Science.gov

Sample records for 131ina internal dosimetry

  1. Internal dosimetry - a review.

    SciTech Connect

    Potter, Charles Augustus

    2004-06-01

    The field history and current status of internal dosimetry is reviewed in this article. Elements of the field that are reviewed include standards and models, derivation of dose coefficients and intake retention fractions, bioassay measurements, and intake and dose calculations. In addition, guidance is developed and provided as to the necessity of internal dosimetry for a particular facility or operation and methodology for implementing a program. A discussion of the purposes of internal dosimetry is included as well as recommendations for future development and direction.

  2. Internal dosimetry: a review.

    PubMed

    Potter, Charles A

    2005-06-01

    The field history and current status of internal dosimetry is reviewed in this article. Elements of the field that are reviewed include standards and models, derivation of dose coefficients and intake retention fractions, bioassay measurements, and intake and dose calculations. In addition, guidance is developed and provided as to the necessity of internal dosimetry for a particular facility or operation and methodology for implementing a program. A discussion of the purposes of internal dosimetry is included as well as recommendations for future development and direction.

  3. Hanford internal dosimetry program manual

    SciTech Connect

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  4. Internal dosimetry--a review.

    PubMed

    Potter, Charles A

    2004-11-01

    The field history and current status of internal dosimetry is reviewed in this article. Elements of the field that are reviewed include standards and models, derivation of dose coefficients and intake retention fractions, bioassay measurements, and intake and dose calculations. In addition, guidance is developed and provided as to the necessity of internal dosimetry for a particular facility or operation and methodology for implementing a program. A discussion of the purposes of internal dosimetry is included as well as recommendations for future development and direction.

  5. Internal dosimetry technical basis manual

    SciTech Connect

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  6. The International Reactor Dosimetry File.

    SciTech Connect

    DUNFORD, CHARLIE

    2008-08-07

    Version 01 The International Reactor Dosimetry File (IRDF-2002) contains recommended neutron cross-section data to be used for reactor neutron dosimetry by foil activation and subsequent neutron spectrum unfolding. It also contains selected recom�mended values for radiation damage cross-sections and benchmark neutron spectra. Two related programs available from NEADB and RSICC are: SPECTER-ANL (PSR-263) & STAY’SL (PSR-113).

  7. 4.2 Methods for Internal Dosimetry

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.2 Methods for Internal Dosimetry' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy' with the contents:

  8. Fourth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Schlafke-Stelson, A.T.; Watson, E.E.

    1986-04-01

    The focus of the Fourth International Radiopharmaceutical Dosimetry Symposium was to explore the impact of current developments in nuclear medicine on absorbed dose calculations. This book contains the proceedings of the meeting including the edited discussion that followed the presentations. Topics that were addressed included the dosimetry associated with radiolabeled monoclonal antibodies and blood elements, ultrashort-lived radionuclides, and positron emitters. Some specific areas of discussion were variations in absorbed dose as a result of alterations in the kinetics, the influence of radioactive contaminants on dose, dose in children and in the fetus, available instrumentation and techniques for collecting the kinetic data needed for dose calculation, dosimetry requirements for the review and approval of new radiopharmaceuticals, and a comparison of the effect on the thyroid of internal versus external irradiation. New models for the urinary blader, skeleton including the active marrow, and the blood were presented. Several papers dealt with the validity of traditional ''average-organ'' dose estimates to express the dose from particulate radiation that has a short range in tissue. These problems are particularly important in the use of monoclonal antibodies and agents used to measure intracellular functions. These proceedings have been published to provide a resource volume for anyone interested in the calculation of absorbed radiation dose.

  9. Fifth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Watson, E.E.; Schlafke-Stelson, A.T.

    1992-05-01

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  10. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  11. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  12. From ``micro`` to ``macro`` internal dosimetry

    SciTech Connect

    Fisher, D.R.

    1994-06-01

    Radiation dose is the amount of radiation energy deposited per unit mass of absorbing tissue. Internal dosimetry applies to assessments of dose to internal organs from penetrating radiation sources outside the body and from radionuclides taken into the body. Dosimetry is essential for correlating energy deposition with biological effects that are observed when living tissues are irradiated. Dose-response information provides the basis for radiation protection standards and risk assessment. Radiation interactions with living matter takes place on a microscopic scale, and the manifestation of damage may be evident at the cellular, multi-cellular, and even organ levels of biological organization. The relative biological effectiveness of ionization radiation is largely determined by the spatial distribution of energy deposition events within microscopic as well as macroscopic biological targets of interest. The spatial distribution of energy imparted is determined by the spatial distribution of radionuclides and properties of the emitted charged-particle radiation involved. The nonuniformity of energy deposition events in microscopic volumes, particularly from high linear energy transfer (LET) radiation, results in large variations in the amount of energy imparted to very small volumes or targets. Microdosimetry is the study of energy deposition events at the cellular level. Macrodosimetry is a term for conventional dose averaging at the tissue or organ level. In between is a level of dosimetry sometimes referred to as multi-cellular dosimetry. The distinction between these terms and their applications in assessment of dose from internally deposited radionuclides is described.

  13. Hanford Internal Dosimetry Project manual. Revision 1

    SciTech Connect

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  14. International intercomparison for criticality dosimetry: the case of biological dosimetry.

    PubMed

    Roy, L; Buard, V; Delbos, M; Durand, V; Paillole, N; Grégoire, E; Voisin, P

    2004-01-01

    The Institute of Radiation Protection and Nuclear Safety (IRSN) organized a biological dosimetry international intercomparison with the purpose of comparing (i) dicentrics yield produced in human lymphocytes; (ii) the gamma and neutron dose estimate according to the corresponding laboratory calibration curve. The experimental reactor SILENE was used with different configurations: bare source 4 Gy, lead shield 1 and 2 Gy and a 60Co source 2 Gy. An increasing variation of dicentric yield per cell was observed between participants when there were more damages in the samples. Doses were derived from the observed dicentric rates according to the dose-effect relationship provided by each laboratory. Differences in dicentric rate values are more important than those in the corresponding dose values. The doses obtained by the participants were found to be in agreement with the given physical dose within 20%. The evaluation of the respective gamma and neutron dose was achieved only by four laboratories, with some small variations among them.

  15. Patient-specific internal radionuclide dosimetry.

    PubMed

    Tsougos, Ioannis; Loudos, George; Georgoulias, Panagiotis; Theodorou, Kiki; Kappas, Constantin

    2010-02-01

    The development of patient-specific treatment planning systems is of outmost importance in the development of radionuclide dosimetry, taking into account that quantitative three-dimensional nuclear medical imaging can be used in this regard. At present, the established method for dosimetry is based on the measurement of the biokinetics by serial gamma-camera scans, followed by calculations of the administered activity and the residence times, resulting in the radiation-absorbed doses of critical organs. However, the quantification of the activity in different organs from planar data is hampered by inaccurate attenuation and scatter correction as well as because of background and organ overlay. In contrast, dosimetry based on quantitative three-dimensional data can be more accurate and allows an individualized approach, provided that all effects that degrade the quantitative content of the images have been corrected for. In addition, inhomogeneous organ accumulation of the radionuclide can be detected and possibly taken into account. The aim of this work is to provide adequate information on internal emitter dosimetry and a state-of-the-art review of the current methodology and future trends.

  16. Sandia National Laboratories Internal Dosimetry Technical Basis Manual (Rev 4)

    SciTech Connect

    Goke, Sarah Hayes; Elliott, Nathan Ryan

    2014-09-01

    The Sandia National Laboratories’ Internal Dosimetry Technical Basis Manual is intended to provide extended technical discussion and justification of the internal dosimetry program at SNL. It serves to record the approach to evaluating internal doses from radiobioassay data, and where appropriate, from workplace monitoring data per the Department of Energy Internal Dosimetry Program Guide DOE G 441.1C. The discussion contained herein is directed primarily to current and future SNL internal dosimetrists. In an effort to conserve space in the TBM and avoid duplication, it contains numerous references providing an entry point into the internal dosimetry literature relevant to this program. The TBM is not intended to act as a policy or procedure statement, but will supplement the information normally found in procedures or policy documents. The internal dosimetry program outlined in this manual is intended to meet the requirements of Federal Rule 10CFR835 for monitoring the workplace and for assessing internal radiation doses to workers.

  17. The Mayak Worker Dosimetry System (MWDS-2013): Internal Dosimetry Results.

    PubMed

    Vostrotin, Vadim; Birchall, Alan; Zhdanov, Alexey; Puncher, Matthew; Efimov, Alexander; Napier, Bruce; Sokolova, Alexandra; Miller, Scott; Suslova, Klara

    2016-09-24

    The distribution of calculated internal doses has been determined for 8043 Mayak Production Associate (Mayak PA) workers. This is a subset of the entire cohort of 25 757 workers, for whom monitoring data are available. Statistical characteristics of point estimates of accumulated doses to 17 different tissues and organs and the uncertainty ranges were calculated. Under the MWDS-2013 dosimetry system, the mean accumulated lung dose was 185 ± 594 mGy (geometric mean = 28 mGy; geometric standard deviation = 9.32; median value = 31 mGy; maximum value = 8980 mGy). The ranges of relative standard uncertainty were from 40 to 2200% for accumulated lung dose, from 25-90% to 2600-3000% for accumulated dose to different regions of respiratory tract, from 13-22% to 2300-2500% for systemic organs and tissues. The Mayak PA workers accumulated internal plutonium lung dose is shown to be close to log normal. The accumulated internal plutonium dose to systemic organs was close to a log triangle. The dependency of uncertainty of accumulated absorbed lung and liver doses on the dose estimates itself is also shown. The accumulated absorbed doses to lung, alveolar-interstitial region, liver, bone surface cells and red bone marrow calculated both with MWDS-2013 and MWDS-2008 have been compared. In general, the accumulated lung doses increased by a factor of 1.8 in median value, while the accumulated doses to systemic organs decreased by factor of 1.3-1.4 in median value. For the cases with identical initial data, accumulated lung doses increased by a factor of 2.1 in median value, while accumulated doses to systemic organs decreased by 8-13% in median value. For the cases with both identical initial data and all of plutonium activity in urine measurements above the decision threshold, accumulated lung doses increased by a factor of 2.7 in median value, while accumulated doses to systemic organs increased by 6-12% in median value.

  18. Internal dosimetry verification and validation database.

    PubMed

    Miller, G; Bertelli, L; Little, T; Guilmette, R A

    2007-01-01

    Simulated-data internal dosimetry cases for use in intercomparison exercises or as a software verification and validation tool have been published on the internet (www.lanl.gov/bayesian/software Bayesian software package II). A user may validate their internal dosimetry code or method using this simulated bioassay data. Or, the user may choose to try out the Los Alamos National Laboratory codes ID and UF, which are also supplied. A Poisson-lognormal model of data uncertainty is assumed. A collection of different possible models for each nuclide (e.g. solubility types and particle sizes) are used. For example, for 238Pu, 14 different biokinetic models or types (8 inhalation, 4 wound and 2 ingestion) are assumed. Simulated data are generated for all the assumed biokinetic models, both for incidents, where the time of intake is known, and for non-incidents, where it is not. For the dose calculations, the route of intake, but not the biokinetic model, is considered to be known. The object is to correctly calculate the known true dose from simulated data covering a period of time. A 'correct' result has been defined in two ways: (1) that the credible limits of the calculated dose include the correct dose and (2) that the calculated dose is within a factor of 2 of the correct dose.

  19. Methods and procedures for internal radiation dosimetry at ORNL

    SciTech Connect

    Gupton, E.D.

    1981-08-01

    Procedures, methods, materials, records, and reports used for accomplishing the personnel, internal radiation monitoring program at Oak Ridge National Laboratory are described for the purpose of documenting what is done now for future reference. This document does not include procedures for nuclear accident dosimetry except insofar as routine techniques may apply also to nuclear accident dosimetry capability.

  20. Development of probabilistic internal dosimetry computer code

    NASA Astrophysics Data System (ADS)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-02-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of

  1. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-10-10

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP). It describes the roles of and relationships between the IDP and site contractors, and provides recommendations and guidance for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs. Guidance includes identifying conditions under which workers should be placed on bioassay programs, types, descritptions, and capabilities of measurements, suggested routine bioassay programs, limitations on services, and practices for recording and reporting results.

  2. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  3. BUILDING 122 CONTAINS THREE GENERAL AREAS: OFFICE AREAS, INTERNAL DOSIMETRY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING 122 CONTAINS THREE GENERAL AREAS: OFFICE AREAS, INTERNAL DOSIMETRY, AND MEDICAL/HEALTH. BUILDING 122 SHARES A COMMON WALL WITH BUILDING 121, THE PLANT SECURITY BUILDING. THE TWO-STORY BUILDING IN THE BACKGROUND IS BUILDING 111. (9/26/52) - Rocky Flats Plant, Emergency Medical Services Facility, Southwest corner of Central & Third Avenues, Golden, Jefferson County, CO

  4. Bayesian internal dosimetry calculations using Markov Chain Monte Carlo.

    PubMed

    Miller, G; Martz, H F; Little, T T; Guilmette, R

    2002-01-01

    A new numerical method for solving the inverse problem of internal dosimetry is described. The new method uses Markov Chain Monte Carlo and the Metropolis algorithm. Multiple intake amounts, biokinetic types, and times of intake are determined from bioassay data by integrating over the Bayesian posterior distribution. The method appears definitive, but its application requires a large amount of computing time.

  5. Radiation dosimetry onboard the International Space Station ISS.

    PubMed

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is onboard the International Space Station (ISS) is accomplished to one part as "operational" dosimetry accomplished to one part as "operational" dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on "scientific" dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities.

  6. Computer simulations for internal dosimetry using voxel models.

    PubMed

    Kinase, Sakae; Mohammadi, Akram; Takahashi, Masa; Saito, Kimiaki; Zankl, Maria; Kramer, Richard

    2011-07-01

    In the Japan Atomic Energy Agency, several studies have been conducted on the use of voxel models for internal dosimetry. Absorbed fractions (AFs) and S values have been evaluated for preclinical assessments of radiopharmaceuticals using human voxel models and a mouse voxel model. Computational calibration of in vivo measurement system has been also made using Japanese and Caucasian voxel models. In addition, for radiation protection of the environment, AFs have been evaluated using a frog voxel model. Each study was performed by using Monte Carlo simulations. Consequently, it was concluded that these data of Monte Carlo simulations and voxel models could adequately reproduce measurement results. Voxel models were found to be a significant tool for internal dosimetry since the models are anatomically realistic. This fact indicates that several studies on correction of the in vivo measurement efficiency for the variability of human subjects and interspecies scaling of organ doses will succeed.

  7. Internal radiation dosimetry for clinical testing of radiolabeled monoclonal antibodies

    SciTech Connect

    Fisher, D.R.; Durham, J.S.; Hui, T.E.; Hill, R.L.

    1990-11-01

    In gauging the efficacy of radiolabeled monoclonal antibodies in cancer treatment, it is important to know the amount of radiation energy absorbed by tumors and normal tissue per unit administered activity. This paper describes methods for estimating absorbed doses to human tumors and normal tissues, including intraperitoneal tissue surfaces, red marrow, and the intestinal tract from incorporated radionuclides. These methods use the Medical Internal Radiation Dose (MIRD) scheme; however, they also incorporate enhancements designed to solve specific dosimetry problems encountered during clinical studies, such as patient-specific organ masses obtained from computerized tomography (CT) volumetrics, estimates of the dose to tumor masses within normal organs, and multicellular dosimetry for studying dose inhomogeneities in solid tumors. Realistic estimates of absorbed dose are provided within the short time requirements of physicians so that decisions can be made with regard to patient treatment and procurement of radiolabeled antibodies. Some areas in which further research could improve dose assessment are also discussed. 16 refs., 3 figs.

  8. Effect of respiratory motion on internal radiation dosimetry

    SciTech Connect

    Xie, Tianwu; Zaidi, Habib

    2014-11-01

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transport code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic

  9. Effect of respiratory motion on internal radiation dosimetry.

    PubMed

    Xie, Tianwu; Zaidi, Habib

    2014-11-01

    Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the mcnp transport code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of (18)F-fluorodeoxyglucose ((18)F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For (18)F-FDG, organ absorbed doses are less influenced by respiratory motion. Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic anatomical model provides more accurate internal radiation

  10. Internal dosimetry monitoring equipment: Present and future

    SciTech Connect

    Selby, J.; Carbaugh, E.H.; Lynch, T.P.; Strom, D.J.; Lardy, M.M.

    1993-09-01

    We have attempted to characterize the current and future status of in vivo and in vitro measurement programs coupled with the associated radioanalytical methods and workplace monitoring. Developments in these areas must be carefully integrated by internal dosimetrists, radiochemists and field health physicists. Their goal should be uniform improvement rather than to focus on one specific area (e.g., dose modeling) to the neglect of other areas where the measurement capabilities are substantially less sophisticated and, therefore, the potential source of error is greatest.

  11. Internal dosimetry: towards harmonisation and coordination of research.

    PubMed

    Lopez, M A; Etherington, G; Castellani, C M; Franck, D; Hurtgen, C; Marsh, J W; Nosske, D; Breustedt, B; Blanchardon, E; Andrasi, A; Bailey, M R; Balashazy, I; Battisti, P; Bérard, P; Birchall, A; Broggio, D; Challeton-de-Vathaire, C; Cruz-Suarez, R; Doerfel, H; Giussani, A; Hodgson, A; Koukouliou, V; Kramer, G H; Le Guen, B; Luciani, A; Malatova, I; Molokanov, A; Moraleda, M; Muikku, M; Oeh, U; Puncher, M; Rahola, T; Stradling, N; Vrba, T

    2008-01-01

    The CONRAD Project is a Coordinated Network for Radiation Dosimetry funded by the European Commission 6th Framework Programme. The activities developed within CONRAD Work Package 5 ('Coordination of Research on Internal Dosimetry') have contributed to improve the harmonisation and reliability in the assessment of internal doses. The tasks carried out included a study of uncertainties and the refinement of the IDEAS Guidelines associated with the evaluation of doses after intakes of radionuclides. The implementation and quality assurance of new biokinetic models for dose assessment and the first attempt to develop a generic dosimetric model for DTPA therapy are important WP5 achievements. Applications of voxel phantoms and Monte Carlo simulations for the assessment of intakes from in vivo measurements were also considered. A Nuclear Emergency Monitoring Network (EUREMON) has been established for the interpretation of monitoring data after accidental or deliberate releases of radionuclides. Finally, WP5 group has worked on the update of the existing IDEAS bibliographic, internal contamination and case evaluation databases. A summary of CONRAD WP5 objectives and results is presented here.

  12. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-01-03

    This manual describes the technical basis for the design of the routine radiobioassay monitoring program and assessments of internal dose. Its purpose is to provide a historical record of the methods, models, and assumptions used for internal dosimetry at Hanford, and serve as a technical reference for radiation protection and dosimetry staff.

  13. Sixth international radiopharmaceutical dosimetry symposium: Proceedings. Volume 2

    SciTech Connect

    S.-Stelson, A.T.; Stabin, M.G.; Sparks, R.B.; Smith, F.B.

    1999-01-01

    This conference was held May 7--10 in Gatlinburg, Tennessee. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on radiopharmaceutical dosimetry. Attention is focused on the following: quantitative analysis and treatment planning; cellular and small-scale dosimetry; dosimetric models; radiopharmaceutical kinetics and dosimetry; and animal models, extrapolation, and uncertainty.

  14. National and international standards and calibration of thermoluminescence dosimetry systems.

    PubMed

    Soares, C G

    2002-01-01

    Radiation protection for radiation workers, the public, and the environment is of international concern. The use of thermoluminescence dosemeters (TLD) is an acceptable method for dose recording in most countries. For reasons of consistency and data gathering (research) it is important that a Sievert (Sv) in one part of the world equals an Sv on the other side of the globe. To this end, much work has gone into the development of standards and calibration practices for TLD systems so that they compare not only with similar systems, but also with other forms of radiation measurement. While most national laboratories provide calibration services for these systems some, as in the United States, depend on services of secondary calibration laboratories that are traceable to the national laboratories through accreditation programmes. The purpose of this paper is to explain how TLD measurements are traceable to their respective national standards for both personnel and environmental dosimetry.

  15. Internal dosimetry performing dose assessments via bioassay measurements

    SciTech Connect

    Bailey, K.M.

    1993-05-11

    The Internal Dosimetry Department at the Y-12 Plant maintains a state-of-the-art bioassay program managed under the guidance and regulations of the Department of Energy. The two major bioassay techniques currently used at Y-12 are the in vitro (urinalysis) and in vivo (lung counting) programs. Fecal analysis (as part of the in vitro program) is another alternative; however, since both urine and fecal analysis provide essentially the same capabilities for detecting exposures to uranium, the urinalysis is the main choice primarily for aesthetic reasons. The bioassay frequency is based on meeting NCRP 87 objectives which are to monitor the accumulation of radioactive material in exposed individuals, and to ensure that significant depositions are detected.

  16. Code for internal dosimetry (CINDY): Part 1, Conceptual representation

    SciTech Connect

    Strenge, D.L.; Peloquin, R.A.; Sula, M.J.; Johnson, J.R.

    1990-10-01

    The computer code CINDY (Computerized Internal Dosimetry Software Package) has been developed by Pacific Northwest Laboratory to address the Department of Energy (DOE) Order 5480.11 by providing the capabilities to calculate organ dose equivalents and effective dose equivalents using the approach contained in International Commission on Radiological Protection (ICRP) Publication 30. The code assists in the interpretation of bioassay data, the evaluation of committed and calendar-year doses from intake or bioassay measurement data, and the preparation of reports, consistent with revised DOE orders. The code is easy to use and is generally applicable to DOE sites. Flexible biokinetics models are used to determine organ doses for annual, 50-year, calendar-year, or any other time-point dose necessary for chronic or acute intakes. The CINDY code is an interactive computer program that prompts the user to describe the cases to be analyzed and calculates the necessary results for the type of analysis being performed. 30 refs., 13 figs., 14 tabs.

  17. Current internal-dosimetry practices at US Department of Energy facilities

    SciTech Connect

    Traub, R.J.; Murphy, B.L.; Selby, J.M.; Vallario, E.J.

    1985-04-01

    The internal dosimetry practice at DOE facilities were characterized. The purpose was to determine the size of the facilities' internal dosimetry programs, the uniformity of the programs among the facilities, and the areas of greatest concern to health physicists in providing and reporting accurate estimates of internal radiation dose and in meeting proposed changes in internal dosimetry. The differences among the internal-dosimetry programs are related to the radioelements in use at each facility and, to some extent, the number of workers at each facility. The differences include different frequencies in the use of quality control samples, different minimum detection levels, different methods of recording radionuclides, different amounts of data recorded in the permanent record, and apparent differences in modeling the metabolism of radionuclides within the body. Recommendations for improving internal-dosimetry practices include studying the relationship between air-monitoring/survey readings and bioassay data, establishing uniform methods for recording bioassay results, developing more sensitive direct-bioassay procedures, establishing a mechanism for sharing information on internal-dosimetry procedures among DOE facilities, and developing mathematical models and interactive computer codes that can help quantify the uptake of radioactive materials and predict their distribution in the body. 19 refs., 8 tabs.

  18. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    SciTech Connect

    Leggett, Richard Wayne; Eckerman, Keith F; Manger, Ryan P

    2013-08-01

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  19. Age-dependent small-animal internal radiation dosimetry.

    PubMed

    Xie, Tianwu; Zaidi, Habib

    2013-09-01

    Rats at various ages were observed to present with different radiosensitivity and bioavailability for radiotracers commonly used in preclinical research. We evaluated the effect of age-induced changes in body weight on radiation dose calculations. A series of rat models at different age periods were constructed based on the realistic four-dimensional digital rat whole-body (ROBY) computational model. Particle transport was simulated using the MCNPX Monte Carlo code. Absorbed fractions (AFs) and specific absorbed fraction (SAFs) of monoenergetic photons/electrons and S values of eight positron-emitting radionuclides were calculated. The SAFs and S values for most source-target pairs were inversely correlated with body weight. Differences between F-18 S values for most source-target pairs were between -1.5% and -2%/10 g difference in body weight for different computational models. For specific radiotracers, the radiation dose to organs presents a negative correlation with rat body weight. The SAFs for monoenergetic photons/electrons and S values for common positron-emitting radionuclides can be exploited in the assessment of radiation dose delivered to rats at different ages and weights. The absorbed dose to organs is significantly higher in the low-weight young rat model than in the adult model, which would result in steep secondary effects and might be a noteworthy issue in laboratory animal internal dosimetry.

  20. Cellular dosimetry and microdosimetry for internal electron emitters.

    PubMed

    Chao, T C; Huang, Y S; Hsu, F Y; Hsiao, Y; Lee, C C; Tung, C J

    2011-02-01

    Radiobiological descriptions of cellular dosimetry and microdosimetry require both radiation dose and radiation quality. The lineal energy, defined as a ratio of the energy deposition by a particle in the biological target and the mean chord length of this target, is generally adopted to characterise the radiation quality. Most microdosimetry applications assume that the cell nucleus is the target region. Therefore, the lineal energy is obtained for the source (S) to target (T) geometry, T ← S, where S = cell surface, cytoplasm, cell nucleus and T = cell nucleus. The definition of lineal energy is based on the approximation that the particle mean pathlength is equal to target mean chord length. This approximation is valid for crossers of external irradiations. In the case of starters, insiders and stoppers of internal sources, particle pathlengths are always shorter than target chord lengths. Thus, the lineal energy does not reflect the specific energy deposition along particle path. In the present work, the specific energy deposition in a target is calculated using three distance parameters, i.e. target mean chord length, particle mean pathlength in the target and particle individual pathlength in the target. Monte Carlo calculations are performed for electrons of various energies and cells of different sizes. Results are analysed and discussed.

  1. Dosimetry software Hermes Internal Radiation Dosimetry: from quantitative image reconstruction to voxel-level absorbed dose distribution.

    PubMed

    Hippeläinen, Eero T; Tenhunen, Mikko J; Mäenpää, Hanna O; Heikkonen, Jorma J; Sohlberg, Antti O

    2017-05-01

    The aim of this work is to validate a software package called Hermes Internal Radiation Dosimetry (HIRD) for internal dose assessment tailored for clinical practice. The software includes all the necessary steps to perform voxel-level absorbed dose calculations including quantitative reconstruction, image coregistration and volume of interest tools. The basics of voxel-level dosimetry methods and implementations to HIRD software are reviewed. Then, HIRD is validated using simulated SPECT/CT data and data from Lu-DOTATATE-treated patients by comparing absorbed kidney doses with OLINDA/EXM-based dosimetry. In addition, electron and photon dose components are studied separately in an example patient case. The simulation study showed that HIRD can reproduce time-activity curves accurately and produce absorbed doses with less than 10% error for the kidneys, liver and spleen. From the patient data, the absorbed kidney doses calculated using HIRD and using OLINDA/EXM were highly correlated (Pearson's correlation coefficient, r=0.98). From Bland-Altman plot analysis, an average absorbed dose difference of -2% was found between the methods. In addition, we found that in Lu-DOTATATE-treated patients, photons can contribute over 10% of the kidney's total dose and is partly because of cross-irradiation from high-uptake lesions close to the kidneys. HIRD is a straightforward voxel-level internal dosimetry software. Its clinical utility was verified with simulated and clinical Lu-DOTATATE-treated patient data. Patient studies also showed that photon contribution towards the total dose can be relatively high and voxel-level dose calculations can be valuable in cases where the target organ is in close proximity to high-uptake organs.

  2. Internal dosimetry estimates using voxelized reference phantoms for thyroid agents.

    PubMed

    Hoseinian-Azghadi, E; Rafat-Motavalli, L; Miri-Hakimabad, H

    2014-05-01

    This work presents internal dosimetry estimates for diagnostic procedures performed for thyroid disorders by relevant radiopharmaceuticals. The organ doses for (131)Iodine, (123)Iodine and (99m)Tc incorporated into the body were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms using the Monte Carlo transport method. A comparison between different thyroid uptakes of iodine in the range of 0-55% was made, and the effect of various techniques for administration of (99m)Tc on organ doses was studied. To investigate the necessity of calculating organ dose from all source regions, the major source organ and its contribution to total dose were specified for each target organ. Moreover, we compared effective dose in ICRP voxel phantoms with that in stylized phantoms. In our method, we directly calculated the organ dose without using the S values or SAFs, as is commonly done. Hence, a distribution of the absorbed dose to entire tissues was obtained. The chord length distributions (CLDs) were also computed for the selected source-target pairs to make comparison across the genders. The results showed that the S values for radionuclides in the thyroid are not sufficient for calculating the organ doses, especially for (123)I and (99m)Tc. The thyroid and its neighboring organs receive a greater dose as thyroid uptake increases. Our comparisons also revealed an underestimation of organ doses reported for the stylized phantoms compared with the values based on the ICRP voxel phantoms in the uptake range of 5-55%, and an overestimation of absorbed dose by up to 2-fold for Iodine administration using blocking agent and for (99m)Tc incorporation.

  3. Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-04-01

    Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering statistical distributions of body morphometry in the paediatric population. The paediatric phantoms of the Virtual Population Series (IT’IS Foundation, Switzerland) were modified to match target anthropometric parameters, including body mass, body length, standing height and sitting height/stature ratio, determined from reference databases of the National Centre for Health Statistics and the National Health and Nutrition Examination Survey. The phantoms were selected as representative anchor phantoms for the newborn, 1, 2, 5, 10 and 15 years-old children, and were subsequently remodelled to create 1100 female and male phantoms with 10th, 25th, 50th, 75th and 90th body morphometries. Evaluation was performed qualitatively using 3D visualization and quantitatively by analysing internal organ masses. Overall, the newly generated phantoms appear very reasonable and representative of the main characteristics of the paediatric population at various ages and for different genders, body sizes and sitting stature ratios. The mass of internal organs increases with height and body mass. The comparison of organ masses of the heart, kidney, liver, lung and spleen with published autopsy and ICRP reference data for children demonstrated that they follow the same trend when correlated with age. The constructed hybrid computational phantom library opens up the prospect of comprehensive radiation dosimetry calculations and risk assessment for the paediatric population of different age groups and diverse anthropometric parameters.

  4. Internal dosimetry estimates using voxelized reference phantoms for thyroid agents

    PubMed Central

    Hoseinian-Azghadi, E.; Rafat-Motavalli, L.; Miri-Hakimabad, H.

    2014-01-01

    This work presents internal dosimetry estimates for diagnostic procedures performed for thyroid disorders by relevant radiopharmaceuticals. The organ doses for 131Iodine, 123Iodine and 99mTc incorporated into the body were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms using the Monte Carlo transport method. A comparison between different thyroid uptakes of iodine in the range of 0–55% was made, and the effect of various techniques for administration of 99mTc on organ doses was studied. To investigate the necessity of calculating organ dose from all source regions, the major source organ and its contribution to total dose were specified for each target organ. Moreover, we compared effective dose in ICRP voxel phantoms with that in stylized phantoms. In our method, we directly calculated the organ dose without using the S values or SAFs, as is commonly done. Hence, a distribution of the absorbed dose to entire tissues was obtained. The chord length distributions (CLDs) were also computed for the selected source–target pairs to make comparison across the genders. The results showed that the S values for radionuclides in the thyroid are not sufficient for calculating the organ doses, especially for 123I and 99mTc. The thyroid and its neighboring organs receive a greater dose as thyroid uptake increases. Our comparisons also revealed an underestimation of organ doses reported for the stylized phantoms compared with the values based on the ICRP voxel phantoms in the uptake range of 5–55%, and an overestimation of absorbed dose by up to 2-fold for Iodine administration using blocking agent and for 99mTc incorporation. PMID:24222311

  5. Reference dosimetry measurements for the international intercomparison of criticality accident dosimetry SILENE 9-21 June 2002.

    PubMed

    Asselineau, B; Trompier, F; Texier, C; Itié, C; Médioni, R; Tikunov, D; Muller, H; Pelcot, G

    2004-01-01

    An international intercomparison of criticality accident dosimetry systems took place in the SILENE reactor, in June 2002. Participants from 60 laboratories irradiated their dosemeters (physical and biological) using two different configurations of the reactor. In preparation for this intercomparison, the leakage radiation fields were characterised by spectrometry and dosimetry measurements using the ROSPEC spectrometer associated with a NE-213 scintillator, ionisation chambers, GM counters, diodes and thermoluminescence dosemeters (TLDs). For this intercomparison, a large area was required to irradiate the dosemeters both in free air and on phantoms. Therefore, measurements of the uniformity of the field were performed with activation detectors and TLDs for neutron and gammas, respectively. This paper describes the procedures used and the results obtained.

  6. Harmonization of internal dosimetry procedures in Latin America--ARCAL/IAEA project.

    PubMed

    Melo, D; Suarez, R Cruz; Rojo, A; Dantas, B M; Julião, L; Serdero, N; Videla, R; Puerta, J A; Lopez, G; Alfaro, M M; Gonzáles, S; Hermida, J C; Navarro, T

    2007-01-01

    Under the auspices of the Regional Coordination Agreement for Latin America, representatives of the eight member states have participated in a project to improve radiological protection for workers exposed to unsealed sources of radiation. The design of the project was based on information obtained from a questionnaire circulated among the participants, from which the initial status of internal dosimetry services in each country was characterised. The objective of the project is to harmonize internal dosimetry procedures, with reference to International Atomic Energy Agency recommendations. After the implementation of new procedures and personnel training, four intercomparison exercises were carried out: measurement of iodine in thyroid phantoms, measurement of gamma emitters in urine samples, measurement of beta emitters in urine samples and internal dose assessments. This project has resulted in important improvements in internal dosimetry services in the region.

  7. Biokinetics and internal dosimetry of inhaled metal tritide particles

    NASA Astrophysics Data System (ADS)

    Wang, Yansheng

    1998-12-01

    Metal tritides (MT), stable chemical compounds of tritium, are widely used in nuclear engineering facilities. MT particles can be released as aerosols. Inhaling MT particles is a potential occupational radiation hazard. Little information is available on their dissolution behavior, biokinetics, and dosimetry. The objectives of present dissertation are to estimate dissolution rates, to develop biokinetic models, to improve internal dosimetric considerations, and to classify MT materials. This study consisted of three phases: In vitro dissolution in a simulated lung fluid, In vivo rat experiments on retention and clearance, and biokinetic modeling and dosimetric evaluation. There was a supporting study on self- absorption of tritium beta in MT particles. MT materials used in this study were titanium (Ti) and zirconium (Zr) tritides. Results shows considerable self-absorption of beta particles and their energy, even for respirable MT particles smaller than 5 μm. The self-absorption factors should be required for counting MT particle samples and for estimating absorbed dose to tissues. In vitro and in vivo dissolution data indicate that Ti and Zr tritides are poorly soluble materials. Ti tritide belongs to the W class or M type while Zr tritide can be classified as Y class or S type. Due to long retention time of the MT particles, tritium betas directly from the particles contribute over 90% of the absorbed dose to lung. The lung dose contributes most of the effective dose to the whole body. Dissolved tritium including tritiated water (HTO) and organically bound tritium (OBT) has less effect on the lung dose and effective dose. Results on the annual limit on intake (ALI) indicate that the current radiation protection guideline based on HTO is not adequate for inhalation exposure to MT particles and needs to be modified. The biokinetic models developed in this study have predictive powers to estimate the consequences of a human inhalation exposure to MT aerosols. The

  8. IDEAS internal contamination database: a compilation of published internal contamination cases. A tool for the internal dosimetry community.

    PubMed

    Hurtgen, C; Andrasi, A; Bailey, M; Blanchardon, E; Berkovski, V; Castellani, C-M; Doerfel, H; Jourdain, J-R; LeGuen, B; Malatova, I; Marsh, J; Puncher, M

    2007-01-01

    In the scope of the IDEAS project to develop General Guidelines for the Assessment of Internal Dose from Monitoring data, two databases were compiled. The IDEAS Bibliography database contains references dealing with problems related to cases of internal contamination. The IDEAS Internal Contamination Database now contains more than 200 cases of internal contamination. In the near future, the IDEAS Internal Contamination database will be made available to the internal dosimetry community. The database has several potential applications, including: training, testing biokinetic models, testing software for calculating intakes and doses from bioassay data, comparison of data from a new accidental intake with that from previous exposures to similar materials. The database is by no means complete, and this presentation is also an appeal for internal contamination cases to extend and update it.

  9. Internal radiation dosimetry of orally administered radiotracers for the assessment of gastrointestinal motility.

    PubMed

    Yeong, Chai-Hong; Ng, Kwan-Hoong; Abdullah, Basri Johan Jeet; Chung, Lip-Yong; Goh, Khean-Lee; Perkins, Alan Christopher

    2014-12-01

    Radionuclide imaging using (111)In, (99m)Tc and (153)Sm is commonly undertaken for the clinical investigation of gastric emptying, intestinal motility and whole gut transit. However the documented evidence concerning internal radiation dosimetry for such studies is not readily available. This communication documents the internal radiation dosimetry for whole gastrointestinal transit studies using (111)In, (99m)Tc and (153)Sm labeled formulations. The findings were compared to the diagnostic reference levels recommended by the United Kingdom Administration of Radioactive Substances Advisory Committee, for gastrointestinal transit studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. International cooperative effort to establish dosimetry standardization for radiation processing

    SciTech Connect

    Farrar, H. IV

    1989-01-01

    Radiation processing is a rapidly developing technology with numerous applications in food treatment, sterilization, and polymer modification. The effectiveness of the process depends, however, on the proper application of dose and its measurement. These aspects are being considered by a wide group of experts from around the world who have joined together to write a comprehensive set of standards for dosimetry for radiation processing. Originally formed in 1984 to develop standards for food processing dosimetry, the group has now expanded into a full subcommittee of the American Society for Testing and Materials (ASTM), with 97 members from 19 countries. The scope of the standards now includes dosimetry for all forms of radiation processing. The group has now completed and published four standards, and is working on an additional seven. Three are specifically for food applications and the others are for all radiation applications, including food processing. Together, this set of standards will specify acceptable guidelines and methods for accomplishing the required irradiation treatment, and will be available for adoption by national regulatory agencies in their procedures and protocols. 1 tab.

  11. Worldwide bioassay data resources for plutonium/americium internal dosimetry studies.

    PubMed

    Miller, G; Riddell, A E; Filipy, R; Bertelli, L; Little, T; Guilmette, R

    2007-01-01

    Biokinetic models are the scientific underpinning of internal dosimetry and depend, ultimately, for their scientific validation on comparisons with human bioassay data. Three significant plutonium/americium bioassay databases, known to the authors, are described: (1) Sellafield, (2) Los Alamos and (3) the United States Transuranium Registry. A case is made for a uniform standard for database format, and the XML standard is discussed.

  12. Development, validation, and implementation of a patient-specific Monte Carlo 3D internal dosimetry platform

    NASA Astrophysics Data System (ADS)

    Besemer, Abigail E.

    Targeted radionuclide therapy is emerging as an attractive treatment option for a broad spectrum of tumor types because it has the potential to simultaneously eradicate both the primary tumor site as well as the metastatic disease throughout the body. Patient-specific absorbed dose calculations for radionuclide therapies are important for reducing the risk of normal tissue complications and optimizing tumor response. However, the only FDA approved software for internal dosimetry calculates doses based on the MIRD methodology which estimates mean organ doses using activity-to-dose scaling factors tabulated from standard phantom geometries. Despite the improved dosimetric accuracy afforded by direct Monte Carlo dosimetry methods these methods are not widely used in routine clinical practice because of the complexity of implementation, lack of relevant standard protocols, and longer dose calculation times. The main goal of this work was to develop a Monte Carlo internal dosimetry platform in order to (1) calculate patient-specific voxelized dose distributions in a clinically feasible time frame, (2) examine and quantify the dosimetric impact of various parameters and methodologies used in 3D internal dosimetry methods, and (3) develop a multi-criteria treatment planning optimization framework for multi-radiopharmaceutical combination therapies. This platform utilizes serial PET/CT or SPECT/CT images to calculate voxelized 3D internal dose distributions with the Monte Carlo code Geant4. Dosimetry can be computed for any diagnostic or therapeutic radiopharmaceutical and for both pre-clinical and clinical applications. In this work, the platform's dosimetry calculations were successfully validated against previously published reference doses values calculated in standard phantoms for a variety of radionuclides, over a wide range of photon and electron energies, and for many different organs and tumor sizes. Retrospective dosimetry was also calculated for various pre

  13. Design and Fabrication of Kidney Phantoms for Internal Radiation Dosimetry Using 3D Printing Technology.

    PubMed

    Tran-Gia, Johannes; Schlögl, Susanne; Lassmann, Michael

    2016-12-01

    Currently, the validation of multimodal quantitative imaging and absorbed dose measurements is impeded by the lack of suitable, commercially available anthropomorphic phantoms of variable sizes and shapes. To demonstrate the potential of 3-dimensional (3D) printing techniques for quantitative SPECT/CT imaging, a set of kidney dosimetry phantoms and their spherical counterparts was designed and manufactured with a fused-deposition-modeling 3D printer. Nuclide-dependent SPECT/CT calibration factors were determined to assess the accuracy of quantitative imaging for internal renal dosimetry.

  14. The Third International Intercomparison on EPR Tooth Dosimetry: part 2, final analysis.

    PubMed

    Wieser, A; Debuyst, R; Fattibene, P; Meghzifene, A; Onori, S; Bayankin, S N; Brik, A; Bugay, A; Chumak, V; Ciesielski, B; Hoshi, M; Imata, H; Ivannikov, A; Ivanov, D; Junczewska, M; Miyazawa, C; Penkowski, M; Pivovarov, S; Romanyukha, A; Romanyukha, L; Schauer, D; Scherbina, O; Schultka, K; Sholom, S; Skvortsov, V; Stepanenko, V; Thomas, J A; Tielewuhan, E; Toyoda, S; Trompier, F

    2006-01-01

    The objective of the Third International Intercomparison on EPR Tooth Dosimetry was to evaluate laboratories performing tooth enamel dosimetry <300 mGy. Final analysis of results included a correlation analysis between features of laboratory dose reconstruction protocols and dosimetry performance. Applicability of electron paramagnetic resonance (EPR) tooth dosimetry at low dose was shown at two applied dose levels of 79 and 176 mGy. Most (9 of 12) laboratories reported the dose to be within 50 mGy of the delivered dose of 79 mGy, and 10 of 12 laboratories reported the dose to be within 100 mGy of the delivered dose of 176 mGy. At the high-dose tested (704 mGy) agreement within 25% of the delivered dose was found in 10 laboratories. Features of EPR dose reconstruction protocols that affect dosimetry performance were found to be magnetic field modulation amplitude in EPR spectrum recording, EPR signal model in spectrum deconvolution and duration of latency period for tooth enamel samples after preparation.

  15. An international dosimetry exchange for BNCT part II: computational dosimetry normalizations.

    PubMed

    Riley, K J; Binns, P J; Harling, O K; Albritton, J R; Kiger, W S; Rezaei, A; Sköld, K; Seppälä, T; Savolainen, S; Auterinen, I; Marek, M; Viererbl, L; Nievaart, V A; Moss, R L

    2008-12-01

    The meaningful sharing and combining of clinical results from different centers in the world performing boron neutron capture therapy (BNCT) requires improved precision in dose specification between programs. To this end absorbed dose normalizations were performed for the European clinical centers at the Joint Research Centre of the European Commission, Petten (The Netherlands), Nuclear Research Institute, Rez (Czech Republic), VTT, Espoo (Finland), and Studsvik, Nyköping (Sweden). Each European group prepared a treatment plan calculation that was bench-marked against Massachusetts Institute of Technology (MIT) dosimetry performed in a large, water-filled phantom to uniformly evaluate dose specifications with an estimated precision of +/-2%-3%. These normalizations were compared with those derived from an earlier exchange between Brookhaven National Laboratory (BNL) and MIT in the USA. Neglecting the uncertainties related to biological weighting factors, large variations between calculated and measured dose are apparent that depend upon the 10B uptake in tissue. Assuming a boron concentration of 15 microg g(-1) in normal tissue, differences in the evaluated maximum dose to brain for the same nominal specification of 10 Gy(w) at the different facilities range between 7.6 and 13.2 Gy(w) in the trials using boronophenylalanine (BPA) as the boron delivery compound and between 8.9 and 11.1 Gy(w) in the two boron sulfhydryl (BSH) studies. Most notably, the value for the same specified dose of 10 Gy(w) determined at the different participating centers using BPA is significantly higher than at BNL by 32% (MIT), 43% (VTT), 49% (JRC), and 74% (Studsvik). Conversion of dose specification is now possible between all active participants and should be incorporated into future multi-center patient analyses.

  16. Modeling the imprecision in prospective dosimetry of internal exposure to uranium.

    PubMed

    Davesne, E; Chojnacki, E; Paquet, F; Blanchardon, E

    2009-02-01

    The dosimetry of internal exposure to radionuclides is performed on the basis of biokinetic and dosimetric models. For prospective purpose, the organ or effective dose resulting from potential conditions of exposure can be calculated by applying these models with dedicated software. However, it is acknowledged that a significant uncertainty is associated with such calculation due to the variability of individual cases and to the possible lack of knowledge about some factors influencing the dosimetry. This uncertainty has been studied in a range of situations by modeling the uncertainty on the model parameters by probability distributions and propagating this uncertainty onto the dose result by Monte Carlo calculation. However, while probability distributions are well adapted to model the known variability of a parameter, they may lead to an unrealistically low estimate of the uncertainty due to a lack of knowledge about some input parameters. Here we present a mathematical method, based on the Dempster-Shafer theory, to deal with such imprecise knowledge. We apply this method to the prospective dosimetry of inhaled uranium dust in the nuclear fuel cycle when its physico-chemical properties are not precisely known. The results show an increased estimation of the range of uncertainty as compared to the application of a probabilistic method. This Dempster-Shafer method may valuably be applied in future prospective dosimetry of internal exposure in order to more realistically estimate the uncertainty resulting from an imprecise knowledge of the parameters of the dose calculation.

  17. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.; Antonio, Cheryl L.; Hill, Robin L.

    2009-09-30

    The Hanford Internal Dosimetry Program (HIDP) provides internal dosimetry support services for operations at the Hanford Site. The HIDP is staffed and managed by the Radiation and Health Technology group, within the Pacific Northwest National Laboratory (PNNL). Operations supported by the HIDP include research and development, the decontamination and decommissioning of facilities formerly used to produce and purify plutonium, and waste management activities. Radioelements of particular interest are plutonium, uranium, americium, tritium, and the fission and activation product radionuclides 137Cs, 90Sr, and 60Co. This manual describes the technical basis for the design of the routine bioassay monitoring program and for assessment of internal dose. The purposes of the manual are as follows: • Provide assurance that the HIDP derives from a sound technical base. • Promote the consistency and continuity of routine program activities. • Provide a historical record. • Serve as a technical reference for radiation protection personnel. • Aid in identifying and planning for future needs.

  18. Accreditation and training on internal dosimetry in a laboratory network in Brazil: an increasing demand.

    PubMed

    Dantas, B M; Dantas, A L A; Acar, M E D; Cardoso, J C S; Julião, L M Q C; Lima, M F; Taddei, M H T; Arine, D R; Alonso, T; Ramos, M A P; Fajgelj, A

    2011-03-01

    In recent years, Brazilian Nuclear Programme has been reviewed and updated by government authorities in face of the demand for energy supply and its associated environmental constraints. The immediate impact of new national programmes and projects in nuclear field is the increase in the number of exposed personnel and the consequent need for reliable dosimetry services in the country. Several Technical Documents related to internal dosimetry have been released by the International Atomic Energy Agency and International Commission on Radiological Protection. However, standard bioassay procedures and methodologies for bioassay data interpretation are still under discussion and, in some cases, both in routine and emergency internal monitoring, procedures can vary from one laboratory to another and responses may differ markedly among Dosimetry Laboratories. Thus, it may be difficult to interpret and use bioassay data generated from different laboratories of a network. The main goal of this work is to implement a National Network of Laboratories aimed to provide reliable internal monitoring services in Brazil. The establishment of harmonised in vivo and in vitro radioanalytical techniques, dose assessment methods and the implementation of the ISO/IEC 17025 requirements will result in the recognition of technical competence of the network.

  19. PREFACE: 7th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Thwaites, David; Baldock, Clive

    2013-06-01

    IC3DDose 2013, the 7th International Conference on 3D Radiation Dosimetry held in Sydney, Australia from 4-8 November 2012, grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The aim of the first workshop was to bring together individuals, both researchers and users, with an interest in 3D radiation dosimetry techniques, with a mix of presentations from basic science to clinical applications, which has remained an objective for all of the meetings. One rationale of DosGel99 was stated as supporting the increasing clinical implementation of gel dosimetry, as the technique appeared, at that time, to be leaving the laboratories of gel dosimetry enthusiasts and entering clinical practice. Clearly by labelling the first workshop as the 1st, there was a vision of a continuing series, which has been fulfilled. On the other hand, the expectation of widespread clinical use of gel dosimetry has perhaps not been what was hoped for and anticipated. Nevertheless the rapidly increasing demand for advanced high-precision 3D radiotherapy technology and techniques has continued apace. The need for practical and accurate 3D dosimetry methods for development and quality assurance has only increased. By the 6th meeting, held in South Carolina in 2010, the Conference Scientific Committee recognised the wider developments in 3D systems and methods and decided to widen the scope, whilst keeping the same span from basic science to applications. This was signalled by a change of name from 'Dosgel' to 'IC3DDose', a name that has continued to this latest conference. The conference objectives were: to enhance the quality and accuracy of

  20. Internal dosimetry for radioembolization therapy with Yttrium-90 microspheres.

    PubMed

    Fallahpoor, Maryam; Abbasi, Mehrshad; Parach, Ali Asghar; Kalantari, Faraz

    2017-03-01

    The absorbed doses in the liver and adjacent viscera in Yttrium-90 radioembolization therapy for metastatic liver lesions are not well-documented. We sought for a clinically practical way to determine the dosimetry of this advent treatment. Six different female XCAT BMIs and seven different male XCAT BMIs were generated. Using Monte Carlo GATE code simulation, the total of 100MBq (90) Y was deposited uniformly in the source organ, liver. Self-irradiation and absorbed doses in lung, kidney and bone marrow were calculated. The mean energy of Yittrium-90 (i.e., 0.937 MeV) was used. The S-values and equivalent doses in target organs were estimated. The dose absorbed in the liver was between 84 and 53 Gy and below the target of 80 to 150 Gy. The absorbed dose in the bone marrow, lungs, and kidneys are very low and below 0.1 , 0.4, and 0.5 Gy respectively. Our study indicates that larger activities than the conventional dose of 3 GBq may be both required and safe. Further confirmations in clinical settings are needed.

  1. Coordination of research on internal dosimetry in Europe: the CONRAD project.

    PubMed

    Lopez, M A; Etherington, G; Castellani, C M; Franck, D; Hurtgen, C; Marsh, J W; Nosske, D; Doerfel, H; Andrasi, A; Bailey, M; Balashazy, I; Battisti, P; Bérard, P; Berkowski, V; Birchall, A; Blanchardon, E; Bonchuk, Y; de Carlan, L; Cantone, M C; Challeton-de Vathaire, C; Cruz-Suarez, R; Davis, K; Dorrian, D; Giussani, A; Le Guen, B; Hodgson, A; Jourdain, J R; Koukouliou, V; Luciani, A; Malatova, I; Molokanov, A; Moraleda, M; Muikku, M; Oeh, U; Puncher, M; Rahola, T; Ratia, H; Stradling, N

    2007-01-01

    The EUropean RAdiation DOSimetry Group (EURADOS) initiated in 2005 the CONRAD Project, a Coordinated Network for Radiation Dosimetry funded by the European Commission (EC), within the 6th Framework Programme (FP). The main purpose of CONRAD is to generate a European Network in the field of Radiation Dosimetry and to promote both research activities and dissemination of knowledge. The objective of CONRAD Work Package 5 (WP5) is the coordination of research on assessment and evaluation of internal exposures. Nineteen institutes from 14 countries participate in this action. Some of the activities to be developed are continuations of former European projects supported by the EC in the 5th FP (OMINEX and IDEAS). Other tasks are linked with ICRP activities, and there are new actions never considered before. A collaboration is established with CONRAD Work Package 4, dealing with Computational Dosimetry, to organise an intercomparison on Monte Carlo modelling for in vivo measurements of (241)Am deposited in a knee phantom. Preliminary results associated with CONRAD WP5 tasks are presented here.

  2. Criticality accident dosimetry systems: an international intercomparison at the SILENE reactor in 2002.

    PubMed

    Médioni, R; Asselineau, B; Verrey, B; Trompier, F; Itié, C; Texier, C; Muller, H; Pelcot, G; Clairand, I; Jacquet, X; Pochat, J L

    2004-01-01

    In criticality accident dosimetry and more generally for high dose measurements, special techniques are used to measure separately the gamma ray and neutron components of the dose. To improve these techniques and to check their dosimetry systems (physical and/or biological), a total of 60 laboratories from 29 countries (America, Europe, Asia) participated in an international intercomparaison, which took place in France from 9 to 21 June 2002, at the SILENE reactor in Valduc and at a pure gamma source in Fontenay-aux-Roses. This intercomparison was jointly organised by the IRSN and the CEA with the help of the NEA/OCDE and was partly supported by the European Communities. This paper describes the aim of this intercomparison, the techniques used by the participants and the two radiation sources and their characteristics. The experimental arrangements of the dosemeters for the irradiations in free air or on phantoms are given. Then the dosimetric quantities measured and reported by the participants are summarised, analysed and compared with the reference values. The present paper concerns only the physical dosimetry and essentially experiments performed on the SILENE facility. The results obtained with the biological dosimetry are published in two other papers of this issue.

  3. Internal in vitro dosimetry for fish using hydroxyapatite-based EPR detectors.

    PubMed

    Ivanov, D V; Shishkina, E A; Osipov, D I; Razumeev, R A; Pryakhin, E A

    2015-08-01

    A number of aquatic ecosystems were exposed to ionizing radiation as a result of the activities of the Mayak Production Association in the Southern Urals, former Soviet Union, in the 1950s. Currently, fishes inhabiting contaminated lakes are being actively studied. These investigations need dosimetric support. In the present paper the results of a pilot study for elaborating an EPR dosimeter which can be used for internal dosimetry in vitro are described. Biological hydroxyapatite is proposed here to be used as a detecting substance. More specifically, small hydroxyapatite grains are proposed for use as point detectors fixed in a solid matrix. After having been pelletized, the detectors were covered by Mylar and placed in the body of a fish to be stored in the fridge for several months. Application of the detectors for internal fish dosimetry demonstrated that the enamel sensitivity is sufficient for passive detection of ionizing radiation in fishes inhabiting contaminated lakes in the Southern Urals.

  4. General guidelines for safe and expeditious international transport of samples subjected to biological dosimetry assessment.

    PubMed

    Di Giorgio, Marina; Radl, Analía; Taja, María R; Bubniak, Ruth; Deminge, Mayra; Sapienza, Carla; Vázquez, Marina; Baciu, Florian; Kenny, Pat

    2014-06-01

    It has been observed that victims of accidental overexposures show better chance of survival if they receive medical treatment early. The increased risk of scenarios involving mass casualties has stimulated the scientific community to develop tools that would help the medical doctors to treat victims. The biological dosimetry has become a routine test to estimate the dose, supplementing physical and clinical dosimetry. In case of radiation emergencies, in order to provide timely and effectively biological dosimetry assistance it is essential to guarantee an adequate transport of blood samples in principal, for providing support to countries that do not have biodosimetry laboratories. The objective of the present paper is to provide general guidelines, summarised in 10 points, for timely and proper receiving and sending of blood samples under National and International regulations, for safe and expeditious international transport. These guidelines cover the classification, packaging, marking, labelling, refrigeration and documentation requirements for the international shipping of blood samples and pellets, to provide assistance missions with a tool that would contribute with the preparedness for an effective biodosimetric response in cases of radiological or nuclear emergencies.

  5. Development of a software tool for an internal dosimetry using MIRD method

    NASA Astrophysics Data System (ADS)

    Chaichana, A.; Tocharoenchai, C.

    2016-03-01

    Currently, many software packages for the internal radiation dosimetry have been developed. Many of them do not provide sufficient tools to perform all of the necessary steps from nuclear medicine image analysis for dose calculation. For this reason, we developed a CALRADDOSE software that can be performed internal dosimetry using MIRD method within a single environment. MATLAB software version 2015a was used as development tool. The calculation process of this software proceeds from collecting time-activity data from image data followed by residence time calculation and absorbed dose calculation using MIRD method. To evaluate the accuracy of this software, we calculate residence times and absorbed doses of 5 Ga- 67 studies and 5 I-131 MIBG studies and then compared the results with those obtained from OLINDA/EXM software. The results showed that the residence times and absorbed doses obtained from both software packages were not statistically significant differences. The CALRADDOSE software is a user-friendly, graphic user interface-based software for internal dosimetry. It provides fast and accurate results, which may be useful for a routine work.

  6. PREFACE: 8th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Olsson, Lars E.; Bäck, S.; Ceberg, Sofie

    2015-01-01

    IC3DDose 2014, the 8th International Conference on 3D Radiation Dosimetry was held in Ystad, Sweden, from 4-7 September 2014. This grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The 7th and last meeting was held in Sydney, Australia from 4-8 November 2012. It is worth remembering that the conference series started at the very beginning of the intensity modulated radiotherapy era and that the dosimeters being developed then were, to some extent, ahead of the clinical need of radiotherapy. However, since then the technical developments in radiation therapy have been dramatic, with dynamic treatments, including tracking, gating and volumetric modulated arc therapy, widely introduced in the clinic with the need for 3D dosimetry thus endless. This was also reflected by the contributions at the meeting in Ystad. Accordingly the scope of the meeting has also broadened to IC3DDOSE - I See Three-Dimensional Dose. A multitude of dosimetry techniques and radiation detectors are now represented, all with the common denominator: three-dimensional or 3D. Additionally, quality assurance (QA) procedures and other aspects of clinical dosimetry are represented. The implementation of new dosimetric techniques in radiotherapy is a process that needs every kind of caution, carefulness and thorough validation. Therefore, the clinical needs, reformulated as the aims for IC3DDOSE - I See Three-Dimensional Dose, are: • Enhance the quality and accuracy of radiation therapy treatments through improved clinical dosimetry. • Investigate and understand the dosimetric challenges of modern radiation treatment techniques. • Provide

  7. PREFACE: The 5th International Conference on Radiotherapy Gel Dosimetry (DOSGEL 2008)

    NASA Astrophysics Data System (ADS)

    Maris, Thomas G.; Pappas, Evangelos

    2009-07-01

    The International Conference on Radiotherapy Gel Dosimetry (DOSGEL) is held every two years. Its purpose is to bring together basic science and clinical researchers, medical physicists and clinicians from around the world to discuss the state-of-the-art of the gel dosimetry technique and to set the directions and trends for its future improvements. Gel dosimetry can be broadly defined as using a gel that can react to the absorption of ionizing radiation, and that can retain this information which can subsequently be retrieved by an external imaging modality. Examples of radiation-sensitive gels include, but are not limited to, polymer gel dosimeters, Fricke gel dosimeters and others. Imaging modalities that are of general use in this field are (in alphabetical order) magnetic resonance imaging (MRI), optical light computed tomography and x-ray computed tomography. This volume comprises the proceedings of the 5th International Conference on Radiotherapy Gel Dosimetry (DOSGEL 2008). The conference, organised by the University of Crete, Medical Physics Department, took place in Hersonissos, Crete, Greece from 29 September to 3 October 2008. The meeting aimed to continue the series of biannual DOSGEL conferences and focused on the promotion of gel dosimetry techniques by setting the trends for their future improvements. The main scientific session topics of DOSGEL 2008 were the following: Chemistry and fundamental properties of polymer gel dosimeters Gel dosimetry with Optical Computed Tomography Gel dosimetry with Magnetic Resonance Imaging Gel dosimetry with other than Optical CT and MR scan Techniques Other 3D dosimeters Gel dosimetry applications Local Organizing Committee Thomas G Maris (University of Crete, Greece, Chairman DOSGEL 2008) John Damilakis (University of Crete, Greece) Evangelos Pappas (University of Crete, Greece) Antonios Papadakis (University of Crete, Greece) Fotini Zacharopoulou (University of Crete, Greece) John Stratakis (University of Crete

  8. Monte Carlo and experimental internal radionuclide dosimetry in RANDO head phantom.

    PubMed

    Ghahraman Asl, Ruhollah; Nasseri, Shahrokh; Parach, Ali Asghar; Zakavi, Seyed Rasoul; Momennezhad, Mehdi; Davenport, David

    2015-09-01

    Monte Carlo techniques are widely employed in internal dosimetry to obtain better estimates of absorbed dose distributions from irradiation sources in medicine. Accurate 3D absorbed dosimetry would be useful for risk assessment of inducing deterministic and stochastic biological effects for both therapeutic and diagnostic radiopharmaceuticals in nuclear medicine. The goal of this study was to experimentally evaluate the use of Geant4 application for tomographic emission (GATE) Monte Carlo package for 3D internal dosimetry using the head portion of the RANDO phantom. GATE package (version 6.1) was used to create a voxel model of a human head phantom from computed tomography (CT) images. Matrix dimensions consisted of 319 × 216 × 30 voxels (0.7871 × 0.7871 × 5 mm(3)). Measurements were made using thermoluminescent dosimeters (TLD-100). One rod-shaped source with 94 MBq activity of (99m)Tc was positioned in the brain tissue of the posterior part of the human head phantom in slice number 2. The results of the simulation were compared with measured mean absorbed dose per cumulative activity (S value). Absorbed dose was also calculated for each slice of the digital model of the head phantom and dose volume histograms (DVHs) were computed to analyze the absolute and relative doses in each slice from the simulation data. The S-values calculated by GATE and TLD methods showed a significant correlation (correlation coefficient, r(2) ≥ 0.99, p < 0.05) with each other. The maximum relative percentage differences were ≤14% for most cases. DVHs demonstrated dose decrease along the direction of movement toward the lower slices of the head phantom. Based on the results obtained from GATE Monte Carlopackage it can be deduced that a complete dosimetry simulation study, from imaging to absorbed dose map calculation, is possible to execute in a single framework.

  9. Test of Prototype Detector for Retrospective Neutron Dosimetry of Reactor Internals and Vessel

    NASA Astrophysics Data System (ADS)

    Hayashi, Katsumi; Nemezawa, Shigeki; Kubota, Isamu; Hayashi, Haruhisa

    2009-08-01

    A prototype detector for simple and non-destructive retrospective neutron dosimetry was made. A Cadmium Telluride (CdTe) detector was used as a detector to measure the nuclides 54Mn, 58Co, and 60Co that were generated in reactor internals and vessels. The detector is surrounded by a tungsten collimator which shields background gamma-rays and detects gamma-rays originating from the measuring point. Neutron fluence is calculated using the pre-calculated response, measuring time, decay time and reactor power history. The applicability of this detector was tested by measuring parts of irradiated reactor internals.

  10. 1983 international intercomparison of nuclear accident dosimetry systems at Oak Ridge National Laboratory

    SciTech Connect

    Swaja, R.E.; Greene, R.T.; Sims, C.S.

    1985-04-01

    An international intercomparison of nuclear accident dosimetry systems was conducted during September 12-16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. This study marked the twentieth in a series of annual accident dosimetry intercomparisons conducted at ORNL. Participants from ten organizations attended this intercomparison and measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results of this study indicate that foil activation techniques are the most popular and accurate method of determining accident-level neutron doses at area monitoring stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants in this study used TLD's to determine gamma doses with very good results on the average. Chemical dosemeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. These results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed.

  11. Influence of voxel S factors on three-dimensional internal dosimetry calculations.

    PubMed

    Berenato, Salvatore; Amato, Ernesto; Fischer, Alexander; Baldari, Sergio

    2016-10-01

    Internal dosimetry is a fundamental instrument for the personalization of nuclear medicine therapies, to maximize the therapeutic effect while minimizing the radiation burden to other organs. Three-dimensional (3D) dosimetry can quantify the impact of heterogeneous radiopharmaceutical distributions in organs, lesions and tissues. We analysed the influence of radionuclide voxel S factors in 3D dosimetry of (111)In, (177)Lu and (90)Y, the most used radionuclides in Peptide Receptor Radionuclide Therapy (PRRT). Calculations were carried out for kidneys on a workstation equipped with a software for 3D dosimetry (Imalytics STRATOS, Philips AG), adopting a computational anthropomorphic phantom and, retrospectively, the SPECT-CT image series of a clinical case of PRRT. Two sets of voxel S factors were adopted: the pre-loaded Philips kernels, calculated by direct Monte Carlo simulation, and the ones calculated through a previously proposed analytical approach. Philips (111)In kernel did not account for mono-energetic Auger or Conversion electrons. Results indicate a difference of about -32% in voxel S factors for (111)In in 4.42mm voxel size and around -35% in 4.80mm voxel size, particularly self-dose values; this lead to significant shift in dose histograms and average doses. For (177)Lu and (90)Y, differences are about 2% and 12% for 4.42mm voxels and about -8% and 9% for 4.80mm voxels, respectively, attributable to the different calculation methods of the voxel S factors; this does not lead to significant discrepancies between the two dose histograms. Consequently, voxel S factors must account accurately for all radiations emitted by the nuclide.

  12. Poster - Thur Eve - 46: The upcoming international code of practice for small static photon field dosimetry.

    PubMed

    Palmans, H; Alfonso, R; Andreo, P; Capote, R; Huq, M S; Izewska, J; Johansson, J; Kilby, W; Mackie, T R; Meghzifene, A; Rosser, K; Seuntjens, J; Ullrich, W

    2012-07-01

    The increased use of small photon fields in stereotactic and intensity-modulated radiotherapy has raised the need for standardizing the dosimetry of such fields using procedures consistent with those for conventional radiotherapy. An international working group, established by the IAEA in collaboration with AAPM and IPEM, is finalising a Code of Practice for the dosimetry of small static photon fields. Procedures for reference dosimetry in nonstandard machine specific reference (msr) fields are provided following the formalism of Alfonso et al. (Med. Phys. 35: 5179; 2008). Reference dosimetry using ionization chambers in machines that cannot establish a conventional 10 cm × 10 cm reference field is based on either a direct calibration in the msr field traceable to primary standards, a calibration in a reference field and a generic correction factor or the product of a correction factor for a virtual reference field and a correction factor for the difference between the msr and virtual fields. For the latter method, procedures are provided for determining the beam quality in non-reference conditions. For the measurement of field output factors in small fields, procedures for connecting large field measurements using ionization chambers to small field measurements using high-resolution detectors such as diodes, diamond, liquid ion chambers, organic scintillators and radiochromic film are given. The Code of Practice also presents consensus data on correction factors for use in conjunction with measured, detector-specific output factors. Further research to determine missing data according to the proposed framework will be strongly encouraged by publication of this document. © 2012 American Association of Physicists in Medicine.

  13. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study.

  14. New calculations for internal dosimetry of beta-emitting radiopharmaceuticals.

    PubMed

    Zankl, M; Petoussi-Henss, N; Janzen, T; Uusijärvi, H; Schlattl, H; Li, W B; Giussani, A; Hoeschen, C

    2010-01-01

    The calculation of absorbed dose from internally incorporated radionuclides is based on the so-called specific absorbed fractions (SAFs) which represent the fraction of energy emitted in a given source region that is absorbed per unit mass in a specific target organ. Until recently, photon SAFs were calculated using MIRD-type mathematical phantoms. For electrons, the energy released was assumed to be absorbed locally ('ICRP 30 approach'). For this work, photon and electron SAFs were derived with Monte Carlo simulations in the new male voxel-based reference computational phantom adopted by the ICRP and ICRU. The present results show that the assumption of electrons being locally absorbed is not always true at energies above 300-500 keV. For source/target organ pairs in close vicinity, high-energy electrons escaping from the source organ may result in cross-fire electron SAFs in the same order of magnitude as those from photons. Examples of organ absorbed doses per unit activity are given for (18)F-choline and (123)I-iodide. The impact of the new electron SAFs used for absorbed dose calculations compared with the previously used assumptions was found to be small. The organ dose coefficients for the two approaches differ by not more than 6 % for most organs. Only for irradiation of the urinary bladder wall by activity in the contents, the ICRP 30 approach presents an overestimation of approximately 40-50%.

  15. Items Supporting the Hanford Internal Dosimetry Program Implementation of the IMBA Computer Code

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.

    2008-01-07

    The Hanford Internal Dosimetry Program has adopted the computer code IMBA (Integrated Modules for Bioassay Analysis) as its primary code for bioassay data evaluation and dose assessment using methodologies of ICRP Publications 60, 66, 67, 68, and 78. The adoption of this code was part of the implementation plan for the June 8, 2007 amendments to 10 CFR 835. This information release includes action items unique to IMBA that were required by PNNL quality assurance standards for implementation of safety software. Copie of the IMBA software verification test plan and the outline of the briefing given to new users are also included.

  16. The 3rd international intercomparison on EPR tooth dosimetry: Part 1, general analysis.

    PubMed

    Wieser, A; Debuyst, R; Fattibene, P; Meghzifene, A; Onori, S; Bayankin, S N; Blackwell, B; Brik, A; Bugay, A; Chumak, V; Ciesielski, B; Hoshi, M; Imata, H; Ivannikov, A; Ivanov, D; Junczewska, M; Miyazawa, C; Pass, B; Penkowski, M; Pivovarov, S; Romanyukha, A; Romanyukha, L; Schauer, D; Scherbina, O; Schultka, K; Shames, A; Sholom, S; Skinner, A; Skvortsov, V; Stepanenko, V; Tielewuhan, E; Toyoda, S; Trompier, F

    2005-02-01

    The objective of the 3rd International Intercomparison on Electron Paramagnetic Resonance (EPR) Tooth Dosimetry was the evaluation of laboratories performing tooth enamel dosimetry below 300 mGy. Participants had to reconstruct the absorbed dose in tooth enamel from 11 molars, which were cut into two halves. One half of each tooth was irradiated in a 60Co beam to doses in the ranges of 30-100 mGy (5 samples), 100-300 mGy (5 samples), and 300-900 mGy (1 sample). Fourteen international laboratories participated in this intercomparison programme. A first analysis of the results and an overview of the essential features of methods applied in different laboratories are presented. The relative standard deviation of results of all methods was better than 27% for applied doses in the range of 79-704 mGy. In the analysis of the unirradiated tooth halves 8% of the samples were identified as outliers with additional absorbed dose above background dose.

  17. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for internal dosimetry. Volume 2: Appendices

    SciTech Connect

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M.; Harrison, J.D.; Harper, F.T.; Hora, S.C.

    1998-04-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on internal dosimetry, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  18. MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy.

    PubMed

    Dewaraja, Yuni K; Frey, Eric C; Sgouros, George; Brill, A Bertrand; Roberson, Peter; Zanzonico, Pat B; Ljungberg, Michael

    2012-08-01

    In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification-based guidance for radionuclide dosimetry.

  19. Low-frequency electrical dosimetry: research agenda of the IEEE International Committee on Electromagnetic Safety

    NASA Astrophysics Data System (ADS)

    Reilly, J. Patrick; Hirata, Akimasa

    2016-06-01

    This article treats unsettled issues in the use of numerical models of electrical dosimetry as applied to international limits on human exposure to low-frequency (typically  <  100 kHz) electromagnetic fields and contact current. The perspective in this publication is that of Subcommittee 6 of IEEE-ICES (International Committee on Electromagnetic Safety) Technical Committee 95. The paper discusses 25 issues needing attention, fitting into three general categories: induction models; electrostimulation models; and human exposure limits. Of these, 9 were voted as ‘high priority’ by members of Subcommittee 6. The list is presented as a research agenda for refinements in numerical modeling with applications to human exposure limits. It is likely that such issues are also important in medical and electrical product safety design applications.

  20. Low-frequency electrical dosimetry: research agenda of the IEEE International Committee on Electromagnetic Safety.

    PubMed

    Reilly, J Patrick; Hirata, Akimasa

    2016-06-21

    This article treats unsettled issues in the use of numerical models of electrical dosimetry as applied to international limits on human exposure to low-frequency (typically  <  100 kHz) electromagnetic fields and contact current. The perspective in this publication is that of Subcommittee 6 of IEEE-ICES (International Committee on Electromagnetic Safety) Technical Committee 95. The paper discusses 25 issues needing attention, fitting into three general categories: induction models; electrostimulation models; and human exposure limits. Of these, 9 were voted as 'high priority' by members of Subcommittee 6. The list is presented as a research agenda for refinements in numerical modeling with applications to human exposure limits. It is likely that such issues are also important in medical and electrical product safety design applications.

  1. History of International Workshop on Mini-Micro- and Nano- Dosimetry (MMND) and Innovation Technologies in Radiation Oncology (ITRO)

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Anatoly B.; Zaider, Marco; Yamada, Josh; Zelefsky, Michael J.

    2017-01-01

    The biannual MMND (former MMD) - IPCT workshops was founded in collaboration between the Centre for Medical Radiation Physics, University of Wollongong and the Memorial Sloan Kettering Cancer Center (MSKCC) in 2001 and has become an important international multidisciplinary forum for the discussion of advanced quality assurance (QA) dosimetry technology for radiation therapy and space science, as well as advanced technologies for clinical cancer treatment.

  2. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for internal dosimetry. Volume 1: Main report

    SciTech Connect

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M.; Harrison, J.D.; Harper, F.T.; Hora, S.C.

    1998-04-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models.

  3. Prenatal exposure estimation of BPA and DEHP using integrated external and internal dosimetry: A case study.

    PubMed

    Martínez, M A; Rovira, J; Sharma, R Prasad; Nadal, M; Schuhmacher, M; Kumar, V

    2017-10-01

    Prenatal exposure to Endocrine disruptors (EDs), such as Bisphenol A (BPA) and di (2-ethylhexyl) phthalate (DEHP), has been associated with obesity and diabetes diseases in childhood, as well as reproductive, behavioral and neurodevelopment problems. The aim of this study was to estimate the prenatal exposure to BPA and DEHP through food consumption for pregnant women living in Tarragona County (Spain). Probabilistic calculations of prenatal exposure were estimated by integrated external and internal dosimetry modelling, physiologically based pharmacokinetic (PBPK) model, using a Monte-Carlo simulation. Physical characteristic data from the cohort, along with food intake information from the questionnaires (concentrations of BPA and DEHP in different food categories and the range of the different food ratios), were used to estimate the value of the total dietary intake for the Tarragona pregnancy cohort. The major contributors to the total dietary intake of BPA were canned fruits and vegetables, followed by canned meat and meat products. In turn, milk and dairy products, followed by ready to eat food (including canned dinners), were the most important contributors to the total dietary intake of DEHP. Despite the dietary variations among the participants, the intakes of both chemicals were considerably lower than their respective current tolerable daily intake (TDI) values established by the European Food Safety Authority (EFSA). Internal dosimetry estimates suggest that the plasma concentrations of free BPA and the most important DEHP metabolite, mono (2-ethylhexyl) phthalate (MEHP), in pregnant women were characterized by transient peaks (associated with meals) and short half-lives (< 2h). In contrast, fetal exposure was characterized by a low and sustained basal BPA and MEHP concentration due to a lack of metabolic activity in the fetus. Therefore, EDs may have a greater effect on developing organs in young children or in the unborn child. Copyright © 2017

  4. Image-based dosimetry for selective internal radiation therapy (SIRT) using yttrium-90 microspheres

    NASA Astrophysics Data System (ADS)

    Selwyn, Reed G.

    present a new PET-labeled microsphere for pre- and post-treatment assessment, two new beta dosimetry protocols along with validation studies, a new positron branching ratio for 90Y that led to formation of an accurate non-destructive assay, and the first successful experimental validation of a computer generated internal dose distribution using dose kernel convolution.

  5. Statistical construction of a Japanese male liver phantom for internal radionuclide dosimetry.

    PubMed

    Mofrad, Farshid Babapour; Zoroofi, Reza Aghaeizadeh; Tehrani-Fard, Ali Abbaspour; Akhlaghpoor, Shahram; Hori, Masatoshi; Chen, Yen-Wei; Sato, Yoshinobu

    2010-09-01

    A computational framework is presented, based on statistical shape modelling, for construction of race-specific organ models for internal radionuclide dosimetry and other nuclear-medicine applications. This approach was applied to the construction of a Japanese liver phantom, using the liver of the digital Zubal phantom as the template and 35 liver computed tomography (CT) scans of male Japanese individuals as a training set. The first step was the automated object-space registration (to align all the liver surfaces in one orientation), using a coherent-point-drift maximum-likelihood alignment algorithm, of each CT scan-derived manually contoured liver surface and the template Zubal liver phantom. Six landmark points, corresponding to the intersection of the contours of the maximum-area sagittal, transaxial and coronal liver sections were employed to perform the above task. To find correspondence points in livers (i.e. 2000 points for each liver), each liver surface was transformed into a mesh, was mapped for the parameter space of a sphere (parameterisation), yielding spherical harmonics (SPHARMs) shape descriptors. The resulting spherical transforms were then registered by minimising the root-mean-square distance among the SPHARMs coefficients. A mean shape (i.e. liver) and its dispersion (i.e. covariance matrix) were next calculated and analysed by principal components. Leave-one-out-tests using 5-35 principal components (or modes) demonstrated the fidelity of the foregoing statistical analysis. Finally, a voxelisation algorithm and a point-based registration is utilised to convert the SPHARM surfaces into its corresponding voxelised and adjusted the Zubal phantom data, respectively. The proposed technique used to create the race-specific statistical phantom maintains anatomic realism and provides the statistical parameters for application to radionuclide dosimetry.

  6. Biological Dosimetry by the Triage Dicentric Chromosome Assay – Further validation of International Networking

    PubMed Central

    Wilkins, Ruth C.; Romm, Horst; Oestreicher, Ursula; Marro, Leonora; Yoshida, Mitsuaki A.; Suto, Y.; Prasanna, Pataje G.S.

    2011-01-01

    Biological dosimetry is an essential tool for estimating radiation doses received to personnel when physical dosimetry is not available or inadequate. The current preferred biodosimetry method is based on the measurement of radiation-specific dicentric chromosomes in exposed individuals' peripheral blood lymphocytes. However, this method is labour-, time- and expertise-demanding. Consequently, for mass casualty applications, strategies have been developed to increase its throughput. One such strategy is to develop validated cytogenetic biodosimetry laboratory networks, both national and international. In a previous study, the dicentric chromosome assay (DCA) was validated in our cytogenetic biodosimetry network involving five geographically dispersed laboratories. A complementary strategy to further enhance the throughput of the DCA among inter-laboratory networks is to use a triage DCA where dose assessments are made by truncating the labour-demanding and time-consuming metaphase-spread analysis to 20 to 50 metaphase spreads instead of routine 500 to 1000 metaphase spread analysis. Our laboratory network also validated this triage DCA, however, these dose estimates were made using calibration curves generated in each laboratory from the blood samples irradiated in a single laboratory. In an emergency situation, dose estimates made using pre-existing calibration curves which may vary according to radiation type and dose rate and therefore influence the assessed dose. Here, we analyze the effect of using a pre-existing calibration curve on assessed dose among our network laboratories. The dose estimates were made by analyzing 1000 metaphase spreads as well as triage quality scoring and compared to actual physical doses applied to the samples for validation. The dose estimates in the laboratory partners were in good agreement with the applied physical doses and determined to be adequate for guidance in the treatment of acute radiation syndrome. PMID:21949482

  7. Biological dosimetry in the ENEIDE Mission on the International Space Station

    NASA Astrophysics Data System (ADS)

    Bertucci, A.; Durante, M.; Gialanella, G.; Grossi, G.; Manti, L.; Pugliese, M.; Scampoli, P.

    2007-09-01

    Space radiation represents one of the major health hazards to crews of interplanetary missions. As the duration of space flight increases, according to International Space Station (ISS) and Mars mission programs, the risk associated with exposure to ionizing radiation also increases. Although physical dosimetry is routinely performed in manned space missions, it is generally accepted that direct measurement of biological endpoints (biological dosimetry) is necessary for a precise assessment of radiation risk in extraterrestrial activities. Chromosomal aberrations (CAs) in peripheral blood lymphocytes (PBLs) are particularly suitable to this purpose, as they can provide estimates of both equivalent radiation dose and risk. In this study, cytogenetic analysis was performed on PBL chromosomes of an Italian astronaut involved in two different 10-day missions on the ISS (Marco Polo, April 2002, and ENEIDE, May 2005). Blood samples were collected before and after flights. CAs were evaluated in either mitotic spreads or in prematurely condensed chromosomes (PCC) by Fluorescence in Situ Hybridization (FISH). In addition, blood samples were exposed to graded doses of X-rays in vitro before and after the flight and cytogenetic damage evaluated to investigate whether the space environment alters the sensitivity of human cells to ionizing radiation. The yield of baseline chromosomal aberrations was not modified following Marco Polo and ENEIDE mission. This is consistent with the low dose absorbed in these short-term space missions. Preliminary results from Marco Polo mission suggested a significant increase in intrinsic radiosensitivity of lymphocytes after landing compared to pre-flight and follow-up (6 months after landing) samples. However, this effect was not observed during the ENEIDE mission. The results suggest that intra-indi-vidual variations in radiosensitivity are significant, but they cannot be related to the space flight.

  8. Biological Dosimetry by the Triage Dicentric Chromosome Assay - Further validation of International Networking.

    PubMed

    Wilkins, Ruth C; Romm, Horst; Oestreicher, Ursula; Marro, Leonora; Yoshida, Mitsuaki A; Suto, Y; Prasanna, Pataje G S

    2011-09-01

    Biological dosimetry is an essential tool for estimating radiation doses received to personnel when physical dosimetry is not available or inadequate. The current preferred biodosimetry method is based on the measurement of radiation-specific dicentric chromosomes in exposed individuals' peripheral blood lymphocytes. However, this method is labour-, time- and expertise-demanding. Consequently, for mass casualty applications, strategies have been developed to increase its throughput. One such strategy is to develop validated cytogenetic biodosimetry laboratory networks, both national and international. In a previous study, the dicentric chromosome assay (DCA) was validated in our cytogenetic biodosimetry network involving five geographically dispersed laboratories. A complementary strategy to further enhance the throughput of the DCA among inter-laboratory networks is to use a triage DCA where dose assessments are made by truncating the labour-demanding and time-consuming metaphase-spread analysis to 20 to 50 metaphase spreads instead of routine 500 to 1000 metaphase spread analysis. Our laboratory network also validated this triage DCA, however, these dose estimates were made using calibration curves generated in each laboratory from the blood samples irradiated in a single laboratory. In an emergency situation, dose estimates made using pre-existing calibration curves which may vary according to radiation type and dose rate and therefore influence the assessed dose. Here, we analyze the effect of using a pre-existing calibration curve on assessed dose among our network laboratories. The dose estimates were made by analyzing 1000 metaphase spreads as well as triage quality scoring and compared to actual physical doses applied to the samples for validation. The dose estimates in the laboratory partners were in good agreement with the applied physical doses and determined to be adequate for guidance in the treatment of acute radiation syndrome.

  9. Technical basis for the internal dosimetry program at the Y-12 Plant

    SciTech Connect

    Ashley, J.C.; Barber, J.M.; Snapp, L.M.; Turner, J.E.

    1992-03-02

    Since the beginning of plant operations. almost all work with radioactive materials has involved isotopes associated with uranium, enriched or depleted in U[sup 235]. While limited quantities of isotopes of elements other than uranium are present, workplace monitoring and precess knowledge have established that internal exposure from these other isotopes is insignificant in comparison with uranium. While the changing plant mission may necessitate the consideration of internal exposure from other isotopes at some point in time, only enriched and depleted uranium will be considered in this basis document. The portions of the internal dosimetry technical basis which may be unique to the Y-12 Plant is considered in this manual. This manual presents the technical basis of the routine in vivo and in vitro bioassay programs including choice of frequency, participant selection criteria, and action level guidelines. Protocols for special bioassay will be presented in the chapters which described the basis for intake, uptake, and dam assessment. A discussion of the factors which led to the need to develop a special biokinetic model for uranium at the Y-12 Plant, as well as a description of the model's basic parameters, are included in this document.

  10. (Biological dosimetry)

    SciTech Connect

    Sega, G.A.

    1990-11-06

    The traveler participated in an International Symposium on Trends in Biological Dosimetry and presented an invited paper entitled, Adducts in sperm protamine and DNA vs mutation frequency.'' The purpose of the Symposium was to examine the applicability of new methods to study quantitatively the effects of xenobiotic agents (radiation and chemicals) on molecular, cellular and organ systems, with special emphasis on human biological dosimetry. The general areas covered at the meeting included studies on parent compounds and metabolites; protein adducts; DNA adducts; gene mutations; cytogenetic end-points and reproductive methods.

  11. A review of the (60)Co internal dosimetry at Devonport Royal Dockyard.

    PubMed

    Vickers, J M A; Collison, R; Collision, R

    2010-03-01

    The physico-chemical properties of (60)Co contaminants arising from the UK Naval Nuclear Propulsion Programme (NNPP) pressurised water reactor (PWR) plants have been investigated in order to review individual monitoring requirements at Devonport Royal Dockyard (DRD). This has been achieved through laboratory tests on NNPP primary component samples and interpretation of direct bioassay measurements using internal dosimetry modelling software. Interpretation of lung measurements was completed for two inhalation events involving material originating from a PWR plant and post-primary circuit decontamination. Initial estimates of intake and dose were calculated using International Commission on Radiological Protection default parameter values. However, a good fit could only be achieved by fitting the data to alternative absorption parameters where 90-95% of the material dissolved and absorbed rapidly at a rate of 1 day(-1). As a consequence of this review, a number of improvements have been made to monitoring arrangements at DRD. A minimum of three direct measurements are now taken during the 0-30 day period after an intake, the capability of the Canberra Accuscan has been enhanced and dissolution tests are being carried out by the Health Protection Agency (HPA) on samples taken from PWR plants.

  12. Development of a 9-months pregnant hybrid phantom and its internal dosimetry for thyroid agents.

    PubMed

    Hoseinian-Azghadi, E; Rafat-Motavalli, L; Miri-Hakimabad, H

    2014-07-01

    As a consequence of fetal radiosensitivity, the estimation of internal dose received by a fetus from radiopharmaceuticals applied to the mother is often important in nuclear medicine. A new 9-months pregnant phantom based on magnetic resonance (MR) images tied to the International Commission on Radiological Protection (ICRP) reference voxel phantom has been developed. Maternal and fetal organs were segmented from a set of pelvic MR images of a 9-months pregnant subject using 3D-DOCTOR(TM) and then imported into the 3D modeling software package Rhinoceros(TM) for combining with the adult female ICRP voxel phantom and further modeling. Next, the phantom organs were rescaled to match with reference masses described in ICRP Publications. The internal anatomy of previous pregnant phantom models had been limited to the fetal brain and skeleton only, but the fetus model developed in this study incorporates 20 different organs. The current reference phantom has been developed for application in comprehensive dosimetric study in nuclear medicine. The internal dosimetry calculations were performed for thyroid agents using the Monte Carlo transport method. Biokinetic data for these radiopharmaceuticals were used to estimate cumulated activity during pregnancy and maternal and fetal organ doses at seven different maximum thyroid uptake levels. Calculating the dose distribution was also presented in a sagittal view of the pregnant model utilizing the mesh tally function. The comparisons showed, in general, an overestimation of the absorbed dose to the fetus and an underestimation of the fetal thyroid dose in previous studies compared with the values based on the current hybrid phantom.

  13. Development of a 9-months pregnant hybrid phantom and its internal dosimetry for thyroid agents

    PubMed Central

    Hoseinian-Azghadi, E.; Rafat-Motavalli, L.; Miri-Hakimabad, H.

    2014-01-01

    As a consequence of fetal radiosensitivity, the estimation of internal dose received by a fetus from radiopharmaceuticals applied to the mother is often important in nuclear medicine. A new 9-months pregnant phantom based on magnetic resonance (MR) images tied to the International Commission on Radiological Protection (ICRP) reference voxel phantom has been developed. Maternal and fetal organs were segmented from a set of pelvic MR images of a 9-months pregnant subject using 3D-DOCTORTM and then imported into the 3D modeling software package RhinocerosTM for combining with the adult female ICRP voxel phantom and further modeling. Next, the phantom organs were rescaled to match with reference masses described in ICRP Publications. The internal anatomy of previous pregnant phantom models had been limited to the fetal brain and skeleton only, but the fetus model developed in this study incorporates 20 different organs. The current reference phantom has been developed for application in comprehensive dosimetric study in nuclear medicine. The internal dosimetry calculations were performed for thyroid agents using the Monte Carlo transport method. Biokinetic data for these radiopharmaceuticals were used to estimate cumulated activity during pregnancy and maternal and fetal organ doses at seven different maximum thyroid uptake levels. Calculating the dose distribution was also presented in a sagittal view of the pregnant model utilizing the mesh tally function. The comparisons showed, in general, an overestimation of the absorbed dose to the fetus and an underestimation of the fetal thyroid dose in previous studies compared with the values based on the current hybrid phantom. PMID:24515254

  14. Development of derived investigation levels for use in internal dosimetry at the West Valley Demonstration Project

    SciTech Connect

    Johnson, P.

    1991-12-31

    The objective was to determine if the routine intemal dosimetry program at the West Valley Demonstration Project is capable of meeting the performance objective of 1 mSv annual effective dose equivalent due to internal contamination. With the use of the computer code REMedy the annual effective dose equivalent is calculated. Some of the radionuclides of concern result in an annual effective dose equivalent that exceeds the performance objective. Although the results exceed the performance objective, in all but two cases they do not exceed the US DOE regulatory limits. In these instances the Th-232 and Am-241 were determined to exceed the committed dose equivalent limit to their limiting tissue. In order to document the potential missed dose for regulatory compliance, Sr-90 is used as an indicator for Th-232. For Am-241 an investigation as to whether or not the minimum detectable amount can be lowered is performed. The derived investigation levels as a result of this project are 4.9E3 Bq/lung count for Co-60, 2.2E4 Bq/lung count for Cs-137, 1.9 Bq/1 for Sr-90 and for radionuclides other than Sr-90 any value greater than or equal to three standard deviations above their net count is considered to require further investigation.

  15. Internal photon and electron dosimetry of the newborn patient—a hybrid computational phantom study

    NASA Astrophysics Data System (ADS)

    Wayson, Michael; Lee, Choonsik; Sgouros, George; Treves, S. Ted; Frey, Eric; Bolch, Wesley E.

    2012-03-01

    Estimates of radiation absorbed dose to organs of the nuclear medicine patient are a requirement for administered activity optimization and for stochastic risk assessment. Pediatric patients, and in particular the newborn child, represent that portion of the patient population where such optimization studies are most crucial owing to the enhanced tissue radiosensitivities and longer life expectancies of this patient subpopulation. In cases where whole-body CT imaging is not available, phantom-based calculations of radionuclide S values—absorbed dose to a target tissue per nuclear transformation in a source tissue—are required for dose and risk evaluation. In this study, a comprehensive model of electron and photon dosimetry of the reference newborn child is presented based on a high-resolution hybrid-voxel phantom from the University of Florida (UF) patient model series. Values of photon specific absorbed fraction (SAF) were assembled for both the reference male and female newborn using the radiation transport code MCNPX v2.6. Values of electron SAF were assembled in a unique and time-efficient manner whereby the collisional and radiative components of organ dose--for both self- and cross-dose terms—were computed separately. Dose to the newborn skeletal tissues were assessed via fluence-to-dose response functions reported for the first time in this study. Values of photon and electron SAFs were used to assemble a complete set of S values for some 16 radionuclides commonly associated with molecular imaging of the newborn. These values were then compared to those available in the OLINDA/EXM software. S value ratios for organ self-dose ranged from 0.46 to 1.42, while similar ratios for organ cross-dose varied from a low of 0.04 to a high of 3.49. These large discrepancies are due in large part to the simplistic organ modeling in the stylized newborn model used in the OLINDA/EXM software. A comprehensive model of internal dosimetry is presented in this study for

  16. Internal photon and electron dosimetry of the newborn patient--a hybrid computational phantom study.

    PubMed

    Wayson, Michael; Lee, Choonsik; Sgouros, George; Treves, S Ted; Frey, Eric; Bolch, Wesley E

    2012-03-07

    Estimates of radiation absorbed dose to organs of the nuclear medicine patient are a requirement for administered activity optimization and for stochastic risk assessment. Pediatric patients, and in particular the newborn child, represent that portion of the patient population where such optimization studies are most crucial owing to the enhanced tissue radiosensitivities and longer life expectancies of this patient subpopulation. In cases where whole-body CT imaging is not available, phantom-based calculations of radionuclide S values--absorbed dose to a target tissue per nuclear transformation in a source tissue--are required for dose and risk evaluation. In this study, a comprehensive model of electron and photon dosimetry of the reference newborn child is presented based on a high-resolution hybrid-voxel phantom from the University of Florida (UF) patient model series. Values of photon specific absorbed fraction (SAF) were assembled for both the reference male and female newborn using the radiation transport code MCNPX v2.6. Values of electron SAF were assembled in a unique and time-efficient manner whereby the collisional and radiative components of organ dose--for both self- and cross-dose terms--were computed separately. Dose to the newborn skeletal tissues were assessed via fluence-to-dose response functions reported for the first time in this study. Values of photon and electron SAFs were used to assemble a complete set of S values for some 16 radionuclides commonly associated with molecular imaging of the newborn. These values were then compared to those available in the OLINDA/EXM software. S value ratios for organ self-dose ranged from 0.46 to 1.42, while similar ratios for organ cross-dose varied from a low of 0.04 to a high of 3.49. These large discrepancies are due in large part to the simplistic organ modeling in the stylized newborn model used in the OLINDA/EXM software. A comprehensive model of internal dosimetry is presented in this study for the

  17. MIRD Pamphlet No. 23: Quantitative SPECT for Patient-Specific 3-Dimensional Dosimetry in Internal Radionuclide Therapy

    PubMed Central

    Dewaraja, Yuni K.; Frey, Eric C.; Sgouros, George; Brill, A. Bertrand; Roberson, Peter; Zanzonico, Pat B.; Ljungberg, Michael

    2012-01-01

    In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification–based guidance for radionuclide dosimetry. PMID:22743252

  18. Mayak Worker Dosimetry System 2008 (MWDS-2008): assessment of internal dose from measurement results of plutonium activity in urine.

    PubMed

    Khokhryakov, Victor V; Khokhryakov, Valentin F; Suslova, Klara G; Vostrotin, Vadim V; Vvedensky, Vladimir E; Sokolova, Alexandra B; Krahenbuhl, Melinda P; Birchall, Alan; Miller, Scott C; Schadilov, Anatoly E; Ephimov, Alexander V

    2013-04-01

    A new modification of the prior human lung compartment plutonium model, Doses-2005, has been described. The modified model was named "Mayak Worker Dosimetry System-2008" (MWDS-2008). In contrast to earlier models developed for workers at the Mayak Production Association (Mayak PA), the new model more correctly describes plutonium biokinetics and metabolism in pulmonary lymph nodes. The MWDS-2008 also provides two sets of doses estimates: one based on bioassay data and the other based on autopsy data, where available. The algorithm of internal dose calculation from autopsy data will be described in a separate paper. Results of comparative analyses of Doses-2005 and MWDS-2008 are provided. Perspectives on the further development of plutonium dosimetry are discussed.

  19. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  20. Prenatal Perfluorooctanoic Acid Exposure in CD-1 Mice: Low-Dose Developmental Effects and Internal Dosimetry

    PubMed Central

    Macon, Madisa B.; Villanueva, LaTonya R.; Tatum-Gibbs, Katoria; Zehr, Robert D.; Strynar, Mark J.; Stanko, Jason P.; White, Sally S.; Helfant, Laurence

    2011-01-01

    Perfluorooctanoic acid (PFOA) is an environmental contaminant that causes adverse developmental effects in laboratory animals. To investigate the low-dose effects of PFOA on offspring, timed-pregnant CD-1 mice were gavage dosed with PFOA for all or half of gestation. In the full-gestation study, mice were administered 0, 0.3, 1.0, and 3.0 mg PFOA/kg body weight (BW)/day from gestation days (GD) 1–17. In the late-gestation study, mice were administered 0, 0.01, 0.1, and 1.0 mg PFOA/kg BW/day from GD 10–17. Exposure to PFOA significantly (p < 0.05) increased offspring relative liver weights in all treatment groups in the full-gestation study and in the 1.0 mg PFOA/kg group in the late-gestation study. In both studies, the offspring of all PFOA-treated dams exhibited significantly stunted mammary epithelial growth as assessed by developmental scoring. At postnatal day 21, mammary glands from the 1.0 mg/kg GD 10–17 group had significantly less longitudinal epithelial growth and fewer terminal end buds compared with controls (p < 0.05). Evaluation of internal dosimetry in offspring revealed that PFOA concentrations remained elevated in liver and serum for up to 6 weeks and that brain concentrations were low and undetectable after 4 weeks. These data indicate that PFOA-induced effects on mammary tissue (1) occur at lower doses than effects on liver weight in CD-1 mice, an observation that may be strain specific, and (2) persist until 12 weeks of age following full-gestational exposure. Due to the low-dose sensitivity of mammary glands to PFOA in CD-1 mice, a no observable adverse effect level for mammary developmental delays was not identified in these studies. PMID:21482639

  1. Physical and biological organ dosimetry analysis for international space station astronauts.

    PubMed

    Cucinotta, Francis A; Kim, Myung-Hee Y; Willingham, Veronica; George, Kerry A

    2008-07-01

    In this study, we analyzed the biological and physical organ dose equivalents for International Space Station (ISS) astronauts. Individual physical dosimetry is difficult in space due to the complexity of the space radiation environment, which consists of protons, heavy ions and secondary neutrons, and the modification of these radiation types in tissue as well as limitations in dosimeter devices that can be worn for several months in outer space. Astronauts returning from missions to the ISS undergo biodosimetry assessment of chromosomal damage in lymphocyte cells using the multicolor fluorescence in situ hybridization (FISH) technique. Individual-based pre-flight dose responses for lymphocyte exposure in vitro to gamma rays were compared to those exposed to space radiation in vivo to determine an equivalent biological dose. We compared the ISS biodosimetry results, NASA's space radiation transport models of organ dose equivalents, and results from ISS and space shuttle phantom torso experiments. Physical and biological doses for 19 ISS astronauts yielded average effective doses and individual or population-based biological doses for the approximately 6-month missions of 72 mSv and 85 or 81 mGy-Eq, respectively. Analyses showed that 80% or more of organ dose equivalents on the ISS are from galactic cosmic rays and only a small contribution is from trapped protons and that GCR doses were decreased by the high level of solar activity in recent years. Comparisons of models to data showed that space radiation effective doses can be predicted to within about a +/-10% accuracy by space radiation transport models. Finally, effective dose estimates for all previous NASA missions are summarized.

  2. Paired organs--Should they be treated jointly or separately in internal dosimetry?

    SciTech Connect

    Parach, Ali-Asghar; Rajabi, Hossein; Askari, Mohammad-Ali

    2011-10-15

    Purpose: Size, shape, and the position of paired organs are different in abdomen. However, the counterpart organs are conventionally treated jointly together in internal dosimetry. This study was performed to quantify the difference of specific absorbed fraction of organs in considering paired organs jointly like single organs or as two separate organs. Methods: Zubal phantom and GATE Monte Carlo package were used to calculate the SAF for the self-absorption and cross-irradiation of the lungs, kidneys, adrenal glands (paired organs), liver, spleen, stomach, and pancreas (single organs). The activity was assumed uniformly distributed in the organs, and simulation was performed for monoenergetic photons of 10, 50, 100, 500, 1000 keV and mono-energetic electrons of 350, 500, 690, 935, 1200 keV. Results: The results demonstrated that self-absorption of left and right counterpart organs may be different depending upon the differences in their masses. The cross-irradiations between left-to-right and right-to-left counterpart organs are always equal irrespective of difference in their masses. Cross-irradiation from the left and right counterpart organs to other organs are different (4-24 times in Zubal phantom) depending on the photon energy and organs. The irradiation from a single source organ to the left and right counterpart paired organs is always different irrespective of activity concentration. Conclusions: Left and right counterpart organs always receive different absorbed doses from target organs and deliver different absorbed doses to target organs. Therefore, in application of radiopharmaceuticals in which the dose to the organs plays a role, counterpart organs should be treated separately as two separate organs.

  3. International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using GODIVA-IV

    SciTech Connect

    Hickman, David; Hudson, Becka

    2016-12-15

    The Nuclear Criticality Safety Program operated under the direction of Dr. Jerry McKamy completed the first NNSA Nuclear Accident Dosimetry exercise on May 27, 2016. Participants in the exercise were from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), Savanah River Site (SRS), Pacific Northwest National Laboratory (PNNL), US Navy, the Atomic Weapons Establishment (United Kingdom) under the auspices of JOWOG 30, and the Institute for Radiological Protection and Nuclear Safety (France) by special invitation and NCSP memorandum of understanding. This exercise was the culmination of a series of Integral Experiment Requests (IER) that included the establishment of the Nuclear Criticality Experimental Research Center, (NCERC) the startup of the Godiva Reactor (IER-194), the establishment of a the Nuclear Accident Dosimetry Laboratory (NAD LAB) in Mercury, NV, and the determination of reference dosimetry values for the mixed neutron and photon radiation field of Godiva within NCERC.

  4. An image-based skeletal dosimetry model for the ICRP reference adult female-internal electron sources.

    PubMed

    O'Reilly, Shannon E; DeWeese, Lindsay S; Maynard, Matthew R; Rajon, Didier A; Wayson, Michael B; Marshall, Emily L; Bolch, Wesley E

    2016-12-21

    An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated

  5. An image-based skeletal dosimetry model for the ICRP reference adult female—internal electron sources

    NASA Astrophysics Data System (ADS)

    O'Reilly, Shannon E.; DeWeese, Lindsay S.; Maynard, Matthew R.; Rajon, Didier A.; Wayson, Michael B.; Marshall, Emily L.; Bolch, Wesley E.

    2016-12-01

    An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated

  6. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons

    SciTech Connect

    Xie Tianwu; Han Dao; Liu Yang; Sun Wenjuan; Liu Qian

    2010-05-15

    Purpose: The skeleton makes a significant contribution to the whole body absorbed dose evaluation of rats, since the bone marrow and bone surface in the skeleton express high radiosensitivity and are considered to be important dose-limiting tissues. The bone marrow can be categorized as red bone marrow (RBM) and yellow bone marrow (YBM). It is important to investigate the bone marrow in skeletal dosimetry. Methods: Cryosectional color images of the skeleton of a 156 g rat were segmented into mineral bone (including cortical bone and trabecular bone), RBM, and YBM. These three tissue types were identified at 40 different bone sites and integrated into a previously developed voxel-based rat computational phantom. Photon and electron skeletal absorbed fractions were then calculated using the MCNPX Monte Carlo code. Results: Absorbed fraction (AF) and specific absorbed fraction (SAF) for mineral bone, RBM, and YBM at the 40 different bone sites were established for monoenergetic photon and electron sources placed in 18 organs and seven bone sites. Discrete photon energy was varied from 0.01 to 5.0 MeV in 21 discrete steps, while 21 discrete electron energies were studied, from 0.1 to 10.0 MeV. The trends and values found were consistent with the results of other researchers [M. G. Stabin, T. E. Peterson, G. E. Holburn, and M. A. Emmons, ''Voxel-based mouse and rat models for internal dose calculations,'' J. Nucl. Med. 47, 655-659 (2006)]. S-factors for the radionuclides {sup 169}Er, {sup 143}Pr, {sup 89}Sr, {sup 32}P, and {sup 90}Y, located in 18 organs and seven bone sites for the skeleton, were calculated and are provided in detail. Conclusions: For internal dose calculations, the AF data reveal that the mineral bone in the rat skeletal system is responsible for significant attenuation of gamma rays, especially at low energies. The photon SAF curves of RBM show that, for photon energies greater than 0.6 MeV, there is an increase in secondary photons emitted from the

  7. The clinical safety, biodistribution and internal radiation dosimetry of flutemetamol (¹⁸F) injection in healthy Japanese adult volunteers.

    PubMed

    Senda, Michio; Brooks, David J; Farrar, Gill; Somer, Edward J; Paterson, Carolyn L; Sasaki, Masahiro; McParland, Brian J

    2015-08-01

    The Phase I safety, biodistribution and internal radiation dosimetry study in adult healthy Japanese males of flutemetamol ((18)F) injection, an in vivo β-amyloid imaging agent, is reported and compared with previously obtained Caucasian data. Whole-body PET scans of 6 healthy volunteers (age 51.8-61.7 years) were acquired approximately 4 h post-injection (administered activity 102-160 MBq). Venous blood sampling determined (18)F activity concentrations in whole blood and plasma and high-performance liquid chromatography (HPLC) established the percentages of parent [(18)F]flutemetamol and its metabolites. Voided urine activity was recorded. The decay-corrected and normalised (18)F activity of 14 source organ regions as a function of time was entered into the OLINDA/EXM software to calculate the internal radiation dosimetry and effective dose of each subject following the MIRD schema. The pharmacokinetics, biodistribution and dosimetry profiles were compared to data obtained from a cohort of healthy Caucasian adult volunteers from a previous Phase I study of [(18)F]flutemetamol. Flutemetamol ((18)F) injection was well tolerated. The highest mean initial uptakes were measured in the liver (15.2%), lungs (10.2%) and brain (6.6%). The highest mean radiation absorbed doses were received by the gallbladder wall (366 μGy/MBq), upper large intestine (138 μGy/MBq) and small intestine (121 μGy/MBq). The mean effective dose was 34.9 μSv/MBq. HPLC analysis demonstrated that at 5-min post-injection about 75% of plasma (18)F radioactivity was in the form of parent [(18)F]flutemetamol, reducing to 8 and 2% at 25 and 90 min, respectively, giving rise to less lipophilic (18)F-labelled metabolites. Comparisons with the Caucasian cohort showed no differences that could be regarded as clinically significant. The clinical safety of [(18)F]flutemetamol demonstrated no differences of clinical significance in the pharmacokinetics, biodistribution and internal radiation dosimetry

  8. Evaluation of a semiautomated lung mass calculation technique for internal dosimetry applications

    SciTech Connect

    Busse, Nathan; Erwin, William; Pan, Tinsu

    2013-12-15

    calculated using the formula (lung HU − air HU)/(tissue HU − air HU), and mass = specific gravity × total volume × 1.04 g/cm{sup 3}.Results: The range of calculated lung masses was 0.51–1.29 kg. The average male and female lung masses during FB CT were 0.80 and 0.71 kg, respectively. The calculated lung mass varied across the respiratory cycle but changed to a lesser degree than did lung volume measurements (7.3% versus 15.4%). Lung masses calculated using deep inspiration breath-hold and average CT were significantly larger (p < 0.05) than were some masses calculated using respiratory-phase and FB CT. Increased voxel size and smooth reconstruction kernels led to high lung mass estimates owing to partial volume effects.Conclusions: Organ mass correction is an important component of patient-specific internal radionuclide dosimetry. Lung mass calculation necessitates scan-based density correction to account for volume changes owing to respiration. The range of lung masses in the authors’ patient population represents lung doses for the same absorbed energy differing from 25% below to 64% above the dose found using reference phantom organ masses. With proper management of acquisition parameters and selection of FB or midexpiration breath hold scans, lung mass estimates with about 10% population precision may be achieved.

  9. Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging?

    PubMed

    Walrand, Stephan; Flux, Glenn D; Konijnenberg, Mark W; Valkema, Roelf; Krenning, Eric P; Lhommel, Renaud; Pauwels, Stanislas; Jamar, Francois

    2011-05-01

    This paper reviews issues concerning (86)Y positron emission tomography (PET), (90)Y PET and (90)Y bremsstrahlung imaging. Specific methods and corrections developed for quantitative imaging, for application in preclinical and clinical studies, and to assess (90)Y dosimetry are discussed. The potential imaging capabilities with the radioisotopes (87)Y and (88)Y are also considered. Additional studies required to assess specific unaddressed issues are also identified.

  10. A computational tool for patient specific dosimetry and radiobiological modeling of selective internal radiation therapy with (90)Y microspheres.

    PubMed

    Kalantzis, Georgios; Leventouri, Theodora; Apte, Aditiya; Shang, Charles

    2015-11-01

    In recent years we have witnessed tremendous progress in selective internal radiation therapy. In clinical practice, quite often, radionuclide therapy is planned using simple models based on standard activity values or activity administered per unit body weight or surface area in spite of the admission that radiation-dose methods provide more accurate dosimetric results. To address that issue, the authors developed a Matlab-based computational software, named Patient Specific Yttrium-90 Dosimetry Toolkit (PSYDT). PSYDT was designed for patient specific voxel-based dosimetric calculations and radiobiological modeling of selective internal radiation therapy with (90)Y microspheres. The developed toolkit is composed of three dimensional dose calculations for both bremsstrahlung and beta emissions. Subsequently, radiobiological modeling is performed on a per-voxel basis and cumulative dose volume histograms (DVHs) are generated. In this report we describe the functionality and visualization features of PSYDT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model

    NASA Astrophysics Data System (ADS)

    Villoing, Daphnée; Marcatili, Sara; Garcia, Marie-Paule; Bardiès, Manuel

    2017-03-01

    The purpose of this work was to validate GATE-based clinical scale absorbed dose calculations in nuclear medicine dosimetry. GATE (version 6.2) and MCNPX (version 2.7.a) were used to derive dosimetric parameters (absorbed fractions, specific absorbed fractions and S-values) for the reference female computational model proposed by the International Commission on Radiological Protection in ICRP report 110. Monoenergetic photons and electrons (from 50 keV to 2 MeV) and four isotopes currently used in nuclear medicine (fluorine-18, lutetium-177, iodine-131 and yttrium-90) were investigated. Absorbed fractions, specific absorbed fractions and S-values were generated with GATE and MCNPX for 12 regions of interest in the ICRP 110 female computational model, thereby leading to 144 source/target pair configurations. Relative differences between GATE and MCNPX obtained in specific configurations (self-irradiation or cross-irradiation) are presented. Relative differences in absorbed fractions, specific absorbed fractions or S-values are below 10%, and in most cases less than 5%. Dosimetric results generated with GATE for the 12 volumes of interest are available as supplemental data. GATE can be safely used for radiopharmaceutical dosimetry at the clinical scale. This makes GATE a viable option for Monte Carlo modelling of both imaging and absorbed dose in nuclear medicine.

  12. Review of the ICRP tritium and 14C internal dosimetry models and their implementation in the Genmod-PC code.

    PubMed

    Richardson, R B; Dunford, D W

    2001-09-01

    Biokinetic models for tritium and 14C compounds, as described by various ICRP publications, have been incorporated into the Genmod-PC internal dosimetry code. This work reviews the models for tritium and 14C labeled compounds that the ICRP has formulated over several decades. The ICRP dosimetry prescribed for hydrogen and carbon radionuclides is fundamentally different from that recommended for other elements in that it is based on retention functions for whole body activity instead of compartmental biokinetic models. The ICRP recommends dosimetric methods for tritium and 14C compounds, ten of which are coded in Genmod-PC as compartmental models, namely, five tritium compounds, e.g., tritiated water, tritium gas, and five 14C compounds, e.g., carbon dioxide, carbon-labeled methane. The values of the Genmod-PC calculated dose coefficients were compared with the ICRP's values. It is shown how the dose coefficients for intakes of tritium and 14C compounds are affected by different interpretations of the methods recommended by the ICRP for two of the three classes of vapors and gases. Some aspects of the ICRP models, such as the percent oxidized, would benefit from reconsideration so as to produce tritium and 14C biokinetics that are less dependent on the radionuclide.

  13. Final Design for an International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using Godiva-IV: IER-148 CED-2 Report

    SciTech Connect

    Heinrichs, Dave; Beller, Tim; Burch, Jennifer; Cummings, Rick; Duluc, Matthieu; Gadd, Milan; Goda, Joetta; Hickman, David; McAvoy, Doug; Rathbone, Bruce; Sullivan, Randy; Trompier, Francois; Veinot, Ken; Ward, Dann; Will, Rashelle; Wilson, Chris; Zieziulewicz, Thomas

    2014-09-30

    This document is the Final Design (CED-2) Report for IER-148, “International Inter-comparison Exercise for Nuclear Accident Dosimetry at the DAF Using Godiva-IV.” The report describes the structure of the exercise consisting of three irradiations; identifies the participating laboratories and their points of contact; provides the details of all dosimetry elements and their placement in proximity to Godiva-IV on support stands or phantoms ; and lists the counting and spectroscopy equipment each laboratory will utilize in the Mercury NAD Lab. The exercise is tentatively scheduled for one week in August 2015.

  14. 39th Lauriston S. Taylor Lecture: Dosimetry of Internal Emitters: Contribution of Radiation Protection Bodies and Radiological Events.

    PubMed

    Eckerman, Keith F

    2016-02-01

    Since the early days of the Manhattan Engineer District, Oak Ridge National Laboratory (ORNL) has served to advance the dosimetry models used to set protection standards for radionuclides taken into the body. Throughout the years, this effort benefited significantly from ORNL staff's active participation in national and international scientific bodies. The first such interaction was in 1946 with the National Committee on Radiation Protection (NCRP), chaired by L.S. Taylor, which led to the 1949 to 1953 series of tripartite conferences of experts from Canada, the United Kingdom, and the United States. These conferences addressed the need for standardization of dosimetry models and led to the establishment of an anatomic and physiologic model called "Standard Man," a precursor of the reference worker defined in Publication 23 of the International Commission on Radiological Protection (ICRP). Standard Man was used in setting the maximum permissible concentrations in air and water published in NBS Handbook 52 and subsequent reports by NCRP and ICRP. K.Z. Morgan, then director of the Health Physics Division at ORNL, participated in the tripartite conferences and subsequently established ORNL as a modeling and computational resource for development of radiation protection standards. ORNL's role expanded with participation in the work of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. Results of interactions with the MIRD Committee are evident in the radiation protection guidance for internal emitters in ICRP Publication 30. The annual limit on intake and derived air concentration values tabulated in Publication 30 were computed by an ORNL-based task group of ICRP Committee 2. A few years after the appearance of Publication 30, the Chernobyl nuclear reactor accident made clear the need to develop standard dosimetry models for pre-adult ages as members of the public. In the late 1980s, ICRP began an effort to extend its reference

  15. Internal exposure to neutron-activated (56)Mn dioxide powder in Wistar rats: part 1: dosimetry.

    PubMed

    Stepanenko, Valeriy; Rakhypbekov, Tolebay; Otani, Keiko; Endo, Satoru; Satoh, Kenichi; Kawano, Noriyuki; Shichijo, Kazuko; Nakashima, Masahiro; Takatsuji, Toshihiro; Sakaguchi, Aya; Kato, Hiroaki; Onda, Yuichi; Fujimoto, Nariaki; Toyoda, Shin; Sato, Hitoshi; Dyussupov, Altay; Chaizhunusova, Nailya; Sayakenov, Nurlan; Uzbekov, Darkhan; Saimova, Aisulu; Shabdarbaeva, Dariya; Skakov, Mazhin; Vurim, Alexandr; Gnyrya, Vyacheslav; Azimkhanov, Almas; Kolbayenkov, Alexander; Zhumadilov, Kasym; Kairikhanova, Yankar; Kaprin, Andrey; Galkin, Vsevolod; Ivanov, Sergey; Kolyzhenkov, Timofey; Petukhov, Aleksey; Yaskova, Elena; Belukha, Irina; Khailov, Artem; Skvortsov, Valeriy; Ivannikov, Alexander; Akhmedova, Umukusum; Bogacheva, Viktoria; Hoshi, Masaharu

    2017-03-01

    There were two sources of ionizing irradiation after the atomic bombings of Hiroshima and Nagasaki: (1) initial gamma-neutron irradiation at the moment of detonation and (2) residual radioactivity. Residual radioactivity consisted of two components: radioactive fallout containing fission products, including radioactive fissile materials from nuclear device, and neutron-activated radioisotopes from materials on the ground. The dosimetry systems DS86 and DS02 were mainly devoted to the assessment of initial radiation exposure to neutrons and gamma rays, while only brief considerations were given for the estimation of doses caused by residual radiation exposure. Currently, estimation of internal exposure of atomic bomb survivors due to dispersed radioactivity and neutron-activated radioisotopes from materials on the ground is a matter of some interest, in Japan. The main neutron-activated radionuclides in soil dust were (24)Na, (28)Al, (31)Si, (32)P, (38)Cl, (42)K, (45)Ca, (46)Sc, (56)Mn, (59)Fe, (60)Co, and (134)Cs. The radionuclide (56)Mn (T 1/2 = 2.58 h) is known as one of the dominant beta- and gamma emitters during the first few hours after neutron irradiation of soil and other materials on ground, dispersed in the form of dust after a nuclear explosion in the atmosphere. To investigate the peculiarities of biological effects of internal exposure to (56)Mn in comparison with external gamma irradiation, a dedicated experiment with Wistar rats exposed to neutron-activated (56)Mn dioxide powder was performed recently by Shichijo and coworkers. The dosimetry required for this experiment is described here. Assessment of internal radiation doses was performed on the basis of measured (56)Mn activity in the organs and tissues of the rats and of absorbed fractions of internal exposure to photons and electrons calculated with the MCNP-4C Monte Carlo using a mathematical rat phantom. The first results of this international multicenter study show that the internal

  16. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images.

    PubMed

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity.

  17. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images*

    PubMed Central

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    Objective This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and Methods A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. Results With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. PMID:25741101

  18. The ENEA criticality accident dosimetry system: a contribution to the 2002 international intercomparison at the SILENE reactor.

    PubMed

    Gualdrini, G; Bedogni, R; Fantuzzi, E; Mariotti, F

    2004-01-01

    The present paper summarises the activity carried out at the ENEA Radiation Protection Institute for updating the methodologies employed for the evaluation of the neutron and photon dose to the exposed workers in case of a criticality accident, in the framework of the 'International Intercomparison of Criticality Accident Dosimetry Systems' (Silène reactor, IRSN-CEA-Valduc June 2002). The evaluation of the neutron spectra and the neutron dosimetric quantities relies on activation detectors and on unfolding algorithms. Thermoluminescent detectors are employed for the gamma dose measurement. The work is aimed at accurately characterising the measurement system and, at the same time, testing the algorithms. Useful spectral information were included, based on Monte Carlo simulations, to take into account the potential accident scenarios of practical interest. All along this exercise intercomparison a particular attention was devoted to the 'traceability' of all the experimental and computational parameters and therefore, aimed at an easy treatment by the user.

  19. Selective Internal Radiation Therapy With Yttrium-90 Glass Microspheres: Biases and Uncertainties in Absorbed Dose Calculations Between Clinical Dosimetry Models.

    PubMed

    Mikell, Justin K; Mahvash, Armeen; Siman, Wendy; Baladandayuthapani, Veera; Mourtada, Firas; Kappadath, S Cheenu

    2016-11-15

    To quantify differences that exist between dosimetry models used for (90)Y selective internal radiation therapy (SIRT). Retrospectively, 37 tumors were delineated on 19 post-therapy quantitative (90)Y single photon emission computed tomography/computed tomography scans. Using matched volumes of interest (VOIs), absorbed doses were reported using 3 dosimetry models: glass microsphere package insert standard model (SM), partition model (PM), and Monte Carlo (MC). Univariate linear regressions were performed to predict mean MC from SM and PM. Analysis was performed for 2 subsets: cases with a single tumor delineated (best case for PM), and cases with multiple tumors delineated (typical clinical scenario). Variability in PM from the ad hoc placement of a single spherical VOI to estimate the entire normal liver activity concentration for tumor (T) to nontumoral liver (NL) ratios (TNR) was investigated. We interpreted the slope of the resulting regression as bias and the 95% prediction interval (95%PI) as uncertainty. MCNL(single) represents MC absorbed doses to the NL for the single tumor patient subset; other combinations of calculations follow a similar naming convention. SM was unable to predict MCT(single) or MCT(multiple) (p>.12, 95%PI >±177 Gy). However, SM(single) was able to predict (p<.012) MCNL(single), albeit with large uncertainties; SM(single) and SM(multiple) yielded biases of 0.62 and 0.71, and 95%PI of ±40 and ± 32 Gy, respectively. PMT(single) and PMT(multiple) predicted (p<2E-6) MCT(single) and MCT(multiple) with biases of 0.52 and 0.54, and 95%PI of ±38 and ± 111 Gy, respectively. The TNR variability in PMT(single) increased the 95%PI for predicting MCT(single) (bias = 0.46 and 95%PI = ±103 Gy). The TNR variability in PMT(multiple) modified the bias when predicting MCT(multiple) (bias = 0.32 and 95%PI = ±110 Gy). The SM is unable to predict mean MC tumor absorbed dose. The PM is statistically correlated with mean MC, but the

  20. Mayak Worker Dosimetry System (MWDS-2013): Phase I-Quality Assurance of Organ Doses and Excretion Rates From Internal Exposures of Plutonium-239 for the Mayak Worker Cohort.

    PubMed

    Dorrian, M-D; Birchall, A; Vostrotin, V

    2016-06-20

    The calculation of reliable and realistic doses for use in epidemiological studies for the quantification of risk from internal exposure to radioactive material is fundamental to the development of advice, guidance and regulations for the control and use of radioactive material. Thus, any programme of work carried out which requires the calculation of doses for use by epidemiologists ideally should contain a rigorous program of quality assurance (QA). This paper describes the initial QA (Phase I) implemented by Public Health England (PHE) and the Southern Urals Biophysics Institute (SUBI) as part of the work programme on internal dosimetry in the Joint Coordinating Committee for Radiation Effects Research Project 2.4 for the 2013 Mayak Worker Dosimetry System. SUBI designed and implemented new software (PANDORA) to include the latest Mayak Worker Dosimetry System and to calculate organ burdens, urinary excretion rates, intakes and absorbed doses, while PHE modified their commercially available IMBA Professional Plus software package. Comparisons of output from the two codes for the Mayak Worker Dosimetry System 2013 showed calculated values of absorbed doses, intakes, organ burdens and urinary excretion agreed to within 1%. The 1% discrepancy can be explained by the approximation used in IMBA to speed up dose calculations.

  1. 3D dosimetry estimation for selective internal radiation therapy (SIRT) using SPECT/CT images: a phantom study

    NASA Astrophysics Data System (ADS)

    Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.

    2015-03-01

    Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.

  2. Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand.

    PubMed

    Perrot, Y; Degoul, F; Auzeloux, P; Bonnet, M; Cachin, F; Chezal, J M; Donnarieix, D; Labarre, P; Moins, N; Papon, J; Rbah-Vidal, L; Vidal, A; Miot-Noirault, E; Maigne, L

    2014-05-07

    The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131. The behavior of Geant4 standard and low energy models is also tested. Following the different authors' guidelines concerning the parameterization of electron physics models, this study demonstrates an agreement of 1.2% and 1.5% with EGSnrc, respectively, for the calculation of S values for small spheres and mouse phantoms. S values calculated with GATE are then used to compute the dose distribution in organs of interest using the activity distribution in mouse phantoms. This study gives the dosimetric data required for the translation of the new treatment to the clinic.

  3. Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand

    NASA Astrophysics Data System (ADS)

    Perrot, Y.; Degoul, F.; Auzeloux, P.; Bonnet, M.; Cachin, F.; Chezal, J. M.; Donnarieix, D.; Labarre, P.; Moins, N.; Papon, J.; Rbah-Vidal, L.; Vidal, A.; Miot-Noirault, E.; Maigne, L.

    2014-05-01

    The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131. The behavior of Geant4 standard and low energy models is also tested. Following the different authors’ guidelines concerning the parameterization of electron physics models, this study demonstrates an agreement of 1.2% and 1.5% with EGSnrc, respectively, for the calculation of S values for small spheres and mouse phantoms. S values calculated with GATE are then used to compute the dose distribution in organs of interest using the activity distribution in mouse phantoms. This study gives the dosimetric data required for the translation of the new treatment to the clinic.

  4. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    SciTech Connect

    Fallahpoor, M; Abbasi, M; Sen, A; Parach, A; Kalantari, F

    2015-06-15

    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-T scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning

  5. An image-based skeletal dosimetry model for the ICRP reference newborn—internal electron sources

    NASA Astrophysics Data System (ADS)

    Pafundi, Deanna; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2010-04-01

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  6. An image-based skeletal dosimetry model for the ICRP reference newborn--internal electron sources.

    PubMed

    Pafundi, Deanna; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2010-04-07

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  7. An internal radiation dosimetry computer program, IDAC 2.0, for estimation of patient doses from radiopharmaceuticals.

    PubMed

    Andersson, M; Johansson, L; Minarik, D; Mattsson, S; Leide-Svegborn, S

    2014-12-01

    The internal dosimetry computer program internal dose assessment by computer (IDAC) for calculations of absorbed doses to organs and tissues as well as effective doses to patients from examinations with radiopharmaceuticals has been developed. The new version, IDAC2.0, incorporates the International Commission on Radiation Protection (ICRP)/ICRU computational adult male and female voxel phantoms and decay data from the ICRP publication 107. Instead of only 25 source and target regions, calculation can now be made with 63 source regions to 73 target regions. The major advantage of having the new phantom is that the calculations of the effective doses can be made with the latest tissue weighting factors of ICRP publication 103. IDAC2.0 uses the ICRP human alimentary tract (HAT) model for orally administrated activity and for excretion through the gastrointestinal tract and effective doses have been recalculated for radiopharmaceuticals that are orally administered. The results of the program are consistent with published data using the same specific absorption fractions and also compared with published data from the same computational phantoms but with segmentation of organs leading to another set of specific absorption fractions. The effective dose is recalculated for all the 34 radiopharmaceuticals that are administered orally and has been published by the ICRP. Using the new HAT model, new tissue weighting factors and the new adult computational voxel phantoms lead to an average effective dose of half of its earlier estimated value. The reduction mainly depends on electron transport simulations to walled organs and the transition from the stylised phantom with unrealistic interorgan distances to more realistic voxel phantoms.

  8. SU-E-T-507: Internal Dosimetry in Nuclear Medicine Using GATE and XCAT Phantom: A Simulation Study

    SciTech Connect

    Fallahpoor, M; Abbasi, M; Sen, A; Parach, A; Kalantari, F

    2015-06-15

    Purpose Monte Carlo simulations are routinely used for internal dosimetry studies. These studies are conducted with humanoid phantoms such as the XCAT phantom. In this abstract we present the absorbed doses for various pairs of source and target organs using three common radiotracers in nuclear medicine. Methods The GATE software package is used for the Monte Carlo simulations. A typical female XCAT phantom is used as the input. Three radiotracers 153Sm, 131I and 99mTc are studied. The Specific Absorbed Fraction (SAF) for gamma rays (99mTc, 153Sm and 131I) and Specific Fraction (SF) for beta particles (153Sm and 131I) are calculated for all 100 pairs of source target organs including brain, liver, lung, pancreas, kidney, adrenal, spleen, rib bone, bladder and ovaries. Results The source organs themselves gain the highest absorbed dose as compared to other organs. The dose is found to be inversely proportional to distance from the source organ. In SAF results of 153Sm, when the source organ is lung, the rib bone, gain 0.0730 (Kg-1) that is more than lung itself. Conclusion The absorbed dose for various organs was studied in terms of SAF and SF. Such studies hold importance for future therapeutic procedures and optimization of induced radiotracer.

  9. An image-based skeletal dosimetry model for the ICRP reference adult male--internal electron sources.

    PubMed

    Hough, Matthew; Johnson, Perry; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2011-04-21

    -averaged values of absorbed fraction in the present model are noted to be very compatible with those weighted by the skeletal tissue distributions found in the ICRP Publication 110 adult male and female voxel phantoms, but are in many cases incompatible with values used in current and widely implemented internal dosimetry software.

  10. An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources

    NASA Astrophysics Data System (ADS)

    Hough, Matthew; Johnson, Perry; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2011-04-01

    -averaged values of absorbed fraction in the present model are noted to be very compatible with those weighted by the skeletal tissue distributions found in the ICRP Publication 110 adult male and female voxel phantoms, but are in many cases incompatible with values used in current and widely implemented internal dosimetry software.

  11. Computational dosimetry

    SciTech Connect

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  12. Improvement of the WBC calibration of the Internal Dosimetry Laboratory of the CDTN/CNEN using the physical phantom BOMAB and MCNPX code.

    PubMed

    Paiva, Fernanda Guerra; Oliveira, Arno Heeren de; Mendes, Bruno Melo; Pinto, Jacqueline Rosária; Filho, Nelson do Nascimento A; Dantas, Bernardo Maranhão; Dantas, Ana Letícia A; Silva, Teógenes Augusto da; Lacerda, Marco Aurélio de Sousa; Fonseca, Telma Cristina Ferreira

    2016-11-01

    The Laboratory of Internal Dosimetry of the Center for Development of Nuclear Technology (LDI/CDTN) is responsible for routine internal monitoring of occupationally exposed individuals. The determination of photon emitting radionuclides in the human body requires calibration of the detector in specific counting geometries. The calibration process uses physical phantoms containing certified activities of the radionuclides of interest. The objective of this work was to obtain calibration efficiency curves of the Whole Body Counter in operation at the LDI/CDTN using a BOMAB physical phantom and Monte Carlo simulations.

  13. Realistic reference adult and paediatric phantom series for internal and external dosimetry.

    PubMed

    Stabin, M G; Emmons, M A; Segars, W P; Fernald, M J

    2012-03-01

    A new generation of realistic, image-based anthropomorphic phantoms has been developed based on the reference masses and organ definitions given in the International Commission on Radiological Protection Publication 89. Specific absorbed fractions for internal radiation sources have been calculated for photon and electron sources for many body organs. Values are similar to those from the previous generation of 'stylized' (mathematical equation-based) models, but some differences are seen, particularly at low particle or photon energies, due to the more realistic organ geometries, with organs generally being closer together, and with some touching and overlapping. Extension of this work, to use these phantoms in Monte Carlo radiation transport simulation codes with external radiation sources, is an important area of investigation that should be undertaken.

  14. Dosimetry calculations for internal electron sources using a Korean reference adult stylised phantom.

    PubMed

    Park, S; Lee, J K; Lee, C; Lee, C

    2008-01-01

    Absorbed fractions (AFs) and specific absorbed fractions (SAFs) for internally deposited electron were calculated using a Korean reference adult stylised phantom, where a total of 15 internal organ volumes and external body dimension were designed to match average Korean adult male. The walls of oesophagus, stomach, colon and urinary bladder were additionally divided into the mucosal layer and residual wall to accommodate dose calculation for weakly penetrating electron. The mucosal wall thicknesses were determined by the data reported in the International Commission on Radiological Protection Publication 89 and other literature resources and by direct measurements. The Monte Carlo transport code MCNPX (version 2.5.0) was employed to calculate the electron energy deposited. The SAFs and AFs for monoenergetic electrons with the energies ranging from 10 keV to 2 MeV were calculated. The results were compared with those of the revised Oak Ridge National Laboratory phantoms and showed considerable differences up to 150% in SAFs, whereas no substantial differences were observed in the AFs.

  15. Modernization of Cross Section Library for VVER-1000 Type Reactors Internals and Pressure Vessel Dosimetry

    NASA Astrophysics Data System (ADS)

    Voloschenko, Andrey; Zaritskiy, Sergey; Egorov, Aleksander; Boyarinov, Viktor

    2016-02-01

    The broad-group library BGL1000_B7 for neutron and gamma transport calculations in VVER-1000 internals, RPV and shielding was carried out on a base of fine-group library v7-200n47g from SCALE-6 system. The comparison of the library BGL1000_B7 with the library v7-200n47g and the library BGL1000 (the latter is using for VVER-1000 calculations) is demonstrated on several calculation and experimental tests.

  16. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR.

    SciTech Connect

    HOLDEN,N.E.; RECINIELLO,R.N.; HU,J.P.; RORER,D.C.

    2002-08-18

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex{trademark} polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup.

  17. THE CHALLENGE OF CIEMAT INTERNAL DOSIMETRY SERVICE FOR ACCREDITATION ACCORDING TO ISO/IEC 17025 STANDARD, FOR IN VIVO AND IN VITRO MONITORING AND DOSE ASSESSMENT OF INTERNAL EXPOSURES.

    PubMed

    Lopez, M A; Martin, R; Hernandez, C; Navarro, J F; Navarro, T; Perez, B; Sierra, I

    2016-09-01

    The accreditation of an Internal Dosimetry Service (IDS) according to ISO/IEC 17025 Standard is a challenge. The aim of this process is to guarantee the technical competence for the monitoring of radionuclides incorporated in the body and for the evaluation of the associated committed effective dose E(50). This publication describes the main accreditation issues addressed by CIEMAT IDS regarding all the procedures involving good practice in internal dosimetry, focussing in the difficulties to ensure the traceability in the whole process, the appropriate calculation of detection limit of measurement techniques, the validation of methods (monitoring and dose assessments), the description of all the uncertainty sources and the interpretation of monitoring data to evaluate the intake and the committed effective dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Internal dosimetry of nuclear medicine workers through the analysis of (131)I in aerosols.

    PubMed

    Carneiro, Luana Gomes; de Lucena, Eder Augusto; Sampaio, Camilla da Silva; Dantas, Ana Letícia Almeida; Sousa, Wanderson Oliveira; Santos, Maristela Souza; Dantas, Bernardo Maranhão

    2015-06-01

    (131)I is widely used in nuclear medicine for diagnostic and therapy of thyroid diseases. Depending of workplace safety conditions, routine handling of this radionuclide may result in a significant risk of exposure of the workers subject to chronic intake by inhalation of aerosols. A previous study including in vivo and in vitro measurements performed recently among nuclear medicine personnel in Brazil showed the occurrence of (131)I incorporation by workers involved in the handling of solutions used for radioiodine therapy. The present work describes the development, optimization and application of a methodology to collect and analyze aerosol samples aiming to assess internal doses based on the activity of (131)I present in a radiopharmacy laboratory. Portable samplers were positioned at one meter distant from the place where non-sealed liquid sources of (131)I are handled. Samples were collected over 1h using high-efficiency filters containing activated carbon and analyzed by gamma spectrometry with a high-purity germanium detection system. Results have shown that, although a fume hood is available in the laboratory, (131)I in the form of vapor was detected in the workplace. The average activity concentration was found to be of 7.4Bq/m(3). This value is about three orders of magnitude below the Derived Air Concentration (DAC) of 8.4kBq/m(3). Assuming that the worker is exposed by inhalation of iodine vapor during 1h, (131)I concentration detected corresponds to an intake of 3.6Bq which results in a committed effective dose of 7.13×10(-5)mSv. These results show that the radiopharmacy laboratory evaluated is safe in terms of internal exposure of the workers. However it is recommended that the presence of (131)I should be periodically re-assessed since it may increase individual effective doses. It should also be pointed out that the results obtained so far reflect a survey carried out in a specific workplace. Thus, it is suggested to apply the methodology

  19. Epid Dosimetry

    NASA Astrophysics Data System (ADS)

    Greer, Peter B.; Vial, Philip

    2011-05-01

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  20. Patient dosimetry for 90Y selective internal radiation treatment based on 90Y PET imaging.

    PubMed

    Ng, Sherry C; Lee, Victor H; Law, Martin W; Liu, Rico K; Ma, Vivian W; Tso, Wai Kuen; Leung, To Wai

    2013-09-06

    Until recently, the radiation dose to patients undergoing the 90Y selective internal radiation treatment (SIRT) procedure is determined by applying the partition model to 99mTc MAA pretreatment scan. There can be great uncertainty in radiation dose calculated from this approach and we presented a method to compute the 3D dose distributions resulting from 90Y SIRT based on 90Y positron emission tomography (PET) imaging. Five 90Y SIRT treatments were retrospectively analyzed. After 90Y SIRT, patients had 90Y PET/CT imaging within 6 hours of the procedure. To obtain the 3D dose distribution of the patients, their respective 90Y PET images were convolved with a Monte Carlo generated voxel dose kernel. The sensitivity of the PET/CT scanner for 90Y was determined through phantom studies. The 3D dose distributions were then presented in DICOM RT dose format. By applying the linear quadratic model to the dose data, we derived the biologically effective dose and dose equivalent to 2 Gy/fraction delivery, taking into account the spatial and temporal dose rate variations specific for SIRT. Based on this data, we intend to infer tumor control probability and risk of radiation induced liver injury from SIRT by comparison with established dose limits. For the five cases, the mean dose to target ranged from 51.7 ± 28.6 Gy to 163 ± 53.7 Gy. Due to the inhomogeneous nature of the dose distribution, the GTVs were not covered adequately, leading to very low values of tumor control probability. The mean dose to the normal liver ranged from 21.4 ± 30.7 to 36.7 ± 25.9 Gy. According to QUANTEC recommendation, a patient with primary liver cancer and a patient with metastatic liver cancer has more than 5% risk of radiotherapy-induced liver disease (RILD).

  1. Dosimetry in diagnostic radiology.

    PubMed

    Meghzifene, Ahmed; Dance, David R; McLean, Donald; Kramer, Hans-Michael

    2010-10-01

    Dosimetry is an area of increasing importance in diagnostic radiology. There is a realisation amongst health professionals that the radiation dose received by patients from modern X-ray examinations and procedures can be at a level of significance for the induction of cancer across a population, and in some unfortunate instances, in the acute damage to particular body organs such as skin and eyes. The formulation and measurement procedures for diagnostic radiology dosimetry have recently been standardised through an international code of practice which describes the methodologies necessary to address the diverging imaging modalities used in diagnostic radiology. Common to all dosimetry methodologies is the measurement of the air kerma from the X-ray device under defined conditions. To ensure the accuracy of the dosimetric determination, such measurements need to be made with appropriate instrumentation that has a calibration that is traceable to a standards laboratory. Dosimetric methods are used in radiology departments for a variety of purposes including the determination of patient dose levels to allow examinations to be optimized and to assist in decisions on the justification of examination choices. Patient dosimetry is important for special cases such as for X-ray examinations of children and pregnant patients. It is also a key component of the quality control of X-ray equipment and procedures. Copyright © 2010. Published by Elsevier Ireland Ltd.

  2. Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on I-131 in the thyroid.

    PubMed

    Lamart, Stephanie; Bouville, Andre; Simon, Steven L; Eckerman, Keith F; Melo, Dunstana; Lee, Choonsik

    2011-11-21

    source region for selected target organs--small intestine wall, lungs, pancreas and breast--as well as illustrate differences in energy deposition across the energy range (12 photon energies from 0.01 to 4 MeV). Differences were found in the SAFs between phantoms in a similar manner as the differences observed in S values but with larger differences at lower photon energies. To investigate the differences observed in the S and SAF values, the chord length distributions (CLDs) were computed for the selected source--target pairs and compared across the phantoms. As demonstrated by the CLDs, we found that the differences between phantoms in those factors used in internal dosimetry were governed to a significant degree by inter-organ distances which are a function of organ shape as well as organ location.

  3. Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on I-131 in the thyroid

    NASA Astrophysics Data System (ADS)

    Lamart, Stephanie; Bouville, Andre; Simon, Steven L.; Eckerman, Keith F.; Melo, Dunstana; Lee, Choonsik

    2011-11-01

    source region for selected target organs—small intestine wall, lungs, pancreas and breast—as well as illustrate differences in energy deposition across the energy range (12 photon energies from 0.01 to 4 MeV). Differences were found in the SAFs between phantoms in a similar manner as the differences observed in S values but with larger differences at lower photon energies. To investigate the differences observed in the S and SAF values, the chord length distributions (CLDs) were computed for the selected source-target pairs and compared across the phantoms. As demonstrated by the CLDs, we found that the differences between phantoms in those factors used in internal dosimetry were governed to a significant degree by inter-organ distances which are a function of organ shape as well as organ location.

  4. Neutron personnel dosimetry

    SciTech Connect

    Griffith, R.V.

    1981-06-16

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments. (ACR)

  5. Radiation dosimetry.

    PubMed Central

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists. PMID:2040250

  6. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method

    PubMed Central

    Khosravi, H.; Hashemi, B.; Mahdavi, S. R.; Hejazi, P.

    2015-01-01

    Background Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. Objective The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. Method A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. Results The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. Conclusion There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external

  7. Development and application of a dosimetry model (ExDoM2) for calculating internal dose of specific particle-bound metals in the human body.

    PubMed

    Chalvatzaki, Eleftheria; Lazaridis, Mihalis

    2015-01-01

    The objective of the current study was to develop a dosimetry model (ExDoM2) for calculating internal dose of specific particle-bound metals (As, Pb, Cd, Cr and Mn) in the human body. The ExDoM2 is a revised version of a respiratory tract model (ExDoM) incorporating a new particle clearance mechanism in the respiratory tract model and a Physiologically-Based PharmacoKinetic (PBPK) model. The revised respiratory tract model was used to calculate the deposition, clearance and retention of particles in the human respiratory tract and the mass transferred to the oesophagus (gastrointestinal tract) and blood. The PBPK module was used to analyze the distribution of metals (As, Pb, Cd, Cr and Mn) from the blood circulation system to other organs or tissues like liver, kidneys, heart, brain, muscle and bone. The model was applied to calculate the internal human dose for an adult Caucasian male exposed to particulate mass matter (PM), PMPb, PMCd, PMMn and PMCr in an urban area (Athens, Greece). The analysis showed that at the end of the exposure (one day exposure scenario) to PMPb, the major accumulation occurs in the bone, blood and muscle, whereas as regards PMCd the major accumulation occurs in the other tissues, like kidney and liver. In addition, for PMMn, the major accumulation occurs in the other tissues and lungs, whereas as regards PMCr the major accumulation occurs in the gastrointestinal (GI) tract and lungs. Therefore, ExDoM2 is an important feature in studying deposition of particles in the human body.

  8. Dosimetry of [177Lu]-DO3A-VS-Cys40-Exendin-4 – impact on the feasibility of insulinoma internal radiotherapy

    PubMed Central

    Velikyan, Irina; Bulenga, Thomas N; Selvaraju, Ramkumar; Lubberink, Mark; Espes, Daniel; Rosenström, Ulrika; Eriksson, Olof

    2015-01-01

    [68Ga]-DO3A-VS-Cys40-Exendin-4 has been shown to be a promising imaging candidate for targeting glucagon like peptide-1 receptor (GLP-1R). In the light of radiotheranostics and personalized medicine the 177Lu-labelled analogue is of paramount interest. In this study we have investigated the organ distribution of [177Lu]-DO3A-VS-Cys40-Exendin-4 in rat and calculated human dosimetry parameters in order to estimate the maximal acceptable administered radioactivity, and thus potential applicability of [177Lu]-DO3A-VS-Cys40-Exendin-4 for internal radiotherapy of insulinomas. Nine male and nine female Lewis rats were injected with [177Lu]-DO3A-VS-Cys40-Exendin-4 for ex vivo organ distribution study at nine time points. The estimation of human organ/total body absorbed and total effective doses was performed using Organ Level Internal Dose Assessment Code software (OLINDA/EXM 1.1). Six more rats (male: n = 3; female: n = 3) were scanned by single photon emission tomography and computed tomography (SPECT-CT). The renal function and potential cell dysfunction were monitored by creatinine ISTAT and glucose levels. The fine uptake structure of kidney and pancreas was investigated by ex vivo autoradiography. Blood clearance and washout from most of the organs was fast. The kidney was the dose-limiting organ with absorbed dose of 5.88 and 6.04 mGy/MBq, respectively for female and male. Pancreatic beta cells demonstrated radioactivity accumulation. Renal function and beta cell function remained unaffected by radiation. The absorbed dose of [177Lu]-DO3A-VS-Cys40-Exendin-4 to kidneys may limit the clinical application of the agent. However, hypothetically, kidney protection and peptidase inhibition may allow reduction of kidney absorbed dose and amplification of tumour absorbed doses. PMID:25973333

  9. The In-Vitro Transport of (238)PLUTONIUM Oxide and (239)PLUTONIUM Oxide Through a Membrane Filter and its Importance for Internal Radiation Dosimetry.

    NASA Astrophysics Data System (ADS)

    Ryan, Michael Terrance

    These experiments were designed to determine if ('238)PuO(,2), due to its higher specific activity and attendant aggregate recoil, undergoes higher transfer through a membrane filter into an interstitial human alveolar lung fluid simulant than ('239)PuO(,2). The rate at which such transfer occurs was determined in an in-vitro chamber designed to simulate residence characteristics of particles of insoluble plutonium oxides in human alveolar interstitium. The ratio of the rate of ('238)Pu/('239)Pu transfer was 138 (+OR -) 76%. Calculations were performed to assess the importance of this finding in terms of the internal dosimetry of insoluble ('238)Pu using methods and models recommended by the International Commission on Radiological Protection. Three cases were evaluated, namely integral 50-year dose commitment, urinary excretion after single acute intake and urinary excretion rate during chronic constant intake. It was found that integral 50-year dose commitments were not influenced by the rate of plutonium transfer from the pulmonary compartment to blood. The evaluation of calculated urinary excretion data after a single acute inhalation intake showed that in the early period, up to about 30 days post exposure, urinary excretion of ('238)PuO(,2) may be 2 to 10 times higher than the urinary excretion rate for ('238)PuO(,2) predicted by the ICRP reference model. From about 50 days to approximately 1000 days the calculated urinary excretion rate for ('238)PuO(,2) may be lower than that predicted by the reference model by a factor of 2 to 10. In the case of chronic constant intake the calculated urinary excretion rate for ('238)PuO(,2) may be up to a factor of 2 higher than that predicted by the reference ICRP Model.

  10. SU-E-T-340: Dosimetry of a Small Field Electron Beam for Innovative Radiotherapy of Small Surface Or Internal Tumors

    SciTech Connect

    Reft, C; Lu, Z; Noonan, J

    2015-06-15

    Purpose: An innovative small high intensity electron beams with energies from 6 to 12 MeV is being developed at Argonne National Laboratory to deliver an absorbed dose via a catheter to small malignant and nonmalignant lesions. This study reports on the initial dosimetric characteristics of this electron beam. These include output calibration, percent depth dose, beam profiles and leakage through the catheter. Methods: To simulate the narrow electron beam, the Argonne Wakefield Accelerator is used to produce high energy electron beams. The electron beam from the accelerator is monitored by measuring the current through a transmission coil while the beam shape is observed with a fluorescent screen. The dosimetry properties of the electron beam transmitting through bone and tissue-like materials are measured with nanodot optically stimulated luminescent dosimeters and EDR radiographic film. The 6 MV photon beam from a Varian True beam linac is used to calibrate both the OSLDs and the film. Results: The beam characteristics of the 12 MeV beam were measured. The properties of the small diameter, 5 mm, beam differs from that of broad clinical electron beams from radiotherapy linacs. Due to the lack of scatter from the narrow beam, the maximum dose is at the surface and the depth of the 50% depth dose is 35 mm compared to 51 mm for a clinical 12 MeV. The widths of the 90% isodose measured at the surface and depths of 2, 6, 12, and 16 mm varied from 6.6 to 8.8 mm while the widths of the FWHM isodose varied from 7.8 to 25.5 mm. Conclusion: Initial beam measurements show favorable dosimetric properties for its use in treating either small surface or internal lesions, particularly to deliver radiation at the time of surgery to maximize the dose to the lesion and spare normal tissue.

  11. Dosimetry studies in Zaborie village.

    PubMed

    Takada, J; Hoshi, M; Endo, S; Stepanenko, V F; Kondrashov, A E; Petin, D; Skvortsov, V; Ivannikov, A; Tikounov, D; Gavrilin, Y; Snykov, V P

    2000-05-01

    Dosimetry studies in Zaborie, a territory in Russia highly contaminated by the Chernobyl accident, were carried out in July, 1997. Studies on dosimetry for people are important not only for epidemiology but also for recovery of local social activity. The local contamination of the soil was measured to be 1.5-6.3 MBq/m2 of Cs-137 with 0.7-4 microSv/h of dose rate. A case study for a villager presently 40 years old indicates estimations of 72 and 269 mSv as the expected internal and external doses during 50 years starting in 1997 based on data of a whole-body measurement of Cs-137 and environmental dose rates. Mean values of accumulated external and internal doses for the period from the year 1986 till 1996 are also estimated to be 130 mSv and 16 mSv for Zaborie. The estimation of the 1986-1996 accumulated dose on the basis of large scale ESR teeth enamel dosimetry provides for this village, the value of 180 mSv. For a short term visitor from Japan to this area, external and internal dose are estimated to be 0.13 mSv/9d (during visit in 1997) and 0.024 mSv/50y (during 50 years starting from 1997), respectively.

  12. Medical dosimetry in Hungary

    NASA Astrophysics Data System (ADS)

    Turák, O.; Osvay, M.; Ballay, L.

    2012-09-01

    Radiation exposure of medical staff during cardiological and radiological procedures was investigated. The exposure of medical staff is directly connected to patient exposure. The aim of this study was to determine the distribution of doses on uncovered part of body of medical staff using LiF thermoluminescent (TL) dosimeters in seven locations. Individual Kodak film dosimeters (as authorized dosimetry system) were used for the assessment of medical staff's effective dose. Results achieved on dose distribution measurements confirm that wearing only one film badge under the lead apron does not provide enough information on the personal dose. The value of estimated annual doses on eye lens and extremities (fingers) were in good correlation with international publications.

  13. Dosimetry of iodoantipyrine.

    PubMed

    Chu, R Y; Ekeh, S; Basmadjian, G

    1989-01-01

    Dosimetry of iodoantipyrine labeled with radioactive iodine was determined by measuring the biodistribution of 131I-iodoantipyrine in 41 female rabbits. Following administration of the radiopharmaceutical, subjects were killed at 0.5, 6, 12, 17, 24, 36, and 48 h. Organs and samples of tissues and body fluids were assayed. Results were corrected for physical decay. Exponential functions were employed to describe the time-concentration curves; representative value would be the biological half life of 9.96 +/- 0.55 h for blood. Cumulated activity estimates for 123I, 125I and 131I were then computed. Extrapolation to absorbed dose in humans followed the formulation of the Medical International Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The whole body absorbed doses are 7 mu Gray, 5 mu Gray and 29 mu Gray per MBq of 123I, 125I, and 131I administered respectively.

  14. Basic principles in the radiation dosimetry of nuclear medicine.

    PubMed

    Stabin, Michael; Xu, Xie George

    2014-05-01

    The basic principles of the use of radiation dosimetry in nuclear medicine are reviewed. The basic structure of the main mathematical equations are given and formal dosimetry systems are discussed. An extensive overview of the history and current status of anthropomorphic models (phantoms) is given. The sources and magnitudes of uncertainties in calculated internal dose estimates are reviewed.

  15. The treatment of solid tumors by alpha emitters released from 224Ra-loaded sources—internal dosimetry analysis

    NASA Astrophysics Data System (ADS)

    Arazi, L.; Cooks, T.; Schmidt, M.; Keisari, Y.; Kelson, I.

    2010-02-01

    Diffusing alpha-emitters radiation therapy (DART) is a proposed new form of brachytherapy, allowing the treatment of solid tumors by alpha particles. DART utilizes implantable sources carrying small activities of radium-224, which continually release into the tumor radon-220, polonium-216 and lead-212 atoms, while radium-224 itself remains fixed to the source. The released atoms disperse inside the tumor by diffusive and convective processes, creating, through their alpha emissions, a high-dose region measuring several mm in diameter about each source. The efficacy of DART has been demonstrated in preclinical studies on mice-borne squamous cell carcinoma and lung tumors and the method is now being developed toward clinical trials. This work studies DART safety with respect to the dose delivered to distant organs as a result of lead-212 leakage from the tumor through the blood, relying on a biokinetic calculation coupled to internal dose assessments. It is found that the dose-limiting organs are the kidneys and red bone marrow. Assuming a typical source spacing of ~5 mm and a typical radium-224 activity density of 0.4-0.8 MBq g-1 of tumor tissue, it is predicted that tumors weighing up to several hundred grams may be treated without reaching the tolerance dose in any organ.

  16. A simple algorithm for solving the inverse problem of interpretation of uncertain individual measurements in internal dosimetry.

    PubMed

    Molokanov, A; Chojnacki, E; Blanchardon, E

    2010-01-01

    The individual monitoring of internal exposure of workers comprises two steps: measurement and measurement interpretation. The latter consists in reconstructing the intake of a radionuclide from the activity measurement and calculating the dose using a biokinetic model of the radionuclide behavior in the human body. Mathematically, reconstructing the intake is solving an inverse problem described by a measurement-model equation. The aim of this paper is to propose a solution to this inverse problem when the measurement-model parameters are considered as uncertain. For that, an analysis of the uncertainty on the intake calculation is performed taking into account the dispersion of the measured quantity and the uncertainties of the measurement-model parameters. It is shown that both frequentist and Bayesian approaches can be used to solve the problem according to the measurement-model formulation. A common calculation algorithm is proposed to support both approaches and applied to the examples of tritiated water intake and plutonium inhalation by a worker.

  17. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  18. REVIEW OF DOSIMETRY FIELD

    DTIC Science & Technology

    three, oxalic acid , polyisobutylene, and Mylar film, seem sufficiently promising to warrant further development. Their current states of development...ceric sulfate dosimeters be included in the dosimetry handbook, but that additional work should be done on oxalic acid , polyisobutylene, and Mylar as dosimetry materials. (Author)

  19. Dosimetry and Risk Assessment: Fundamental Concepts

    SciTech Connect

    Fisher, Darrell R.

    2005-12-29

    Radiation dosimetry is important for characterizing radiation exposures and for risk assessment. In a medical setting, dosimetry is important for evaluating the safety of administered radiopharmaceuticals and for planning the safe administration of therapeutic radionuclides. Environmental dosimetry helps establish the safety of radionuclide releases from electric power production and other human activities. Internal and external dosimetry help us understand the consequences of radiation exposure. The absorbed dose is the fundamental quantity in radiation dosimetry from which all other operational values in radiation protection are obtained. Equivalent dose to tissue and effective dose to the whole body are derivatives of absorbed dose and constructs of risk. Mathematical systems supported by computer software facilitate dose calculations and make it possible to estimate internal dose based on bioassay or other biokinetic data. Risk coefficients for radiation-induced cancer rely primarily on data from animal studies and long-term observations of the Hiroshima and Nagasaki bomb survivors. Low-dose research shows that mechanisms of radiation interactions with tissue are dose-dependent, but the resulting biological effects are not necessarily linear with absorbed dose. Thus, the analysis of radiation effects and associated risks must account for the influences of microscopic energy distributions at the cellular level, dose-rate, cellular repair of sub-lethal radiation damage, and modifying factors such as bystander effects, adaptive response, and genomic instability.

  20. WE-E-BRE-01: An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Female - Internal Electron Sources

    SciTech Connect

    O'Reilly, S; Maynard, M; Marshall, E; Bolch, W; Sinclair, L; Rajon, D; Wayson, M

    2014-06-15

    Purpose: Limitations seen in previous skeletal dosimetry models, which are still employed in commonly used software today, include the lack of consideration of electron escape and cross-fire from cortical bone, the modeling of infinite spongiosa, the disregard of the effect of varying cellularity on active marrow self-irradiation, and the lack of use of the more recent ICRP definition of a 50 micron surrogate tissue region for the osteoprogenitor cells - shallow marrow. These limitations were addressed in the present dosimetry model. Methods: Electron transport was completed to determine specific absorbed fractions to active marrow and shallow marrow of the skeletal regions of the adult female. The bone macrostructure was obtained from the whole-body hybrid computational phantom of the UF series of reference phantoms, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 year-old female cadaver. The target tissue regions were active marrow and shallow marrow. The source tissues were active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume and cortical bone surfaces. The marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or modeled analytically. Results: The method of combining macro- and microstructure absorbed fractions calculated using MCNPX electron transport was found to yield results similar to those determined with the PIRT model for the UF adult male in the Hough et al. study. Conclusion: The calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) and did not follow current models used in nuclear medicine dosimetry at high energies (due to that models use of an infinite expanse of trabecular spongiosa)

  1. Uncertainty in 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  2. Age-specific models for evaluating dose and risk from internal exposures to radionuclides: Report of current work of the Metabolism and Dosimetry Research Group, July 1, 1985-June 30, 1987

    SciTech Connect

    Leggett, R.W.; Warren, B.P.

    1987-09-01

    A projection of the health risk to a population internally exposed to a radionuclide requires explicit or implicit use of demographic, biokinetic, dosimetric, and dose-response models. Exposure guidelines have been based on models for a reference adult with a fixed life span. In this report, we describe recent efforts to develop a comprehensive methodology for estimation of radiogenic risk to individuals and to heterogeneous populations. Emphasis is on age-dependent biokinetics and dosimetry for internal emitters, but consideration also is given to conversion of age-specific doses to estimates of risk using realistic, site-specific demographic models and best available age-specific dose-response functions. We discuss how the methods described here may also improve estimates for the reference adult usually considered in radiation protection. 159 refs.

  3. Protocols for the dosimetry of high-energy photon and electron beams: a comparison of the IAEA TRS-398 and previous international codes of practice. International Atomic Energy Agency.

    PubMed

    Andreo, Pedro; Huq, M Saiful; Westermark, Mathias; Song, Haijun; Tilikidis, Aris; DeWerd, Larry; Shortt, Ken

    2002-09-07

    A new international Code of Practice for radiotherapy dosimetry co-sponsored by several international organizations has been published by the IAEA, TRS-398. It is based on standards of absorbed dose to water, whereas previous protocols (TRS-381 and TRS-277) were based on air kerma standards. To estimate the changes in beam calibration caused by the introduction of TRS-398, a detailed experimental comparison of the dose determination in reference conditions in high-energy photon and electron beams has been made using the different IAEA protocols. A summary of the formulation and reference conditions in the various Codes of Practice, as well as of their basic data, is presented first. Accurate measurements have been made in 25 photon and electron beams from 10 clinical accelerators using 12 different cylindrical and plane-parallel chambers, and dose ratios under different conditions of TRS-398 to the other protocols determined. A strict step-by-step checklist was followed by the two participating clinical institutions to ascertain that the resulting calculations agreed within tenths of a per cent. The maximum differences found between TRS-398 and the previous Codes of Practice TRS-277 (2nd edn) and TRS-381 are of the order of 1.5-2.0%. TRS-398 yields absorbed doses larger than the previous protocols, around 1.0% for photons (TRS-277) and for electrons (TRS-381 and TRS-277) when plane-parallel chambers are cross-calibrated. For the Markus chamber, results show a very large variation, although a fortuitous cancellation of the old stopping powers with the ND,w/NK ratios makes the overall discrepancy between TRS-398 and TRS-277 in this case smaller than for well-guarded plane-parallel chambers. Chambers of the Roos-type with a 60Co ND,w calibration yield the maximum discrepancy in absorbed dose, which varies between 1.0% and 1.5% for TRS-381 and between 1.5% and 2.0% for TRS-277. Photon beam calibrations using directly measured or calculated TPR20,10 from a percentage

  4. Chemical dosimetry system for criticality accidents.

    PubMed

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  5. 3-D Imaging Based, Radiobiological Dosimetry

    PubMed Central

    Sgouros, George; Frey, Eric; Wahl, Richard; He, Bin; Prideaux, Andrew; Hobbs, Robert

    2008-01-01

    Targeted radionuclide therapy holds promise as a new treatment against cancer. Advances in imaging are making it possible to evaluate the spatial distribution of radioactivity in tumors and normal organs over time. Matched anatomical imaging such as combined SPECT/CT and PET/CT have also made it possible to obtain tissue density information in conjunction with the radioactivity distribution. Coupled with sophisticated iterative reconstruction algorithims, these advances have made it possible to perform highly patient-specific dosimetry that also incorporates radiobiological modeling. Such sophisticated dosimetry techniques are still in the research investigation phase. Given the attendant logistical and financial costs, a demonstrated improvement in patient care will be a prerequisite for the adoption of such highly-patient specific internal dosimetry methods. PMID:18662554

  6. Patient-specific dosimetry in radionuclide therapy.

    PubMed

    Lyra, Maria; Lagopati, Nefeli; Charalambatou, Paraskevi; Vamvakas, Ioannis

    2011-09-01

    This study presents an attempt to compare individualised palliative treatment absorbed doses, by planar images data and Monte Carlo simulation, in two in vivo treatment cases, one of bone metastases and the other of liver lesions. Medical Internal Radiation Dose schema was employed to estimate the absorbed doses. Radiopharmaceutical volume distributions and absorbed doses in the lesions as well as in critical organs were also calculated by Monte Carlo simulation. Individualised planar data calculations remain the method of choice in internal dosimetry in nuclear medicine, but with the disadvantage of attenuation and scatter corrections lack and organ overlay. The overall error is about 7 % for planar data calculations compared with that using Monte Carlo simulation. Patient-specific three-dimensional dosimetric calculations using single-photon emission computed tomography with a parallel computed tomography study is proposed as an accurate internal dosimetry with the additional use of dose-volume histograms, which express dose distributions in cases with obvious inhomogeneity.

  7. EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting.

    PubMed

    Lassmann, M; Chiesa, C; Flux, G; Bardiès, M

    2011-01-01

    Many recent publications in nuclear medicine contain data on dosimetric findings for existing and new diagnostic and therapeutic agents. In many of these articles, however, a description of the methodology applied for dosimetry is lacking or important details are omitted. The intention of the EANM Dosimetry Committee is to guide the reader through a series of suggestions for reporting dosimetric approaches. The authors are aware of the large amount of data required to report the way a given clinical dosimetry procedure was implemented. Another aim of this guidance document is to provide comprehensive information for preparing and submitting publications and reports containing data on internal dosimetry. This guidance document also contains a checklist which could be useful for reviewers of manuscripts submitted to scientific journals or for grant applications. In addition, this document could be used to decide which data are useful for a documentation of dosimetry results in individual patient records. This may be of importance when the approval of a new radiopharmaceutical by official bodies such as EMA or FDA is envisaged.

  8. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  9. Dosimetry with diamond detectors

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.

    2010-05-01

    In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.

  10. Plutonium worker dosimetry.

    PubMed

    Birchall, Alan; Puncher, M; Harrison, J; Riddell, A; Bailey, M R; Khokryakov, V; Romanov, S

    2010-05-01

    Epidemiological studies of the relationship between risk and internal exposure to plutonium are clearly reliant on the dose estimates used. The International Commission on Radiological Protection (ICRP) is currently reviewing the latest scientific information available on biokinetic models and dosimetry, and it is likely that a number of changes to the existing models will be recommended. The effect of certain changes, particularly to the ICRP model of the respiratory tract, has been investigated for inhaled forms of (239)Pu and uncertainties have also been assessed. Notable effects of possible changes to respiratory tract model assumptions are (1) a reduction in the absorbed dose to target cells in the airways, if changes under consideration are made to the slow clearing fraction and (2) a doubling of absorbed dose to the alveolar region for insoluble forms, if evidence of longer retention times is taken into account. An important factor influencing doses for moderately soluble forms of (239)Pu is the extent of binding of dissolved plutonium to lung tissues and assumptions regarding the extent of binding in the airways. Uncertainty analyses have been performed with prior distributions chosen for application in epidemiological studies. The resulting distributions for dose per unit intake were lognormal with geometric standard deviations of 2.3 and 2.6 for nitrates and oxides, respectively. The wide ranges were due largely to consideration of results for a range of experimental data for the solubility of different forms of nitrate and oxides. The medians of these distributions were a factor of three times higher than calculated using current default ICRP parameter values. For nitrates, this was due to the assumption of a bound fraction, and for oxides due mainly to the assumption of slower alveolar clearance. This study highlights areas where more research is needed to reduce biokinetic uncertainties, including more accurate determination of particle transport rates

  11. Proceedings of the third conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Casson, W.H.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  12. Impact of Region-of-Interest Delineation Methods, Reconstruction Algorithms, and Intra- and Inter-Operator Variability on Internal Dosimetry Estimates Using PET.

    PubMed

    López-Vilanova, N; Pavía, J; Duch, M A; Catafau, A; Ros, D; Bullich, S

    2017-04-01

    Human dosimetry studies play a central role in radioligand development for positron emission tomography (PET). Drawing regions of interest (ROIs) on the PET images is used to measure the dose in each organ. In the study aspects related to ROI delineation methods were evaluated for two radioligands of different biodistribution (intestinal vs urinary). PET images were simulated from a human voxel-based phantom. Several ROI delineation methods were tested: antero-posterior projections (AP), 3D sub-samples of the organs (S), and a 3D volume covering the whole-organ (W). Inter- and intra-operator variability ROI drawing was evaluated by using human data. The effective dose estimates using S and W methods were comparable to the true values. AP methods overestimated (49 %) the dose for the radioligand with intestinal biodistribution. Moreover, the AP method showed the highest inter-operator variability: 11 ± 1 %. The sub-sampled organ method showed the best balance between quantitative accuracy and inter- and intra-operator variability.

  13. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  14. Ion storage dosimetry

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  15. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  16. In vivo dosimetry for IMRT

    SciTech Connect

    Vial, Philip

    2011-05-05

    In vivo dosimetry has a well established role in the quality assurance of 2D radiotherapy and 3D conformal radiotherapy. The role of in vivo dosimetry for IMRT is not as well established. IMRT introduces a range of technical issues that complicate in vivo dosimetry. The first decade or so of IMRT implementation has largely relied upon pre-treatment phantom based dose verification. During that time, several new devices and techniques for in vivo dosimetry have emerged with the promise of providing the ultimate form of IMRT dose verification. Solid state dosimeters continue to dominate the field of in vivo dosimetry in the IMRT era. In this report we review the literature on in vivo dosimetry for IMRT, with an emphasis on clinical evidence for different detector types. We describe the pros and cons of different detectors and techniques in the IMRT setting and the roles that they are likely to play in the future.

  17. Dosimetry for Radiopharmaceutical Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.

    2014-01-01

    Radiopharmaceutical therapy (RPT) involves the use of radionuclides that are either conjugated to tumor-targeting agents (eg, nanoscale constructs, antibodies, peptides, and small molecules) or concentrated in tissue through natural physiological mechanisms that occur predominantly in neoplastic or otherwise targeted cells (eg, Graves disease). The ability to collect pharmacokinetic data by imaging and use this to perform dosimetry calculations for treatment planning distinguishes RPT from other systemic treatment modalities. Treatment planning has not been widely adopted, in part, because early attempts to relate dosimetry to outcome were not successful. This was partially because a dosimetry methodology appropriate to risk evaluation rather than efficacy and toxicity was being applied to RPT. The weakest links in both diagnostic and therapeutic dosimetry are the accuracy of the input and the reliability of the radiobiological models used to convert dosimetric data to the relevant biologic end points. Dosimetry for RPT places a greater demand on both of these weak links. To date, most dosimetric studies have been retrospective, with a focus on tumor dose-response correlations rather than prospective treatment planning. In this regard, transarterial radioembolization also known as intra-arterial radiation therapy, which uses radiolabeled (90Y) microspheres of glass or resin to treat lesions in the liver holds much promise for more widespread dosimetric treatment planning. The recent interest in RPT with alpha-particle emitters has highlighted the need to adopt a dosimetry methodology that specifically accounts for the unique aspects of alpha particles. The short range of alpha-particle emitters means that in cases in which the distribution of activity is localized to specific functional components or cell types of an organ, the absorbed dose will be equally localized and dosimetric calculations on the scale of organs or even voxels (~5 mm) are no longer sufficient

  18. Electron Paramagnetic Resonance Retrospective Dosimetry

    SciTech Connect

    Romanyukha, Alex; Trompier, Francois

    2011-05-05

    Necessity for, principles of, and general concepts of the electron paramagnetic resonance (EPR) retrospective dosimetry are presented. Also presented and given in details are examples of EPR retrospective dosimetry applications in tooth enamel, bone, and fingernails with focus on general approaches for solving technical and methodological problems. Advantages, drawbacks, and possible future developments are discussed and an extensive bibliography on EPR retrospective dosimetry is provided.

  19. Bayesian Methods for Radiation Detection and Dosimetry

    SciTech Connect

    Peter G. Groer

    2002-09-29

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model.

  20. Hanford External Dosimetry Program

    SciTech Connect

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs.

  1. Prostate PDT dosimetry

    PubMed Central

    Zhu, Timothy C.; Finlay, Jarod C.

    2015-01-01

    Summary We provide a review of the current state of dosimetry in prostate photodynamic therapy (PDT). PDT of the human prostate has been performed with a number of different photosensitizers and with a variety of dosimetry schemes. The simplest clinical light dose prescription is to quantify the total light energy emitted per length (J/cm) of cylindrical diffusing fibers (CDF) for patients treated with a defined photosensitizer injection per body weight. However, this approach does not take into account the light scattering by tissue and usually underestimates the local light fluence rate, and consequently the fluence. Techniques have been developed to characterize tissue optical properties and light fluence rates in vivo using interstitial measurements during prostate PDT. Optical methods have been developed to characterize tissue absorption and scattering spectra, which in turn provide information about tissue oxygenation and drug concentration. Fluorescence techniques can be used to quantify drug concentrations and photobleaching rates of photosensitizers. PMID:25046988

  2. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  3. Cosmic Ray Dosimetry

    NASA Astrophysics Data System (ADS)

    Si Belkhir, F.; Attallah, R.

    2010-10-01

    Radiation levels at aircraft cruising altitudes are twenty times higher than at sea level. Thus, on average, a typical airline pilot receives a larger annual radiation dose than some one working in nuclear industry. The main source of this radiation is from galactic cosmic radiation, high energy particles generated by exploding stars within our own galaxy. In this work we study cosmic rays dosimetry at various aviation altitudes using the PARMA model.

  4. Thorium metabolism and dosimetry

    SciTech Connect

    Johnson, J.R.; Hill, R.L.; Birchall, A.; Jarvis, N.S.

    1994-07-01

    Thorium occurs widely in nature, and has been used in medicine, industry, and advanced nuclear fuel cycles. Despite many studies, there still remains uncertainty in the dosimetry of Th, particularly that associated with the Th-232 decay chain. This presentation reviews past and current uses of thorium, and describes the residual difficulties involved with monitoring methods and calculations used in both environmental and occupational exposure evaluations.

  5. Dosimetry in dentistry.

    PubMed

    Asha, M L; Chatterjee, Ingita; Patil, Preeti; Naveen, S

    2015-01-01

    The purpose of this paper was to review various dosimeters used in dentistry and the cumulative results of various studies done with various dosimeters. Several relevant PubMed indexed articles from 1999 to 2013 were electronically searched by typing "dosimeters", "dosimeters in dentistry", "properties of dosimeters", "thermoluminescent and optically stimulated dosimeters", "recent advancements in dosimetry in dentistry." The searches were limited to articles in English to prepare a concise review on dental dosimetry. Titles and abstracts were screened, and articles that fulfilled the criteria of use of dosimeters in dental applications were selected for a full-text reading. Article was divided into four groups: (1) Biological effects of radiation, (2) properties of dosimeters, (3) types of dosimeters and (4) results of various studies using different dosimeters. The present review on dosimetry based on various studies done with dosimeters revealed that, with the advent of radiographic technique the effective dose delivered is low. Therefore, selection of radiological technique plays an important role in dental dose delivery.

  6. Comparison of life-stage-dependent internal dosimetry for bisphenol A, ethinyl estradiol, a reference estrogen, and endogenous estradiol to test an estrogenic mode of action in Sprague Dawley rats.

    PubMed

    Churchwell, Mona I; Camacho, Luísa; Vanlandingham, Michelle M; Twaddle, Nathan C; Sepehr, Estatira; Delclos, K Barry; Fisher, Jeffrey W; Doerge, Daniel R

    2014-05-01

    Bisphenol A (BPA) was administered by gavage (2.5-300,000 μg/kg body weight (bw)/day) to pregnant Sprague Dawley dams, newborn pups, and continuing into adulthood. Aglycone (i.e., unconjugated and active) and conjugated (i.e., inactive) BPA were evaluated by liquid chromatography electrospray tandem mass spectrometry (LC-ES/MS/MS) in serum to better interpret toxicological endpoints measured in the study. Ethinyl estradiol (EE2, 0.5 and 5 μg/kg bw/day) and the endogenous hormones, 17β-estradiol (E2) and testosterone, were similarly evaluated. Mean BPA aglycone levels in vehicle and naïve control rat serum (0.02-0.5 ng/ml) indicated sample processing artifact, consistent with literature reports of a propensity for postexposure blood contamination by BPA. Direct measurements of BPA-glucuronide in vehicle and naïve control serum (2-10nM) indicated unintentional exposure and metabolism at levels similar to those produced by 2.5 μg/kg bw/day BPA (7-10nM), despite careful attention to potential BPA inputs (diet, drinking water, vehicle, cages, bedding, and dust) and rigorous dosing solution certification and delivery. The source of this exposure could not be identified, but interpretation of the toxicological effects, observed only at the highest BPA doses, was not compromised. Internal exposures to BPA and EE2 aglycones were highest in young rats. When maximal serum concentrations from the two highest BPA doses and both EE2 doses were compared with concurrent levels of endogenous E2, the ERα binding equivalents were similar to or above those of endogenous E2 in male and female rats of all ages tested. Such evaluations of estrogenic internal dosimetry and comprehensive evaluation of contamination impact should aid in extrapolating risks from human BPA exposures.

  7. Comparison of Life-Stage-Dependent Internal Dosimetry for Bisphenol A, Ethinyl Estradiol, a Reference Estrogen, and Endogenous Estradiol to Test an Estrogenic Mode of Action in Sprague Dawley Rats

    PubMed Central

    Churchwell, Mona I.; Camacho, Luísa; Vanlandingham, Michelle M.; Twaddle, Nathan C.; Sepehr, Estatira; Delclos, K. Barry; Fisher, Jeffrey W.; Doerge, Daniel R.

    2014-01-01

    Bisphenol A (BPA) was administered by gavage (2.5–300,000 μg/kg body weight (bw)/day) to pregnant Sprague Dawley dams, newborn pups, and continuing into adulthood. Aglycone (i.e., unconjugated and active) and conjugated (i.e., inactive) BPA were evaluated by liquid chromatography electrospray tandem mass spectrometry (LC-ES/MS/MS) in serum to better interpret toxicological endpoints measured in the study. Ethinyl estradiol (EE2, 0.5 and 5 μg/kg bw/day) and the endogenous hormones, 17β-estradiol (E2) and testosterone, were similarly evaluated. Mean BPA aglycone levels in vehicle and naïve control rat serum (0.02–0.5 ng/ml) indicated sample processing artifact, consistent with literature reports of a propensity for postexposure blood contamination by BPA. Direct measurements of BPA-glucuronide in vehicle and naïve control serum (2–10nM) indicated unintentional exposure and metabolism at levels similar to those produced by 2.5 μg/kg bw/day BPA (7–10nM), despite careful attention to potential BPA inputs (diet, drinking water, vehicle, cages, bedding, and dust) and rigorous dosing solution certification and delivery. The source of this exposure could not be identified, but interpretation of the toxicological effects, observed only at the highest BPA doses, was not compromised. Internal exposures to BPA and EE2 aglycones were highest in young rats. When maximal serum concentrations from the two highest BPA doses and both EE2 doses were compared with concurrent levels of endogenous E2, the ERα binding equivalents were similar to or above those of endogenous E2 in male and female rats of all ages tested. Such evaluations of estrogenic internal dosimetry and comprehensive evaluation of contamination impact should aid in extrapolating risks from human BPA exposures. PMID:24496641

  8. A survey of physical dosimetry to date and in the near future: Part 1. Review of standards and regulatory issues.

    PubMed

    Cassata, James R

    2002-02-01

    This article summarizes the status of the relevant standards and current regulatory issues for use of physical dosimetry devices for the occupational worker in the United States. Included is a summary of relevant standards from the International Organization for Standardization (ISO), the International Electrotechnical Commission (IEC), the American National Standards Institute (ANSI), the United States Nuclear Regulatory Commission NUREG-Series, the National Voluntary Laboratory Accreditation Program (NVLAP), the Department of Energy Laboratory Accreditation Program (DOELAP), and the U.S. Military Specifications and Standards (MIL-STD). Proposed changes to ANSI N13.11-1993, "American National Standard for Dosimetry-Personnel Dosimetry Performance Criteria for Testing," are listed. The strategic changes that the United States Nuclear Regulatory Commission (NRC) is making in rulemaking activities related to dosimetry and standards are given. The status of Measurement Program Description (MPD) C.18, "Implementation of Electronic Dosimetry for Primary Dosimetry," from the Council on Ionizing Radiation Measurements and Standards (CIRMS) is given.

  9. Physical dosimetry of chernobyl cleanup workers.

    PubMed

    Chumak, Vadim V

    2007-11-01

    This paper presents a critical review of dosimetric monitoring practices during Chernobyl cleanup from 1986 to 1990. Dosimetric monitoring is considered in time evolution with respect to legislative background (including dose limits), methods of dose assessment, and coverage of workers with radiation monitoring programs as well as availability of data on individual doses of liquidators. Four large independent dosimetry services (Administration of Construction No. 605, Chernobyl Nuclear Power Plant, Production Association "Combinat," and the troops) had operated in Chernobyl covering different cohorts of cleanup workers with dosimetric monitoring of variable quality and comprehension. Extremes in this range were presented by the highly professional dosimetry service of the Administration of Construction No. 605 (USSR Ministry of Medium Machinery), which had provided total coverage of workers with high quality individual thermoluminescent dosimeter monitoring, and military (troops of the USSR Ministry of Defense) who had received the least precise group dosimetry, which, however, had covered the whole population of military cleanup workers. The main groups of liquidators are considered from the point of view of completeness and quality of their dosimetric data. Main gaps in dosimetric data and limitations of existing dose records are identified. The issues of evolution of dose limits and problems of monitoring internal and beta exposure are considered from the point of view of significance of these components and the need for missing information.

  10. Reconstructive dosimetry for cutaneous radiation syndrome.

    PubMed

    Lima, C M A; Lima, A R; Degenhardt, Ä L; Valverde, N J; Da Silva, F C A

    2015-05-08

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry.

  11. Reconstructive dosimetry for cutaneous radiation syndrome.

    PubMed

    Lima, C M A; Lima, A R; Degenhardt, Ä L; Valverde, N J; Silva, F C A da

    2015-10-01

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry.

  12. Reconstructive dosimetry for cutaneous radiation syndrome

    PubMed Central

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Valverde, N.J.; Da Silva, F.C.A.

    2015-01-01

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. PMID:26445332

  13. Dosimetry in 131I-mIBG therapy: moving toward personalized medicine.

    PubMed

    Chiesa, C; Castellani, R; Mira, M; Lorenzoni, A; Flux, G D

    2013-06-01

    Internal dosimetry was developed as a basis for 131I-mIBG treatment at an early stage and has continued to develop for over the last 20 years. Whole-body dosimetry was introduced to prevent hematological toxicity. It will be the basis for a forthcoming European multicentre trial, in which the activity of a second administration is determined according to the results calculated from the first. Lesion dosimetry has also been performed in a small number of centres. The major goal of dosimetry now is to establish dose-effect correlation studies, which will be the basis for individualized treatment planning. The aim of this paper is to analyse previously published studies and to consider the potential for improvement in order to obtain a stronger predictive power of dosimetry. The intrinsic radiobiological limits of dosimetry are also illustrated. Due to the development and dissemination of methods of internal dosimetry and radiobiology over the last two decades, and to the increasing availability of quantitative 124I PET imaging, dosimetry could provide in the near future a more systematic basis for standardization and individualization of mIBG therapy. This will however require a number of multicentre trials which are performed under good instrumental and scientific methodology.

  14. ESR spectrometry: a future-oriented tool for dosimetry and dating.

    PubMed

    Regulla, Dieter F

    2005-02-01

    ESR spectroscopy is currently taking root as a key technology in dosimetry, dating and imaging. In dosimetry, it competes with cytometry in the fields of biological dosimetry and retrospective dosimetry, leads in high-level reference and routine dosimetry, is high-ranking among the methods to identify radiation preserved foods, represents a method of choice to date geological, archaeological and paleontological materials back millions of years, and has demonstrated capacity for imaging. Further scientific and technological progress as predicted in the recent past (Appl. Radiat. Isot. 52 (2000) 1023) is reviewed here. Additionally, the review is expanded to include international reports and recommendations on ESR dosimetry and dose reconstruction, under way at the American Society for Testing and Materials (ASTM), the International Organisation of Standards (ISO), the International Atomic Energy Agency (IAEA) and the International Commission on Radiation Units and Measurements (ICRU). Emphasis is placed on interpretation of tooth enamel doses in terms of organ and effective doses, using CT-based virtual humans. The future of EPR spectroscopy for in situ dose measurements is noted, depicting a non-destructive in vivo dosimetry applicable directly to individuals, but also to hominid and animal fossils for direct dating.

  15. Photostimulable Storage Phosphor Dosimetry

    NASA Astrophysics Data System (ADS)

    Frye, Douglas Mahaffey Danks

    The feasibility of employing alkaline earth sulfide based photostimulable storage phosphors for relative dosimetry in radiation oncology has been investigated. The dosimetric characteristics, radiologic characteristics, and spacial sensitivity of calcium sulfide and strontium sulfide based phosphors were determined. Dosimetric characteristics were explored by cavity theory calculation, Monte Carlo simulation, and physical measurement. Dosimetric characteristics obtained with cavity theory and Monte Carlo simulations agree well. The dose perturbation of the phosphor base materials were comparable to those produced by clinical dosimeter materials over the energy region employed in radiation oncology. Dose perturbation in regions downstream of the phosphor were measured with a variety of clinical dosimeters and compared with simulation results. The results of the measurements and simulations agreed within the uncertainty levels of the simulations and the measurements. Radiological characteristics of sensitivity, fading, dose response, dose rate response, and energy dependence of response were studied with an experimental phosphor output reader. Relative sensitivity was found to be dependent upon the mass thickness of phosphor layer. Fading was quantified for the calcium sulfide phosphor, with a half time of 2300 minutes. The strontium sulfide sample exhibited some fading, however, the regression lines yielded low correlation coefficients. A linear dose response over the range of doses employed in radiation oncology was obtained for both phosphors. No significant dose rate dependence of response was measured for the phosphors. The phosphor's energy dependence of response paralleled the dose perturbation relative to water predicted by cavity theory and simulations. Spatial sensitivity was demonstrated with an experimental phosphor scanner. The phosphors exhibited spatial sensitivity, however, infrared scattering/piping in the transparent substrate appeared to cause

  16. Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics

    SciTech Connect

    McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

    2008-07-25

    Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption.

  17. Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy.

    PubMed

    Goodsitt, Mitchell M; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K

    2014-05-01

    To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2-1.3 times greater in the medium body than in the small body phantom and 1.3-1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6-1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3-2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited

  18. Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy

    SciTech Connect

    Goodsitt, Mitchell M. Shenoy, Apeksha; Howard, David; Christodoulou, Emmanuel; Dewaraja, Yuni K.; Shen, Jincheng; Schipper, Matthew J.; Wilderman, Scott; Chun, Se Young

    2014-05-15

    Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results

  19. Determining superficial dosimetry for the internal canthus from the Monte Carlo simulation of kV photon and MeV electron beams.

    PubMed

    Currie, B E

    2009-06-01

    This paper presents the findings of an investigation into the Monte Carlo simulation of superficial cancer treatments of an internal canthus site using both kilovoltage photons and megavoltage electrons. The EGSnrc system of codes for the Monte Carlo simulation of the transport of electrons and photons through a phantom representative of either a water phantom or treatment site in a patient is utilised. Two clinical treatment units are simulated: the Varian Medical Systems Clinac 2100C accelerator for 6 MeV electron fields and the Pantak Therapax SXT 150 X-ray unit for 100 kVp photon fields. Depth dose, profile and isodose curves for these simulated units are compared against those measured by ion chamber in a PTW Freiburg MP3 water phantom. Good agreement was achieved away from the surface of the phantom between simulated and measured data. Dose distributions are determined for both kV photon and MeV electron fields in the internal canthus site containing lead and tungsten shielding, rapidly sloping surfaces and different density interfaces. There is a relatively high level of deposition of dose in tissue-bone and tissue-cartilage interfaces in the kV photon fields in contrast to the MeV electron fields. This is reflected in the maximum doses in the PTV of the internal canthus field being 12 Gy for kV photons and 4.8 Gy for MeV electrons. From the dose distributions, DVH and dose comparators are used to assess the simulated treatment fields. Any indication as to which modality is preferable to treat the internal canthus requires careful consideration of many different factors, this investigation provides further perspective in being able to assess which modality is appropriate.

  20. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  1. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  2. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  3. Instrumental carbon monoxide dosimetry.

    PubMed

    Stetter, J R; Rutt, D R

    1980-10-01

    Modern technology for the ambient monitoring of carbon monoxide has been developed to produce a portable electrochemical instrument capable of the personal exposure to carbon monoxide. The performance characteristics of this device have been studied so that the unambiguous interpretation of field data could be performed. A study of the carbon monoxide exposure in a light manufacturing facility illustrate that effective dosimetry can be performed with expectations of accuracy typically better than +/- 15%, and that voluntary carbon monoxide exposures such as smoking were a significant contribution to the individual's exposure. Significant definition of the carbon monoxide exposure profile can be achieved with an instrument approach to the collection of the dosimetric data.

  4. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.

    PubMed

    Hadid, L; Desbrée, A; Schlattl, H; Franck, D; Blanchardon, E; Zankl, M

    2010-07-07

    The emission of radiation from a contaminated body region is connected with the dose received by radiosensitive tissue through the specific absorbed fractions (SAFs) of emitted energy, which is therefore an essential quantity for internal dose assessment. A set of SAFs were calculated using the new adult reference computational phantoms, released by the International Commission on Radiological Protection (ICRP) together with the International Commission on Radiation Units and Measurements (ICRU). Part of these results has been recently published in ICRP Publication 110 (2009 Adult reference computational phantoms (Oxford: Elsevier)). In this paper, we mainly discuss the results and also present them in numeric form. The emission of monoenergetic photons and electrons with energies ranging from 10 keV to 10 MeV was simulated for three source organs: lungs, thyroid and liver. SAFs were calculated for four target regions in the body: lungs, colon wall, breasts and stomach wall. For quality assurance purposes, the simulations were performed simultaneously at the Helmholtz Zentrum München (HMGU, Germany) and at the Institute for Radiological Protection and Nuclear Safety (IRSN, France), using the Monte Carlo transport codes EGSnrc and MCNPX, respectively. The comparison of results shows overall agreement for photons and high-energy electrons with differences lower than 8%. Nevertheless, significant differences were found for electrons at lower energy for distant source/target organ pairs. Finally, the results for photons were compared to the SAF values derived using mathematical phantoms. Significant variations that can amount to 200% were found. The main reason for these differences is the change of geometry in the more realistic voxel body models. For electrons, no SAFs have been computed with the mathematical phantoms; instead, approximate formulae have been used by both the Medical Internal Radiation Dose committee (MIRD) and the ICRP due to the limitations imposed

  5. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons

    NASA Astrophysics Data System (ADS)

    Hadid, L.; Desbrée, A.; Schlattl, H.; Franck, D.; Blanchardon, E.; Zankl, M.

    2010-07-01

    The emission of radiation from a contaminated body region is connected with the dose received by radiosensitive tissue through the specific absorbed fractions (SAFs) of emitted energy, which is therefore an essential quantity for internal dose assessment. A set of SAFs were calculated using the new adult reference computational phantoms, released by the International Commission on Radiological Protection (ICRP) together with the International Commission on Radiation Units and Measurements (ICRU). Part of these results has been recently published in ICRP Publication 110 (2009 Adult reference computational phantoms (Oxford: Elsevier)). In this paper, we mainly discuss the results and also present them in numeric form. The emission of monoenergetic photons and electrons with energies ranging from 10 keV to 10 MeV was simulated for three source organs: lungs, thyroid and liver. SAFs were calculated for four target regions in the body: lungs, colon wall, breasts and stomach wall. For quality assurance purposes, the simulations were performed simultaneously at the Helmholtz Zentrum München (HMGU, Germany) and at the Institute for Radiological Protection and Nuclear Safety (IRSN, France), using the Monte Carlo transport codes EGSnrc and MCNPX, respectively. The comparison of results shows overall agreement for photons and high-energy electrons with differences lower than 8%. Nevertheless, significant differences were found for electrons at lower energy for distant source/target organ pairs. Finally, the results for photons were compared to the SAF values derived using mathematical phantoms. Significant variations that can amount to 200% were found. The main reason for these differences is the change of geometry in the more realistic voxel body models. For electrons, no SAFs have been computed with the mathematical phantoms; instead, approximate formulae have been used by both the Medical Internal Radiation Dose committee (MIRD) and the ICRP due to the limitations imposed

  6. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  7. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  8. Third conference on radiation protection and dosimetry. Program and abstracts

    SciTech Connect

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  9. USF/Russian dosimetry on STS-57

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The major purpose of this experiment was to conduct an international comparison of passive dosimetry methods in space. Two APD's were flown in the charged particle directional spectrometer (CPDS)/tissue equivalent proportional counter (TEPC) locker on the space shuttle during the STS-57 mission. Due to placement, the shielding and radiation environment of the APD's were nearly the same and the dosimeters distributed in the two boxes can be considered equally exposed. The dosimeter types included plastic nuclear track detectors (PNTD's), thermoluminescent detectors (TLD), nuclear emulsions, and thermal/resonance neutron detectors (TRND's). The USF dosimeters included PNTD's, TLD's, and TRND's, while the Russian dosimeters included PNTD's, TLD's, and nuclear emulsions.

  10. Relationship between student selection criteria and learner success for medical dosimetry students.

    PubMed

    Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela

    2016-01-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student׳s previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant׳s undergraduate cumulative GPA and increase the weight assigned to previous degrees.

  11. Relationship between student selection criteria and learner success for medical dosimetry students

    SciTech Connect

    Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela

    2016-04-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student's previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant's undergraduate cumulative GPA and increase the weight assigned to previous degrees.

  12. PET/CT-Based Dosimetry in 90Y-Microsphere Selective Internal Radiation Therapy: Single Cohort Comparison With Pretreatment Planning on (99m)Tc-MAA Imaging and Correlation With Treatment Efficacy.

    PubMed

    Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook

    2015-06-01

    ⁹⁰Y PET/CT can be acquired after ⁹⁰Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using ⁹⁰Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from (99m)Tc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. (99m)Tc-MAA was injected during planning angiography and whole body (99m)Tc-MAA scan and liver SPECT/CT were acquired. After SIRT using ⁹⁰Y-resin microsphere, ⁹⁰Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT results. Lung shunt fraction was overestimated on (99m)Tc-MAA scan compared with ⁹⁰Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from (99m)Tc-MAA SPECT/CT was significantly lower than that from ⁹⁰Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on (99m)Tc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on ⁹⁰Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20

  13. Patient dosimetry in nuclear medicine.

    PubMed

    Mattsson, Sören

    2015-07-01

    In diagnostic nuclear medicine, the biokinetics of the radiopharmaceutical (actually of the radionuclide) is determined for a number of representative patients. At therapy, it is essential to determine the patient's individual biokinetics of the radiopharmaceutical in order to calculate the absorbed doses to critical normal organs/tissues and to the target volume(s) with high accuracy. For the diagnostic situations, there is still a lack of quantitative determinations of the organ/tissue contents of radiopharmaceuticals and their variation with time. Planar gamma camera imaging using the conjugate view technique combined with a limited number of SPECT/CT images is the main method for such studies. In a similar way, PET/CT is used for 3D image-based internal dosimetry for PET substances. The transition from stylised reference phantoms to voxel phantoms will lead to improved dose estimates for diagnostic procedures. Examples of dose coefficients and effective doses for diagnostic substances are given. For the therapeutic situation, a pre-therapeutic low activity administration is used for quantitative measurements of organ/tissue distribution data by a gamma camera or a SPECT- or PET-unit. Together with CT and/or MR images this will be the base for individual dose calculations using Monte Carlo technique. Treatments based on administered activity should only be used if biological variations between patients are small or if a pre-therapeutic activity administration is impossible.

  14. EVA dosimetry in manned spacecraft.

    PubMed

    Thomson, I

    1999-12-06

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space.

  15. Dosimetry for Small and Nonstandard Fields

    NASA Astrophysics Data System (ADS)

    Junell, Stephanie L.

    The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition

  16. Breast dosimetry in clinical mammography

    NASA Astrophysics Data System (ADS)

    Benevides, Luis Alberto Do Rego

    The objective of this study was show that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. In the study, AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The protocol proposes the use of a fiber-optic coupled (FOCD) or Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeter to measure the entrance skin exposure at the time of the mammogram without interfering with diagnostic information of the mammogram. The study showed that FOCD had sensitivity with less than 7% energy dependence, linear in all tube current-time product stations, and was reproducible within 2%. FOCD was superior to MOSFET dosimeter in sensitivity, reusability, and reproducibility. The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. In addition, the study population anthropometric

  17. Three-dimensional personalized dosimetry for 188Re liver selective internal radiation therapy based on quantitative post-treatment SPECT studies

    NASA Astrophysics Data System (ADS)

    Shcherbinin, S.; Grimes, J.; Bator, A.; Cwikla, J. B.; Celler, A.

    2014-01-01

    We demonstrate that accurate patient-specific distributions of microspheres labeled with 188Re and resulting absorbed doses can be obtained from single-photon emission computed tomography (SPECT) studies performed after 188Re selective internal radiation therapy when accurate correction methods are employed in image reconstruction. Our quantitative image reconstruction algorithm includes corrections for attenuation, resolution degradations and scatter as well as a window-based compensation for contamination. The procedure has been validated using four phantom experiments containing an 18 ml cylindrical source (82-93 MBq of 188Re activity) simulating a liver tumor. In addition, we applied our approach to post-therapy SPECT studies of ten patients with progressive primary or metastatic liver carcinomas. Our quantitative algorithm accurately (within 9%) recovered 188Re activity from four phantom experiments. In addition, for two patients that received three scans, deviations remained consistent between the measured and the reconstructed activities that were determined from studies with differing severity of the dead-time effect. The analysis of absorbed doses for patient studies allowed us to hypothesize that D90 (the minimum dose received by 90% of the tumor volume) may be a reliable metric relating therapy outcomes to the calculated doses. Among several considered metrics, only D90 showed statistically significant correlation with the overall survival.

  18. Radioembolization Dosimetry: The Road Ahead

    SciTech Connect

    Smits, Maarten L. J. Elschot, Mattijs; Sze, Daniel Y.; Kao, Yung H.; Nijsen, Johannes F. W.; Iagaru, Andre H.; Jong, Hugo W. A. M. de; Bosch, Maurice A. A. J. van den; Lam, Marnix G. E. H.

    2015-04-15

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  19. Radioembolization dosimetry: the road ahead.

    PubMed

    Smits, Maarten L J; Elschot, Mattijs; Sze, Daniel Y; Kao, Yung H; Nijsen, Johannes F W; Iagaru, Andre H; de Jong, Hugo W A M; van den Bosch, Maurice A A J; Lam, Marnix G E H

    2015-04-01

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  20. Linking fate model in freshwater and PBPK model to assess human internal dosimetry of B(a)P associated with drinking water.

    PubMed

    Ciffroy, Philippe; Tanaka, T; Johansson, E; Brochot, C

    2011-08-01

    In the present study, we demonstrate an integrated modeling approach for predicting internal tissue concentrations of chemicals by coupling a multimedia environmental model and a generic physiologically based pharmacokinetic (PBPK) model. A case study was designed for a region situated on the Seine river watershed, downstream of the Paris megacity, and for benzo(a)pyrene emitted from industrial zones in the region. In this case study, these two models are linked only by water intake from riverine system for the multimedia model into human body for the PBPK model. The limited monitoring data sets of B(a)P concentrations in bottom sediment and in raw river water, obtained at the downstream of Paris, were used to re-construct long-term daily concentrations of B(a)P in river water. The re-construction of long-term series of B(a)P level played a key role for the intermediate model calibration (conducted in multimedia model) and thus for improving model input to PBPK model. In order to take into account the parametric uncertainty in the model inputs, some input parameters relevant for the multimedia model were given by probability density functions (PDFs); some generic PDFs were updated with site-specific measurements by a Bayesian approach. The results of this study showed that the multimedia model fits well with actual annual measurements in sediments over one decade. No accumulation of B(a)P in the organs was observed. In conclusion, this case study demonstrated the feasibility of a full-chain assessment combining multimedia environmental predictions and PBPK modeling, including uncertainty and sensitivity analyses.

  1. Remote optical fiber dosimetry

    NASA Astrophysics Data System (ADS)

    Huston, A. L.; Justus, B. L.; Falkenstein, P. L.; Miller, R. W.; Ning, H.; Altemus, R.

    2001-09-01

    Optical fibers offer a unique capability for remote monitoring of radiation in difficult-to-access and/or hazardous locations. Optical fiber sensors can be located in radiation hazardous areas and optically interrogated from a safe distance. A variety of remote optical fiber radiation dosimetry methods have been developed. All of the methods take advantage of some form of radiation-induced change in the optical properties of materials such as: radiation-induced darkening due to defect formation in glasses, luminescence from native defects or radiation-induced defects, or population of metastable charge trapping centers. Optical attenuation techniques are used to measure radiation-induced darkening in fibers. Luminescence techniques include the direct measurement of scintillation or optical excitation of radiation-induced luminescent defects. Optical fiber radiation dosimeters have also been constructed using charge trapping materials that exhibit thermoluminescence or optically stimulated luminescence (OSL).

  2. Fundamentals of Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  3. Dosimetry considerations in phototherapy

    SciTech Connect

    Profio, A.E.; Doiron, D.R.

    1981-03-01

    Dosimetry in phototherapy involves a determination of the energy absorbed per unit mass of tissue, corrected for the quantum yield in a photochemical reaction. The dose rate in photochemotherapy of cancer with hematoporphyrin derivative and visible light is related to the extinction coefficient, quantum yield for singlet oxygen production, concentration of sensitizer and energy flux density at depth. Data or methods of determining these quantities are presented. Calculations have been performed for the energy flux density at depth, as a function of the total attenuation coefficient and ratio of scattering coefficient to total attenuation coefficient, for isotropic scattering in slab geometry. For small absorption, these depth dose curves exhibit a maximum within the tissue followed by an exponential decrease.

  4. Fundamentals of Radiation Dosimetry

    SciTech Connect

    Bos, Adrie J. J.

    2011-05-05

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  5. Selected techniques in radioecology: Model development and comparison for internal dosimetry of rainbow trout (Oncorhynchus mykiss) and feasibiltiy assessment of reflectance spectroscopy use as a tool in phytoremediation

    NASA Astrophysics Data System (ADS)

    Martinez, Nicole

    The first study in Part 1 examines the effects of lake tropic structure on the uptake of iodine-131 (131I) in rainbow trout (Oncorhynchus mykiss) and considers a simple computational model for the estimation of resulting radiation dose. Iodine-131 is a major component of the atmospheric releases following reactor accidents, and the passage of 131I through food chains from grass to human thyroids has been extensively studied. By comparison, the fate and effects of 131I deposition onto lakes and other aquatic systems has been less studied. In this study we reanalyze 1960s data from experimental releases of 131I into two small lakes and compare the effects of differences in lake trophic structures on 131I accumulation in fish. The largest concentrations in the thyroids of trout may occur from 8 to 32 days post initial release. DCFs for trout for whole body as well as thyroid were computed using Monte Carlo modeling with an anatomically-appropriate model of trout thyroid structure. Activity concentration data was used in conjunction with the calculated DCFs to estimate dose rates and ultimately determine cumulative radiation dose (Gy) to the thyroids after 32 days. The estimated cumulative thyroid doses at 32 days post-release ranged from 6 mGy to 18 mGy per 1 Bq mL-1 of initial 131I in the water, depending upon fish size. The subsequent studies in Part 1 seek to develop and compare different, increasingly detailed anatomical phantoms for O. mykiss for the purpose of estimating organ radiation dose and dose rates from 131I uptake and from molybdenum-99 (99Mo) uptake. Model comparison and refinement is important to the process of determining both dose rates and dose effects, and we develop and compare three models for O. mykiss: a simplistic geometry considering a single organ, a more specific geometry employing anatomically relevant organ size and location, and voxel reconstruction of internal anatomy obtained from CT imaging (referred to as CSUTROUT). Dose Conversion

  6. GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    SciTech Connect

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

  7. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 2, Users' manual: Hanford Environmental Dosimetry Upgrade Project

    SciTech Connect

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-11-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. This second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The first volume describes the theoretical considerations of the system. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 27 refs., 17 figs., 23 tabs.

  8. Initial radiation dosimetry at Hiroshima and Nagasaki

    SciTech Connect

    Loewe, W.E.

    1983-09-01

    The dosimetry of A-bomb survivors at Hiroshima and Nagasaki is discussed in light of the new dosimetry developed in 1980 by the author. The important changes resulting from the new dosimetry are the ratios of neutron to gamma doses, particularly at Hiroshima. The implications of these changes in terms of epidemiology and radiation protection standards are discussed. (ACR)

  9. Nuclear accident dosimetry intercomparison studies.

    PubMed

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.

  10. New developments in internal dosimetry models.

    PubMed

    Nosske, D; Blanchardon, E; Bolch, W E; Breustedt, B; Eckerman, K F; Giussani, A; Harrison, J D; Klein, W; Leggett, R W; Lopez, M A; Luciani, A; Zankl, M

    2011-03-01

    This paper describes new biokinetic and dosimetric models, especially those being developed by ICRP which will be used in the forthcoming documents on Occupational Intakes of Radionuclides. It also presents the results of a working group within the European project CONRAD which is being continued within EURADOS. This group is implementing the new models, performing quality assurance of the model implementation (including their description) and giving guidance to the scientific community on the application of the models for individual dose assessment.

  11. Design and operation of internal dosimetry programs

    SciTech Connect

    LaBone, T.R.

    1991-01-01

    The proposed revision to USNRC 10 CFR 20 and the USDOE Order 5480.11 require intakes of radioactive material to be evaluated. Radiation dose limits are based on the sum of effective dose equivalent from intakes and the whole body dose from external sources. These significant changes in the regulations will require, at a minimum, a complete review of personnel monitoring programs to determine their adequacy. In this session we will review a systematic method of designing a routine personnel monitoring program that will comply with the requirements of the new regulations. Specific questions discussed are: (a) What are the goals and objectives of a routine personnel monitoring program (b) When is a routine personnel monitoring program required (c) What are the required capabilities of the routine personnel monitoring program (d) What should be done with the information generated in a personnel monitoring program Specific recommendations and interpretations are given in the session. 5 refs., 3 figs., 33 tabs.

  12. Studies in Ultrasonic Dosimetry.

    NASA Astrophysics Data System (ADS)

    Zitouni, Abderrachid

    The widespread use of ultrasonic devices in both industry and medicine confirms the great importance of ultrasound as a source of nonionizing radiation. The biological effects of this type of radiation are not completely known up to today, and the need for proper dosimetry is evident. Previous work in the field has been limited to the determination of ultrasonic energy deposition by attenuation measurements of traveling sound waves in homogenized specimens. Alternatively, observed effects were correlated to the output of the source. The objective of this work was to correlate the absorption properties of sound absorbing media to their elastic properties and deduce a correlation between the sonic absorption coefficient and the corresponding Young's modulus. Energy deposition measurements were performed in isotropic rubber samples and in anisotropic meat specimens by the use of the thermocouple probe method which measures the absorbed energy directly. Elasticity measurements were performed for the different types of materials used. The Young's modulus for each type was deduced from defletion measurements on rectangular strips when subjected to successive forces of varying magnitude. The final experimental results showed the existence of a linear relationship between the absorption coefficient of a given elastic material and the inverse square root of its Young's modulus.

  13. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”

    PubMed Central

    Bodei, L.; Giammarile, F.; Linden, O.; Luster, M.; Oyen, W. J. G.; Tennvall, J.

    2007-01-01

    Introduction Radionuclide therapy has distinct similarities to, but also profound differences from external radiotherapy. Review This review discusses techniques and results of previously developed dosimetry methods in thyroid carcinoma, neuro-endocrine tumours, solid tumours and lymphoma. In each case, emphasis is placed on the level of evidence and practical applicability. Although dosimetry has been of enormous value in the preclinical phase of radiopharmaceutical development, its clinical use to optimise administered activity on an individual patient basis has been less evident. In phase I and II trials, dosimetry may be considered an inherent part of therapy to establish the maximum tolerated dose and dose–response relationship. To prove that dosimetry-based radionuclide therapy is of additional benefit over fixed dosing or dosing per kilogram body weight, prospective randomised phase III trials with appropriate end points have to be undertaken. Data in the literature which underscore the potential of dosimetry to avoid under- and overdosing and to standardise radionuclide therapy methods internationally are very scarce. Developments In each section, particular developments and insights into these therapies are related to opportunities for dosimetry. The recent developments in PET and PET/CT imaging, including micro-devices for animal research, and molecular medicine provide major challenges for innovative therapy and dosimetry techniques. Furthermore, the increasing scientific interest in the radiobiological features specific to radionuclide therapy will advance our ability to administer this treatment modality optimally. PMID:17268773

  14. In vivo dosimetry with silicon diodes in total body irradiation

    NASA Astrophysics Data System (ADS)

    Oliveira, F. F.; Amaral, L. L.; Costa, A. M.; Netto, T. G.

    2014-02-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments.

  15. Education and training activities on personal dosimetry service in Turkey.

    PubMed

    Tugrul Zeyrek, C; Akbiyik, Hayri

    2013-10-01

    A personal dosimetry service that evaluates the occupational doses for external and internal radiation of the radiation workers is one of the main components of radiation protection programme. The education and training (E&T) activities in this field are basic aspects of the optimisation of all exposures to radiation. The E&T activities in the field of occupational radiation protection at the national and international level are of main interest and implemented by the Ankara Nuclear Research and Training Center. This study describes the Turkish experience in E&T of the staff of dosimetry services, postgraduate students and medical physics experts. In Turkey, the first individual monitoring training course was conducted in 2012. The aim of this study is to provide a structured description of postgraduate courses that are addressed to qualified experts and medical physics experts, and the modules are mainly dedicated to individual monitoring.

  16. Methods and computer readable medium for improved radiotherapy dosimetry planning

    DOEpatents

    Wessol, Daniel E.; Frandsen, Michael W.; Wheeler, Floyd J.; Nigg, David W.

    2005-11-15

    Methods and computer readable media are disclosed for ultimately developing a dosimetry plan for a treatment volume irradiated during radiation therapy with a radiation source concentrated internally within a patient or incident from an external beam. The dosimetry plan is available in near "real-time" because of the novel geometric model construction of the treatment volume which in turn allows for rapid calculations to be performed for simulated movements of particles along particle tracks therethrough. The particles are exemplary representations of alpha, beta or gamma emissions emanating from an internal radiation source during various radiotherapies, such as brachytherapy or targeted radionuclide therapy, or they are exemplary representations of high-energy photons, electrons, protons or other ionizing particles incident on the treatment volume from an external source. In a preferred embodiment, a medical image of a treatment volume irradiated during radiotherapy having a plurality of pixels of information is obtained.

  17. Liulin-type spectrometry-dosimetry instruments.

    PubMed

    Dachev, Ts; Dimitrov, Pl; Tomov, B; Matviichuk, Yu; Spurny, F; Ploc, O; Brabcova, K; Jadrnickova, I

    2011-03-01

    The main purpose of Liulin-type spectrometry-dosimetry instruments (LSDIs) is cosmic radiation monitoring at the workplaces. An LSDI functionally is a low mass, low power consumption or battery-operated dosemeter. LSDIs were calibrated in a wide range of radiation fields, including radiation sources, proton and heavy-ion accelerators and CERN-EC high-energy reference field. Since 2000, LSDIs have been used in the scientific programmes of four manned space flights on the American Laboratory and ESA Columbus modules and on the Russian segment of the International Space Station, one Moon spacecraft and three spacecraft around the Earth, one rocket, two balloons and many aircraft flights. In addition to relative low price, LSDIs have proved their ability to qualify the radiation field on the ground and on the above-mentioned carriers.

  18. A report on the implementation aspects of the International Atomic Energy Agency's first doctoral coordinated research project, "Management of liver cancer using radionuclide methods with special emphasis on trans-arterial radio-conjugate therapy and internal dosimetry".

    PubMed

    Padhy, Ajit Kumar; Dondi, Maurizio

    2008-03-01

    Liver cancer is one of the most dreaded cancers, and it is highly prevalent in the developing countries, where the resources are extremely scarce to deal with this disease using the current commercially available and expensive therapeutic radiopharmaceuticals. The International Atomic Energy Agency (IAEA), in pursuit of its mandate to promote the application of nuclear technology in the health care in its Member States, has developed and clinically evaluated a new and cost-effective therapeutic radio-conjugate, rhenium-188 ((188)Re)-lipiodol for the treatment of hepatocellular carcinoma through its first Doctoral Coordinated Research Project. The ready availability of no-carrier-added (188)Re from the tungsten-188/(188)Re generator represents a potentially important source of a therapeutic radioisotope for a broad range of therapeutic applications in nuclear medicine. The alumina-based tungsten-188/(188)Re generator system comes with reasonable cost and exhibits attractive therapeutic properties, excellent performance and very long useful shelf-life. Because of the long shelf-life of several months, the use of this generator offers a unique opportunity for the cost-effective and routine availability of a versatile therapeutic radioisotope on an on-demand basis. Further, using its extensive global network and outreach, the IAEA has also transferred the technology of the in-house preparation and use of (188)Re-labeled lipiodol to many institutions around the world, which can now prepare (188)Re-labeled lipiodol in their own radiopharmacy laboratories and treat patients. This effort of the IAEA in trying to address some of the challenges of liver cancer therapy in developing countries has been and truly a global venture with involvement and contributions from several organizations, institutions and numerous individuals. This article discusses some of the implementation aspects of this very important activity of the Agency.

  19. Monoclonal antibodies for copper-64 PET dosimetry and radioimmunotherapy.

    PubMed

    Bryan, Jeffrey N; Jia, Fang; Mohsin, Huma; Sivaguru, Geethapriya; Anderson, Carolyn J; Miller, William H; Henry, Carolyn J; Lewis, Michael R

    2011-06-15

    We previously described a two-antibody model of (64)Cu radioimmunotherapy to evaluate low-dose, solid-tumor response. This model was designed to test the hypothesis that cellular internalization is critical in causing tumor cell death by mechanisms in addition to radiation damage. The purpose of the present study was to estimate radiation dosimetry for both antibodies (mAbs) using positron emission tomography (PET) imaging, and evaluate the effect of internalization on tumor growth. Dosimetry was similar between therapy groups. Median time to tumor progression to 1 g ranged from 7 to 12 days for control groups and was 32 days for both treatment groups (p < 0.0001). No statistically significant difference existed between any control group or between the treatment groups. In female nude mice bearing LS174T colon carcinoma xenografts, tumor dosimetry was calculated using serial PET images of three mice in each group of either internalizing (64)Cu-labeled DOTA-cBR96 (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) or non-internalizing (64)Cu-labeled DOTA-cT84.66 from 3 to 48 h. For the therapy study, controls (n = 10) received saline, DOTA-cBR96, or DOTA-cT84.66. Treatment animals (n = 9) received 0.890 mCi of (64)Cu-labeled DOTA-cBR96 or 0.710 mCi of (64)Cu-labeled DOTA-cT84.66. Tumors were measured daily. PET imaging allows the use of (64)Cu for pre-therapy calculation of tumor dosimetry. In spite of highly similar tumor dosimetry, an internalizing antibody did not improve the outcome of (64)Cu radioimmunotherapy. Radioresistance of this tumor cell line and copper efflux may have confounded the study. Further investigations of the 2 therapeutic efficacy of (64)Cu-labeled mAbs will focus on interaction between (64)Cu and tumor suppressor genes and copper chaperones.

  20. Unexplained overexposures on physical dosimetry reported by biological dosimetry.

    PubMed

    Montoro, A; Almonacid, M; Villaescusa, J I; Verdu, G

    2009-01-01

    The Medical Service of the Radiation Protection Service from the University Hospital La Fe (Valencia, Spain), carries out medical examinations of the workers occupationally exposed to ionising radiation. The Biological Dosimetry Laboratory is developing its activity since 2001. Up to now, the activities have been focused in performing biological dosimetry studies of Interventionists workers from La Fe Hospital. Recently, the Laboratory has been authorized by the Health Authority in the Valencian Community. Unexplained overexposures of workers and patients are also studied. Workers suspected of being overexposed to ionising radiation were referred for investigation by cytogenetic analysis. Two of these were from Hospitals of the Valencian Community and one belonged to an uranium mine from Portugal. Hospital workers had a physical dose by thermoluminiscence dosimeters (TLD) that exceeded the established limit. The worker of the uranium mine received a dose from a lost source of Cesium 137 with an activity of 170 mCi. All three cases showed normal values after the hematological analysis. Finally, the aim of this study consist to determine whether the dose showed by the dosimeter is reliable or not. In the case of workers that wore dosimeter, it is concluded that the doses measured by dosimeter are not corresponding to real doses. Hospital worker with a physical dose of 2.6 Sv and 0.269 Sv had an estimated absorbed dose by biological dosimetry of 0.076 Gy (0-0.165 Gy) and 0 Gy (0-0.089 Gy), respectively. In case of the mine worker an estimated absorbed dose of 0.073 Gy (0-0.159 Gy) was obtained by biological dosimetry. In all cases we used the odds ratio to present the results due to a very low frequency of observed aberrations [1].

  1. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    SciTech Connect

    Veinot, K. G.

    2011-10-12

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  2. Dosimetry of Radiopharmaceuticals for Diagnostic and Therapeutic Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Smart, Richard

    2011-05-01

    A standard formalism for radionuclide internal radiation dosimetry was developed in the 1960s and continues to be refined today. Early work was based on a mathematical phantom but this is being replaced by phantoms developed from whole-body CT scans to give more realistic dose estimates. The largest contributors to the uncertainties in these dose estimates are the errors associated with in vivo activity quantitation, the variability of the biokinetics between patients and the limited information that can be obtained on these kinetics in individual patients. Despite these limitations, pre-treatment patient-specific dosimetry is being increasing used, particularly to limit the toxicity to non-target organs such as the bone marrow.

  3. Dosimetry of Radiopharmaceuticals for Diagnostic and Therapeutic Nuclear Medicine

    SciTech Connect

    Smart, Richard

    2011-05-05

    A standard formalism for radionuclide internal radiation dosimetry was developed in the 1960s and continues to be refined today. Early work was based on a mathematical phantom but this is being replaced by phantoms developed from whole-body CT scans to give more realistic dose estimates. The largest contributors to the uncertainties in these dose estimates are the errors associated with in vivo activity quantitation, the variability of the biokinetics between patients and the limited information that can be obtained on these kinetics in individual patients. Despite these limitations, pre-treatment patient-specific dosimetry is being increasing used, particularly to limit the toxicity to non-target organs such as the bone marrow.

  4. Dosimetry using MRI: can it really be that difficult?

    NASA Astrophysics Data System (ADS)

    Doran, Simon J.

    2017-05-01

    Magnetic resonance imaging (MRI) has been used in gel dosimetry from the very first studies back in the 1980s. Almost all the imaging problems that we still encounter were known about at that time and many were described in the proceedings of the very first International Workshop on Radiation Therapy Gel Dosimetry (DOSGEL ‘99). The quality of MRI scanners has improved enormously in the intervening two decades, so why are there still issues? This review will draw on the wealth of previously presented material from the literature to attempt to answer this question. The reference list provides a “starter pack” that should be viewed as a “jumping off point” for further investigations by the reader, rather than an exhaustive summary of what is a large domain of work.

  5. A new technique for dosimetry reaction cross-section evaluation

    SciTech Connect

    Badikov, S.A.

    2011-07-01

    Document available in abstract form only, full text of document follows: An objective of this paper is a unification of the procedure for dosimetry reaction cross-section evaluation. A set of requirements for the unified evaluation procedure is presented. A new code (ORTHO) was developed in order to meet these requirements. A statistical model, an algorithm, and the basic formulae employed in the code are described. The code was used for Ti48(n,p) reaction cross-section evaluation. The results of the evaluation are compared to International Reactor Dosimetry File (IRDF)-2002 data. The evaluated cross-sections and their correlations from this work are in good agreement with the IRDF-2002 evaluated data, whereas the uncertainties of the evaluated cross-sections are inconsistent. (authors)

  6. Advanced dosimetry systems for the space transport and space station

    NASA Technical Reports Server (NTRS)

    Wailly, L. F.; Schneider, M. F.; Clark, B. C.

    1972-01-01

    Advanced dosimetry system concepts are described that will provide automated and instantaneous measurement of dose and particle spectra. Systems are proposed for measuring dose rate from cosmic radiation background to greater than 3600 rads/hr. Charged particle spectrometers, both internal and external to the spacecraft, are described for determining mixed field energy spectra and particle fluxes for both real time onboard and ground-based computer evaluation of the radiation hazard. Automated passive dosimetry systems consisting of thermoluminescent dosimeters and activation techniques are proposed for recording the dose levels for twelve or more crew members. This system will allow automatic onboard readout and data storage of the accumulated dose and can be transmitted to ground after readout or data records recovered with each crew rotation.

  7. EPR dosimetry in a mixed neutron and gamma radiation field.

    PubMed

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques.

  8. CIEMAT EXTERNAL DOSIMETRY SERVICE: ISO/IEC 17025 ACCREDITATION AND 3 Y OF OPERATIONAL EXPERIENCE AS AN ACCREDITED LABORATORY.

    PubMed

    Romero, A M; Rodríguez, R; López, J L; Martín, R; Benavente, J F

    2016-09-01

    In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. I-124 Imaging and Dosimetry

    PubMed Central

    Kuker, Russ; Sztejnberg, Manuel; Gulec, Seza

    2017-01-01

    Although radioactive iodine imaging and therapy are one of the earliest applications of theranostics, there still remain a number of unresolved clinical questions as to the optimization of diagnostic techniques and dosimetry protocols. I-124 as a positron emission tomography (PET) radiotracer has the potential to improve the current clinical practice in the diagnosis and treatment of differentiated thyroid cancer. The higher sensitivity and spatial resolution of PET/computed tomography (CT) compared to standard gamma scintigraphy can aid in the detection of recurrent or metastatic disease and provide more accurate measurements of metabolic tumor volumes. However the complex decay schema of I-124 poses challenges to quantitative PET imaging. More prospective studies are needed to define optimal dosimetry protocols and to improve patient-specific treatment planning strategies, taking into account not only the absorbed dose to tumors but also methods to avoid toxicity to normal organs. A historical perspective of I-124 imaging and dosimetry as well as future concepts are discussed. PMID:28117290

  10. I-124 Imaging and Dosimetry.

    PubMed

    Kuker, Russ; Sztejnberg, Manuel; Gulec, Seza

    2016-01-05

    Although radioactive iodine imaging and therapy are one of the earliest applications of theranostics, there still remain a number of unresolved clinical questions as to the optimization of diagnostic techniques and dosimetry protocols. I-124 as a positron emission tomography (PET) radiotracer has the potential to improve the current clinical practice in the diagnosis and treatment of differentiated thyroid cancer. The higher sensitivity and spatial resolution of PET/computed tomography (CT) compared to standard gamma scintigraphy can aid in the detection of recurrent or metastatic disease and provide more accurate measurements of metabolic tumor volumes. However the complex decay schema of I-124 poses challenges to quantitative PET imaging. More prospective studies are needed to define optimal dosimetry protocols and to improve patient-specific treatment planning strategies, taking into account not only the absorbed dose to tumors but also methods to avoid toxicity to normal organs. A historical perspective of I-124 imaging and dosimetry as well as future concepts are discussed.

  11. Small fields: Nonequilibrium radiation dosimetry

    SciTech Connect

    Das, Indra J.; Ding, George X.; Ahnesjoe, Anders

    2008-01-15

    Advances in radiation treatment with beamlet-based intensity modulation, image-guided radiation therapy, and stereotactic radiosurgery (including specialized equipments like CyberKnife, Gamma Knife, tomotherapy, and high-resolution multileaf collimating systems) have resulted in the use of reduced treatment fields to a subcentimeter scale. Compared to the traditional radiotherapy with fields {>=}4x4 cm{sup 2}, this can result in significant uncertainty in the accuracy of clinical dosimetry. The dosimetry of small fields is challenging due to nonequilibrium conditions created as a consequence of the secondary electron track lengths and the source size projected through the collimating system that are comparable to the treatment field size. It is further complicated by the prolonged electron tracks in the presence of low-density inhomogeneities. Also, radiation detectors introduced into such fields usually perturb the level of disequilibrium. Hence, the dosimetric accuracy previously achieved for standard radiotherapy applications is at risk for both absolute and relative dose determination. This article summarizes the present knowledge and gives an insight into the future procedures to handle the nonequilibrium radiation dosimetry problems. It is anticipated that new miniature detectors with controlled perturbations and corrections will be available to meet the demand for accurate measurements. It is also expected that the Monte Carlo techniques will increasingly be used in assessing the accuracy, verification, and calculation of dose, and will aid perturbation calculations of detectors used in small and highly conformal radiation beams.

  12. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low dose...

  13. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low dose...

  14. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low dose...

  15. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low dose...

  16. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low dose...

  17. Dosimetry in Nuclear Medicine Diagnosis and Therapy

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.7 Necessity of Patient-Specific Dose Planning in Radionuclide Therapy' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy'.

  18. Advances in Inhalation Dosimetry Models and Methods for Occupational Risk Assessment and Exposure Limit Derivation

    PubMed Central

    Kuempel, Eileen D.; Sweeney, Lisa M.; Morris, John B.; Jarabek, Annie M.

    2015-01-01

    The purpose of this article is to provide an overview and practical guide to occupational health professionals concerning the derivation and use of dose estimates in risk assessment for development of occupational exposure limits (OELs) for inhaled substances. Dosimetry is the study and practice of measuring or estimating the internal dose of a substance in individuals or a population. Dosimetry thus provides an essential link to understanding the relationship between an external exposure and a biological response. Use of dosimetry principles and tools can improve the accuracy of risk assessment, and reduce the uncertainty, by providing reliable estimates of the internal dose at the target tissue. This is accomplished through specific measurement data or predictive models, when available, or the use of basic dosimetry principles for broad classes of materials. Accurate dose estimation is essential not only for dose-response assessment, but also for interspecies extrapolation and for risk characterization at given exposures. Inhalation dosimetry is the focus of this paper since it is a major route of exposure in the workplace. Practical examples of dose estimation and OEL derivation are provided for inhaled gases and particulates. PMID:26551218

  19. Reviewing three dimensional dosimetry: basics and utilization as presented over 17 Years of DosGel and IC3Ddose

    NASA Astrophysics Data System (ADS)

    Schreiner, L. J.

    2017-05-01

    For seventeen years a community of basic and clinical scientists and researchers has been meeting bi-annually to promote the clinical advance of techniques to measure radiation dose in three dimensions. The interest in this dosimetry was motivated by its promise as an effective methodology for 3D measurement of the complex conformal dose distributions achieved by modern techniques such as Intensity Modulated and Volumetric Arc Radiation Therapy. Each of the International Conferences on 3D Radiation Dosimetry resulted in the publication of informative proceedings [1-8], the majority openly available on the internet. The proceedings included papers that: i) reviewed the basic science of the radiation sensitive materials used to accumulate the dose information, ii) introduced the science and engineering of the imaging systems required to read the information out, iii) described the work flows and systems required for efficient dosimetry, iv) reported the protocols required for reproducible dosimetry, and v) showed examples of clinical use illustrating advantage and limitations of the dosimetry. This paper is intended to use the framework provided by these proceedings to review the current 3D chemical dosimeters available and to discuss the requirements for their use. The paper describes how 3D dosimetry can complement other dose delivery validation approaches available in the clinic. It closes with some personal reflections of how the motivation for, and practice of, 3D dosimetry have changed (or not) over the years.

  20. A small-scale anatomical dosimetry model of the liver

    NASA Astrophysics Data System (ADS)

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-01

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  1. On the reliability of 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Y.; Vandecasteele, J.

    2013-06-01

    Gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as it covers the whole treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. A major obstacle that has hindered the wider dissemination of polymer gel dosimetry in radiotherapy centres is the lack of confidence in the reliability of the measured dose. Discrepancies in dose response of small versus large polymer gel dosimeters have been reported and although several hypothesis for these discrepancies have been postulated, the actual contribution of these error sources to the overall inaccuracy of the dose maps has not been determined. Several gel dosimetry research groups have chosen to use an internal calibration of gel dosimeters. In this study, the inter-and intra-batch reproducibility of the current state-of-the-art 3D gel dosimeters has been assessed. It is demonstrated that with a carefully designed scanning set-up, the overall accuracy that can be obtained with an independent calibration is well within 5% of all pixels.

  2. A small-scale anatomical dosimetry model of the liver.

    PubMed

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-07

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and (125)I, (90)Y, (211)At, (99m)Tc, (111)In, (177)Lu, (131)I and (18)F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons ((125)I) or high-LET alpha particles ((211)At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  3. Proceedings of the second conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R. E.; Sims, C. S.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base.

  4. Current personnel dosimetry practices at DOE facilities

    SciTech Connect

    Fix, J.J.

    1981-05-01

    Only three parameters were included in the personnel occupational exposure records by all facilities. These are employee name, social security number, and whole body dose. Approximate percentages of some other parameters included in the record systems are sex (50%), birthdate (90%), occupation (26%), previous employer radiation exposure (74%), etc. Statistical analysis of the data for such parameters as sex versus dose distribution, age versus dose distribution, cumulative lifetime dose, etc. was apparently seldom done. Less than 50% of the facilities reported having formal documentation for either the dosimeter, records system, or reader. Slightly greater than 50% of facilities reported having routine procedures in place. These are considered maximum percentages because some respondents considered computer codes as formal documentation. The repository receives data from DOE facilities regarding the (a) distribution of annual whole body doses, (b) significant internal depositions, and (c) individual doses upon termination. It is expected that numerous differences exist in the dose data submitted by the different facilities. Areas of significant differences would likely include the determination of non-measurable doses, the methods used to determine previous employer radiation dose, the methods of determining cumulative radiation dose, and assessment of internal doses. Undoubtedly, the accuracy of the different dosimetry systems, especially at low doses, is very important to the credibility of data summaries (e.g., man-rem) provided by the repository.

  5. Mayak worker dosimetry study: An overview

    SciTech Connect

    Vasilenko, E. K.; Khokhryakov, V. F.; Miller, S C.; Fix, Jack J.; Eckerman, Keith F.; Choe, Dong Ok; Gorelov, Mikhail; Khokhryakov, Victor V.; Knyazev, V.; Krahenbuhl, Melinda P.; Scherpelz, Robert I.; Smetanin, Mikhail; Suslova, K. G.; Vostrotin, V.

    2007-09-01

    The Mayak Production Association (MPA) was the first plutonium production plant in the former Soviet Union. Workers at the MPA were exposed to relatively large internal radiation intakes and external radiation exposures, particularly in the early years of plant operations. This paper describes the updated dosimetry database, Doses-2005. Doses-2005 represents a significant improvement in the determination of absorbed organ dose from external radiation and plutonium intake for the original cohort of 18,831 Mayak workers. The methods of dose reconstruction of absorbed organ doses from external radiation uses: 1) archive records of measured dose and worker exposure history, 2) measured energy and directional response characteristics of historical Mayak film dosimeters, and 3) calculated dose conversion factors for Mayak Study-defined exposure scenarios using Monte Carlo techniques. The methods of dose reconstruction for plutonium intake uses two revised models developed from empirical data derived from bioassay and autopsy cases and/or updates from prevailing or emerging International Commission on Radiological Protection models. Other sources of potential significant exposure to workers such as medical diagnostic x-rays, ambient onsite external radiation, neutron radiation, intake of airborne effluent, and intake of nuclides other than plutonium were evaluated to determine their impact on the dose estimates.

  6. Dosimetry for Microelectronics.

    DTIC Science & Technology

    1991-05-01

    X E +2 kilo pascal (kPa) bar 1.000 000 X E +2 kilo pascal (kPa) barn 1.000 000 X E -28 meter2 ( m 2 ) British thermal unit 1.054 350 X E +3 joule (J...J) gallon (U.S. liquid) 3.785 412 X E -3 meter 3 ( m ) inch 2.540 000 X E -2 meter m ) jerk 1.000 000 X E +9 joule (J) joule/kilogram (J/kg) 1.000 000...kPa) ktap 1.000 000 X E +2 newton-second/ m 2 (N-s/M2 ) micron 1.000 000 X E -6 meter (W) mil 2.540 000 X E -5 meter Cm) mile (international) 1.609

  7. Comparison of high-energy photon and electron dosimetry for various dosimetry protocols.

    PubMed

    Araki, Fujio; Kubo, H Dale

    2002-05-01

    The American Association of Physicists in Medicine Task Group 51 (TG-51) and the International Atomic Energy Agency (IAEA) published a new high-energy photon and electron dosimetry protocol, in 1999 and 2000, respectively. These protocols are based on the use of an ion chamber having an absorbed-dose to water calibration factor with a 60Co beam. These are different from the predecessors, the TG-21 and IAEA TRS-277 protocols, which require a 60Co exposure or air-kerma calibration factor. The purpose of this work is to present the dose comparison between various dosimetry protocols and the AAPM TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. The absorbed-dose to water calculated according to the Japanese Association of Radiological Physics (JARP), International Atomic Energy Agency Technical Report Series No. 277 (IAEA TRS-277) and No. 398 (IAEA TRS-398) protocols is compared to that calculated using the TG-51 protocol. For various Farmer-type chambers in photon beams, TG-51 is found to predict 0.6-2.1% higher dose than JARP. Similarly, TG-51 is found to be higher by 0.7-1.7% than TRS-277. For electron beams TG-51 is higher than JARP by 1.5-3.8% and TRS-277 by 0.2-1.9%. The reasons for these differences are presented in terms of the cavity-gas calibration factor, Ngas, and a dose conversion factor, Fw, which converts the absorbed-dose to air in the chamber to the absorbed-dose to water. The ratio of cavity-gas calibration factors based on absorbed-dose to water calibration factors, N60Co(D,w), in TG-51 and cavity-gas calibration factors which are equivalent to absorbed-dose to air chamber factors, N(D,air), based on the IAEA TRS-381 protocol is 1.008 on average. However, the estimated uncertainty of the ratio between the two cavity-gas calibration factors is 0.9% (1 s.d.) and consequently, the observed difference of 0.8% is not significant. The absorbed-dose to water and exposure or air-kerma calibration factors are based on

  8. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    PubMed Central

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed. PMID:25799311

  9. Shared dosimetry error in epidemiological dose-response analyses

    DOE PAGES

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; ...

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less

  10. Shared dosimetry error in epidemiological dose-response analyses

    SciTech Connect

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.

  11. Shared dosimetry error in epidemiological dose-response analyses.

    PubMed

    Stram, Daniel O; Preston, Dale L; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J; Boice, John; Beck, Harold; Till, John; Bouville, Andre

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.

  12. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    SciTech Connect

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.

  13. Updating and extending the IRDF-2002 dosimetry library

    SciTech Connect

    Capote, R.; Zolotarev, K.I.; Pronyaev, V.G.; Trkov, A.

    2011-07-01

    The International Reactor Dosimetry File (IRDF)-2002 released in 2004 by the IAEA (see http://www-nds.iaea.org/irdf2002/) contains cross-section data and corresponding uncertainties for 66 dosimetry reactions. New cross-section evaluations have become available recently that re-define some of these dosimetry reactions including: (1) high-fidelity evaluation work undertaken by one of the authors (KIZ); (2) evaluations from the US ENDF/B-VII.0 and candidate evaluations from the US ENDF/B-VII.1 libraries that cover reactions within the International Evaluation of Neutron Cross-Section Standards; (3) European JEFF3.1 library; and (4) Japanese JENDL-4.0 library. Additional high-threshold reactions not included in IRDF-2002 (e.g., {sup 59C}o(n,3n) and {sup 209}Bi(n,3n)) have been also evaluated to characterize higher-energy neutron fields. Overall, 37 new evaluations of dosimetry reactions have been assessed and intercomparisons made with integral measurements in reference neutron fields to determine whether they should be adopted to update and improve IRDF-2002. Benchmark calculations performed for newly evaluated reactions using the ENDF/B-VII.0 {sup 235}U thermal fission and {sup 252}Cf spontaneous fission neutron spectra show that calculated integral cross sections exhibit improved agreement with evaluated experimental data when compared with the equivalent data from the IRDF-2002 library. Data inconsistencies or deficiencies of new evaluations have been identified for {sup 63}Cu(n,2n), {sup 60}Ni(n,p) {sup 60m+g}Co, {sup 55}Mn(n,{gamma}), and {sup 232}Th(n,f) reactions. Compared with IRDF-2002, the upper neutron energy boundary was formally increased from the actual maximum energy of typically 20 MeV up to 60 MeV by using the TENDL-2010 cross sections and covariance matrices. This extension would allow the updated IRDF library to be also used in fusion dosimetry applications. Uncertainties in the cross sections for all new evaluations are given in the form of

  14. Activities at the NEA for Dosimetry Applications

    NASA Astrophysics Data System (ADS)

    Henriksson, H.; Kodeli, I.

    2009-08-01

    The Nuclear Energy Agency (NEA) is a specialised agency within the Organisation for Economic Co-operation and Development (OECD) that assists its member countries in maintaining and further developing, through international co-operation, the scientific and technological use of nuclear energy for peaceful purposes. The main role of the NEA is the collection, validation and distribution of basic nuclear data, computer codes covering the areas of nuclear research and engineering, and experimental data. The activities linked to dosimetry applications are described in this paper, such as those of the Working Party on international nuclear data Evaluation Co-operation (WPEC) established at the NEA to promote the exchange of nuclear data evaluations, measurements, nuclear model calculations and validation. Collection, validation, and distribution of the computer codes and nuclear data libraries will be presented and, in particular, the Joint Evaluated Fusion and Fission (JEFF) library project. For the verification of activation and transport nuclear data, as well as computational methods, several integral experimental databases are collected and distributed by the Data Bank, for example the Shielding Integral Benchmark Archive Database (SINBAD), the International Criticality Safety Benchmark Experiments Project (ICSBEP) and the International Reactor Physics Experiments (IRPhE). Another important activity at the NEA is the collection of experimental differential nuclear reaction data for the EXFOR database. A recent WPEC project emphasizes the need for a coherent format that could be used for computer code calculations and improved validation of experimental data. JANIS is a graphical visualization tool that has been found to be useful for checking the content of EXFOR.

  15. The Future of Medical Dosimetry

    SciTech Connect

    Adams, Robert D.

    2015-07-01

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given.

  16. Solid-State Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2005-01-01

    This document is a web site page, and a data sheet about Personal protection (i.e., space suits) presented to the Radiation and Micrometeoroid Mitigation Technology Focus Group meeting. The website describes the work of the PI to improve solid state personal radiation dosimetry. The data sheet presents work on the active personal radiation detection system that is to provide real-time local radiation exposure information during EVA. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.

  17. Biological Dosimetry in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry; Cucinotta, Francis A.

    2007-01-01

    Biodosimetry data provides a direct measurement of space radiation damage, which takes into account individual radiosensitivity in the presence of confounding factors such as microgravity and other stress conditions. In contrast to physical measurements, which are external to body and require multiple devices to detect all radiation types all of which have poor sensitivity to neutrons, biodosimetry is internal and includes the effects of shielding provided by the body itself plus chromosome damage shows excellent sensitivity to protons, heavy ions, and neutrons. Moreover, chromosome damage maybe reflective of cancer risk and biodosimetry values can therefore be used to validate and develop risk assessment models that can be used to characterize excess health risk incurred by crewmembers. Cytogenetic biodosimetry methods have been used extensively for assessing terrestrial radiation exposures, and remain the most sensitive in vivo indicator of dose available to date. The main cellular radiation target is the DNA, and radiation-induced damage in the DNA molecule can be visualized as aberrations in the chromosomes (breaks in the chromosomes or exchanges of DNA material between different chromosomes). Normal chromosomes contain a single condensed and constricted area called a centromere that helps the chromosome number to remain stable when a cell divides.

  18. The IAEA Radiotracer Biodistribution Template - A community resource for supporting the standardization and reporting of radionuclide pre-dosimetry data.

    PubMed

    Kesner, Adam Leon; Poli, Gian Luca; Beykan, Seval; Lassmann, Michael

    2017-09-15

    Radionuclide absorbed-dose dosimetry is an active area of development and has the potential to positively impact molecular radiotherapies. At present, many of the operations required to perform dosimetry calculations are unstandardized and unestablished. While the current methodology allows reasonable dosimetry estimates to be derived and published, it can be difficult to understand, and reproduce, each others' work. To help alleviate this we have identified the collection of biodistribution information as a key step in all internal dosimetry calculations, and present a template that can be used to standardize its documentation and reporting. A generalized biodistribution template entitled the IAEA Radiotracer Biodistribution Template (IAEA RaBiT) has been built and distributed for users performing biodistribution measurements in the community. The template enables robust recording of dosimetry-relevant information through standardization of details and their format. It has been designed to be simple and easy to use, and establish a structured recording of a common reference point in dosimetry operations - biodistribution data documentation. Improved documentation procedures may benefit organization of in house data, or be used to disseminate details throughout the community - for example to supplement dosimetry related publications. The standard format information may also enable the creation of new dosimetry related tools and protocols and support robust population databases. As dosimetry in nuclear medicine becomes more routinely applied in clinical applications, we need to develop the infrastructure for robustly handling large amounts of these data. Our IAEA RaBiT can be used as a standard format structure for data collection, organization, and dissemination. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. International.

    ERIC Educational Resources Information Center

    Hoover, Linn

    1979-01-01

    The International Geological Correlation Project has attained scientific maturity and broad support and participation by geologists world wide. Its purpose is to provide a mechanism for international cooperation and information exchange about geological problems that transcend national boundaries. (Author/BB)

  20. A probabilistic gastrointestinal tract dosimetry model

    NASA Astrophysics Data System (ADS)

    Huh, Chulhaeng

    In internal dosimetry, the tissues of the gastrointestinal (GI) tract represent one of the most radiosensitive organs of the body with the hematopoietic bone marrow. Endoscopic ultrasound is a unique tool to acquire in-vivo data on GI tract wall thicknesses of sufficient resolution needed in radiation dosimetry studies. Through their different echo texture and intensity, five layers of differing echo patterns for superficial mucosa, deep mucosa, submucosa, muscularis propria and serosa exist within the walls of organs composing the alimentary tract. Thicknesses for stomach mucosa ranged from 620 +/- 150 mum to 1320 +/- 80 mum (total stomach wall thicknesses from 2.56 +/- 0.12 to 4.12 +/- 0.11 mm). Measurements made for the rectal images revealed rectal mucosal thicknesses from 150 +/- 90 mum to 670 +/- 110 mum (total rectal wall thicknesses from 2.01 +/- 0.06 to 3.35 +/- 0.46 mm). The mucosa thus accounted for 28 +/- 3% and 16 +/- 6% of the total thickness of the stomach and rectal wall, respectively. Radiation transport simulations were then performed using the Monte Carlo N-particle transport code (MCNP) 4C transport code to calculate S values (Gy/Bq-s) for penetrating and nonpenetrating radiations such as photons, beta particles, conversion electrons and auger electrons of selected nuclides, I123, I131, Tc 99m and Y90 under two source conditions: content and mucosa sources, respectively. The results of this study demonstrate generally good agreement with published data for the stomach mucosa wall. The rectal mucosa data are consistently higher than published data compared with the large intestine due to different radiosensitive cell thicknesses (350 mum vs. a range spanning from 149 mum to 729 mum) and different geometry when a rectal content source is considered. Generally, the ICRP models have been designed to predict the amount of radiation dose in the human body from a "typical" or "reference" individual in a given population. The study has been performed to

  1. Health physics research reactor reference dosimetry

    SciTech Connect

    Sims, C.S.; Ragan, G.E.

    1987-06-01

    Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs.

  2. Methods for the inclusion of shallow marrow and adipose tissue in pathlength-based skeletal dosimetry

    NASA Astrophysics Data System (ADS)

    Jokisch, D. W.; Rajon, D. A.; Patton, P. W.; Bolch, W. E.

    2011-05-01

    Distributions of linear pathlength measurements have been utilized in skeletal dosimetry of internally emitted short-range particles for over 30 years. This work reviews the methods for coupling these distributions to range-energy data. A revised methodology is presented for handling the insertion of the additional dosimetric target region (shallow marrow) and medium (adipose tissue) into the dosimetry algorithm. The methodology is shown to reduce the volume fraction of shallow marrow in the trabecular skeleton over existing methodologies. Finally, theoretical low and high-energy checkpoints are derived for use in checking the absorbed fraction and specific absorbed fraction results for a variety of source and target combinations.

  3. MIRD pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications.

    PubMed

    Dewaraja, Yuni K; Ljungberg, Michael; Green, Alan J; Zanzonico, Pat B; Frey, Eric C; Bolch, Wesley E; Brill, A Bertrand; Dunphy, Mark; Fisher, Darrell R; Howell, Roger W; Meredith, Ruby F; Sgouros, George; Wessels, Barry W

    2013-12-01

    The reliability of radiation dose estimates in internal radionuclide therapy is directly related to the accuracy of activity estimates obtained at each imaging time point. The recently published MIRD pamphlet no. 23 provided a general overview of quantitative SPECT imaging for dosimetry. The present document is the first in a series of isotope-specific guidelines that will follow MIRD 23 and focuses on one of the most commonly used therapeutic radionuclides, (131)I. The purpose of this document is to provide guidance on the development of protocols for quantitative (131)I SPECT in radionuclide therapy applications that require regional (normal organs, lesions) and 3-dimensional dosimetry.

  4. An Australian secondary standard dosimetry laboratory participation in IAEA postal dose audits.

    PubMed

    Davies, J B; Izewska, J; Meriaty, H; Baldock, C

    2013-03-01

    For over 30 years, the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) have jointly monitored activities of secondary standard dosimetry laboratories (SSDLs) through postal dose audits with the aim of achieving consistency in dosimetry throughout the world. The Australian Nuclear Science and Technology Organisation (ANSTO) maintains an SSDL and is a member of the IAEA/WHO SSDL Network. Postal dose audit results at this Australian SSDL from 2001 to 2011 demonstrate the consistency of absorbed dose to water measurements, underpinned by the primary standard maintained at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA).

  5. An Automated Biological Dosimetry System

    NASA Astrophysics Data System (ADS)

    Lorch, T.; Bille, J.; Frieben, M.; Stephan, G.

    1986-04-01

    The scoring of structural chromosome aberrations in peripheral human blood lymphocytes can be used in biological dosimetry to estimate the radiation dose which an individual has received. Especially the dicentric chromosome is a rather specific indicator for an exposure to ionizing radiation. For statistical reasons, in the low dose range a great number of cells must be analysed, which is a very tedious task. The resulting high cost of a biological dose estimation limits the application of this method to cases of suspected irradiation for which physical dosimetry is not possible or not sufficient. Therefore an automated system has been designed to do the major part of the routine work. It uses a standard light microscope with motorized scanning stage, a Plumbicon TV-camera, a real-time hardware preprocessor, a binary and a grey level image buffer system. All computations are performed by a very powerful multi-microprocessor-system (POLYP) based on a MIMD-architecture. The task of the automated system can be split in finding the metaphases (see Figure 1) at low microscope magnification and scoring dicentrics at high magnification. The metaphase finding part has been completed and is now in routine use giving good results. The dicentric scoring part is still under development.

  6. In vitro dosimetry of agglomerates

    NASA Astrophysics Data System (ADS)

    Hirsch, V.; Kinnear, C.; Rodriguez-Lorenzo, L.; Monnier, C. A.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A.

    2014-06-01

    Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction.Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction. Electronic supplementary information (ESI) available: ITC data for tiopronin/Au-NP interactions, agglomeration kinetics at different pHs for tiopronin-coated Au-NPs, UV-Vis spectra in water, PBS and DMEM and temporal correlation functions for single Au-NPs and corresponding agglomerates, calculation of diffusion and sedimentation parameters, modelling of relative cell uptake based on the ISDD model and cytotoxicity of single Au-NPs and their agglomerates, and synthesis and cell uptake of large spherical Au-NPs. See DOI: 10.1039/c4nr00460d

  7. Freeware for reporting radiation dosimetry following the administration of radiopharmaceuticals.

    PubMed

    Gómez Perales, Jesús Luis; García Mendoza, Antonio

    2015-09-01

    This work describes the development of a software application for reporting patient radiation dosimetry following radiopharmaceutical administration. The resulting report may be included within the patient's medical records. The application was developed in the Visual Basic programming language. The dosimetric calculations are based on the values given by the International Commission on Radiological Protection (ICRP). The software is available in both Spanish and English and can be downloaded at no cost from www.radiopharmacy.net. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. 90Yttrium PET/MR-based dosimetry after liver radioembolization (SIRT).

    PubMed

    Wissmeyer, Michael; Delattre, Bénédicte M A; Zaidi, Habib; Terraz, Sylvain; Ratib, Osman

    2015-04-01

    Biodistribution and dosimetric aspects are important issues in the preparation realization of radionuclide therapies and thus play an emerging role in radioembolization of liver malignancies. Biodistribution assessment of liver selective internal radiotherapy (SIRT) has been shown feasible using PET/CT PET/magnetic resonance (MR). Whereas prospective dosimetry using 99mTc macroaggregated albumin SPECT/CT is discussed controversially, retrospective 90Y PET/CT has been shown feasible for dosimetry of SIRT in recent studies. Considering the advantages of PET/MR with regard to lesion detection radiation dose reduction compared to PET/CT, especially when repeated scanning is intended, we investigated the use of PET/MR for dosimetry of liver SIRT.

  9. Fourth conference on radiation protection and dosimetry: Proceedings, program, and abstracts

    SciTech Connect

    Casson, W.H.; Thein, C.M.; Bogard, J.S.

    1994-10-01

    This Conference is the fourth in a series of conferences organized by staff members of Oak Ridge National Laboratory in an effort to improve communication in the field of radiation protection and dosimetry. Scientists, regulators, managers, professionals, technologists, and vendors from the United States and countries around the world have taken advantage of this opportunity to meet with their contemporaries and peers in order to exchange information and ideas. The program includes over 100 papers in 9 sessions, plus an additional session for works in progress. Papers are presented in external dosimetry, internal dosimetry, radiation protection programs and assessments, developments in instrumentation and materials, environmental and medical applications, and on topics related to standards, accreditation, and calibration. Individual papers are indexed separately on EDB.

  10. Biological dosimetry in Russian and Italian astronauts

    NASA Astrophysics Data System (ADS)

    Greco, O.; Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M.; Scampoli, P.; Snigiryova, G.; Obe, G.

    Large uncertainties are associated with estimates of equivalent dose and cancer risk for crews of longterm space missions. Biological dosimetry in astronauts is emerging as a useful technique to compare predictions based on quality factors and risk coefficients with actual measurements of biological damage in-flight. In the present study, chromosomal aberrations were analyzed in one Italian and eight Russian cosmonauts following missions of different duration on the MIR and the international space station (ISS). We used the technique of fluorescence in situ hybridization (FISH) to visualize translocations in chromosomes 1 and 2. In some cases, an increase in chromosome damage was observed after flight, but no correlation could be found between chromosome damage and flight history, in terms of number of flights at the time of sampling, duration in space and extra-vehicular activity. Blood samples from one of the cosmonauts were exposed in vitro to 6 MeV X-rays both before and after the flight. An enhancement in radiosensitivity induced by the spaceflight was observed.

  11. Biological dosimetry in Russian and Italian astronauts.

    PubMed

    Greco, O; Durante, M; Gialanella, G; Grossi, G; Pugliese, M; Scampoli, P; Snigiryova, G; Obe, G

    2003-01-01

    Large uncertainties are associated with estimates of equivalent dose and cancer risk for crews of long-term space missions. Biological dosimetry in astronauts is emerging as a useful technique to compare predictions based on quality factors and risk coefficients with actual measurements of biological damage in-flight. In the present study, chromosomal aberrations were analyzed in one Italian and eight Russian cosmonauts following missions of different duration on the MIR and the international space station (ISS). We used the technique of fluorescence in situ hybridization (FISH) to visualize translocations in chromosomes 1 and 2. In some cases, an increase in chromosome damage was observed after flight, but no correlation could be found between chromosome damage and flight history, in terms of number of flights at the time of sampling, duration in space and extra-vehicular activity. Blood samples from one of the cosmonauts were exposed in vitro to 6 MeV X-rays both before and after the flight. An enhancement in radiosensitivity induced by the spaceflight was observed. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  12. MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry-Standardization of Nomenclature

    SciTech Connect

    Bolch, W E; Eckerman, Keith F; Sgouros, George; Thomas, Steven R.

    2009-03-01

    The internal dosimetry schema of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine has provided a broad framework for assessment of the absorbed dose to whole organs, tissue subregions, voxelized tissue structures, and individual cellular compartments for use in both diagnostic and therapeutic nuclear medicine. The schema was originally published in 1968, revised in 1976, and republished in didactic form with comprehensive examples as the MIRD primer in 1988 and 1991. The International Commission on Radiological Protection (ICRP) is an organization that also supplies dosimetric models and technical data, for use in providing recommendations for limits on ionizing radiation exposure to workers and members of the general public. The ICRP has developed a dosimetry schema similar to that of the MIRD Committee but has used different terminology and symbols for fundamental quantities such as the absorbed fraction, specific absorbed fraction, and various dose coefficients. The MIRD Committee objectives for this pamphlet are 3-fold: to restate its schema for assessment of absorbed dose in a manner consistent with the needs of both the nuclear medicine and the radiation protection communities, with the goal of standardizing nomenclature; to formally adopt the dosimetry quantities equivalent dose and effective dose for use in comparative evaluations of potential risks of radiation-induced stochastic effects to patients after nuclear medicine procedures; and to discuss the need to identify dosimetry quantities based on absorbed dose that address deterministic effects relevant to targeted radionuclide therapy.

  13. Portal dosimetry in wedged beams.

    PubMed

    Spreeuw, Hanno; Rozendaal, Roel; Camargo, Priscilla; Mans, Anton; Wendling, Markus; Olaciregui-Ruiz, Igor; Sonke, Jan-Jakob; Van Herk, Marcel; Mijnheer, Ben

    2015-05-08

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the situation without wedge is used. A possible solution would be to consider a wedged beam as another photon beam quality requiring separate beam modeling of the dose calculation algorithm. The aim of this study was to investigate a more practical solution: to make aSi EPID-based dosimetry models also applicable for wedged beams without an extra commissioning effort of the parameters of the model. For this purpose two energy-dependent wedge multiplication factors have been introduced to be applied for portal images taken with and without a patient/phantom in the beam. These wedge multiplication factors were derived from EPID and ionization chamber measurements at the EPID level for wedged and nonwedged beams, both with and without a polystyrene slab phantom in the beam. This method was verified for an EPID dosimetry model used for wedged beams at three photon beam energies (6, 10, and 18 MV) by comparing dose values reconstructed in a phantom with data provided by a treatment planning system (TPS), as a function of field size, depth, and off-axis distance. Generally good agreement, within 2%, was observed for depths between dose maximum and 15 cm. Applying the new model to EPID dose measurements performed during ten breast cancer patient treatments with wedged 6 MV photon beams showed that the average isocenter underdosage of 5.3% was reduced to 0.4%. Gamma-evaluation (global 3%/3 mm) of these in vivo data showed an increase in percentage of points with γ ≤ 1 from 60.2% to 87.4%, while γmean reduced from 1.01 to 0.55. It can be concluded that, for wedged beams, the multiplication of EPID pixel values with an energy-dependent correction factor provides good agreement

  14. Computational methods in radionuclide dosimetry

    NASA Astrophysics Data System (ADS)

    Bardiès, M.; Myers, M. J.

    1996-10-01

    The various approaches in radionuclide dosimetry depend on the size and spatial relation of the sources and targets considered in conjunction with the emission range of the radionuclide used. We present some of the frequently reported computational techniques on the basis of the source/target size. For whole organs, or for sources or targets bigger than some centimetres, the acknowledged standard was introduced 30 years ago by the MIRD committee and is still being updated. That approach, based on the absorbed fraction concept, is mainly used for radioprotection purposes but has been updated to take into account the dosimetric challenge raised by therapeutic use of vectored radiopharmaceuticals. At this level, the most important computational effort is in the field of photon dosimetry. On the millimetre scale, photons can often be disregarded, and or electron dosimetry is generally reported. Heterogeneities at this level are mainly above the cell level, involving groups of cell or a part of an organ. The dose distribution pattern is often calculated by generalizing a point source dose distribution, but direct calculation by Monte Carlo techniques is also frequently reported because it allows media of inhomogeneous density to be considered. At the cell level, and electron (low-range or Auger) are the predominant emissions examined. Heterogeneities in the dose distribution are taken into account, mainly to determine the mean dose at the nucleus. At the DNA level, Auger electrons or -particles are considered from a microdosimetric point of view. These studies are often connected with radiobiological experiments on radionuclide toxicity.

  15. INTERSPECIES DOSIMETRY MODELS FOR PULMONARY PHARMACOLOGY

    EPA Science Inventory

    Interspecies Dosimetry Models for Pulmonary Pharmacology

    Ted B. Martonen, Jeffry D. Schroeter, and John S. Fleming

    Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangl...

  16. INTERSPECIES DOSIMETRY MODELS FOR PULMONARY PHARMACOLOGY

    EPA Science Inventory

    Interspecies Dosimetry Models for Pulmonary Pharmacology

    Ted B. Martonen, Jeffry D. Schroeter, and John S. Fleming

    Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangl...

  17. Emerging technological bases for retrospective dosimetry.

    PubMed

    Straume, T; Anspaugh, L R; Haskell, E H; Lucas, J N; Marchetti, A A; Likhtarev, I A; Chumak, V V; Romanyukha, A A; Khrouch, V T; Gavrilin YuI; Minenko, V F

    1997-01-01

    In this article we discuss examples of challenging problems in retrospective dosimetry and describe some promising solutions. The ability to make measurements by accelerator mass spectrometry and luminescence techniques promises to provide improved dosimetry for regions of Belarus, Ukraine and Russian Federation contaminated by radionuclides from the Chernobyl accident. In addition, it may soon be possible to resolve the large neutron discrepancy in the dosimetry system for Hiroshima through novel measurement techniques that can be used to reconstruct the fast-neutron fluence emitted by the bomb some 51 years ago. Important advances in molecular cytogenetics and electron paramagnetic resonance measurements have produced biodosimeters that show potential in retrospective dosimetry. The most promising of these are the frequency of reciprocal translocations measured in chromosomes of blood lymphocytes using fluorescence in situ hybridization and the electron paramagnetic resonance signal in tooth enamel.

  18. Audits for advanced treatment dosimetry

    NASA Astrophysics Data System (ADS)

    Ibbott, G. S.; Thwaites, D. I.

    2015-01-01

    Radiation therapy has advanced rapidly over the last few decades, progressing from 3D conformal treatment to image-guided intensity modulated therapy of several different flavors, both 3D and 4D and to adaptive radiotherapy. The use of intensity modulation has increased the complexity of quality assurance and essentially eliminated the physicist's ability to judge the validity of a treatment plan, even approximately, on the basis of appearance and experience. Instead, complex QA devices and procedures are required at the institutional level. Similarly, the assessment of treatment quality through remote and on-site audits also requires greater sophistication. The introduction of 3D and 4D dosimetry into external audit systems must follow, to enable quality assurance systems to perform meaningful and thorough audits.

  19. Metabolism and dosimetry of tritium.

    PubMed

    Hill, R L; Johnson, J R

    1993-12-01

    This document was prepared as a review of the current knowledge of tritium metabolism and dosimetry. The physical, chemical, and metabolic characteristics of various forms of tritium are presented as they pertain to performing dose assessments for occupational workers and for the general public. For occupational workers, the forms of tritium discussed include tritiated water, elemental tritium gas, skin absorption from elemental tritium gas-contaminated surfaces, organically bound tritium in pump oils, solvents and other organic compounds, metal tritides, and radioluminous paints. For the general public, age-dependent tritium metabolism is reviewed, as well as tritiated water, elemental tritium gas, organically bound tritium, organically bound tritium in food-stuffs, and tritiated methane.

  20. Metabolism and dosimetry of tritium

    SciTech Connect

    Hill, R.L.; Johnson, J.R. )

    1993-12-01

    This document was prepared as a review of the current knowledge of tritium metabolism and dosimetry. The physical, chemical, and metabolic characteristics of various forms of tritium are presented as they pertain to performing dose assessments for occupational workers and for the general public. For occupational workers, the forms of tritium discussed include tritiated water, elemental tritium gas, skin absorption from elemental tritium gas-contaminated surfaces, organically bound tritium in pump oils, solvents and other organic compounds, metal tritides, and radioluminous paints. For the general public, age-dependent tritium metabolism is reviewed, as well as tritiated water, elemental tritium gas, organically bound tritium, organically bound tritium in food-stuffs, and tritiated methane. 106 refs.

  1. In vivo dosimetry in brachytherapy

    SciTech Connect

    Tanderup, Kari; Beddar, Sam; Andersen, Claus E.; Kertzscher, Gustavo; Cygler, Joanna E.

    2013-07-15

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.

  2. The future of medical dosimetry.

    PubMed

    Adams, Robert D

    2015-01-01

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given. Copyright © 2015. Published by Elsevier Inc.

  3. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 1, Conceptual representation

    SciTech Connect

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-12-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes code logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 72 refs., 15 figs., 34 tabs.

  4. Accurate dosimetry: an essential step towards good clinical practice in nuclear medicine.

    PubMed

    Bacher, Klaus; Thierens, Hubert M

    2005-07-01

    In nuclear medicine, an increasing number of radiolabelled agents are under investigation for future use in diagnostic imaging and for applications in radionuclide therapy. All these studies require large amounts of human data to allow for statistical comparisons with existing and well established diagnostic or therapeutic methodologies. In the framework of a good clinical practice environment, clinical trials should be carried out according to international guidelines and regulations as described in the Declaration of Helsinki. Studies involving ionizing radiation, as is the case in nuclear medicine, require special consideration to comply with the ALARA (as low as reasonably achievable) principle. Special publications of the International Commission of Radiological Protection and the World Health Organization deal with this topic in medical research. From the legislation point of view, the 97/43/EURATOM Directive represents the reference to clinical research using ionizing radiation within the European Union. In order to keep the radiation dose of (healthy) volunteers as low as possible, predictive dosimetry studies based on in-vivo animal biokinetics are essential. On the other hand, patients included in dose-escalation radionuclide therapy trials should be monitored individually with respect to dosimetry of the tumour and the critical organs. In this paper the importance and methodology of contemporary patient dosimetry in diagnostic and therapeutic nuclear medicine research are reviewed. It is concluded that reliable dosimetry is essential in performing scientific clinical studies according to the principle of good clinical practice.

  5. Application of a new dosimetry formalism to volumetric modulated arc therapy (VMAT).

    PubMed

    Rosser, Karen E; Bedford, James L

    2009-12-07

    Volumetric modulated arc therapy (VMAT) offers a challenge to classical dosimetry protocols as the beams are dynamic in orientation and aperture shape and may include small apertures. The aim of this paper is to apply a formalism to VMAT beams that has recently been published by the International Atomic Energy Agency (IAEA) working party to improve the dosimetry for small and non-standard fields. We investigated three possible fields and assessed their suitability as plan class specific reference (pcsr) fields. The factors in the new dosimetry formalism were investigated: the conversion of dose to water from the conventional reference field to the pcsr and then from the pcsr to a treatment plan, using a PTW semiflex chamber, two Farmer chambers and an electron diode. Finally, the dose was compared for Alanine, the new formalism and calculated using Pinnacle(3) (Philips Radiation Oncology Systems) for two typical clinical VMAT beams. Correction factors between the reference field and the pcsr determined with Alanine range from 0.1% to 2.3% for the three pcsr fields. Dose to water measured using the calibrated ionization chambers is less than 2% different to the dose calculated by Pinnacle(3). VMAT planning and delivery procedures have been successfully implemented and a new dosimetry protocol has been investigated for this new technique. Calibration factors for pcsr fields are found to be up to 2.3% different when using the new formalism, compared to using a standard dosimetry protocol. Using the calibration factors determined in the pcsr fields, the ionization chambers and electron diode agree to within 1% with Alanine dosimetry for two clinical VMAT plans. Good agreements between calculations and measurements are found for these two plans when the new formalism is used.

  6. In aqua vivo EPID dosimetry

    SciTech Connect

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Olaciregui-Ruiz, Igor; Pecharroman-Gallego, Raul; Sonke, Jan-Jakob; Stroom, Joep; Herk, Marcel J.; Mijnheer, Ben van

    2012-01-15

    Purpose: At the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. Methods: The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D {gamma} evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D {gamma} evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. Results: The improvements by

  7. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    SciTech Connect

    COOPER, J.R.

    2000-04-17

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  8. Personnel neutron dosimetry at Department of Energy facilities

    SciTech Connect

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered.

  9. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  10. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  11. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  12. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  13. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  14. Seventh Personnel Dosimetry Intercomparison Study

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Greene, R.T.

    1981-12-01

    The Seventh Personnel Dosimetry Intercomparison Study was conducted March 31-April 10, 1981, at the Oak Ridge National Laboratory. Dosimeters from 34 participating agencies were mounted on anthropomorphic phantoms and exposed to a range of low-level dose equivalents (1.5-15.0mSv neutron and 0.1-2.8 mSv gamma) which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor, operating in the steady-state mode, served as the source of radiation for two equivalent sets of six separate exposures. Lucite and concrete shields along with the unshielded reactor provided three different neutron and gamma spectra for five of the exposures in each set. Results reported by the participating agencies showed that no single type of neutron dosimeter exhibited acceptable performance characteristics for all mixed-field environments encountered in this study. Film, TLD, and TLD-albed dosimeters were found to be inadequate for neutron dose equivalent measurements when large numbers of slow neutrons are present unless significant corrections are made to measured results. Track dosimeters indicated the least sensitivity to spectral characteristics, but did not always yield to the most accurate results. Gamma dose measurements showed that TLD-700 dosimeters produced significantly more accurate results than film dosimeters which tend to overestimate gamma doses in mixed radiation fields.

  15. Protocol for emergency EPR dosimetry in fingernails.

    PubMed

    Trompier, F; Kornak, L; Calas, C; Romanyukha, A; Leblanc, B; Mitchell, C A; Swartz, H M; Clairand, I

    2007-08-01

    There is an increased need for after-the-fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effective medical triage. Dosimetry based on EPR measurements of fingernails potentially could be an effective tool for this purpose. This paper presents the first operational protocols for EPR fingernail dosimetry, including guidelines for collection and storage of samples, parameters for EPR measurements, and the method of dose assessment. In a blinded test of this protocol application was carried out on nails freshly sampled and irradiated to 4 and 20 Gy; this protocol gave dose estimates with an error of less than 30%.

  16. Dosimetry procedures for an industrial irradiation plant

    NASA Astrophysics Data System (ADS)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  17. Dosimetry of the Atomic Bomb Survivors

    SciTech Connect

    Sinclair, W.K.; Failla, P.

    1981-12-01

    A brief account of the presentations and discussions at the Late Effects Workshop on Dosimetry of the Atomic Bomb Survivors held in conjunction with the 29th Annual Meeting of the Radiation Reserch Society in Minneapolis, MN, on May 32, 1981 is presented. The following five papers are briefly reviewed: 1)Radiobiological significance of the Hiroshima/Nagasaki data by V.P. Bond; 2)Revised Dose Estimates at Hiroshima and Nagasaki, by W.E. Loewe; 3)Review of dosimetry for the Japanese atomic bomb survivors by G.D. Kerr; 4)Ichiban: numberoriginal studies, by J. Auxier; and 5)NCRP's involvement in the Hiroshima and Nagasaki Dosimetry, by H.O. Wyckoff. (JMT)

  18. Czech results at criticality dosimetry intercomparison 2002.

    PubMed

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV.

  19. Small Field: dosimetry in electron disequilibrium region

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.

    2010-11-01

    Small fields are more commonly used for radiation therapy because of the development of IMRT, stereotactic radiosurgery, and other special equipments such as Cyberknife and Tomotherapy. The dosimetry in the sub-centimeter field can result in substantial uncertainties because of the presence of electron disequilibrium due to the large dose gradients in the field. It is further complicated by the introduction of various radiation detectors, which usually perturb the conditions of disequilibrium. Hence additional corrections are required to maintain the dosimetric accuracy previously achieved for standard radiation dosimetry. A review of small field dosimetry provides some insights into the methods to characterize the detector convolution kernel and other methods to characterize detector perturbation effect.

  20. Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom

    NASA Astrophysics Data System (ADS)

    Benevides, Luis A.; Hintenlang, David E.

    2011-05-01

    The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  1. Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom

    SciTech Connect

    Benevides, Luis A.; Hintenlang, David E.

    2011-05-05

    The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  2. Body growth considerations in age-specific dosimetry. Final report

    SciTech Connect

    Eckerman, K.F.

    1993-09-30

    This report describes the manner in which the age-specific dosimetric calculations of the International Commission on Radiological Protection (ICRP) addressed changes in organ size that occur with age. The approach involves an interpolation of dosimetric information derived for six reference individuals using the inverse of the total body mass as the interpolation variable. An alternative formulation is investigated that employs a functional representation of the organ mass as a function of age in conjunction with an explicit formulation of the dosimetric factors in terms of organ mass. Using an exponential-logistic growth function as suggested by Walker, this report demonstrates, through application to the dosimetry of radioiodines in the thyroid, that the alternative formulation can be formulated and implemented. Although either approach provides a workable basis for age-specific dosimetry, it is clear that the functional representation of organ growth has some attractive features. However, without question, the major difficulty is the quality and quantity of data available to address the age- and gender-specific parameters in the dosimetric formulations.

  3. [Practical dosimetry and constancy check at introduction of intraoperative radiotherapy with Intrabeam (Zeiss)].

    PubMed

    Härtl, Petra Maria; Dobler, Barbara; Kölbl, Oliver; Treutwein, Marius

    2009-01-01

    The check of dosimetry of the intraoperative radiotherapy system Intrabeam is predefined by the manufacture (Zeiss). The purpose of the study was to develop and implement a method to verify the internal dosimetry of Intrabeam (Zeiss). Additionally the long-term stability of Intrabeam was checked for dose and isotropy. For dose to water measurements an Unidos was combined with a soft jet chamber (TM 23342) which was calibrated in water absorbed dose and as a phantom the type 2962 (PTW Freiburg) was used. RW1 plates were inserted as build up material. The applicators were placed in a bag filled with water to consider the side-scattering. At the surface of the applicator there was a mean difference of 3 percent between the dose to water measurement and the internal dosimetry. The constancy of the dose rate showed a mean deviation of 0.3% at the reference point. The analysis of the dose distribution perpendicular to the applicator axis z (reference z-axis) resulted in a mean deviation of -2.7% (x-direction) and -7,1% (-x-direction) for the x-axis and, respectively -4.1% (y-direction) and -5.3% (-y-direction) for the y-axis. The proposed method is suitable to verify the absolute dose of Intrabeam. The dose values measured by this method were congruent to the dosimetry of the manufacture (Zeiss). From our point of view it is sufficient to verify the absolute dosimetry only at time of commissioning of the system or in the case of changing the applicator. For the daily routine the check of constancy specified by the manufacture is adequate, because the dose rate is checked on a daily basis. Additionally the test of constancy showed a high long-term stability in terms of dose rate and symmetry.

  4. Validating the ENDF-B/VII{sup 235}U(n{sub th},f) prompt fission neutron spectrum using updated dosimetry cross sections (IRDFF)

    SciTech Connect

    Capote, R.; Zolotarev, K. I.; Pronyaev, V. G.; Trkov, A.

    2012-07-01

    The International Reactor Dosimetry File IRDF-2002 released in 2004 by the IAEA contains cross-section data and corresponding uncertainties for 66 dosimetry reactions. New cross-section evaluations have become available recently that re-define some of these dosimetry reactions for reactor applications including: 1) high fidelity evaluation work undertaken by one of the authors (KIZ); 2) evaluations from the ENDF/B-VII libraries that cover reactions within the International Evaluation of Neutron Cross-Section Standards; and 3) evaluations from JENDL-3.1 and JENDL-4 libraries. Overall, 37 new evaluations of dosimetry reactions have been assessed to determine whether they should be adopted to update and improve IRDF-2002. A new dosimetry library (International Reactor Dosimetry File for Fission and Fusion - IRDFF) was assembled based on new evaluations combined with selected IRDF-2002 evaluations. A grand-total of 74 dosimetry reactions are included into the IRDFF dosimetry library available at www-nds.iaea.org/IRDFFI. The assembled library was used to validate the {sup 235}U(n{sub th},f) ENDF-B/VII.0 prompt fission neutron spectrum. An excellent average C/E value of 1.002 +/- 0.02 is achieved for reactions with mean neutron energy of the integrated response (E50%) lower than 11 MeV. C/E data for reactions with E50%-response higher than 11 MeV decreases up to 0.8. We conclude that the ENDF-B/VII.0 {sup 235}U(n{sub th},f) prompt fission neutron spectrum from 1-11 MeV is validated within quoted uncertainties by available integral measurements in {sup 235}U(n{sub th},f) neutron field. Further investigations for high-threshold reactions are needed and new measurements of spectrum average cross sections for those reactions in the {sup 235}U(n{sub th},f) neutron field are recommended. (authors)

  5. Recent progresses in tritium radioecology and dosimetry

    SciTech Connect

    Galeriu, D.; Davis, P.; Raskob, W.; Melintescu, A.

    2008-07-15

    In this paper, some aspects of recent progress in tritium radioecology and dosimetry are presented, with emphasis on atmospheric releases to terrestrial ecosystems. The processes involved in tritium transfer through the environment are discussed, together with the current status of environmental tritium models. Topics include the deposition and reemission of HT and HTO, models for the assessment of routine and accidental HTO emissions, a new approach to modeling the dynamics of tritium in mammals, the dose consequences of tritium releases and aspects of human dosimetry. The need for additional experimental data is identified, together with the attributes that would be desirable in the next generation of tritium codes. (authors)

  6. Practical neutron dosimetry at high energies

    SciTech Connect

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently.

  7. Applicability of Topaz Composites to Electron Dosimetry

    NASA Astrophysics Data System (ADS)

    Bomfim, K. S.; Souza, D. N.

    2010-11-01

    Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.

  8. SNL RML recommended dosimetry cross section compendium

    SciTech Connect

    Griffin, P.J.; Kelly, J.G.; Luera, T.F.; VanDenburg, J.

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  9. Advances in personnel neutron dosimetry: part 2

    SciTech Connect

    Vallario, E.; Faust, L.

    1983-08-01

    A continuation of the advances in personnel neutron dosimetry research programs and technology transfer reviews work on active dosimeters, electronic devices that determine the dose equivalent to a worker during an exposure to neutron radiation. Active dosemeters are routinely used for gamma radiation dosimetry. Experience with neutron-sensitive pocket rem-meters at several DOE laboratories covers three prototypes. Pocket rem-meters work well for detecting neutrons over a wide energy range. They give instantaneous readout of the accumulated neutron dose-equivalent. 1 figure.

  10. VIDA: a voxel-based dosimetry method for targeted radionuclide therapy using Geant4.

    PubMed

    Kost, Susan D; Dewaraja, Yuni K; Abramson, Richard G; Stabin, Michael G

    2015-02-01

    We have developed the Voxel-Based Internal Dosimetry Application (VIDA) to provide patient-specific dosimetry in targeted radionuclide therapy performing Monte Carlo simulations of radiation transport with the Geant4 toolkit. The code generates voxel-level dose rate maps using anatomical and physiological data taken from individual patients. Voxel level dose rate curves are then fit and integrated to yield a spatial map of radiation absorbed dose. In this article, we present validation studies using established dosimetry results, including self-dose factors (DFs) from the OLINDA/EXM program for uniform activity in unit density spheres and organ self- and cross-organ DFs in the Radiation Dose Assessment Resource (RADAR) reference adult phantom. The comparison with reference data demonstrated agreement within 5% for self-DFs to spheres and reference phantom source organs for four common radionuclides used in targeted therapy ((131)I, (90)Y, (111)In, (177)Lu). Agreement within 9% was achieved for cross-organ DFs. We also present dose estimates to normal tissues and tumors from studies of two non-Hodgkin Lymphoma patients treated by (131)I radioimmunotherapy, with comparison to results generated independently with another dosimetry code. A relative difference of 12% or less was found between methods for mean absorbed tumor doses accounting for tumor regression.

  11. Evaluation of Effective Sources in Uncertainty Measurements of Personal Dosimetry by a Harshaw TLD System.

    PubMed

    Hosseini Pooya, Sm; Orouji, T

    2014-06-01

    The accurate results of the individual doses in personal dosimety which are reported by the service providers in personal dosimetry are very important. There are national / international criteria for acceptable dosimetry system performance. Objective : In this research, the sources of uncertainties are identified, measured and calculated in a personal dosimetry system by TLD. These sources are included; inhomogeneity of TLDs sensitivity, variability of TLD readings due to limited sensitivity and background, energy dependence, directional dependence, non-linearity of the response, fading, dependent on ambient temperature / humidity and calibration errors, which may affect on the dose responses. Some parameters which influence on the above sources of uncertainty are studied for Harshaw TLD-100 cards dosimeters as well as the hot gas Harshaw 6600 TLD reader system. The individual uncertainties of each sources was measured less than 6.7% in 68% confidence level. The total uncertainty was calculated 17.5% with 95% confidence level. The TLD-100 personal dosimeters as well as the Harshaw TLD-100 reader 6600 system show the total uncertainty value which is less than that of admissible value of 42% for personal dosimetry services.

  12. VIDA: A Voxel-Based Dosimetry Method for Targeted Radionuclide Therapy Using Geant4

    PubMed Central

    Dewaraja, Yuni K.; Abramson, Richard G.; Stabin, Michael G.

    2015-01-01

    Abstract We have developed the Voxel-Based Internal Dosimetry Application (VIDA) to provide patient-specific dosimetry in targeted radionuclide therapy performing Monte Carlo simulations of radiation transport with the Geant4 toolkit. The code generates voxel-level dose rate maps using anatomical and physiological data taken from individual patients. Voxel level dose rate curves are then fit and integrated to yield a spatial map of radiation absorbed dose. In this article, we present validation studies using established dosimetry results, including self-dose factors (DFs) from the OLINDA/EXM program for uniform activity in unit density spheres and organ self- and cross-organ DFs in the Radiation Dose Assessment Resource (RADAR) reference adult phantom. The comparison with reference data demonstrated agreement within 5% for self-DFs to spheres and reference phantom source organs for four common radionuclides used in targeted therapy (131I, 90Y, 111In, 177Lu). Agreement within 9% was achieved for cross-organ DFs. We also present dose estimates to normal tissues and tumors from studies of two non-Hodgkin Lymphoma patients treated by 131I radioimmunotherapy, with comparison to results generated independently with another dosimetry code. A relative difference of 12% or less was found between methods for mean absorbed tumor doses accounting for tumor regression. PMID:25594357

  13. Evaluation of Effective Sources in Uncertainty Measurements of Personal Dosimetry by a Harshaw TLD System

    PubMed Central

    Hosseini Pooya, SM; Orouji, T

    2014-01-01

    Background: The accurate results of the individual doses in personal dosimety which are reported by the service providers in personal dosimetry are very important. There are national / international criteria for acceptable dosimetry system performance. Objective: In this research, the sources of uncertainties are identified, measured and calculated in a personal dosimetry system by TLD. Method: These sources are included; inhomogeneity of TLDs sensitivity, variability of TLD readings due to limited sensitivity and background, energy dependence, directional dependence, non-linearity of the response, fading, dependent on ambient temperature / humidity and calibration errors, which may affect on the dose responses. Some parameters which influence on the above sources of uncertainty are studied for Harshaw TLD-100 cards dosimeters as well as the hot gas Harshaw 6600 TLD reader system. Results: The individual uncertainties of each sources was measured less than 6.7% in 68% confidence level. The total uncertainty was calculated 17.5% with 95% confidence level. Conclusion: The TLD-100 personal dosimeters as well as the Harshaw TLD-100 reader 6600 system show the total uncertainty value which is less than that of admissible value of 42% for personal dosimetry services. PMID:25505769

  14. Incorporating High-Throughput Exposure Predictions with Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing

    EPA Science Inventory

    We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast™ HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compare...

  15. Incorporating High-Throughput Exposure Predictions with Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing

    EPA Science Inventory

    We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast™ HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compare...

  16. On the Retirement of E.P. Goldfinch, Founder of Radiation Protection Dosimetry

    SciTech Connect

    McDonald, Joseph C.; Horowitz, Yigal S.

    2004-08-01

    This special issue of Radiation Protection Dosimetry commemorates the many years of service Eddie has dedicated to the international radiation protection community. Beginning with its first issue in 1981, Eddie led RPD to its current prominence with a guiding hand and Solomon-like wisdom, coupled with keen common sense which will be sorely missed. But, there is no doubt that the journal he created will continue to flourish in the foreseeable future.

  17. Protocol for emergency EPR dosimetry in fingernails

    USDA-ARS?s Scientific Manuscript database

    There is an increased need for after-the fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effect...

  18. Dosimetry of an Implantable 252 Californium Source

    SciTech Connect

    Oliver, G.D. Jr.

    2001-08-29

    The radiation dose from 252 Californium needles designed for use as a source of neutrons for radiotherapy has been measured. The dosimetry information presented in this paper will enable clinical studies of neutron radiotherapy with 252 Californium needles to be planned and begun.

  19. Development of A-bomb survivor dosimetry

    SciTech Connect

    Kerr, G.D.

    1995-12-31

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring.

  20. A-bomb survivor dosimetry update

    SciTech Connect

    Loewe, W.E.

    1982-06-01

    A-bomb survivor data have been generally accepted as applicable. Also, the initial radiations have tended to be accepted as the dominant radiation source for all survivors. There was general acceptance of the essential reliability of both the biological effects data and the causative radiation dose values. There are considerations casting doubt on these acceptances, but very little quantification of th implied uncertainties has been attempted. The exception was A-bomb survivor dosimetry, where free-field kerma values for initial radiations were thought to be accurate to about 30%, and doses to individual survivors were treated as effectively error-free. In 1980, a major challenge to the accepted A-bomb survivor dosimetry was announced, and was quickly followed by a succession of explanations and displays showing the soundness of that challenge. In fact, a complete replacement set of free-field kerma values was provided which was suitable for use in constructing an entire new dosimetry for Hiroshima and Nagasaki. The new values showed many changes greater than the accepted 30% uncertainty. An approximate new dosimetry was indeed constructed, and used to convert existing leukemia cause-and-effect data from the old to the new dose values, by way of assessing the impact. (ERB)

  1. Dosimetry implant for treating restenosis and hyperplasia

    DOEpatents

    Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

    2014-09-16

    The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

  2. Distribution effectiveness for space radiation dosimetry

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1975-01-01

    A simplified risk basis and a theory of hematological response are presented and applied to the problem of dosimetry in the manned space program. Unlike previous studies, the current work incorporates radiation exposure distribution effects into its definition of dose equivalent. The fractional cell lethality model for prediction of hematological response is integral in the analysis.

  3. Personnel radiation dosimetry symposium: program and abstracts

    SciTech Connect

    Not Available

    1984-10-01

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry.

  4. Five-year ALARA review of dosimetry results :

    SciTech Connect

    Paulus, Luke R.

    2013-08-01

    A review of personnel dosimetry (external and internal) and environmental monitoring results from 1 January 2008 through 31 December 2012 performed at Sandia National Laboratories, New Mexico was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform with the ALARA philosophy. ALARA is the philosophical approach to radiation protection by managing and controlling radiation exposures (individual and collective) to the work force and to the general public to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limit but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.

  5. Monte Carlo verification of polymer gel dosimetry applied to radionuclide therapy: a phantom study.

    PubMed

    Gear, J I; Charles-Edwards, E; Partridge, M; Flux, G D

    2011-11-21

    This study evaluates the dosimetric performance of the polymer gel dosimeter 'Methacrylic and Ascorbic acid in Gelatin, initiated by Copper' and its suitability for quality assurance and analysis of I-131-targeted radionuclide therapy dosimetry. Four batches of gel were manufactured in-house and sets of calibration vials and phantoms were created containing different concentrations of I-131-doped gel. Multiple dose measurements were made up to 700 h post preparation and compared to equivalent Monte Carlo simulations. In addition to uniformly filled phantoms the cross-dose distribution from a hot insert to a surrounding phantom was measured. In this example comparisons were made with both Monte Carlo and a clinical scintigraphic dosimetry method. Dose-response curves generated from the calibration data followed a sigmoid function. The gels appeared to be stable over many weeks of internal irradiation with a delay in gel response observed at 29 h post preparation. This was attributed to chemical inhibitors and slow reaction rates of long-chain radical species. For this reason, phantom measurements were only made after 190 h of irradiation. For uniformly filled phantoms of I-131 the accuracy of dose measurements agreed to within 10% when compared to Monte Carlo simulations. A radial cross-dose distribution measured using the gel dosimeter compared well to that calculated with Monte Carlo. Small inhomogeneities were observed in the dosimeter attributed to non-uniform mixing of monomer during preparation. However, they were not detrimental to this study where the quantitative accuracy and spatial resolution of polymer gel dosimetry were far superior to that calculated using scintigraphy. The difference between Monte Carlo and gel measurements was of the order of a few cGy, whilst with the scintigraphic method differences of up to 8 Gy were observed. A manipulation technique is also presented which allows 3D scintigraphic dosimetry measurements to be compared to polymer

  6. Monte Carlo verification of polymer gel dosimetry applied to radionuclide therapy: a phantom study

    NASA Astrophysics Data System (ADS)

    Gear, J. I.; Charles-Edwards, E.; Partridge, M.; Flux, G. D.

    2011-11-01

    This study evaluates the dosimetric performance of the polymer gel dosimeter 'Methacrylic and Ascorbic acid in Gelatin, initiated by Copper' and its suitability for quality assurance and analysis of I-131-targeted radionuclide therapy dosimetry. Four batches of gel were manufactured in-house and sets of calibration vials and phantoms were created containing different concentrations of I-131-doped gel. Multiple dose measurements were made up to 700 h post preparation and compared to equivalent Monte Carlo simulations. In addition to uniformly filled phantoms the cross-dose distribution from a hot insert to a surrounding phantom was measured. In this example comparisons were made with both Monte Carlo and a clinical scintigraphic dosimetry method. Dose-response curves generated from the calibration data followed a sigmoid function. The gels appeared to be stable over many weeks of internal irradiation with a delay in gel response observed at 29 h post preparation. This was attributed to chemical inhibitors and slow reaction rates of long-chain radical species. For this reason, phantom measurements were only made after 190 h of irradiation. For uniformly filled phantoms of I-131 the accuracy of dose measurements agreed to within 10% when compared to Monte Carlo simulations. A radial cross-dose distribution measured using the gel dosimeter compared well to that calculated with Monte Carlo. Small inhomogeneities were observed in the dosimeter attributed to non-uniform mixing of monomer during preparation. However, they were not detrimental to this study where the quantitative accuracy and spatial resolution of polymer gel dosimetry were far superior to that calculated using scintigraphy. The difference between Monte Carlo and gel measurements was of the order of a few cGy, whilst with the scintigraphic method differences of up to 8 Gy were observed. A manipulation technique is also presented which allows 3D scintigraphic dosimetry measurements to be compared to polymer

  7. Evaluation of GAFCHROMIC registered EBT film for CyberKnife registered dosimetry

    SciTech Connect

    Wilcox, Ellen E.; Daskalov, George M.

    2007-06-15

    External beam therapy (EBT) GAFCHROMIC registered film is evaluated for dosimetry and characterization of the CyberKnife registered radiation beams. Percentage depth doses, lateral beam profiles, and output factors are measured in solid water using EBT GAFCHROMIC registered film (International Specialty Products, Wayne, NJ) for the 6 MV radiation beams of diameter 5 to 60 mm produced by the CyberKnife registered (Accuray, Sunnyvale, CA). The data are compared to those measured with the PTW 60008 diode and the Wellhofer CC01 ion chamber in water. For the small radiation field sizes used in stereotactic radiosurgery, lateral electronic disequilibrium and steep dose gradients exist in a large portion of these fields, requiring the use of high-resolution measurement techniques. For small beams, the detector size approaches the dimensions of the beam and adversely affects measurement accuracy in regions where the gradient varies across the detector. When film is the detector, the scanning system is usually the resolution-limiting component. Radiographic films based upon silver halide (AgH) emulsions are widely used for relative dosimetry of external radiation treatment beams in the megavoltage energy range, because of their good spatial resolution and capability to provide integrated dosimetry over two dimensions. Film dosimetry, however, has drawbacks due to its steep energy dependence at low photon energies as well as film processor and densitometer artifacts. EBT radiochromic film, introduced in 2004 specifically for IMRT dosimetry, may be a detector of choice for the characterization of small radiosurgical beams, because of its near-tissue equivalence, radiation beam energy independence, high spatial resolution, and self developing properties. For radiation beam sizes greater than 10 mm, the film measurements were identical to those of the diode and ion chamber. For the smaller beam diameters of 7.5 and 5 mm, however, there were differences in the data measured with

  8. TOPICAL REVIEW Dosimetry for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Karger, Christian P.; Jäkel, Oliver; Palmans, Hugo; Kanai, Tatsuaki

    2010-11-01

    Recently, ion beam radiotherapy (including protons as well as heavier ions) gained considerable interest. Although ion beam radiotherapy requires dose prescription in terms of iso-effective dose (referring to an iso-effective photon dose), absorbed dose is still required as an operative quantity to control beam delivery, to characterize the beam dosimetrically and to verify dose delivery. This paper reviews current methods and standards to determine absorbed dose to water in ion beam radiotherapy, including (i) the detectors used to measure absorbed dose, (ii) dosimetry under reference conditions and (iii) dosimetry under non-reference conditions. Due to the LET dependence of the response of films and solid-state detectors, dosimetric measurements are mostly based on ion chambers. While a primary standard for ion beam radiotherapy still remains to be established, ion chamber dosimetry under reference conditions is based on similar protocols as for photons and electrons although the involved uncertainty is larger than for photon beams. For non-reference conditions, dose measurements in tissue-equivalent materials may also be necessary. Regarding the atomic numbers of the composites of tissue-equivalent phantoms, special requirements have to be fulfilled for ion beams. Methods for calibrating the beam monitor depend on whether passive or active beam delivery techniques are used. QA measurements are comparable to conventional radiotherapy; however, dose verification is usually single field rather than treatment plan based. Dose verification for active beam delivery techniques requires the use of multi-channel dosimetry systems to check the compliance of measured and calculated dose for a representative sample of measurement points. Although methods for ion beam dosimetry have been established, there is still room for developments. This includes improvement of the dosimetric accuracy as well as development of more efficient measurement techniques.

  9. Volumetric modulated arc therapy improves dosimetry and reduces treatment time compared to conventional intensity-modulated radiotherapy for locoregional radiotherapy of left-sided breast cancer and internal mammary nodes.

    PubMed

    Popescu, Carmen C; Olivotto, Ivo A; Beckham, Wayne A; Ansbacher, Will; Zavgorodni, Sergei; Shaffer, Richard; Wai, Elaine S; Otto, Karl

    2010-01-01

    Volumetric modulated arc therapy (VMAT) is a novel extension of conventional intensity-modulated radiotherapy (cIMRT), in which an optimized three-dimensional dose distribution may be delivered in a single gantry rotation. VMAT is the predecessor to RapidArc (Varian Medical System). This study compared VMAT with cIMRT and with conventional modified wide-tangent (MWT) techniques for locoregional radiotherapy for left-sided breast cancer, including internal mammary nodes. Therapy for 5 patients previously treated with 50 Gy/25 fractions using nine-field cIMRT was replanned with VMAT and MWT. Comparative endpoints were planning target volume (PTV) dose homogeneity, doses to surrounding structures, number of monitor units, and treatment delivery time. For VMAT, two 190 degrees arcs with 2-cm overlapping jaws were required to optimize over the large treatment volumes. Treatment plans generated using VMAT optimization resulted in PTV homogeneity similar to that of cIMRT and MWT. The average heart volumes receiving >30 Gy for VMAT, cIMRT, and MWT were 2.6% +/- 0.7%, 3.5% +/- 0.8%, and 16.4% +/- 4.3%, respectively, and the average ipsilateral lung volumes receiving >20 Gy were 16.9% +/- 1.1%, 17.3% +/- 0.9%, and 37.3% +/- 7.2%, respectively. The average mean dose to the contralateral medial breast was 3.2 +/- 0.6 Gy for VMAT, 4.3 +/- 0.4 Gy for cIMRT, and 4.4 +/- 4.7 Gy for MWT. The healthy tissue volume percentages receiving 5 Gy were significantly larger with VMAT (33.1% +/- 2.1%) and IMRT (45.3% +/- 3.1%) than with MWT (19.4% +/- 3.7%). VMAT reduced the number of monitor units by 30% and the treatment time by 55% compared with cIMRT. VMAT achieved similar PTV coverage and sparing of organs at risk, with fewer monitor units and shorter delivery time than cIMRT.

  10. Volumetric Modulated Arc Therapy Improves Dosimetry and Reduces Treatment Time Compared to Conventional Intensity-Modulated Radiotherapy for Locoregional Radiotherapy of Left-Sided Breast Cancer and Internal Mammary Nodes

    SciTech Connect

    Popescu, Carmen C.; Olivotto, Ivo A.; Beckham, Wayne A.; Ansbacher, Will; Zavgorodni, Sergei; Shaffer, Richard; Wai, Elaine S.; Otto, Karl

    2010-01-15

    Purpose: Volumetric modulated arc therapy (VMAT) is a novel extension of conventional intensity-modulated radiotherapy (cIMRT), in which an optimized three-dimensional dose distribution may be delivered in a single gantry rotation. VMAT is the predecessor to RapidArc (Varian Medical System). This study compared VMAT with cIMRT and with conventional modified wide-tangent (MWT) techniques for locoregional radiotherapy for left-sided breast cancer, including internal mammary nodes. Methods and Materials: Therapy for 5 patients previously treated with 50 Gy/25 fractions using nine-field cIMRT was replanned with VMAT and MWT. Comparative endpoints were planning target volume (PTV) dose homogeneity, doses to surrounding structures, number of monitor units, and treatment delivery time. Results: For VMAT, two 190 deg. arcs with 2-cm overlapping jaws were required to optimize over the large treatment volumes. Treatment plans generated using VMAT optimization resulted in PTV homogeneity similar to that of cIMRT and MWT. The average heart volumes receiving >30 Gy for VMAT, cIMRT, and MWT were 2.6% +- 0.7%, 3.5% +- 0.8%, and 16.4% +- 4.3%, respectively, and the average ipsilateral lung volumes receiving >20 Gy were 16.9% +- 1.1%, 17.3% +- 0.9%, and 37.3% +- 7.2%, respectively. The average mean dose to the contralateral medial breast was 3.2 +- 0.6 Gy for VMAT, 4.3 +- 0.4 Gy for cIMRT, and 4.4 +- 4.7 Gy for MWT. The healthy tissue volume percentages receiving 5 Gy were significantly larger with VMAT (33.1% +- 2.1%) and IMRT (45.3% +- 3.1%) than with MWT (19.4% +- 3.7%). VMAT reduced the number of monitor units by 30% and the treatment time by 55% compared with cIMRT. Conclusions: VMAT achieved similar PTV coverage and sparing of organs at risk, with fewer monitor units and shorter delivery time than cIMRT.

  11. Dosimetry of the Leksell gamma knife

    NASA Astrophysics Data System (ADS)

    Meltsner, Sheridan Griffin

    No accepted official protocol exists for the dosimetry of the Leksell Gamma KnifeRTM (GK) stereotactic radiosurgery device. Establishment of a dosimetry protocol has been complicated by the unique partial-hemisphere arrangement of 201 separate 60Co beams simultaneously focused on the treatment volume and by the rigid geometry of the GK unit itself. This paper proposes an air kerma based dosimetry protocol using an in-air or in-acrylic phantom measurement to determine the dose rate of fields collimated by the 18 mm helmet of a GK unit. A small-volume ionization chamber was used to make measurements at the physical isocenter of three GK units. The dose rate to water was determined using a modified version of the AAPM Task Group 21 protocol designed for use with 60Co-based teletherapy machines. This experimentally determined dose rate was compared to the treatment planning system (TPS) dose rate that is determined by the clinical medical physicist at the time of machine commissioning. The TPS dose rate is defined as dose rate to water at a depth of 8 cm. The dose rate to water for the 18 mm helmet determined using the air kerma based calculations presented here is consistently between 1.5% and 2.9% higher than the TPS dose rate. These air kerma based measurements allow GK dosimetry to be performed with an established dosimetry protocol and without complications arising from the use of and possible variations in solid phantom material. Measurements were made with the same chamber in a spherical acrylic phantom for comparison. This methodology will allow future development of calibration methods appropriate for the smaller fields of GK units to be compared to a well established standard. Multiple three-dimensional dosimetry methods were also used to capture the dose distribution of the entire field of the GK. These methods included radiosensitive gel, a novel three-dimensional radiochromic film phantom, and Monte Carlo modeling. These methods were also compared to the

  12. TU-F-201-00: Radiochromic Film Dosimetry Update

    SciTech Connect

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  13. Five-Year ALARA Review of Dosimetry Results 1 January 2009 through 31 December 2013.

    SciTech Connect

    Paulus, Luke R

    2014-08-01

    A review of dosimetry results from 1 January 2009 through 31 December 2013 was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform to the ALARA philosophy. This included a review and evaluation of personnel dosimetry (external and internal) results at Sandia National Laboratories, New Mexico as well as at Sandia National Laboratories, California. Additionally, results of environmental monitoring efforts at Sandia National Laboratories, New Mexico were reviewed. ALARA is a philosophical approach to radiation protection by managing and controlling radiation exposures (individual and collective) to the work force and to the general public to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limit but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.

  14. Five-Year ALARA Review of Dosimetry Results 1 January 2010 through 31 December 2014.

    SciTech Connect

    Paulus, Luke R.

    2015-06-01

    A review of dosimetry results from 1 January 2010 through 31 December 2014 was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform to the philosophy to keep exposures to radiation As Low As is Reasonably Achievable (ALARA). This included a review and evaluation of personnel dosimetry (external and internal) results at Sandia National Laboratories, New Mexico as well as at Sandia National Laboratories, California. Additionally, results of environmental monitoring efforts at Sandia National Laboratories, New Mexico were reviewed. ALARA is a philosophical approach to radiation protection by managing and controlling radiation exposures (individual and collective) to the work force and to the general public to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limit but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.

  15. The DS86 neutron dosimetry enigma: Some missing pieces to the puzzle

    SciTech Connect

    Gold, R.

    1994-12-31

    International programs have been conducted over the last four decades to quantify the exposure of atom bomb survivors from Hiroshima and Nagasaki. Unfortunately, the quest for accurate gamma-ray and neutron exposure doses of atom bomb survivors has proven illusive. Efforts in the most recent of these programs, designated as Dosimetry System 1986 (DS86), have revealed a serious and persistent discrepancy between neutron transport calculations and thermal neutron activation measurements at the Hiroshima site, which will be called the DS86 neutron dosimetry enigma. It is established that this enigma is a complex puzzle that precludes simple solutions. This conclusion is deduced through the identification of a number of missing pieces to the puzzle. Implications and conclusions that can be inferred from these missing puzzle pieces are advanced.

  16. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  17. Neutron dosimetry using optically stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Eschbach, P. A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron induced proton recoils for radiation dosimetry is a well known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years PNL has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one year period, and the capability of analyzing single grains within a hydrogenous matrix.

  18. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  19. Trigeminal neuralgia treatment dosimetry of the Cyberknife

    SciTech Connect

    Ho, Anthony; Lo, Anthony T.; Dieterich, Sonja; Soltys, Scott G.; Gibbs, Iris C.; Chang, Steve G.; Adler, John R.

    2012-04-01

    There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculation algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.

  20. Absolute and relative dosimetry for ELIMED

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Cuttone, G.; Candiano, G.; Carpinelli, M.; Leonora, E.; Lo Presti, D.; Musumarra, A.; Pisciotta, P.; Raffaele, L.; Randazzo, N.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.; Cirio, R.; Marchetto, F.; Sacchi, R.; Giordanengo, S.; Monaco, V.

    2013-07-01

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  1. Permethrin Exposure Dosimetry: Biomarkers and Modifiable Factors

    DTIC Science & Technology

    2016-08-01

    the effect of body weight/BMI and total energy expenditure on permethrin absorption and dose, as determined by measurement of urinary biomarkers...Data collection for Study 2 is in progress. 15. SUBJECT TERMS Permethrin, biomarkers, military, dose, exposure dosimetry, military, energy expenditure...body weight/BMI and total energy expenditure on permethrin absorption and dose, as determined by measurement of urinary biomarkers (3PBA and cis- and

  2. Advances in personnel neutron dosimetry: part 3

    SciTech Connect

    Vallario, E.J.; Faust, L.G.

    1983-09-01

    DOE-sponsored evaluation and upgrading of personnel neutron dosimetry includes a review of new devices involving unique concepts: resonance ionization spectroscopy and organic semiconductor detectors. Resonance ionization spectroscopy uses a laser to detect atoms released by neutron interactions, while organic semiconductors contain large amounts of hydrogen. Although these and other research and evaluation projects reviewed in the first two articles appear promising, there is much more research needed, such as finding a chemically stable organic semiconductor that will be suitable.

  3. Space radiation dosimetry in low-Earth orbit and beyond.

    PubMed

    Benton, E R; Benton, E V

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars.

  4. Space radiation dosimetry in low-Earth orbit and beyond

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Benton, E. V.

    2001-01-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.

  5. Space radiation dosimetry in low-Earth orbit and beyond

    NASA Astrophysics Data System (ADS)

    Benton, E. R.; Benton, E. V.

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars.

  6. Space radiation dosimetry in low-Earth orbit and beyond

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Benton, E. V.

    2001-01-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.

  7. In vivo dosimetry in external beam radiotherapy.

    PubMed

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-01

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20∕20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  8. Software tool for portal dosimetry research.

    PubMed

    Vial, P; Hunt, P; Greer, P B; Oliver, L; Baldock, C

    2008-09-01

    This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects.

  9. In vivo dosimetry in external beam radiotherapy

    SciTech Connect

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  10. INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.

    PubMed

    Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim

    2017-04-01

    CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Static magnetic field therapy: dosimetry considerations.

    PubMed

    Colbert, Agatha P; Markov, Marko S; Souder, James S

    2008-06-01

    The widespread use of static magnetic field (SMF) therapy as a self-care physical intervention has led to the conduct of numerous randomized controlled trials (RCTs). A recent systematic review of SMF trials for pain reduction concluded that the evidence does not support the use of permanent magnets for pain relief. We argue that this conclusion is unwarranted if the SMF dosage was inadequate or inappropriate for the clinical condition treated. The purpose of this communication is to (1) provide a rationale and an explanation for each of 10 essential SMF dosing parameters that should be considered when conducting trials of SMF therapy, and (2) advocate for the conduct of Phase I studies to optimize SMF dosimetry for each condition prior to implementing a large-scale RCT. A previous critical review of SMF dosimetry in 56 clinical studies found that reporting SMF dosages in a majority of those studies was of such poor quality that the magnetic field exposure at the target tissue could not be characterized. Without knowing what magnetic field actually reached the target, it is impossible to judge dosage adequacy. In order to quantify SMF exposure at the site of pathology (target tissue/s), that site must be clearly named; the distance of the permanent magnet surface from the target must be delineated; the physical parameters of the applied permanent magnet must be described; and the dosing regimen must be precisely reported. If the SMF dosimetry is inadequate, any inferences drawn from reported negative findings are questionable.

  12. Dosimetry tools and techniques for IMRT.

    PubMed

    Low, Daniel A; Moran, Jean M; Dempsey, James F; Dong, Lei; Oldham, Mark

    2011-03-01

    Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of

  13. Internal dosimetry for inhalation of hafnium tritide aerosols.

    PubMed

    Inkret, W C; Schillaci, M E; Boyce, M K; Cheng, Y S; Efurd, D W; Little, T T; Miller, G; Musgrave, J A; Wermer, J R

    2001-01-01

    Metal tritides with low dissolution rates may have residence times in the lungs which are considerably longer than the biological half-time normally associated with tritium in body water, resulting in long-term irradiation of the lungs by low energy beta particles and bremsstrahlung X rays. Samples of hafnium tritide were placed in a lung simulant fluid to determine approximate lung dissolution rates. Hafnium hydride samples were analysed for particle size distribution with a scanning electron microscope. Lung simulant data indicated a biological dissolution half-time for hafnium tritide on the order of 10(5) d. Hafnium hydride particle sizes ranged between 2 and 10 microns, corresponding to activity median aerodynamic diameters of 5 to 25 microns. Review of in vitro dissolution data, development of a biokinetic model, and determination of secondary limits for 1 micron AMAD particles are presented and discussed.

  14. International dosimetry: an evaluation of treatment planning in clinical trials.

    PubMed

    Grant, W; Davis, M J

    1975-08-01

    A tissue-equivalent phantom containing thermoluminescent dosimeters was mailed in succession to Mount Vernon Hospital, Northwood, Middlesex, England, to Groote Schuur Hospital, Capetown, South Africa, and to Winnipeg General Hospital, Winnipeg, Canada, to determine the accuracy and consistency in treatment for carcinoma of the cervix under hyperbaric oxygen conditions. (Protocol of the Medical Research Council's Working Party on Radiotherapy and Hyperbaric Oxygen.) The data were analysed by the Radiological Physics Center, Houston, Texas, and substantiate uniformity at and between the participating institutions.

  15. Passive dosimetry aboard the Mir Orbital Station: internal measurements

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Benton, E. V.; Frank, A. L.

    2002-01-01

    Passive radiation dosimeters were exposed aboard the Mir Orbital Station over a substantial portion of the solar cycle in order to measure the change in dose and dose equivalent rates as a function of time. During solar minimum, simultaneous measurements of the radiation environment throughout the habitable volume of the Mir were made using passive dosimeters in order to investigate the effect of localized shielding on dose and dose equivalent. The passive dosimeters consisted of a combination of thermoluminescent detectors to measure absorbed dose and CR-39 PNTDs to measure the linear energy transfer (LET) spectrum from charged particles of LET infinity H2O > or = 5 keV/micrometers. Results from the two detector types were then combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Contrary to expectations, both dose and dose equivalent rates measured during May-October 1991 near solar maximum were higher than similar measurements carried out in 1996-1997 during solar minimum. The elevated dose and dose equivalent rates measured in 1991 were probably due to a combination of intense solar activity, including a large solar particle event on 9 June 1991, and the temporary trapped radiation belt created in the slot region by the solar particle event and ensuing magnetic storm of 24 March 1991. During solar minimum, mean dose and dose equivalent rates were found to vary by factors of 1.55 and 1.37, respectively, between different locations through the interior of Mir. More heavily shielded locations tended to yield lower total dose and dose equivalent rates, but higher average quality factor than did more lightly shielding locations. However, other factors such as changes in the immediate shielding environment surrounding a given detector location, changes in the orientation of the Mir relative to its velocity vector, and changes in the altitude of the station also contributed to the variation. Proton and neutron-induced target fragment secondaries, not primary galactic cosmic rays, were found to dominate the LET spectrum above 100 keV/micrometers. This indicates that in low earth orbit, trapped protons in the South Atlantic Anomaly are responsible for the major fraction of the total dose equivalent. c2002 Elsevier Science Ltd. All rights reserved.

  16. Risks of circulatory diseases among Mayak PA workers with radiation doses estimated using the improved Mayak Worker Dosimetry System 2008.

    PubMed

    Moseeva, Maria B; Azizova, Tamara V; Grigoryeva, Evgenia S; Haylock, Richard

    2014-05-01

    The new Mayak Worker Dosimetry System 2008 (MWDS-2008) was published in 2013 and supersedes the Doses-2005 dosimetry system for Mayak Production Association (PA) workers. It provides revised external and internal dose estimates based on the updated occupational history data. Using MWDS-2008, a cohort of 18,856 workers first employed at one of the main Mayak PA plants during 1948-1972 and followed up to 2005 was identified. Incidence and mortality risks from ischemic heart disease (IHD) (International Classification of Diseases (ICD)-9 codes 410-414) and from cerebrovascular diseases (CVD) (ICD-9 codes 430-438) were examined in this cohort and compared with previously published risk estimates in the same cohort based on the Doses-2005 dosimetry system. Significant associations were observed between doses from external gamma-rays and IHD and CVD incidence and also between internal doses from alpha-radiation and IHD mortality and CVD incidence. The estimates of excess relative risk (ERR)/Gy were consistent with those estimates from the previous studies based on Doses-2005 system apart from the relationship between CVD incidence and internal liver dose where the ERR/Gy based on MWDS-2008 was just over three times higher than the corresponding estimate based on Doses-2005 system. Adjustment for smoking status did not show any effect on the estimates of risk from internal alpha-particle exposure.

  17. Neutron dosimetry and radiation damage calculations for HFBR

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  18. [Instrumental radiofrequency electromagnetic radiation dosimetry: general principals and modern methodology].

    PubMed

    Perov, S Iu; Kudriashov, Iu B; Rubtsova, N B

    2012-01-01

    The modern experimental radiofrequency electromagnetic field dosimetry approach has been considered. The main principles of specific absorbed rate measurement are analyzed for electromagnetic field biological effect assessment. The general methodology of specific absorbed rate automated dosimetry system applied to establish the compliance of radiation sources with the safety standard requirements (maximum permissible levels and base restrictions) is described.

  19. Student Perceptions of an Online Medical Dosimetry Program

    ERIC Educational Resources Information Center

    Lenards, Nishele D.

    2007-01-01

    The University of Wisconsin--La Crosse offers the first web-based medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was need to…

  20. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry.

    PubMed

    Hindorf, Cecilia; Glatting, Gerhard; Chiesa, Carlo; Lindén, Ola; Flux, Glenn

    2010-06-01

    The level of administered activity in radionuclide therapy is often limited by haematological toxicity resulting from the absorbed dose delivered to the bone marrow. The purpose of these EANM guidelines is to provide advice to scientists and clinicians on data acquisition and data analysis related to bone-marrow and whole-body dosimetry. The guidelines are divided into sections "Data acquisition" and "Data analysis". The Data acquisition section provides advice on the measurements required for accurate dosimetry including blood samples, quantitative imaging and/or whole-body measurements with a single probe. Issues specific to given radiopharmaceuticals are considered. The Data analysis section provides advice on the calculation of absorbed doses to the whole body and the bone marrow. The total absorbed dose to the bone marrow consists of contributions from activity in the bone marrow itself (self-absorbed dose) and the cross-absorbed dose to the bone marrow from activity in bone, larger organs and the remainder of the body. As radionuclide therapy enters an era where patient-specific dosimetry is used to guide treatments, accurate bone-marrow and whole-body dosimetry will become an essential element of treatment planning. We hope that these guidelines will provide a basis for the optimization and standardization of the treatment of cancer with radiopharmaceuticals, which will facilitate single- and multi-centre radionuclide therapy studies.

  1. EURADOS strategic research agenda: vision for dosimetry of ionising radiation

    PubMed Central

    Rühm, W.; Fantuzzi, E.; Harrison, R.; Schuhmacher, H.; Vanhavere, F.; Alves, J.; Bottollier Depois, J. F.; Fattibene, P.; Knežević, Ž.; Lopez, M. A.; Mayer, S.; Miljanić, S.; Neumaier, S.; Olko, P.; Stadtmann, H.; Tanner, R.; Woda, C.

    2016-01-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises—based on input from EURADOS Working Groups (WGs) and Voting Members—five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). PMID:25752758

  2. Framework and need for dosimetry and measurements: quantitation matters.

    PubMed

    Guilmette, Raymond A

    2015-02-01

    It has always been recognized that radiation measurements and dosimetry (M &8; D) play a crucial role in developing radiation protection programs for workers and members of the public, particularly as they relate to mitigating potential health risks from exposure to radiation. The National Council on Radiation Protection and Measurements (NCRP) has always devoted significant resources to these scientific disciplines in terms of its published reports, and it is anticipated that this emphasis will continue. This includes focus on both external and internal radiation exposure as well as radiation and radioactivity measurement methodology. NCRP, as part of its management of scientific activities, has designated Program Area Committee 6 to focus on radiation M &8; D. This paper briefly describes how radiation M &8; D has been addressed historically in terms of NCRP activities. It reports how the emphases have changed over the years and how NCRP has worked effectively with other radiation protection organizations, such as the International Commission on Radiological Protection, to leverage its expertise in advancing the science of M &8; D. Current and prospective activities in M &8; D by NCRP are also described to frame the future in these areas of interest necessary for the optimum application of radiation protection principles and programs.

  3. Dosimetry for animals and plants: contending with biota diversity.

    PubMed

    Ulanovsky, A

    2016-06-01

    Diversity of living organisms and their environmental radiation exposure conditions represents a special challenge for non-human dosimetry. In order to contend with such diversity, the International Commission on Radiological Protection (ICRP) has: (a) set up points of reference by providing dose conversion coefficients (DCCs) for reference entities known as 'Reference Animals and Plants' (RAPs); and (b) used dosimetric models that pragmatically assume simple body shapes with uniform composition and density, homogeneous internal contamination, a limited set of idealised external radiation sources, and truncation of the radioactive decay chains. This pragmatic methodology has been further developed and extended systematically. Significant methodological changes include: a new extended approach for assessing doses of external exposure for terrestrial animals, transition to the contemporary ICRP radionuclide database, assessment-specific consideration of the contribution of radioactive progeny to dose coefficients of parent nuclides, and the use of generalised allometric relationships in the estimation of biokinetic or metabolic parameters. The new methodological developments resulted in a revision of the DCCs for RAPs. Tables of the dose coefficients have now been complemented by a web-based software tool, which can be used to calculate a user-specific DCC for an organism of arbitrary mass and shape, located at user-defined height above the ground, and for an arbitrary radionuclide and its radioactive progeny.

  4. Nuclear decay data files of the Dosimetry Research Group

    SciTech Connect

    Eckerman, K.F.; Westfall, R.J.; Ryman, J.C.; Cristy, M.

    1993-12-01

    This report documents the nuclear decay data files used by the Dosimetry Research Group at Oak Ridge National Laboratory and the utility DEXRAX which provides access to the files. The files are accessed, by nuclide, to extract information on the intensities and energies of the radiations associated with spontaneous nuclear transformation of the radionuclides. In addition, beta spectral data are available for all beta-emitting nuclides. Two collections of nuclear decay data are discussed. The larger collection contains data for 838 radionuclides, which includes the 825 radionuclides assembled during the preparation of Publications 30 and 38 of the International Commission on Radiological Protection (ICRP) and 13 additional nuclides evaluated in preparing a monograph for the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The second collection is composed of data from the MIRD monograph and contains information for 242 radionuclides. Abridged tabulations of these data have been published by the ICRP in Publication 38 and by the Society of Nuclear Medicine in a monograph entitled ``MIRD: Radionuclide Data and Decay Schemes.`` The beta spectral data reported here have not been published by either organization. Electronic copies of the files and the utility, along with this report, are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.

  5. Retrospective assessment of personnel neutron dosimetry for workers at the Hanford Site

    SciTech Connect

    Fix, J.J.; Wilson, R.H.; Baumgartner, W.B.

    1996-09-01

    This report was prepared to examine the specific issue of the potential for unrecorded neutron dose for Hanford workers, particularly in comparison with the recorded whole body (neutron plus photon) dose. During the past several years, historical personnel dosimetry practices at Hanford have been documented in several technical reports. This documentation provides a detailed history of the technology, radiation fields, and administrative practices used to measure and record dose for Hanford workers. Importantly, documentation has been prepared by personnel whose collective experience spans nearly the entire history of Hanford operations beginning in the mid-1940s. Evaluations of selected Hanford radiation dose records have been conducted along with statistical profiles of the recorded dose data. The history of Hanford personnel dosimetry is complex, spanning substantial evolution in radiation protection technology, concepts, and standards. Epidemiologic assessments of Hanford worker mortality and radiation dose data were initiated in the early 1960s. In recent years, Hanford data have been included in combined analyses of worker cohorts from several Department of Energy (DOE) sites and from several countries through the International Agency for Research on Cancer (IARC). Hanford data have also been included in the DOE Comprehensive Epidemiologic Data Resource (CEDR). In the analysis of Hanford, and other site data, the question of comparability of recorded dose through time and across the respective sites has arisen. DOE formed a dosimetry working group composed of dosimetrists and epidemiologists to evaluate data and documentation requirements of CEDR. This working group included in its recommendations the high priority for documentation of site-specific radiation dosimetry practices used to measure and record worker dose by the respective DOE sites.

  6. Improving neutron dosimetry using bubble detector technology

    SciTech Connect

    Buckner, M.A.

    1993-02-01

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research.

  7. Model selection for radiochromic film dosimetry.

    PubMed

    Méndez, I

    2015-05-21

    The purpose of this study was to find the most accurate model for radiochromic film dosimetry by comparing different channel independent perturbation models. A model selection approach based on (algorithmic) information theory was followed, and the results were validated using gamma-index analysis on a set of benchmark test cases. Several questions were addressed: (a) whether incorporating the information of the non-irradiated film, by scanning prior to irradiation, improves the results; (b) whether lateral corrections are necessary when using multichannel models; (c) whether multichannel dosimetry produces better results than single-channel dosimetry; (d) which multichannel perturbation model provides more accurate film doses. It was found that scanning prior to irradiation and applying lateral corrections improved the accuracy of the results. For some perturbation models, increasing the number of color channels did not result in more accurate film doses. Employing Truncated Normal perturbations was found to provide better results than using Micke-Mayer perturbation models. Among the models being compared, the triple-channel model with Truncated Normal perturbations, net optical density as the response and subject to the application of lateral corrections was found to be the most accurate model. The scope of this study was circumscribed by the limits under which the models were tested. In this study, the films were irradiated with megavoltage radiotherapy beams, with doses from about 20-600 cGy, entire (8 inch  × 10 inch) films were scanned, the functional form of the sensitometric curves was a polynomial and the different lots were calibrated using the plane-based method.

  8. Improving neutron dosimetry using bubble detector technology

    SciTech Connect

    Buckner, M.A.

    1993-02-01

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research.

  9. Electron dosimetry for 10-MEV linac

    NASA Astrophysics Data System (ADS)

    Mehta, K. K.; Chu, R.; VanDyk, G.

    Recent developments in electron accelerator technology may allow the role of high-energy machines to expand. Implementation of appropriate dosimetry and quality comtrol methods for non-homogeneous materials is an important part of the expansion of this technology. To implement such methods and provide electron dosimetry for an applications development program, we recently conducted several dosimetry experiments. Our 10-MeV prototype electron accelerator as well as the accelerator at the National Research Council of Canada were used for these experiments. Polystyrene and graphite phantoms were constructed to measure the dose profile with depth. This yielded the extrapolated range and hence the most probable energy of the electrons in the beam. A polymethyl methacrylate (PMMA) sandwich-type range finder was also designed and used to directly measure the range and therefore the electron energy. Some of the range-finder results indicated that the charge buildup in the non- conducting PMMA affected the dose distribution. The measured energy values agreed very well with the beam energy values calculated from the analyzing magnet current of the accelerator. Also, responses of a graphite calorimeter as well as of various dosimeters compared fairly well in an electron field. The interface effects near the surface of homogeneous products were studied by analyzing the transmitted dose measured by the red acrylic continuous dosimeter placed under the products. The same technique was also used to examine the nature of inhomogeneity of various food products. We found this dosimeter extremely convenient and useful for measuring dose distribution in a plane. A Monte Carlo computer code was used to compute the depth-dose distributions in various materials and to compute the dose distribution near the interface of acrylic and air. These results were then compared against the measured distributions.

  10. In vivo light dosimetry for pleural PDT

    NASA Astrophysics Data System (ADS)

    Dimofte, Andreea; Zhu, Timothy C.; Finlay, Jarod C.; Culligan, Melissa; Edmonds, Christine E.; Friedberg, Joseph S.; Cengel, Keith; Hahn, Stephen M.

    2009-02-01

    In-vivo light Dosimetry for patients undergoing photodynamic therapy (PDT) is one of the important dosimetry quantities critical for predicting PDT outcome. This study examines the light fluence (rate) delivered to patients undergoing pleural PDT as a function of treatment time, treatment volume and surface area, and its accuracy as a function of the calibration accuracies of each isotropic detector and the calibration integrating sphere. The patients studied here were enrolled in Phase II clinical trial of Photofrin-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. The ages of the patients studied varied from 34 to 69 year old. All patients were administered 2mg per kg body weight Photoprin 24 hours before the surgery. Patients undergoing photodynamic therapy (PDT) are treated with laser light with a light fluence of 60 J/cm^2 at 630nm. Fluence rate (mW/cm^2) and cumulative fluence (J/cm^2) was monitored at 7 different sites during the entire light treatment delivery. Isotropic detectors were used for in-vivo light dosimetry. The anisotropy of each isotropic detector was found to be within 30%. The mean fluence rate delivery varied from 37.84 to 94.05 mW/cm^2 and treatment time varied from 1762 to 5232s. We have established a correlation between the treatment time and the treatment volume. The results are discussed using an integrating sphere theory and the measured tissue optical properties. The result can be used as a clinical guideline for future pleural PDT treatment.

  11. Dosimetry applications in GATE Monte Carlo toolkit.

    PubMed

    Papadimitroulas, Panagiotis

    2017-02-21

    Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. [Determination of absorbed dose to water for high energy photon and electron beams--comparison of different dosimetry protocols].

    PubMed

    Zakaria, Golam Abu; Schütte, Wilhelm

    2003-01-01

    The determination of absorbed dose to water for high-energy photon and electron beams is performed in Germany according to the dosimetry protocol DIN 6800-2 (1997). At an international level, the main protocols used are the AAPM dosimetry protocol TG-51 (1999) and the IAEA Code of Practice TRS-398 (2000). The present paper systematically compares these three dosimetry protocols, and identifies similarities and differences. The investigations were performed using 4 and 10 MV photon beams, as well as 6, 8, 9, 10, 12 and 14 MeV electron beams. Two cylindrical and two plane-parallel type chambers were used for measurements. In general, the discrepancies among the three protocols were 1.0% for photon beams and 1.6% for electron beams. Comparative measurements in the context of measurement technical control (MTK) with TLD showed a deviation of less than 1.3% between the measurements obtained according to protocols DIN 6800-2 and MTK (exceptions: 4 MV photons with 2.9% and 6 MeV electrons with 2.4%). While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using both cylindrical and plane-parallel chambers (the latter used after a cross-calibration to a cylindrical chamber, as required by the respective dosimetry protocols). Notably, unlike recommended in the corresponding protocols, we found out that cylindrical chambers can be used also for energies from 6 to 10 MeV.

  13. Neutron dosimetry of the Little Boy device

    SciTech Connect

    Pederson, R.A.; Plassmann, E.A.

    1984-01-01

    Neutron dose rates at several angular locations and at distances out to 0.5 mile have been measured during critical operation of the Little Boy replica. We used modified remmetes and thermoluminescent dosimetry techniques for the measurements. The present status of our analysis is presented including estimates of the neutron-dose-relaxation length in air and the variation of the neutron-to-gamma-ray dose ratio with distance from the replica. These results are preliminary and are subject to detector calibration measurements.

  14. The next decade in external dosimetry

    SciTech Connect

    Griffith, R.V.

    1986-10-01

    As the radiation protection community moves through the last half of the '80s and into the next decade, we can expect the requirements for external dosimetry to become increasingly more restrictive and demanding. As in other health protection fields, growing regulatory and legal pressures, together with a natural evolution in philosophy, require the health physicist to display an increasing degree of accountability, rigor, and professionalism. The good news is that, for the most part, the technology necessary to solve many of the problems will be available or not far behind. This paper describes anticipated technology. 66 refs., 10 figs.

  15. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    SciTech Connect

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y.; Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N.

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  16. Hydroxyanthraquinone dye solutions for radiation dosimetry.

    PubMed

    Bedear El-Assy, N; Alian, A; Abdel Rahim, F; Roushdy, H

    1982-06-01

    An investigation has been carried out on the effect of gamma-radiation on the absorption spectra of aqueous solutions of the hydroxyanthraquinone dyes, alizarin and alizarin red S. Ionizing radiation at absorbed doses over the range 10(5)-3 x 10(6) rad brought about gradual bleaching of aerated (oxygenated) dye solutions. The radiolytic bleaching was enhanced through addition of hydrogen peroxide, as expected. A mechanism for the radiolytic reaction is proposed, based on chemical attack of the chromophore by radicals and radical ions as aqueous radiolysis products. Suggestions are made for possible radiation dosimetry by means of spectrophotometric analysis of the absorption spectra.

  17. The next decade in external dosimetry.

    PubMed

    Griffith, R V

    1988-08-01

    In recent years, a number of external dosimetry problems have been solved. However, changes in standards and legal concepts relating to the application of dosimetry results will require further enhancements in measurement techniques and philosophy in the next 10 y. The introduction of effective dose equivalent and the legal use of probability of causation will require that much greater attention be given to determination of weighted organ dose from external exposure. An imminent change--an increase in the fast neutron quality factor--will require a new round of technology development in a field that has just received a decade of close scrutiny. For the future, we must take advantage of developments in microelectronics. The use of random access memory (RAM) and metal-on-silicon (MOS) devices as detector elements, particularly for neutron dosimetry, has exciting possibilities that are just beginning to be explored. Advances in microcircuitry are leading, and will continue to lead, in the development of a new generation of small, rugged and "smart" radiation survey instruments that will make the most of detector data. It has become possible with very compact instruments to obtain energy spectra, linear-energy-transfer (LET) spectra, and quality factors in addition to the usual integrated dosimetric quantities: exposure, absorbed dose, and dose equivalent. These instruments will be reliable and easy to use. The user will be able to select the level of sophistication that is required for any specific application. Moreover, since the processing algorithms can be changed, changes in conversion factors can be accommodated with relative ease. During the next decade, the use of computers will continue to grow in value to the health physicist. Personal computers and codes designed for dosimetry applications will become prominent, providing the health physicist with the ability to perform sophisticated data reduction, spectra unfolding and even radiation modeling and transport

  18. Characteristics of in vivo radiotherapy dosimetry.

    PubMed

    Edwards, C R; Mountford, P J

    2009-11-01

    The recent discussion and debate about the use of in vivo dosimetry as a routine component of the radiotherapy treatment process has not included the limitations introduced by the physical characteristics of the detectors. Although a robust calibration procedure will ensure acceptable uncertainties in the measurements of tumour dose, further work is required to confirm the accuracy of critical organ measurements with a diode or a thermoluminescent dosemeter outside the main field owing to limitations caused by a non-uniform X-ray energy response of the detector, differences between the X-ray energy spectrum inside and outside the main field, and contaminating electrons.

  19. Dosimetry challenges for implementing emerging technologies

    PubMed Central

    Yin, Fang-Fang; Oldham, Mark; Cai, Jing; Wu, Qiuwen

    2010-01-01

    During the last 10 years, radiation therapy technologies have gone through major changes, mainly related introduction of sophisticated delivery and imaging techniques to improve the target localization accuracy and dose conformity. While implementation of these emerging technologies such as image-guided SRS/SBRT, IMRT/IMAT, IGRT, 4D motion management, and special delivery technologies showed substantial clinical gains for patient care, many other factors, such as training/quality, efficiency/efficacy, and cost/effectiveness etc. remain to be challenging. This talk will address technical challenges for dosimetry verification of implementing these emerging technologies in radiation therapy. PMID:21617745

  20. Implications in dosimetry of the implementation of the revised dose limit to the lens of the eye.

    PubMed

    Broughton, J; Cantone, M C; Ginjaume, M; Shah, B; Czarwinski, R

    2015-04-01

    In 2012, International Radiation Protection Association (IRPA) established a Task Group to provide an assessment of the impact of the implementation of the ICRP-revised dose limit for the lens of the eye for occupational exposure. Associated Societies (ASs) of IRPA were asked to provide views and comments on the basis of a questionnaire addressing three principal topics: (i) implications for dosimetry, (ii) implications for methods of protection and (iii) wider implications of implementing the revised limits. A summary of the collated responses regarding dosimetry is presented and discussed. There is large agreement on the most critical aspects and difficulties in setting up an appropriate monitoring programme for the lens of the eyes. The recent international standards and technical documents provide guidance for some of the concerns but other challenges remain in terms of awareness, acceptance and practicalities.

  1. Dosimetry of ionising radiation in modern radiation oncology

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  2. Personalized image-based radiation dosimetry for routine clinical use in peptide receptor radionuclide therapy: pretherapy experience.

    PubMed

    Celler, Anna; Grimes, Joshua; Shcherbinin, Sergey; Piwowarska-Bilska, Hanna; Birkenfeld, Bozena

    2013-01-01

    Patient-specific dose calculations are not routinely performed for targeted radionuclide therapy procedures, partly because they are time consuming and challenging to perform. However, it is becoming widely recognized that a personalized dosimetry approach can help plan treatment and improve understanding of the dose-response relationship. In this chapter, we review the procedures and essential elements of an accurate internal dose calculation and propose a simplified approach that is aimed to be practical for use in a busy nuclear medicine department.

  3. The importance of 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Low, Daniel

    2015-01-01

    Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions.

  4. Dosimetry of inhaled radon and thoron progeny

    SciTech Connect

    James, A.C.

    1994-06-01

    This chapter reviews recent developments in modeling doses received by lung tissues, with particular emphasis on application of ICRP`s new dosimetric model of the respiratory tract for extrapolating to other environments the established risks from exposure to radon progeny in underground mines. Factors discussed include: (1) the influence of physical characteristics of radon progeny aerosols on dose per unit exposure, e.g., the unattached fraction, and the activity-size distributions of clustered and attached progeny; (2) the dependence of dose on breathing rate, and on the exposed subject (man, woman or child); (3) the variability of dose per unit exposure in a home when exposure is expressed in terms of potential {alpha} energy or radon gas concentration; (4) the comparative dosimetry of thoron progeny; and (5) the effects of air-cleaning on lung dose. Also discussed is the apparent discrepancy between lung cancer risk estimates derived purely from dosimetry and the lung cancer incidence observed in the epidemiological studies of radon-exposed underground miners. Application of ICRP`s recommended risk factors appears to overestimate radon lung-cancer risk for miners by a factor of three. ``Normalization`` of the calculated effective dose is therefore needed, at least for {alpha} dose from radon and thoron progeny, in order to obtain a realistic estimate of lung cancer risk.

  5. Singlet oxygen dosimetry modeling for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Liang, Xing; Wang, Ken Kang-hsin; Zhu, Timothy C.

    2012-02-01

    Photodynamic therapy (PDT) is an important treatment modality for cancer and other localized diseases. In addition to PDT dose, singlet oxygen (1O2) concentration is used as an explicit PDT dosimetry quantity, because 1O2 is the major cytotoxic agent in photodynamic therapy, and the reaction between 1O2 and tumor tissues/cells determines the treatment efficacy. 1O2 concentration can be obtained by the PDT model, which includes diffusion equation for the light transport in tissue and macroscopic kinetic equations for the generation of the singlet oxygen. This model was implemented using finite-element method (FEM) by COMSOL. In the kinetic equations, 5 photo-physiological parameters were determined explicitly to predict the generation of 1O2. The singlet oxygen concentration profile was calculated iteratively by comparing the model with the measurements based on mice experiments, to obtain the apparent reacted 1O2concentration as an explicit PDT dosimetry quantity. Two photosensitizers including Photofrin and BPD Verteporfin, were tested using this model to determine their photo-physiological parameters and the reacted 1O2 concentrations.

  6. Acoustic images of gel dosimetry phantoms

    NASA Astrophysics Data System (ADS)

    Vieira, Silvio L.; Baggio, André; Kinnick, Randall R.; Fatemi, M.; Carneiro, Antonio Adilton O.

    2010-01-01

    This work presents Vibro-acoustography (VA) as a tool to visualize absorbed dose in a polymer gel dosimetry phantom. VA relies on the mechanical excitation introduced by the acoustic radiation force of focused modulated ultrasound in a small region of the object. A hydrophone or microphone is used to measure the sound emitted from the object in response to the excitation, and by using the amplitude or phase of this signal, an image of the object can be generated. To study the phenomena of dose distribution in a gel dosimetry phantom, continuous wave (CW), tone burst and multi-frequency VA were used to image this phantom. The phantom was designed using 'MAGIC' gel polymer with addition of glass microspheres at 2% w/w having an average diameter range between 40-75 μm. The gel was irradiated using conventional 10 MeV X-rays from a linear accelerator. The field size in the surface of the phantom was 1.0×1.0 cm2 and a source-surface distance (SSD) of 100 cm. The irradiated volume corresponds to an approximately 8.0 cm3, where a dose of 50 gray was delivered to the gel. Polymer gel dosimeters are sensitive to radiation-induced chemical changes that occur in the irradiated polymer. VA images of the gel dosimeter showed the irradiate area. It is concluded that VA imaging has potential to visualize dose distribution in a polymer gel dosimeter.

  7. Dosimetry of two new interstitial brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Saidi, Pooneh; Sadeghi, Mahdi

    2011-01-01

    With increased demand for low 103Pd (palladium) seed sources, to treat prostate and eye cancers, new sources have been designed and introduced. This article presents the two new palladium brachytherapy sources, IR03-103Pd and IR04-103Pd that have been developed at Nuclear Science and Technology Research Institute. The dosimetry parameters such as the dose rate constant Λ, the radial dose function g(r), and the anisotropy function F(r,θ), around the sources have been characterized using Version 5 Monte Carlo radiation transport code in accordance with the update AAPM Task Group No. 43 report (TG-43U1). The results indicated the dose rate constant of 0.689±0.02 and 0.667±0.02 cGy h-1 U-1 for the IR03-103Pd and IR04-103Pd sources respectively, which are in acceptable agreement with other commercial seeds. The calculated results were compared with published results for those of other source manufacturers. However, they show an acceptable dose distribution, using for clinical applications is pending experimental dosimetry.

  8. PDT dose dosimetry for pleural photodynamic therapy

    PubMed Central

    Sharikova, Anna V.; Finlay, Jarod C.; Liang, Xing; Zhu, Timothy C.

    2015-01-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in target tissue. Although existing systems are capable of measuring the light fluence in vivo, the concurrent measurement of photosensitizer in the treated tissue so far has been lacking. We have developed and tested a new method to simultaneously acquire light dosimetry and photosensitizer fluorescence data via the same isotropic detector, employing treatment light as the excitation source. A dichroic beamsplitter is used to split light from the isotropic detector into two fibers, one for light dosimetry, the other, after the 665 nm treatment light is removed by a band-stop filter, to a spectrometer for fluorescence detection. The light fluence varies significantly during treatment because of the source movement. The fluorescence signal is normalized by the light fluence measured at treatment wavelength. We have shown that the absolute photosensitizer concentration can be obtained by an optical properties correction factor and linear spectral fitting. Tissue optical properties are determined using an absorption spectroscopy probe immediately before PDT at the same sites. This novel method allows accurate real-time determination of delivered PDT dose using existing isotropic detectors, and may lead to a considerable improvement of PDT treatment quality compared to the currently employed systems. Preliminary data in patient studies is presented. PMID:25999645

  9. Dosimetry of radium-223 and progeny

    SciTech Connect

    Fisher, D.R.; Sgouros, G.

    1999-01-01

    Radium-223 is a short-lived (11.4 d) alpha emitter with potential applications in radioimmunotherapy of cancer. Radium-223 can be complexed and linked to protein delivery molecules for specific tumor-cell targeting. It decays through a cascade of short-lived alpha- and beta-emitting daughters with emission of about 28 MeV of energy through complete decay. The first three alpha particles are essentially instantaneous. Photons associated with Ra-223 and progeny provide the means for tumor and normal-organ imaging and dosimetry. Two beta particles provide additional therapeutic value. Radium-223 may be produced economically and in sufficient amounts for widescale application. Many aspects of the chemistry of carrier-free isotope preparation, complexation, and linkage to the antibody have been developed and are being tested. The radiation dosimetry of a Ra-223-labeled antibody shows favorable tumor to normal tissue dose ratios for therapy. The 11.4-d half-life of Ra-223 allows sufficient time for immunoconjugate preparation, administration, and tumor localization by carrier antibodies before significant radiological decay takes place. If 0.01 percent of a 37 MBq (1 mCi) injection deposits in a one gram tumor mass, and if the activity is retained with a typical effective half-time (75 h), the absorbed dose will be 163 mGy MBq{sup {minus}1} (600 rad mCi{sup {minus}1}) administered. 49 refs., 5 figs., 2 tabs.

  10. Radiotherapy dosimetry using a commercial OSL system

    SciTech Connect

    Viamonte, A.; Rosa, L. A. R. da; Buckley, L. A.; Cherpak, A.; Cygler, J. E.

    2008-04-15

    A commercial optically stimulated luminescence (OSL) system developed for radiation protection dosimetry by Landauer, Inc., the InLight microStar reader, was tested for dosimetry procedures in radiotherapy. The system uses carbon-doped aluminum oxide, Al{sub 2}O{sub 3}:C, as a radiation detector material. Using this OSL system, a percent depth dose curve for {sup 60}Co gamma radiation was measured in solid water. Field size and SSD dependences of the detector response were also evaluated. The dose response relationship was investigated between 25 and 400 cGy. The decay of the response with time following irradiation and the energy dependence of the Al{sub 2}O{sub 3}:C OSL detectors were also measured. The results obtained using OSL dosimeters show good agreement with ionization chamber and diode measurements carried out under the same conditions. Reproducibility studies show that the response of the OSL system to repeated exposures is 2.5% (1sd), indicating a real possibility of applying the Landauer OSL commercial system for radiotherapy dosimetric procedures.

  11. Eleventh DOE workshop on personnel neutron dosimetry

    SciTech Connect

    Not Available

    1991-12-31

    Since its formation, the Office of Health (EH-40) has stressed the importance of the exchange of information related to and improvements in neutron dosimetry. This Workshop was the eleventh in the series sponsored by the Department of Energy (DOE). It provided a forum for operational personnel at DOE facilities to discuss current issues related to neutron dosimetry and for leading investigators in the field to discuss promising approaches for future research. A total of 26 papers were presented including the keynote address by Dr. Warren K. Sinclair, who spoke on, ``The 1990 Recommendations of the ICRP and their Biological Background.`` The first several papers discussed difficulties in measuring neutrons of different energies and ways of compensating or deriving correction factors at individual facilities. Presentations were also given by the US Navy and Air Force. Current research in neutron dosimeter development was the subject of the largest number of papers. These included a number on the development of neutron spectrometers. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  12. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  13. Methods and procedures for external radiation dosimetry at ORNL

    SciTech Connect

    Gupton, E.D.

    1981-09-01

    Procedures, methods, materials, records, and reports used for accomplishing the personnel, external radiation monitoring program at Oak Ridge National Laboratory are described for the purpose of documenting what is done now for future reference. This document provides a description of the methods and procedures for external radiation metering, monitoring, dosimetry, and records which are in effect at ORNL July 1, 1981. This document does not include procedures for nuclear accident dosimetry except insofar as routine techniques may apply also to nuclear accident dosimetry capability.

  14. [Computational radiofrequency electromagnetic field dosimetry in evaluation of biological effects].

    PubMed

    Perov, S Iu; Kudryashov, Iu B; Rubtsova, N B

    2012-01-01

    Given growing computational resources, radiofrequency electromagnetic field dosimetry is becoming more vital in the study of biological effects of non-ionizing electromagnetic radiation. The study analyzes numerical methods which are used in theoretical dosimetry to assess the exposure level and specific absorption rate distribution. The advances of theoretical dosimetry are shown. Advantages and disadvantages of different methods are analyzed in respect to electromagnetic field biological effects. The finite-difference time-domain method was implemented in detail; also evaluated were possible uncertainties of complex biological structure simulation for bioelectromagnetic investigations.

  15. Dosimetry of Auger emitters: Physical and phenomenological approaches

    SciTech Connect

    Sastry, K.S.R.; Howell, R.W.; Rao, D.V.; Mylavarapu, V.B.; Kassis, A.I.; Adelstein, S.J.; Wright, H.A.; Hamm, R.N.; Turner, J.E.

    1987-01-01

    Recent radiobiological studies have demonstrated that Auger cascades can cause severe biological damage contrary to expectations based on conventional dosimetry. Several determinants govern these effects, including the nature of the Auger electron spectrum; localized energy deposition; cellular geometry; chemical form of the carrier; cellular localization, concentration, and subcellular distribution of the radionuclide. Conventional dosimetry is inadequate in that these considerations are ignored. Our results provide the basis for biophysical approaches toward subcellular dosimetry of Auger emitters in vitro and in vivo. 12 refs., 7 figs., 2 tabs.

  16. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry

    NASA Astrophysics Data System (ADS)

    Hobbs, Robert F.; Song, Hong; Huso, David L.; Sundel, Margaret H.; Sgouros, George

    2012-07-01

    Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction-based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply a geometrical model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin to those used in the Cristy-Eckerman phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus versus proximal tubule versus distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. The S-values were calculated for the α-emitters and their descendants between the different nephron compartments for both the

  17. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry

    PubMed Central

    Hobbs, Robert F; Song, Hong; Huso, David L; Sundel, Margaret; Sgouros, George

    2013-01-01

    Objective Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction –based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply the model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. Methods We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin go those used in the Cristy-Eckermann phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured, ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus vs. proximal tubule vs. distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. Results The S-values were calculated for the α-emitters and their descendants between the different nephron compartments

  18. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry.

    PubMed

    Hobbs, Robert F; Song, Hong; Huso, David L; Sundel, Margaret H; Sgouros, George

    2012-07-07

    Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction-based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply a geometrical model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin to those used in the Cristy-Eckerman phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus versus proximal tubule versus distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. The S-values were calculated for the α-emitters and their descendants between the different nephron compartments for both the

  19. Upgraded Neutron Dosimetry Procedure for VVER-440 Surveilance Specimens

    NASA Astrophysics Data System (ADS)

    Kochkin, V.; Erak, D.; Zaritsky, S.; Egorov, A.; Makhotin, D.

    2009-08-01

    The control of Reactor Pressure Vessel (RPV) metal during lifetime is one of the basic conditions of the reliable and safe operation of a reactor and NPP as a whole. The substantiation of safe RPV operation is based on Surveillance Specimens (SS) testing results and their transfer to the RPV. Since the reliability of the SS program directly depends on the dosimetry accuracy, one of the most important tasks in the investigation of SS is precision estimation of fast neutron fluence (E > 0.5MeV) for each specimen. The upgraded procedure of neutron fluence evaluation for surveillance specimens of VVER-440/213 reactor has been developed and is presented in this paper. This procedure based on measurements of the 54Mn activity of each of the surveillance specimens and neutron field computations. In contrast to the earlier procedures the new one takes into account correctly all pressure vessel internals, influence of core pattern on the neutron field in SS channel, and dependence of spectral index SI0.5/3.0 on the axial coordinate of surveillance specimens. The upgraded procedure is used for neutron fluence evaluation of VVER-440 surveillance and research programs in RRC "Kurchatov institute".

  20. Dosimetry in x-ray-based breast imaging

    NASA Astrophysics Data System (ADS)

    Dance, David R.; Sechopoulos, Ioannis

    2016-10-01

    The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable.

  1. SILICON PHOTOMULTIPLIERS FOR MEDICAL IMAGING AND DOSIMETRY-AN OVERVIEW.

    PubMed

    Herrnsdorf, L; Caccia, M; Mattsson, S

    2016-06-01

    Silicon photomultipliers (SiPMs) are an enabling solid-state technology for low light sensing, with single photon sensitivity and photon number resolving capability. They feature an extremely high internal gain at the 10(6) level, comparable to photomultiplier tubes (PMTs), with the advantage of low operating voltage (~50 V compared to ~1000 V for PMT) and low energy consumption. The solid-state technology makes SiPMs compact, insensitive to magnetic fields and with an extreme flexibility in the design to cope with different applications. The fast development of the multiplication avalanche opens up the possibility to achieve time resolution at the 30 ps level. Dynamic range is however limited compared to PMT and the dark count rate relatively high, yet today at the level of 50 kHz/mm(2) at room temperature. Interfaced with scintillation material, SiPMs provide a powerful platform for medical imaging applications (in positron emission tomography/computed tomography and in positron emission tomography/magnetic resonance), for X-ray quality control as well as for novel compact radiation protection instruments. This article gives an overview of SiPMs for medical imaging and dosimetry. In addition, a learning and training program targeted to graduate students is described. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Intercomparison in Cytogenetic Dosimetry among 22 Laboratories in China

    PubMed Central

    Liu, Jian Xiang; Pan, Yan; Ruan, Jian Lei; Piao, Chunnan; Su, Xu

    2016-01-01

    As part of a regional International Atomic Energy Agency-coordinated research project with the support from the National Health and Family Planning Commission of China, 22 laboratories participated in the intercomparison in cytogenetic dosimetry in China. Slides for chromosomal aberrations were prepared by the Department of Radiation Epidemiology, National Institute for Radiological Protection, which organized the exercise. Slides were sent to the other participating laboratories through Express Mail Service. For estimates of dose, each laboratory scored the frequency of dicentrics plus centric rings chromosomes. The whole blood samples were irradiated with 60Co γ-rays (1.3 Gy, 2.4 Gy and 1.5 Gy, 2.6 Gy). Each laboratory got one group of the slides. Ten of the 44 estimates of dose fell within ±5% of the true physical dose, 12 fell within ±5–10%, 9 fell within ±10–15%, 12 fell within ±15–20%, while only one sample fell ± >20%. The evaluation of the respective dose was achieved by 21 laboratories. PMID:28217282

  3. Magnetic Particle Detection (MPD) for In-Vitro Dosimetry

    SciTech Connect

    Minard, Kevin R.; Littke, Matthew H.; Wang, Wei; Xiong, Yijia; Teeguarden, Justin G.; Thrall, Brian D.

    2013-05-15

    In-vitro tests intended for evaluating the potential health effects of magnetic nanoparticles generally require an accurate measure of cell dose to promote the consistent use and interpretation of biological response. Here, a simple low-cost inductive sensor is developed for quickly determining the total mass of magnetic nanoparticles that is bound to the plasma membrane and internalized by cultured cells. Sensor operation exploits an oscillating magnetic field (f0 = 250 kHz) together with the nonlinear response of particle magnetization to generate a harmonic signal (f3 = 750 kHz) that varies linearly with particulate mass (R2 > 0.999) and is sufficiently sensitive for detecting ~ 100 ng of carboxyl-coated iron-oxide nanoparticles in under a second. When exploited for measuring receptor-mediated nanoparticle uptake in RAW 264.7 macrophages, results show that achieved dosimetry performance is comparable with relatively expensive analytical techniques that are much more time-consuming and labor-intensive to perform. Described sensing is therefore potentially better suited for low-cost in-vitro assays that require fast and quantitative magnetic particle detection.

  4. Patient-Specific Dosimetry and Radiobiological Modeling of Targeted Radionuclide Therapy Grant - final report

    SciTech Connect

    George Sgouros, Ph.D.

    2007-03-20

    The broad, long-term objectives of this application are to 1. develop easily implementable tools for radionuclide dosimetry that can be used to predict normal organ toxicity and tumor response in targeted radionuclide therapy; and 2. to apply these tools to the analysis of clinical trial data in order to demonstrate dose-response relationships for radionuclide therapy treatment planning. The work is founded on the hypothesis that robust dose-response relationships have not been observed in targeted radionuclide therapy studies because currently available internal dosimetry methodologies are inadequate, failing to adequately account for individual variations in patient anatomy, radionuclide activity distribution/kinetics, absorbed dose-distribution, and absorbed dose-rate. To reduce development time the previously available software package, 3D-ID, one of the first dosimetry software packages to incorporate 3-D radionuclide distribution with individual patient anatomy; and the first to be applied for the comprehensive analysis of patient data, will be used as a platform to build the functionality listed above. The following specific aims are proposed to satisfy the long-term objectives stated above: 1. develop a comprehensive and validated methodology for converting one or more SPECT images of the radionuclide distribution to a 3-D representation of the cumulated activity distribution; 2. account for differences in tissue density and atomic number by incorporating an easily implementable Monte Carlo methodology for the 3-D dosimetry calculations; 3. incorporate the biologically equivalent dose (BED) and equivalent uniform dose (EUD) models to convert the spatial distribution of absorbed dose and dose-rate into equivalent single values that account for differences in dose uniformity and rate and that may be correlated with tumor response and normal organ toxicity; 4. test the hypothesis stated above by applying the resulting package to patient trials of targeted

  5. Eye lens dosimetry in anesthesiology: a prospective study.

    PubMed

    Vaes, Bart; Van Keer, Karel; Struelens, Lara; Schoonjans, Werner; Nijs, Ivo; Vandevenne, Jan; Van Poucke, Sven

    2017-04-01

    The eye lens is one of the most sensitive organs for radiation injury and exposure might lead to radiation induced cataract. Eye lens dosimetry in anesthesiology has been published in few clinical trials and an active debate about the causality of radiation induced cataract is still ongoing. Recently, the International Commission on Radiological Protection (ICRP) recommended a reduction in the annual dose limit for occupational exposure for the lens of the eye from 150 to 20 mSv, averaged over a period of 5 years, with the dose in a single year not exceeding 50 mSv. This prospective study investigated eye lens dosimetry in anesthesiology practice during a routine year of professional activity. The radiation exposure measured represented the exposure in a normal working schedule of a random anesthesiologist during 1 month and this cumulative eye lens dose was extrapolated to 1 year. Next, eye lens doses were measured in anesthesiology during neuro-embolisation procedures, radiofrequency ablations or vertebroplasty/kyphoplasty procedures. The eye lens doses are measured in terms of the dose equivalent H p(3) with the Eye-D dosimeter (Radcard, Poland) close to the right eye (on the temple). In 16 anesthesiologists, the estimated annual eye lens doses range from a minimum of 0.4 mSv to a maximum of 3.5 mSv with an average dose of 1.33 mSv. Next, eye lens doses were measured for nine neuro-embolisation procedures, ten radiofrequency ablations and six vertebroplasty/kyphoplasty procedures. Average eye lens doses of 77 ± 76 µSv for neuro-embolisations, 38 ± 34 µSv for cardiac ablations and 40 ± 44 µSv for vertebro-/kyphoplasty procedures were recorded. The maximum doses were respectively 264, 97 and 122 µSv. This study demonstrated that the estimated annual eye lens dose is well below the revised ICRP's limit of 20 mSv/year. However, we demonstrated high maximum and average doses during neuro-embolisation, cardiac ablation and vertebro

  6. Permanent Breast Seed Implant Dosimetry Quality Assurance

    SciTech Connect

    Keller, Brian M.; Ravi, Ananth; Sankreacha, Raxa; Pignol, Jean-Philippe

    2012-05-01

    Purpose: A permanent breast seed implant is a novel method of accelerated partial breast irradiation for women with early-stage breast cancer. This article presents pre- and post-implant dosimetric data, relates these data to clinical outcomes, and makes recommendations for those interested in starting a program. Methods and Materials: A total of 95 consecutive patients were accrued into one of three clinical trials after breast-conserving surgery: a Phase I/II trial (67 patients with infiltrating ductal carcinoma); a Phase II registry trial (25 patients with infiltrating ductal carcinoma); or a multi-center Phase II trial for patients with ductal carcinoma in situ (3 patients). Contouring of the planning target volume (PTV) was done on a Pinnacle workstation and dosimetry calculations, including dose-volume histograms, were done using a Variseed planning computer. Results: The mean pre-implant PTV coverage for the V{sub 90}, V{sub 100}, V{sub 150}, and V{sub 200} were as follows: 98.8% {+-} 1.2% (range, 94.5-100%); 97.3% {+-} 2.1% (range, 90.3-99.9%), 68.8% {+-} 14.3% (range, 32.7-91.5%); and 27.8% {+-} 8.6% (range, 15.1-62.3%). The effect of seed motion was characterized by post-implant dosimetry performed immediately after the implantation (same day) and at 2 months after the implantation. The mean V{sub 100} changed from 85.6% to 88.4% (p = 0.004) and the mean V{sub 200} changed from 36.2% to 48.3% (p < 0.001). Skin toxicity was associated with maximum skin dose (p = 0.014). Conclusions: Preplanning dosimetry should aim for a V{sub 90} of approximately 100%, a V{sub 100} between 95% and 100%, and a V{sub 200} between 20% and 30%, as these numbers are associated with no local recurrences to date and good patient tolerance. In general, the target volume coverage improved over the duration of the seed therapy. The maximum skin dose, defined as the average dose over the hottest 1 Multiplication-Sign 1-cm{sup 2} surface area, should be limited to 90% of the

  7. Gamma-ray dosimetry measurements of the Little Boy replica

    SciTech Connect

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  8. Review of retrospective dosimetry techniques for external ionising radiation exposures.

    PubMed

    Ainsbury, E A; Bakhanova, E; Barquinero, J F; Brai, M; Chumak, V; Correcher, V; Darroudi, F; Fattibene, P; Gruel, G; Guclu, I; Horn, S; Jaworska, A; Kulka, U; Lindholm, C; Lloyd, D; Longo, A; Marrale, M; Monteiro Gil, O; Oestreicher, U; Pajic, J; Rakic, B; Romm, H; Trompier, F; Veronese, I; Voisin, P; Vral, A; Whitehouse, C A; Wieser, A; Woda, C; Wojcik, A; Rothkamm, K

    2011-11-01

    The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements.

  9. Retrospective dosimetry analyses of reactor vessel cladding samples

    SciTech Connect

    Greenwood, L. R.; Soderquist, C. Z.; Fero, A. H.

    2011-07-01

    Reactor pressure vessel cladding samples for Ringhals Units 3 and 4 in Sweden were analyzed using retrospective reactor dosimetry techniques. The objective was to provide the best estimates of the neutron fluence for comparison with neutron transport calculations. A total of 51 stainless steel samples consisting of chips weighing approximately 100 to 200 mg were removed from selected locations around the pressure vessel and were sent to Pacific Northwest National Laboratory for analysis. The samples were fully characterized and analyzed for radioactive isotopes, with special interest in the presence of Nb-93m. The RPV cladding retrospective dosimetry results will be combined with a re-evaluation of the surveillance capsule dosimetry and with ex-vessel neutron dosimetry results to form a comprehensive 3D comparison of measurements to calculations performed with 3D deterministic transport code. (authors)

  10. Software for evaluation of EPR-dosimetry performance.

    PubMed

    Shishkina, E A; Timofeev, Yu S; Ivanov, D V

    2014-06-01

    Electron paramagnetic resonance (EPR) with tooth enamel is a method extensively used for retrospective external dosimetry. Different research groups apply different equipment, sample preparation procedures and spectrum processing algorithms for EPR dosimetry. A uniform algorithm for description and comparison of performances was designed and implemented in a new computer code. The aim of the paper is to introduce the new software 'EPR-dosimetry performance'. The computer code is a user-friendly tool for providing a full description of method-specific capabilities of EPR tooth dosimetry, from metrological characteristics to practical limitations in applications. The software designed for scientists and engineers has several applications, including support of method calibration by evaluation of calibration parameters, evaluation of critical value and detection limit for registration of radiation-induced signal amplitude, estimation of critical value and detection limit for dose evaluation, estimation of minimal detectable value for anthropogenic dose assessment and description of method uncertainty.

  11. Albedo neutron dosimetry in Germany: regulations and performance.

    PubMed

    Luszik-Bhadra, M; Zimbal, A; Busch, F; Eichelberger, A; Engelhardt, J; Figel, M; Frasch, G; Günther, K; Jordan, M; Martini, E; Haninger, T; Rimpler, A; Seifert, R

    2014-12-01

    Personal neutron dosimetry has been performed in Germany using albedo dosemeters for >20 y. This paper describes the main principles, the national standards, regulations and recommendations, the quality management and the overall performance, giving some examples.

  12. Extremity dosimetry at US Department of Energy facilities

    SciTech Connect

    Harty, R.; Reece, W.D.; MacLellan, J.A.

    1986-05-01

    A questionnaire on extremity dosimetry was distributed to DOE facilities along with a questionnaire on beta dosimetry. An informal telephone survey was conducted as a follow-up survey to answer a few additional questions concerning extremity monitoring practices. The responses to the questionnaire and the telephone survey are summarized in this report. Background information, developed from operational experience and a review of the current literature, is presented as a basis for understanding the information obtained by the survey and questionnaire.

  13. Dosimetry for photodynamic therapy of endometrial tissue

    NASA Astrophysics Data System (ADS)

    Svaasand, Lars O.; Fehr, Mathias K.; Madsen, Sten; Tadir, Yona; Tromberg, Bruce J.

    1995-05-01

    Hysterectomy is the most common major operation performed in the United States with dysfunctional uterine bleeding as one of the major indications. The clinical needs for simple and safe endometrial destruction are essential. Photodynamic therapy (PDT) may offer a simple and cost effective solution for the treatment of dysfunctional uterine bleeding. The dosimetry is discussed for the case of topical application of photosensitizer. This technique might be the method of preference because undesired side effects such as skin photosensitization that is typical for systemically injected photosensitizers, can be avoided. Effective PDT requires a sufficient amount of light delivered to the targeted tissue in a reasonable period of time. A trifurcated optical applicator consisting of three cylindrical diffusing fibers has been constructed, and this applicator can deliver a typical required optical dose of about 50-100 J/cm2 to the full depth of the endometrium for an exposure time of 10-20 minutes.

  14. Space radiation dosimetry using bubble detectors.

    PubMed

    Ing, H; Mortimer, A

    1994-10-01

    Bubble detectors--a new development in radiation detection--has only recently been used for radiation measurements in space. One important characteristic of the bubble detector is that it operates on a phenomenon which bears considerable resemblance to biological response. Recent experimental results from irradiating bubble detectors with high-energy heavy ions point to the need to re-examine the methodology used for assessing space radiation and the relevance of conventional quantities such as dose equivalent for space dosimetry. It may be that biological hazard associated with the intensely ionizing events--associated with nuclear fragmentation but delivering relatively small dose equivalent--may be much more important than that associated with lightly ionizing events which comprise the bulk of the conventional radiation dose equivalent.

  15. Dosimetry in mixed neutron-gamma fields

    SciTech Connect

    Remec, I.

    1998-04-01

    The gamma field accompanying neutrons may, in certain circumstances, play an important role in the analysis of neutron dosimetry and even in the interpretation of radiation induced steel embrittlement. At the High Flux Isotope Reactor pressure vessel the gamma induced reactions dominate the responses of {sup 237}Np and {sup 238}U dosimeters, and {sup 9}Be helium accumulation fluence monitors. The gamma induced atom displacement rate in steel is higher than corresponding neutron rate, and is the cause of ``accelerated embrittlement`` of HFIR materials. In a large body of water, adjacent to a fission plate, photofissions contribute significantly to the responses of fission monitors and need to be taken into account if the measurements are used for the qualification of the transport codes and cross-section libraries.

  16. Dosimetry for radiocolloid therapy of cystic craniopharyngiomas.

    PubMed

    Rojas, E Leticia; Al-Dweri, Feras M O; Lallena, Antonio M; Bodineau, Coral; Galán, Pedro

    2003-09-01

    The dosimetry for radiocolloid therapy of cystic craniopharyngiomas is investigated. Analytical calculations based on the Loevinger and the Berger formulas for electrons and photons, respectively, are compared with Monte Carlo simulations. The role of the material of which the colloid introduced inside the craniopharyngioma is made of as well as that forming the cyst wall is analyzed. It is found that the analytical approaches provide a very good description of the simulated data in the conditions where they can be applied (i.e., in the case of a uniform and infinite homogeneous medium). However, the consideration of the different materials and interfaces produces a strong reduction of the dose delivered to the cyst wall in relation to that predicted by the Loevinger and the Berger formulas.

  17. Neutron generator (HIRRAC) and dosimetry study.

    PubMed

    Endo, S; Hoshi, M; Takada, J; Tauchi, H; Matsuura, S; Takeoka, S; Kitagawa, K; Suga, S; Komatsu, K

    1999-12-01

    Dosimetry studies have been made for neutrons from a neutron generator at Hiroshima University (HIRRAC) which is designed for radiobiological research. Neutrons in an energy range from 0.07 to 2.7 MeV are available for biological irradiations. The produced neutron energies were measured and evaluated by a 3He-gas proportional counter. Energy spread was made certain to be small enough for radiobiological studies. Dose evaluations were performed by two different methods, namely use of tissue equivalent paired ionization chambers and activation of method with indium foils. Moreover, energy deposition spectra in small targets of tissue equivalent materials, so-called lineal energy spectrum, were also measured and are discussed. Specifications for biological irradiation are presented in terms of monoenergetic beam conditions, dose rates and deposited energy spectra.

  18. AMS applied to Hiroshima and Chernobyl dosimetry

    SciTech Connect

    Straume, T.; Marchetti, A.A.; Anspaugh, L.R.

    1995-12-01

    Two projects employing AMS are summarized and updated. One project employs AMS to measure {sup 36}Cl in concrete and other mineral samples from Hiroshima and Nagasaki to help reconstruct neutron fluences received by the atom-bomb survivors. In this project, we have demonstrated a large discrepancy between the neutron activation measured in Hiroshima and predictions based on the current dosimetry system. This discrepancy has practical implications for radiation risk assessment and radiation protection standards. The other project employs AMS to measure {sup 129}I in soil and other environmental samples from Belarus, Ukraine, and Russia. This is a proof-of-principle study to determine if the long lived {sup 129}I isotope (half life, 16 x 10{sup 6} y) measured by AMS can be used to reconstruct deposition of the short lived {sup 131}I isotope from the 1986 Chernobyl reactor accident. This is required because {sup 131}I disappeared before adequate measurements could be made.

  19. Pediatric renal iodine-123 orthoiodohippurate dosimetry

    SciTech Connect

    Marcus, C.S.; Kuperus, J.H.

    1985-10-01

    Radiation exposure to the kidney from iodine- ST orthoiodohippurate (( STI)OIH) and any associated ( SUI)OIH contamination may vary by a factor of several hundred depending upon the health of the kidney. Calculations of kidney dose were made for patients with the following renal states: normal, acute tubular necrosis (ATN), obstruction, and renal transplant. The dosimetry was based on a minimum practical administered activity (MPAA) of 200 microCi for pediatric patients and 500 microCi for adults. High-grade obstruction of recent onset and severe ATN are the only disease processes which could result in high exposures, and this is due primarily to the contribution of SUI. For selected cases, OIH labeled with pure STI should be very seriously considered.

  20. Advanced Semiconductor Dosimetry in Radiation Therapy

    SciTech Connect

    Rosenfeld, Anatoly B.

    2011-05-05

    Modern radiation therapy is very conformal, resulting in a complexity of delivery that leads to many small radiation fields with steep dose gradients, increasing error probability. Quality assurance in delivery of such radiation fields is paramount and requires real time and high spatial resolution dosimetry. Semiconductor radiation detectors due to their small size, ability to operate in passive and active modes and easy real time multichannel readout satisfy many aspects of in vivo and in a phantom quality assurance in modern radiation therapy. Update on the recent developments and improvements in semiconductor radiation detectors and their application for quality assurance in radiation therapy, based mostly on the developments at the Centre for Medical Radiation Physics (CMRP), University of Wollongong, is presented.

  1. Accidental neutron dosimetry with human hair

    NASA Astrophysics Data System (ADS)

    Ekendahl, Daniela; Bečková, Věra; Zdychová, Vlasta; Bulánek, Boris; Prouza, Zdeněk; Štefánik, Milan

    2014-11-01

    Human hair contains sulfur, which can be activated by fast neutrons. The 32S(n,p)32P reaction with a threshold of 2.5 MeV was used for fast neutron dose estimation. It is a very important parameter for individual dose reconstruction with regards to the heterogeneity of the neutron transfer to the human body. Samples of human hair were irradiated in a radial channel of a training reactor VR-1. 32P activity in hair was measured both, directly by means of a proportional counter, and as ash dispersed in a liquid scintillator. Based on neutron spectrum estimation, a relationship between the neutron dose and induced activity was derived. The experiment verified the practical feasibility of this dosimetry method in cases of criticality accidents or malevolent acts with nuclear materials.

  2. Surveillance dosimetry of operating power plants

    SciTech Connect

    McElroy, W.N.; Davis, A.I.; Gold, R.

    1981-10-16

    The main focus of the research efforts presently underway is the LWR power reactor surveillance program in which metallurgical test specimens of the reactor PV and dosimetry sensors are placed in three or more surveillance capsules at or near the reactor PV inner wall. They are then irradiated in a temperature and neutron flux-spectrum environment as similar as possible to the PV itself for periods of about 1.5 to 15 effective full-power years (EFPY), with removal of the last capsule at a fluence corresponding to the 30- to 40-year plant end-of-life (EOL) fluence. Because the neutron flux level at the surveillance position is greater than at the vessel, the test is accelerated wit respect to the vessel exposure, allowing early assessment of EOL conditions.

  3. The radiation dosimetry of intrathecally administered radionuclides

    SciTech Connect

    Stabin, M.G.; Evans, J.F.

    1999-01-01

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energy deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.

  4. Gastroesophageal scintiscanning in a pediatric population: dosimetry

    SciTech Connect

    Castronovo, F.P. Jr.

    1986-07-01

    The dosimetry associated with orally administered (/sup 99m/Tc)sulfur colloid for the diagnosis of gastroesophageal reflux has not been adequately described for the pediatric populations. Standard MIRD methodology was performed for the following: newborn, 1, 5, 10, and 15 yr old, and adult standard man. The critical organ for all pediatric groups was the lower large intestine with absorbed dose of 0.927, 0.380, 0.194, 0.120 and 0.0721 rad/100 microCi, respectively. For the adult the critical organ was the upper large intestine with an absorbed dose of 0.0518 rad/100 microCi. These data should be considered when administering (99mTc)sulfur colloid orally in a pediatric population.

  5. Dosimetry during the first IBIS facility flight.

    PubMed

    Bottollier-Depois, J F; Spurny, F; Plawinski, L; Votockova, I; Bednar, J; Viso, M; Labarthe, A

    1998-01-01

    The dosimetry of cosmic rays was performed during the first experimental flight of the IBIS facility. Different thermoluminescent detectors (TLD) have been used to measure the contribution of the low linear energy transfer component (LET < 10 keV/micrometer) and plastic nuclear track detectors (PNTD) for the high linear energy tranfer (LET) component. Several parameters of tracks have been measured to determine the LET spectra of primary and secondary charged particles. The total absorbed dose rate (TLD+PNTD) during the flight was 0.23 mGy/day and the dose equivalent rate using the ICRP 60 was 0.52 mSv/day. The corresponding mean quality factor was 2.4. These results are in agreement with those obtained aboard the MIR station with a tissue equivalent proportional counter.

  6. On flattening filter-free portal dosimetry.

    PubMed

    Pardo, Eduardo; Castro Novais, Juan; Molina López, María Yolanda; Ruiz Maqueda, Sheila

    2016-07-08

    Varian introduced (in 2010) the option of removing the flattening filter (FF) in their C-Arm linacs for intensity-modulated treatments. This mode, called flattening filter-free (FFF), offers the advantage of a greater dose rate. Varian's "Portal Dosimetry" is an electronic portal imager device (EPID)-based tool for IMRT verification. This tool lacks the capability of verifying flattening filter-free (FFF) modes due to saturation and lack of an image prediction algorithm. (Note: the latest versions of this software and EPID correct these issues.) The objective of the present study is to research the feasibility of said verifications (with the older versions of the software and EPID). By placing the EPID at a greater distance, the images can be acquired without saturation, yielding a linearity similar to the flattened mode. For the image prediction, a method was optimized based on the clinically used algorithm (analytical anisotropic algorithm (AAA)) over a homogeneous phantom. The depth inside the phantom and its electronic density were tailored. An application was developed to allow the conversion of a dose plane (in DICOM format) to Varian's custom format for Portal Dosimetry. The proposed method was used for the verification of test and clinical fields for the three qualities used in our institution for IMRT: 6X, 6FFF and 10FFF. The method developed yielded a positive verification (more than 95% of the points pass a 2%/2 mm gamma) for both the clinical and test fields. This method was also capable of "predicting" static and wedged fields. A workflow for the verification of FFF fields was developed. This method relies on the clinical algorithm used for dose calculation and is able to verify the FFF modes, as well as being useful for machine quality assurance. The procedure described does not require new hardware. This method could be used as a verification of Varian's Portal Dose Image Prediction.

  7. Neutron dosimetry in boron neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na/sub 2/B/sub 12/H/sub 11/SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with /sup 10/B in boron containing cells through the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction producing charged particles with a maximum range of approx. 10..mu..m in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize /sup 6/Li and /sup 10/B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the /sup 14/N(n,p)/sup 14/C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils.

  8. Real-time volumetric scintillation dosimetry

    NASA Astrophysics Data System (ADS)

    Beddar, S.

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential.

  9. Biological dosimetry for astronauts: a real challenge.

    PubMed

    Testard, I; Sabatier, L

    1999-12-06

    Manned space missions recently increased in number and duration, thus it became important to estimate the biological risks encountered by astronauts. They are exposed to cosmic and galactic rays, a complex mixture of different radiations. In addition to the measurements realized by physical dosimeters, it becomes essential to estimate real biologically effective doses and compare them to physical doses. Biological dosimetry of radiation exposures has been widely performed using cytogenetic analysis of chromosomes. This approach has been used for many years in order to estimate absorbed doses in accidental or chronic overexposures of humans. In addition to conventional techniques (Giemsa or FPG staining, R- or G-banding), faster and accurate means of analysis have been developed (fluorescence in situ hybridization [FISH] painting). As results accumulate, it appears that strong interindividual variability exists in the basal level of aberrations. Moreover, some aberrations such as translocations exhibit a high background level. Radiation exposures seem to induce variability between individual responses. Its extent strongly differs with the mode of exposure, the doses delivered, the kind of radiation, and the cytogenetic method used. This paper aims to review the factors that may influence the reliability of cytogenetic dosimetry. The emphasis is on the exposure to high linear energy transfer (LET) particles in space as recent studies demonstrated interindividual variations in doses estimated from aberration analysis after long-term space missions. In addition to the problem of dose estimates, the heterogeneity of cosmic radiation raises questions relating to the real numbers of damaged cells in an individual, and potential long-term risks. Actually, densely ionizing particles are extremely potent to induce late chromosomal instability, and again, interindividual variability exists in the expression of damage.

  10. Specific issues in small animal dosimetry and irradiator calibration

    PubMed Central

    Yoshizumi, Terry; Brady, Samuel L.; Robbins, Mike E.; Bourland, J. Daniel

    2013-01-01

    Purpose In response to the increased risk of radiological terrorist attack, a network of Centers for Medical Countermeasures against Radiation (CMCR) has been established in the United States, focusing on evaluating animal model responses to uniform, relatively homogenous whole- or partial-body radiation exposures at relatively high dose rates. The success of such studies is dependent not only on robust animal models but on accurate and reproducible dosimetry within and across CMCR. To address this issue, the Education and Training Core of the Duke University School of Medicine CMCR organised a one-day workshop on small animal dosimetry. Topics included accuracy in animal dosimetry accuracy, characteristics and differences of cesium-137 and X-ray irradiators, methods for dose measurement, and design of experimental irradiation geometries for uniform dose distributions. This paper summarises the information presented and discussed. Conclusions Without ensuring accurate and reproducible dosimetry the development and assessment of the efficacy of putative countermeasures will not prove successful. Radiation physics support is needed, but is often the weakest link in the small animal dosimetry chain. We recommend: (i) A user training program for new irradiator users, (ii) subsequent training updates, and (iii) the establishment of a national small animal dosimetry center for all CMCR members. PMID:21961967

  11. Boron dose determination for BNCT using Fricke and EPR dosimetry

    SciTech Connect

    Wielopolski, L.; Ciesielski, B.

    1995-02-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to {alpha} and {sup 7}Li charged particles resulting from a neutron capture by {sup 10}B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient`s dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here.

  12. ESR dosimetry for atomic bomb survivors and radiologic technologists

    NASA Astrophysics Data System (ADS)

    Tatsumi-Miyajima, Junko

    1987-06-01

    An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO 33- radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO 33- radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.

  13. Review of the near-earth space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Guo, Jianming; Chen, Xiaoqian; Li, Shiyou

    2016-07-01

    The near-earth space radiation environment has a great effect to the spacecraft and maybe do harm to the astronaut's health. Thus, how to measure the radiation has become a serious challenge. In order to provide sufficient protection both for astronauts and for instruments on-board, dose equivalent and linear energy transfer should be measured instead of merely measuring total radiation dose. This paper reviews the methods of radiation measurement and presents a brief introduction of dosimetry instruments. The method can be divided into two different kinds, i.e., positive dosimetry and passive dosimetry. The former usually includes electronic devices which can be used for data storage and can offer simultaneous monitoring on space radiation. The passive dosimetry has a much simple structure, and need extra operation after on-orbit missions for measuring. To get more reliable data of radiation dosimetry, various instruments and methods had been applied in the spacecrafts and the manned spacecrafts in particular. The outlook of the development in the space radiation dosimetry measurement is also presented.

  14. Bibliographical database of radiation biological dosimetry and risk assessment: Part 1, through June 1988

    SciTech Connect

    Straume, T.; Ricker, Y.; Thut, M.

    1988-08-29

    This database was constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on publication number, authors, key words, title, year, and journal name. Photocopies of all publications contained in the database are maintained in a file that is numerically arranged by citation number. This report of the database is provided as a useful reference and overview. It should be emphasized that the database will grow as new citations are added to it. With that in mind, we arranged this report in order of ascending citation number so that follow-up reports will simply extend this document. The database cite 1212 publications. Publications are from 119 different scientific journals, 27 of these journals are cited at least 5 times. It also contains reference to 42 books and published symposia, and 129 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed among the scientific literature, although a few journals clearly dominate. The four journals publishing the largest number of relevant papers are Health Physics, Mutation Research, Radiation Research, and International Journal of Radiation Biology. Publications in Health Physics make up almost 10% of the current database.

  15. Patient-specific dosimetry in peptide receptor radionuclide therapy: a clinical review.

    PubMed

    Chalkia, M T; Stefanoyiannis, A P; Chatziioannou, S N; Round, W H; Efstathopoulos, E P; Nikiforidis, G C

    2015-03-01

    Neuroendocrine tumours (NETs) belong to a relatively rare class of neoplasms. Nonetheless, their prevalence has increased significantly during the last decades. Peptide receptor radionuclide therapy (PRRT) is a relatively new treatment approach for inoperable or metastasised NETs. The therapeutic effect is based on the binding of radiolabelled somatostatin analogue peptides with NETs' somatostatin receptors, resulting in internal irradiation of tumours. Pre-therapeutic patient-specific dosimetry is essential to ensure that a treatment course has high levels of safety and efficacy. This paper reviews the methods applied for PRRT dosimetry, as well as the dosimetric results presented in the literature. Focus is given on data concerning the therapeutic somatostatin analogue radiopeptides (111)In-[DTPA(0),D-Phe(1)]-octreotide ((111)In-DTPA-octreotide), (90)Y-[DOTA(0),Tyr(3)]-octreotide ((90)Y-DOTATOC) and (177)Lu-[DOTA(0),Tyr(3),Thr(8)]-octreotide ((177)Lu-DOTATATE). Following the Medical Internal Radiation Dose (MIRD) Committee formalism, dosimetric analysis demonstrates large interpatient variability in tumour and organ uptake, with kidneys and bone marrow being the critical organs. The results are dependent on the image acquisition and processing protocol, as well as the dosimetric imaging radiopharmaceutical.

  16. Dosimetry of environmental radiation--a report on the achievements of EURADOS WG3.

    PubMed

    Wissmann, F; Sáez Vergara, J C

    2006-01-01

    Owing to the fact that a nuclear accident is a border-crossing problem, all national active monitoring systems should measure the same quantity with a comparable level of precision. Also, the sensitivity of the systems must be such that sudden changes in the environmental dose rate are recognised and a radiological incident is clearly identified. Thus, international intercomparisons of the so-called Early Warning Systems are the best method to assure high quality measurements. Supported by the European Commission within the scope of the 4th and 5th Framework Programmes, intercomparisons of these Early Warning Systems were organised by European Radiation Dosimetry (EURADOS) Working Group 3 (WG3) in 1999 and 2002. The methods developed for this purpose are based on controlled irradiation of the systems and the determination of their responses to secondary cosmic radiation. One of the major problems turned out to be the correct subtraction of the internal background. Investigating this problem was only possible by carrying out measurements at almost zero dose rate, as available in the Underground Laboratory for Dosimetry and Spectrometry (UDO) maintained by Physikalisch-Technische Bundesanstalt. Progress was also achieved with regard to including in situ gamma spectroscopy systems in the 2002 intercomparison. For these systems, the UDO irradiation facility provides a unique possibility to measure the spectral responses to monoenergetic photons.

  17. EDITORIAL: Special issue on radiation dosimetry Special issue on radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Sharpe, Peter

    2009-04-01

    This special issue of Metrologia on radiation dosimetry is the second in a trilogy on the subject of ionizing radiation measurements, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The work of Section II, on radionuclide metrology, was covered in issue 44(4), published in 2007, and that of Section III, on neutron metrology, will be covered in a special issue to be published shortly. This issue covers the work of Section I (x-rays and γ rays, and charged particles). The proposal to publish special issues of Metrologia covering the work of the CCRI Sections was first made in 2003 and refined at the two subsequent meetings of the CCRI in 2005 and 2007. The overall aim is to present the work of the CCRI to a wider metrological audience and to highlight the relevance and importance of the field. The main focus of our special issue on dosimetry metrology is on the 'state of the art' in the various areas covered, with an indication of the current developments taking place and the problems and challenges that remain. Where appropriate, this is set in a brief historical context, although it is not the aim to give a historical review. The need for accurate measurement has been appreciated from the pioneering days of the use of ionizing radiation in the early 20th century, particularly in the fields of diagnostic and therapeutic medicine. Over the years, the range of applications for ionizing radiation has expanded both in scope and in the types and energies of radiation employed. This has led to the need to develop a wide variety of measurement techniques and standards covering fields ranging from the low doses experienced in environmental and protection applications to the extremely high doses used in industrial processing. The different types of radiation employed give rise to the need for dose measurements in radiation beams whose effective penetration through a material such as water ranges from a

  18. Cooling rate effects in thermoluminescence dosimetry grade lithium flouride. Implications for practical dosimetry.

    PubMed

    Mason, E W; McKinlay, A F; Clark, I

    1976-01-01

    A systematic investigation of the effects of cooling rates in the range of 10(-1) to 2 X 10(5) degrees C min-1 applied to TLD-700, LiF thermoluminescence dosemeters has shown that the 'transfer sensitivity' effect observed by Booth, Johnson and Attix (1972) is only of importance for cooling rates greater than 10(3) degrees C min-1. Although it is concluded that for practical dosimetry purposes the effect may be ignored it is not clear why Booth et al. observed such large changes and until this discrepancy is explained it is recommended that a low temperature pre-irradiation anneal should be used.

  19. Deformable registration of x-ray to MRI for post-implant dosimetry in prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Song, Danny Y.; Lee, Junghoon

    2016-03-01

    Post-implant dosimetric assessment in prostate brachytherapy is typically performed using CT as the standard imaging modality. However, poor soft tissue contrast in CT causes significant variability in target contouring, resulting in incorrect dose calculations for organs of interest. CT-MR fusion-based approach has been advocated taking advantage of the complementary capabilities of CT (seed identification) and MRI (soft tissue visibility), and has proved to provide more accurate dosimetry calculations. However, seed segmentation in CT requires manual review, and the accuracy is limited by the reconstructed voxel resolution. In addition, CT deposits considerable amount of radiation to the patient. In this paper, we propose an X-ray and MRI based post-implant dosimetry approach. Implanted seeds are localized using three X-ray images by solving a combinatorial optimization problem, and the identified seeds are registered to MR images by an intensity-based points-to-volume registration. We pre-process the MR images using geometric and Gaussian filtering. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine transformation and local deformable registration. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. We tested our algorithm on six patient data sets, achieving registration error of (1.2+/-0.8) mm in < 30 sec. Our proposed approach has the potential to be a fast and cost-effective solution for post-implant dosimetry with equivalent accuracy as the CT-MR fusion-based approach.

  20. Lung dosimetry and risk assessment of nanoparticles: Evaluating and extending current models in rats and humans

    SciTech Connect

    Kuempel, E.D.; Tran, C.L.; Castranova, V.; Bailer, A.J.

    2006-09-15

    Risk assessment of occupational exposure to nanomaterials is needed. Human data are limited, but quantitative data are available from rodent studies. To use these data in risk assessment, a scientifically reasonable approach for extrapolating the rodent data to humans is required. One approach is allometric adjustment for species differences in the relationship between airborne exposure and internal dose. Another approach is lung dosimetry modeling, which provides a biologically-based, mechanistic method to extrapolate doses from animals to humans. However, current mass-based lung dosimetry models may not fully account for differences in the clearance and translocation of nanoparticles. In this article, key steps in quantitative risk assessment are illustrated, using dose-response data in rats chronically exposed to either fine or ultrafine titanium dioxide (TiO{sub 2}), carbon black (CB), or diesel exhaust particulate (DEP). The rat-based estimates of the working lifetime airborne concentrations associated with 0.1% excess risk of lung cancer are approximately 0.07 to 0.3 mg/m{sup 3} for ultrafine TiO{sub 2}, CB, or DEP, and 0.7 to 1.3 mg/m{sup 3} for fine TiO{sub 2}. Comparison of observed versus model-predicted lung burdens in rats shows that the dosimetry models predict reasonably well the retained mass lung burdens of fine or ultrafine poorly soluble particles in rats exposed by chronic inhalation. Additional model validation is needed for nanoparticles of varying characteristics, as well as extension of these models to include particle translocation to organs beyond the lungs. Such analyses would provide improved prediction of nanoparticle dose for risk assessment.

  1. Dosimetry of 11C-carfentanil, a micro-opioid receptor imaging agent.

    PubMed

    Newberg, Andrew B; Ray, Riju; Scheuermann, Joshua; Wintering, Nancy; Saffer, Janet; Schmitz, Alexander; Freifelder, Richard; Karp, Joel; Lerman, Caryn; Divgi, Chaitanya

    2009-04-01

    11C-carfentanil is a radiopharmaceutical that selectively binds the mu-opiate receptor of the central nervous system. However, its dosimetry throughout the body and other organs has never been reported in the literature. The purpose of this study was to measure the radiation dosimetry of 11C-carfentanil in healthy human volunteers. The study was conducted within a regulatory framework that required its pharmacological safety to be assessed simultaneously. The sample included two male and three female participants ranging in age from 28 to 49 years. Three to four scans were obtained over approximately 2 h starting immediately after the intravenous administration of 0.03 microg/kg of [C]carfentanil injected as a slow bolus (mean activity injected was 280+/-68 MBq). The fraction of the administered dose in 10 regions of interest was quantified from the attenuation-corrected counts obtained on the axial images. Monoexponential functions were fit to each time-activity curve using a nonlinear, least-squares regression algorithm. These curves were numerically integrated to yield the number of disintegrations per unit activity administered in source organs. Sex-specific radiation doses were then estimated with the medical internal radiation dose technique. A few participants reported mild pharmacological effects of the radiotracer, primarily mild drowsiness, which is an expected side effect. The dose-limiting organ was the bladder wall, which received a mean of 3.65E-02 mGy/MBq. The mean effective dose equivalent and effective dose for 11C-carfentanil were 5.38E-03 and 4.59E-03 mSv/MBq, respectively. The observed dosimetry values for 11C-carfentanil indicate that it is safe for imaging micro-opiate receptors in the central nervous system and periphery.

  2. Segmental Urethral Dosimetry and Urinary Toxicity in Patients With No Urinary Symptoms Before Permanent Prostate Brachytherapy

    SciTech Connect

    Thomas, Carys; Keyes, Mira Liu, Mitchell; Moravan, Veronika

    2008-10-01

    Purpose: To determine whether segmental urethral dosimetry is predictive for the degree of urinary morbidity after prostate brachytherapy in patients with no urinary symptoms before prostate brachytherapy. Methods and Materials: Between May 2000 and November 2005, 1,107 patients underwent iodine-125 monotherapy with urethral sparing techniques. A total of 166 patients fulfilled the selection criteria: baseline (International Prostate Symptom Score) IPSS {<=}5, no androgen deprivation therapy, and prostate ultrasound planning volumes (PUTV) <45 mL. The median follow-up was 44 months. Urinary morbidity was defined by maximum increase in IPSS, time to IPSS resolution, maximum Radiation Therapy Oncology Group (RTOG) score, time to RTOG resolution, and urinary retention. Surrogate deviated urethra was contoured and doses calculated at the base, mid-prostate, apex, and urogenital diaphragm. Univariate and multivariate analysis was used to evaluate urethral and prostate dosimetry, age, PUTV, and number of needles for their association with urinary morbidity. Results: Urethral dose was fairly constant in all urethra segments except prostate base, where the variation in does was large. On multivariate analysis, higher urethral base D50, V100, and larger PUTV were predictive for higher maximum increase in IPSS. Higher urethral base V100 and larger PUTV predicted for prolonged IPSS resolution. Higher urethral base D50 and larger needle number predicted for longer RTOG resolution. Higher urethral base V100 predicted for RTOG {>=}2 toxicity. Conclusions: Radiation dose to the urethral base, larger PUTV, and needle number, predicted for increased urinary toxicity after prostate brachytherapy. Correlation between urinary morbidity and urethral base dosimetry may reflect a large variation in urethral dose observed at the prostate base.

  3. Improved dosimetry techniques for intravascular brachytherapy

    NASA Astrophysics Data System (ADS)

    Sehgal, Varun

    Coronary artery disease leads to the accumulation of atheromatous plaque leading to coronary stenosis. Coronary intervention techniques such as balloon angioplasty and atherectomy are used to address coronary stenosis and establish a stable lumen thus enhancing blood flow to the myocardium. Restenosis or re-blockage of the arteries is a major limitation of the above mentioned interventional techniques. Neointimal hyperplasia or proliferation of cells in response to the vascular injury as a result of coronary intervention is considered to be one of the major causes of restenosis. Recent studies indicated that irradiation of the coronary lesion site, with radiation doses ranging from 15 to 30 Gy, leads to diminishing neointimal hyperplasia with subsequent reduction in restenosis. The radiation dose is given by catheter-based radiation delivery systems using beta-emitters 90Sr/90Y, 32P and gamma-emitting 192Ir among others. However the dose schema used for dose prescription for these sources are relatively simplistic, and are based on calculations using uniform homogenous water or tissue media and simple cylinder geometry. Stenotic coronary vessels are invariably lined with atheromatous plaque of heterogeneous composition, the radiation dose distribution obtained from such dosimetry data can cause significant variations in the actual dose received by a given patient. Such discrepancies in dose calculation can introduce relatively large uncertainties in the limits of dose window for effective and safe application of intravascular brachytherapy, and consequently in the clinical evaluation of the efficacy of this modality. In this research study we investigated the effect of different geometrical and material heterogeneities, including residual plaque, catheter non-centering, lesion eccentricity and cardiac motion on the radiation dose delivered at the lesion site. Correction factors including dose perturbation factors and dose variation factors have been calculated

  4. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  5. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  6. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2007-03-12

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  7. Macroscopic to Microscopic Scales of Particulate Dosimetry: From Source to Fate in the Body

    EPA Science Inventory

    Additional perspective with regards to particle dosimetry is achieved by exploring dosimetry across a range of scales from macroscopic to microscopic in scope. Typically, one thinks of dosimetry as what happens when a particle is inhaled, where it is deposited, and how it is clea...

  8. Macroscopic to Microscopic Scales of Particulate Dosimetry: From Source to Fate in the Body

    EPA Science Inventory

    Additional perspective with regards to particle dosimetry is achieved by exploring dosimetry across a range of scales from macroscopic to microscopic in scope. Typically, one thinks of dosimetry as what happens when a particle is inhaled, where it is deposited, and how it is clea...

  9. Student Perceptions of an Online Medical Dosimetry Program

    SciTech Connect

    Lenards, Nishele

    2011-07-01

    The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled students in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs.

  10. Electron paramagnetic resonance dosimetry: Methodology and material characterization

    NASA Astrophysics Data System (ADS)

    Hayes, Robert Bruce

    Electron Paramagnetic Resonance (EPR) methodologies for radiation dose reconstruction are investigated using various dosimeter materials. Specifically, methodologies were developed and used that were intended to improve the accuracy and precision of EPR dosimetric techniques, including combining specimen rotation during measurement, use of an internal manganese standard, instrument stabilization techniques and strict measurement protocols. Characterization and quantification of these improvements were preformed on three specific EPR dosimeter materials. The dosimeter materials investigated using these optimized EPR techniques were Walrus teeth, human tooth enamel and alanine dosimeters. Walrus teeth showed the least desirable properties for EPR dosimetry yielding large native signals and low sensitivity (EPR signal per unit dose). The methods for tooth enamel and alanine resulted in large improvements in precision and accuracy. The minimum detectable dose (MDD) found for alanine was approximately 30 mGy (three standard deviations from the measured zero dose value). This is a sensitivity improvement of 5 to 10 over other specialized techniques published in the literature that offer MDD's in the range of 150 mGy to 300 mGy. The accuracy of the method on tooth enamel was comparable to that typically reported in the literature although the measurement precision was increased by about 7. This improvement in measurement precision enables various applications including dose vs. depth profile analysis and a more nondestructive testing evaluation (where the whole sample need not be additively irradiated in order to calibrate its radiation response). A nondestructive evaluation of numerous samples showed that the method could reconstruct the same doses to within 10 mGy of those evaluated destructively. Doses used for this assessment were in the range of 100 to 250 mGy. The method had sufficient stability to measure tooth enamel samples exhibiting extreme anisotropy with a

  11. Characterisation of a CZT detector for dosimetry of molecular radiotherapy

    NASA Astrophysics Data System (ADS)

    McAreavey, L. H.; Harkness-Brennan, L. J.; Colosimo, S. J.; Judson, D. S.; Boston, A. J.; Boston, H. C.; Nolan, P. J.; Flux, G. D.; Denis-Bacelar, A. M.; Harris, B.; Radley, I.; Carroll, M.

    2017-03-01

    A pixelated cadmium zinc telluride (CZT) detector has been characterised for the purpose of developing a quantitative single photon emission computed tomography (SPECT) system for dosimetry of molecular radiotherapy (MRT). This is the aim of the Dosimetric Imaging with CZT (DEPICT) project, which is a collaboration between the University of Liverpool, The Royal Marsden Hospital, The Royal Liverpool and Broadgreen University Hospital, and the commercial partner Kromek. CZT is a direct band gap semiconductor with superior energy resolution and stopping power compared to scintillator detectors used in current SPECT systems. The inherent detector properties have been investigated and operational parameters such as bias voltage and peaking time have been selected to optimise the performance of the system. Good energy resolution is required to discriminate γ-rays that are scattered as they are emitted from the body and within the collimator, and high photon throughput is essential due to the high activities of isotopes administered in MRT. The system has an average measured electronic noise of 3.31 keV full width at half maximum (FWHM), determined through the use of an internal pulser. The energy response of the system was measured across the energy region of interest 59.5 keV to 364.5 keV and found to be linear. The reverse bias voltage and peaking time producing the optimum FWHM and maximum photon throughput were 600 V and 0.5 μs respectively. The average dead time of the system was measured as 4.84 μs and charge sharing was quantified to be 0.71 % at 59.5 keV . A pixel sensitivity calibration map was created and planar images of the medical imaging isotopes 99mTc and 123I were acquired by coupling the device to a prototype collimator, thereby demonstrating the suitability of the detector for the DEPICT project.

  12. Millimeter wave dosimetry of human skin.

    PubMed

    Alekseev, S I; Radzievsky, A A; Logani, M K; Ziskin, M C

    2008-01-01

    To identify the mechanisms of biological effects of mm waves it is important to develop accurate methods for evaluating absorption and penetration depth of mm waves in the epidermis and dermis. The main characteristics of mm wave skin dosimetry were calculated using a homogeneous unilayer model and two multilayer models of skin. These characteristics included reflection, power density (PD), penetration depth (delta), and specific absorption rate (SAR). The parameters of the models were found from fitting the models to the experimental data obtained from measurements of mm wave reflection from human skin. The forearm and palm data were used to model the skin with thin and thick stratum corneum (SC), respectively. The thin SC produced little influence on the interaction of mm waves with skin. On the contrary, the thick SC in the palm played the role of a matching layer and significantly reduced reflection. In addition, the palmar skin manifested a broad peak in reflection within the 83-277 GHz range. The viable epidermis plus dermis, containing a large amount of free water, greatly attenuated mm wave energy. Therefore, the deeper fat layer had little effect on the PD and SAR profiles. We observed the appearance of a moderate SAR peak in the therapeutic frequency range (42-62 GHz) within the skin at a depth of 0.3-0.4 mm. Millimeter waves penetrate into the human skin deep enough (delta = 0.65 mm at 42 GHz) to affect most skin structures located in the epidermis and dermis.

  13. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  14. Biological dosimetry by interphase chromosome painting

    NASA Technical Reports Server (NTRS)

    Durante, M.; George, K.; Yang, T. C.

    1996-01-01

    Both fluorescence in situ hybridization of metaphase spreads with whole-chromosome probes and premature chromosome condensation in interphase nuclei have been used in the past to estimate the radiation dose to lymphocytes. We combined these techniques to evaluate the feasibility of using painted interphase chromosomes for biodosimetry. Human peripheral lymphocytes were exposed to gamma rays and fused to mitotic Chinese hamster cells either immediately after irradiation or after 8 h incubation at 37 degrees C. Interphase or metaphase human chromosomes were hybridized with a composite probe specific for human chromosomes 3 and 4. The dose-response curve for fragment induction immediately after irradiation was linear; these results reflected breakage frequency in the total genome in terms of DNA content per chromosome. At 8 h after irradiation, the dose-response curve for chromosome interchanges, the prevalent aberration in interphase chromosomes, was linear-quadratic and similar to that observed for metaphase chromosomes. These results suggest that painting prematurely condensed chromosomes can be useful for biological dosimetry when blood samples are available shortly after the exposure, or when interphase cells are to be scored instead of mitotic cells.

  15. Calibration facility for environment dosimetry instruments

    NASA Astrophysics Data System (ADS)

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin

    2013-12-01

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (˜10-9 - 10-8 Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

  16. Dosimetry of in situ activated dysprosium microspheres.

    PubMed

    Adnani, N

    2004-03-07

    This paper presents the results of a study aimed at investigating the dosimetry of stable dysprosium microspheres activated, in situ, by a linac generated photon beam. In phantom measurements of the neutron flux within an 18 MV photon beam were performed using CR-39 detectors and gold activation. The results were used in conjunction with a Monte Carlo computer simulation to investigate the dose distribution resulting from the activation of dysprosium (Dy) microspheres using an 18 MV photon beam. Different depths, lesion volumes and volume concentrations of microspheres are investigated. The linac lower collimator jaws are assumed completely closed to shield the tumour volume from the photon dose. Using a single AP field with 0 x 0 cm2 field size (closed jaws), a photon dose rate of 600 MU min(-1) and 80 cm SSD for 10 min, an average dose exceeding 1 Gy can be delivered to spherical lesions of 0.5 cm and higher diameter. The variation of the average dose with the size of the lesion reaches saturation for tumour volumes exceeding 1 cm in diameter. This report shows that the photon beam of a high-energy linac can be used to activate Dy microspheres in situ and, as a result, deliver a significant dose of beta radiation. Non-radioactive Dy microspheres do not have the toxicity and imaging problems associated with commercially available yttrium-90 based products.

  17. Personnel real time dosimetry in interventional radiology.

    PubMed

    Servoli, L; Bissi, L; Fabiani, S; Magalotti, D; Placidi, P; Scorzoni, A; Calandra, A; Cicioni, R; Chiocchini, S; Dipilato, A C; Forini, N; Paolucci, M; Di Lorenzo, R; Cappotto, F P; Scarpignato, M; Maselli, A; Pentiricci, A

    2016-12-01

    Interventional radiology and hemodynamic procedures have rapidly grown in number in the past decade, increasing the importance of personnel dosimetry not only for patients but also for medical staff. The optimization of the absorbed dose during operations is one of the goals that fostered the development of real-time dosimetric systems. Indeed, introducing proper procedure optimization, like correlating dose rate measurements with medical staff position inside the operating room, the absorbed dose could be reduced. Real-time dose measurements would greatly facilitate this task through real-time monitoring and automatic data recording. Besides real-time dose monitoring could allow automatic data recording. In this work, we will describe the calibration and validation of a wireless real-time prototype dosimeter based on a new sensor device (CMOS imager). The validation measurement campaign in clinical conditions has demonstrated the prototype capability of measuring dose-rates with a frequency in the range of few Hz, and an uncertainty smaller than 10%. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Reactor dosimetry and RPV life management

    SciTech Connect

    Belousov, S.; Ilieva, K.; Mitev, M.

    2011-07-01

    Reactor dosimetry (RD) is a tool that provides data for neutron fluence accumulated over the reactor pressure vessel (RPV) during the reactor operation. This information, however, is not sufficient for RPV lifetime assessment. The life management of RPV is a multidisciplinary task. To assess whether the RPV steel properties at the current stage (for actual accumulated neutron fluence) of reactor operation are still 'safe enough,' the dependence of material properties on the fluence must be known; this is a task for material science (MS). Moreover, the mechanical loading over the RPV during normal operation and accidence have to be known, as well, for evaluation, if the RPV material integrity in this loading condition and existing cracks is provided. The crack loading path in terms of stress intensity factor is carried out by structural analyses (SA). Pressure and temperature distribution over RPV used in these analyses are obtained from a thermal hydraulic (TH) calculation. The conjunction of RD and other disciplines in RPV integrity assessment is analyzed in accordance with the FFP (fitness for purpose) approach. It could help to improve the efficiency in multi-disciplinary tasks solutions. (authors)

  19. Biological dosimetry by interphase chromosome painting

    NASA Technical Reports Server (NTRS)

    Durante, M.; George, K.; Yang, T. C.

    1996-01-01

    Both fluorescence in situ hybridization of metaphase spreads with whole-chromosome probes and premature chromosome condensation in interphase nuclei have been used in the past to estimate the radiation dose to lymphocytes. We combined these techniques to evaluate the feasibility of using painted interphase chromosomes for biodosimetry. Human peripheral lymphocytes were exposed to gamma rays and fused to mitotic Chinese hamster cells either immediately after irradiation or after 8 h incubation at 37 degrees C. Interphase or metaphase human chromosomes were hybridized with a composite probe specific for human chromosomes 3 and 4. The dose-response curve for fragment induction immediately after irradiation was linear; these results reflected breakage frequency in the total genome in terms of DNA content per chromosome. At 8 h after irradiation, the dose-response curve for chromosome interchanges, the prevalent aberration in interphase chromosomes, was linear-quadratic and similar to that observed for metaphase chromosomes. These results suggest that painting prematurely condensed chromosomes can be useful for biological dosimetry when blood samples are available shortly after the exposure, or when interphase cells are to be scored instead of mitotic cells.

  20. Laser microbeam CT scanning of dosimetry gels

    NASA Astrophysics Data System (ADS)

    Maryanski, Marek J.; Ranade, Manisha K.

    2001-06-01

    A novel design of an optical tomographic scanner is described that can be used for 3D mapping of optical attenuation coefficient within translucent cylindrical objects with spatial resolution on the order of 100 microns. Our scanner design utilizes the cylindrical geometry of the imaged object to obtain the desired paths of the scanning light rays. A rotating mirror and a photodetector are placed at two opposite foci of the translucent cylinder that acts as a cylindrical lens. A He-Ne laser beam passes first through a focusing lens and then is reflected by the rotating mirror, so as to scan the interior of the cylinder with focused and parallel paraxial rays that are subsequently collected by the photodetector to produce the projection data, as the cylinder rotates in small angle increments between projections. Filtered backprojection is then used to reconstruct planar distributions of optical attenuation coefficient in the cylinder. Multiplanar scans are used to obtain a complete 3D tomographic reconstruction. Among other applications, the scanner can be used in radiation therapy dosimetry and quality assurance for mapping 3D radiation dose distributions in various types of tissue-equivalent gel phantoms that change their optical attenuation coefficients in proportion to the absorbed radiation dose.

  1. Optical dosimetry for interstitial photodynamic therapy

    SciTech Connect

    Arnfield, M.R.; Tulip, J.; Chetner, M.; McPhee, M.S. )

    1989-07-01

    An approach to photodynamic treatment of tumors is the interstitial implantation of fiber optic light sources. Dosimetry is critical in identifying regions of low light intensity in the tumor which may prevent tumor cure. We describe a numerical technique for calculating light distributions within tumors, from multiple fiber optic sources. The method was tested using four translucent plastic needles, which were placed in a 0.94 X 0.94 cm grid pattern within excised Dunning R3327-AT rat prostate tumors. A cylindrical diffusing fiber tip, illuminated by 630 nm dye laser light was placed within one needle and a miniature light detector was placed within another. The average penetration depth in the tumor region between the two needles was calculated from the optical power measured by the detector, using a modified diffusion theory. Repeating the procedure for each pair of needles revealed significant variations in penetration depth within individual tumors. Average values of penetration depth, absorption coefficient, scattering coefficient, and mean scattering cosine were 0.282 cm, 0.469 cm-1, 250 cm-1 and 0.964, respectively. Calculated light distributions from four cylindrical sources in tumors gave reasonable agreement with direct light measurements using fiber optic probes.

  2. Oxygen measurements to improve singlet oxygen dosimetry

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Penjweini, Rozhin; Ong, Yi Hong; Finlay, Jarod C.; Zhu, Timothy C.

    2017-02-01

    Photodynamic therapy (PDT) involves interactions between the three main components of light fluence, photosensitizer concentration, and oxygenation. Currently, singlet oxygen explicit dosimetry (SOED) has focused on the first two of these components. The macroscopic model to calculate reacted singlet oxygen has previously involved a fixed initial ground state oxygen concentration. A phosphorescence-based oxygen probe was used to measure ground state oxygen concentration throughout treatments for mice bearing radioactively induced fibroscarcoma tumors. Photofrin-, BPD-, and HPPH-mediated PDT was performed on mice. Model-calculated oxygen and measured oxygen was compared to evaluate the macroscopic model as well as the photochemical parameters involved. Oxygen measurements at various depths were compared to calculated values. Furthermore, we explored the use of noninvasive diffuse correlation spectroscopy (DCS) to measure tumor blood flow changes in response to PDT to improve the model calculation of reacted singlet oxygen. Mice were monitored after treatment to see the effect of oxygenation on long-term recurrence-free survival as well as the efficacy of using reacted singlet oxygen as a predictive measure of outcome. Measurement of oxygenation during treatment helps to improve SOED as well as confirm the photochemical parameters involved in the macroscopic model. Use of DCS in predicting oxygenation changes was also investigated.

  3. Implementation of IMRT and VMAT using Delta4 phantom and portal dosimetry as dosimetry verification tools

    NASA Astrophysics Data System (ADS)

    Daci, Lulzime; Malkaj, Partizan

    2016-03-01

    In this study we analyzed and compared the dose distribution of different IMRT and VMAT plans with the intent to provide pre-treatment quality assurance using two different tools. Materials/Methods: We have used the electronic portal imaging device EPID after calibration to dose and correction for the background offset signal and also the Delta4 phantom after en evaluation of angular sensitivity. The Delta4 phantom has a two-dimensional array with ionization chambers. We analyzed three plans for each anatomical site calculated by Eclipse treatment planning system. The measurements were analyzed using γ-evaluation method with passing criteria 3% absolute dose and 3 mm distance to agreement (DTA). For all the plans the range of score has been from 97% to 99% for gantry fixed at 0° while for rotational planes there was a slightly decreased pass rates and above 95%. Point measurement with a ionization chamber were done in additional to see the accuracy of portal dosimetry and to evaluate the Delta4 device to various dose rates. Conclusions: Both Delt4 and Portal dosimetry shows good results between the measured and calculated doses. While Delta4 is more accurate in measurements EPID is more time efficient. We have decided to use both methods in the first steps of IMRT and VMAT implementation and later on to decide which of the tools to use depending on the complexity of plans, how much accurate we want to be and the time we have on the machine.

  4. Implementation of IMRT and VMAT using Delta4 phantom and portal dosimetry as dosimetry verification tools

    SciTech Connect

    Daci, Lulzime; Malkaj, Partizan

    2016-03-25

    In this study we analyzed and compared the dose distribution of different IMRT and VMAT plans with the intent to provide pre-treatment quality assurance using two different tools. Materials/Methods: We have used the electronic portal imaging device EPID after calibration to dose and correction for the background offset signal and also the Delta4 phantom after en evaluation of angular sensitivity. The Delta4 phantom has a two-dimensional array with ionization chambers. We analyzed three plans for each anatomical site calculated by Eclipse treatment planning system. The measurements were analyzed using γ-evaluation method with passing criteria 3% absolute dose and 3 mm distance to agreement (DTA). For all the plans the range of score has been from 97% to 99% for gantry fixed at 0° while for rotational planes there was a slightly decreased pass rates and above 95%. Point measurement with a ionization chamber were done in additional to see the accuracy of portal dosimetry and to evaluate the Delta4 device to various dose rates. Conclusions: Both Delt4 and Portal dosimetry shows good results between the measured and calculated doses. While Delta4 is more accurate in measurements EPID is more time efficient. We have decided to use both methods in the first steps of IMRT and VMAT implementation and later on to decide which of the tools to use depending on the complexity of plans, how much accurate we want to be and the time we have on the machine.

  5. Bone marrow dosimetry via microCT imaging and stem cell spatial mapping

    NASA Astrophysics Data System (ADS)

    Kielar, Kayla N.

    in lymphoma patients. Interestingly, chemotherapy was not found to effect the HSC population in concentration or gradient. Together, this work will provide more realistic and accurate dosimetry in internal radiation therapy of cancer patients.

  6. Preclinical radiation dosimetry for the novel SV2A radiotracer [18F]UCB-H

    PubMed Central

    2013-01-01

    Background [18F]UCB-H was developed as a novel radiotracer with a high affinity for synaptic vesicle protein 2A, the binding site for the antiepileptic levetiracetam. The objectives of this study were to evaluate the radiation dosimetry of [18F]UCB-H in a preclinical trial and to determine the maximum injectable dose according to guidelines for human biomedical research. The radiation dosimetry was derived by organ harvesting and dynamic micro positron emission tomography (PET) imaging in mice, and the results of both methods were compared. Methods Twenty-four male C57BL-6 mice were injected with 6.96 ± 0.81 MBq of [18F]UCB-H, and the biodistribution was determined by organ harvesting at 2, 5, 10, 30, 60, and 120 min (n = 4 for each time point). Dynamic microPET imaging was performed on five male C57BL-6 mice after the injection of 9.19 ± 3.40 MBq of [18F]UCB-H. A theoretical dynamic bladder model was applied to simulate urinary excretion. Human radiation dose estimates were derived from animal data using the International Commission on Radiological Protection 103 tissue weighting factors. Results Based on organ harvesting, the urinary bladder wall, liver and brain received the highest radiation dose with a resulting effective dose of 1.88E-02 mSv/MBq. Based on dynamic imaging an effective dose of 1.86E-02 mSv/MBq was calculated, with the urinary bladder wall and liver (brain was not in the imaging field of view) receiving the highest radiation. Conclusions This first preclinical dosimetry study of [18F]UCB-H showed that the tracer meets the standard criteria for radiation exposure in clinical studies. The dose-limiting organ based on US Food and Drug Administration (FDA) and European guidelines was the urinary bladder wall for FDA and the effective dose for Europe with a maximum injectable single dose of approximately 325 MBq was calculated. Although microPET imaging showed significant deviations from organ harvesting, the Pearson’s correlation coefficient

  7. Initial characterization of a gel patch dosimeter for in vivo dosimetry.

    PubMed

    Matrosic, C; Culberson, W; Rosen, B; Madsen, E; Frank, G; Bednarz, B

    2016-05-21

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6% T normoxic polyacrylamide gel, was injected into 1 cm thick acrylic molds to create 1 cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose-response of all three batches of gel was found to be linear within the range of 2-20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo

  8. Initial characterization of a gel patch dosimeter for in vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Matrosic, C.; Culberson, W.; Rosen, B.; Madsen, E.; Frank, G.; Bednarz, B.

    2016-05-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6% T normoxic polyacrylamide gel, was injected into 1 cm thick acrylic molds to create 1 cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose-response of all three batches of gel was found to be linear within the range of 2-20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo

  9. Workshop Report on Atomic Bomb Dosimetry--Residual Radiation Exposure: Recent Research and Suggestions for Future Studies

    SciTech Connect

    2013-06-06

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.

  10. Workshop report on atomic bomb dosimetry-residual radiation exposure: recent research and suggestions for future studies.

    PubMed

    Kerr, George D; Egbert, Stephen D; Al-Nabulsi, Isaf; Beck, Harold L; Cullings, Harry M; Endo, Satoru; Hoshi, Masaharu; Imanaka, Tetsuji; Kaul, Dean C; Maruyama, Satoshi; Reeves, Glen I; Ruehm, Werner; Sakaguchi, Aya; Simon, Steven L; Spriggs, Gregory D; Stram, Daniel O; Tonda, Tetsuji; Weiss, Joseph F; Weitz, Ronald L; Young, Robert W

    2013-08-01

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.

  11. A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy

    PubMed Central

    Kim, Michele M.; Penjweini, Rozhin; Gemmell, Nathan R.; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald S.; Hadfield, Robert H.; Wilson, Brian C.; Zhu, Timothy C.

    2016-01-01

    Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT—light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([3O2])—to calculate the amount of reacted singlet oxygen ([1O2]rx), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime (τΔ and τt), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [1O2]rx was compared to SOED-calculated [1O2]rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [1O2]rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula. PMID:27929427

  12. Thermoacoustic dosimetry of electron beam in extra field

    SciTech Connect

    Kalinichenko, A.I.; Kresnin, Yu.A.; Popov, G.F.

    1996-12-31

    The theoretical basis is elaborated for thermoacoustic dosimetry of electron beam by one-dimensional (1-D) thin target TT in extra thermal and electromagnetic fields. The basic equation joining the deposited energy distribution to the stress wave amplitude in the case when the generation coefficient is function of temperature and coordinate in material permits realizing nonlinear thermoacoustic dosimetry with regulated sensitivity. Some variants of joint employment of the thermoacoustic dosimeter and electromagnetic scanner/splitter are considered. The first variant consists in beam scanning along 1-D dosimeter body to create the moving thermoacoustic source. This regime may be used for dosimetry of long beams. The second variant consists in spectral decomposition of the beam in electromagnetic field before its directing to the dosimeter. Principle of operation for some termoelastic dosimeters on the base of 1-D TTs is considered.

  13. ASTM Standards for Reactor Dosimetry and Pressure Vessel Surveillance

    SciTech Connect

    GRIFFIN, PATRICK J.

    1999-09-14

    The ASTM standards provide guidance and instruction on how to field and interpret reactor dosimetry. They provide a roadmap towards understanding the current ''state-of-the-art'' in reactor dosimetry, as reflected by the technical community. The consensus basis to the ASTM standards assures the user of an unbiased presentation of technical procedures and interpretations of the measurements. Some insight into the types of standards and the way in which they are organized can assist one in using them in an expeditious manner. Two example are presented to help orient new users to the breadth and interrelationship between the ASTM nuclear metrology standards. One example involves the testing of a new ''widget'' to verify the radiation hardness. The second example involves quantifying the radiation damage at a pressure vessel critical weld location through surveillance dosimetry and calculation.

  14. Report from the dosimetry working group to CEDR project management

    SciTech Connect

    Fix, J J

    1994-08-01

    On August 2, 1989, Admiral Watkins, Secretary of the US Department of Energy (DOE), presented a four-point program designed to enhance the DOE epidemiology program. One part of this program was the establishment of a Comprehensive Epidemiologic Data Resource (CEDR) to facilitate independent research to validate and supplement DOE research on human health effects. A Dosimetry Working Group was formed during May 1991 to evaluate radiation dose variables and associated documentation that would be most useful to researchers for retrospective and prospective studies. The Working Group consisted of thirteen individuals with expertise and experience in health physics, epidemiology, dosimetry, computing, and industrial hygiene. A final report was delivered to CEDR Project Management during February 1992. The report contains a number of major recommendations concerning collection, interpretation, and documentation of dosimetry data to maximize their usefulness to researchers using CEDR for examining possible health effects of occupational exposure to ionizing radiation.

  15. A transferability study of the EPR-tooth-dosimetry technique.

    PubMed

    Sholom, S; Chumak, V; Desrosiers, M; Bouville, A

    2006-01-01

    The transferability of a measurement protocol from one laboratory to another is an important feature of any mature, standardised protocol. The electron paramagnetic resonance (EPR)-tooth dosimetry technique that was developed in Scientific Center for Radiation Medicine, AMS, Ukraine (SCRM) for routine dosimetry of Chernobyl liquidators has demonstrated consistent results in several inter-laboratory measurement comparisons. Transferability to the EPR dosimetry laboratory at the National Institute of Standards and Technology (NIST) was examined. Several approaches were used to test the technique, including dose reconstruction of SCRM-NIST inter-comparison samples. The study has demonstrated full transferability of the technique and the possibility to reproduce results in a different laboratory environment.

  16. Development of 3D Slicer based film dosimetry analysis

    NASA Astrophysics Data System (ADS)

    Alexander, K. M.; Robinson, A.; Pinter, C.; Fichtinger, G.; Schreiner, L. J.

    2017-05-01

    Radiochromic film dosimetry has been widely adopted in the clinic as it is a convenient option for dose measurement and verification. Film dosimetry analysis is typically performed using expensive commercial software, or custom made scripts in Matlab. However, common clinical film analysis software is not transparent regarding what corrections/optimizations are running behind the scenes. In this work, an extension to the open-source medical imaging platform 3D Slicer was developed and implemented in our centre for film dosimetry analysis. This extension streamlines importing treatment planning system dose and film imaging data, film calibration, registration, and comparison of 2D dose distributions, enabling greater accessibility to film analysis and higher reliability.

  17. The wrist is a reliable body site for personal dosimetry of ultraviolet radiation.

    PubMed

    Thieden, E; Agren, M S; Wulf, H C

    2000-04-01

    The purpose of this study was to investigate the reliability of measuring solar ultraviolet radiation (UVR) doses with personal UV dosimeters worn on the wrist. Individual solar UVR exposure was measured over one day under standardised conditions (One-day Beach Study), and over an extended period of time with varying UV exposure and activities (Holiday Study). Dosimeters of a UV-sensitive spore-film filter type (VioSpor) were placed on the right wrist and on the top of head of the test subjects. The wrist was chosen as being a practical position for personal dosimetry and the head position as an internal control for maximal personal UV doses. The One-day Beach Study took place in the vicinity of Copenhagen in June 1998 over 5 h and included 11 subjects. The Holiday Study included 9 subjects during a period with a mean of 14 days in Scandinavia and Europe from June to September 1998. The head position received the highest UV dose in all subjects in both studies. In both studies, despite considerable individual variation, the mean wrist dose was the same (50%) of that received on the head, although the wrist dose correlated significantly with head dose (P<0.01) only in the Holiday Study. We conclude that the wrist position is a practical and convenient body site for personal dosimetry, yielding reliable results in group exposure studies.

  18. Verification of Dosimetry Measurements with Timepix Pixel Detectors for Space Applications

    NASA Technical Reports Server (NTRS)

    Kroupa, M.; Pinsky, L. S.; Idarraga-Munoz, J.; Hoang, S. M.; Semones, E.; Bahadori, A.; Stoffle, N.; Rios, R.; Vykydal, Z.; Jakubek, J.; hide

    2014-01-01

    The current capabilities of modern pixel-detector technology has provided the possibility to design a new generation of radiation monitors. Timepix detectors are semiconductor pixel detectors based on a hybrid configuration. As such, the read-out chip can be used with different types and thicknesses of sensors. For space radiation dosimetry applications, Timepix devices with 300 and 500 microns thick silicon sensors have been used by a collaboration between NASA and University of Houston to explore their performance. For that purpose, an extensive evaluation of the response of Timepix for such applications has been performed. Timepix-based devices were tested in many different environments both at ground-based accelerator facilities such as HIMAC (Heavy Ion Medical Accelerator in Chiba, Japan), and at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory in Upton, NY), as well as in space on board of the International Space Station (ISS). These tests have included a wide range of the particle types and energies, from protons through iron nuclei. The results have been compared both with other devices and theoretical values. This effort has demonstrated that Timepix-based detectors are exceptionally capable at providing accurate dosimetry measurements in this application as verified by the confirming correspondence with the other accepted techniques.

  19. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials

    PubMed Central

    Aird, Edwin GA; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia AD; Thomas, Russell AS; Venables, Karen; Thwaites, David I

    2015-01-01

    Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK over the past 30 years, including the involvement of the UK in international audits. A summary of audit results is given, with an overview of methodologies employed and lessons learnt. Recent and forthcoming more complex audits are considered, with a focus on future needs including the arrival of proton therapy in the UK and other advanced techniques such as four-dimensional radiotherapy delivery and verification, stereotactic radiotherapy and MR linear accelerators. The work of the main quality assurance and auditing bodies is discussed, including how they are working together to streamline audit and to ensure that all radiotherapy centres are involved. Undertaking regular external audit motivates centres to modernize and develop techniques and provides assurance, not only that radiotherapy is planned and delivered accurately but also that the patient dose delivered is as prescribed. PMID:26329469

  20. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials.

    PubMed

    Clark, Catharine H; Aird, Edwin G A; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia A D; Thomas, Russell A S; Venables, Karen; Thwaites, David I

    2015-01-01

    Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK over the past 30 years, including the involvement of the UK in international audits. A summary of audit results is given, with an overview of methodologies employed and lessons learnt. Recent and forthcoming more complex audits are considered, with a focus on future needs including the arrival of proton therapy in the UK and other advanced techniques such as four-dimensional radiotherapy delivery and verification, stereotactic radiotherapy and MR linear accelerators. The work of the main quality assurance and auditing bodies is discussed, including how they are working together to streamline audit and to ensure that all radiotherapy centres are involved. Undertaking regular external audit motivates centres to modernize and develop techniques and provides assurance, not only that radiotherapy is planned and delivered accurately but also that the patient dose delivered is as prescribed.