 3 and peripheral blood stem cells on Day 17. Alternating dose escalation of vorinostat and MIBG was performed using a 3+3 design. Results 27 patients enrolled to 6 dose levels, with 23 evaluable for dose escalation. No dose-limiting toxicities (DLT) were seen in the first three dose levels. At dose level 4 (15 mCi/kg MIBG/230 mg/m2 vorinostat), 1 of 6 patients had DLT with grade 4 hypokalemia. At dose level 5 (18 mCi/kg MIBG/230 mg/m2 vorinostat), two patients had dose-limiting bleeding (one grade 3 and one grade 5). At dose level 5a (18 mCi/kg MIBG/180 mg/m2 vorinostat), 0 of 6 patients had DLT. The most common toxicities were neutropenia and thrombocytopenia. The response rate was 12% across all dose levels and 17% at dose level 5a. Histone acetylation increased from baseline in peripheral blood mononuclear cells collected on Days 3 and 12–14. Conclusions Vorinostat at 180 mg/m2/dose is tolerable with 18 mCi/kg MIBG. A phase 2 trial comparing this regimen to single-agent MIBG is ongoing. PMID:25695691

  14. Characterization of Scatter and Penetration Using Monte Carlo Simulation in 131I Imaging

    PubMed Central

    Dewaraja, Yuni K.; Ljungberg, Michael; Koral, Kenneth F.

    2010-01-01

    In 131I SPECT, image quality and quantification accuracy are degraded by object scatter as well as scatter and penetration in the collimator. The characterization of energy and spatial distributions of scatter and penetration performed in this study by Monte Carlo simulation will be useful for the development and evaluation of techniques that compensate for such events in 131I imaging. Methods First, to test the accuracy of the Monte Carlo model, simulated and measured data were compared for both a point source and a phantom. Next, simulations to investigate scatter and penetration were performed for four geometries: point source in air, point source in a water-filled cylinder, hot sphere in a cylinder filled with nonradioactive water, and hot sphere in a cylinder filled with radioactive water. Energy spectra were separated according to order of scatter, type of interaction, and γ-ray emission energy. A preliminary evaluation of the triple-energy window (TEW) scatter correction method was performed. Results The accuracy of the Monte Carlo model was verified by the good agreement between measured and simulated energy spectra and radial point spread functions. For a point source in air, simulations show that 73% of events in the photopeak window had either scattered in or penetrated the collimator, indicating the significance of collimator interactions. For a point source in a water-filled phantom, the separated energy spectra showed that a 20% photopeak window can be used to eliminate events that scatter more than two times in the phantom. For the hot sphere phantoms, it was shown that in the photopeak region the spectrum shape of penetration events is very similar to that of primary (no scatter and no penetration) events. For the hot sphere regions of interest, the percentage difference between true scatter counts and the TEW estimate of scatter counts was <12%. Conclusion In 131I SPECT, object scatter as well as collimator scatter and penetration are significant

  15. Very low-dose adult whole-body tumor imaging with F-18 FDG PET/CT

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Naveed, Muhammad; McGrath, Mary; Lisi, Michele; Lavalley, Cathy; Feiglin, David

    2015-03-01

    The aim of this study was to evaluate if effective radiation dose due to PET component in adult whole-body tumor imaging with time-of-flight F-18 FDG PET/CT could be significantly reduced. We retrospectively analyzed data for 10 patients with the body mass index ranging from 25 to 50. We simulated F-18 FDG dose reduction to 25% of the ACR recommended dose via reconstruction of simulated shorter acquisition time per bed position scans from the acquired list data. F-18 FDG whole-body scans were reconstructed using time-of-flight OSEM algorithm and advanced system modeling. Two groups of images were obtained: group A with a standard dose of F-18 FDG and standard reconstruction parameters and group B with simulated 25% dose and modified reconstruction parameters, respectively. Three nuclear medicine physicians blinded to the simulated activity independently reviewed the images and compared diagnostic quality of images. Based on the input from the physicians, we selected optimal modified reconstruction parameters for group B. In so obtained images, all the lesions observed in the group A were visible in the group B. The tumor SUV values were different in the group A, as compared to group B, respectively. However, no significant differences were reported in the final interpretation of the images from A and B groups. In conclusion, for a small number of patients, we have demonstrated that F-18 FDG dose reduction to 25% of the ACR recommended dose, accompanied by appropriate modification of the reconstruction parameters provided adequate diagnostic quality of PET images acquired on time-of-flight PET/CT.

  16. Salivary gland accumulation of meta-(/sup 131/I)iodobenzylguanidine

    SciTech Connect

    Nakajo, M.; Shapiro, B.; Sisson, J.C.; Swanson, D.P.; Beierwaltes, W.H.

    1984-01-01

    Intense uptake of m-(/sup 131/I)iodobenzylguanidine (I-131 MIBG) has been observed in the salivary glands of patients undergoing scintigraphy for the location of suspected pheochromocytomas. This uptake of radioativity was not due to free I-131 derived from the I-131 MIBG but rather to uptake of I-131 MIBG by sympathetic neuronal elements in the salivary glands. In keeping with this, administration of tricycle antidepressants reversibly blocked salivary uptake of I-131 MIBG. Furthermore, I-131 MIBG uptake was markedly diminished by the ipsilateral salivary glands in a patient with Horner's syndrome, and was bilaterally diminished in a patient with severe idiopathic sympathetic autonomic neuropathy. The salivary gland uptake of I-131 MIBG may provide a means for the study of sympathetic innervation of these organs, and thus for the study of generalized disorders of autonomic innervation.

  17. Treatment of neuroblastoma with /sup 131/I-metaiodobenzylguanidine: the experience of an Italian Study Group

    SciTech Connect

    Bestagno, M.; Guerra, P.; Puricelli, G.P.; Colombo, L.; Calculli, G.

    1987-01-01

    Eight patients affected by neuroblastoma were treated with 18 courses of /sup 131/I-meta-iodobenzylguanidine (MIBG). They all had been judged as nonresponders to conventional treatments. Six had stage IV disease: of these, five, with massive marrow involvement, had poor results, mainly because of marrow depression; one, whose marrow had been previously purged by chemotherapy, showed a decrease in blood cell counts but not to critical levels, thus allowing repeated treatments and some improvement. Two other cases had stage III disease, without marrow involvement. Both could receive repeated treatments without adverse effects on marrow and circulating blood cells; both could have surgical procedures when a significant neoplastic mass reduction had been induced by MIBG treatments. Almost all patients experienced reduction or disappearing of pain. Treatments were well tolerated.

  18. /sup 131/I-metaiodobenzylguanidine treatment in neuroblastoma: report of two cases

    SciTech Connect

    Cottino, F.; Mussa, G.C.; Madon, E.; Favero, A.; Silvestro, L.; Grazia, G.

    1987-01-01

    Poor results with /sup 131/I-meta-iodobenzylguanidine (MIBG) therapy have been obtained in two children with stage IV neuroblastoma treated after partial surgery and unsatisfactory combination chemotherapy. Both patients' response to treatment (four and three 1-month-spaced courses, respectively; cumulative administration of 11.9 and 9.2 GBq) has been characterized by a low isotope concentration in the primary tumor and in the multiple bone metastases and by bone marrow uptake with final severe hematological toxicity. A slight decrease in the primary tumor's volume was observed in one patient at a cumulative dose of 85 Gy; there was no change in the other's at 42 Gy. At an initial, greater isotope concentration delivering 103 Gy, some bone metastases displayed a sharp decrease in uptake that persisted in the successive courses. For both patients a progressive spreading of new tumor localization in the bones and finally in the soft tissues was observed.

  19. Biological investigation of 131I-labeled new water soluble Ru(II) polypyridyl complex.

    PubMed

    Ocakoglu, Kasim; Yildirim, Yeliz; Yurt Lambrecht, Fatma; Ocal, Jale; Icli, Siddik

    2008-02-01

    New [Ru(L1)(dcbpy)(NCS)2] complex was synthesized in a one-pot reaction starting from [RuCl2(p-cymene)]2, where the ligands (dcbpy=4,4'-dicarboxy-2,2'-bipyridine, L1=dipyrido[3,2-a:2',3'-c]phenazine-11-ylcarbonyl)-sodium) are introduced sequentially. The resulting complex was characterized by IR, NMR, and elemental analysis. The complex was labeled with I-131. Biodistribution study of the complex was carried out using 131I-labeled [Ru(L1)(dcbpy)(NCS)2] complex. The biodistribution study performed with albino Wistar male rats has shown that the complex has high uptake in the lung, small intestine, fat, and spleen. PMID:17913501

  20. Investigation of the level of safety for out-patients treated with high dose of 131I in Sudan

    NASA Astrophysics Data System (ADS)

    Saeed, M. K.

    2014-10-01

    The aim of this study was to describe and analyze the patterns of radiation exposure of contacts of Sudanese patients treated with radioactive 131I on an out-patient basis and post discharge after high dose 131I therapy, and also to compare the family members' results with dose constraints proposed by the European Commission (EC). Thermoluminiscent dosimeters (Model TLD-100 H) were used to estimate the effective doses for 40 family members of fifteen patients treated with 131I. The family members wore a TLD in front of the chest for 10 days. The effective dose ranged from 0.23 to 6.74 mSv (mean 1.75 mSv). These findings may be considered when establishing new national guidelines concerning radiation protection and release of patients after a treatment with radioiodine therapy.

  1. Accumulation and tissue distribution of radioiodine ( sup 131 I) from algal phytoplankton by the freshwater clam Corbicula manilensis

    SciTech Connect

    Cuvin-Aralar, Ma.L.A. ); Umaly, R.C. )

    1991-12-01

    Radioactive wastes discharged from establishments involved in the use of radioisotopes such as nuclear-powered industries, tracer research and nuclear medicine are a potential public health hazard. Such wastes contain radionuclides, particularly Iodine-131 ({sup 131}I), produced in fission with a yield of about 3%. Radionuclides in waste waters are known to be taken up by molluscs such as mussels, oysters, and clams. This study aims to determine the uptake of {sup 131}I from algal phytoplankton (Chroococcus dispersus) fed to the freshwater clam Corbicula manilensis as well as the organ/tissue distribution. The results will be compared with a previous study on {sup 131}I uptake from water by the same clams.

  2. Laboratory evaluation of interception and translocation of {sup 131}I in fenugreek and Okra plants

    SciTech Connect

    Singhal, R.K.; Narayanan, U.; Bhat, I.S.

    1994-11-01

    The work reported here deals with the study of interception and translocation of airborne {sup 131}I in fenugreek (Trigonella foenum-graecum) and okra (Hibiscus esculentus), two very common vegetables in India. Activity was injected into the experimental chamber in the form of iodide aerosols having a size distribution of 0.3 to 5.0 {mu}m (AMAD). Samples of plants were collected over a period of a few days at different time intervals after injection of the aerosols. Evaluation of interception with deposition and translocation of {sup 131}I was done from the activity measured in air and in plant parts. For the deposition factor, the values are 1.22 m{sup 3} kg{sup -1} for fenugreek leaves, and 1.49 m{sup 3} kg{sup -1} for the plant as a whole. For okra plants these values are 0.02 and 0.16 m{sup 3} kg{sup -1} in edible okra and leaves, respectively. For the okra plant as a whole, the value is 0.19 m{sup 3} kg{sup -1}. The translocation factors vary from 0.62 to 0.86 and 0.47 to 0.87 for leaves and stem, respectively, in the case of fenugreek plants. For okra plants, the translocation factor varies from 0.21 to 0.82, 0.53 to 0.93, and 0.42 to 0.81 in edible okra, leaves, and stems, respectively. 13 refs., 6 figs., 2 tabs.

  3. Strategies for systemic radiotherapy of micrometastases using antibody-targeted 131I.

    PubMed

    Wheldon, T E; O'Donoghue, J A; Hilditch, T E; Barrett, A

    1988-02-01

    A simple analysis is developed to evaluate the likely effectiveness of treatment of micrometastases by antibody-targeted 131I. Account is taken of the low levels of tumour uptake of antibody-conjugated 131I presently achievable and of the "energy wastage" in targeting microscopic tumours with a radionuclide whose disintegration energy is widely dissipated. The analysis shows that only modest doses can be delivered to micrometastases when total body dose is restricted to levels which allow recovery of bone marrow. Much higher doses could be delivered to micrometastases when bone marrow rescue is used. A rationale is presented for targeted systemic radiotherapy used in combination with external beam total body irradiation (TBI) and bone marrow rescue. This has some practical advantages. The effect of the targeted component is to impose a biological non-uniformity on the total body dose distribution with regions of high tumour cell density receiving higher doses. Where targeting results in high doses to particular normal organs (e.g. liver, kidney) the total dose to these organs could be kept within tolerable limits by appropriate shielding of the external beam radiation component of the treatment. Greater levels of tumour cell kill should be achievable by the combination regime without any increase in normal tissue damage over that inflicted by conventional TBI. The predicted superiority of the combination regime is especially marked for tumours just below the threshold for detectability (e.g. approximately 1 mm-1 cm diameter). This approach has the advantage that targeted radiotherapy provides only a proportion of the total body dose, most of which is given by a familiar technique. The proportion of dose given by the targeted component could be increased as experience is gained. The predicted superiority of the combination strategy should be experimentally testable using laboratory animals. Clinical applications should be cautiously approached, with due regard to

  4. Localized beta dosimetry of sup 131 I -labeled antibodies in follicular lymphoma

    SciTech Connect

    Hui, T.E.; Fisher, D.R. ); Press, O.W.; Eary, J.F. ); Weinstein, J.N. ); Badger, C.C.; Bernstein, I.D. )

    1992-01-01

    The purpose of this study is to assess the multicellular dosimetry of {sup 131}I -labeled antibody in follicular lymphoma based on histological measurements on human tumor biopsy tissue. Photomicrographs of lymph node specimens were analyzed by first-order treatment to determine the mean values and statistical variations of the radii of follicles (260{plus minus}90 {mu}m), interfollicular distances (740{plus minus}160 {mu}m), and the number density of follicles (60{plus minus}18 in a volume of (2{times}1480 {mu}m){sup 3}). Based on these measurements, two geometrical models were developed for localized beta dosimetry. The first, a regular cubic lattice model, assumes no variation in follicular radius of follicles and interfollicular distance. The second, a randomized distribution model, is a more complicated but more realistic representation of observed histological specimens. In this model, Monte Carlo methods were used to reconstruct the spatial distribution of follicles by simulating the distribution of the radii of follicles, interfollicular distances, and the number density of follicles. Dose calculations were performed using Berger's point kernels for absorbed-dose distribution for beta particles in water, assuming the {sup 131}I -labeled antibodies as point sources. It was assumed that the activity concentration of the labeled antibody within the follicles was ten times the activity concentration in the interfollicular spaces. The spatial distribution of localized dose was calculated for a tumor having an average dose of 40 Gy. The localized dose was found to be highly nonuniform, ranging from 20 to 90 Gy, and varying by a factor of about 2 from the average tumor dose.

  5. Industrial production of 131I by neutron irradiation and melting of sintered TeO2

    NASA Astrophysics Data System (ADS)

    Alanis, Jose; Navarrete, Manuel

    2001-07-01

    Optimal conditions of temperature and reaction rate have been settled to produce high purity TeO2 by the chemical reaction between Te and HNO3. Also, heating and time conditions for sintering this product have been found, in order to create cavities in the crystal inside, where a gaseous element such as iodine can be adsorbed with minimal leaking. In this way it is fabricated a suitable target to be irradiated with thermal neutrons for obtaining 131Te(t1/2=24.8 m) and 131mTe(t1/2=30 h) by (n, γ) nuclear reactions. Irradiation time has been chosen to get 131Te saturation activity (ti=150 m) because much longer irradiation times do not increase significantly total activity. Since parents 131Te and 131mTe have shorter half life than daughter 131I(t1/2=8.05 d) optimal cooling time must permit daughter activity to grow up till a maximum (tc=4d). Then, sintered cylinder shaped radioactive sample is manipulated in a hot cell, transported and put on a quartz tray, keeping Health Physics regulations. The quartz tray is inside a small electric oven enclosed in an airtight box with negative pressure (water 0.5 cm). There, it is gradually heated till melting point (733 °C). From 400 °C on, vapors are pumped out and bubbled in two solutions: one is 0.1 M NaOH, which retains nearly 99.9% of pumped 131I. Other is 0.02 M Na2CO3 (60%) plus 0.0025 M NaHCO3 (40%), which retains the remaining sample residue. Air filtering is accomplished by activated carbon and alumina filters in the inflow, glass wool fiber before bubbling, and activated carbon again in the outflow.

  6. Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer

    NASA Astrophysics Data System (ADS)

    Wetterling, Friedrich; Corteville, Dominique M.; Kalayciyan, Raffi; Rennings, Andreas; Konstandin, Simon; Nagel, Armin M.; Stark, Helmut; Schad, Lothar R.

    2012-07-01

    Sodium magnetic resonance imaging (23Na MRI) is a non-invasive technique which allows spatial resolution of the tissue sodium concentration (TSC) in the human body. TSC measurements could potentially serve to monitor early treatment success of chemotherapy on patients who suffer from whole body metastases. Yet, the acquisition of whole body sodium (23Na) images has been hampered so far by the lack of large resonators and the extremely low signal-to-noise ratio (SNR) achieved with existing resonator systems. In this study, a 23Na resonator was constructed for whole body 23Na MRI at 3T comprising of a 16-leg, asymmetrical birdcage structure with 34 cm height, 47.5 cm width and 50 cm length. The resonator was driven in quadrature mode and could be used either as a transceiver resonator or, since active decoupling was included, as a transmit-only resonator in conjunction with a receive-only (RO) surface resonator. The relative B1-field profile was simulated and measured on phantoms, and 3D whole body 23Na MRI data of a healthy male volunteer were acquired in five segments with a nominal isotropic resolution of (6 × 6 × 6) mm3 and a 10 min acquisition time per scan. The measured SNR values in the 23Na-MR images varied from 9 ± 2 in calf muscle, 15 ± 2 in brain tissue, 23 ± 2 in the prostate and up to 42 ± 5 in the vertebral discs. Arms, legs, knees and hands could also be resolved with applied resonator and short time-to-echo (TE) (0.5 ms) radial sequence. Up to fivefold SNR improvement was achieved through combining the birdcage with local RO surface coil. In conclusion, 23Na MRI of the entire human body provides sub-cm spatial resolution, which allows resolution of all major human body parts with a scan time of less than 60 min.

  7. Comparison of Drug Distribution Images from Thin Tissue Sections Obtained Using Desorption Electrospray Ionization Tandem Mass Spectrometry and Whole-Body Autoradiography

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J; Vavek, Marissa; Koeplinger, Kenneth A.; Schneider, Bradley B; Covey, Thomas R.

    2008-01-01

    Desorption electrospray ionization tandem mass spectrometry (DESI-MS/MS) and whole-body autoradiography (WBA) were used for chemical imaging of whole-body thin tissue sections of mice intravenously dosed with propranolol (7.5 mg/kg). DESI-MS/MS imaging utilized selected reaction monitoring detection performed on an AB/MDS SCIEX 4000 QTRAP mass spectrometer equipped with a prototype extended length particle discriminator interface. Propranolol images of the tissue sections using DESI-MS/MS were obtained at surface scan rates of 0.1, 0.5, 2 and 7 mm/s. Although signal decreased with increasing scan rate, useful whole-body images for propranolol were obtained from the tissues even at 7 mm/s, which required just 79 min of analysis time. Attempts to detect and image the distribution of the known propranolol metabolites were unsuccessful. Regions of the tissue sections showing the most radioactivity from WBA sections were excised and analyzed by HPLC with radiochemical detection to determine relative levels of propranolol and metabolites present. Comparison of the DESI-MS/MS signal for propranolol and the radioactivity attributed to propranolol from WBA sections indicated nominal agreement between the two techniques for the amount of propranolol in the brain, lung, and liver. Data from the kidney showed an unexplained disparity between the two techniques. The results of this study show the feasibility of using DESI-MS/MS to obtain useful chemical images of a drug in whole-body thin tissue sections following drug administration at a pharmacologically relevant level. Further optimization to improve sensitivity and enable detection of the drug metabolites will be among the requirements necessary to move DESI-MS/MS chemical imaging forward as a practical tool in drug discovery.

  8. Optimization of Whole-body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    EPA Science Inventory

    Mass spectrometry imaging (MSI) methods and protocols have become widely adapted to a variety of tissues and species. However, the MSI literature lacks information on whole-body cryosection preparation for the zebrafish (ZF; Danio rerio), a model organism routinely used in devel...

  9. AMMONIA ABATEMENT SYSTEM FOR WHOLE-BODY SMALL ANIMAL INHALATION EXPOSURES TO ACID MODELS

    EPA Science Inventory

    Conducting whole-body acid aerosol inhalation exposures of laboratory animals is complicated by ammonia arising from the excrement of the test animals which is sufficient to completely neutralize much of the acid aerosol. he neutralization of acid by ammonia con only be controlle...

  10. Whole-body CO2 production as an index of the metabolic response to sepsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole-body carbon dioxide (CO2) production (RaCO2) is an index of substrate oxidation and energy expenditure; therefore, it may provide information about the metabolic response to sepsis. Using stable isotope techniques, we determined RaCO2 and its relationship to protein and glucose metabolism in m...

  11. Effects of Whole-Body Vibration Therapy in Patients with Fibromyalgia: A Systematic Literature Review

    PubMed Central

    Collado-Mateo, Daniel; Adsuar, Jose C.; Olivares, Pedro R.; del Pozo-Cruz, Borja; Parraca, Jose A.; del Pozo-Cruz, Jesus; Gusi, Narcis

    2015-01-01

    Objective. To review the literature on the effects of whole-body vibration therapy in patients with fibromyalgia. Design. Systematic literature review. Patients. Patients with fibromyalgia. Methods. An electronic search of the literature in four medical databases was performed to identify studies on whole-body vibration therapy that were published up to the 15th of January 2015. Results. Eight articles satisfied the inclusion and exclusion criteria and were analysed. According to the Dutch CBO guidelines, all selected trials had a B level of evidence. The main outcomes that were measured were balance, fatigue, disability index, health-related quality of life, and pain. Whole-body vibration appeared to improve the outcomes, especially balance and disability index. Conclusion. Whole-body vibration could be an adequate treatment for fibromyalgia as a main therapy or added to a physical exercise programme as it could improve balance, disability index, health-related quality of life, fatigue, and pain. However, this conclusion must be treated with caution because the paucity of trials and the marked differences between existing trials in terms of protocol, intervention, and measurement tools hampered the comparison of the trials. PMID:26351517

  12. [Recent technical research hot spots and development progresses in medical whole-body positron emission tomography].

    PubMed

    Shi, Han; Du, Dong; Su, Zhihong; Xu, Jianfeng; Zou, Yirong; Peng, Qiyu

    2015-02-01

    Medical whole-body positron emission tomography (PET), one of the most successful molecular imaging technologies, has been widely used in the fields of cancer diagnosis, cardiovascular disease diagnosis and cranial nerve study. But, on the other hand, the sensitivity, spatial resolution and signal-noise-ratio of the commercial medical whole-body PET systems still have some shortcomings and a great room for improvement. The sensitivity, spatial resolution and signal-noise-ratio of PET system are largely affected by the performances of the scintillators and the photo detectors. The design of a PET system is usually a trade-off in cost and performance. A better image quality can be achieved by optimizing and balancing the key components which affect the system performance the most without dramatically increases in cost. With the development of the scintillator, photo-detector and high speed electronic system, the performance of medical whole-body PET system would be dramatically improved. In this paper, we report current progresses and discuss future directions of the developments of technologies in medical whole-body PET system. PMID:25997296

  13. Moving along the Mental Number Line: Interactions between Whole-Body Motion and Numerical Cognition

    ERIC Educational Resources Information Center

    Hartmann, Matthias; Grabherr, Luzia; Mast, Fred W.

    2012-01-01

    Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants…

  14. Prolonged bed rest decreases skeletal muscle and whole body protein synthesis

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Lane, H. W.; Stuart, C. A.; Davis-Street, J.; Wolfe, R. R.

    1996-01-01

    We sought to determine the extent to which the loss of lean body mass and nitrogen during inactivity was due to alterations in skeletal muscle protein metabolism. Six male subjects were studied during 7 days of diet stabilization and after 14 days of stimulated microgravity (-6 degrees bed rest). Nitrogen balance became more negative (P < 0.03) during the 2nd wk of bed rest. Leg and whole body lean mass decreased after bed rest (P < 0.05). Serum cortisol, insulin, insulin-like growth factor I, and testosterone values did not change. Arteriovenous model calculations based on the infusion of L-[ring-13C6]-phenylalanine in five subjects revealed a 50% decrease in muscle protein synthesis (PS; P < 0.03). Fractional PS by tracer incorporation into muscle protein also decreased by 46% (P < 0.05). The decrease in PS was related to a corresponding decrease in the sum of intracellular amino acid appearance from protein breakdown and inward transport. Whole body protein synthesis determined by [15N]alanine ingestion on six subjects also revealed a 14% decrease (P < 0.01). Neither model-derived nor whole body values for protein breakdown change significantly. These results indicate that the loss of body protein with inactivity is predominantly due to a decrease in muscle PS and that this decrease is reflected in both whole body and skeletal muscle measures.

  15. Whole-body vibration and health effects in the agricultural machinery drivers.

    PubMed

    Futatsuka, M; Maeda, S; Inaoka, T; Nagano, M; Shono, M; Miyakita, T

    1998-04-01

    Recently farm mechanization has been widespread and developing rapidly, in particular riding farm machines are increasingly used in paddy fields in Japan. We have no information available on the actual situation regarding whole-body vibration on the seats of these farm machines from the standpoint of labour protection. Measurement and evaluation of whole-body vibration was performed on the seats of popular riding agricultural machineries. Whole-body vibration on the seats of combine harvesters and wheel tractors exceeded exposure limits and the fatigue-decreased proficiency boundary limit of 8 hr and also shortened the reduced comfort boundary limits of ISO 2631 (1985). Some combines, tractors and carieers had only less than one hour exposure duration as compared with the ISO 2631-1 standard (1997). On the other hand a questionnaire was also performed on the subject of agricultural machine operators. Any specific injury or other effects, i.e. low back injuries were not found among the group of operators as compared with those in non-operator farmers. It seems to be difficult to find out the health effects of whole-body vibration itself, because there may be a lot of causes, i.e. working posture, operating heavy materials, in farm working conditions. PMID:9583309

  16. Validation of a whole-body cortisol extraction procedure for channel catfish (Ictalurus punctatus) fry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed and validated a whole-body cortisol extraction technique for catfish fry. Their small size (< 1 g) makes it difficult to measure cortisol, a common indicator of a stress response, using conventional assay methods. Three volume enhancement methods were tested: CAL method (zero calibrator...

  17. Knowledge, Attitude, and Practices regarding Whole Body Donation among Medical Professionals in a Hospital in India

    ERIC Educational Resources Information Center

    Ballala, Kirthinath; Shetty, Avinash; Malpe, Surekha Bhat

    2011-01-01

    Voluntary body donation has become an important source of cadavers for anatomical study and education. The objective of this study was to assess knowledge, attitude, and practice (KAP) regarding whole body donation among medical professionals in a medical institute in India. A cross sectional study was conducted at Kasturba Hospital, Manipal,…

  18. Insulin and amino acids stimulate whole body protein synthesis in neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin and amino acids (AA) stimulate muscle protein synthesis in neonatal pigs. To determine the effects of insulin and AA on whole body protein turnover, hyperinsulinemic (0 and 100 ng/(kg[0.66]/min))-euglycemic-AA clamps were performed during euaminoacidemia or hyperaminoacidemia in fasted 7-d-...

  19. DETECTION OF WHOLE BODY OXIDATIVE STRESS IN URINE USING OXYGEN-18 LABELING

    EPA Science Inventory

    DETECTION OF WHOLE BODY OXIDATIVE STRESS IN URINE USING OXYGEN-18 LABELING. R Slade, J L McKee and G E Hatch. PTB, ETD, NHEERL, ORD, USEPA, Research Triangle Park, NC, USA.
    Reliable non-invasive markers for detecting oxidative stress in vivo are currently not available. We pr...

  20. Evolution of whole-body enantiomorphy in the tree snail genus Amphidromus

    PubMed Central

    SUTCHARIT, C; ASAMI, T; PANHA, S

    2007-01-01

    Diverse animals exhibit left–right asymmetry in development. However, no example of dimorphism for the left–right polarity of development (whole-body enantiomorphy) is known to persist within natural populations. In snails, whole-body enantiomorphs have repeatedly evolved as separate species. Within populations, however, snails are not expected to exhibit enantiomorphy, because of selection against the less common morph resulting from mating disadvantage. Here we present a unique example of evolutionarily stable whole-body enantiomorphy in snails. Our molecular phylogeny of South-east Asian tree snails in the genus Amphidromus indicates that enantiomorphy has likely persisted as the ancestral state over a million generations. Enantiomorphs have continuously coexisted in every population surveyed spanning a period of 10 years. Our results indicate that whole-body enantiomorphy is maintained within populations opposing the rule of directional asymmetry in animals. This study implicates the need for explicit approaches to disclosure of a maintenance mechanism and conservation of the genus. PMID:17305832

  1. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation.

    PubMed

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C ± 1.3°C and -8.3 ± 0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ± 0.11°C), while it only decreased at P20 (-0.14 ± 0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than

  2. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation

    PubMed Central

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C±1.3°C and -8.3±0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ±0.11°C), while it only decreased at P20 (-0.14±0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than PBC

  3. Effect of antilymphoma antibody, 131I-Lym-1, on peripheral blood lymphocytes in patients with non-Hodgkin's lymphoma.

    PubMed

    Schillaci, Orazio; DeNardo, Gerald L; DeNardo, Sally J; Goldstein, Desiree S; Kroger, Linda A; O'Donnell, Robert T; Lamborn, Kathleen R

    2007-08-01

    Anti-CD20 monoclonal antibodies (mAbs), unlabeled rituximab (Rituxan, Biogen Idec Inc., Cambridge, MA; and Genentech Inc., South San Francisco, CA) or radiolabeled 90Y-ibritumomab (Zevalin, Biogen Idec Inc., Cambridge, MA) and 131I-tositumomab (Bexxar; Glaxo Smith Kline, Research Triangle Park, NC), have proven to be effective therapy for non-Hodgkin's lymphoma (NHL), but also induce immediate and persistent decreases in normal peripheral blood lymphocytes (PBLs). Lym-1, a mAb that selectively targets malignant lymphocytes, also has induced therapeutic responses and prolonged survival in patients with NHL when labeled with iodine-131 (131I). We have retrospectively examined its effect on PBLs in 41 NHL patients that had received 131I-Lym-1 therapy. Absolute lymphocyte counts (ALCs) were evaluated before and after the first and last 131I-Lym-1 infusion. Modest decreases in PBLs were observed in most of the patients. Using strict criteria to define recovery, time to recovery was determined for 19 patients, with the remainder censored because of insufficient follow-up (median follow up for censored patients: 22 days). Using Kaplan-Meier estimates, it would be predicted that 31% of patients would recover by 28 days and that median time to recovery would be 44 days after the last 131I-Lym-1 infusion. No predictors were found for time to recovery, considering such factors as the administered Lym-1 or 131I dose, spleen volume, or radiation doses to the body, marrow, or spleen. The data suggest that the effect of 131I-Lym-1 on ALC is the result of a nonspecific radiation effect, rather than a specific Lym-1 mAb effect. The shorter time required for ALC recovery after 131I-Lym-1 when compared to that reported for anti-CD20 mAbs, whether radiolabeled or otherwise, is probably related to differing mechanisms for lymphocytotoxicity and lesser Lym-1 antigenic density on normal B-lymphocytes. PMID:17803447

  4. Benefits of whole body vibration training in patients hospitalised for COPD exacerbations - a randomized clinical trial

    PubMed Central

    2014-01-01

    Background Patients with stable COPD show improvements in exercise capacity and muscular function after the application of whole body vibration. We aimed to evaluate whether this modality added to conventional physiotherapy in exacerbated hospitalised COPD patients would be safe and would improve exercise capacity and quality of life. Methods 49 hospitalised exacerbated COPD patients were randomized (1:1) to undergo physiotherapy alone or physiotherapy with the addition of whole body vibration. The primary endpoint was the between-group difference of the 6-minute walking test (day of discharge – day of admission). Secondary assessments included chair rising test, quality of life, and serum marker analysis. Results Whole body vibration did not cause procedure-related adverse events. Compared to physiotherapy alone, it led to significantly stronger improvements in 6-minute walking test (95.55 ± 76.29 m vs. 6.13 ± 81.65 m; p = 0.007) and St. Georges Respiratory Questionnaire (-6.43 ± 14.25 vs. 5.59 ± 19.15, p = 0.049). Whole body vibration increased the expression of the transcription factor peroxisome proliferator receptor gamma coactivator-1-α and serum levels of irisin, while it decreased serum interleukin-8. Conclusion Whole body vibration during hospitalised exacerbations did not cause procedure-related adverse events and induced clinically significant benefits regarding exercise capacity and health-related quality of life that were associated with increased serum levels of irisin, a marker of muscle activity. Trial registration German Clinical Trials Register DRKS00005979. Registered 17 March 2014. PMID:24725369

  5. Whole-body heating decreases skin vascular response to low orthostatic stress in the lower extremities.

    PubMed

    Yamazaki, Fumio; Nakayama, Yoshiro; Sone, Ryoko

    2006-04-01

    To elucidate the influence of heat stress on cutaneous vascular response in the lower extremities during orthostatic stress, a head-up tilt (HUT) test at angles of 15 degrees, 30 degrees, 45 degrees, and 60 degrees for 4 min each was conducted under normothermic control conditions followed by whole-body heat stress produced by a hot water-perfused suit in healthy volunteers. Skin blood flows (SkBF) in the forearm, thigh, and calf were monitored using laser-Doppler flowmetry throughout the experiment. Furthermore, to elucidate the effects of increased core and local skin temperatures on the local vascular response in calf skin under increasing orthostatic stress, the thigh was occluded at 20, 30, 50, 70, and 80 mmHg with a cuff in both the normothermic condition and the whole-body or local heating condition. Significant decreases in forearm SkBF during HUT were observed at an angle of 60 degrees during normothermia and at 30 degrees or more during heating. SkBF in the thigh and calf was decreased significantly by HUT at 15 degrees and above during normothermia, and there was no significant reduction of SkBF in these sites during HUT at the lower angles (15 degrees -45 degrees ) during whole-body heating. Significant decreases of calf SkBF were observed at cuff pressures of 20 mmHg and above during normothermia and of 30 mmHg and above during whole-body and local heating, respectively. These results suggest that SkBF in the lower extremities shows a marked reduction compared with the upper extremities during low orthostatic stress in normothermia, and the enhanced skin vasoconstrictor response in the lower extremities is diminished by both whole-body and local heat stress. PMID:16839449

  6. An information theoretic view of the scheduling problem in whole-body CAD

    NASA Astrophysics Data System (ADS)

    Zhan, Yiqiang; Zhou, Xiang Sean; Krishnan, Arun

    2008-03-01

    Emerging whole-body imaging technologies push computer aided detection/diagnosis (CAD) to scale up to a whole-body level, which involves multiple organs or anatomical structure. To be exploited in this paper is the fact that the various tasks in whole-body CAD are often highly dependent (e.g., the localization of the femur heads strongly predicts the position of the iliac bifurcation of the aorta). One way to effectively employ task dependency is to schedule the tasks such that outputs of some tasks are used to guide the others. In this sense, optimal task scheduling is key to improve overall performance of a whole-body CAD system. In this paper, we propose a method for task scheduling that is optimal in an information-theoretic sense. The central idea is to schedule tasks in such an order that each operation achieves maximum expected information gain over all the tasks. The formulation embeds two intuitive principles: (1) a task with higher confidence tends to be scheduled earlier; (2) a task with higher predictive power for other tasks tends to be scheduled earlier. More specifically, task dependency is modeled by conditional probability; the outcome of each task is assumed to be probabilistic as well; and the objective function is based on the reduction of the summed conditional entropy over all tasks. The validation is carried out on a challenging CAD problem, multi-organ localization in whole-body CT. Compared to unscheduled and ad hoc scheduled organ detection/localization, our scheduled execution achieves higher accuracy with much less computation time.

  7. EURADOS INTERCOMPARISONS IN EXTERNAL RADIATION DOSIMETRY: SIMILARITIES AND DIFFERENCES AMONG EXERCISES FOR WHOLE-BODY PHOTON, WHOLE-BODY NEUTRON, EXTREMITY, EYE-LENS AND PASSIVE AREA DOSEMETERS.

    PubMed

    Romero, Ana M; Grimbergen, Tom; McWhan, Andrew; Stadtmann, Hannes; Fantuzzi, Elena; Clairand, Isabelle; Neumaier, Stefan; Figel, Markus; Dombrowski, Harald

    2016-09-01

    The European Radiation Dosimetry Group (EURADOS) has been organising dosimetry intercomparisons for many years in response to an identified requirement from individual monitoring services (IMS) for independent performance tests for dosimetry systems. The participation in intercomparisons gives IMS the opportunity to show compliance with their own quality management system, compare results with other participants and develop plans for improving their dosimetry systems. In response to growing demand, EURADOS has increased the number of intercomparisons for external radiation dosimetry. Most of these fit into the programme of self-financing intercomparisons for dosemeters routinely used by IMS. This programme is being coordinated by EURADOS working group 2 (WG2). Up to now, this programme has included four intercomparisons for whole-body dosemeters in photon fields, one for extremity dosemeters in photon and beta fields, and one for whole-body dosemeters in neutron fields. Other EURADOS working groups have organised additional intercomparisons including events in 2014 for eye-lens dosemeters and passive area dosemeters for environmental monitoring. In this paper, the organisation and achievements of these intercomparisons are compared in detail focusing on the similarities and differences in their execution. PMID:26759475

  8. Estimated dose rates to members of the public from external exposure to patients with 131I thyroid treatment

    DOE PAGESBeta

    Dewji, S.; Bellamy, M.; Hertel, N.; Leggett, R.; Sherbini, S.; Saba, M.; Eckerman, K.

    2015-03-25

    The purpose of this study is to estimate dose rates that may result from exposure to patients who had been administered iodine-131 (131I) as part of medical therapy were calculated. These effective dose rate estimates were compared with simplified assumptions under United States Nuclear Regulatory Commission Regulatory Guide 8.39, which does not consider body tissue attenuation nor time-dependent redistribution and excretion of the administered 131I. Methods: Dose rates were estimated for members of the public potentially exposed to external irradiation from patients recently treated with 131I. Tissue attenuation and iodine biokinetics were considered in the patient in a larger comprehensivemore » effort to improve external dose rate estimates. The external dose rate estimates are based on Monte Carlo simulations using the Phantom with Movable Arms and Legs (PIMAL), previously developed by Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission. PIMAL was employed to model the relative positions of the 131I patient and members of the public in three exposure scenarios: (1) traveling on a bus in a total of six seated or standing permutations, (2) two nursing home cases where a caregiver is seated at 30 cm from the patient’s bedside and a nursing home resident seated 250 cm away from the patient in an adjacent bed, and (3) two hotel cases where the patient and a guest are in adjacent rooms with beds on opposite sides of the common wall, with the patient and guest both in bed and either seated back-to-back or lying head to head. The biokinetic model predictions of the retention and distribution of 131I in the patient assumed a single voiding of urinary bladder contents that occurred during the trip at 2, 4, or 8 h after 131I administration for the public transportation cases, continuous first-order voiding for the nursing home cases, and regular periodic voiding at 4, 8, or 12 h after administration for the hotel room cases. Organ

  9. Estimated dose rates to members of the public from external exposure to patients with {sup 131}I thyroid treatment

    SciTech Connect

    Dewji, S. Bellamy, M.; Leggett, R.; Eckerman, K.; Hertel, N.; Sherbini, S.; Saba, M.

    2015-04-15

    Purpose: Estimated dose rates that may result from exposure to patients who had been administered iodine-131 ({sup 131}I) as part of medical therapy were calculated. These effective dose rate estimates were compared with simplified assumptions under United States Nuclear Regulatory Commission Regulatory Guide 8.39, which does not consider body tissue attenuation nor time-dependent redistribution and excretion of the administered {sup 131}I. Methods: Dose rates were estimated for members of the public potentially exposed to external irradiation from patients recently treated with {sup 131}I. Tissue attenuation and iodine biokinetics were considered in the patient in a larger comprehensive effort to improve external dose rate estimates. The external dose rate estimates are based on Monte Carlo simulations using the Phantom with Movable Arms and Legs (PIMAL), previously developed by Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission. PIMAL was employed to model the relative positions of the {sup 131}I patient and members of the public in three exposure scenarios: (1) traveling on a bus in a total of six seated or standing permutations, (2) two nursing home cases where a caregiver is seated at 30 cm from the patient’s bedside and a nursing home resident seated 250 cm away from the patient in an adjacent bed, and (3) two hotel cases where the patient and a guest are in adjacent rooms with beds on opposite sides of the common wall, with the patient and guest both in bed and either seated back-to-back or lying head to head. The biokinetic model predictions of the retention and distribution of {sup 131}I in the patient assumed a single voiding of urinary bladder contents that occurred during the trip at 2, 4, or 8 h after {sup 131}I administration for the public transportation cases, continuous first-order voiding for the nursing home cases, and regular periodic voiding at 4, 8, or 12 h after administration for the hotel room cases. Organ

  10. Measurement of caesium-137 in the human body using a whole body counter

    NASA Astrophysics Data System (ADS)

    Elessawi, Elkhadra Abdulmula

    Gamma radiation in the environment is mainly due to naturally occurring radionuclides. However, there is also a contribution from anthropogenic radionuclides such as 137Cs which originate from nuclear fission processes. Since 1986, the accident at the Chernobyl power plant has been a significant source of artificial environmental radioactivity. In order to assess the radiological impact of these radionuclides, it is necessary to measure their activities in samples drawn from the environment and in plants and animals including human populations. The whole body counter (WBC) at the University Hospital of Wales in Cardiff makes in vivo measurements of gamma emitting radionuclides using a scanning ring of six large-volume thallium-doped sodium iodide (Nal(Tl)) scintillation detectors. In this work the WBC was upgraded by the addition of two high purity germanium (HPGe) detectors. The performance and suitability of the detection systems were evaluated by comparing the detection limits for Cs. Sensitivities were measured using sources of known activity in a water filled anthropomorphic phantom and theoretical minimum detectable count-rates were estimated from phantom background pulse height spectra. The theoretical minimum detectable activity was about 24 Bq for the combination of six Nal(Tl) detectors whereas for the individual HPGe detectors it was 64 Bq and 65 Bq, despite the much improved energy resolution Activities of 137Cs in the human body between 1993 and 2007 were estimated from the background Nal(Tl) spectra of 813 patients and compared with recent measurements in 14 volunteers. The body burden of Cs in Cardiff patients increased from an average of about 60 Bq in the early and mid 1990s to a maximum of about 100 Bq in 2000. By 2007 it had decreased to about 40 Bq. This latter value was similar to that of Cardiff residents at the time of the Chernobyl accident and to that of the volunteers measured in 2007 (51 Bq). However, it was less than the mean activity of

  11. Whole-body imaging of HER2/neu-overexpressing tumors using scFv-antibody conjugated quantum dots

    NASA Astrophysics Data System (ADS)

    Balalaeva, Irina V.; Zdobnova, Tatiana A.; Brilkina, Anna A.; Krutova, Irina M.; Stremovskiy, Oleg A.; Lebedenko, Elena N.; Vodeneev, Vladimir V.; Turchin, Ilya V.; Deyev, Sergey M.

    2010-02-01

    Semiconductor quantum dots (QDs) are widely used in different fields of bioscience and biotechnology due to their unique optical properties. QDs can be used as fluorescent markers for optical detection and monitoring of deeply located tumors in vivo after specific labeling achieved by conjugating of QDs with targeting molecules. In this work the possibilities of intravital tumor labeling with QDs and subsequent in vivo tumor imaging were estimated. The experiments were run on immunodeficient nu/nu mice bearing human breast carcinoma SKBR-3, overexpressing surface protein HER2/neu. We used quantum dots Qdot 705 ITK (Invitrogen, USA) linked to anti-HER2/neu 4D5 scFv antibody. Antibody scFv fragments as a targeting agent for directed delivery of fluorophores possess significant advantages over full-size antibodies due to their small size, lower cross-reactivity and immunogenicity. QDs were bound to 4D5 scFv by barnase-barstar system (bn-bst) analogous to the streptavidin-biotidin system. Whole-body images were obtained using diffuse fluorescence tomography (DFT) setup with low-frequency modulation and transilluminative configuration of scanning, created at the Institute of Applied Physics of RAS, Russia). DFT-results were confirmed ex vivo by confocal microscopy. We report the results of in vivo whole-body tumor imaging with QDs complexes as contrasting agents. Intravital images of QDs-labeled tumors were obtained using specific tumor cells targeting and fluorescence transilluminative imaging method, while "passive" QD-labeling failed to mark effectively the tumor.

  12. Assessment of the effect of vasodilators on the distribution of cardiac output by whole-body Thallium imaging

    SciTech Connect

    Juni, J.E.; Wallis, J.; Diltz, E.; Nicholas, J.; Lahti, D.; Pitt, B.

    1985-05-01

    Vasodilator therapy (tx) of congestive heart failure (CHF) has been shown to be effective in increasing cardiac output (CO) and lowering vascular resistance. Unfortunately, these hemodynamic effects are not usually accompanied by improved peripheral circulation of exercise capacity. To assess the effect of a new vasodilator, Cl-914, on the redistribution of CO to the peripheral circulation, the authors performed testing whole-body thallium scanning (WB-Th) on 6 patients (pts) with severe CHF. Immediately following i.v. injection of 1.5 mCi Th-201, WB scanning was performed from anterior and posterior views. Regions of interest were defined for the peripheral (P) muscles (legs and arms), central torso (C), and splanchnic bed (S). The geometric mean of activity in these regions was calculated from both views. Each pt was studied before tx and again, after 1 week on tx. Invasive measurements revealed that all pts had significant improvements in resting cardiac output (mean increase 49%) and vascular resistance (mean decrease 30%). Unlike other vasodilators, all CI-914 pts had a significant improvement in treadmill exercise capacity (mean increase 54%). WB-Th revealed a significant shift in CO to the peripheral circulation with P:C increased 33.2% (rho= .001) and P:S increased 29% (rho=.01). Vasoactive drugs may significantly alter the relative distribution of cardiac output. WB-Th scanning provides a simple quantitative means of following such changes.

  13. A dynamic model to estimate the activity concentration and whole body dose rate of marine biota as consequences of a nuclear accident.

    PubMed

    Keum, Dong-Kwon; Jun, In; Kim, Byeong-Ho; Lim, Kwang-Muk; Choi, Yong-Ho

    2015-02-01

    This paper describes a dynamic compartment model (K-BIOTA-DYN-M) to assess the activity concentration and whole body dose rate of marine biota as a result of a nuclear accident. The model considers the transport of radioactivity between the marine biota through the food chain, and applies the first order kinetic model for the sedimentation of radionuclides from seawater onto sediment. A set of ordinary differential equations representing the model are simultaneously solved to calculate the activity concentration of the biota and the sediment, and subsequently the dose rates, given the seawater activity concentration. The model was applied to investigate the long-term effect of the Fukushima nuclear accident on the marine biota using (131)I, (134)Cs, and, (137)Cs activity concentrations of seawater measured for up to about 2.5 years after the accident at two locations in the port of the Fukushima Daiichi Nuclear Power Station (FDNPS) which was the most highly contaminated area. The predicted results showed that the accumulated dose for 3 months after the accident was about 4-4.5Gy, indicating the possibility of occurrence of an acute radiation effect in the early phase after the Fukushima accident; however, the total dose rate for most organisms studied was usually below the UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation)'s bench mark level for chronic exposure except for the initial phase of the accident, suggesting a very limited radiological effect on the marine biota at the population level. The predicted Cs sediment activity by the first-order kinetic model for the sedimentation was in a good agreement with the measured activity concentration. By varying the ecological parameter values, the present model was able to predict the very scattered (137)Cs activity concentrations of fishes measured in the port of FDNPS. Conclusively, the present dynamic model can be usefully applied to estimate the activity concentration and whole

  14. Validation of 131I ecological transfer models and thyroid dose assessments using Chernobyl fallout data from the Plavsk district, Russia

    PubMed Central

    Zvonova, I.; Krajewski, P.; Berkovsky, V.; Ammann, M.; Duffa, C.; Filistovic, V.; Homma, T.; Kanyar, B.; Nedveckaite, T.; Simon, S.L.; Vlasov, O.; Webbe-Wood, D.

    2009-01-01

    Within the project “Environmental Modelling for Radiation Safety” (EMRAS) organized by the IAEA in 2003 experimental data of 131I measurements following the Chernobyl accident in the Plavsk district of Tula region, Russia were used to validate the calculations of some radioecological transfer models. Nine models participated in the inter-comparison. Levels of 137Cs soil contamination in all the settlements and 131I/137Cs isotopic ratios in the depositions in some locations were used as the main input information. 370 measurements of 131I content in thyroid of townspeople and villagers, and 90 measurements of 131I concentration in milk were used for validation of the model predictions. A remarkable improvement in models performance comparing with previous inter-comparison exercise was demonstrated. Predictions of the various models were within a factor of three relative to the observations, discrepancies between the estimates of average doses to thyroid produced by most participant not exceeded a factor of ten. PMID:19783331

  15. Long-term follow-up study of compensated low-dose /sup 131/I therapy for Graves' disease

    SciTech Connect

    Sridama, V.; McCormick, M.; Kaplan, E.L.; Fauchet, R.; DeGroot, L.J.

    1984-08-16

    We treated 187 patients who had Graves' disease with low-dose radioactive iodide (/sup 131/I), using a protocol that included a compensation for thyroid size. The incidence of early hypothyroidism (12 per cent) was acceptably low in the first year after /sup 131/I treatment, but we found a cumulative high incidence (up to 76 per cent) at the end of the 11th year. In contrast, the incidence of permanent hypothyroidism was relatively stable in 166 surgically treated patients, increasing from 19 to 27 per cent at the end of 11 years. Among 122 medically treated patients, only 40 per cent entered remission, and hypothyroidism developed in 2 per cent during the same period of follow-up. The long-term incidence of hypothyroidism in our patients treated with low-dose /sup 131/I therapy was much higher than that found in earlier studies using a comparable dose. Our study suggests that it will be difficult to modify therapy with /sup 131/I alone to produce both early control of thyrotoxicosis and a low incidence of hypothyroidism.

  16. Inhalation dose due to presence of 131I in air above septic tank system of an endocrinology hospital.

    PubMed

    Mietelski, J W; Grabowska, S; Nowak, T; Bogacz, J; Gaca, P; Bartyzel, M; Budzanowski, M

    2005-01-01

    We present here measurements of the 131I concentration for both: gaseous and aerosol fraction of 131I in the air above the septic tank containing wastes from medical application of this isotope. Aerosols were collected using air filters, whereas gaseous forms of iodine were trapped in KI impregnated charcoal double layer cartridge. Besides an active method (pumping of the air through system of filters) an attempt for using a passive method (charcoal traps) for monitoring of radio-iodine is described. For better characterisation of a site the external kerma was determined by means of G-M and TLD techniques as well as the activity kept in the septic tank was measured by gamma spectrometry. Results show that the activity of the aerosol fraction can be neglected compared to that of the gaseous fraction. He measured activity of air is low, on the level of 1 Bq m(-3), even during simulated failure of the ventilation system. Estimated inhalation dose for the serviceman of septic tanks is low ( approximately 10%) compared with external dose obtained by such person due to gamma radiation from the tank (on the level approximately 500 nSv h(-1)). Therefore, the concept of passive monitoring of the iodine in air was abandoned. Also estimated is the efficiency of 131I reduction by a charcoal filter of the ventilation system and 131I input to the environment by the ventilation chimney. PMID:15941814

  17. Specific energy from Auger and conversion electrons of 131I, 188Re-anti-CD20 to a lymphocyte's nucleus

    NASA Astrophysics Data System (ADS)

    Torres-García, E.; Carrillo-Cazares, T. A.

    2011-01-01

    The typical radionuclides used to label anti-CD20 in the treatment of non-Hodgkin's lymphoma are 90Y, 131I, and 188Re, with the emission of beta particles, Auger electrons, and conversion electrons for the latter two. The aim of the present work was to calculate the contribution of high linear energy transfer radiation as Auger electrons (AE) and conversion electrons (CE) of 131I and 188Re-anti-CD20 to mean specific energy into the cell nucleus by Monte Carlo simulation (MCS), so as to infer therapeutic effectiveness on a dosimetric basis. MCS was used to quantify the frequency-mean specific energy into the cell nucleus, where the cell was modeled by two concentric spheres, considering two cell models. The results showed that 10% and 33% of the mean-specific energies (z¯) per disintegration imparted to the cell nucleus for both geometries are due to AE and CE; on the other hand, if the hit of AE and CE occurs, the contribution to (z¯) is about 64% and 86% for 131I and 188Re, respectively. According to the amount of specific energy from AE and CE into the cell nucleus by positive event, they can cause catastrophic effects in the nuclear DNA in the treatment of non-Hodgkin's lymphoma with 131I, 188Re-anti-CD20.

  18. Nuclear Factor-Kappa B Inhibition Can Enhance Apoptosis of Differentiated Thyroid Cancer Cells Induced by 131I

    PubMed Central

    Tan, Jian; Xu, Ke; Jia, Qiang; Zheng, Wei

    2012-01-01

    Objective To evaluate changes of nuclear factor-kappa B (NF-κB) during radioiodine 131 (131I) therapy and whether NF-κB inhibition could enhance 131I-induced apoptosis in differentiated thyroid cancer (DTC) cells in a synergistic manner. Methods Three human DTC cell lines were used. NF-κB inhibition was achieved by using a NF-κB inhibitor (Bay 11-7082) or by p65 siRNA transfection. Methyl-thiazolyl-tetrazolium assay was performed for cell viability assessment. DNA-binding assay, luciferase reporter assay, and Western blot were adopted to determine function and expression changes of NF-κB. Then NF-κB regulated anti-apoptotic factors XIAP, cIAP1, and Bcl-xL were measured. Apoptosis was analyzed by Western blot for caspase 3 and PARP, and by flow cytometry as well. An iodide uptake assay was performed to determine whether NF-κB inhibition could influence radioactive iodide uptake. Results The methyl-thiazolyl-tetrazolium assay showed significant decrease of viable cells by combination therapy than by mono-therapies. The DNA-binding assay and luciferase reporter assay showed enhanced NF-κB function and reporter gene activities due to 131I, yet significant suppression was achieved by NF-κB inhibition. Western blot proved 131I could increase nuclear NF-κB concentration, while NF-κB inhibition reduced NF-κB concentration. Western blot also demonstrated significant up-regulation of XIAP, cIAP1, and Bcl-xL after 131I therapy. And inhibition of NF-κB could significantly down-regulate these factors. Finally, synergism induced by combined therapy was displayed by significant enhancements of cleaved caspase 3 and PARP from Western blot, and of Annexin V positively staining from flow cytometry. The iodine uptake assay did not show significant changes when NF-κB was inhibited. Conclusion We demonstrated that 131I could induce NF-κB activation, which would attenuate 131I efficacy in DTC cells. NF-κB inhibition by Bay 11-7082 or by p65 siRNA transfection was

  19. Pre-therapeutic 124I PET(/CT) dosimetry confirms low average absorbed doses per administered 131I activity to the salivary glands in radioiodine therapy of differentiated thyroid cancer

    PubMed Central

    Hobbs, Robert F.; Stahl, Alexander; Knust, Jochen; Sgouros, George; Bockisch, Andreas

    2010-01-01

    Purpose Salivary gland impairment following high activity radioiodine therapy of differentiated thyroid cancer (DTC) is a severe side effect. Dosimetric calculations using planar gamma camera scintigraphy (GCS) with 131I and ultrasonography (US) provided evidence that the average organ dose per administered 131I activity (ODpA) is too low to account for observed radiation damages to the salivary glands. The objective of this work was to re-estimate the ODpA using 124I PET(/CT) as a more reliable approach than 131I GCS/US. Methods Ten DTC patients underwent a series of six (or seven) PET scans and one PET/CT scan after administration of ~23 MBq 124I-iodide. Volumes of interest (VOIs) drawn on the CT and serial PET images were used to determine the glandular volumes and the imaged 124I activities. To enable identical VOIs to be drawn on serial PET images, each PET was co-registered with the CT image. To correct for partial volume effect and for the artificial bias in the activity concentration due to cascading gamma coincidences occurring in 124I decay, the imaged activity was effectively corrected using isovolume recovery coefficients (RCs) based on recovery phantom measurements. A head-neck phantom, which contained 124I-filled spheres, was manufactured to validate the isovolume recovery correction method with a realistic patient-based phantom geometry and for a range of activity concentration regimes. The mean±standard deviation (range) ODpA projected for 131I was calculated using the absorbed dose fraction method. Results The ODpAs (in Gy/GBq) for the submandibular and parotid glands were 0.32±0.13 (0.18–0.55) and 0.31±0.10 (0.13–0.46), respectively. No significant differences (p>0.2) in the mean ODpA between 124I PET(/CT) and 131I GCS/US dosimetry was found. The validation experiment showed that the percentage deviations between RC-corrected and true activity concentrations were <10%. Conclusion 124I PET(/CT) dosimetry also corroborates the low ODpAs to

  20. Design, fabrication and acceptance testing of a zero gravity whole body shower

    NASA Technical Reports Server (NTRS)

    Schumacher, E. A.; Lenda, J. A.

    1974-01-01

    Recent research and development programs have established the ability of the zero gravity whole body shower to maintain a comfortable environment in which the crewman can safely cleanse and dry the body. The purpose of this program was to further advance the technology of whole body bathing and to demonstrate technological readiness including in-flight maintenance by component replacement for flight applications. Three task efforts of this program are discussed. Conceptual designs and system tradeoffs were accomplished in task 1. Task 2 involved the formulation of preliminary and final designs for the shower, while task 3 included the fabrication and test of the shower assembly. Particular attention is paid to the evaluation and correction of test anomalies during the final phase of the program.

  1. Brain-machine interfacing control of whole-body humanoid motion.

    PubMed

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-Ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  2. Factors affecting the sensitivity of X-ray films used for whole-body autoradiography.

    PubMed

    Franklin, E R

    1983-03-01

    The sensitivities of five X-ray films commonly used for autoradiography of whole-body sections and thin-layer chromatograms were determined. The films tested were Kodak NS-2T, XAR-5, Industrex C, Agfa-Gevaert Osray M3 and CEAverken Singul-X. The order of sensitivity, from greatest to least, was found to be NS-2T, Osray M3, XAR-5, Singul-X and Industrex C. Increases in sensitivity following extended development were demonstrated for Industrex C. A literature review has revealed confusion in the use, in whole-body autoradiography, or various measures of autoradiographic response, which, in view of the simple relationship between radiographic optical density and absorbed dose, need not have arisen. PMID:6613162

  3. Whole body and tissue blood volumes of two strains of rainbow trout (Oncorhynchus mykiss )

    USGS Publications Warehouse

    Gingerich, W.H.; Pityer, R.A.; Rach, J.J.

    1990-01-01

    1. Estimates of apparent packed cell, plasma and total blood volumes for the whole body and for 13 selected tissues were compared between Kamloops and Wytheville strains of rainbow trout (Oncorhynchus mykiss) by the simultaneous injection of two vascular tracers, radiolabeled trout erythrocytes (51Cr-RBC) and radioiodated bovine serum albumin (125I-BSA). 2. Whole body total blood volume, plasma volume and packed cell volume were slightly, but not significantly greater in the Wytheville trout, whereas, the apparent plasma volumes and total blood volumes in 4 of 13 tissues were significantly greater in the Kamloops strain. 3. Differences were most pronounced in highly perfused organs, such as the liver and kidney and in organs of digestion such as the stomach and intestines. 4. Differences in blood volumes between the two strains may be related to the greater permeability of the vascular membranes in the Kamloops strain fish.

  4. Brain-machine interfacing control of whole-body humanoid motion

    PubMed Central

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  5. Furosemide- sup 131 I-hippuran renography after angiotensin-converting enzyme inhibition for the diagnosis of renovascular hypertension

    SciTech Connect

    Erbsloeh-Moeller, B.Du.; Dumas, A.; Roth, D.; Sfakianakis, G.N.; Bourgoignie, J.J. )

    1991-01-01

    We have previously demonstrated the greater sensitivity of 131I-hippuran renography than 99mTC-DTPA scintigraphy to diagnose renovascular hypertension (RVH). This study assesses the predictive diagnostic value of furosemide-131I-hippuran renography after angiotensin-converting enzyme (ACE) inhibition in patients with and without RVH. All patients were investigated at the University of Miami/Jackson Memorial Medical Center. Twenty-eight patients had RVH and 22 did not. Twenty-eight patients had normal or minimally decreased renal function and 22 had renal insufficiency. Renography was performed 60 minutes after oral administration of 50 mg captopril or 10 minutes after intravenous injection of 40 micrograms/kg enalaprilat. Forty milligrams of furosemide were administered intravenously 2 minutes after injection of 131I-hippuran. The residual cortical activity (RCA) of 131I-hippuran was measured at 20 minutes. RVH was unlikely when RCA after ACE inhibition was less than 30% of peak cortical activity. Conversely, RVH was present when 131I-hippuran cortical activity steadily increased throughout the test to reach 100% at 20 minutes. In azotemic patients with RCA between 31% and 100%, RVH was differentiated from intrinsic renal disease by obtaining a baseline renogram without ACE inhibition and comparing RCA in that study and RCA after ACE inhibition. If RCA increased (indicating worsening renal function) after ACE inhibition, RVH was likely; whereas, intrinsic renal disease was more likely if RCA remained unchanged or decreased (indicating improved renal function) with ACE inhibition. The test had a specificity of 95% and a sensitivity of 96% in this population. There was a direct correlation between the results of angioplasty or surgery on high blood pressure and the changes in RCA before and after intervention (n = 20).

  6. Whole-Body Reaching Movements Formulated by Minimum Muscle-Tension Change Criterion.

    PubMed

    Kudo, Naoki; Choi, Kyuheong; Kagawa, Takahiro; Uno, Yoji

    2016-05-01

    It is well known that planar reaching movements of the human shoulder and elbow joints have invariant features: roughly straight hand paths and bell-shaped velocity profiles. The optimal control models with the criteria of smoothness or precision, which determine a unique movement pattern, predict such features of hand trajectories. In this letter on expanding the research on simple arm reaching movements, we examine whether the smoothness criteria can be applied to whole-body reaching movements with many degrees of freedom. Determining a suitable joint trajectory in the whole-body reaching movement corresponds to the optimization problem with constraints, since body balance must be maintained during a motion task. First, we measured human joint trajectories and ground reaction forces during whole-body reaching movements, and confirmed that subjects formed similar movements with common characteristics in the trajectories of the hand position and body center of mass. Second, we calculated the optimal trajectories according to the criteria of torque and muscle-tension smoothness. While the minimum torque change trajectories were not consistent with the experimental data, the minimum muscle-tension change model was able to predict the stereotyped features of the measured trajectories. To explore the dominant effects of the extension from the torque change to the muscle-tension change, we introduced a weighted torque change cost function. Considering the maximum voluntary contraction (MVC) force of the muscle as the weighting factor of each joint torque, we formulated the weighted torque change cost as a simplified version of the minimum muscle-tension change cost. The trajectories owing to the minimum weighted torque change criterion also showed qualitative agreement with the common features of the measured data. Proper estimation of the MVC forces in the body joints is essential to reproduce human whole-body movements according to the minimum muscle-tension change

  7. Stability of Phase Relationships While Coordinating Arm Reaches with Whole Body Motion

    PubMed Central

    Bakker, Romy S.; Selen, Luc P. J.; Medendorp, W. Pieter

    2015-01-01

    The human movement repertoire is characterized by the smooth coordination of several body parts, including arm movements and whole body motion. The neural control of this coordination is quite complex because the various body parts have their own kinematic and dynamic properties. Behavioral inferences about the neural solution to the coordination problem could be obtained by examining the emerging phase relationship and its stability. Here, we studied the phase relationships that characterize the coordination of arm-reaching movements with passively-induced whole-body motion. Participants were laterally translated using a vestibular chair that oscillated at a fixed frequency of 0.83 Hz. They were instructed to reach between two targets that were aligned either parallel or orthogonal to the whole body motion. During the first cycles of body motion, a metronome entrained either an in-phase or an anti-phase relationship between hand and body motion, which was released at later cycles to test phase stability. Results suggest that inertial forces play an important role when coordinating reaches with cyclic whole-body motion. For parallel reaches, we found a stable in-phase and an unstable anti-phase relationship. When the latter was imposed, it readily transitioned or drifted back toward an in-phase relationship at cycles without metronomic entrainment. For orthogonal reaches, we did not find a clear difference in stability between in-phase and anti-phase relationships. Computer simulations further show that cost models that minimize energy expenditure (i.e. net torques) or endpoint variance of the reach cannot fully explain the observed coordination patterns. We discuss how predictive control and impedance control processes could be considered important mechanisms underlying the rhythmic coordination of arm reaches and body motion. PMID:26720413

  8. A biomimetic framework for coordinating and controlling whole body movements in humanoid robots.

    PubMed

    Morasso, Pietro; Rea, Francesco; Mohan, Vishwanathan

    2013-01-01

    An integrated model for the coordination of whole body movements of a humanoid robot with a compliant ankle similar to the human case is described. It includes a synergy formation part, which takes into account the motor redundancy of the body model, and an intermittent controller, which stabilizes in a robust way postural sway movements, thus combining the hip strategy with ankle strategy. PMID:24110934

  9. Time course of lipolytic activity and lipid peroxidation after whole-body gamma irradiation of rats

    SciTech Connect

    Rejholcova, M.; Wilhelm, J.

    1989-01-01

    The content of fluorescing products of lipid peroxidation (LFP) and hormone-stimulated lipolytic activity were determined in rat epididymal adipose tissue during a 29-day interval after whole-body gamma irradiation. An increase in LFP was accompanied by a decrease in lipolytic activity. It is suggested that these effects are interrelated and that the decrease in lipolysis in irradiated, semi fasting rats is an additional deteriorating factor leading to death in some animals.

  10. Contributions of working muscle to whole body lipid metabolism are altered by exercise intensity and training.

    PubMed

    Friedlander, Anne L; Jacobs, Kevin A; Fattor, Jill A; Horning, Michael A; Hagobian, Todd A; Bauer, Timothy A; Wolfel, Eugene E; Brooks, George A

    2007-01-01

    To evaluate the contribution of working muscle to whole body lipid oxidation, we examined the effects of exercise intensity and endurance training (9 wk, 5 days/wk, 1 h, 75% Vo(2 peak)) on whole body and leg free fatty acid (FFA) kinetics in eight male subjects (26 +/- 1 yr, means +/- SE). Two pretraining trials [45 and 65% Vo(2 max) (45UT, 65UT)] and two posttraining trials [65% of pretraining Vo(2 peak) (ABT), and 65% of posttraining Vo(2 peak) (RLT)] were performed using [1-(13)C]palmitate infusion and femoral arteriovenous sampling. Training increased Vo(2 peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 ml.kg(-1).min(-1), P < 0.05). Muscle FFA fractional extraction was lower during exercise (EX) compared with rest regardless of workload or training status ( approximately 20 vs. 48%, P < 0.05). Two-leg net FFA balance increased from net release at rest ( approximately -36 micromol/min) to net uptake during EX for 45UT (179 +/- 75), ABT (236 +/- 63), and RLT (136 +/- 110) (P < 0.05), but not 65UT (51 +/- 127). Leg FFA tracer measured uptake was higher during EX than rest for all trials and greater during posttraining in RLT (716 +/- 173 micromol/min) compared with pretraining (45UT 450 +/- 80, 65UT 461 +/- 72, P < 0.05). Leg muscle lipid oxidation increased with training in ABT (730 +/- 163 micromol/min) vs. 65UT (187 +/- 94, P < 0.05). Leg muscle lipid oxidation represented approximately 62 and 30% of whole body lipid oxidation at lower and higher relative intensities, respectively. In summary, training can increase working muscle tracer measured FFA uptake and lipid oxidation for a given power output, but both before and after training the association between whole body and leg lipid metabolism is reduced as exercise intensity increases. PMID:16896167

  11. Stability of Phase Relationships While Coordinating Arm Reaches with Whole Body Motion.

    PubMed

    Bakker, Romy S; Selen, Luc P J; Medendorp, W Pieter

    2015-01-01

    The human movement repertoire is characterized by the smooth coordination of several body parts, including arm movements and whole body motion. The neural control of this coordination is quite complex because the various body parts have their own kinematic and dynamic properties. Behavioral inferences about the neural solution to the coordination problem could be obtained by examining the emerging phase relationship and its stability. Here, we studied the phase relationships that characterize the coordination of arm-reaching movements with passively-induced whole-body motion. Participants were laterally translated using a vestibular chair that oscillated at a fixed frequency of 0.83 Hz. They were instructed to reach between two targets that were aligned either parallel or orthogonal to the whole body motion. During the first cycles of body motion, a metronome entrained either an in-phase or an anti-phase relationship between hand and body motion, which was released at later cycles to test phase stability. Results suggest that inertial forces play an important role when coordinating reaches with cyclic whole-body motion. For parallel reaches, we found a stable in-phase and an unstable anti-phase relationship. When the latter was imposed, it readily transitioned or drifted back toward an in-phase relationship at cycles without metronomic entrainment. For orthogonal reaches, we did not find a clear difference in stability between in-phase and anti-phase relationships. Computer simulations further show that cost models that minimize energy expenditure (i.e. net torques) or endpoint variance of the reach cannot fully explain the observed coordination patterns. We discuss how predictive control and impedance control processes could be considered important mechanisms underlying the rhythmic coordination of arm reaches and body motion. PMID:26720413

  12. MONICA: a compact, portable dual gamma camera system for mouse whole-body imaging

    SciTech Connect

    Choyke, Peter L; Xia, Wenze; Seidel, Jurgen; Kakareka, John W; Pohida, Thomas J; Milenic, Diane E; Proffitt, James; Majewski, Stan; Weisenberger, Andrew G; Green, Michael V

    2010-04-01

    Introduction We describe a compact, portable dual-gamma camera system (named "MONICA" for MObile Nuclear Imaging CAmeras) for visualizing and analyzing the whole-body biodistribution of putative diagnostic and therapeutic single photon emitting radiotracers in animals the size of mice. Methods Two identical, miniature pixelated NaI(Tl) gamma cameras were fabricated and installed ?looking up? through the tabletop of a compact portable cart. Mice are placed directly on the tabletop for imaging. Camera imaging performance was evaluated with phantoms and field performance was evaluated in a weeklong In-111 imaging study performed in a mouse tumor xenograft model. Results Tc-99m performance measurements, using a photopeak energy window of 140 keV?10%, yielded the following results: spatial resolution (FWHM at 1 cm), 2.2 mm; sensitivity, 149 cps (counts per seconds)/MBq (5.5 cps/μCi); energy resolution (FWHM, full width at half maximum), 10.8%; count rate linearity (count rate vs. activity), r2=0.99 for 0?185 MBq (0?5 mCi) in the field of view (FOV); spatial uniformity, <3% count rate variation across the FOV. Tumor and whole-body distributions of the In-111 agent were well visualized in all animals in 5-min images acquired throughout the 168-h study period. Conclusion Performance measurements indicate that MONICA is well suited to whole-body single photon mouse imaging. The field study suggests that inter-device communications and user-oriented interfaces included in the MONICA design facilitate use of the system in practice. We believe that MONICA may be particularly useful early in the (cancer) drug development cycle where basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors, e.g., limited imaging space, portability and, potentially, cost are important.

  13. Effects of whole-body vibration after eccentric exercise on muscle soreness and muscle strength recovery

    PubMed Central

    Timon, Rafael; Tejero, Javier; Brazo-Sayavera, Javier; Crespo, Carmen; Olcina, Guillermo

    2016-01-01

    [Purpose] The aim of this study was to investigate whether or not a single whole-body vibration treatment after eccentric exercise can reduce muscle soreness and enhance muscle recovery. [Subjects and Methods] Twenty untrained participants were randomly assigned to two groups: a vibration group (n=10) and control group (n=10). Participants performed eccentric quadriceps training of 4 sets of 5 repetitions at 120% 1RM, with 4 min rest between sets. After that, the vibration group received 3 sets of 1 min whole body vibration (12 Hz, 4 mm) with 30 s of passive recovery between sets. Serum creatine kinase, blood urea nitrogen, muscle soreness (visual analog scale) and muscle strength (peak isometric torque) were assessed. [Results] Creatine kinase was lower in the vibration group than in the control group at 24 h (200.2 ± 8.2 vs. 300.5 ± 26.1 U/L) and at 48 h (175.2 ± 12.5 vs. 285.2 ± 19.7 U/L) post-exercise. Muscle soreness decreased in vibration group compared to control group at 48 h post-exercise (34.1 ± 11.4 vs. 65.2 ± 13.2 mm). [Conclusion] Single whole-body vibration treatment after eccentric exercise reduced delayed onset muscle soreness but it did not affect muscle strength recovery. PMID:27390415

  14. Whole-body magnetic resonance imaging in children: state of the art*

    PubMed Central

    Teixeira, Sara Reis; Elias Junior, Jorge; Nogueira-Barbosa, Marcello Henrique; Guimarães, Marcos Duarte; Marchiori, Edson; Santos, Marcel Koenigkam

    2015-01-01

    Whole-body imaging in children was classically performed with radiography, positron-emission tomography, either combined or not with computed tomography, the latter with the disadvantage of exposure to ionizing radiation. Whole-body magnetic resonance imaging (MRI), in association with the recently developed metabolic and functional techniques such as diffusion-weighted imaging, has brought the advantage of a comprehensive evaluation of pediatric patients without the risks inherent to ionizing radiation usually present in other conventional imaging methods. It is a rapid and sensitive method, particularly in pediatrics, for detecting and monitoring multifocal lesions in the body as a whole. In pediatrics, it is utilized for both oncologic and non-oncologic indications such as screening and diagnosis of tumors in patients with genetic syndromes, evaluation of disease extent and staging, evaluation of therapeutic response and post-therapy follow-up, evaluation of non neoplastic diseases such as multifocal osteomyelitis, vascular malformations and syndromes affecting multiple regions of the body. The present review was aimed at describing the major indications of whole-body MRI in pediatrics added of technical considerations. PMID:25987752

  15. Whole Body Microwave Irradiation for Improved Dacarbazine Therapeutical Action in Cutaneous Melanoma Mouse Model

    PubMed Central

    Albulescu, Lucian; Iacob, Nicusor; Ighigeanu, Daniel

    2013-01-01

    A cutaneous melanoma mouse model was used to test the efficacy of a new therapeutical approach that uses low doses of cytostatics in conjunction with mild whole body microwave exposure of 2.45 GHz in order to enhance cytostatics antitumoral effect. Materials and Methods. A microwave exposure system for C57BL/6 mouse whole body microwave irradiation was designed; groups of 40 mice (males and females) bearing experimental tumours were subjected to a combined therapy comprising low doses of dacarbazine in combination with mild whole body irradiation. Clinical parameters and serum cytokine testing using xMAP technology were performed. Results. The group that was subjected to combined therapy, microwave and cytostatic, had the best clinical evolution in terms of overall survival, tumour volume, and metastatic potential. At day 14 the untreated group had 100% mortality, while in the combined therapy group 40% of mice were surviving. Quantifying serum IL-1β, IL-6, IL-10, IL-12 (p70), IFN-γ, GM-CSF, TNF-α, MIP-1α, MCP-1, and KC during tumorigenesis and therapy found that the combined experimental therapy decreases all the inflammatory cytokines, except chemokine MCP-1 that was found increased, suggesting an increase of the anti-tumoral immune response triggered by the combined therapy. The overall metastatic process is decreased in the combined therapy group. PMID:24377047

  16. Whole Body Vibration Immediately Decreases Lower Extremity Loading During the Drop Jump.

    PubMed

    Chen, Zong-Rong; Peng, Hsien-Te; Siao, Sheng-Wun; Hou, Yan-Ting; Wang, Li-I

    2016-09-01

    Chen, Z-R, Peng, H-T, Siao, S-W, Hou, Y-T, and Wang, L-I. Whole body vibration immediately decreases lower extremity loading during the drop jump. J Strength Cond Res 30(9): 2476-2481, 2016-The purpose of this study was to evaluate the acute effect of whole body vibration (WBV) on lower extremity loading during the drop jump (DJ). Fifteen male collegiate physical education students randomly completed 3 experimental sessions on 3 separate days with 4 days interval between sessions (performing 3 trials of DJ from 30-, 40-, and 50-cm drop heights before WBV and 4 minutes after WBV). Eight cameras and 2 force platforms were used to record kinematic and kinetic data, respectively. Peak impact force and loading rate significantly decreased after WBV during DJ from 40 and 50 cm. Knee angular displacements significantly increased after WBV during DJ from 30, 40, and 50 cm. Whole body vibration may help immediately reduce lower extremity loading. PMID:26849793

  17. Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Zhang, R.; Levine, B. D.

    2000-01-01

    The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P < 0.001) without significantly affecting the gain in the low-frequency range (P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.

  18. Segmental composition of whole-body impedance cardiogram estimated by computer simulations and clinical experiments.

    PubMed

    Kauppinen, P K; Kööbi, T; Hyttinen, J; Malmivuo, J

    2000-03-01

    Whole-body impedance cardiography (ICGWB) has been proposed as a feasible means of measuring cardiac output (CO). However, the source distribution of heart-related impedance variations in the whole body is not known. To establish how much of a signal originates in each segment of the body and what the contribution of each is to stroke volume (SV) in ICGWB, impedance in the extremities and trunk were investigated in 15 healthy volunteers. In addition, the theoretical measurement properties of ICGWB were studied using a computer model of the whole-body anatomy as a volume conductor. The model confirmed the expected result that most of the basal impedance originates from the extremities. Clinical experiments revealed that the heart-related amplitude variations in the ICGWB signal originate more evenly from various body segments, the trunk slightly more than the arms or legs. The heart-related ICGWB signal represents a weighted sum of segmental pulsatile events in the body yielding physiologically meaningful data on almost the whole circulatory system. PMID:10735977

  19. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure. PMID:25264920

  20. Retrospective respiration-gated whole-body photoacoustic computed tomography of mice

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chen, Wanyi; Maslov, Konstantin; Anastasio, Mark A.; Wang, Lihong V.

    2014-01-01

    Photoacoustic tomography (PAT) is an emerging technique that has a great potential for preclinical whole-body imaging. To date, most whole-body PAT systems require multiple laser shots to generate one cross-sectional image, yielding a frame rate of <1 Hz. Because a mouse breathes at up to 3 Hz, without proper gating mechanisms, acquired images are susceptible to motion artifacts. Here, we introduce, for the first time to our knowledge, retrospective respiratory gating for whole-body photoacoustic computed tomography. This new method involves simultaneous capturing of the animal's respiratory waveform during photoacoustic data acquisition. The recorded photoacoustic signals are sorted and clustered according to the respiratory phase, and an image of the animal at each respiratory phase is reconstructed subsequently from the corresponding cluster. The new method was tested in a ring-shaped confocal photoacoustic computed tomography system with a hardware-limited frame rate of 0.625 Hz. After respiratory gating, we observed sharper vascular and anatomical images at different positions of the animal body. The entire breathing cycle can also be visualized at 20 frames/cycle.

  1. Whole-body autoradiographic distribution of exogenously administered renal renin in rats.

    PubMed

    Kim, S; Iwao, H; Nakamura, N; Ikemoto, F; Yamamoto, K

    1987-05-01

    We studied, by whole-body autoradiography, the distribution of exogenously administered renal renin in rat. Rat renal renin was completely purified and labeled with 125I ([125I]-renin) and was then injected into the tail veins of conscious rats at a dose of 30 microCi, 430 ng. After various intervals, rats were killed by an overdose of ether, the whole body rapidly frozen in acetone-dry ice, and autoradiography performed on sagittal whole-body sections. To remove breakdown products ([125I]-tyrosine and free 125I) from [125I]-renin, sections were treated with perchloric acid solution. The main accumulation of [125I]-renin acid-insoluble radioactivity was observed in liver and renal cortex. The accumulation in these organs was already evident 2 min after the injection, reached a maximum level by 15 min, then gradually decreased. A small amount of [125I]-renin was also evident in spleen, bone marrow, and adrenal gland. Thirty min after the injection, radioactivity began to appear in the thyroid gland, stomach, and small intestine, but disappeared with acid treatment, except in the thyroid. Radioactivity was negligible in other organs including brain, submaxillary gland, lung, heart, and testis. These autoradiographs clearly demonstrate that exogenously administered renal renin is distributed mainly in the liver and renal cortex. PMID:3549890

  2. Whole-body autoradiographic distribution of exogenously administered renal renin in rats

    SciTech Connect

    Kim, S.; Iwao, H.; Nakamura, N.; Ikemoto, F.; Yamamoto, K.

    1987-05-01

    We studied, by whole-body autoradiography, the distribution of exogenously administered renal renin in rat. Rat renal renin was completely purified and labeled with /sup 125/I ((/sup 125/I)-renin) and was then injected into the tail veins of conscious rats at a dose of 30 microCi, 430 ng. After various intervals, rats were killed by an overdose of ether, the whole body rapidly frozen in acetone-dry ice, and autoradiography performed on sagittal whole-body sections. To remove breakdown products ((/sup 125/I)-tyrosine and free /sup 125/I) from (/sup 125/I)-renin, sections were treated with perchloric acid solution. The main accumulation of (/sup 125/I)-renin acid-insoluble radioactivity was observed in liver and renal cortex. The accumulation in these organs was already evident 2 min after the injection, reached a maximum level by 15 min, then gradually decreased. A small amount of (/sup 125/I)-renin was also evident in spleen, bone marrow, and adrenal gland. Thirty min after the injection, radioactivity began to appear in the thyroid gland, stomach, and small intestine, but disappeared with acid treatment, except in the thyroid. Radioactivity was negligible in other organs including brain, submaxillary gland, lung, heart, and testis. These autoradiographs clearly demonstrate that exogenously administered renal renin is distributed mainly in the liver and renal cortex.

  3. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    PubMed Central

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2016-01-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future. PMID:26938468

  4. Acute Whole-Body Vibration does not Facilitate Peak Torque and Stretch Reflex in Healthy Adults

    PubMed Central

    Yeung, Ella W.; Lau, Cheuk C.; Kwong, Ada P.K.; Sze, Yan M.; Zhang, Wei Y.; Yeung, Simon S.

    2014-01-01

    The acute effect of whole-body vibration (WBV) training may enhance muscular performance via neural potentiation of the stretch reflex. The purpose of this study was to investigate if acute WBV exposure affects the stretch induced knee jerk reflex [onset latency and electromechanical delay (EMD)] and the isokinetic knee extensor peak torque performance. Twenty-two subjects were randomly assigned to the intervention or control group. The intervention group received WBV in a semi-squat position at 30° knee flexion with an amplitude of 0.69 mm, frequency of 45 Hz, and peak acceleration of 27.6 m/s2 for 3 minutes. The control group underwent the same semii-squatting position statically without exposure of WBV. Two-way mixed repeated measures analysis of variance revealed no significant group effects differences on reflex latency of rectus femoris (RF) and vastus lateralis (VL; p = 0.934 and 0.935, respectively) EMD of RF and VL (p = 0.474 and 0.551, respectively) and peak torque production (p = 0.483) measured before and after the WBV. The results of this study indicate that a single session of WBV exposure has no potentiation effect on the stretch induced reflex and peak torque performance in healthy young adults. Key Points There is no acute potentiation of stretch reflex right after whole body vibration. Acute whole body vibration does not improve mus-cle peak torque performance in healthy young adults. PMID:24570602

  5. [Intraindividual comparison of whole body cold therapy and warm treatment with hot packs in generalized tendomyopathy].

    PubMed

    Samborski, W; Stratz, T; Sobieska, M; Mennet, P; Müller, W; Schulte-Mönting, J

    1992-01-01

    In a cross-over study, the short-term efficacy of whole-body cold therapy and hot mud packs in patients with generalized tendomyopathy (fibromyalgia) was compared. As a pain assessment, visual analog scale and so-called pain score were measured; dolorimetry of the 24 tender points and eight control points was performed as well. Using these methods, we found that there is a significant improvement of all parameters examined during a 2-h period of measurements after cold application, and a marked improvement was also detectable 24 h after this therapy. In contrast, only pain score values showed a slight decrease immediately after hot mud-pack therapy, and no significant differences were found in visual analog scale and pressure tenderness as measured dolorimetrically. Central inhibition of nociceptors as a result of an activation of A-delta system as well as a blockade of gamma-motoneurons are discussed to be a mechanism of action of whole-body cold therapy, resulting in a decrease in muscle tonus. Long-term studies are needed to determine, if there is any enduring effect of whole-body cold therapy on pain in the patients with generalized tendomyopathy. PMID:1574933

  6. Impact of 10 Sessions of Whole Body Cryostimulation on Cutaneous Microcirculation Measured by Laser Doppler Flowmetry

    PubMed Central

    Renata, Szyguła; Tomasz, Dybek; Andrzej, Klimek; Sławomir, Tubek

    2011-01-01

    The aim of the present study was to evaluate the basic and evoked blood flow in the skin microcirculation of the hand, one day and ten days after a series of 10 whole body cryostimulation sessions, in healthy individuals. The study group included 32 volunteers – 16 women and 16 men. The volunteers underwent 10 sessions of cryotherapy in a cryogenic chamber. The variables were recorded before the series of 10 whole body cryostimulation sessions (first measurement), one day after the last session (second measurement) and ten days later (third measurement). Rest flow, post-occlusive hyperaemic reaction, reaction to temperature and arterio–venous reflex index were evaluated by laser Doppler flowmetry. The values recorded for rest flow, a post-occlusive hyperaemic reaction, a reaction to temperature and arterio – venous reflex index were significantly higher both in the second and third measurement compared to the initial one. Differences were recorded both in men and women. The values of frequency in the range of 0,01 Hz to 2 Hz (heart frequency dependent) were significantly lower after whole-body cryostimulation in both men and women. In the range of myogenic frequency significantly higher values were recorded in the second and third measurement compared to the first one. Recorded data suggest improved response of the cutaneous microcirculation to applied stimuli in both women and men. Positive effects of cryostimulation persist in the tested group for 10 consecutive days. PMID:23487007

  7. Analysis of adipose tissue distribution using whole-body magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Wald, Diana; Schwarz, Tobias; Dinkel, Julien; Delorme, Stefan; Teucher, Birgit; Kaaks, Rudolf; Meinzer, Hans-Peter; Heimann, Tobias

    2011-03-01

    Obesity is an increasing problem in the western world and triggers diseases like cancer, type two diabetes, and cardiovascular diseases. In recent years, magnetic resonance imaging (MRI) has become a clinically viable method to measure the amount and distribution of adipose tissue (AT) in the body. However, analysis of MRI images by manual segmentation is a tedious and time-consuming process. In this paper, we propose a semi-automatic method to quantify the amount of different AT types from whole-body MRI data with less user interaction. Initially, body fat is extracted by automatic thresholding. A statistical shape model of the abdomen is then used to differentiate between subcutaneous and visceral AT. Finally, fat in the bone marrow is removed using morphological operators. The proposed method was evaluated on 15 whole-body MRI images using manual segmentation as ground truth for adipose tissue. The resulting overlap for total AT was 93.7% +/- 5.5 with a volumetric difference of 7.3% +/- 6.4. Furthermore, we tested the robustness of the segmentation results with regard to the initial, interactively defined position of the shape model. In conclusion, the developed method proved suitable for the analysis of AT distribution from whole-body MRI data. For large studies, a fully automatic version of the segmentation procedure is expected in the near future.

  8. Effects of whole-body vibration after eccentric exercise on muscle soreness and muscle strength recovery.

    PubMed

    Timon, Rafael; Tejero, Javier; Brazo-Sayavera, Javier; Crespo, Carmen; Olcina, Guillermo

    2016-06-01

    [Purpose] The aim of this study was to investigate whether or not a single whole-body vibration treatment after eccentric exercise can reduce muscle soreness and enhance muscle recovery. [Subjects and Methods] Twenty untrained participants were randomly assigned to two groups: a vibration group (n=10) and control group (n=10). Participants performed eccentric quadriceps training of 4 sets of 5 repetitions at 120% 1RM, with 4 min rest between sets. After that, the vibration group received 3 sets of 1 min whole body vibration (12 Hz, 4 mm) with 30 s of passive recovery between sets. Serum creatine kinase, blood urea nitrogen, muscle soreness (visual analog scale) and muscle strength (peak isometric torque) were assessed. [Results] Creatine kinase was lower in the vibration group than in the control group at 24 h (200.2 ± 8.2 vs. 300.5 ± 26.1 U/L) and at 48 h (175.2 ± 12.5 vs. 285.2 ± 19.7 U/L) post-exercise. Muscle soreness decreased in vibration group compared to control group at 48 h post-exercise (34.1 ± 11.4 vs. 65.2 ± 13.2 mm). [Conclusion] Single whole-body vibration treatment after eccentric exercise reduced delayed onset muscle soreness but it did not affect muscle strength recovery. PMID:27390415

  9. Effects of whole-body irradiation on neonatally thymectomized mice. Incidence of benign and malignant tumors.

    PubMed Central

    Anderson, R. E.; Howarth, J. L.; Troup, G. M.

    1978-01-01

    The individual and combined effects of neonatal thymectomy and whole-body irradiation on the prevalence of benign and malignant tumors in germ-free female mice of the Charles Rivers line were studied to determine if a portion of the tumorigenic effects of irradiation can be attributed to injury of the thymic-dependent component of the immune response. Neonatal thymectomy increased a) the incidence of benign and malignant tumors and b) the prevalence of multiple primary neoplasms in an individual mouse. Whole-body exposure to 700 rad at 6 weeks of age further increased th incidence of tumors, but the relative magnitude of this increase was less pronounced than in sham-operated controls. Thus, the cumulative effects of thymectomy plus irradiation are less pronounced than the sum of the individual effects. One of several possible explanations for this observation is that a portion of the carcinogenic effects of whole-body irradiation is mediated by suppression of the thymic-dependent component of the immune response. PMID:645825

  10. Estimation of dose absorbed fraction for 131I-beta rays in rat thyroid.

    PubMed

    Endo, S; Nitta, Y; Ohtaki, M; Takada, J; Stepanenko, V; Komatsu, K; Tauchi, H; Matsuura, S; Iaskova, E; Hoshi, M

    1998-09-01

    The dose absorbed fraction of rat thyroid by internal deposit of 131I has been calculated as a function of effective diameter of thyroid. The calculations were done using two types of Monte Carlo simulations: one was by a simple energy-loss calculation in spherical volume according to the electron stopping power, and another by a more realistic simulation using Monte Carlo N-Particle Transport code system Version 4A (MCNP). These two calculations were consistent with each other within a deviation of 5%. The absorbed fractions in spherical thyroid were drastically changed up to 5 mm diameter, and then almost all energy was deposited within 10 mm diameter. For the practical application to the animal experiment, the absorbed fractions of ellipsoid-shaped thyroids were also calculated for 1-, 4- and 9-week-old rats, where the fractions were estimated to be 0.61, 0.67 and 0.68, respectively. It was also found that the absorbed fraction of the ellipsoid with various dimensions can be simulated by a calculation for spherical volume with a comparable effective diameter. PMID:9868871

  11. Clinical experiences in the treatment of neuroblastoma with sup 131 I-metaiodobenzylguanidine

    SciTech Connect

    Treuner, J.; Klingebiel, T.; Feine, U.; Buck, J.; Bruchelt, G.; Dopfer, R.; Girgert, R.; Mueller-Schauenburg, W.M.; Meinke, J.; Kaiser, W. )

    1986-01-01

    Treatment of neuroblastoma is an unsolved problem of pediatric oncology. In spite of highly intensified chemotherapy, the long-term survival rate of children with a metastatic neuroblastoma is below 10%. We therefore used {sup 131}I-metaiodobenzylguanidine (MIBG) for the first time to treat children with a neuroblastoma in relapse or primary unresponsiveness to chemotherapy. We had previously demonstrated that MIBG is useful for the scintigraphic imaging of neuroblastoma lesions and had investigated the cytotoxicity and uptake of MIBG in various neuroblastoma cell lines. We treated 6 children with neuroblastoma in a total of 19 courses. Three of the children suffered from a relapse of neuroblastoma; 3 had never gained a remission. Four of the 6 children lost their bone pain and fever during the first 3 days. In 5 of the 6 children the solid tumor as well as the bone marrow infiltration responded to MIBG treatment, with responses ranging from transitory decrease of the tumor mass to complete disappearance of abdominal tumors. We also witnessed a stabilization of osteolytic lesions, a decrease in elevated serum catecholamines, and a decrease in bone marrow infiltration. Five of the 6 children died of tumor progression 55-249 days after the first MIBG treatment.

  12. SCAN+

    SciTech Connect

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  13. A high-resolution imaging technique using a whole-body, research photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-03-01

    A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.

  14. A High-Resolution Imaging Technique using a Whole-body, Research Photon Counting Detector CT System

    PubMed Central

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-01-01

    A high-resolution (HR) data collection mode has been introduced to the whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm × 0.45 mm detectors pixels were used, which corresponded to a pixel size of 0.225 mm × 0.225 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. Comparison of the HR mode images against their energy integrating system (EID) equivalents using comb filters was also performed. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% MTF. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system but hardly visible with the EID system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode. PMID:27330238

  15. Segmentation and Visual Analysis of Whole-Body Mouse Skeleton microSPECT

    PubMed Central

    Khmelinskii, Artem; Groen, Harald C.; Baiker, Martin; de Jong, Marion; Lelieveldt, Boudewijn P. F.

    2012-01-01

    Whole-body SPECT small animal imaging is used to study cancer, and plays an important role in the development of new drugs. Comparing and exploring whole-body datasets can be a difficult and time-consuming task due to the inherent heterogeneity of the data (high volume/throughput, multi-modality, postural and positioning variability). The goal of this study was to provide a method to align and compare side-by-side multiple whole-body skeleton SPECT datasets in a common reference, thus eliminating acquisition variability that exists between the subjects in cross-sectional and multi-modal studies. Six whole-body SPECT/CT datasets of BALB/c mice injected with bone targeting tracers 99mTc-methylene diphosphonate (99mTc-MDP) and 99mTc-hydroxymethane diphosphonate (99mTc-HDP) were used to evaluate the proposed method. An articulated version of the MOBY whole-body mouse atlas was used as a common reference. Its individual bones were registered one-by-one to the skeleton extracted from the acquired SPECT data following an anatomical hierarchical tree. Sequential registration was used while constraining the local degrees of freedom (DoFs) of each bone in accordance to the type of joint and its range of motion. The Articulated Planar Reformation (APR) algorithm was applied to the segmented data for side-by-side change visualization and comparison of data. To quantitatively evaluate the proposed algorithm, bone segmentations of extracted skeletons from the correspondent CT datasets were used. Euclidean point to surface distances between each dataset and the MOBY atlas were calculated. The obtained results indicate that after registration, the mean Euclidean distance decreased from 11.5±12.1 to 2.6±2.1 voxels. The proposed approach yielded satisfactory segmentation results with minimal user intervention. It proved to be robust for “incomplete” data (large chunks of skeleton missing) and for an intuitive exploration and comparison of multi-modal SPECT/CT cross

  16. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (˜15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study

  17. Follow-up of atheroma burden with sequential whole body contrast enhanced MR angiography: a feasibility study.

    PubMed

    Weir-McCall, Jonathan R; White, Richard D; Ramkumar, Prasad G; Gandy, Stephen J; Khan, Faisel; Belch, Jill J F; Struthers, Allan D; Houston, J Graeme

    2016-05-01

    Assess the feasibility of whole body magnetic resonance angiography (WB-MRA) for monitoring global atheroma burden in a population with peripheral arterial disease (PAD). 50 consecutive patients with symptomatic PAD referred for clinically indicated MRA were recruited. Whole body MRA (WB-MRA) was performed at baseline, 6 months and 3 years. The vasculature was split into 31 anatomical arterial segments. Each segment was scored according to degree of luminal narrowing: 0 = normal, 1 = <50 %, 2 = 50-70 %, 3 = 71-99 %, 4 = vessel occlusion. The score from all assessable segments was summed, and then normalised to the number of assessable vessels. This normalised score was divided by four (the maximum vessel score) and multiplied by 100 to give a final standardised atheroma score (SAS) with a score of 0-100. Progression was assessed with repeat measure ANOVA. 36 patients were scanned at 0 and 6 months, with 26 patients scanned at the 3 years follow up. Only those who completed all three visits were included in the final analysis. Baseline atherosclerotic burden was high with a mean SAS of 15.7 ± 10.3. No significant progression was present at 6 months (mean SAS 16.4 ± 10.5, p = 0.67), however there was significant disease progression at 3 years (mean SAS 17.7 ± 11.5, p = 0.01). Those with atheroma progression at follow-up were less likely to be on statin therapy (79 vs 100 %, p = 0.04), and had significantly higher baseline SAS (17.6 ± 11.2 vs 10.7 ± 5.1, p = 0.043). Follow up of atheroma burden is possible with WB-MRA, which can successfully quantify and monitor atherosclerosis progression at 3 years follow-up. PMID:26809611

  18. Whole-Body CT in Haemodynamically Unstable Severely Injured Patients – A Retrospective, Multicentre Study

    PubMed Central

    Huber-Wagner, Stefan; Biberthaler, Peter; Häberle, Sandra; Wierer, Matthias; Dobritz, Martin; Rummeny, Ernst; van Griensven, Martijn; Kanz, Karl-Georg; Lefering, Rolf

    2013-01-01

    Background The current common and dogmatic opinion is that whole-body computed tomography (WBCT) should not be performed in major trauma patients in shock. We aimed to assess whether WBCT during trauma-room treatment has any effect on the mortality of severely injured patients in shock. Methods In a retrospective multicenter cohort study involving 16719 adult blunt major trauma patients we compared the survival of patients who were in moderate, severe or no shock (systolic blood pressure 90–110,<90 or >110 mmHg) at hospital admission and who received WBCT during resuscitation to those who did not. Using data derived from the 2002–2009 version of TraumaRegister®, we determined the observed and predicted mortality and calculated the standardized mortality ratio (SMR) as well as logistic regressions. Findings 9233 (55.2%) of the 16719 patients received WBCT. The mean injury severity score was 28.8±12.1. The overall mortality rate was 17.4% (SMR  = 0.85, 95%CI 0.81–0.89) for patients with WBCT and 21.4% (SMR = 0.98, 95%CI 0.94–1.02) for those without WBCT (p<0.001). 4280 (25.6%) patients were in moderate shock and 1821 (10.9%) in severe shock. The mortality rate for patients in moderate shock with WBCT was 18.1% (SMR 0.85, CI95% 0.78–0.93) compared to 22.6% (SMR 1.03, CI95% 0.94–1.12) to those without WBCT (p<0.001, p = 0.002 for the SMRs). The mortality rate for patients in severe shock with WBCT was 42.1% (SMR 0.99, CI95% 0.92–1.06) compared to 54.9% (SMR 1.10, CI95% 1.02–1.16) to those without WBCT (p<0.001, p = 0.049 for the SMRs). Adjusted logistic regression analyses showed that WBCT is an independent predictor for survival that significantly increases the chance of survival in patients in moderate shock (OR = 0.73; 95%CI 0.60–0.90, p = 0.002) as well as in severe shock (OR = 0.67; 95%CI 0.52–0.88, p = 0.004). The number needed to scan related to survival was 35 for all patients, 26 for those in moderate shock

  19. A physiologically based pharmacokinetic model for lactational transfer of Na-131I

    NASA Astrophysics Data System (ADS)

    Turner, Anita Loretta

    The excretion of radionuclides in human breast milk after administration of radiopharmaceuticals is a concern as a radiation risk to nursing infants. It is not uncommon to administer radiopharmaceuticals to lactating patients due to emergency nuclear medicine investigations such as thyroid complications, kidney failure, and pulmonary embolism. There is a need to quantify the amount of radioactivity translocated into breast milk in cases of ingestion by a breast-fed infant. A physiologically based pharmacokinetic model (PBPK) and a modified International Commission on Radiological Protection (ICRP) model have been developed to predict iodine concentrations in breast milk after ingestion of radioiodine by the mother. In the PBPK model, all compartments are interconnected by blood flow and represent real anatomic tissue regions in the body. All parameters involved are measurable values with physiological or physiochemical meaning such as tissue masses, blood flow rates, partition coefficients and cardiac output. However, some of the parameters such as the partition coefficients and metabolic constants are not available for iodine and had to be inferred from other information. The structure of the PBPK model for the mother consists of the following tissue compartments: gastrointestinal tract, blood, kidney, thyroid, milk, and other tissues. With the exception of the milk compartment, the model for the nursing infant is structured similarly to the mother. The ICRP model describing iodine metabolism in a standard 70-kg man was modified to represent iodine metabolism in a lactating woman and nursing infant. The parameters involved in this model are transfer rates and biological half-lives which are based on experimental observations. The results of the PBPK model and the modified ICRP model describing the lactational transfer of iodine were compared. When administering 1 mCi of Na131I to the lactating mother, the concentration reaches a maximum of 0.1 mCi/liter in 24

  20. The feasibility of using {sup 129}I to reconstruct {sup 131}I desposition from the Chernobyl reactor accident

    SciTech Connect

    Straume, T.; Marchetti, A.A.; Anspaugh, L.R.

    1996-11-01

    Radioiodine released to the atmosphere from the accident at the Chernobyl nuclear power station in the spring of 1986 resulted in large-scale thyroid-gland exposure of populations in Ukraine, Belarus, and Russia. Because of the short half life of {sup 131}I (8.04 d), adequate data on the intensities and patterns of iodine deposition were not collected, especially in the regions where the incidence of childhood-thyroid cancer is now increasing. Results are presented from a feasibility study that show that accelerator-mass-spectrometry measurements of {sup 129}I (half life 16 {times} 10{sup 6}y) in soil can be used to reconstruct {sup 131}I-deposition density and thus help in the thyroid-dosimetry effort that is now urgently needed to support epidemiologic studies of childhood-thyroid cancer in the affected regions. 32refs., 9 figs., 3 tabs.

  1. Nothing but NET: a review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy.

    PubMed

    Streby, Keri A; Shah, Nilay; Ranalli, Mark A; Kunkler, Anne; Cripe, Timothy P

    2015-01-01

    Neuroblastoma is unique amongst common pediatric cancers for its expression of the norepinephrine transporter (NET), enabling tumor-selective imaging and therapy with radioactive analogues of norepinephrine. The majority of neuroblastoma tumors are avid for (123)I-metaiodobenzaguanidine (mIBG) on imaging, yet the therapeutic response to (131) I-mIBG is only 30% in clinical trials, and off-target effects cause short- and long-term morbidity. We review the contemporary understanding of the tumor-selective uptake, retention, and efflux of meta-iodobenzylguanidine (mIBG) and strategies currently in development for improving its efficacy. Combination treatment strategies aimed at enhancing NET are likely necessary to reach the full potential of (131)I-mIBG therapy. PMID:25175627

  2. Activity standardization of 131I at CENTIS-DMR and PTB within the scope of a bilateral comparison.

    PubMed

    Oropesa Verdecia, P; Kossert, K

    2009-06-01

    The activity of an (131)I solution was measured at the Cuban Institute, CENTIS-DMR, as well as at the German National Metrology Institute, PTB, within the scope of a bilateral comparison. In particular, the comparison is aimed at an investigation of the measurement capabilities of CENTIS-DMR which provides activity standards in Cuba and organizes national comparisons, placing a particular emphasis on radionuclides for nuclear medicine, such as (131)I. Both institutes applied liquid scintillation counting techniques with efficiency tracing as well as secondary standardization procedures by means of calibrated ionization chambers and gamma-ray spectrometers. The results were checked for consistency and a good agreement was found. Moreover, a virtual link of the Cuban result to the International Reference System (SIR) at the Bureau International des Poids et Mesures (BIPM) is discussed. PMID:19230688

  3. Aerial Survey Results for 131I Deposition on the Ground after the Fukushima Daiichi Nuclear Power Plant Accident

    SciTech Connect

    Torii, Tatsuo; Sugita, Takeshi; Okada, Colin E.; Reed, Michael S.; Blumenthal, Daniel J.

    2013-08-01

    In March 2011 the second largest accidental release of radioactivity in history occurred at the Fukushima Daiichi nuclear power plant following a magnitude 9.0 earthquake and subsequent tsunami. Teams from the U.S. Department of Energy, National Nuclear Security Administration Office of Emergency Response performed aerial surveys to provide initial maps of the dispersal of radioactive material in Japan. The initial results from the surveys did not report the concentration of 131I. This work reports on analyses performed on the initial survey data by a joint Japan-US collaboration to determine 131I ground concentration. This information is potentially useful in reconstruction of the inhalation and external exposure doses from this short-lived radionuclide. The deposited concentration of 134Cs is also reported.

  4. Failure of low doses of /sup 131/I to ablate residual thyroid tissue following surgery for thyroid cancer

    SciTech Connect

    Kuni, C.C.; Klingensmith, W.C. III

    1980-12-01

    Thirteen patients received an initial dose of 25-29.9 mCi (925-1106 MBq) of /sup 131/I following partial thyroidectomy for papillary, follicular, or mixed carcinoma. Administration of thyroxine (T/sub 4/) or triiodothyronine (T/sub 3/) was stopped 3-12 weeks and 1-6 weeks, respectively, before therapy or imaging. Patients remained on normal diets and did not receive thyroid stimulating hormone (TSH) or diuretics. Follow-up 3 months to 2 years after therapy demonstrated that ablation of thyroid bed activity was successful in only one patient, who still had metastases. This suggests that administration of 25-29.9 mCi of /sup 131/I following surgery is unreliable for ablation of residual thyroid bed activity.

  5. Nothing but NET: A review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy

    PubMed Central

    Streby, Keri A; Shah, Nilay; Ranalli, Mark A; Kunkler, Anne; Cripe, Timothy P

    2015-01-01

    Neuroblastoma is unique amongst common pediatric cancers for its expression of the norepinephrine transporter (NET), enabling tumor-selective imaging and therapy with radioactive analogues of norepinephrine. The majority of neuroblastoma tumors are avid for 123I-metaiodobenzaguanidine (mIBG) on imaging, yet the therapeutic response to 131I-mIBG is only 30% in clinical trials, and off-target effects cause short- and long-term morbidity. We review the contemporary understanding of the tumor-selective uptake, retention, and efflux of meta-iodobenzylguanidine (mIBG) and strategies currently in development for improving its efficacy. Combination treatment strategies aimed at enhancing NET are likely necessary to reach the full potential of 131I-mIBG therapy. PMID:25175627

  6. SCAN+

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determinemore » the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.« less

  7. Quantitative analysis of drug effects at the whole-body level: a case study for glucose metabolism in malaria patients.

    PubMed

    Snoep, Jacky L; Green, Kathleen; Eicher, Johann; Palm, Daniel C; Penkler, Gerald; du Toit, Francois; Walters, Nicolas; Burger, Robert; Westerhoff, Hans V; van Niekerk, David D

    2015-12-01

    We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker. PMID:26614654

  8. Extraction of basic movement from whole-body movement, based on gait variability

    PubMed Central

    Maurer, Christian; von Tscharner, Vinzenz; Samsom, Michael; Baltich, Jennifer; Nigg, Benno M

    2013-01-01

    The aim of this study was to quantify the step-to-step variability (SSV) in speed-variant and speed-invariant movement components of the whole-body gait pattern during running. These separate aspects of variability can be used to gain insight into the neuromuscular control strategies that are engaged during running. Ten healthy, physically active, male recreational athletes performed five treadmill running trials at five different speeds (range: 1.3–4.9 m/sec). The whole-body movement was separated into principal movements (PM) using a principal component analysis. The PMs were split into two groups: a speed-variant group, where the range of motion (amplitude of PMs) changed with running speed; and a speed-invariant group, where the range of motion was constant across various speeds. The step-to-step variability (SSV) of the two groups was then quantified. The absolute SSV was the summed variability across all gait cycles, whereas the relative SSV was the summed variability divided by the magnitude of the movement. The absolute SSV of the speed-variant movements increased with running speed. By contrast, the relative SSV of the speed-variant group (as normalized to the PM amplitude) decreased asymptotically toward a minimal level as running speed increased. Both the absolute and relative SSV of the speed-invariant movements revealed a minimum at 3.1 m/sec. The whole-body gait pattern during running can be subdivided into speed-variant and speed-invariant movements. An interpretation of the SSV based on minimal intervention theory suggests that speed-variant movements are more tightly controlled, as evidenced by a lower degree of variability compared to the speed-invariant movements. PMID:24303133

  9. Whole body massage for reducing anxiety and stabilizing vital signs of patients in cardiac care unit

    PubMed Central

    Adib-Hajbaghery, Mohsen; Abasi, Ali; Rajabi-Beheshtabad, Rahman

    2014-01-01

    Background: Patients admitted in coronary care units face various stressors. Ambiguity of future life conditions and unawareness of caring methods intensifies the patients’ anxiety and stress. This study was conducted to assess the effects of whole body massage on anxiety and vital signs of patients with acute coronary disorders. Methods: A randomized controlled trial was conducted on 120 patients. Patients were randomly allocated into two groups. The intervention group received a session of whole body massage and the control group received routine care. The levels of State, Trait and overall anxiety and vital signs were assessed in both groups before and after intervention. Independent sample t-test, paired t-test, Chi-square and Fischer exact tests were used for data analysis. Results: The baseline overall mean score of anxiety was 79.43±29.34 in the intervention group and was decreased to 50.38±20.35 after massage therapy (p=0.001). However, no significant changes were occurred in the overall mean anxiety in the control group during the study. The baseline diastolic blood pressure was 77.05±8.12 mmHg and was decreased to 72.18±9.19 mmHg after the intervention (p=0.004). Also, significant decreases were occurred in heart rate and respiration rate of intervention group after massage therapy (p=0.001). However, no significant changes were occurred in vital signs of the control group during the study. Conclusion: The results suggest that whole body massage was effective in reducing anxiety and stabilizing vital signs of patients with acute coronary disorders. PMID:25405113

  10. Performance Evaluation of Whole Body Counting Facilities in the Marshall Islands (2002-2005)

    SciTech Connect

    Kehl, S R; Hamilton, T; Jue, T; Hickman, D

    2007-04-03

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands (https://eed.llnl.gov/mi/). Local atoll governments have been actively engaged in developing shared responsibilities for protecting the health and safety of resettled and resettling population at risk from exposure to elevated levels of residual fallout contamination in the environment. Under the program, whole body counting facilities have been established at three locations in the Marshall Islands. These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing technical support services including data quality assurance and performance testing. We have also established a mirror whole body counting facility at the Lawrence Livermore National Laboratory as a technician training center. The LLNL facility also allows program managers to develop quality assurance and operational procedures, and test equipment and corrective actions prior to deployment at remote stations in the Marshall Islands. This document summarizes the results of external performance evaluation exercises conducted at each of the facilities (2002-2005) under the umbrella of the Oak Ridge National Laboratory Intercomparison Studies Program (ISP). The ISP was specifically designed to meet intercomparison requirements of the United States (U.S.) Department of Energy Laboratory Accreditation Program (DOELAP). In this way, the Marshall Islands Radiological Surveillance Program has attempted to establish quality assurance measures in whole body counting that are consistent with standard requirements used to monitor DOE workers in the United States. Based on ANSI N13.30, the acceptable performance criteria for relative measurement bias and precision for radiobioassay service laboratory quality control

  11. Problem on estimation of the content of 131I in milk in the ``iodine'' period of the Chernobyl accident

    NASA Astrophysics Data System (ADS)

    Khrushchinskii, A. A.; Kuten', S. A.; Budevich, N. M.; Minenko, V. F.; Zhukova, O. M.; Luk'yanov, N. K.

    2007-11-01

    Measurements of the beta-activity of milk, serving as the main source of information on the radioactive contamination of the environment by the iodine isotope 131I, carried out on a DP-100 radiometer in the early post-Chernobyl period (1986) in Belarus, have been mathematically simulated. The results obtained allow the conclusion that the indicated measurements should be analyzed again with consideration for all of the nuclides present in milk.

  12. Long-range transport of gaseous 131I and other radionuclides from Fukushima accident to Southern Poland

    NASA Astrophysics Data System (ADS)

    Mietelski, Jerzy W.; Kierepko, Renata; Brudecki, Kamil; Janowski, Paweł; Kleszcz, Krzysztof; Tomankiewicz, Ewa

    2014-07-01

    A serious accident at Fukushima Dai-Ichi NPP triggered radioactive emission to the atmosphere on 12 March 2011. The results of gamma spectrometric measurements of both gaseous and aerosol fraction of the air, collected in Krakow over the period from March 21 till the end of May 2011, as well as wet and dry deposition recorded from March till the end of October 2011, are presented in this paper. Krakow happened to be the first Polish location where radioactive isotopes characteristic for reactor releases, such as 131I, 132I, 129mTe, 132Te, 134Cs, 136Cs, and 137Cs, were detected. The maximum activity for aerosols equal to (5.73 ± 0.35) mBq/m3, (0.461 ± 0.041) mBq/m3 and (0.436 ± 0.038) mBq/m3 for 131I, 134Cs and 137Cs, respectively, was recorded for March 29, 2011. The data on the fallout are also given. The results of the radiochemical analysis of aerosol samples showed no traces of plutonium or americium isotopes associated with the disaster to be detected. The results of air activity concentration from Fukushima accident observed in Central Europe, Poland, in comparison to those of Chernobyl accident observed in Japan are presented and discussed. The comparison has revealed a discrepancy in the recognized relative scale of both accidents, and important difference in long distance transport of contamination, to exist. An attempt to explain the variation in the activity ratios between the aerosol fraction for 131I and 137Cs as resulting from exchange between the gaseous and aerosol fractions of 131I while the contamination had been propagating, is made.

  13. Bone mass after long-term euthyroidism in former hyperthyroid women treated with (131)I influence of menopausal status.

    PubMed

    Serraclara, A; Jódar, E; Sarabia, F; Hawkins, F

    2001-01-01

    The objective of this study was to assess bone mineral density (BMD) and bone markers in former hyperthyroid females after long-term euthyroidism (>4 yr) following (131)I therapy, as well as the potential influence of the timing of menopause. Twenty-six females ages 57 +/- 8 yr previously diagnosed with hyperthyroidism and treated with (131)I who were euthyroid for a minimum of the last 4 yr (10 +/- 5 yr) were studied. Eighteen patients (69%) were on levothyroxine (LT(4)) replacement therapy for 9 +/- 4 yr. BMD (g/cm(2) and Z-score) was measured by dual X-ray absorptiometry in the lumbar spine, femoral neck, and Ward's triangle. BMD (Z-score) was lower than the normal reference values for the Spanish population in all sites (lumbar spine: -0.65 +/- 1.13; femoral neck: -0.47 +/- 0.95; Ward's triangle: -0.37 +/- 0.88). No differences were found between BMD values according to the etiology of the hyperthyroidism or current LT(4) therapy. Current postmenopausal patients (n = 21) showed lower BMD than current premenopausal patients in the lumbar spine and femoral neck (p < 0.05). Those women who were postmenopausal at the time of the (131)I therapy (n = 15) also had lower lumbar spine BMD than premenopausal patients (p = 0.01), while no significant difference in BMD was seen according to the menopausal status when hyperthyroidism was diagnosed. Former hyperthyroid patients after long-term euthyroidism following (131)I therapy showed reduced BMD at the lumbar spine and proximal femur. Menopausal women showed a greater reduction in bone density. The menopausal status at the time of diagnosis did not seem to have long-term effects in bone density; nevertheless, an early therapeutic intervention in premenopause is suggested to reduce bone loss. PMID:11740067

  14. Local versus whole-body sweating adaptations following 14 days of traditional heat acclimation.

    PubMed

    Poirier, Martin P; Gagnon, Daniel; Kenny, Glen P

    2016-08-01

    The purpose of this study was to examine if local changes in sweat rate following 14 days of heat acclimation reflect those that occur at the whole-body level. Both prior to and following a 14-day traditional heat acclimation protocol, 10 males exercised in the heat (35 °C, ∼20% relative humidity) at increasing rates of heat production equal to 300 (Ex1), 350 (Ex2), and 400 (Ex3) W·m(-2). A 10-min recovery period followed Ex1, while a 20-min recovery period separated Ex2 and Ex3. The exercise protocol was performed in a direct calorimeter to measure whole-body sweat rate and, on a separate day, in a thermal chamber to measure local sweat rate (LSR), sweat gland activation (SGA), and sweat gland output (SGO) on the upper back, chest, and mid-anterior forearm. Post-acclimation, whole-body sweat rate was greater during each exercise bout (Ex1: 14.3 ± 0.9; Ex2: 17.3 ± 1.2; Ex3: 19.4 ± 1.3 g·min(-1), all p ≤ 0.05) relative to pre-acclimation (Ex1: 13.1 ± 0.6; Ex2: 15.4 ± 0.8; Ex3: 16.5 ± 1.3 g·min(-1)). In contrast, only LSR on the forearm increased with acclimation, and this increase was only observed during Ex2 (Post: 1.32 ± 0.33 vs. Pre: 1.06 ± 0.22 mg·min(-1)·cm(-2), p = 0.03) and Ex3 (Post: 1.47 ± 0.41 vs. Pre: 1.17 ± 0.23 mg·min(-1)·cm(-2), p = 0.05). The greater forearm LSR post-acclimation was due to an increase in SGO, as no changes in SGA were observed. Overall, these data demonstrate marked regional variability in the effect of heat acclimation on LSR, such that not all local measurements of sweat rate reflect the improvements observed at the whole-body level. PMID:27467216

  15. Performance Characteristics of a Positron Projection Imager For Mouse Whole-body Imaging

    PubMed Central

    Seidel, Jurgen; Xi, Wenze; Kakareka, John W.; Pohida, Thomas J.; Jagoda, Elaine M.; Green, Michael V.; Choyke, Peter L.

    2013-01-01

    Introduction We describe a prototype positron projection imager (PPI) for visualizing the whole-body biodistribution of positron-emitting compounds in mouse-size animals. The final version of the PPI will be integrated into the MONICA portable dual-gamma camera system to allow the user to interchangeably image either single photon or positron-emitting compounds in a shared software and hardware environment. Methods A mouse is placed in the mid-plane between two identical, opposed, pixelated LYSO arrays separated by 21.8-cm and in time coincidence. An image of the distribution of positron decays in the animal is formed on this mid-plane by coincidence events that fall within a small cone angle to the perpendicular to the two detectors and within a user-specified energy window. We measured the imaging performance of this device with phantoms and in tests performed in mice injected with various compounds labeled with positron-emitting isotopes. Results Representative performance measurements yielded the following results (energy window 250–650 keV, cone angle 3.5-degrees): resolution in the image mid-plane, 1.66-mm (FWHM), resolution ±1.5-cm above and below the image plane, 2.2-mm (FWHM), sensitivity: 0.237-cps/kBq (8.76-cps/μCi) 18F (0.024% absolute). Energy resolution was 15.9% with a linear-count-rate operating range of 0–14.8 MBq (0–400 μCi) and a corrected sensitivity variation across the field-of-view of <3%. Whole-body distributions of [18F] FDG and [18F] fluoride were well visualized in mice of typical size. Conclusion Performance measurements and field studies indicate that the PPI is well suited to whole-body positron projection imaging of mice. When integrated into the MONICA gamma camera system, the PPI may be particularly useful early in the drug development cycle where, like MONICA, basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors (e.g., available imaging space, non

  16. Myeloid regeneration after whole body irradiation, autologous bone marrow transplantation, and treatment with an anabolic steroid.

    PubMed

    Ambrus, C M; Ambrus, J L

    1975-01-01

    Stumptail monkeys (Macaca speciosa) received lethal whole body radiation. Autologous bone marrow injection resulted in survival of the majority of the animals. Treatment with Deca-Durabolin, an anabolic steroid, caused more rapid recovery of colony-forming cell numbers in the bone marrow than in control animals. Both the Deca-Durabolin-treated and control groups were given autologous bone marrow transplantation. Anabolic steroid effect on transplanted bone marrow colonyforming cells may explain the increased rate of leukopoietic regeneration in anabolic steroid-treated animals as compared to controls. PMID:124758

  17. Whole-body effective half-lives for radiolabeled antibodies and related issues

    SciTech Connect

    Kaurin, D.G.L.; Carsten, A.L.; Baum, J.W.; Barber, D.E.

    1996-08-01

    Radiolabeled antibodies (RABs) are being developed and used in medical imaging and therapy in rapidly increasing numbers. Data on the whole body half effective half-lives were calculated from external dose rates obtained from attending physicians and radiation safety officers at participating institutions. Calculations were made using exponential regression analysis of data from patients receiving single and multiple administrations. Theses data were analyzed on the basis of age, sex, isotope label, radiation energy, antibody type, disease treated, administration method, and number of administrations.

  18. Effect of Whole-Body Vibration on Speech. Part 2; Effect on Intelligibility

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    2011-01-01

    The effect on speech intelligibility was measured for speech where talkers reading Diagnostic Rhyme Test material were exposed to 0.7 g whole body vibration to simulate space vehicle launch. Across all talkers, the effect of vibration was to degrade the percentage of correctly transcribed words from 83% to 74%. The magnitude of the effect of vibration on speech communication varies between individuals, for both talkers and listeners. A worst case scenario for intelligibility would be the most sensitive listener hearing the most sensitive talker; one participant s intelligibility was reduced by 26% (97% to 71%) for one of the talkers.

  19. Emergency treatment of exertional heatstroke and comparison of whole body cooling techniques.

    PubMed

    Costrini, A

    1990-02-01

    This manuscript compares the whole body cooling techniques in the emergency treatment of heatstroke. Historically, the use of cold water immersion with skin massage has been quite successful in rapidly lowering body temperature and in avoiding severe complications or death. Recent studies have suggested alternative therapies, including the use of a warm air spray, the use of helicopter downdraft, and pharmacological agents. While evidence exists to support these methods, they have not been shown to reduce fatalities as effectively as ice water immersion. Although several cooling methods may have clinical use, all techniques rely on the prompt recognition of symptoms and immediate action in the field. PMID:2406541

  20. Waveform-Sampling Electronics for a Whole-Body Time-of-Flight PET Scanner

    PubMed Central

    Ashmanskas, W. J.; LeGeyt, B. C.; Newcomer, F. M.; Panetta, J. V.; Ryan, W. A.; Van Berg, R.; Wiener, R. I.; Karp Fellow, J. S.

    2014-01-01

    Waveform sampling is an appealing technique for instruments requiring precision time and pulse-height measurements. Sampling each PMT waveform at oscilloscope-like rates of several gigasamples per second enables one to process PMT signals digitally, which in turn makes it straightforward to optimize timing resolution and amplitude (energy and position) resolution in response to calibration effects, pile-up effects, and other systematic sources of waveform variation. We describe a system design and preliminary implementation that neatly maps waveform-sampling technology onto the LaPET prototype whole-body time-of-flight PET scanner that serves as the platform for testing this new technology. PMID:25484379

  1. Whole-Body Vibration and Blood Flow and Muscle Oxygenation: A Meta-Analysis

    PubMed Central

    Games, Kenneth E.; Sefton, JoEllen M.; Wilson, Alan E.

    2015-01-01

    Context: The use and popularity of whole-body vibration (WBV) has increased in recent years, but there is a lack of consensus in the literature about the effectiveness of the treatment. Objective: To quantitatively examine the effects of WBV on muscle oxygenation and peripheral blood flow in healthy adults. Data Sources: We searched Web of Science and PubMed databases and reference lists from relevant articles using the key terms whole body vibration, whole-body vibration, WBV, blood flow, peripheral blood flow, oxygenation, muscle oxygenation, circulation, circulatory, near infrared spectroscopy, NIRS, and power Doppler. Key terms were searched using single word and combination searches. No date range was specified. Study Selection: Criteria for inclusion were (1) use of a commercially available WBV device, (2) a human research model, (3) a pre-WBV condition and at least 1 WBV experimental condition, and (4) reporting of unstandardized means and standard deviations of muscle oxygenation or peripheral blood flow. Data Extraction: Means, standard deviations, and sample sizes were extracted from the text, tables, and figures of included studies. A total of 35 and 90 data points were extracted for the muscle-oxygenation and blood-flow meta-analyses, respectively. Data for each meta-analysis were combined and analyzed using meta-analysis software. Weighted, random-effects meta-analyses using the Hedges g metric were completed for muscle oxygenation and blood flow. We then conducted follow-up analyses using the moderator variables of vibration type, vibration time, vibration frequency, measurement location, and sample type. Data Synthesis: We found 18 potential articles. Further examination yielded 10 studies meeting the inclusion criteria. Whole-body vibration was shown to positively influence peripheral blood flow. Additionally, the moderators of vibration type and frequency altered the influence of WBV on blood flow. Overall, WBV did not alter muscle oxygenation

  2. A 2-Tesla active shield magnet for whole body imaging and spectroscopy

    SciTech Connect

    Davies, F.J.; Elliott, R.T.; Hawksworth, D.G. )

    1991-03-01

    This paper reports on the development and testing of a 2T superconducting Active Shield magnet, with a 0.99m diameter warm bore for whole-body Magnetic Resonance Imaging (MRI) and spectroscopy. The magnet and cryostat were designed to meet the same performance standards as existing MRI magnets, but with the volume of the stray field region reduced to less than 4% of that for an unshielded magnet. The 0.5 mT stray field contour is within 5m axially and 3m radially of the magnet center. The system weight is only 14 tonnes.

  3. Methods for calculating phase angle from measured whole body bioimpedance modulus

    NASA Astrophysics Data System (ADS)

    Nordbotten, Bernt J.; Martinsen, Ørjan G.; Grimnes, Sverre

    2010-04-01

    Assuming the Cole equation we have developed a method to calculate the Cole parameters (R0, R∞, α, τZ) and the phase angle from four frequency measurements of impedance modulus values. The values obtained compare well with impedance measurements obtained using the Solatron 1294/1260 as obtained when making whole body measurements on five persons. We have also performed calculations using an algorithm based on the Kramers-Kronig approach. The results which are presented show that it is possible to obtain complete body impedance data combining relatively simple measurements with advanced calculation using a laptop. This extends the potential of portable equipment, since the measurements will require less instrumentation.

  4. Standard Operating Procedure for Prospective Individualised Dosimetry for ([131])I-rituximab Radioimmunotherapy of Non-Hodgkin's Lymphoma.

    PubMed

    Calais, Phillipe J; Turner, J Harvey

    2012-09-01

    Radioimmunotherapy (RIT) is an attractive therapy for non-Hodgkin's lymphoma (NHL) as it allows targeted tumor irradiation which provides a cytotoxic effect significantly greater than that of the immune-mediated effects of a non-radioactive, or 'cold', antibody alone. Anti-CD20 antibodies such as rituximab are ideal for RIT, as not only is it easily iodinated, but the CD20 antigen is found on more than 95% of B-cell NHL. A standard operating procedure (SOP) has been formulated for personalized prospective dosimetry for safe, effective outpatient (131)I-rituximab RIT of NHL. Over five years, experience of treatment of outpatients with (131)I-rituximab was analyzed with respect to critical organ radiation dose in patients and radiation exposure of their carers. This radiation safety methodology has been refined; and offers the potential for safe, practical application to outpatient (131)I-rituximab RIT of lymphoma in general and in developing countries in particular. Given endorsement and sanction of this SOP by local regulatory authorities the personalized dosimetry paradigm will facilitate incorporation of RIT into the routine clinical practice of therapeutic nuclear oncology worldwide. PMID:23372448

  5. Thyroid Dose Estimates for a Cohort of Belarusian Children Exposed to 131I from the Chernobyl Accident: Assessment of Uncertainties

    PubMed Central

    Drozdovitch, Vladimir; Minenko, Victor; Golovanov, Ivan; Khrutchinsky, Arkady; Kukhta, Tatiana; Kutsen, Semion; Luckyanov, Nickolas; Ostroumova, Evgenia; Trofimik, Sergey; Voillequé, Paul; Simon, Steven L.; Bouville, André

    2015-01-01

    Deterministic thyroid radiation doses due to iodine-131 (131I) intake were reconstructed in a previous article for 11,732 participants of the Belarusian–American cohort study of thyroid cancer and other thyroid diseases in individuals exposed during childhood or adolescence to fallout from the Chernobyl accident. The current article describes an assessment of uncertainties in reconstructed thyroid doses that accounts for the shared and unshared errors. Using a Monte Carlo simulation procedure, 1,000 sets of cohort thyroid doses due to 131I intake were calculated. The arithmetic mean of the stochastic thyroid doses for the entire cohort was 0.68 Gy. For two-thirds of the cohort the arithmetic mean of individual stochastic thyroid doses was less than 0.5 Gy. The geometric standard deviation of stochastic doses varied among cohort members from 1.33 to 5.12 with an arithmetic mean of 1.76 and a geometric mean of 1.73. The uncertainties in thyroid dose were driven by the unshared errors associated with the estimates of values of thyroid mass and of the 131I activity in the thyroid of the subject; the contribution of shared errors to the overall uncertainty was small. These multiple sets of cohort thyroid doses will be used to evaluate the radiation risks of thyroid cancer and non-cancer thyroid diseases, taking into account the structure of the errors in the dose estimates. PMID:26207684

  6. Uptake and depuration of 131I from labelled diatoms (Skeletonema costatum) to the edible periwinkle (Littorina littorea).

    PubMed

    Wilson, R C; Vives I Batlle, J; Watts, S J; McDonald, P; Parker, T G

    2007-01-01

    Uptake and depuration of (131)I into winkles through consumption of the diatom Skeletonema costatum is described. The work follows on from previous studies that investigated the uptake of iodine into winkles from seawater and seaweed. Incorporation of (131)I in S. costatum from labelled seawater followed linear first-order kinetics with an uptake half-time of 0.40 days. Iodine uptake in winkles from labelled S. costatum also followed linear first-order kinetics, with a calculated equilibrium concentration (C(infinity)) of 42Bqkg(-1) and a transfer factor (TF) of 1.1x10(-4) with respect to labelled diatom food. This TF is lower than that observed for uptake of (131)I in winkles from labelled seaweed. For the depuration stage, a biphasic sequence with biological half-lives of 1.3 and 255 days was determined. The first phase is biokinetically important, given that winkles can lose two-thirds of their activity during that period. This study shows that, whilst winkles can obtain radioactive iodine from phytoplankton consumption, they do not retain the majority of that activity for very long. Hence, compared with other exposure pathways, such as uptake from seawater and macroalgae, incorporation from phytoplankton is a relatively minor exposure route. PMID:17442468

  7. Radioimmunotherapy consolidation using (131)I-tositumomab for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma in first remission.

    PubMed

    Shadman, Mazyar; Gopal, Ajay K; Kammerer, Britt; Becker, Pamela S; Maloney, David G; Pender, Barbara; Shustov, Andrei R; Press, Oliver W; Pagel, John M

    2016-03-01

    Despite initial responses to chemoimmunotherapy, relapse and minimal residual disease (MRD) remain major issues in treatment of chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) patients. We administered (131)I-tositumomab to patients in complete response (CR) or partial response (PR) after induction chemotherapy. Toxicities and rate of PR to CR conversion and MRD elimination were assessed three months later. The study stopped prematurely after enrolling 16 patients. Four (25%) were in CR, 12 (75%) in PR, and 12 (75%) had MRD. Three months after treatment with (131)I-tositumomab, CR was achieved (n = 8; 50%) or sustained (n = 4; 25%) in 12 patients and MRD was eliminated in four of 12 patients (33%). Hematologic toxicities were anemia in one patient (6%), neutropenia in 13 (81%), and thrombocytopenia in eight (50%). Two patients (12%) developed MDS 17 and 20 months after consolidation. Consolidation with (131)I-tositumomab for CLL/SLL patients in first remission is feasible and may provide the benefit of converting PR to CR and/or eliminating MRD. PMID:26133724

  8. Behaviour of 125I-fibrinogen and 131I-albumin in experimental galactosamine-induced hepatitis.

    PubMed Central

    Mahn, I; Merkel, H; Sattler, E L; Müller-Berghaus, G

    1977-01-01

    The turnover of 125I-labelled fibrinogen and 131I-labelled albumin was studied in the course of galactosamine-induced hepatitis in rabbits. In addition to galactosamine, some animals were treated with epsilon-aminocaproic acid (EACA) to inhibit the activation of the fibrinolytic system. The infusion of galactosamine and EACA caused generation of fibrin-rich microclots in the renal glomerular capillaries in seven out of 12 rabbits. Correspondingly, the incorporation of 125I-radioactivity into liver, spleen, and kidneys was pronounced in galactosamine- and EACA-treated rabbits compared with control animals treated with EACA. An acceleration of the 125I-fibrinogen elimination from the plasma was observed between eight and 12 hours after the start of the galactosamine infusion. The administration of heparin in addition to galactosamine and EACA prevented the occurrence of intravascular coagulation, but shortened the survival times of the animals because of bleeding into visceral organs. The elimination of 131I-albumin in plasma as well as the distribution of 131I-radioactivity in organs were similar in all the rabbits independent of the treatment with galactosamine, EACA, or heparin. The experiments indicate that, in addition to diminished synthesis of coagulation factors, disseminated intravascular coagulation is involved in galactosamine-induced hepatitis and contributes to the haemostatic disorder. PMID:873336

  9. Accuracy of single-pass whole-body computed tomography for detection of injuries in patients with major blunt trauma

    PubMed Central

    Stengel, Dirk; Ottersbach, Caspar; Matthes, Gerrit; Weigeldt, Moritz; Grundei, Simon; Rademacher, Grit; Tittel, Anja; Mutze, Sven; Ekkernkamp, Axel; Frank, Matthias; Schmucker, Uli; Seifert, Julia

    2012-01-01

    Background: Contrast-enhanced whole-body computed tomography (also called “pan-scanning”) is considered to be a conclusive diagnostic tool for major trauma. We sought to determine the accuracy of this method, focusing on the reliability of negative results. Methods: Between July 2006 and December 2008, a total of 982 patients with suspected severe injuries underwent single-pass pan-scanning at a metropolitan trauma centre. The findings of the scan were independently evaluated by two reviewers who analyzed the injuries to five body regions and compared the results to a synopsis of hospital charts, subsequent imaging and interventional procedures. We calculated the sensitivity and specificity of the pan-scan for each body region, and we assessed the residual risk of missed injuries that required surgery or critical care. Results: A total of 1756 injuries were detected in the 982 patients scanned. Of these, 360 patients had an Injury Severity Score greater than 15. The median length of follow-up was 39 (interquartile range 7–490) days, and 474 patients underwent a definitive reference test. The sensitivity of the initial pan-scan was 84.6% for head and neck injuries, 79.6% for facial injuries, 86.7% for thoracic injuries, 85.7% for abdominal injuries and 86.2% for pelvic injuries. Specificity was 98.9% for head and neck injuries, 99.1% for facial injuries, 98.9% for thoracic injuries, 97.5% for abdominal injuries and 99.8% for pelvic injuries. In total, 62 patients had 70 missed injuries, indicating a residual risk of 6.3% (95% confidence interval 4.9%–8.0%). Interpretation: We found that the positive results of trauma pan-scans are conclusive but negative results require subsequent confirmation. The pan-scan algorithms reduce, but do not eliminate, the risk of missed injuries, and they should not replace close monitoring and clinical follow-up of patients with major trauma. PMID:22392949

  10. A Quantitative Evaluation of Hepatic Uptake on I-131 Whole-Body Scintigraphy for Postablative Therapy of Thyroid Carcinoma

    PubMed Central

    Nakayama, Michihiro; Okizaki, Atsutaka; Sakaguchi, Miki; Ishitoya, Shunta; Uno, Takahiro; Sato, Junichi; Takahashi, Koji

    2015-01-01

    Abstract This study aimed to determine clinical association between quantitative hepatic uptake on postablative whole-body scan (WBS) with differentiated thyroid cancer (DTC) prognosis. We analyzed 541 scans of 216 DTC patients who were divided into 3 groups based on radioactive iodine (I-131) WBS uptake and clinical follow-up: group 1 (completion of ablation), group 2 (abnormal uptake in the cervical region), and group 3 (abnormal uptake with distant metastases). For each group, we calculated the ratio of I-131 WBS hepatic uptake (H) to cranial uptake as background (B); this ratio was defined as H/B. Furthermore, we made a distinction between group 1, as having completed radioactive iodine therapy (RIT) (CR), and group 2 and 3, as requiring subsequent RIT (RR). The average H/B scores were 1.34 (median, 1.36; range 1.00–2.1) for group1; 1.89 (median, 1.75; range 1.41–4.20) for group 2; and 2.09 (median, 1.90; range 1.50–4.32) for group 3. Bonferroni multiple comparisons revealed significant differences in H/B among these groups. The H/B of group 1 was significantly smaller than that of other 2 groups (P < 0.0001). The precise cutoff value of H/B for therapeutic effect was ≤1.5. Moreover, 159 of 160 scans in the CR and 375 of 381 patients in the RR were correctly diagnosed using this cutoff value in the final outcome of RIT, yielding a sensitivity, specificity, positive predictive value, and negative predictive value of 99.4%, 98.4%, 99.7%, and 96.3%, respectively. Increased hepatic uptake of I-131 on WBS may predict disease-related progression. PMID:26181567

  11. A Quantitative Evaluation of Hepatic Uptake on I-131 Whole-Body Scintigraphy for Postablative Therapy of Thyroid Carcinoma.

    PubMed

    Nakayama, Michihiro; Okizaki, Atsutaka; Sakaguchi, Miki; Ishitoya, Shunta; Uno, Takahiro; Sato, Junichi; Takahashi, Koji

    2015-07-01

    This study aimed to determine clinical association between quantitative hepatic uptake on postablative whole-body scan (WBS) with differentiated thyroid cancer (DTC) prognosis. We analyzed 541 scans of 216 DTC patients who were divided into 3 groups based on radioactive iodine (I-131) WBS uptake and clinical follow-up: group 1 (completion of ablation), group 2 (abnormal uptake in the cervical region), and group 3 (abnormal uptake with distant metastases). For each group, we calculated the ratio of I-131 WBS hepatic uptake (H) to cranial uptake as background (B); this ratio was defined as H/B. Furthermore, we made a distinction between group 1, as having completed radioactive iodine therapy (RIT) (CR), and group 2 and 3, as requiring subsequent RIT (RR). The average H/B scores were 1.34 (median, 1.36; range 1.00-2.1) for group 1; 1.89 (median, 1.75; range 1.41-4.20) for group 2; and 2.09 (median, 1.90; range 1.50-4.32) for group 3. Bonferroni multiple comparisons revealed significant differences in H/B among these groups. The H/B of group 1 was significantly smaller than that of other 2 groups (P < 0.0001). The precise cutoff value of H/B for therapeutic effect was ≤1.5. Moreover, 159 of 160 scans in the CR and 375 of 381 patients in the RR were correctly diagnosed using this cutoff value in the final outcome of RIT, yielding a sensitivity, specificity, positive predictive value, and negative predictive value of 99.4%, 98.4%, 99.7%, and 96.3%, respectively. Increased hepatic uptake of I-131 on WBS may predict disease-related progression. PMID:26181567

  12. [Clinical evaluation of renoscintigraphy using 123I-orthoiodohippurate--comparison with 131I-OIH and measurement of the effective renal blood flow].

    PubMed

    Ishii, K; Tadokoro, K; Nishimaki, H; Nakazawa, K; Matsubayashi, T; Ishibashi, A; Ishida, H

    1990-01-25

    Renoscintigraphy using 123I-orthoiodohipprate (123I-OIH) was conducted, and the dynamic imaging study results and the renograms were analyzed. The results using 123I-OIH were compared with those using 131I-OIH in 22 of 33 patients. Measurement of the effective renal blood flow (ERBF) was also performed using 123I-OIH by the single blood-sample method. 123I is a more suitable nuclide for gamma-camera scintigraphy than 131I in terms of physical characteristics, and a larger dose of 123I-OIH is possible than 131I-OIH because of its lesser radiation. These are the reasons why clearer dynamic images of the blood flow phase, functional phase and excretion phase can be obtained. These make possible diagnoses associated with the organic changes and functions. No essential differences could be found in the functional study results of renogram between the two drugs because on the nuclide of 131I is replaced by 123I, but a renogram with less statistical noise could be obtained using 123I-OIH than 131I-OIH. The radiation dose of 123I-OIH is less than that of 131I-OHI, and clearer dynamic images and functional indexes can be easily obtained in scintigraphy using 123I-OIH. It is concluded that 123I-OIH is a useful radiopharmaceutical for renal examination, and it should replace 131I-OIH. PMID:2330288

  13. Anatomical and metabolic small-animal whole-body imaging using ring-shaped confocal photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.

    2013-03-01

    Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.

  14. Application of voxel phantoms in whole-body counting for the validation of calibration phantoms and the assessment of uncertainties.

    PubMed

    de Carlan, L; Roch, P; Blanchardon, E; Franck, D

    2007-01-01

    This article is dedicated to the application of voxel phantoms in whole-body counting calibration. The first study was performed to validate this approach using IGOR, a physical phantom dedicated to fission and activation product (FAP) measurement, and a graphical user interface, developed at the IRSN internal dose assessment laboratory, called OEDIPE (French acronym for the tool for personalised internal dose assessment) associated with the Monte Carlo code MCNP. The method was validated by comparing the results of real measurements and simulations using voxel phantoms obtained from CT scan images of IGOR. To take this application further, two studies were carried out and are presented in this article. First, a comparison was made between the IGOR voxel based phantom (IGOVOX) and a voxel human body (Zubal Phantom) to confirm whether IGOR could be considered as a realistic representation of a human. Second, the errors made when considering sources homogeneously distributed in the body were assessed against real contamination by taking into account the biokinetic behaviour of the radioactive material for two modes of exposure: the ingestion of 137Cs in soluble form and the inhalation of insoluble 60Co several days after acute incorporation. PMID:17018545

  15. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner

    PubMed Central

    Surti, S; Karp, J S

    2015-01-01

    Current generation of commercial time-of-flight (TOF) PET scanners utilize 20–25 mm thick LSO or LYSO crystals and have an axial FOV (AFOV) in the range of 16–22 mm. Longer AFOV scanners would provide increased intrinsic sensitivity and require fewer bed positions for whole-body imaging. Recent simulation work has investigated the sensitivity gains that can be achieved with these long AFOV scanners, and has motivated new areas of investigation such as imaging with very low dose of injected activity as well as providing whole-body dynamic imaging capability in one bed position. In this simulation work we model a 72 cm long scanner and prioritize the detector design choices in terms of timing resolution, crystal size (spatial resolution), crystal thickness (detector sensitivity), and depth-of-interaction (DOI) measurement capability. The generated list data are reconstructed with a list-mode OSEM algorithm using a Gaussian TOF kernel that depends on the timing resolution and blob basis functions for regularization. We use lesion phantoms and clinically relevant metrics for lesion detectability and contrast measurement. The scan time was fixed at 10 minutes for imaging a 100 cm long object assuming a 50% overlap between adjacent bed positions. Results show that a 72 cm long scanner can provide a factor of ten reduction in injected activity compared to an identical 18 cm long scanner to get equivalent lesion detectability. While improved timing resolution leads to further gains, using 3 mm (as opposed to 4 mm) wide crystals does not show any significant benefits for lesion detectability. A detector providing 2-level DOI information with equal crystal thickness also does not show significant gains. Finally, a 15 mm thick crystal leads to lower lesion detectability than a 20 mm thick crystal when keeping all other detector parameters (crystal width, timing resolution, and DOI capability) the same. However, improved timing performance with 15 mm thick crystals can

  16. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner

    NASA Astrophysics Data System (ADS)

    Surti, S.; Karp, J. S.

    2015-07-01

    Current generation of commercial time-of-flight (TOF) PET scanners utilize 20-25 mm thick LSO or LYSO crystals and have an axial FOV (AFOV) in the range of 16-22 mm. Longer AFOV scanners would provide increased intrinsic sensitivity and require fewer bed positions for whole-body imaging. Recent simulation work has investigated the sensitivity gains that can be achieved with these long AFOV scanners, and has motivated new areas of investigation such as imaging with a very low dose of injected activity as well as providing whole-body dynamic imaging capability in one bed position. In this simulation work we model a 72 cm long scanner and prioritize the detector design choices in terms of timing resolution, crystal size (spatial resolution), crystal thickness (detector sensitivity), and depth-of-interaction (DOI) measurement capability. The generated list data are reconstructed with a list-mode OSEM algorithm using a Gaussian TOF kernel that depends on the timing resolution and blob basis functions for regularization. We use lesion phantoms and clinically relevant metrics for lesion detectability and contrast measurement. The scan time was fixed at 10 min for imaging a 100 cm long object assuming a 50% overlap between adjacent bed positions. Results show that a 72 cm long scanner can provide a factor of ten reduction in injected activity compared to an identical 18 cm long scanner to get equivalent lesion detectability. While improved timing resolution leads to further gains, using 3 mm (as opposed to 4 mm) wide crystals does not show any significant benefits for lesion detectability. A detector providing 2-level DOI information with equal crystal thickness also does not show significant gains. Finally, a 15 mm thick crystal leads to lower lesion detectability than a 20 mm thick crystal when keeping all other detector parameters (crystal width, timing resolution, and DOI capability) the same. However, improved timing performance with 15

  17. Usefulness of hepatic artery injection of iodized oil and 131I-labeled iodized oil before the therapeutic decision in hepatocellular carcinoma.

    PubMed

    Raoul, J L; Duvauferrier, R; Bretagne, J F; Bourguet, P; Heresbach, D; Siproudhis, L; Gosselin, M

    1993-03-01

    This study assesses the usefulness of intra-arterial injection of iodized oil (Lipiodol) as a tool for evaluating the therapeutic choice in a series of 72 consecutive patients with hepatocellular carcinoma (HCC). In 52 of these patients a scintigraphic study of the biodistribution of iodized oil was done, using 131I-iodized oil injection. A single tumor was detected in only 17 cases; 18 patients had a tumor involving only 1 lobe; in 7 cases CT scan disclosed a minute nodule in the opposite lobe of the main tumor. Eighteen patients had a portal thrombosis; in 12 of these cases CT scan showed iodized oil in the tumor emboli. The degree of intratumoral retention of iodized oil depended on the size of tumors and on the presence of arterioportal shunts. Our study demonstrates that only a few patients (4%) with HCC might benefit from curative surgery. The therapeutic benefit of methods using iodized oil injection might be estimated by means of its biodistribution variables (CT and/or scintigraphic data). PMID:7680489

  18. Estimation of patient radiation dose from whole body 18F- FDG PET/CT examination in cancer imaging: a preliminary study

    NASA Astrophysics Data System (ADS)

    Mahmud, M. H.; Nordin, A. J.; Saad, F. F. Ahmad; Fattah Azman, A. Z.

    2014-11-01

    This study aims to estimate the radiation effective dose resulting from whole body fluorine-18 flourodeoxyglucose Positron Emission Tomography (18F-FDG PET) scanning as compared to conservative Computed Tomography (CT) techniques in evaluating oncology patients. We reviewed 19 oncology patients who underwent 18F-FDG PET/CT at our centre for cancer staging. Internal and external doses were estimated using radioactivity of injected FDG and volume CT Dose Index (CTDIvol), respectively with employment of the published and modified dose coefficients. The median differences of dose among the conservative CT and PET protocols were determined using Kruskal Wallis test with p < 0.05 considered as significant. The median (interquartile range, IQR) effective doses of non-contrasted CT, contrasted CT and PET scanning protocols were 7.50 (9.35) mSv, 9.76 (3.67) mSv and 6.30 (1.20) mSv, respectively, resulting in the total dose of 21.46 (8.58) mSv. Statistically significant difference was observed in the median effective dose between the three protocols (p < 0.01). The effective doses of whole body 18F-FDG PET technique may be effective the lowest amongst the conventional CT imaging techniques.

  19. Can an iPod Touch be used to assess whole-body vibration associated with mining equipment?

    PubMed

    Wolfgang, Rebecca; Di Corleto, Luke; Burgess-Limerick, Robin

    2014-11-01

    The cost and complexity of commercially available whole-body vibration measurement devices is a barrier to the systematic collection of the information required to manage this hazard. The potential for a consumer electronic device to be used to estimate whole-body vibration was assessed by collecting 58 simultaneous pairs of acceleration measurements in three dimensions from a fifth-generation iPod Touch and gold standard whole-body vibration measurement devices, while a range of heavy mining equipment was operated at three surface coal mines. The results suggest that accelerometer data gathered from a consumer electronic device are able to be used to measure whole-body vibration amplitude with 95% confidence of ±0.06 m s(-2) root mean square for the vertical direction (1.96 × standard deviation of the constant error). PMID:25106947

  20. Transient infiltration of neutrophils into the thymus following whole-body X-ray irradiation in IL-10 knockout mice

    SciTech Connect

    Fujiwara, Hiroya; Yamazaki, Takahiro; Uzawa, Akiko; Nagata, Kisaburo; Kobayashi, Yoshiro

    2008-05-02

    IL-10 is known to suppress the inflammatory responses in a variety of experimental models. Because we previously found that whole-body X-irradiation causes massive apoptosis in the thymus and transient infiltration of neutrophils, in this study, we examined whether or not IL-10 is involved in the regulation of neutrophil infiltration upon whole-body X-ray irradiation using IL-10 knockout mice. Although IL-10 was induced in the thymus on whole-body X-ray irradiation, apoptosis of thymocytes, neutrophil infiltration, and MIP-2 and KC production in the thymus were not affected by an IL-10 deficiency. Coculturing of bone marrow-derived macrophages with late apoptotic cells caused MIP-2 production, which was also not affected by an IL-10 deficiency. These results suggest the uniqueness of the inflammatory response induced by whole-body X-ray irradiation, which does not seem to be regulated by IL-10.

  1. A predictive mathematical model for the calculation of the final mass of Graves' disease thyroids treated with 131I

    NASA Astrophysics Data System (ADS)

    Traino, Antonio C.; Di Martino, Fabio; Grosso, Mariano; Monzani, Fabio; Dardano, Angela; Caraccio, Nadia; Mariani, Giuliano; Lazzeri, Mauro

    2005-05-01

    Substantial reductions in thyroid volume (up to 70-80%) after radioiodine therapy of Graves' hyperthyroidism are common and have been reported in the literature. A relationship between thyroid volume reduction and outcome of 131I therapy of Graves' disease has been reported by some authors. This important result could be used to decide individually the optimal radioiodine activity A0 (MBq) to administer to the patient, but a predictive model relating the change in gland volume to A0 is required. Recently, a mathematical model of thyroid mass reduction during the clearance phase (30-35 days) after 131I administration to patients with Graves' disease has been published and used as the basis for prescribing the therapeutic thyroid absorbed dose. It is well known that the thyroid volume reduction goes on until 1 year after therapy. In this paper, a mathematical model to predict the final mass of Graves' diseased thyroids submitted to 131I therapy is presented. This model represents a tentative explanation of what occurs macroscopically after the end of the clearance phase of radioiodine in the gland (the so-called second-order effects). It is shown that the final thyroid mass depends on its basal mass, on the radiation dose absorbed by the gland and on a constant value α typical of thyroid tissue. α has been evaluated based on a set of measurements made in 15 reference patients affected by Graves' disease and submitted to 131I therapy. A predictive equation for the calculation of the final mass of thyroid is presented. It is based on macroscopic parameters measurable after a diagnostic 131I capsule administration (0.37-1.85 MBq), before giving the therapy. The final mass calculated using this equation is compared to the final mass of thyroid measured 1 year after therapy administration in 22 Graves' diseased patients. The final masses calculated and measured 1 year after therapy are in fairly good agreement (R = 0.81). The possibility, for the physician, to decide a

  2. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    SciTech Connect

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-11-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood.

  3. Rat Cardiovascular Responses to Whole Body Suspension: Head-down and Non-Head-Down Tilt

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, Joseph M.; Dombrowski, Judy

    1992-01-01

    The rat whole body suspension technique mimics responses seen during exposure to microgravity and was evaluated as a model for cardiovascular responses with two series of experiments. In one series, changes were monitored in chronically catheterized rats during 7 days of Head-Down Tilt (HDT) or Non-Head-Down Tilt (N-HDT) and after several hours of recovery. Elevations of mean arterial (MAP), systolic, and diastolic pressures of approx. 20 % (P less than 0.05) in HDT rats began as early as day 1 and were maintained for the duration of suspension. Pulse pressures were relatively unaffected, but heart rates were elevated approx. 10 %. During postsuspension (2-7 h), most cardiovascular parameters returned to presuspension levels. N-HDT rats exhibited elevations chiefly on days 3 and 7. In the second series, blood pressure was monitored in 1- and 3-day HDT and N-HDT rats to evaluate responses to rapid head-up tilt. MAP, systolic and diastolic pressures, and HR were elevated (P less than 0.05) in HDT and N-HDT rats during head-up tilt after 1 day of suspension, while pulse pressures remained un changed. HDT rats exhibited elevated pretilt MAP and failed to respond to rapid head-up tilt with further increase of MAP on day 3, indicating some degree of deconditioning. The whole body suspended rat may be useful as a model to better understand responses of rats exposed to microgravity.

  4. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice

    PubMed Central

    Machado, Ana S; Darmohray, Dana M; Fayad, João; Marques, Hugo G; Carey, Megan R

    2015-01-01

    The coordination of movement across the body is a fundamental, yet poorly understood aspect of motor control. Mutant mice with cerebellar circuit defects exhibit characteristic impairments in locomotor coordination; however, the fundamental features of this gait ataxia have not been effectively isolated. Here we describe a novel system (LocoMouse) for analyzing limb, head, and tail kinematics of freely walking mice. Analysis of visibly ataxic Purkinje cell degeneration (pcd) mice reveals that while differences in the forward motion of individual paws are fully accounted for by changes in walking speed and body size, more complex 3D trajectories and, especially, inter-limb and whole-body coordination are specifically impaired. Moreover, the coordination deficits in pcd are consistent with a failure to predict and compensate for the consequences of movement across the body. These results isolate specific impairments in whole-body coordination in mice and provide a quantitative framework for understanding cerebellar contributions to coordinated locomotion. DOI: http://dx.doi.org/10.7554/eLife.07892.001 PMID:26433022

  5. Typical whole body vibration exposure magnitudes encountered in the open pit mining industry.

    PubMed

    Howard, Bryan; Sesek, Richard; Bloswick, Don

    2009-01-01

    According to recent research, a causal link has been established between occupational exposure to whole body vibration and an increased occurrence of low back pain. To aid in the further development of an in-house health and safety program for a large open pit mining facility interested in reducing back pain among its operators, whole body vibration magnitudes were characterized for a range of jobs. Specifically, thirty-five individual jobs from five different areas across the facility were evaluated for tri-axial acceleration levels during normal operating conditions. Tri-axial acceleration magnitudes were categorized into thirteen job groups. Job groups were ranked according to exposure and compared to the ISO 2631-1 standard for health risk assessment. Three of the thirteen job groups produced tri-axial acceleration magnitudes below the ISO 2631-1 low/moderate health caution limit for a twelve hour exposure. Six of the thirteen job groups produced exposures within the moderate health risk range. Four job groups were found to subject operators to WBV acceleration magnitudes above the moderate/high health caution limit. PMID:20037244

  6. Equal sensation curves for whole-body vibration expressed as a function of driving force

    NASA Astrophysics Data System (ADS)

    Mansfield, Neil J.; Maeda, Setsuo

    2005-06-01

    Previous studies have shown that the seated human is most sensitive to whole-body vertical vibration at about 5 Hz. Similarly, the body shows an apparent mass resonance at about 5 Hz. Considering these similarities between the biomechanical and subjective responses, it was hypothesized that, at low frequencies, subjective ratings of whole-body vibration might be directly proportional to the driving force. Twelve male subjects participated in a laboratory experiment where subjects sat on a rigid seat mounted on a shaker. The magnitude of a test stimulus was adjusted such that the subjective intensity could be matched to a reference stimulus, using a modified Bruceton test protocol. The sinusoidal reference stimulus was 8-Hz vibration with a magnitude of 0.5 m/s2 rms (or 0.25 m/s2 rms for the 1-Hz test); the sinusoidal test stimuli had frequencies of 1, 2, 4, 16, and 32 Hz. Equal sensation contours in terms of seat acceleration showed data similar to those in the literature. Equal sensation contours in terms of force showed a nominally linear response at 1, 2, and 4 Hz, but an increasing sensitivity at higher frequencies. This is in agreement with a model derived from published subjective and objective fitted data. .

  7. Whole-body vibration improves cognitive functions of an adult with ADHD.

    PubMed

    Fuermaier, Anselm B M; Tucha, Lara; Koerts, Janneke; van den Bos, Meinris; Regterschot, G Ruben H; Zeinstra, Edzard B; van Heuvelen, Marieke J G; van der Zee, Eddy A; Lange, Klaus W; Tucha, Oliver

    2014-09-01

    Adult attention deficit hyperactivity disorder (ADHD) is associated with a variety of cognitive impairments, which were shown to affect academic achievement and quality of life. Current treatment strategies, such as stimulant drug treatment, were demonstrated to effectively improve cognitive functions of patients with ADHD. However, most treatment strategies are associated with a number of disadvantages in a considerable proportion of patients, such as unsatisfactory effects, adverse clinical side effects or high financial costs. In order to address limitations of current treatment strategies, whole-body vibration (WBV) might represent a novel approach to treat cognitive dysfunctions of patients with ADHD. WBV refers to the exposure of the whole body of an individual to vibration and was found to affect physiology and cognition. In the present study, WBV was applied on 10 consecutive days to an adult diagnosed with ADHD. Neuropsychological assessments were performed repeatedly at three different times, i.e., the day before the start of the treatment, on the day following completion of treatment and 14 days after the treatment have been completed (follow-up). An improved neuropsychological test performance following WBV treatment points to the high clinical value of WBV in treating patients with neuropsychological impairments such as ADHD. PMID:25031090

  8. Consequences of lethal-whole-body gamma radiation and possible ameliorative role of melatonin.

    PubMed

    Mihandoost, Ehsan; Shirazi, Alireza; Mahdavi, Seied Rabie; Aliasgharzadeh, Akbar

    2014-01-01

    Gamma radiation induces the generation of free radicals, leading to serious cellular damages in biological systems. Radioprotectors act as prophylactic agents that are administered to shield normal cells and tissues from the deleterious effects of radiation. Melatonin synergistically acts as an immune-stimulator and antioxidant. We investigated the possible radioprotective role of melatonin (100 mg/kg i.p.) against lethal-whole-body radiation- (10 Gy) induced sickness, body weight loss, and mortality in rats. Results of the present study suggest that exposure to lethal-whole-body radiation incurred mortality, body weight loss, and apoptosis and it also depleted the immunity and the antioxidant status of the rats. Our results show that melatonin pretreatment provides protection against radiation induced mortality, oxidative stress, and immune-suppression. The melatonin pretreated irradiated rats showed less change in body weight as compared to radiation only group. On the other hand, melatonin appeared to have another radioprotective role, suggesting that melatonin may reduce apoptosis through a caspase-3-mediated pathway by blocking caspase-3 activity. PMID:25431791

  9. A whole body counting facility in a remote Enewetak Island setting.

    PubMed

    Bell, Thomas R; Hickman, David; Yamaguchi, Lance; Jackson, William; Hamilton, Terry

    2002-08-01

    The U.S. Department of Energy (DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection programs for resettled and resettling populations. As part of this new initiative, DOE agreed to design and construct a radiological laboratory on Enewetak Island, and help develop the necessary local resources to maintain and operate the facility. This cooperative effort was formalized in August 2000 between the DOE, the Republic of the Marshall Islands (RMI), and the Enewetak/Ujelang Local Atoll Government (EULGOV). The laboratory facility was completed in May 2001. The laboratory incorporates both a permanent whole body counting system to assess internal exposures to 137Cs, and clean living space for people providing 24-h void urine samples. DOE continues to provide on-going technical assistance, training, and data quality review while EULGOV provides manpower and infrastructure development to sustain facility operations on a full-time basis. This paper will detail the special construction, transportation and installation issues in establishing a whole body counting facility in an isolated, harsh environmental setting. PMID:12132723

  10. Evaluating image reconstruction methods for tumor detection performance in whole-body PET oncology imaging

    NASA Astrophysics Data System (ADS)

    Lartizien, Carole; Kinahan, Paul E.; Comtat, Claude; Lin, Michael; Swensson, Richard G.; Trebossen, Regine; Bendriem, Bernard

    2000-04-01

    This work presents initial results from observer detection performance studies using the same volume visualization software tools that are used in clinical PET oncology imaging. Research into the FORE+OSEM and FORE+AWOSEM statistical image reconstruction methods tailored to whole- body 3D PET oncology imaging have indicated potential improvements in image SNR compared to currently used analytic reconstruction methods (FBP). To assess the resulting impact of these reconstruction methods on the performance of human observers in detecting and localizing tumors, we use a non- Monte Carlo technique to generate multiple statistically accurate realizations of 3D whole-body PET data, based on an extended MCAT phantom and with clinically realistic levels of statistical noise. For each realization, we add a fixed number of randomly located 1 cm diam. lesions whose contrast is varied among pre-calibrated values so that the range of true positive fractions is well sampled. The observer is told the number of tumors and, similar to the AFROC method, asked to localize all of them. The true positive fraction for the three algorithms (FBP, FORE+OSEM, FORE+AWOSEM) as a function of lesion contrast is calculated, although other protocols could be compared. A confidence level for each tumor is also recorded for incorporation into later AFROC analysis.

  11. Plutonium fecal and urinary excretion functions: Derivation from a systematic whole-body retention function

    SciTech Connect

    Sun, C. . Dept. of Advanced Technology); Lee, D. . Regulatory Research, Nuclear Safety Technology Div.)

    1999-06-01

    Liver-bile secretion directly influences the content of plutonium in feces. To assess the reliability of plutonium metabolic models and to improve the accuracy of interpreting plutonium fecal data, the authors developed a compartmental model that simulates the metabolism of plutonium in humans. With this model, they can describe the transport of plutonium contaminants in the systemic organs and tissues of the body, including fecal and urine excretions, without using elaborate kinetic information. The parameter values of the models, which describe the translocation rates and recycling of plutonium in the body, can be derived from a multi-term exponential systemic function for whole-body retention. The analytical derivations and algorithms for solving translocation parameter values are established for the model and illustrated by applying them to the biokinetics and bioassay of plutonium. This study describes how to (1) design a physiological model for incorporating liver biliary secretion and for obtaining a fecal-excretion function, (2) develop an analytical solution for identifying the translocation-parameter values incorporating the recycling of plutonium in the body, and (3) derive a set of urinary and fecal excretion-functions from a published systemic whole-body retention function, generally acknowledged to be accurate, as a real and practical example.

  12. Consequences of Lethal-Whole-Body Gamma Radiation and Possible Ameliorative Role of Melatonin

    PubMed Central

    Mihandoost, Ehsan; Shirazi, Alireza; Mahdavi, Seied Rabie; Aliasgharzadeh, Akbar

    2014-01-01

    Gamma radiation induces the generation of free radicals, leading to serious cellular damages in biological systems. Radioprotectors act as prophylactic agents that are administered to shield normal cells and tissues from the deleterious effects of radiation. Melatonin synergistically acts as an immune-stimulator and antioxidant. We investigated the possible radioprotective role of melatonin (100 mg/kg i.p.) against lethal-whole-body radiation- (10 Gy) induced sickness, body weight loss, and mortality in rats. Results of the present study suggest that exposure to lethal-whole-body radiation incurred mortality, body weight loss, and apoptosis and it also depleted the immunity and the antioxidant status of the rats. Our results show that melatonin pretreatment provides protection against radiation induced mortality, oxidative stress, and immune-suppression. The melatonin pretreated irradiated rats showed less change in body weight as compared to radiation only group. On the other hand, melatonin appeared to have another radioprotective role, suggesting that melatonin may reduce apoptosis through a caspase-3-mediated pathway by blocking caspase-3 activity. PMID:25431791

  13. Growth hormone and insulin reverse net whole body and skeletal muscle protein catabolism in cancer patients.

    PubMed Central

    Wolf, R F; Pearlstone, D B; Newman, E; Heslin, M J; Gonenne, A; Burt, M E; Brennan, M F

    1992-01-01

    The authors examined the effect of recombinant-human growth hormone (r-hGH) and insulin (INS) administration on protein kinetics in cancer patients. Twenty-eight cancer patients either received r-hGH for 3 days (GH group, n = 12, weight loss = 6 +/- 2%) or were not treated (control [CTL] group, n = 16, weight loss = 11 +/- 2%) before metabolic study. Recombinant-human growth hormone dose was 0.1 mg/kg/day (n = 6) or 0.2 mg/kg/day (n = 6). Patients then underwent measurement of baseline protein kinetics (GH/B, CTL/B) followed by a 2-hour euglycemic insulin infusion (1 mU/kg/minute) and repeat kinetic measurements (GH/INS,CTL/INS). Whole-body protein net balance (mumol leucine/kg/minute) was higher (p less than 0.05) in GH/INS (0.20 +/- 0.06) than in CTL/INS (0.06 +/- 0.03) or GH/B (-0.19 +/- 0.03). Skeletal muscle protein net balance (nmol phenylalanine/100 g/minute) in GH/INS (25 +/- 6) and CTL/INS (19 +/- 5) was higher than CTL/B (-18 +/- 3). Recombinant-human growth hormone and insulin reduce whole-body and skeletal muscle protein loss in cancer patients. Simultaneous use of these agents during nutritional therapy may benefit the cancer patient. PMID:1417177

  14. Whole body MRI: Improved Lesion Detection and Characterization With Diffusion Weighted Techniques

    PubMed Central

    Attariwala, Rajpaul; Picker, Wayne

    2013-01-01

    Diffusion-weighted imaging (DWI) is an established functional imaging technique that interrogates the delicate balance of water movement at the cellular level. Technological advances enable this technique to be applied to whole-body MRI. Theory, b-value selection, common artifacts and target to background for optimized viewing will be reviewed for applications in the neck, chest, abdomen, and pelvis. Whole-body imaging with DWI allows novel applications of MRI to aid in evaluation of conditions such as multiple myeloma, lymphoma, and skeletal metastases, while the quantitative nature of this technique permits evaluation of response to therapy. Persisting signal at high b-values from restricted hypercellular tissue and viscous fluid also permits applications of DWI beyond oncologic imaging. DWI, when used in conjunction with routine imaging, can assist in detecting hemorrhagic degradation products, infection/abscess, and inflammation in colitis, while aiding with discrimination of free fluid and empyema, while limiting the need for intravenous contrast. DWI in conjunction with routine anatomic images provides a platform to improve lesion detection and characterization with findings rivaling other combined anatomic and functional imaging techniques, with the added benefit of no ionizing radiation. PMID:23960006

  15. Whole body vibration and posture as risk factors for low back pain among forklift truck drivers

    NASA Astrophysics Data System (ADS)

    Hoy, J.; Mubarak, N.; Nelson, S.; Sweerts de Landas, M.; Magnusson, M.; Okunribido, O.; Pope, M.

    2005-06-01

    A cross-sectional study was conducted to investigate the risks from whole-body vibration and posture demands for low back pain (LBP) among forklift truck (forklift) drivers. Using a validated questionnaire, information about health history was obtained over a period of two weeks in face-to-face interviews. The forklift drivers were observed in respect of their sitting posture, including frequency with which different positions were adopted (bending, leaning and twisting) and postural analyses were conducted using the OWAS and RULA techniques. Forklift vibrations at the seat (exposure) were measured in the three orthogonal axes ( x-fore and aft, y-lateral and z-vertical) under actual working conditions according to the recommendations of ISO 2631-1. The results showed that LBP was more prevalent amongst forklift drivers than among non-drivers and driving postures in which the trunk is considerably twisted or bent forward associated with greatest risk. Furthermore, forklift drivers showed to be exposed to acceptable levels of vibration in the x- and y-directions (i.e., below the EU Physical Agents Directive on Vibration Exposure recommended action level—0.5 m/s 2), but not in the z-direction. There were indications that whole-body vibration acts associatively with other factors (not independently) to precipitate LBP.

  16. Measurement of whole-body vibration exposure from speed control humps

    NASA Astrophysics Data System (ADS)

    Khorshid, E.; Alkalby, F.; Kamal, H.

    2007-07-01

    The main objective of speed control humps is to introduce shocks and high vibration levels when a car passes over them if its speed is higher than the allowable limit. Hump geometry is a major factor in altering the level of these shocks and specifying the speed limit. However, there is no study of the relationship between whole body vibration due to passing over a speed control hump and lower back pain or occupational diseases. In this study, an experimental investigation is conducted to evaluate health risks associated with different geometry speed control humps. Vibration levels and shocks are measured by a seat pad accelerometer placed under the driver's seat to evaluate hazard risks on the human body's lower back. The assessment is based on two standard methods of measuring whole body vibration: the British standard BS 6841 and the new ISO/DIS standard 2631-5. These methods are used to assess the effects of vehicle type, passenger location in the vehicle, vehicle speed, and speed control hump geometry. It was found that circular speed control humps currently installed on many public roads should be modified in order to eliminate hazards. Two newly designed speed humps were proved to be less hazardous than circular speed control humps.

  17. Kaempferia parviflora extract increases whole-body energy expenditure in humans: roles of brown adipose tissue.

    PubMed

    Matsushita, Mami; Yoneshiro, Takeshi; Aita, Sayuri; Kamiya, Tomoyasu; Kusaba, Nobutaka; Yamaguchi, Kazuya; Takagaki, Kinya; Kameya, Toshimitsu; Sugie, Hiroki; Saito, Masayuki

    2015-01-01

    Kaempferia parviflora extract (KP) has been reported to have a preventive effect on obesity in mice, probably by increasing energy expenditure (EE). The aims of the current study were to examine the acute effects of KP ingestion on whole-body EE in humans and to analyze its relation to the activity of brown adipose tissue (BAT), a site of non-shivering thermogenesis. After an oral ingestion of an ethanol extract of KP, EE increased significantly, showing a maximal increase of 229±69 kJ/d at 60 min, while it did not change after placebo ingestion. To evaluate BAT activity, the subjects underwent fluorodeoxyglucose-positron emission tomography, and divided into two groups with high- and low-BAT activities. A similar and greater response of EE to KP ingestion was observed in the high-BAT group (351±50 kJ/d at 60 min), but not in the low activity group. Placebo ingestion did not cause any significant EE change in either group. These results indicate that a single oral ingestion of the KP extract can potentially increase whole-body EE probably through the activation of BAT in healthy men, and may be useful as an anti-obesity regimen. PMID:25994142

  18. Effects of aging on whole body and segmental control while obstacle crossing under impaired sensory conditions.

    PubMed

    Novak, Alison C; Deshpande, Nandini

    2014-06-01

    The ability to safely negotiate obstacles is an important component of independent mobility, requiring adaptive locomotor responses to maintain dynamic balance. This study examined the effects of aging and visual-vestibular interactions on whole-body and segmental control during obstacle crossing. Twelve young and 15 older adults walked along a straight pathway and stepped over one obstacle placed in their path. The task was completed under 4 conditions which included intact or blurred vision, and intact or perturbed vestibular information using galvanic vestibular stimulation (GVS). Global task performance significantly increased under suboptimal vision conditions. Vision also significantly influenced medial-lateral center of mass displacement, irrespective of age and GVS. Older adults demonstrated significantly greater trunk pitch and head roll angles under suboptimal vision conditions. Similar to whole-body control, no GVS effect was found for any measures of segmental control. The results indicate a significant reliance on visual but not vestibular information for locomotor control during obstacle crossing. The lack of differences in GVS effects suggests that vestibular information is not up-regulated for obstacle avoidance. This is not differentially affected by aging. In older adults, insufficient visual input appears to affect ability to minimize anterior-posterior trunk movement despite a slower obstacle crossing time and walking speed. Combined with larger medial-lateral deviation of the body COM with insufficient visual information, the older adults may be at a greater risk for imbalance or inability to recover from a possible trip when stepping over an obstacle. PMID:24746603

  19. Late response to whole-lung irradiation alone and with whole-body hyperthermia in dogs

    SciTech Connect

    Gillette, S.M.; Gillette, E.L.; Dawson, C.A.

    1997-02-01

    The late effects of whole-lung irradiation with and without whole-body hyperthermia were studied in beagle dogs. The reference doses ranged from 18 to 49.5 Gy given in 1.5-Gy fractions over 6 weeks. Whole-body hyperthermia was given in three 2-h treatments to a deep rectal temperature of 42.0{degrees}C. Radiation was given simultaneously with hyperthermia on those days. Physiological and histopathological responses were evaluated. Physiological changes included decreases in cardiac output, systemic blood pressure, dynamic compliance and serotonin uptake. Early changes included an increase in extravascular water and total protein in the lavage. These changes were considered mild, were compensated for and occurred only in dogs receiving doses of 40.5 Gy or greater given in 1.5-Gy fractions over 6 weeks. Histopathological change were typical of irradiated lung and included pleural fibrosis, interstitial fibrosis, fibrotic foci, and peribronchial and perivascular fibrosis. There was no enhancement of late injury to lung by hyperthermia seen in this study. 17 refs., 3 figs., 2 tabs.

  20. Suitability of Kinect for measuring whole body movement patterns during exergaming.

    PubMed

    van Diest, Mike; Stegenga, Jan; Wörtche, Heinrich J; Postema, Klaas; Verkerke, Gijsbertus J; Lamoth, Claudine J C

    2014-09-22

    Exergames provide a challenging opportunity for home-based training and evaluation of postural control in the elderly population, but affordable sensor technology and algorithms for assessment of whole body movement patterns in the home environment are yet to be developed. The aim of the present study was to evaluate the use of Kinect, a commonly available video game sensor, for capturing and analyzing whole body movement patterns. Healthy adults (n=20) played a weight shifting exergame under five different conditions with varying amplitudes and speed of sway movement, while 3D positions of ten body segments were recorded in the frontal plane using Kinect and a Vicon 3D camera system. Principal Component Analysis (PCA) was used to extract and compare movement patterns and the variance in individual body segment positions explained by these patterns. Using the identified patterns, balance outcome measures based on spatiotemporal sway characteristics were computed. The results showed that both Vicon and Kinect capture >90% variance of all body segment movements within three PCs. Kinect-derived movement patterns were found to explain variance in trunk movements accurately, yet explained variance in hand and foot segments was underestimated and overestimated respectively by as much as 30%. Differences between both systems with respect to balance outcome measures range 0.3-64.3%. The results imply that Kinect provides the unique possibility of quantifying balance ability while performing complex tasks in an exergame environment. PMID:25173920

  1. Self-reported back pain in tractor drivers exposed to whole-body vibration.

    PubMed

    Boshuizen, H C; Bongers, P M; Hulshof, C T

    1990-01-01

    A postal questionnaire on symptoms of ill health and exposure to whole-body vibration was completed by 577 workers (response rate 79%) who were employed in certain functions by two companies 11 years before. The relation between the occupational history of driving vibrating vehicles (mainly agricultural tractors) and back pain has been analyzed. The prevalence of reported back pain is approximately 10% higher in the tractor drivers than in workers not exposed to vibration. The increase is mainly due to more pain in the lower back and more pain lasting at least several days. A vibration dose was calculated by assigning each vehicle driven a vibration magnitude, estimated on the base of vibration measurements. The prevalence of back pain increases with the vibration dose. The highest prevalence odds ratios are found for the more severe types of back pain. These prevalence odds ratios do not increase with the vibration dose. This might be due to health-related selection which is more pronounced for severe back pain than for back pain in general. The two components of the vibration dose, duration of exposure and estimated mean vibration magnitude, have also been considered separately. Back pain increases with duration of exposure but it does not increase with the estimated mean magnitude of vibration. This is probably due to the inaccuracy of this estimate. The higher prevalence of back pain in tractor drivers might be (partly) caused by whole-body vibration, but prolonged sitting and posture might also be of influence. PMID:2139012

  2. Between-country comparison of whole-body SAR from personal exposure data in Urban areas.

    PubMed

    Joseph, Wout; Frei, Patrizia; Röösli, Martin; Vermeeren, Günter; Bolte, John; Thuróczy, György; Gajšek, Peter; Trček, Tomaž; Mohler, Evelyn; Juhász, Péter; Finta, Viktoria; Martens, Luc

    2012-12-01

    In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), personal radio frequency electromagnetic field measurements were performed in different microenvironments such as homes, public transports, or outdoors using the same exposure meters. From the mean personal field exposure levels (excluding mobile phone exposure), whole-body absorption values in a 1-year-old child and adult male model were calculated using a statistical multipath exposure method and compared for the five countries. All mean absorptions (maximal total absorption of 3.4 µW/kg for the child and 1.8 µW/kg for the adult) were well below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) basic restriction of 0.08 W/kg for the general public. Generally, incident field exposure levels were well correlated with whole-body absorptions (SAR(wb) ), although the type of microenvironment, frequency of the signals, and dimensions of the considered phantom modify the relationship between these exposure measures. Exposure to the television and Digital Audio Broadcasting band caused relatively higher SAR(wb) values (up to 65%) for the 1-year-old child than signals at higher frequencies due to the body size-dependent absorption rates. Frequency Modulation (FM) caused relatively higher absorptions (up to 80%) in the adult male. PMID:22674152

  3. THE RESULTS OF THE EURADOS INTERCOMPARISON IC2014 FOR WHOLE-BODY DOSEMETERS IN PHOTON FIELDS.

    PubMed

    Stadtmann, H; Grimbergen, T W M; Figel, M; Romero, A M; McWhan, A F; Gärtner, C

    2016-09-01

    The European Dosimetry Group (EURADOS) first started performing international intercomparisons for whole-body dosemeters for individual monitoring services in 1998. Since 2008, these whole-body intercomparisons have been performed on a regular basis. In this latest intercomparison (IC2014), 96 monitoring services from 35 countries (mostly European) participated with 112 dosimetry systems. Unlike in the previous intercomparisons, the whole registration, communication and data exchange process was handled by a new on-line platform. All dosemeter irradiations were carried out in the Seibersdorf accredited dosimetry laboratory. The irradiation plan consisted of nine irradiation setups with five different photon radiation qualities (S-Cs, S-Co, RQR7, W-80 and W-150) and two different angles of radiation incidence (0° and 60°). The paper describes and analyses the individual results for the personal dose equivalent quantities Hp(10) and if requested, Hp(0.07), for all participating systems and compares these results with the ISO 14146 'trumpet curve' performance criteria. The results show that 100 systems (89 % of all systems) do fulfil the general ISO 14146 performance criteria. This paper gives an overview on the performance of the participating individual monitoring services and the influence of the dosemeter type on the observed response values. PMID:26763903

  4. Hematological Profile and Martial Status in Rugby Players during Whole Body Cryostimulation

    PubMed Central

    Lombardi, Giovanni; Lanteri, Patrizia; Porcelli, Simone; Mauri, Clara; Colombini, Alessandra; Grasso, Dalila; Zani, Viviana; Bonomi, Felice Giulio; Melegati, Gianluca; Banfi, Giuseppe

    2013-01-01

    Cold-based therapies are commonly applied to alleviate pain symptoms secondary to inflammatory diseases, but also to treat injuries or overuse, as done in sports rehabilitation. Whole body cryotherapy, a relatively new form of cold therapy, consists of short whole-body exposure to extremely cold air (−110°C to −140°C). Cryostimulation is gaining wider acceptance as an effective part of physical therapy to accelerate muscle recovery in rugby players. The aim of this study was to evaluate the effect of repeated cryostimulation sessions on the hematological profile and martial status markers in professional rugby players. Twenty-seven professional rugby players received 2 daily cryostimulation treatments for 7 consecutive days. Blood samples were collected before and after administration of the cryotherapic protocol and hematological profiles were obtained. No changes in the leukocyte count or composition were seen. There was a decrease in the values for erythrocytes, hematocrit, hemoglobin and mean corpuscular hemoglobin content, and an increase in mean corpuscular volume and red cell distribution width. Platelet count and mean volume remained unchanged. Serum transferrin and ferritin decreased, while soluble transferrin receptor increased. Serum iron and transferrin saturation were unchanged, as was reticulocyte count, whereas the immature reticulocyte fraction decreased substantially. In conclusion, in this sample of professional rugby players, cryostimulation modified the hematological profile, with a reduction in erythrocyte count and hemoglobinization paralleled by a change in martial status markers. PMID:23383348

  5. Design and operation of a whole-body monitoring system for the Goiania radiation accident

    SciTech Connect

    Oliveira, C.A.; Lourenco, M.C.; Dantas, B.M.; Lucena, E.A. )

    1991-01-01

    With as many individuals involved in the Goiania 137Cs accident who had high levels of internal contamination, it was necessary to improvise a whole-body counter installation in loco. The in-vivo counting system was located in a 4.0 X 3.5 X 3.5-m room, where seven layers of 2-mm lead sheets with dimensions of 2.0 m X 1.0 m were overlaid on the floor at loci that were equidistant from the walls. A 20-cm diameter NaI (Tl) detector was installed at a height of 2.05 m above the floor at the center of the room. The detector was shielded and collimated with 5 cm of lead. The enormous amounts of activity in the subjects required the detector to be positioned at a height of 2.05 m. Subjects were required to wear disposable clothing and lie on a reclining, fiberglass chair. Counting time for the subjects was 2 min (live-time). The minimum detectable 137Cs activity for this counting time was 7.3 kBq* (0.05 significance level). Besides the accident victims, all individuals who had direct or indirect contact with contaminated people or areas were also monitored. More than 300 people of both sexes, with ages varying from a few months to 72 y, were measured for whole-body radioactivity. The observed activities ranged from less than the minimum detectable activity (MDA) to 59 MBq.

  6. Creatine transporter deficiency leads to increased whole body and cellular metabolism.

    PubMed

    Perna, Marla K; Kokenge, Amanda N; Miles, Keila N; Udobi, Kenea C; Clark, Joseph F; Pyne-Geithman, Gail J; Khuchua, Zaza; Skelton, Matthew R

    2016-08-01

    Creatine (Cr) is a guanidino compound required for rapid replenishment of ATP in cells with a high-energy demand. In humans, mutations in the Cr transporter (CRT;SLC6A8) prevent Cr entry into tissue and result in a significant intellectual impairment, epilepsy, and aphasia. The lack of Cr on both the whole body and cellular metabolism was evaluated in Crt knockout (Crt (-/y) ) mice, a high-fidelity model of human CRT deficiency. Crt (-/y) mice have reduced body mass and, however, show a twofold increase in body fat. There was increased energy expenditure in a home cage environment and during treadmill running in Crt (-/y) mice. Consistent with the increases in the whole-body metabolic function, Crt (-/y) mice show increased cellular metabolism as well. Mitochondrial respiration increased in skeletal muscle fibers and hippocampal lysates from Crt (-/y) mice. In addition, Crt (-/y) mice had increased citrate synthase activity, suggesting a higher number of mitochondria instead of an increase in mitochondrial activity. To determine if the increase in respiration was due to increased mitochondrial numbers, we measured oxygen consumption in an equal number of mitochondria from Crt (+/y) and Crt (-/y) mice. There were no changes in mitochondrial respiration when normalized to mitochondrial number, suggesting that the increase in respiration observed could be to higher mitochondrial content in Crt (-/y) mice. PMID:27401086

  7. Whole body vibration training in patients with COPD: A systematic review.

    PubMed

    Gloeckl, Rainer; Heinzelmann, Inga; Kenn, Klaus

    2015-08-01

    In recent years, several studies have shown that whole body vibration training (WBVT) may be a beneficial training mode in a variety of chronic diseases and conditions such as osteoporosis, fibromyalgia, multiple sclerosis, or chronic low back pain. However, a systematic review on the effects of WBVT in patients with chronic obstructive pulmonary disease (COPD) has not been performed yet. An extensive literature search was performed using various electronic databases (PubMed, Embase, LILACS, and PEDro). They were searched from inception until September 20, 2014, using key words like "COPD" and "whole body vibration training." A total of 91 studies could be identified and were screened for relevance by two independent reviewers. Six studies were included in a qualitative analysis. Trials studied either the effects of WBVT versus an inactive control group, versus sham WBVT, during an acute COPD exacerbation or as a modality on top of conventional endurance and strength training. All randomized trials reported a significantly superior benefit on exercise capacity (6-minute walking distance) in favor of the WBVT group. Although there are only few studies available, there is some preliminary evidence that WBVT may be an effective exercise modality to improve functional exercise capacity in patients with COPD. PMID:25904085

  8. Influence of ambient temperature on whole body and segmental bioimpedance spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Medrano, G.; Bausch, R.; Ismail, A. H.; Cordes, A.; Pikkemaat, R.; Leonhardt, S.

    2010-04-01

    Bioimpedance spectroscopy (BIS) measurements are easy to implement and could be used for continuous monitoring. However, several factors (e.g. environment temperature) influence the measurements limiting the accuracy of the technology. Changes in skin temperature produced by changes in ambient temperature are related with changes in skin blood flow and skin impedance. It is assumed that skin impedance change is responsible for the error observed in whole body and segmental measurements. Measurements including body parts more distant from the torso seem to be more affected. In the present article skin and segment impedance have been performed on healthy subjects under extreme changes in environment temperature (13-39 °C). A commercial BIS device with a range between 5 kHz and 1 MHz has been used for the measurements. The results indicate that not only skin impedance, but also impedance of deeper tissue (e.g. muscle) may be responsible for the influence of environment temperature on BIS measurements. Segmental (knee-to-knee) BIS measurements show a relative change of only 2 %, while forearm and whole body impedance changed 14 % and 8 % respectively.

  9. Potential third-party radiation exposure from outpatients treated with {sup 131}I for hyperthyroidism

    SciTech Connect

    Matheoud, Roberta; Reschini, Eugenio; Canzi, Cristina; Voltini, Franco; Gerundini, Paolo

    2004-12-01

    Thirty-three hyperthyroid patients treated with radioiodine (mean administered activity 414 MBq, range 163-555) were studied to determine if pretreatment dosimetry could be used to give radiation protection advice that could assure compliance with the effective dose constraints suggested by the European Commission. Effective doses to travelers, co-workers, and sleeping partners were estimated by integrating the effective dose rate-versus-time curve obtained by fitting the dose rates measured several times after radioiodine administration to a biexponential function. The mean estimated effective doses to travelers, co-workers, and sleeping partners were 0.11 mSv (0.05-0.24), 0.24 mSv (0.07-0.52), and 1.8 mSv (0.6-4.1), respectively. The best correlation was found between effective dose (D) in mSv and maximum activity (AU{sub max}) in MBq taken up in the thyroid: D{sub traveler}=0.0005*(AU{sub max})+0.04 (r=0.88,p<0.01); D{sub co-worker}=0.0013*(AU{sub max})+0.03(r=0.89,p<0.01); D{sub sleepingpartners}=0.0105*(AU{sub max})+0.16 (r=0.93,p<0.01). Private/public transports are always allowed. For the co-workers the effective dose constraint of 0.3 mSv is met without restrictions and with 3 days off work if AU{sub max} is lower or higher than 185 MBq, respectively. For the sleeping partners the effective dose constraint of 3 mSv is met without restriction and with 4 nights separate sleeping arrangements if AU{sub max} is lower or higher than 185 MBq, respectively. The potential for contamination by the patients was determined from perspiration samples taken from the patient's hands, forehead, and neck and in saliva at 4, 24, and 48 h after radioiodine treatment. The mean highest {sup 131}I activity levels for hands, forehead, neck, and saliva were 4.1 Bq/cm{sup 2}, 1.9 Bq/cm{sup 2}, 0.9 Bq/cm{sup 2}, and 796 kBq/g, respectively. The results indicate that there is minimal risk of contamination from these patients.

  10. Evaluation of the Therapeutic Efficacy of Sequential Therapy Involving Percutaneous Microwave Ablation in Combination with 131I-Hypericin Using the VX2 Rabbit Breast Solid Tumor Model

    PubMed Central

    Zhu, Miao; Lin, Xiao-An; Zha, Xiao-Ming; Zhou, Wen-Bin; Xia, Tian-Song; Wang, Shui

    2015-01-01

    Purpose Combination of percutaneous microwave ablation (PMWA) and intravenous injection of 131I-hypericin(IIIH) may bear potential as a mini-invasive treatment for tumor. The objective of this study was to assess the effect of PMWA and IIIH in breast tumor growth. Methods Ten New Zealand White rabbits bearing VX2 breast carcinomas were randomly divided into two groups (each 5 examples) and processed using PMWA followed by IIIH and IIIH alone. The IIIH activity was evaluated using planar scintigraphy, autoradiography and biodistribution analysis. The maximum effective safe dose of IIIH was found through 48 rabbits with VX2 breast tumor, which were randomized into six groups (n=8 per group). Subsequently, a further 75 rabbits bearing VX2 breast solid tumors were randomly divided into five groups (each 15 examples) and treated as follows: A, no treatment group; B, PMWA alone; C, IIIH alone; D, PMWA+IIIH×1 (at 8 h post-PMWA); and E, PMWA+IIIH×2 (at 8 h and at 8 days post-PMWA). The therapeutic effect was assessed by measurement of tumor size and performation of positron emission tomography/computed tomograph (PET/CT) scans, liver and renal function tests and Kaplan-Meier survival analysis. Results The planar scintigraphy findings suggested a significant uptake of 131I in necrotic tumor tissue. The autoradiography gray scales indicated higher selective uptake of IIIH by necrotic tissue, with significant differences between the groups with and those without necrotic tumor tissue (P<0.05). The maximum effective safe dose of IIIH was 1mCi/kg. The PET/CT scans and tumor size measurement suggested improvements in treatment groups at all time points (P<0.01). Significant differences were detected among Groups A, B, D and E (P<0.05). Lower levels of lung metastasis were detected in Groups D and E (P<0.05). There were no abnormalities in liver and renal functions tests or other reported side effects. Conclusion IIIH exhibited selective uptake by necrotic tumor tissue

  11. On the Health Risk of the Lumbar Spine due to Whole-Body VIBRATION—THEORETICAL Approach, Experimental Data and Evaluation of Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Seidel, H.; Blüthner, R.; Hinz, B.; Schust, M.

    1998-08-01

    The guidance on the effects of vibration on health in standards for whole-body vibration (WBV) does not provide quantitative relationships between WBV and health risk. The paper aims at the elucidation of exposure-response relationships. An analysis of published data on the static and dynamic strength of vertebrae and bone, loaded with various frequencies under different conditions, provided the basis for a theoretical approach to evaluate repetitive loads on the lumbar spine (“internal loads”). The approach enabled the calculation of “equivalent”—with respect to cumulative fatigue failure—combinations of amplitudes and numbers of internal cyclic stress. In order to discover the relation between external peak accelerations at the seat and internal peak loads, biodynamic data of experiments (36 subjects, three somatotypes, two different postures—relaxed and bent forward; random WBV,aw, r.m.s. 1·4 ms-2, containing high transients) were used as input to a biomechanical model. Internal pressure changes were calculated using individual areas of vertebral endplates. The assessment of WBV was based on the quantitative relations between peak accelerations at the seat and pressures predicted for the disk L5/S1. For identical exposures clearly higher rates of pressure rise in the bent forward compared to the relaxed posture were predicted. The risk assessment for internal forces considered the combined internal static and dynamic loads, in relation to the predicted individual strength, and Miner's hypothesis. For exposure durations between 1 min and 8 h, energy equivalent vibration magnitudes (formula B.1, ISO 2631-1, 1997) and equivalent vibration magnitudes according to formula B.2 (time dependence over-energetic) were compared with equivalent combinations of upward peak accelerations and exposure durations according to predicted cumulative fatigue failures of lumbar vertebrae. Formula B.1 seems to underestimate the health risk caused by high magnitudes

  12. An iOS Application for Evaluating Whole-body Vibration Within a Workplace Risk Management Process.

    PubMed

    McGlothlin, James; Burgess-Limerick, R; Lynas, D

    2015-01-01

    Workplace management of whole-body vibration exposure requires systematic collection of whole-body vibration data in conjunction with the numerous variables which influence vibration amplitudes. The cost and complexity of commercially available measurement devices is an impediment to the routine collection of such data by workplaces. An iOS application (WBV) has been developed which allows an iPod Touch to be used to measure whole-body vibration exposures. The utility of the application was demonstrated by simultaneously obtaining 98 pairs of whole-body vibration measurements from both the iPod Touch application and a commercially available whole-body vibration device during the operation of a variety of vehicles and mobile plant in operation at a surface coal mine. The iOS application installed on a fifth-generation iPod Touch was shown to provide a 95% confidence of +/- 0.077 m/s(2) r.m.s. constant error for the vertical direction. Situations in which vibration levels lay within the ISO2631.1 health guidance caution zone were accurately identified, and the qualitative features of the frequency spectra were reproduced. The low cost and relative simplicity of the application has potential to facilitate its use as a screening tool to identify situations in which musculoskeletal disorders may arise as a consequence of exposure to whole-body vibration. PMID:25625605

  13. Is there an added clinical value of "true"whole body(18)F-FDG PET/CT imaging in patients with malignant melanoma?

    PubMed

    Tan, Julie C; Chatterton, Barry E

    2012-01-01

    Accurate and reliable staging of disease extent in patients with malignant MM is essential to ensure appropriate treatment planning. The detection of recurrent or residual malignancy after primary treatment is important to allow for early intervention and to optimise patient survival. 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) PET or PET computed tomography (PET/CT) is indicated for surveillance of malignant MM due to its high sensitivity and specificity for soft-tissue or nodal recurrences and metastases. It has been claimed that including lower extremities and skull in addition to 'eyes to thigh' images in PET/CT evaluation of metastatic MM routinely is warranted. We have studied retrospectively the reports of whole-body PET/CT scans in all patients with MM scanned in our Department from April 2005 to December 2010. All PET abnormalities in the brain/scalp and lower extremities were tabulated by location and whether they were 'expected' or 'unexpected'. Findings were correlated with pathology, other imaging studies, and clinical follow-up. In this study, 398 PET/CT examinations in 361 patients with MM were included. Results showed that twelve of the 398 (3%) scans had brain/scalp abnormalities, with only 4 (1.0%) showing unexpected abnormalities. Twenty nine of the 398 (7.2%) scans showed lower extremity abnormalities, with only 5 (1.2%) showing unexpected abnormalities. In no case was an isolated unexpected malignant lesion identified in the brain/scalp or lower extremities. In conclusion, whole body PET/CT scan showed about 1% unexpected primary or metastatic MM lesions involving the head or lower extremities, which seldom offered significant additional clinical benefit and were unlikely to change clinical management. No clinically significant change in staging would have occurred. Routine 'eyes to thighs' images were adequate for this subset of patients. PMID:23106051

  14. Responses of primate caudal parabrachial nucleus and Kolliker-fuse nucleus neurons to whole body rotation

    NASA Technical Reports Server (NTRS)

    Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.

    2002-01-01

    The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components

  15. Whole body and regional body composition changes following 10-day hypoxic confinement and unloading-inactivity.

    PubMed

    Debevec, Tadej; McDonnell, Adam C; Macdonald, Ian A; Eiken, Ola; Mekjavic, Igor B

    2014-03-01

    Future planetary habitats will expose inhabitants to both reduced gravity and hypoxia. This study investigated the effects of short-term unloading and normobaric hypoxia on whole body and regional body composition (BC). Eleven healthy, recreationally active, male participants with a mean (SD) age of 24 (2) years and body mass index of 22.4 (3.2) kg·m(-2) completed the following 3 10-day campaigns in a randomised, cross-over designed protocol: (i) hypoxic ambulatory confinement (HAMB; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), (ii) hypoxic bed rest (HBR; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), and (iii) normoxic bed rest (NBR; FIO2 = 0.209; PIO2 = 133.5 (0.7) mm Hg). Nutritional requirements were individually precalculated and the actual intake was monitored throughout the study protocol. Body mass, whole body, and regional BC were assessed before and after the campaigns using dual-energy X-ray absorptiometry. The calculated daily targeted energy intake values were 2071 (170) kcal for HBR and NBR and 2417 (200) kcal for HAMB. In both HBR and NBR campaigns the actual energy intake was within the targeted level, whereas in the HAMB the intake was lower than targeted (-8%, p < 0.05). Body mass significantly decreased in all 3 campaigns (-2.1%, -2.8%, and -2.0% for HAMB, HBR, and NBR, respectively; p < 0.05), secondary to a significant decrease in lean mass (-3.8%, -3.8%, -4.3% for HAMB, HBR, and NBR, respectively; p < 0.05) along with a slight, albeit not significant, increase in fat mass. The same trend was observed in the regional BC regardless of the region and the campaign. These results demonstrate that, hypoxia per se, does not seem to alter whole body and regional BC during short-term bed rest. PMID:24552383

  16. Three-dimensional modeling of supine human and transport system under whole-body vibration.

    PubMed

    Wang, Yang; Rahmatalla, Salam

    2013-06-01

    The development of predictive computer human models in whole-body vibration has shown some success in predicting simple types of motion, mostly for seated positions and in the uniaxial vertical direction. The literature revealed only a handful of papers that tackled supine human modeling in response to vertical vibration. The objective of this work is to develop a predictive, multibody, three-dimensional human model to simulate the supine human and underlying transport system in response to multidirectional whole-body vibration. A three-dimensional dynamic model of a supine human and its underlying transport system is presented in this work to predict supine-human biodynamic response under three-dimensional input random whole-body vibration. The proposed supine-human model consists of three interconnected segments representing the head, torso-arms, and pelvis-legs. The segments are connected via rotational and translational joints that have spring-damper components simulating the three-dimensional muscles and tissuelike connecting elements in the three x, y, and z directions. Two types of transport systems are considered in this work, a rigid support and a long spinal board attached to a standard military litter. The contact surfaces between the supine human and the underlying transport system are modeled using spring-damper components. Eight healthy supine human subjects were tested under combined-axis vibration files with a magnitude of 0.5 m/s2 (rms) and a frequency content of 0.5-16 Hz. The data from seven subjects were used in parameter identification for the dynamic model using optimization schemes in the frequency domain that minimize the differences between the magnitude and phase of the predicted and experimental transmissibility. The predicted accelerations in the time and frequency domains were comparable to those gathered from experiments under different anthropometric, input vibration, and transport conditions under investigation. Based on the

  17. Gene Expression Changes in Mouse Intestinal Tissue Following Whole-Body Proton or Gamma-Irradiation

    NASA Technical Reports Server (NTRS)

    Purgason, Ashley; Zhang, Ye; Mangala, Lingegowda; Nie, Ying; Gridley, Daila; Hamilton, Stanley R.; Seidel, Derek V.; Wu, Honglu

    2014-01-01

    Crew members face potential consequences following exposure to the space radiation environment including acute radiation syndrome and cancer. The space radiation environment is ample with protons, and numerous studies have been devoted to the understanding of the health consequences of proton exposures. In this project, C57BL/6 mice underwent whole-body exposure to 250 MeV of protons at doses of 0, 0.1, 0.5, 2 and 6 Gy and the gastrointestinal (GI) tract of each animal was dissected four hours post-irradiation. Standard H&E staining methods to screen for morphologic changes in the tissue showed an increase in apoptotic lesions for even the lowest dose of 0.1 Gy, and the percentage of apoptotic cells increased with increasing dose. Results of gene expression changes showed consistent up- or down- regulation, up to 10 fold, of a number of genes across exposure doses that may play a role in proton-induced oxidative stress including Gpx2. A separate study in C57BL/6 mice using the same four hour time point but whole-body gamma-irradiation showed damage to the small intestine with lesions appearing at the smallest dose of 0.05 Gy and increasing with increasing absorbed dose. Expressions of genes associated with oxidative stress processes were analyzed at four hours and twenty-four hours after exposure to gamma rays. We saw a much greater number of genes with significant up- or down-regulation twenty-four hours post-exposure as compared to the four hour time point. At both four hours and twenty-four hours post-exposure, Duox1 and Mpo underwent up-regulation for the highest dose of 6 Gy. Both protons and gamma rays lead to significant variation in gene expressions and these changes may provide insight into the mechanism of injury seen in the GI tract following radiation exposure. We have also completed experiments using a BALB/c mouse model undergoing whole-body exposure to protons. Doses of 0, 0.1, 1 and 2 Gy were used and results will be compared to the work mentioned

  18. Is there evidence for nonthermal modulation of whole body heat loss during intermittent exercise?

    PubMed

    Kenny, Glen P; Gagnon, Daniel

    2010-07-01

    This study compared the effect of active, passive, and inactive recoveries on whole body evaporative and dry heat loss responses during intermittent exercise at an air temperature of 30 degrees C and a relative humidity of 20%. Nine males performed three 15-min bouts of upright seated cycling at a fixed external workload of 150 W. The exercise bouts were separated by three 15-min recoveries during which participants 1) performed loadless pedaling (active recovery), 2) had their lower limbs passively compressed with inflatable sleeves (passive recovery), or 3) remained upright seated on the cycle ergometer (inactive recovery). Combined direct and indirect calorimetry was employed to measure rates of whole body evaporative heat loss (EHL) and metabolic heat production (M-W). Mean body temperature (T(b)) was calculated from esophageal and mean skin temperatures, and mean arterial pressure (MAP) was measured continuously. Active and passive recoveries both reversed the reduction in MAP associated with inactive recovery (P whole body

  19. Decontamination Efficiencies of Pot-Type Water Purifiers for 131I, 134Cs and 137Cs in Rainwater Contaminated during Fukushima Daiichi Nuclear Disaster

    PubMed Central

    Higaki, Shogo; Hirota, Masahiro

    2012-01-01

    Rainwater was contaminated by a large release of radionuclides into the environment during the Fukushima Daiichi nuclear disaster. It became a matter of concern for Japan when several water purification plants detected 131I contamination in the drinking water. In the present study, the decontamination efficiency of two easily obtainable commercial water purifiers were examined for rainwater contaminated with 131I, 134Cs and 137Cs. The water purifiers removed 94.2–97.8% of the 131I and 84.2–91.5% of the 134Cs and 137Cs after one filtration. Seven filtrations removed 98.2–99.6% of the 131I and over 98.0% of the 134Cs and 137Cs. From a practical perspective, over the fourth filtrations were not needed because of no significant improvements after the third filtration. PMID:22615935

  20. Radioactive iodide (131 I-) excretion profiles in response to potassium iodide (KI) and ammonium perchlorate (NH4ClO4) prophylaxis.

    PubMed

    Harris, Curtis; Dallas, Cham; Rollor, Edward; White, Catherine; Blount, Benjamin; Valentin-Blasini, Liza; Fisher, Jeffrey

    2012-08-01

    Radioactive iodide ((131)I-) protection studies have focused primarily on the thyroid gland and disturbances in the hypothalamic-pituitary-thyroid axis. The objective of the current study was to establish (131)I- urinary excretion profiles for saline, and the thyroid protectants, potassium iodide (KI) and ammonium perchlorate over a 75 hour time-course. Rats were administered (131)I- and 3 hours later dosed with either saline, 30 mg/kg of NH(4)ClO(4) or 30 mg/kg of KI. Urinalysis of the first 36 hours of the time-course revealed that NH(4)ClO(4) treated animals excreted significantly more (131)I- compared with KI and saline treatments. A second study followed the same protocol, but thyroxine (T(4)) was administered daily over a 3 day period. During the first 6-12 hour after (131)I- dosing, rats administered NH(4)ClO(4) excreted significantly more (131)I- than the other treatment groups. T(4) treatment resulted in increased retention of radioiodide in the thyroid gland 75 hour after (131)I- administration. We speculate that the T(4) treatment related reduction in serum TSH caused a decrease synthesis and secretion of thyroid hormones resulting in greater residual radioiodide in the thyroid gland. Our findings suggest that ammonium perchlorate treatment accelerates the elimination rate of radioiodide within the first 24 to 36 hours and thus may be more effective at reducing harmful exposure to (131)I- compared to KI treatment for repeated dosing situations. Repeated dosing studies are needed to compare the effectiveness of these treatments to reduce the radioactive iodide burden of the thyroid gland. PMID:23066407

  1. Experimental study of pharmacokinetics of external, whole-body bathing application of ivermectin.

    PubMed

    Miyajima, Atsushi; Komoda, Masayo; Akagi, Keita; Yuzawa, Kaoru; Yoshimasu, Takashi; Yamamoto, Yosuke; Hirota, Takashi

    2015-01-01

    As a novel method improving the safety of conventional oral ivermectin (IVM) for scabies treatment, we conceived an idea called the "whole-body bathing method". In this method, the patients would bathe themselves in a bathing fluid containing IVM at an effective concentration. To evaluate the feasibility of the method, we investigated the IVM concentration in the skin and plasma after bathing rats in a fluid containing 100 ng/mL of IVM. After the bathing, the concentration of IVM in the skin was more than 400 ng/g wet weight and was maintained until 8 h after the bathing. The concentration was clearly higher than that in patients taking IVM p.o. as previously reported; IVM was not detected in plasma in the present study. Thus, the method would be a preferable drug delivery system for the skin application of IVM compared with p.o. administration. PMID:25492083

  2. The elevation of blood levels of zinc protoporphyrin in mice following whole body irradiation

    SciTech Connect

    Walden, T.L.; Draganac, P.S.; Farkas, W.R.

    1984-05-01

    Elevation of zinc protoporphyrin (ZPP) levels in the blood has served as an indicator of lead poisoning and iron deficiency anemia for many years. We have discovered that sublethal doses of whole body irradiation with x-rays also elevates ZPP 2-3-fold over normal levels. The ZPP level does not begin to increase until days 12-14 postirradiation and peaks between days 18 and 20 before returning to normal levels between days 28 and 35. Increasing the radiation dose delays the onset of the rise in ZPP, but does not affect the magnitude of the elevation. At lethal doses, ZPP elevation is not observed. Neither of the two previously described mechanisms that cause elevations of ZPP, namely iron deficiency and inhibition of ferrochelatase, are responsible for the radiation-induced elevation of ZPP. The elevation of ZPP appears to be correlated with the recovery of the hematopoietic system from radiation injury.

  3. Elevation of blood levels of zinc protoporphyrin in mice following whole-body irradiation

    SciTech Connect

    Walden, T.L. Jr.

    1983-01-01

    Elevation of zinc protoporphyrin (ZPP) levels in the blood has served as an indicator of lead poisoning and iron deficiency anemia for many years. The author has discovered that sublethal doses of whole body irradiation with X-rays also elevates ZPP two- to three-fold over normal levels. The ZPP level does not begin to increase until days 12 to 14 post-irradiation and peaks between days 18 to 20 before returning to normal levels between days 28 to 35. Increasing the radiation dose delays the onset of the rise in ZPP but does not affect the magnitude of the elevation. At lethal doses, ZPP elevation is not observed. Neither of the two previously described mechanisms which cause elevations of ZPP, namely iron deficiency and inhibition of ferrochelatase, are responsible for the radiation induced elevation of ZPP. The elevation of ZPP appears to be correlated with the recovery of the hematopoietic system from radiation injury.

  4. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V.

    2012-07-01

    With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose.

  5. Skeletal muscle response to spaceflight, whole body suspension, and recovery in rats

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Fell, R. D.; Dombrowski, M. J.

    1990-01-01

    The effects of a 7-day spaceflight (SF), 7- and 14-day-long whole body suspension (WBS), and 7-day-long recovery on the muscle weight and the morphology of the soleus and the extensor digitorum longus (EDL) of rats were investigated. It was found that the effect of 7-day-long SF and WBS were highly comparable for both the soleus and the EDL, although the soleus muscle from SF rats showed greater cross-sectional area reduction than that from WBS rats. With a longer duration of WBS, there was a continued reduction in cross-sectional fast-twitch fiber area. Muscle plasticity, in terms of fiber and capillary responses, showed differences in responses of the two types of muscles, indicating that antigravity posture muscles are highly susceptible to unloading.

  6. Whole-Body Lifetime Occupational Lead Exposure and Risk of Parkinson’s Disease

    SciTech Connect

    Coon , Steven; Stark, Azadeh; Peterson, Edward; Gloi, Aime; Kortsha, Gene; Pounds, Joel G.; Chettle, D. R.; Gorell, Jay M.

    2006-12-01

    We enrolled 121 PD patients and 414 age-, sex-, and race-, frequency-matched controls in a case–control study. As an indicator of chronic Pb exposure, we measured concentrations of tibial and calcaneal bone Pb stores using 109Cadmium excited K-series X-ray fluorescence. As an indicator of recent exposure, we measured blood Pb concentration. We collected occupational data on participants from 18 years of age until the age at enrollment, and an industrial hygienist determined the duration and intensity of environmental Pb exposure. We employed physiologically based pharmacokinetic modeling to combine these data, and we estimated whole-body lifetime Pb exposures for each individual. Logistic regression analysis produced estimates of PD risk by quartile of lifetime Pb exposure.

  7. Research on simultaneous impact of hand-arm and whole-body vibration.

    PubMed

    Kowalski, Piotr; Zając, Jacek

    2012-01-01

    This article presents the results of laboratory tests on the combined effect of whole-body vibration (WBV) and hand-arm vibration (HAV). The reactions of subjects exposed to various combinations of vibration were recorded. The vibrotactile perception threshold (VPT) test identified changes caused by exposure to vibration. Ten male subjects met the criteria of the study. There were 4 series of tests: a reference test and tests after exposure to HAV, WBV, and after simultaneous exposure to HAV and WBV. An analysis of the results (6000 ascending and descending VPTs) showed that the changes in VPTs were greatest after simultaneous exposure to both kinds of vibration. The increase in VPT, for all stimulus frequencies, was then higher than after exposure to HAV or WBV only. PMID:22429529

  8. Reactivity of rat abdominal aorta to U46619 following whole-body gamma irradiation

    SciTech Connect

    Warfield, M.E.; Schneidkraut, M.J.; Cunard, C.M.; Ramwell, P.W.; Kot, P.A.

    1989-03-01

    Rats exposed to 20 Gy whole-body irradiation demonstrated a depressed aortic responsiveness to the thromboxane mimic, U46619, 48 h postirradiation. The mechanism for this observed response was investigated. Shielding the abdominal aorta attenuated this altered vascular reactivity. Since this suggests that radiation exposure induces local changes in the aorta, vascular smooth muscle function was assessed with cumulative concentrations of KCl. Radiation-induced smooth muscle damage was insufficient to account for the decreased reactivity to U46619. Next, calcium availability for vascular smooth muscle function was evaluated and found not to be responsible for the radiation-induced depression in aortic responsiveness. Finally, the role that cyclooxygenase products play in the depressed contractile response was investigated. Indomethacin treatment prior to and for 48 h after irradiation attenuated the altered vascular reactivity to U46619. These data suggest that a radiation-induced increase in cyclooxygenase products may play a role in the decreased aortic reactivity to the thromboxane mimic.

  9. Intercomparison of whole-body averaged SAR in European and Japanese voxel phantoms

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter J.; Hirata, Akimasa; Nagaoka, Tomoaki

    2008-10-01

    This paper provides an intercomparison of the HPA male and female models, NORMAN and NAOMI with the National Institute of Information and Communications Technology (NICT) male and female models, TARO and HANAKO. The calculations of the whole-body SAR in these four phantoms were performed at the HPA, at NICT and at the Nagoya Institute of Technology (NIT). These were for a plane wave with a vertically aligned electric field incident upon the front of the body from 30 MHz to 3 GHz for isolated conditions. As well as investigating the general differences through this frequency range, particular emphasis was placed on the assumptions of how dielectric properties are assigned to tissues (particularly skin and fat) and the consequence of using different algorithms for calculating SAR at the higher frequencies.

  10. The LANL model 8823 whole-body TLD and associated dose algorithm

    SciTech Connect

    Hoffman, J.M.; Mallett, M.W.

    1999-11-01

    The Los Alamos National Laboratory Model 8823 whole-body TLD has been designed to perform accurate dose estimates for beta, photon, and neutron radiations that are encountered in pure calibration, mixed calibration, and typical field radiation conditions. The radiation energies and field types for which the Model 8823 dosimeter is capable of measuring are described. The Model 8823 dosimeter has been accredited for all performance testing categories in the Department of Energy Laboratory Accrediation Program for external dosimetry systems. The philosophy used in the design of the Model 8823 dosimeter and the associated dose algorithm is to isolate the responses due to beta, photon, and neutron radiations; obtain radiation quality information; and make functional adjustments to the elemental readings to estimate the dose equivalent at 7, 300, and 1,000 mg cm{sup {minus}2}, representing the required reporting quantities for shallow, lens-of-the-eye, and deep dose, respectively.

  11. Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging

    PubMed Central

    Mandal, Subhamoy; Nasonova, Elena; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-01-01

    In tomographic optoacoustic imaging, multiple parameters related to both light and ultrasound propagation characteristics of the medium need to be adequately selected in order to accurately recover maps of local optical absorbance. Speed of sound in the imaged object and surrounding medium is a key parameter conventionally assumed to be uniform. Mismatch between the actual and predicted speed of sound values may lead to image distortions but can be mitigated by manual or automatic optimization based on metrics of image sharpness. Although some simple approaches based on metrics of image sharpness may readily mitigate distortions in the presence of highly contrasting and sharp image features, they may not provide an adequate performance for smooth signal variations as commonly present in realistic whole-body optoacoustic images from small animals. Thus, three new hybrid methods are suggested in this work, which are shown to outperform well-established autofocusing algorithms in mouse experiments in vivo. PMID:25431756

  12. Whole body vibration may have immediate adverse effects on the postural sway of stroke patients

    PubMed Central

    Hwang, Ki Jin; Ryu, Young Uk

    2016-01-01

    [Purpose] This study applied whole body vibration (WBV) at different vibration frequencies to chronic stroke patients and examined its immediate effect on their postural sway. [Subjects and Methods] A total of 14 (5 males, 9 females) stroke patients participated. The subjects were randomly assigned to one of the two vibration frequency groups (10 Hz and 40 Hz). Right before and after the application of WBV, the subjects performed quiet standing for 30 seconds, and COP parameters (range, total distance, and mean velocity) were analyzed. [Results] The 10 Hz WBV did not affect the postural sway of stroke patients. The 40 Hz WBV increased postural sway in the ML direction. [Conclusion] The results suggest that WBV application to stroke patients in the clinical field may have adverse effects and therefore caution is necessary. PMID:27064678

  13. Whole body vibration may have immediate adverse effects on the postural sway of stroke patients.

    PubMed

    Hwang, Ki Jin; Ryu, Young Uk

    2016-01-01

    [Purpose] This study applied whole body vibration (WBV) at different vibration frequencies to chronic stroke patients and examined its immediate effect on their postural sway. [Subjects and Methods] A total of 14 (5 males, 9 females) stroke patients participated. The subjects were randomly assigned to one of the two vibration frequency groups (10 Hz and 40 Hz). Right before and after the application of WBV, the subjects performed quiet standing for 30 seconds, and COP parameters (range, total distance, and mean velocity) were analyzed. [Results] The 10 Hz WBV did not affect the postural sway of stroke patients. The 40 Hz WBV increased postural sway in the ML direction. [Conclusion] The results suggest that WBV application to stroke patients in the clinical field may have adverse effects and therefore caution is necessary. PMID:27064678

  14. Recombinant human thrombopoietin promotes hematopoietic reconstruction after severe whole body irradiation

    PubMed Central

    Wang, Chao; Zhang, Bowen; Wang, Sihan; Zhang, Jing; Liu, Yiming; Wang, Jingxue; Fan, Zeng; Lv, Yang; Zhang, Xiuyuan; He, Lijuan; Chen, Lin; Xia, Huanzhang; Li, Yanhua; Pei, Xuetao

    2015-01-01

    Recombinant human thrombopoietin (rHuTPO) is a drug that is used clinically to promote megakaryocyte and platelet generation. Here, we report the mitigative effect of rHuTPO (administered after exposure) against severe whole body irradiation in mice. Injection of rHuTPO for 14 consecutive days following exposure significantly improved the survival rate of lethally irradiated mice. RHuTPO treatment notably increased bone marrow cell density and LSK cell numbers in the mice after sub-lethal irradiation primarily by promoting residual HSC proliferation. In lethally irradiated mice with hematopoietic cell transplantation, rHuTPO treatment increased the survival rate and enhanced hematopoietic cell engraftment compared with the placebo treatment. Our observations indicate that recombinant human TPO might have a therapeutic role in promoting hematopoietic reconstitution and HSC engraftment. PMID:26403418

  15. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo

    PubMed Central

    Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark

    2012-01-01

    Abstract. We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6  s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder. PMID:22612121

  16. Fluid dynamic aspects of cardiovascular behavior during low-frequency whole-body vibration

    NASA Technical Reports Server (NTRS)

    Nerem, R. M.

    1973-01-01

    The behavior of the cardiovascular system during low frequency whole-body vibration, such as encountered by astronauts during launch and reentry, is examined from a fluid mechanical viewpoint. The vibration characteristics of typical manned spacecraft and other vibration environments are discussed, and existing results from in vivo studies of the hemodynamic aspects of this problem are reviewed. Recent theoretical solutions to related fluid mechanical problems are then used in the interpretation of these results and in discussing areas of future work. The results are included of studies of the effects of vibration on the work done by the heart and on pulsatile flow in blood vessels. It is shown that important changes in pulse velocity, the instantaneous velocity profile, mass flow rate, and wall shear stress may occur in a pulsatile flow due to the presence of vibration. The significance of this in terms of changes in peripheral vascular resistance and possible damage to the endothelium of blood vessels is discussed.

  17. Effects of whole body vibration training on body composition, skeletal muscle strength, and cardiovascular health

    PubMed Central

    Park, Song-Young; Son, Won-Mok; Kwon, Oh-Sung

    2015-01-01

    Whole body vibration training (WBVT) has been used as a supplement to conventional exercise training such as resistance exercise training to improve skeletal muscle strength, specifically, in rehabilitation field. Recently, this exercise modality has been utilized by cardiovascular studies to examine whether WBVT can be a useful exercise modality to improve cardiovascular health. These studies reported that WBVT has not only beneficial effects on muscular strength but also cardiovascular health in elderly and disease population. However, its mechanism underlying the beneficial effects of WBVT in cardiovascular health has not been well documented. Therefore, this review highlighted the impacts of WBVT on cardiovascular health, and its mechanisms in conjunction with the improved muscular strength and body composition in various populations. PMID:26730378

  18. Whole-body imaging of the distribution of mercury released from dental fillings into monkey tissues

    SciTech Connect

    Hahn, L.J.; Kloiber, R.; Leininger, R.W.; Vimy, M.J.; Lorscheider, F.L. )

    1990-11-01

    The fate of mercury (Hg) released from dental silver amalgam tooth fillings into human mouth air is uncertain. A previous report about sheep revealed uptake routes and distribution of amalgam Hg among body tissues. The present investigation demonstrates the bodily distribution of amalgam Hg in a monkey whose dentition, diet, feeding regimen, and chewing pattern closely resemble those of humans. When amalgam fillings, which normally contain 50% Hg, are made with a tracer of radioactive {sup 203}Hg and then placed into monkey teeth, the isotope appears in high concentration in various organs and tissues within 4 wk. Whole-body images of the monkey revealed that the highest levels of Hg were located in the kidney, gastrointestinal tract, and jaw. The dental profession's advocacy of silver amalgam as a stable tooth restorative material is not supported by these findings.

  19. Thresholds for the perception of whole-body linear sinusoidal motion in the horizontal plane

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Young, Laurence R.; Steele, Charles R.; Schubert, Earl D.

    1989-01-01

    An improved linear sled has been developed to provide precise motion stimuli without generating perceptible extraneous motion cues (a noiseless environment). A modified adaptive forced-choice method was employed to determine perceptual thresholds to whole-body linear sinusoidal motion in 25 subjects. Thresholds for the detection of movement in the horizontal plane were found to be lower than those reported previously. At frequencies of 0.2 to 0.5 Hz, thresholds were shown to be independent of frequency, while at frequencies of 1.0 to 3.0 Hz, thresholds showed a decreasing sensitivity with increasing frequency, indicating that the perceptual process is not sensitive to the rate change of acceleration of the motion stimulus. The results suggest that the perception of motion behaves as an integrating accelerometer with a bandwidth of at least 3 Hz.

  20. Low-dose performance of a whole-body research photon-counting CT scanner

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Kappler, Steffen; Hahn, Katharina; Li, Zhoubo; Halaweish, Ahmed F.; Henning, Andre; Ritman, Erik L.; McCollough, Cynthia H.

    2016-04-01

    Photon-counting CT (PCCT) is an emerging technique that may bring new possibilities to clinical practice. Compared to conventional CT, PCCT is able to exclude electronic noise that may severely impair image quality at low photon counts. This work focused on assessing the low-dose performance of a whole-body research PCCT scanner consisting of two subsystems, one equipped with an energy-integrating detector, and the other with a photon-counting detector. Evaluation of the low-dose performance of the research PCCT scanner was achieved by comparing the noise performance of the two subsystems, with an emphasis on examining the impact of electronic noise on image quality in low-dose situations.

  1. Design of POSICAM: A high resolution multislice whole body positron camera

    SciTech Connect

    Mullani, N.A.; Wong, W.H.; Hartz, R.K.; Bristow, D.; Gaeta, J.M.; Yerian, K.; Adler, S.; Gould, K.L.

    1985-01-01

    A high resolution (6mm), multislice (21) whole body positron camera has been designed with innovative detector and septa arrangement for 3-D imaging and tracer quantitation. An object of interest such as the brain and the heart is optimally imaged by the 21 simultaneous image planes which have 12 mm resolution and are separated by 5.5 mm to provide adequate sampling in the axial direction. The detector geometry and the electronics are flexible enough to allow BaF/sub 2/, BGO, GSO or time of flight BaF/sub 2/ scintillators. The mechanical gantry has been designed for clinical applications and incorporates several features for patient handling and comfort. A large patient opening of 58 cm diameter with a tilt of +-30/sup 0/ and rotation of +-20/sup 0/ permit imaging from different positions without moving the patient. Multiprocessor computing systems and user-friendly software make the POSICAM a powerful 3-D imaging device. 7 figs.

  2. WearDY: Wearable dynamics. A prototype for human whole-body force and motion estimation

    NASA Astrophysics Data System (ADS)

    Latella, Claudia; Kuppuswamy, Naveen; Nori, Francesco

    2016-06-01

    Motion capture is a powerful tool used in a large range of applications towards human movement analysis. Although it is a well-established technique, its main limitation is the lack of dynamic information such as forces and torques during the motion capture. In this paper, we present a novel approach for human wearable dynamic (WearDY) motion capture for the simultaneous estimation of whole-body forces along with the motion. Our conceptual framework encompasses traditional passive markers based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational framework for estimating dynamic quantities originally proposed in the domain of humanoid robot control. We present preliminary experimental analysis of our framework on subjects performing a two Degrees-of-Freedom bowing task and we estimate the motion and dynamic quantities. We discuss the implication of our proposal towards the design of a novel wearable force and motion capture suit and its applications.

  3. Gene silencing in adipose tissue macrophages regulates whole-body metabolism in obese mice.

    PubMed

    Aouadi, Myriam; Tencerova, Michaela; Vangala, Pranitha; Yawe, Joseph C; Nicoloro, Sarah M; Amano, Shinya U; Cohen, Jessica L; Czech, Michael P

    2013-05-14

    Adipose tissue (AT) inflammation and infiltration by macrophages is associated with insulin resistance and type 2 diabetes in obese humans, offering a potential target for therapeutics. However, whether AT macrophages (ATMs) directly contribute to systemic glucose intolerance has not been determined. The reason is the lack of methods to ablate inflammatory genes expressed in macrophages specifically localized within AT depots, leaving macrophages in other tissues unaffected. Here we report that i.p. administration of siRNA encapsulated by glucan shells in obese mice selectively silences genes in epididymal ATMs, whereas macrophages within lung, spleen, kidney, heart, skeletal muscle, subcutaneous (SubQ) adipose, and liver are not targeted. Such administration of GeRPs to silence the inflammatory cytokines TNF-α or osteopontin in epididymal ATMs of obese mice caused significant improvement in glucose tolerance. These data are consistent with the hypothesis that cytokines produced by ATMs can exacerbate whole-body glucose intolerance. PMID:23630254

  4. Effects of a short-term whole body vibration intervention on physical fitness in elderly people.

    PubMed

    Gómez-Cabello, A; González-Agüero, A; Ara, I; Casajús, J A; Vicente-Rodríguez, G

    2013-03-01

    We aimed to clarify whether a short-term whole body vibration (WBV) training has a beneficial effect on physical fitness in elderly people. Forty-nine non-institutionalized elderly (75.0 ± 4.7 years) participated in the study. Twenty-four of them trained on a vibration platform for 11 weeks. Physical fitness included balance, lower- and upper-body strength and flexibility, agility, walking speed and endurance. In the WBV group most of the physical tests improved through the intervention (all P < 0.01) while in the control group only an increment was detected in lower-body strength (P < 0.05). In conclusion, a short-term WBV training is beneficial for physical fitness among elderly people. PMID:23312489

  5. Design and evaluation of HEADTOME-IV, a whole-body positron emission tomograph

    SciTech Connect

    Iida, H.; Miura, S.; Kanno, I.; Murakami, M.; Takahashi, K.; Uemura, K.

    1989-02-01

    A whole body positron emission tomograph HEADTOME-IV has been developed, and its physical performances were investigated. The in-plane spatial resolution of 4.5 mm was realized with stationary-sampling at the center of the field-of-view. The axial slice thickness was 9.5 and 9.0-mm for direct and cross planes, respectively. By moving the gantry framework axially, transaxial images of 14 or 21 slices are obtained quasi-simultaneously. The realtime-operation large-scale cache memory system was effective to realize realtime corrections for deadtime and radionuclide decay, and realtime weighted integration for the purpose of a rapid calculation of rate-constant images.

  6. Time-gated perturbation Monte Carlo for whole body functional imaging in small animals

    PubMed Central

    Chen, Jin; Intes, Xavier

    2015-01-01

    This paper explores a time-resolved functional imaging method based on Monte Carlo model for whole-body functional imaging of small animals. To improve the spatial resolution and quantitative accuracy of the functional map, a Bayesian hierarchical method with a high resolution spatial prior is applied to guide the optical reconstructions. Simulated data using the proposed approach are employed on an anatomically accurate mouse model where the optical properties range and volume limitations of the diffusion equation model exist. We investigate the performances of using time-gated data type and spatial priors to quantitatively image the functional parameters of multiple organs. Accurate reconstructions of the two main functional parameters of the blood volume and the relative oxygenation are demonstrated by using our method. Moreover, nonlinear optode settings guided by anatomical prior is proved to be critical to imaging small organs such as the heart. PMID:19997176

  7. Whole-Body Pediatric Neuroblastoma Imaging: 123I-mIBG and Beyond.

    PubMed

    Pai Panandiker, Atmaram S; Coleman, Jamie; Shulkin, Barry

    2015-09-01

    Pediatric cancer imaging stands to benefit from higher tumor detection sensitivity without ionizing radiation exposure. A prospective protocol compared diagnostic I-metaiodobenzylguanidine (I-mIBG) with whole-body diffusion-weighted MRI (DWI) to validate adjunctive methods of identifying small-volume oligometastatic neuroblastoma tumor deposits. Dual-modality imaging (I-mIBG and DWI) was obtained within a 3- and 25-day window at baseline and again at one year in the first enrolled patient. MRI was able to define the full extent of metastatic disease foci with improved resolution. These findings may provide critical information for definitive locoregional surgery and radiotherapy for high-risk neuroblastoma treatment. PMID:26053707

  8. Risks of exposure to ionizing and millimeter-wave radiation from airport whole-body scanners.

    PubMed

    Moulder, John E

    2012-06-01

    Considerable public concern has been expressed around the world about the radiation risks posed by the backscatter (ionizing radiation) and millimeter-wave (nonionizing radiation) whole-body scanners that have been deployed at many airports. The backscatter and millimeter-wave scanners currently deployed in the U.S. almost certainly pose negligible radiation risks if used as intended, but their safety is difficult-to-impossible to prove using publicly accessible data. The scanners are widely disliked and often feared, which is a problem made worse by what appears to be a veil of secrecy that covers their specifications and dosimetry. Therefore, for these and future similar technologies to gain wide acceptance, more openness is needed, as is independent review and regulation. Publicly accessible, and preferably peer-reviewed evidence is needed that the deployed units (not just the prototypes) meet widely-accepted safety standards. It is also critical that risk-perception issues be handled more competently. PMID:22494369

  9. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    PubMed Central

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey

    2012-01-01

    Abstract. With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. PMID:22894495

  10. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography.

    PubMed

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V

    2012-07-01

    With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. PMID:22894495