Science.gov

Sample records for 1324-na percolation pond

  1. Post-Closure Groundwater Monitoring Plan for the 1324-N Surface Impoundment and 1324-NA Percolation Pond

    SciTech Connect

    Hartman, Mary J.

    2004-04-02

    The 1324-N Surface Impoundment and the 1324-NA Percolation Pond, located in the 100-N Area of the Hanford Site, are regulated under the Resource Consevation and Recovery Act (RCRA). Surface and underground features of the facilities have been removed and laboratory analyses showed that soil met the closure performance standards. These sites have been backfilled and revegetated.

  2. Understanding and predicting deep percolation under surface irrigation

    NASA Astrophysics Data System (ADS)

    Bethune, M. G.; Selle, B.; Wang, Q. J.

    2008-12-01

    A lysimeter experiment was conducted in southeastern Australia to quantify the deep percolation response under irrigated pasture to different soil types, water table depths, and ponding times during surface irrigation. Deep percolation was governed by the final infiltration rate of the subsoil, the ponding time, the water table depth, and the amount of water stored in the rootzone between saturation and field capacity. These key variables were used to characterize both steady- and nonsteady-state percolation in a conceptual model of deep percolation. The conceptual model was found to provide an effective representation of deep percolation for both the lysimeter and field-scale water balance data. Steady-state percolation during irrigation was the dominant process contributing to deep percolation on most of the studied soils. Nonsteady-state percolation (redistribution) was very important for the sandiest soil type. The conceptual model provided better prediction of deep percolation than both data-based model (artificial neural network) and process-based modeling approach (1-D Richards' equation model).

  3. Bond percolation in films

    NASA Astrophysics Data System (ADS)

    Korneta, W.; Pytel, Z.

    1988-04-01

    Bond percolation in films with simple cubic structure is considered. It is assumed that the probability of a bond being present between nearest-neighbor sites depends on the distances to surfaces. Based on the relation between the Potts model and the bond percolation model, and using the mean-field approximation, the phase diagram and profiles of the percolation probability have been obtained.

  4. Solar ponds

    SciTech Connect

    Jayadev, T.S.; Edesess, M.

    1980-04-01

    This report first describes the different types of solar ponds including the nonconvecting salt gradient pond and various saltless pond designs. It then discusses the availability and cost of salts for salt gradient ponds, and compares the economics of salty and saltless ponds as a function of salt cost. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirements is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

  5. Solar ponds

    SciTech Connect

    Jayadev, T.S.; Edesess, M.

    1980-04-01

    The different types of solar ponds are described, including the nonconvecting salt gradient pond and various saltless pond designs. Then the availability and cost of salts for salt gradient ponds are discussed and costs are compared. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirement is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

  6. Quantum entanglement percolation

    NASA Astrophysics Data System (ADS)

    Siomau, Michael

    2016-09-01

    Quantum communication demands efficient distribution of quantum entanglement across a network of connected partners. The search for efficient strategies for the entanglement distribution may be based on percolation theory, which describes evolution of network connectivity with respect to some network parameters. In this framework, the probability to establish perfect entanglement between two remote partners decays exponentially with the distance between them before the percolation transition point, which unambiguously defines percolation properties of any classical network or lattice. Here we introduce quantum networks created with local operations and classical communication, which exhibit non-classical percolation transition points leading to striking communication advantages over those offered by the corresponding classical networks. We show, in particular, how to establish perfect entanglement between any two nodes in the simplest possible network—the 1D chain—using imperfectly entangled pairs of qubits.

  7. Multipartite entanglement percolation

    SciTech Connect

    Perseguers, S.; Cavalcanti, D.; Lapeyre, G. J. Jr.; Lewenstein, M.; Acin, A.

    2010-03-15

    We present a percolation strategy based on multipartite measurements to propagate entanglement in quantum networks. We consider networks spanned on regular lattices whose bonds correspond to pure but nonmaximally entangled pairs of qubits, with any quantum operation allowed at the nodes. Despite significant effort in the past, improvements over standard (classical) percolation have been found for only a few lattices, often with restrictions on the initial amount of entanglement in the bonds. In contrast, multipartite entanglement percolation outperform the classical percolation protocols, as well as all previously known quantum ones, over the entire range of initial entanglement and for every lattice that we considered. Finally, we briefly show that our ideas also find application in noisy networks.

  8. Social percolation models

    NASA Astrophysics Data System (ADS)

    Solomon, Sorin; Weisbuch, Gerard; de Arcangelis, Lucilla; Jan, Naeem; Stauffer, Dietrich

    2000-03-01

    We here relate the occurrence of extreme market shares, close to either 0 or 100%, in the media industry to a percolation phenomenon across the social network of customers. We further discuss the possibility of observing self-organized criticality when customers and cinema producers adjust their preferences and the quality of the produced films according to previous experience. Comprehensive computer simulations on square lattices do indeed exhibit self-organized criticality towards the usual percolation threshold and related scaling behaviour.

  9. Disinfection of secondary effluents by infiltration percolation.

    PubMed

    Makni, H

    2001-01-01

    Among the most attractive applications of reclaimed wastewater are: irrigation of public parks, sports fields, golf courses and market gardening. These uses require advanced wastewater treatment including disinfection. According to WHO guidelines (1989) and current rules and regulations in Tunisia, faecal coliform levels have to be reduced to < 10(3) or 10(2) CFU/100 mL. In Tunisia, most wastewater plants are only secondary treatment and, in order to meet health related regulations, the effluents need to be disinfected. However, it is usual for secondary effluents to need filtration prior to disinfection. Effectiveness of conventional disinfection processes, such as chlorination and UV radiation, are dependent upon the oxidation level and the levels of suspended solids of the treated water. Ozonation is relatively expensive and energy consuming. The consideration of the advantages and disadvantages of conventional techniques, their reliability, investment needs and operational costs will lead to the use of less sophisticated alternative techniques for certain facilities. Among alternative techniques, soil aquifer treatment and infiltration percolation through sand beds have been studied in Arizona, Israel, France, Spain and Morocco. Infiltration percolation plants have been intermittently fed with secondary or high quality primary effluents which percolated through 1.5-2 m unsaturated coarse sand and were recovered by under-drains. In such infiltration percolation facilities, microorganisms were eliminated through numerous physical, physicochemical and biological inter-related processes (mechanical filtration, adsorption and microbial degradation respectively). Efficiency of faecal coliform removal was dependent upon the water detention times in the filtering medium and on the oxidation of the filtered water. Effluents of Sfax town aerated ponds were infiltrated through 1.5 m deep sand columns in order to determine the performance of infiltration percolation in the

  10. Price percolation model

    NASA Astrophysics Data System (ADS)

    Kanai, Yasuhiro; Abe, Keiji; Seki, Yoichi

    2015-06-01

    We propose a price percolation model to reproduce the price distribution of components used in industrial finished goods. The intent is to show, using the price percolation model and a component category as an example, that percolation behaviors, which exist in the matter system, the ecosystem, and human society, also exist in abstract, random phenomena satisfying the power law. First, we discretize the total potential demand for a component category, considering it a random field. Second, we assume that the discretized potential demand corresponding to a function of a finished good turns into actual demand if the difficulty of function realization is less than the maximum difficulty of the realization. The simulations using this model suggest that changes in a component category's price distribution are due to changes in the total potential demand corresponding to the lattice size and the maximum difficulty of realization, which is an occupation probability. The results are verified using electronic components' sales data.

  11. Percolation and Deconfinement

    NASA Astrophysics Data System (ADS)

    Srivastava, Brijesh K.

    2011-07-01

    Possible phase transition of strongly interacting matter from hadron to a Quark-Gluon Plasma (QGP) state have in the past received considerable interest. It has been suggested that this problem might be treated by percolation theory. The Color String Percolation Model (CSPM) is used to determine the equation of state (EOS) of the QGP produced in central Au-Au collisions at RHIC energies. The bulk thermodynamic quantities - energy density, entropy density and the sound velocity - are obtained in the framework of CSPM. It is shown that the results are in excellent agreement with the recent lattice QCD calculations(LQCD).

  12. Solar pond

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1978-01-01

    Shallow pools of liquid to collect low-temperature solar generated thermal energy are described. Narrow elongated trenches, grouped together over a wide area, are lined with a heat-absorbing black liner. The heat-absorbing liquid is kept separate from the thermal energy removing fluid by means such as clear polyethylene material. The covering for the pond may be a fluid or solid. If the covering is a fluid, fire fighting foam, continuously generated, or siloons are used to keep the surface covering clean and insulated. If the thermal energy removing fluid is a gas, a fluid insulation layer contained in a flat polyethlene tubing is used to cover the pond. The side of the tube directed towards the sun is treated to block out ultraviolet radiation and trap in infrared radiation.

  13. Electrical Percolation Based Biosensors

    PubMed Central

    Bruck, Hugh Alan; Yang, Minghui; Kostov, Yordan; Rasooly, Avraham

    2013-01-01

    A new approach to label free biosensing has been developed based on the principle of “electrical percolation”. In electrical percolation, long-range electrical connectivity is formed in randomly oriented and distributed systems of discrete elements. By applying this principle to biological interactions, it is possible to measure biological components both directly and electronically. The main element for electrical percolation biosensor is the biological semiconductor (BSC) which is a multi-layer 3-D carbon nanotube-antibody network. In the BSC, molecular interactions, such as binding of antigens to the antibodies, disrupt the network continuity causing increased resistance of the network. BSCs can be fabricated by immobilizing conducting elements, such as pre-functionalized single-walled carbon nanotubes (SWNTs)-antibody complex, directly onto a substrate, such as a Poly(methyl methacrylate) (PMMA) surface (also known as plexi-glass or Acrylic). BSCs have been demonstrated for direct (label-free) electronic measurements of antibody-antigen binding using SWNTs. If the concentration of the SWNT network is slightly above the electrical percolation threshold, then binding of a specific antigen to the pre-functionalized SWNT dramatically increases the electrical resistance due to changes in the tunneling between the SWNTs. Using anti-Staphylococcal enterotoxin B (SEB) IgG as a “gate” and SEB as an “actuator”, it was demonstrated that the BSC was able to detect SEB at concentrations of 1 ng/ml. Based on this concept, an automated configuration for BSCs is described here that enables real time continuous detection. The new BSC configuration may permit assembly of multiple sensors on the same chip to create “Biological Central Processing Units (CPUs)” with multiple biological elements, capable of processing and sorting out information on multiple analytes simultaneously. PMID:24041756

  14. Percolation technique for galaxy clustering

    NASA Technical Reports Server (NTRS)

    Klypin, Anatoly; Shandarin, Sergei F.

    1993-01-01

    We study percolation in mass and galaxy distributions obtained in 3D simulations of the CDM, C + HDM, and the power law (n = -1) models in the Omega = 1 universe. Percolation statistics is used here as a quantitative measure of the degree to which a mass or galaxy distribution is of a filamentary or cellular type. The very fast code used calculates the statistics of clusters along with the direct detection of percolation. We found that the two parameters mu(infinity), characterizing the size of the largest cluster, and mu-squared, characterizing the weighted mean size of all clusters excluding the largest one, are extremely useful for evaluating the percolation threshold. An advantage of using these parameters is their low sensitivity to boundary effects. We show that both the CDM and the C + HDM models are extremely filamentary both in mass and galaxy distribution. The percolation thresholds for the mass distributions are determined.

  15. Percolation and galaxies.

    PubMed

    Schulman, L S; Seiden, P E

    1986-07-25

    A theory is presented in which much of the structure of spiral galaxies arises from a percolation phase transition that underlies the phenomenon of propagating star formation. According to this view, the appearance of spiral arms is a consequence of the differential rotation of the galaxy and the characteristic divergence of correlation lengths for continuous phase transitions. Other structural properties of spiral galaxies, such as the distribution of the gaseous components and the luminosity, arise directly from a feedback mechanism that pins the star formation rate close to the critical point of the phase transition. The approach taken in this article differs from traditional dynamical views. The argument is presented that, at least for some galaxies, morphological and other features are already fixed by general properties of phase transitions, irrespective of detailed dynamic or other considerations. PMID:17794566

  16. Watersheds and Explosive percolation

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans J.; Araujo, Nuno A. M.

    The recent work by Achlioptas, D'Souza, and Spencer opened up the possibility of obtaining a discontinuous (explosive) percolation transition by changing the stochastic rule of bond occupation. Despite the active research on this subject, several questions still remain open about the leading mechanism and the properties of the system. We review the largest cluster and the Gaussian models recently introduced. We show that, to obtain a discontinuous transition it is solely necessary to control the size of the largest cluster, suppressing the growth of a cluster di_ering significantly, in size, from the average one. As expected for a discontinuous transition, a Gaussian cluster-size distribution and compact clusters are obtained. The surface of the clusters is fractal, with the same fractal dimension of the watershed line.

  17. Self Healing Percolation

    NASA Astrophysics Data System (ADS)

    Scala, Antonio

    2015-03-01

    We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. Self-healing is a crucial in implementing the next generation of smart grids allowing to ensure a high quality of service to the users. We then map our self-healing procedure in a percolation problem and analyse the interplay between redundancies and topology in improving the resilience of networked infrastructures to multiple failures. We find exact results both for planar lattices and for random lattices, hinting the role of duality in the design of resilient networks. Finally, we introduce a cavity method approach to study the recovery of connectivity after damage in self-healing networks. CNR-PNR National Project ``Crisis-Lab,'' EU HOME/2013/CIPS/AG/4000005013 project CI2C and EU FET project MULTIPLEX nr.317532.

  18. Deep Percolation in Devegetated Hillslopes

    NASA Astrophysics Data System (ADS)

    Ebel, B. A.; Hinckley, E. S.

    2011-12-01

    Deep percolation has recently been recognized as a critical component in hillslope hydrology studies. In devegetated hillslopes where vegetation is killed and, in some cases, removed, deep percolation may be substantially enhanced beyond pre-disturbance magnitudes. We discuss two examples of devegetated hillslopes where water balance partitioning shifted to favor increased deep percolation fluxes for some hydrologic conditions. The first is the Coos Bay Experimental Catchment in Oregon, USA, where commercial forestry resulted in the complete removal of trees. An intensive field campaign in the 1990's resulted in a long term record of precipitation, discharge, piezometric response, and groundwater levels. Hydrologic response modeling confirms hypotheses from the field-data analysis and points to unresolved questions regarding feedbacks between deep percolation and near-surface hydrologic processes. The second example is the area burned by the Fourmile Canyon Fire in Colorado, USA, where a severe wildland fire removed all vegetation from a north-aspect hillslope in 2010. Precipitation, atmospheric conditions, soil-water content, matric potential, and runoff have been measured since the fire devegetated the site. Subsurface sampling of the vadose zone is accomplished using suction lysimeters to capture total nitrate, ammonium, and dissolved organic carbon concentrations. Darcian flux calculations of net infiltration from the shallow soil into fractured granodiorite bedrock are used to estimate solute fluxes to a deeper groundwater system. Virtual experiments using numerical models of unsaturated fluid flow and solute transport further elucidate the temporal dynamics of deep percolation and associated solute fluxes during spring snowmelt and frontal rainstorms, which are the major hydrologic drivers of deep percolation in this fire-impacted system. Together, these examples serve to illustrate the critical importance of deep percolation in disturbed landscapes. The

  19. Entanglement Theories: Packing vs. Percolation

    NASA Astrophysics Data System (ADS)

    Wool, Richard

    2007-03-01

    There are two emergent theories of polymer entanglements, the Packing Model (Fetters, Lohse, Graessley, Milner, Whitten, ˜'98) and the Percolation Model (Wool ˜'93). The Packing model suggests that the entanglement molecular weight Me is determined by Me = K p^3, where the packing length parameter p = V/R^2 in which V is the volume of the chain (V=M/ρNa), R is the end-to end vector of the chain, and K 357 ρNa, is an empirical constant. The Percolation model states that an entanglement network develops when the number of chains per unit area σ, intersecting any load bearing plane, is equal to 3 times the number of chain segments (1/a cross-section), such that when 3aσ =1 at the percolation threshold, Me 31 MjC∞, in which Mj is the step molecular weight and C∞ is the characteristic ratio. There are no fitting parameters in the Percolation model. The Packing model predicts that Me decreases rapidly with chain stiffness, as Me˜1/C∞^3, while the Percolation model predicts that Me increases with C∞, as Me˜C∞. The Percolation model was found to be the correct model based on computer simulations (M. Bulacu et al) and a re-analysis of the Packing model experimental data. The Packing model can be derived from the Percolation model, but not visa versa, and reveals a surprising accidental relation between C∞ and Mj in the front factor K. This result significantly impacts the interpretation of the dynamics of rheology and fracture of entangled polymers.

  20. Clique percolation in random graphs

    NASA Astrophysics Data System (ADS)

    Li, Ming; Deng, Youjin; Wang, Bing-Hong

    2015-10-01

    As a generation of the classical percolation, clique percolation focuses on the connection of cliques in a graph, where the connection of two k cliques means that they share at least l percolation in Erdős-Rényi graphs, which gives not only the exact solutions of the critical point, but also the corresponding order parameter. Based on this, we prove theoretically that the fraction ψ of cliques in the giant clique cluster always makes a continuous phase transition as the classical percolation. However, the fraction ϕ of vertices in the giant clique cluster for l >1 makes a step-function-like discontinuous phase transition in the thermodynamic limit and a continuous phase transition for l =1 . More interesting, our analysis shows that at the critical point, the order parameter ϕc for l >1 is neither 0 nor 1, but a constant depending on k and l . All these theoretical findings are in agreement with the simulation results, which give theoretical support and clarification for previous simulation studies of clique percolation.

  1. Purification of Solar Ponds

    NASA Technical Reports Server (NTRS)

    Carpenter, S.

    1985-01-01

    Flocculatory agents added to solar saltponds remove turbidity to increase solar-energy collection efficiency. Flocculating agent or bacteriocide used to remove micro-organisms sprayed onto pond from airplane and allowed to settle to bottom of pond.

  2. Pond fractals in a tidal flat.

    PubMed

    Cael, B B; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces. PMID:26651668

  3. Pond fractals in a tidal flat.

    PubMed

    Cael, B B; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.

  4. Lagoons and Oxidation Ponds.

    ERIC Educational Resources Information Center

    O'Brien, W. J.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers lagoons and oxidation ponds, and it includes some areas such as improving the effluents from ponds, stabilization ponds, aerated lagoons, and oxidation ditches. A list of 36 references is also presented. (HM)

  5. Waste Stabilization Ponds.

    ERIC Educational Resources Information Center

    Koundakjian, Philip

    This self-paced course contains reading assignments from a waste stabilization ponds operating manual, supportive text, example problems, and review questions, and a final examination. The course covers calculation of pond surface area, pond volume, organic load, detention time, drawdown, storage capacity, efficiency, and discharge. In addition,…

  6. Percolation of interaction diffusing particles

    NASA Technical Reports Server (NTRS)

    Selinger, Robin Blumberg; Stanley, H. Eugene

    1990-01-01

    The connectivity properties of systems of diffusing interacting particles with the blind and myopic diffusion rules are studied. It is found that the blind rule case is equivalent to the lattice gas with J = 0 in all dimensions. The connectivity properties of blind rule diffusion are described by random site percolation due to the fact that the density on neighboring sites is uncorrelated.

  7. Percolation on correlated random networks

    NASA Astrophysics Data System (ADS)

    Agliari, E.; Cioli, C.; Guadagnini, E.

    2011-09-01

    We consider a class of random, weighted networks, obtained through a redefinition of patterns in an Hopfield-like model, and, by performing percolation processes, we get information about topology and resilience properties of the networks themselves. Given the weighted nature of the graphs, different kinds of bond percolation can be studied: stochastic (deleting links randomly) and deterministic (deleting links based on rank weights), each mimicking a different physical process. The evolution of the network is accordingly different, as evidenced by the behavior of the largest component size and of the distribution of cluster sizes. In particular, we can derive that weak ties are crucial in order to maintain the graph connected and that, when they are the most prone to failure, the giant component typically shrinks without abruptly breaking apart; these results have been recently evidenced in several kinds of social networks.

  8. Bond percolation in higher dimensions

    NASA Astrophysics Data System (ADS)

    Corwin, Eric I.; Stinchcombe, Robin; Thorpe, M. F.

    2013-07-01

    We collect results for bond percolation on various lattices from two to fourteen dimensions that, in the limit of large dimension d or number of neighbors z, smoothly approach a randomly diluted Erdős-Rényi graph. We include results on bond-diluted hypersphere packs in up to nine dimensions, which show the mean coordination, excess kurtosis, and skewness evolving smoothly with dimension towards the Erdős-Rényi limit.

  9. Percolation in dense storage arrays

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Scott; Wilcke, Winfried W.; Garner, Robert B.; Huels, Harald

    2002-11-01

    As computers and their accessories become smaller, cheaper, and faster the providers of news, retail sales, and other services we now take for granted on the Internet have met their increasing computing needs by putting more and more computers, hard disks, power supplies, and the data communications linking them to each other and to the rest of the wired world into ever smaller spaces. This has created a new and quite interesting percolation problem. It is no longer desirable to fix computers, storage or switchgear which fail in such a dense array. Attempts to repair things are all too likely to make problems worse. The alternative approach, letting units “fail in place”, be removed from service and routed around, means that a data communications environment will evolve with an underlying regular structure but a very high density of missing pieces. Some of the properties of this kind of network can be described within the existing paradigm of site or bond percolation on lattices, but other important questions have not been explored. I will discuss 3D arrays of hundreds to thousands of storage servers (something which it is quite feasible to build in the next few years), and show that bandwidth, but not percolation fraction or shortest path lengths, is the critical factor affected by the “fail in place” disorder. Redundancy strategies traditionally employed in storage systems may have to be revised. Novel approaches to routing information among the servers have been developed to minimize the impact.

  10. Roots at the percolation threshold

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea

    2015-04-01

    The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water?

  11. Roots at the percolation threshold.

    PubMed

    Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea

    2015-04-01

    The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water? PMID:25974526

  12. Indoor Pond Biology

    ERIC Educational Resources Information Center

    Kunkel, Erika R.

    1977-01-01

    This year-long science program involved fifth grade students in the investigation of a meadow pond. Two field trips to collect pond water and organisms were arranged for the beginning and conclusion of the program. Classroom activities were designed to study aquatic organisms, life cycles, populations, and ecosystems. (MA)

  13. Solar ponds: a selected bibliography

    SciTech Connect

    Not Available

    1981-11-01

    This bibliography contains citations on: regular solar ponds; shallow solar ponds; and patents. Certain references are specifically recommended. The data bases searched for the bibliography are listed. (LEW)

  14. Spin dynamics on percolating networks

    SciTech Connect

    Aeppli, G.; Guggenheim, H.; Uemura, Y.J.

    1985-01-01

    We have used inelastic neutron scattering to measure the order parameter relaxation rate GAMMA in the dilute, two-dimensional Ising antiferromagnet Rb/sub 2/CoMg/sub 1-c/F/sub 4/ with c very close to the magnetic percolation threshold. Where kappa is the inverse magnetic correlation length, GAMMA approx. kappa/sup z/ with z = 2.4/sub -0.1//sup +0.2/. Our results are discussed in terms of current ideas about spin relaxation on fractals. 13 refs., 1 fig.

  15. Explosive Percolation Transition is Actually Continuous

    NASA Astrophysics Data System (ADS)

    da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F. F.

    2010-12-01

    Recently a discontinuous percolation transition was reported in a new “explosive percolation” problem for irreversible systems [D. Achlioptas, R. M. D’Souza, and J. Spencer, Science 323, 1453 (2009)SCIEAS0036-807510.1126/science.1167782] in striking contrast to ordinary percolation. We consider a representative model which shows that the explosive percolation transition is actually a continuous, second order phase transition though with a uniquely small critical exponent of the percolation cluster size. We describe the unusual scaling properties of this transition and find its critical exponents and dimensions.

  16. Bond Percolation on Multiplex Networks

    NASA Astrophysics Data System (ADS)

    Hackett, A.; Cellai, D.; Gómez, S.; Arenas, A.; Gleeson, J. P.

    2016-04-01

    We present an analytical approach for bond percolation on multiplex networks and use it to determine the expected size of the giant connected component and the value of the critical bond occupation probability in these networks. We advocate the relevance of these tools to the modeling of multilayer robustness and contribute to the debate on whether any benefit is to be yielded from studying a full multiplex structure as opposed to its monoplex projection, especially in the seemingly irrelevant case of a bond occupation probability that does not depend on the layer. Although we find that in many cases the predictions of our theory for multiplex networks coincide with previously derived results for monoplex networks, we also uncover the remarkable result that for a certain class of multiplex networks, well described by our theory, new critical phenomena occur as multiple percolation phase transitions are present. We provide an instance of this phenomenon in a multiplex network constructed from London rail and European air transportation data sets.

  17. Bootstrap percolation on spatial networks

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-10-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading.

  18. Bootstrap percolation on spatial networks

    PubMed Central

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-01-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around −1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value −1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading. PMID:26423347

  19. Bootstrap percolation on spatial networks.

    PubMed

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-10-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links' lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading.

  20. Par Pond water balance

    SciTech Connect

    Hiergesell, R.A.; Dixon, K.L.

    1996-06-01

    A water budget for the Par Pond hydrologic system was established in order to estimate the rate of groundwater influx to Par Pond. This estimate will be used in modeling exercises to predict Par Pond reservoir elevation and spillway discharge in the scenario where Savannah River water is no longer pumped and discharged into Par Pond. The principal of conservation of mass was used to develop the water budget, where water inflow was set equal to water outflow. Components of the water budget were identified, and the flux associated with each was determined. The water budget was considered balanced when inflow and outflow summed to zero. The results of this study suggest that Par Pond gains water from the groundwater system in the upper reaches of the reservoir, but looses water to the groundwater system near the dam. The rate of flux of groundwater from the water table aquifer into Par Pond was determined to be 13 cfs. The rate of flux from Par Pond to the water table aquifer near the dam was determined to be 7 cfs.

  1. Freshwater - the key to melt pond formation atop first year sea ice

    NASA Astrophysics Data System (ADS)

    Polashenski, C.; Golden, K. M.; Skyllingstad, E. D.; Perovich, D. K.

    2014-12-01

    Melt pond formation atop Arctic sea ice is a primary control of shortwave energy balance and light availability for photosynthesis in the upper Arctic Ocean. The initial formation process of melt ponds on first year ice typically requires that melt water be retained on the surface of ice several to tens of centimeters above sea level for several days. Albedo feedbacks during this time period create below-sea-level depressions which remain ponds later in summer. Both theory and observations, however, show that sea ice is so highly porous and permeable prior to the formation of melt ponds that retention of water tens of centimeters above hydraulic equilibrium for multiple days should not be possible. Here we present results of percolation test experiments that identify the mechanism allowing above-sea level melt pond formation. The infiltration of fresh water from snowmelt into the pore structure of the ice is responsible for plugging the pores with fresh ice, sealing the ice against further water percolation, and allowing water to pool above freeboard. Fresh meltwater availability and desalination processes, therefore, exert considerable influence over the formation of melt ponds. The findings demonstrate another mechanism through which changes in snowfall on sea ice, already being observed, are likely to alter ice mass balance and highlight the importance of efforts to improve treatment of ice salinity in models.

  2. Emergence of coexisting percolating clusters in networks

    NASA Astrophysics Data System (ADS)

    Faqeeh, Ali; Melnik, Sergey; Colomer-de-Simón, Pol; Gleeson, James P.

    2016-06-01

    It is commonly assumed in percolation theories that at most one percolating cluster can exist in a network. We show that several coexisting percolating clusters (CPCs) can emerge in networks due to limited mixing, i.e., a finite and sufficiently small number of interlinks between network modules. We develop an approach called modular message passing (MMP) to describe and verify these observations. We demonstrate that the appearance of CPCs is an important source of inaccuracy in previously introduced percolation theories, such as the message passing (MP) approach, which is a state-of-the-art theory based on the belief propagation method. Moreover, we show that the MMP theory improves significantly over the predictions of MP for percolation on synthetic networks with limited mixing and also on several real-world networks. These findings have important implications for understanding the robustness of networks and in quantifying epidemic outbreaks in the susceptible-infected-recovered (SIR) model of disease spread.

  3. Emergence of coexisting percolating clusters in networks.

    PubMed

    Faqeeh, Ali; Melnik, Sergey; Colomer-de-Simón, Pol; Gleeson, James P

    2016-06-01

    It is commonly assumed in percolation theories that at most one percolating cluster can exist in a network. We show that several coexisting percolating clusters (CPCs) can emerge in networks due to limited mixing, i.e., a finite and sufficiently small number of interlinks between network modules. We develop an approach called modular message passing (MMP) to describe and verify these observations. We demonstrate that the appearance of CPCs is an important source of inaccuracy in previously introduced percolation theories, such as the message passing (MP) approach, which is a state-of-the-art theory based on the belief propagation method. Moreover, we show that the MMP theory improves significantly over the predictions of MP for percolation on synthetic networks with limited mixing and also on several real-world networks. These findings have important implications for understanding the robustness of networks and in quantifying epidemic outbreaks in the susceptible-infected-recovered (SIR) model of disease spread. PMID:27415281

  4. Exploring Pond Water

    ERIC Educational Resources Information Center

    Raun, Chester E.; Metz, William C.

    1975-01-01

    An activity utilizing a bucket of pond water for study of microorganisms as presented to elementary school preservice and inservice teachers, and subsequently to their pupils, is described. Procedures for collecting, studying, tabulating data and extended activities are presented. (EB)

  5. Roots at the Percolation Threshold

    NASA Astrophysics Data System (ADS)

    Kroener, E.; Ahmed, M. A.; Kaestner, A.; Vontobel, P.; Zarebanadkouki, M.; Carminati, A.

    2014-12-01

    Much of the carbon assimilated by plants during photosynthesis is lost to the soil via rhizodepositions. One component of rhizopdeposition is mucilage, a hydrogel that dramatically alters the soil physical properties. Mucilage was assumed to explain unexpectedly low rhizosphere rewetting rates during irrigation (Carminati et al. 2010) and temporarily water repellency in the rhizosphere after severe drying (Moradi et al. 2012).Here, we present an experimental and theoretical study for the rewetting behaviour of a soil mixed with mucilage, which was used as an analogue of the rhizosphere. Our samples were made of two layers of untreated soils separated by a thin layer (ca. 1 mm) of soil treated with mucilage. We prepared soil columns of varying particle size, mucilage concentration and height of the middle layer above the water table. The dry soil columns were re-wetted by capillary rise from the bottom.The rewetting of the middle layer showed a distinct dual behavior. For mucilage concentrations lower than a certain threshold, water could cross the thin layer almost immediately after rewetting of bulk soil. At slightly higher mucilage concentrations, the thin layer was almost impermeable. The mucilage concentration at the threshold strongly depended on particle size: the smaller the particle size the larger the soil specific surface and the more mucilage was needed to cover the entire particle surface and to induce water repellency.We applied a classic pore network model to simulate the experimental observations. In the model a certain fraction of nodes were randomly disconnected to reproduce the effect of mucilage in temporarily blocking the flow. The percolation model could qualitatively reproduce well the threshold characteristics of the experiments. Our experiments, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively

  6. A Percolation Model for Fracking

    NASA Astrophysics Data System (ADS)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2014-12-01

    Developments in fracking technology have enabled the recovery of vast reserves of oil and gas; yet, there is very little publicly available scientific research on fracking. Traditional reservoir simulator models for fracking are computationally expensive, and require many hours on a supercomputer to simulate a single fracking treatment. We have developed a computationally inexpensive percolation model for fracking that can be used to understand the processes and risks associated with fracking. In our model, a fluid is injected from a single site and a network of fractures grows from the single site. The fracture network grows in bursts, the failure of a relatively strong bond followed by the failure of a series of relatively weak bonds. These bursts display similarities to micro seismic events observed during a fracking treatment. The bursts follow a power-law (Gutenburg-Richter) frequency-size distribution and have growth rates similar to observed earthquake moment rates. These are quantifiable features that can be compared to observed microseismicity to help understand the relationship between observed microseismicity and the underlying fracture network.

  7. Multiple-well invasion percolation.

    PubMed

    Araújo, A D; Romeu, M C; Moreira, A A; Andrade, R F S; Andrade, J S

    2008-04-01

    When the invasion percolation model is applied as a simplified model for the displacement of a viscous fluid by a less viscous one, the distribution of displaced mass follows two distinct universality classes, depending on the criteria used to stop the displacement. Here we study the distribution of mass for this process, in the case where four extraction wells are placed around a single injection well in the middle of a square lattice. Our analysis considers the limit where the pressure of the extraction well Pe is zero; in other words, an extraction well is capped as soon as less viscous fluid reaches that extraction well. Our results show that, as expected, the probability of stopping the production with small amounts of displaced mass is greatly reduced. We also investigate whether or not creating extra extraction wells is an efficient strategy. We show that the probability of increasing the amount of displaced fluid by adding an extra extraction well depends on the total recovered mass obtained before adding this well. The results presented here could be relevant to determine efficient strategies in oil exploration. PMID:18517620

  8. Coalescence and percolation in thin metal films

    SciTech Connect

    Yu, X.; Duxbury, P.M.; Jeffers, G.; Dubson, M.A. Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824-1116 )

    1991-12-15

    Metals thermally evaporated onto warm insulating substrates evolve to the thin-film state via the morphological sequence: compact islands, elongated islands, percolation, hole filling, and finally the thin-film state. The coverage at which the metal percolates ({ital p}{sub {ital c}}) is often considerably higher than that predicted by percolation models, such as inverse swiss cheese or lattice percolation. Using a simple continuum model, we show that high-{ital p}{sub {ital c}}'s arise naturally in thin films that exhibit a crossover from full coalescence of islands at early stages of growth to partial coalescence at later stages. In this interrupted-coalescence model, full coalescence of islands occurs up to a critical island radius {ital R}{sub {ital c}}, after which islands overlap, but do not fully coalesce. We present the morphology of films and the critical area coverages generated by this model.

  9. Short-time dynamics of percolation observables

    SciTech Connect

    Wanzeller, Wanderson G.; Mendes, Tereza; Krein, Gastao

    2006-11-15

    We consider the critical short-time evolution of magnetic and droplet-percolation order parameters for the Ising model in two and three dimensions, through Monte Carlo simulations with the (local) heat-bath method. We find qualitatively different dynamic behaviors for the two types of order parameters. More precisely, we find that the percolation order parameter does not have a power-law behavior as encountered for the magnetization, but develops a scale (related to the relaxation time to equilibrium) in the Monte Carlo time. We argue that this difference is due to the difficulty in forming large clusters at the early stages of the evolution. Our results show that, although the descriptions in terms of magnetic and percolation order parameters may be equivalent in the equilibrium regime, greater care must be taken to interpret percolation observables at short times. In particular, this concerns the attempts to describe the dynamics of the deconfinement phase transition in QCD using cluster observables.

  10. Saltless solar pond

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H. (Inventor)

    1984-01-01

    A solar pond adapted for efficiently trapping and storing radiant solar energy without the use of a salt concentration gradient in the pond is disclosed. A body of water which may be fresh, saline, relatively clear or turbid, is substantially covered by a plurality of floating honeycomb panels. The honeycomb panels are made of a material such as glass which is pervious to short wave solar radiation but impervious to infrared radiation. Each honeycomb panel includes a multitude of honeycomb cells. The honeycomb panels are divided into the elongated honeycomb cells by a multitude of intermediate plates disposed between a bottom plate and top plate of the panel. The solar pond is well suited for providing hot water of approximately 85 to 90 C temperature for direct heating applications, and for electrical power generation.

  11. Connecting the vulcanization transition to percolation.

    PubMed

    Peng, W; Goldbart, P M; McKane, A J

    2001-09-01

    The vulcanization transition is addressed via a minimal replica-field-theoretic model. The appropriate long-wavelength behavior of the two- and three-point vertex functions is considered diagrammatically, to all orders in perturbation theory, and identified with the corresponding quantities in the Houghton-Reeve-Wallace field-theoretic approach to the percolation critical phenomenon. Hence, it is shown that percolation theory correctly captures the critical phenomenology of the vulcanization transition associated with the liquid and critical states.

  12. Percolation of secret correlations in a network

    SciTech Connect

    Leverrier, Anthony; Garcia-Patron, Raul

    2011-09-15

    In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks--more precisely, the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.

  13. Percolation and Physical Properties of Rock Salt

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.

    2015-12-01

    Textural equilibrium controls the distribution of the liquid phase in many naturally occurring porous materials such as partially molten rocks and alloys, salt-brine and ice-water systems. In these materials, pore geometry evolves to minimize the solid-liquid interfacial energy while maintaining a constant dihedral angle, θ, at solid-liquid contact lines. A characteristic of texturally equilibrated porous media, in the absence of deformation, is that the pore network percolates at any porosity for θ<60° while a percolation threshold exists for θ>60°. However, in ductile polycrystalline materials including rock salt, the balance between surface tension and ductile deformation controls the percolation of fluid pockets along grain corners and edges. Here we show sufficiently rapid deformation can overcome this threshold by elongating and connecting isolated pores by examining a large number of accessible salt samples from deep water Gulf of Mexico. We first confirm the percolation threshold in static laboratory experiments on synthetic salt samples with X-ray microtomography. We then provide field evidence on existence of interconnected pore space in rock salt in extremely low porosities, significantly below the static percolation threshold. Scaling arguments suggest that strain rates in salt are sufficient to overcome surface tension and may allow percolation. We also present the first level-set computations of three-dimensional texturally equilibrated melt networks in realistic rock fabrics. The resulting pore space is used to obtain the effective physical properties of rock, effective electrical conductivity and mechanical properties, with a novel numerical model.

  14. Critical exponents of the explosive percolation transition

    NASA Astrophysics Data System (ADS)

    da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F. F.

    2014-04-01

    In a new type of percolation phase transition, which was observed in a set of nonequilibrium models, each new connection between vertices is chosen from a number of possibilities by an Achlioptas-like algorithm. This causes preferential merging of small components and delays the emergence of the percolation cluster. First simulations led to a conclusion that a percolation cluster in this irreversible process is born discontinuously, by a discontinuous phase transition, which results in the term "explosive percolation transition." We have shown that this transition is actually continuous (second order) though with an anomalously small critical exponent of the percolation cluster. Here we propose an efficient numerical method enabling us to find the critical exponents and other characteristics of this second-order transition for a representative set of explosive percolation models with different number of choices. The method is based on gluing together the numerical solutions of evolution equations for the cluster size distribution and power-law asymptotics. For each of the models, with high precision, we obtain critical exponents and the critical point.

  15. Generalized epidemic process and tricritical dynamic percolation

    NASA Astrophysics Data System (ADS)

    Janssen, Hans-Karl; Müller, Martin; Stenull, Olaf

    2004-08-01

    The renowned general epidemic process describes the stochastic evolution of a population of individuals which are either susceptible, infected, or dead. A second order phase transition belonging to the universality class of dynamic isotropic percolation lies between the endemic and pandemic behavior of the process. We generalize the general epidemic process by introducing a fourth kind of individuals, viz., individuals which are weakened by the process but not yet infected. This weakening gives rise to a mechanism that introduces a global instability in the spreading of the process and therefore opens the possibility of a discontinuous transition in addition to the usual continuous percolation transition. The tricritical point separating the lines of first and second order transitions constitutes an independent universality class, namely, the universality class of tricritical dynamic isotropic percolation. Using renormalized field theory we work out a detailed scaling description of this universality class. We calculate the scaling exponents in an ɛ expansion below the upper critical dimension dc=5 for various observables describing tricritical percolation clusters and their spreading properties. In a remarkable contrast to the usual percolation transition, the exponents β and β' governing the two order parameters, viz., the mean density and the percolation probability, turn out to be different at the tricritical point. In addition to the scaling exponents we calculate for all our static and dynamic observables logarithmic corrections to the mean-field scaling behavior at dc=5 .

  16. Role of livestock effluent suspended particulate in sealing effluent ponds.

    PubMed

    Bennett, J McL; Warren, B R

    2015-05-01

    Intensive livestock feed-lots have become more prevalent in recent years to help in meeting the predicted food production targets based on expected population growth. Effluent from these is stored in ponds, representing a potential concern for seepage and contamination of groundwater. Whilst previous literature suggests that effluent particulate can limit seepage adequately in combination with a clay liner, this research addresses potential concerns for sealing of ponds with low concentration fine and then evaluates this against proposed filter-cake based methodologies to describe and predict hydraulic reduction. Short soil cores were compacted to 98% of the maximum dry density and subject to ponded head percolation with unfiltered-sediment-reduced effluent, effluent filtered to <3 μm, and chemically synthesized effluent. Reduction in hydraulic conductivity was observed to be primarily due to the colloidal fraction of the effluent, with larger particulate fractions providing minimal further reduction. Pond sealing was shown to follow mathematical models of filter-cake formation, but without the formation of a physical seal on top of the soil surface. Management considerations based on the results are presented.

  17. Bioclogging and Biocementation in Construction of Water Pond in Sand

    NASA Astrophysics Data System (ADS)

    Chu, J.; Ivanov, V.; Stabnikov, V.; Li, B.

    2012-12-01

    Conventionally, compacted bentonite, geosynthetic clay liner or plastic liners are used to seal ponds, channels, and reservoirs in sand. Recently, a new approach to form a low permeability layer of several centimetres thick through the microbially induced calcium carbonate precipitation (MICP) process has been developed (Chu et al., 2012). This method has been adopted to build a laboratory scale water pond model in sand. Calcium solution for bioclogging and biocementation was supplied initially by spaying to form a layer of the clogged sand by precipitation in the pores and then by slow percolation from solution above sand surface, which formed a crust of calcite. This combination of bioclogging and biocementation formed a sand layer of 1 - 3 cm depth with low permeability. The permeability of sand after this treatment was reduced from the order of 10^-4 m/s to 10^-7 m/s when an average 2.1 kg of Ca per m^2 of sand surface was precipitated. The bending strengths of the walls and the base of the model pond were in the range of 90 to 256 kPa. The unconfined compressive strengths obtained from samples from the walls and the base were in the range of 215 to 932 kPa. The graded sand and uniform supply of calcium solution were used for the model pond construction but it was significant spatial three-dimensional heterogeneity of sand bioclogging and biocementation.

  18. Agricultural ponds support amphibian populations

    USGS Publications Warehouse

    Knutson, M.G.; Richardson, W.B.; Reineke, D.M.; Gray, B.R.; Parmelee, J.R.; Weick, S.E.

    2004-01-01

    In some agricultural regions, natural wetlands are scarce, and constructed agricultural ponds may represent important alternative breeding habitats for amphibians. Properly managed, these agricultural ponds may effectively increase the total amount of breeding habitat and help to sustain populations. We studied small, constructed agricultural ponds in southeastern Minnesota to assess their value as amphibian breeding sites. Our study examined habitat factors associated with amphibian reproduction at two spatial scales: the pond and the landscape surrounding the pond. We found that small agricultural ponds in southeastern Minnesota provided breeding habitat for at least 10 species of amphibians. Species richness and multispecies reproductive success were more closely associated with characteristics of the pond (water quality, vegetation, and predators) compared with characteristics of the surrounding landscape, but individual species were associated with both pond and landscape variables. Ponds surrounded by row crops had similar species richness and reproductive success compared with natural wetlands and ponds surrounded by nongrazed pasture. Ponds used for watering livestock had elevated concentrations of phosphorus, higher turbidity, and a trend toward reduced amphibian reproductive success. Species richness was highest in small ponds, ponds with lower total nitrogen concentrations, tiger salamanders (Ambystoma tigrinum) present, and lacking fish. Multispecies reproductive success was best in ponds with lower total nitrogen concentrations, less emergent vegetation, and lacking fish. Habitat factors associated with higher reproductive success varied among individual species. We conclude that small, constructed farm ponds, properly managed, may help sustain amphibian populations in landscapes where natural wetland habitat is rare. We recommend management actions such as limiting livestock access to the pond to improve water quality, reducing nitrogen input, and

  19. The Little School Pond

    ERIC Educational Resources Information Center

    Rawitscher-Kunkel, Erika

    1973-01-01

    A small pond in a schoolyard provided year-round biological activities for children. As seasons changed, concepts and life relations also changed. Besides microscopic organisms in water, children learned about microscopic algae, detritus, and food chains. Concepts of predator-prey relationships and of ecosystems were successfully developed. (PS)

  20. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress Report for the Period April 1 to June 30, 1989

    SciTech Connect

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-09-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period April 1 to June 30, 1989. These projects are for the 300 area process trenches (300 area), 183-H solar evaporation basins (100-H area), 200 areas low-level burial grounds, nonradioactive dangerous waste landfill (southeast of the 200 areas), 1301-N liquid waste disposal facility (100-N area), 1324-N surface impoundment and 1324-NA percolation pond (100-N area), 1325-N liquid waste disposal facility (100-N area), 216-A-10 crib (200-east area), 216-A-29 ditch (200-east area), 216-A-36B crib (200-east area), 216-B-36B crib (200-east area), 216-B-3 pond (east of the 200-east area), 2101-M pond (200-east area), grout treatment facility (200-east area).

  1. Effect of filler alignment on percolation in polymer nanocomposites using tunneling-percolation model

    NASA Astrophysics Data System (ADS)

    Kale, Sohan; Sabet, Fereshteh A.; Jasiuk, Iwona; Ostoja-Starzewski, Martin

    2016-07-01

    In this study, we examine the effect of filler alignment on percolation behavior of polymer nanocomposites using Monte Carlo simulations of monodisperse prolate and oblate hard-core soft-shell ellipsoids representing carbon nanotubes and graphene nanoplatelets, respectively. The percolation threshold is observed to increase with increasing extent of alignment as expected. For a highly aligned system of rod-like fillers, the simulation results are shown to be in good agreement with the second virial approximation based predictions. However, for a highly aligned system of disk-like fillers, the second virial approximation based results are observed to significantly deviate from the simulations, even for higher aspect ratios. The effect of filler alignment on anisotropy in percolation behavior is also studied by predicting the percolation threshold along different directions. The anisotropy in percolation threshold is found to vanish even for highly aligned systems of fillers with increasing system size.

  2. Percolation on hypergraphs with four-edges

    NASA Astrophysics Data System (ADS)

    Khatib Damavandi, Ojan; Ziff, Robert M.

    2015-10-01

    We study percolation on self-dual hypergraphs that contain hyperedges with four bounding vertices, or ‘four-edges’, using three different generators, each containing bonds or sites with three distinct probabilities p, r, and t connecting the four vertices. We find explicit values of these probabilities that satisfy the self-duality conditions discussed by Bollobás and Riordan. This demonstrates that explicit solutions of the self-duality conditions can be found using generators containing bonds and sites with independent probabilities. These solutions also provide new examples of lattices where exact percolation critical points are known. One of the generators exhibits three distinct criticality solutions (p, r, t). We carry out Monte-Carlo simulations of two of the generators on two different hypergraphs to confirm the critical values. For the case of the hypergraph and uniform generator studied by Wierman et al, we also determine the threshold p = 0.441 374 ± 0.000 001, which falls within the tight bounds that they derived. Furthermore, we consider a generator in which all or none of the vertices can connect, and find a soluble inhomogeneous percolation system that interpolates between site percolation on the union-jack lattice and bond percolation on the square lattice.

  3. Continuum percolation of congruent overlapping spherocylinders

    NASA Astrophysics Data System (ADS)

    Xu, Wenxiang; Su, Xianglong; Jiao, Yang

    2016-09-01

    Continuum percolation of randomly orientated congruent overlapping spherocylinders (composed of cylinder of height H with semispheres of diameter D at the ends) with aspect ratio α =H /D in [0 ,∞ ) is studied. The percolation threshold ϕc, percolation transition width Δ, and correlation-length critical exponent ν for spherocylinders with α in [0, 200] are determined with a high degree of accuracy via extensive finite-size scaling analysis. A generalized excluded-volume approximation for percolation threshold with an exponent explicitly depending on both aspect ratio and excluded volume for arbitrary α values in [0 ,∞ ) is proposed and shown to yield accurate predictions of ϕc for an extremely wide range of α in [0, 2000] based on available numerical and experimental data. We find ϕc is a universal monotonic decreasing function of α and is independent of the effective particle size. Our study has implications in percolation theory for nonspherical particles and composite material design.

  4. Fluid leakage near the percolation threshold

    NASA Astrophysics Data System (ADS)

    Dapp, Wolf B.; Müser, Martin H.

    2016-02-01

    Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal—applying common assumptions of elasticity, contact mechanics, and fluid dynamics—show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again.

  5. Quantum percolation by Arnoldi-Saad diagonalization

    NASA Astrophysics Data System (ADS)

    Nakanishi, Hisao

    1998-03-01

    A quantum percolation problem is studied in two and three dimensions numerically by approximately diagonalizing the corresponding Hamiltonian using the Arnoldi-Saad method. In this problem, the randomness is implemented as random site percolation with probability p for site occupation but is reflected as a random hopping term v_ij in the tight-binding Hamiltonian: H = sumi ɛi |i>v_ij|i>percolation problems but also yields an apparently anomalous behavior of the central gap as a function of p.

  6. Fluid leakage near the percolation threshold.

    PubMed

    Dapp, Wolf B; Müser, Martin H

    2016-01-01

    Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal--applying common assumptions of elasticity, contact mechanics, and fluid dynamics--show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again. PMID:26839261

  7. Fluid leakage near the percolation threshold

    PubMed Central

    Dapp, Wolf B.; Müser, Martin H.

    2016-01-01

    Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal—applying common assumptions of elasticity, contact mechanics, and fluid dynamics—show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again. PMID:26839261

  8. Percolation conductivity in hafnium sub-oxides

    SciTech Connect

    Islamov, D. R. Gritsenko, V. A.; Cheng, C. H.; Chin, A.

    2014-12-29

    In this study, we demonstrated experimentally that formation of chains and islands of oxygen vacancies in hafnium sub-oxides (HfO{sub x}, x < 2) leads to percolation charge transport in such dielectrics. Basing on the model of Éfros-Shklovskii percolation theory, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. Based on the percolation theory suggested model shows that hafnium sub-oxides consist of mixtures of metallic Hf nanoscale clusters of 1–2 nm distributed onto non-stoichiometric HfO{sub x}. It was shown that reported approach might describe low resistance state current-voltage characteristics of resistive memory elements based on HfO{sub x}.

  9. Percolation under noise: Detecting explosive percolation using the second-largest component

    NASA Astrophysics Data System (ADS)

    Viles, Wes; Ginestet, Cedric E.; Tang, Ariana; Kramer, Mark A.; Kolaczyk, Eric D.

    2016-05-01

    We consider the problem of distinguishing between different rates of percolation under noise. A statistical model of percolation is constructed allowing for the birth and death of edges as well as the presence of noise in the observations. This graph-valued stochastic process is composed of a latent and an observed nonstationary process, where the observed graph process is corrupted by type-I and type-II errors. This produces a hidden Markov graph model. We show that for certain choices of parameters controlling the noise, the classical (Erdős-Rényi) percolation is visually indistinguishable from a more rapid form of percolation. In this setting, we compare two different criteria for discriminating between these two percolation models, based on the interquartile range (IQR) of the first component's size, and on the maximal size of the second-largest component. We show through data simulations that this second criterion outperforms the IQR of the first component's size, in terms of discriminatory power. The maximal size of the second component therefore provides a useful statistic for distinguishing between different rates of percolation, under physically motivated conditions for the birth and death of edges, and under noise. The potential application of the proposed criteria for the detection of clinically relevant percolation in the context of applied neuroscience is also discussed.

  10. Percolation under noise: Detecting explosive percolation using the second-largest component.

    PubMed

    Viles, Wes; Ginestet, Cedric E; Tang, Ariana; Kramer, Mark A; Kolaczyk, Eric D

    2016-05-01

    We consider the problem of distinguishing between different rates of percolation under noise. A statistical model of percolation is constructed allowing for the birth and death of edges as well as the presence of noise in the observations. This graph-valued stochastic process is composed of a latent and an observed nonstationary process, where the observed graph process is corrupted by type-I and type-II errors. This produces a hidden Markov graph model. We show that for certain choices of parameters controlling the noise, the classical (Erdős-Rényi) percolation is visually indistinguishable from a more rapid form of percolation. In this setting, we compare two different criteria for discriminating between these two percolation models, based on the interquartile range (IQR) of the first component's size, and on the maximal size of the second-largest component. We show through data simulations that this second criterion outperforms the IQR of the first component's size, in terms of discriminatory power. The maximal size of the second component therefore provides a useful statistic for distinguishing between different rates of percolation, under physically motivated conditions for the birth and death of edges, and under noise. The potential application of the proposed criteria for the detection of clinically relevant percolation in the context of applied neuroscience is also discussed. PMID:27300904

  11. Percolation threshold on planar Euclidean Gabriel graphs

    NASA Astrophysics Data System (ADS)

    Norrenbrock, Christoph

    2016-04-01

    In the present article, numerical simulations have been performed to find the bond and site percolation thresholds on two-dimensional Gabriel graphs (GG) for Poisson point processes. GGs belong to the family of "proximity graphs" and are discussed, e.g., in context of the construction of backbones for wireless ad-hoc networks. Finite-size scaling analyses have been performed to find the critical points and critical exponents ν, β and γ. The critical exponents obtained this way verify that the associated universality class is that of standard 2D percolation.

  12. Microbiology of solar salt ponds

    NASA Technical Reports Server (NTRS)

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  13. Percolation in a kinetic opinion exchange model

    NASA Astrophysics Data System (ADS)

    Chandra, Anjan Kumar

    2012-02-01

    We study the percolation transition of the geometrical clusters in the square-lattice LCCC model [a kinetic opinion exchange model introduced by Lallouache, Chakrabarti, Chakraborti, and Chakrabarti, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.056112 82, 056112 (2010)] with the change in conviction and influencing parameter. The cluster is comprised of the adjacent sites having an opinion value greater than or equal to a prefixed threshold value of opinion (Ω). The transition point is different from that obtained for the transition of the order parameter (average opinion value) found by Lallouache Although the transition point varies with the change in the threshold value of the opinion, the critical exponents for the percolation transition obtained from the data collapses of the maximum cluster size, the cluster size distribution, and the Binder cumulant remain the same. The exponents are also independent of the values of conviction and influencing parameters, indicating the robustness of this transition. The exponents do not match any other known percolation exponents (e.g., the static Ising, dynamic Ising, and standard percolation). This means that the LCCC model belongs to a separate universality class.

  14. Temporal percolation in activity-driven networks

    NASA Astrophysics Data System (ADS)

    Starnini, Michele; Pastor-Satorras, Romualdo

    2014-03-01

    We study the temporal percolation properties of temporal networks by taking as a representative example the recently proposed activity-driven-network model [N. Perra et al., Sci. Rep. 2, 469 (2012), 10.1038/srep00469]. Building upon an analytical framework based on a mapping to hidden variables networks, we provide expressions for the percolation time Tp marking the onset of a giant connected component in the integrated network. In particular, we consider both the generating function formalism, valid for degree-uncorrelated networks, and the general case of networks with degree correlations. We discuss the different limits of the two approaches, indicating the parameter regions where the correlated threshold collapses onto the uncorrelated case. Our analytical predictions are confirmed by numerical simulations of the model. The temporal percolation concept can be fruitfully applied to study epidemic spreading on temporal networks. We show in particular how the susceptible-infected-removed model on an activity-driven network can be mapped to the percolation problem up to a time given by the spreading rate of the epidemic process. This mapping allows us to obtain additional information on this process, not available for previous approaches.

  15. Microstructures, percolation thresholds, and rock physical properties

    NASA Astrophysics Data System (ADS)

    Guéguen, Y.; Chelidze, T.; Le Ravalec, M.

    1997-09-01

    The physical properties (transport properties and mechanical properties) of porous/cracked rocks are mainly functions of their microstructure. In this connection the problem of critical (threshold) porosity for transport, elasticity and mechanical strength is especially important. Two dominant mathematical formalisms — effective medium theory (EMT) and percolation theory — pretend to give answers to this problem. Some of the EMT models do not predict any threshold (differential effective medium). Other EMT models (self-consistent models) do predict thresholds, but it is shown that these thresholds are fictitious and result from an extension of a theory beyond its limit of validity. The failure of EMT methods at high pores/crack concentrations is the result of clustering effects. The appropriate formalism to correctly describe the phenomenon of clustering of pores and cracks and the behaviour of a system close to its critical porosity is percolation theory. Percolation thresholds can be predicted in that case from classical site or bond percolation on regular or random lattices. The threshold values depend on the density and average size of pores/cracks so that porosity is not sufficient in general to characterize the threshold for a specific physical property. The general term 'critical porosity' should thus be used with caution and it is preferable to specify which property is concerned and what kind of microstructure is present. This term can be more safely used for a population of rocks which have an identical average shape of pores/cracks and for a given physical property.

  16. Relevance of percolation theory to the vulcanization transition.

    PubMed

    Janssen, H K; Stenull, O

    2001-08-01

    The relationship between vulcanization and percolation is explored from the perspective of renormalized local field theory. We show to arbitrary order in perturbation theory that the vulcanization and percolation correlation functions are governed by the same Gell-Mann-Low renormalization-group equation. Hence, all scaling aspects of the vulcanization transition are reigned by the critical exponents of the percolation universality class.

  17. Phase transitions in supercritical explosive percolation

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Nagler, Jan; Cheng, Xueqi; Jin, Xiaolong; Shen, Huawei; Zheng, Zhiming; D'Souza, Raissa M.

    2013-05-01

    Percolation describes the sudden emergence of large-scale connectivity as edges are added to a lattice or random network. In the Bohman-Frieze-Wormald model (BFW) of percolation, edges sampled from a random graph are considered individually and either added to the graph or rejected provided that the fraction of accepted edges is never smaller than a decreasing function with asymptotic value of α, a constant. The BFW process has been studied as a model system for investigating the underlying mechanisms leading to discontinuous phase transitions in percolation. Here we focus on the regime α∈[0.6,0.95] where it is known that only one giant component, denoted C1, initially appears at the discontinuous phase transition. We show that at some point in the supercritical regime C1 stops growing and eventually a second giant component, denoted C2, emerges in a continuous percolation transition. The delay between the emergence of C1 and C2 and their asymptotic sizes both depend on the value of α and we establish by several techniques that there exists a bifurcation point αc=0.763±0.002. For α∈[0.6,αc), C1 stops growing the instant it emerges and the delay between the emergence of C1 and C2 decreases with increasing α. For α∈(αc,0.95], in contrast, C1 continues growing into the supercritical regime and the delay between the emergence of C1 and C2 increases with increasing α. As we show, αc marks the minimal delay possible between the emergence of C1 and C2 (i.e., the smallest edge density for which C2 can exist). We also establish many features of the continuous percolation of C2 including scaling exponents and relations.

  18. METAPOPULATION STRUCTURE AND DYNAMICS OF POND BREEDING

    EPA Science Inventory

    Our review indicates that pond breeding amphibians exhibit highly variable spatial and temporal population dynamics, such that no single generalized model can realistically describe these animals. We propose that consideration of breeding pond permanence, and adaptations to pond ...

  19. Estimating the Effects of Conversion of Agricultural Land to Urban Land on Deep Percolation of Irrigation Water in the Grand Valley, Western Colorado

    USGS Publications Warehouse

    Mayo, John W.

    2008-01-01

    The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance

  20. Schoolyard Ponds: Safety and Liability.

    ERIC Educational Resources Information Center

    Danks, Sharon Gamson

    2001-01-01

    Engaging, attractive schoolyard ponds provide habitat for wildlife and hold great educational promise. Reviews water safety and liability issues including mud, stagnant pond water that serves as mosquito breeding grounds, and drowning. Offers ideas for creatively addressing those issues through site planning, shallow water depth, signage and…

  1. Reversible first-order transition in Pauli percolation

    NASA Astrophysics Data System (ADS)

    Maksymenko, Mykola; Moessner, Roderich; Shtengel, Kirill

    2015-06-01

    Percolation plays an important role in fields and phenomena as diverse as the study of social networks, the dynamics of epidemics, the robustness of electricity grids, conduction in disordered media, and geometric properties in statistical physics. We analyze a new percolation problem in which the first-order nature of an equilibrium percolation transition can be established analytically and verified numerically. The rules for this site percolation model are physical and very simple, requiring only the introduction of a weight W (n )=n +1 for a cluster of size n . This establishes that a discontinuous percolation transition can occur with qualitatively more local interactions than in all currently considered examples of explosive percolation; and that, unlike these, it can be reversible. This greatly extends both the applicability of such percolation models in principle and their reach in practice.

  2. Local Directed Percolation Probability in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Inui, Norio; Konno, Norio; Komatsu, Genichi; Kameoka, Koichi

    1998-01-01

    Using the series expansion method and Monte Carlo simulation,we study the directed percolation probability on the square lattice Vn0=\\{ (x,y) \\in {Z}2:x+y=even, 0 ≤ y ≤ n, - y ≤ x ≤ y \\}.We calculate the local percolationprobability Pnl defined as the connection probability between theorigin and a site (0,n). The critical behavior of P∞lis clearly different from the global percolation probability P∞g characterized by a critical exponent βg.An analysis based on the Padé approximants shows βl=2βg.In addition, we find that the series expansion of P2nl can be expressed as a function of Png.

  3. Discontinuous percolation transitions in real physical systems

    NASA Astrophysics Data System (ADS)

    Cho, Y. S.; Kahng, B.

    2011-11-01

    We study discontinuous percolation transitions (PTs) in the diffusion-limited cluster aggregation model of the sol-gel transition as an example of real physical systems, in which the number of aggregation events is regarded as the number of bonds occupied in the system. When particles are Brownian, in which cluster velocity depends on cluster size as vs˜sη with η=-0.5, a larger cluster has less probability to collide with other clusters because of its smaller mobility. Thus, the cluster is effectively more suppressed in growth of its size. Then the giant cluster size increases drastically by merging those suppressed clusters near the percolation threshold, exhibiting a discontinuous PT. We also study the tricritical behavior by controlling the parameter η, and the tricritical point is determined by introducing an asymmetric Smoluchowski equation.

  4. Percolation in Self-Similar Networks

    NASA Astrophysics Data System (ADS)

    Serrano, M. Ángeles; Krioukov, Dmitri; Boguñá, Marián

    2011-01-01

    We provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing scale-free networks, and many real networks. The proof and the derivation of the giant component size do not require the assumption that networks are treelike. Our results rely only on the observation that self-similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in the hierarchy. We conjecture that this property is pivotal for percolation in networks.

  5. Abrupt percolation in small equilibrated networks

    NASA Astrophysics Data System (ADS)

    Matsoukas, Themis

    2015-05-01

    Networks can exhibit an abrupt transition in the form of a spontaneous self-organization of a sizable fraction of the population into a giant component of connected members. This behavior has been demonstrated in random graphs under suppressive rules that passively or actively attempt to delay the formation of the giant cluster. We show that suppressive rules are not a necessary condition for a sharp transition at the percolation threshold. Rather, a finite system with aggressive tendency to form a giant cluster may exhibit an instability at the percolation threshold that is relieved through an abrupt and discontinuous transition to the stable branch. We develop the theory for a class of equilibrated networks that produce this behavior and find that the discontinuous jump is especially pronounced in small networks but disappears when the size of the system is infinite.

  6. Modified Invasion Percolation Models for Multiphase Processes

    SciTech Connect

    Karpyn, Zuleima

    2015-01-31

    This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.

  7. Percolation properties in a traffic model

    NASA Astrophysics Data System (ADS)

    Wang, Feilong; Li, Daqing; Xu, Xiaoyun; Wu, Ruoqian; Havlin, Shlomo

    2015-11-01

    As a dynamical complex system, traffic is characterized by a transition from free flow to congestions, which is mostly studied in highways. However, despite its importance in developing congestion mitigation strategies, the understanding of this common traffic phenomenon in a city scale is still missing. An open question is how the traffic in the network collapses from a global efficient traffic to isolated local flows in small clusters, i.e. the question of traffic percolation. Here we study the traffic percolation properties on a lattice by simulation of an agent-based model for traffic. A critical traffic volume in this model distinguishes the free state from the congested state of traffic. Our results show that the threshold of traffic percolation decreases with increasing traffic volume and reaches a minimum value at the critical traffic volume. We show that this minimal threshold is the result of longest spatial correlation between traffic flows at the critical traffic volume. These findings may help to develop congestion mitigation strategies in a network view.

  8. On percolation as a cosmological test

    NASA Technical Reports Server (NTRS)

    Dekel, A.; West, M. J.

    1985-01-01

    Difficulties in the use of percolation as a complementary statistic for the galaxy clustering pattern are pointed out by studying simple toy models and dynamical N-body models that represent the competing clustering scenarios. The percolation properties are found not to be very sensitive to the presence of pancakes and strings once they are clumpy, and hence they do not distinguish properly between models that are very different. In the case of very smooth pancakes, the ability to percolate depends on sampling parameters, such as the mean number density and the volume, in a way which is unknown a priori because it depends on the same properties that the test ought to measure. This problem could, in principle, be eased by using volume-limited samples of high mean number density (an order of magnitude denser than the CfA redshift survey volume limited at 4000 km/s) and by comparing to models of identical number density and volume. An alternative approach, based on the sampling effects themselves, may provide a qualitative test for pancakes in samples of lower densities.

  9. Topology of a percolating soil pore network

    NASA Astrophysics Data System (ADS)

    Capa-Morocho, M.; Ruiz-Ramos, M.; Hapca, S. M.; Houston, A.; Tarquis, A. M.

    2012-04-01

    A connectivity function defined by the 3D-Euler number, is a topological indicator and can be related to hydraulic properties (Vogel and Roth, 2001). This study aims to develop connectivity Euler indexes as indicators of the ability of soils for fluid percolation. The starting point was a 3D grey image acquired by X-ray computed tomography of a soil at bulk density of 1.2 mg cm-3. This image was used in the simulation of 40000 particles following a directed random walk algorithms with 7 binarization thresholds. These data consisted of 7 files containing the simulated end points of the 40000 random walks, obtained in Ruiz-Ramos et al. (2010). MATLAB software was used for computing the frequency matrix of the number of particles arriving at every end point of the random walks and their 3D representation. In a former work (Capa et al., 2011) a criteria for choosing the optimal threshold of grey value was identified: Final positions were divided in two subgroups, cg1 (positions with frequency of the number of particles received greater than the median) and cg2 (frequency lower or equal to median). Images with maximum difference between the Z coordinate of the center of gravity of both subgroups were selected as those with optimal threshold that reflects the major internal differences in soil structure that are relevant to percolation. According to this criterion, the optimal threshold for the soil with density 1.2 mg cm-3 was 24.Thresholds above and below the optimal (23 and 25) were also considered to confirm this selection; therefore the analysis were conducted for three files (1 image with 3 grey threshold values, which have different porosity). Additionally, three random matrix simulations with the same porosity than the selected binaries images were used to test the existence of pore connectivity as a consequence of a non-random soil structure. Therefore, 6 matrix were considered (three structured and three random) for this study. Random matrix presented a normal

  10. Ultimate Heat Sink Cooling Pond and Spray Pond Analysis Models.

    1999-05-02

    Version 00 Three programs model performance of an ultimate heat sink cooling pond. National Weather Service data is read and analyzed to predict periods of lowest cooling performance and highest evaporative loss. The data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. Five programs model performance of an ultimate heat sink spray pond. The cooling performance, evaporative water loss, and drift water loss as a function ofmore » windspeed are estimated for a spray field. These estimates are used in conjunction with National Weather Service data to predict periods of lowest cooling performance and highest evaporative loss. This data is compared to local site data for significant differences. Then the maximum pond temperature is predicted.« less

  11. Pond Ecology in the Classroom.

    ERIC Educational Resources Information Center

    Kneidl, Sally Stenhouse

    1993-01-01

    Describes activities with organisms from freshwater ponds and ditches. Several experiments involve predation, some involve habitat choices, and one addressees the role of sunlight in supporting plant-eating animals. (PR)

  12. Exploring percolative landscapes: Infinite cascades of geometric phase transitions

    NASA Astrophysics Data System (ADS)

    Timonin, P. N.; Chitov, Gennady Y.

    2016-01-01

    The evolution of many kinetic processes in 1+1 (space-time) dimensions results in 2 D directed percolative landscapes. The active phases of these models possess numerous hidden geometric orders characterized by various types of large-scale and/or coarse-grained percolative backbones that we define. For the patterns originated in the classical directed percolation (DP) and contact process we show from the Monte Carlo simulation data that these percolative backbones emerge at specific critical points as a result of continuous phase transitions. These geometric transitions belong to the DP universality class and their nonlocal order parameters are the capacities of corresponding backbones. The multitude of conceivable percolative backbones implies the existence of infinite cascades of such geometric transitions in the kinetic processes considered. We present simple arguments to support the conjecture that such cascades of transitions are a generic feature of percolation as well as of many other transitions with nonlocal order parameters.

  13. Percolation in a Proton Exchange Membrane Fuel Cell Catalyst Layer

    SciTech Connect

    Stacy, Stephen; Allen, Jeffrey

    2012-07-01

    Water management in the catalyst layers of proton exchange membrane fuel cells (PEMFC) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. At the present time, the data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited. A method and apparatus for measuring the percolation pressure in the catalyst layer has been developed based upon an experimental apparatus used to test water percolation in porous transport layers (PTL). The experimental setup uses a pseudo Hele-Shaw type testing where samples are compressed and a fluid is injected into the sample. Testing the samples gives percolation pressure plots which show trends in increasing percolation pressure with an increase in flow rate. A decrease in pressure was seen as percolation occurred in one sample, however the pressure only had a rising effect in the other sample.

  14. Deformation-assisted fluid percolation in rock salt.

    PubMed

    Ghanbarzadeh, Soheil; Hesse, Marc A; Prodanović, Maša; Gardner, James E

    2015-11-27

    Deep geological storage sites for nuclear waste are commonly located in rock salt to ensure hydrological isolation from groundwater. The low permeability of static rock salt is due to a percolation threshold. However, deformation may be able to overcome this threshold and allow fluid flow. We confirm the percolation threshold in static experiments on synthetic salt samples with x-ray microtomography. We then analyze wells penetrating salt deposits in the Gulf of Mexico. The observed hydrocarbon distributions in rock salt require that percolation occurred at porosities considerably below the static threshold due to deformation-assisted percolation. Therefore, the design of nuclear waste repositories in salt should guard against deformation-driven fluid percolation. In general, static percolation thresholds may not always limit fluid flow in deforming environments.

  15. Par Pond vegetation status 1996

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1996-12-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995, and into the early spring and late summer of 1996. Communities similar to the pre-drawdown, Par Pond aquatic plant communities continue to become re-established. Emergent beds of maidencane, lotus, waterlily, watershield, and Pontederia are extensive and well developed. Measures of percent cover, width of beds, and estimates of area of coverage with satellite data indicate regrowth within two years of from 40 to 60% of levels prior to the draw down. Cattail occurrence continued to increase during the summer of 1996, especially in the former warm arm of Par Pond, but large beds common to Par Pond prior to the draw down still have not formed. Lotus has invaded and occupies many of the areas formerly dominated by cattail beds. To track the continued development of macrophytes in Par Pond, future surveys through the summer and early fall of 1997, along with the evaluation of satellite data to map the extent of the macrophyte beds of Par Pond, are planned.

  16. Modeling of shallow stabilization ponds

    SciTech Connect

    Babarutsi, S.; Marchand, P.; Safieddine, T.

    1999-07-01

    A two-dimensional hydrodynamic model is used to simulate shallow stabilization ponds. The model computes the flow field and the concentration distribution of a conservative tracer in the entire area of a pond. The location and the size of the dead zones, the bypassing, and the recirculating areas are also determined by the model. The numerical results are in good agreement with the experimental data obtained in the laboratory.

  17. Biogeochemical ecology of aquaculture ponds

    SciTech Connect

    Weisburd, R.S.J.

    1988-01-01

    Two methods to determine rates of organic matter production and consumption were applied in shrimp aquaculture ponds. Several questions were posed: can net rates of organic matter production and consumption be determined accurately through application of dissolved inorganic carbon (DIC) mass balance in a pond with high advective through-put Are organically loaded aquaculture ponds autotrophic How do rates of organic production vary temporally Are there diurnal changes in respiration rates Four marine ponds in Hawaii have been evaluated for a 53 day period through the use of geochemical mass balances. All fluxes of DIC into and out of the ponds were considered. DIC was calculated from hourly pH measurements and weekly alkalinity measurements. Average uptake of DIC from the pond water, equivalent to net community production, revealed net autotrophy in all cases. Hourly and longer period variations in organic matter production rates were examined. The daily cycle dominated the variation in rates of net community production. Maximal rates of net community production were maintained for four to six hours starting in mid-morning. Respiration rates decreased rapidly during the night in two of the ponds and remained essentially constant in the others. A similar pattern of decreasing respiration at night was seen in freshwater shrimp ponds which were studied with incubations. A new method involving isotope dilution of {sup 14}C-labeled DIC was used to measure respiration rates in light and dark bottles. This method is an inexpensive and convenient procedure which should also be useful in other environments. The incubations demonstrated that plankton respiration rates peak at or soon after solar noon and vary over the course of the day by about a factor of two.

  18. FORMATION OF CALCIUM AND SILICA FROM PERCOLATION IN A HYDROLOGICALLY UNSATURATED SETTING, Y.M.,NV

    SciTech Connect

    J.B. Paces; J.F. Whelan; Z.E. Peterman; B.D. Marshall

    2000-07-27

    Geological, mineralogical, chemical, and isotopic evidence from coatings of calcite and silica on open fractures and lithophysal cavities within welded tuffs at Yucca Mountain indicate an origin from meteoric water percolating through a thick (500 to 700 m) unsaturated zone (UZ) rather than from pulses of ascending ground water. Geologic evidence for a UZ setting includes the presence of coatings in only a small percentage of cavities, the restriction of coatings to fracture footwalls and cavity floors, and an absence of mineral high-water marks indicative of water ponding. Systematic mineral sequences (early calcite, followed by chalcedony with minor quartz and fluorite, and finally calcite with intercalated opal forming the bulk of the coatings) indicate progressive changes in UZ conditions through time, rather than repeated saturation by flooding. Percolation under the influence of gravity also results in mineral textures that vary between steeply dipping sites (thinner coatings of blocky calcite) and shallowly dipping sites (thicker coatings of coarse, commonly bladed calcite, with globules and sheets of opal). Micrometer-scale growth banding in both calcite and opal reflects slow average growth rates (scale of mm/m.y.) over millions of years rather than only a few rapidly deposited growth episodes. Isotopic compositions of C, O, Sr, and U from calcite and opal indicate a percolation-modified meteoric water source, and collectively refute a deeper ground-water source. Chemical and isotopic variations in coatings also indicate long-term evolution of water compositions. Although some compositional changes are related to shifts in climate, growth rates in the deeper UZ are buffered from large changes in meteoric input. Coatings most likely formed from films of water flowing down connected fracture pathways. Mineral precipitation is consistent with water vapor and carbon dioxide loss from films at very slow rates. Data collectively indicate that mineral coatings

  19. Segregated solar pond

    SciTech Connect

    Assaf, G.

    1984-10-09

    A segregated solar pond includes an upper level of water overlying a lower level of water, and an impermeable barrier interposed between the two levels for preventing intermixing. The average density of the upper level exceeds the average density of the upper level. Floats on the periphery of the upper level buoyantly support it on the surface of a larger body of water connected to the lower level. The upper level contains dissolved salts establishing a halocline that renders the upper level non-convective such that it is heated by absorption of solar radiation, the heat being transferred to the lower level by conduction across the barrier. Vertical curtains attached to the periphery of the barrier inhibit mixing of the water in the lower level with the water in the larger body of water such that the lower level constitutes a heat storage layer. The barrier between the two layers includes a sheet of flexible material and a frame supporting the same rigidly connected to the floats. The upper level is stabilized by additional floats rigidly connected to the frames and floating in the upper level.

  20. Epidemic Percolation Networks, Epidemic Outcomes, and Interventions

    DOE PAGES

    Kenah, Eben; Miller, Joel C.

    2011-01-01

    Epidemic percolation networks (EPNs) are directed random networks that can be used to analyze stochastic “Susceptible-Infectious-Removed” (SIR) and “Susceptible-Exposed-Infectious-Removed” (SEIR) epidemic models, unifying and generalizing previous uses of networks and branching processes to analyze mass-action and network-based S(E)IR models. This paper explains the fundamental concepts underlying the definition and use of EPNs, using them to build intuition about the final outcomes of epidemics. We then show how EPNs provide a novel and useful perspective on the design of vaccination strategies.

  1. Percolation Theory and Modern Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2015-12-01

    During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.

  2. Tree structure of a percolating Universe.

    PubMed

    Colombi, S; Pogosyan, D; Souradeep, T

    2000-12-25

    We present a numerical study of topological descriptors of initially Gaussian and scale-free density perturbations evolving via gravitational instability in an expanding Universe. The measured Euler number of the excursion set at the percolation threshold, delta(c), is positive and nearly equal to the number of isolated components, suggesting that these structures are trees. Our study of critical point counts reconciles the clumpy appearance of the density field at delta(c) with measured filamentary local curvature. In the Gaussian limit, we measure delta(c)>sigma, where sigma2 is the variance of the density field.

  3. Modied invasion percolation model for fracking

    NASA Astrophysics Data System (ADS)

    Norris, J.; Turcotte, D. L.; Rundle, J. B.

    2013-12-01

    Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large reserves of natural gas and oil. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. We consider new models of Invasion Percolation, (IP) which are models that were originally introduced to represent the injection of an invading fluid into a fluid filled porous medium. A primary difference between our model and the original model is the elimination of any unbroken bonds whose end sites are both filled with fluid. While the original model was found to have statistics nearly identical to traditional percolation, we find significant statistical differences. In particular, the distribution of broken bond strengths displays a strong roll-over near the critical point. Another difference between traditional percolation clusters and clusters generated using our model is the absence of internal loops. The modified growth rule prevents the formation of internal loops making the growing cluster ramified. Other ramified networks include drainage basins and DLA clusters. The study of drainage basins led to the development of Horton-Strahler and Tokunaga network statistics. We used both Horton-Strahler and Tokunaga network statistics to characterize simulated clusters using and found that the clusters generated by our model are statistically self-similar fractals. In addition to fractal clusters, IP also displays burst dynamics, in which the cluster extends rapidly through a spontaneous extension of percolating bonds. We define a burst to be a consecutive series of broken bonds whose strengths are all below a specified value. Using this definition of bursts we found good agreement with a power-law frequency-area distribution. Our model displays many of the characteristics of an energy landscape, and shows many similarities to DLA, neural networks, ecological landscapes, and the world wide web. We anticipate that this

  4. Equivalence of several generalized percolation models on networks

    NASA Astrophysics Data System (ADS)

    Miller, Joel C.

    2016-09-01

    In recent years, many variants of percolation have been used to study network structure and the behavior of processes spreading on networks. These include bond percolation, site percolation, k -core percolation, bootstrap percolation, the generalized epidemic process, and the Watts threshold model (WTM). We show that—except for bond percolation—each of these processes arises as a special case of the WTM, and bond percolation arises from a small modification. In fact "heterogeneous k -core percolation," a corresponding "heterogeneous bootstrap percolation" model, and the generalized epidemic process are completely equivalent to one another and the WTM. We further show that a natural generalization of the WTM in which individuals "transmit" or "send a message" to their neighbors with some probability less than 1 can be reformulated in terms of the WTM, and so this apparent generalization is in fact not more general. Finally, we show that in bond percolation, finding the set of nodes in the component containing a given node is equivalent to finding the set of nodes activated if that node is initially activated and the node thresholds are chosen from the appropriate distribution. A consequence of these results is that mathematical techniques developed for the WTM apply to these other models as well, and techniques that were developed for some particular case may in fact apply much more generally.

  5. Percolation with long-range correlations for epidemic spreading

    NASA Astrophysics Data System (ADS)

    Tan, Zhi-Jie; Zou, Xian-Wu; Jin, Zhun-Zhi

    2000-12-01

    A percolation model with long-range correlations was introduced to investigate the phenomena of epidemic spreading by Monte Carlo simulations. The correlation exponent α and pathogenic ratio s correspond to different spreading methods and pathogenicity of variant epidemics. As the correlation changes from a weak one to a strong one, the patterns change from site percolation to Eden cluster when pathogenic ratio s=1, or Leath percolation cluster when s<1. Corresponding to change of patterns, the fractal dimension increases up to space dimension. The critical behavior in epidemic spreading has been examined based on the model. It is found that correlation has a great influence on the threshold of spreading percolation.

  6. Recent advances in percolation theory and its applications

    NASA Astrophysics Data System (ADS)

    Saberi, Abbas Ali

    2015-05-01

    Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin-Kasteleyn and geometric spin clusters. As an application we will discuss how percolation

  7. Correction-to-scaling exponent for two-dimensional percolation

    SciTech Connect

    Ziff, Robert M.

    2011-02-15

    We show that the correction-to-scaling exponents in two-dimensional percolation are bounded by {Omega}{<=}72/91, {omega}=D{Omega}{<=}3/2, and {Delta}{sub 1}={nu}{omega}{<=}2, based upon Cardy's result for the crossing probability on an annulus. The upper bounds are consistent with many previous measurements of site percolation on square and triangular lattices and new measurements for bond percolation, suggesting that they are exact. They also agree with exponents for hulls proposed recently by Aharony and Asikainen, based upon results of den Nijs. A corrections scaling form evidently applicable to site percolation is also found.

  8. Macroinvertebrates of Par Pond and Pond B: Final report, January 1984-June 1985

    SciTech Connect

    Kondratieff, B.C.; Chimney, M.J.; Painter, W.B.

    1985-08-01

    This document reports on the Par Pond and Pond B macroinvertebrate sampling program from January 1984 through June 1985. It includes data on quantitative and qualitative benthic sampling, quantitative meroplankton sampling and quarterly diel sample. The basic objectives were to: (1) characterize the benthic and meroplankton macroinvertebrate communities of Par Pond and Pond B, with respect to taxonomic composition and diversity, density and relative abundance of functional feeding groups; (2) assess the impact of thermal discharges on the macroinvertebrate community of Par Pond; (3) assess the impact and significance of entrainment losses of macroinvertebrate meroplankton from Par Pond; and (4) compare Par Pond macroninvertebrate communities with those in Pond B.

  9. Water percolation through a clayey vadose zone

    NASA Astrophysics Data System (ADS)

    Baram, S.; Kurtzman, D.; Dahan, O.

    2012-03-01

    SummaryHeavy clay soils are regarded as less permeable due to their low saturated hydraulic conductivities, and are perceived as safe for the construction of unlined or soil-lined waste lagoons. Water percolation dynamics through a smectite-dominated clayey vadose zone underlying a dairy waste lagoon, waste channel and their margins was investigated using three independent vadose-zone monitoring systems. The monitoring systems, hosting 22 TDR sensors, were used for continuous measurements of the temporal variation in vadose zone water-content profiles. Results from 4 years of continuous measurements showed quick rises in sediment water content following rain events and temporal wastewater overflows. The percolation pattern indicated dominance of preferential flow through a desiccation-crack network crossing the entire clay sediment layer (depth of 12 m). High water-propagation velocities (0.4-23.6 m h-1) were observed, indicating that the desiccation-crack network remains open and serves as a preferential flow pathway year-round, even at high sediment water content (˜0.50 m3 m-3). The natural formation of desiccation-crack networks at the margins of waste lagoons induces rapid infiltration of raw waste to deep sections of the vadose zone, bypassing the sediment's most biogeochemically active parts, and jeopardizing groundwater quality.

  10. Electron Percolation In Copper Infiltrated Carbon

    NASA Astrophysics Data System (ADS)

    Krcho, Stanislav

    2015-11-01

    The work describes the dependence of the electrical conductivity of carbon materials infiltrated with copper in a vacuum-pressure autoclave on copper concentration and on the effective pore radius of the carbon skeleton. In comparison with non-infiltrated material the electrical conductivity of copper infiltrated composite increased almost 500 times. If the composite contained less than 7.2 vol% of Cu, a linear dependence of the electrical conductivity upon cupper content was observed. If infiltrated carbon contained more than 7.2 vol% of Cu, the dependence was nonlinear - the curve could be described by a power formula (x - xc)t. This is a typical formula describing the electron percolation process in regions containing higher Cu fraction than the critical one. The maximum measured electrical conductivity was 396 × 104 Ω-1 m-1 for copper concentration 27.6 vol%. Experiments and analysis of the electrical conductivity showed that electron percolation occurred in carbon materials infiltrated by copper when the copper volume exceeded the critical concentration. The analysis also showed a sharp increase of electrical conductivity in composites with copper concentration higher than the threshold, where the effective radius of carbon skeleton pores decreased to 350 nanometres.

  11. Spectral Dimension of a Percolation Network

    NASA Astrophysics Data System (ADS)

    Rudra, Jayanta

    2005-03-01

    While the fractal dimension df describes the self-similar static nature of the lattice, the spectral dimension ds dictates the dynamic properties on it. Alexander and Orbach^1 conjectured that the spectral dimension might be exactly 4/3 for percolation networks with embedding euclidian dimension de >= 2. Recent numerical simulations^2, however, could not decisively prove or disprove this conjecture, although there are other indirect evidences that it is true. We believe that the failure of the simulations to decisively check the validity of the conjecture is due to the non-stochastic nature of the methods. Most of these simulations are Monte Carlo Methods based on a random-walk model and, in spite of very large number of walks on huge lattices, the results do not reach the satisfactory level. In this work we apply a stochastic approach^3 to determine the spectral dimension of percolation network for de >= 2 and check the validity of the Alexander-Orbach-conjecture. Due to its stochastic nature this method is numerically superior and more accurate than the conventional Monte Carlo simulations. References: 1. S. Alexander and R. Orbach, J. Phys. Lett. (Paris) 43 (1982) L625. 2. N. Pitsianis, G. Bleris and P. Argyrakis, Phys. Rev. B 39 (1989) 7097. 3. J. Rudra and J. Kozak, Phys. Lett A 151 (1990) 429.

  12. Explosive percolation transitions in growing networks

    NASA Astrophysics Data System (ADS)

    Oh, S. M.; Son, S.-W.; Kahng, B.

    2016-03-01

    Recent extensive studies of the explosive percolation (EP) model revealed that the EP transition is second order with an extremely small value of the critical exponent β associated with the order parameter. This result was obtained from static networks, in which the number of nodes in the system remains constant during the evolution of the network. However, explosive percolating behavior of the order parameter can be observed in social networks, which are often growing networks, where the number of nodes in the system increases as dynamics proceeds. However, extensive studies of the EP transition in such growing networks are still missing. Here we study the nature of the EP transition in growing networks by extending an existing growing network model to a general case in which m node candidates are picked up in the Achiloptas process. When m =2 , this model reduces to the existing model, which undergoes an infinite-order transition. We show that when m ≥3 , the transition becomes second order due to the suppression effect against the growth of large clusters. Using the rate-equation approach and performing numerical simulations, we also show that the exponent β decreases algebraically with increasing m , whereas it does exponentially in a corresponding static random network model. Finally, we find that the hyperscaling relations hold but in different forms.

  13. k-core percolation on multiplex networks

    NASA Astrophysics Data System (ADS)

    Azimi-Tafreshi, N.; Gómez-Gardeñes, J.; Dorogovtsev, S. N.

    2014-09-01

    We generalize the theory of k-core percolation on complex networks to k-core percolation on multiplex networks, where k ≡(k1,k2,...,kM). Multiplex networks can be defined as networks with vertices of one kind but M different types of edges, representing different types of interactions. For such networks, the k-core is defined as the largest subgraph in which each vertex has at least ki edges of each type, i =1,2,...,M. We derive self-consistency equations to obtain the birth points of the k-cores and their relative sizes for uncorrelated multiplex networks with an arbitrary degree distribution. To clarify our general results, we consider in detail multiplex networks with edges of two types and solve the equations in the particular case of Erdős-Rényi and scale-free multiplex networks. We find hybrid phase transitions at the emergence points of k-cores except the (1,1)-core for which the transition is continuous. We apply the k-core decomposition algorithm to air-transportation multiplex networks, composed of two layers, and obtain the size of (k1,k2)-cores.

  14. Percolation on bipartite scale-free networks

    NASA Astrophysics Data System (ADS)

    Hooyberghs, H.; Van Schaeybroeck, B.; Indekeu, J. O.

    2010-08-01

    Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type. Such bipartite graphs appear in many social networks, for instance in affiliation networks and in sexual-contact networks in which both types of nodes show the scale-free characteristic for the degree distribution. During the depreciation process, an edge between nodes with degrees k and q is retained with a probability proportional to (, where α is positive so that links between hubs are more prone to failure. The removal process is studied analytically by introducing a generating functions theory. We deduce exact self-consistent equations describing the system at a macroscopic level and discuss the percolation transition. Critical exponents are obtained by exploiting the Fortuin-Kasteleyn construction which provides a link between our model and a limit of the Potts model.

  15. Novel percolation transitions and coupled catastrophes

    NASA Astrophysics Data System (ADS)

    D'Souza, Raissa

    Collections of interdependent networks are at the core of modern society, spanning physical, biological and social systems. Simple mathematical models of the structure and function of networks can provide important insights into real-world systems, enhancing our ability to steer and control them. Here our focus is on abrupt changes in networks, due both to phase transitions and to jumping between bi-stable equilibria. We begin with an overview of novel classes of percolation phase transitions that result from repeated, small interventions intended to delay the transition. These new phenomena allow us to extend percolation approaches to modular networks, Brownian motion, and cluster growth dynamics. We then focus on abrupt transitions due to a system jumping between bi-stable equilibria, modeled as a cusp catastrophe in nonlinear dynamics. We show that when systems that each undergo a cusp catastrophe interact, we can observe a new phenomena of catastrophe-hopping leading to non-local cascading failures. Here an intermediate system facilitates the propagation of a sudden change or collapse, and we show that catastrophe hopping is consistent with the outbreak of protests observed during the Arab Spring of 2011.

  16. Percolation effect in thick film superconductors

    SciTech Connect

    Sali, R.; Harsanyi, G.

    1994-12-31

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  17. Explosive percolation transitions in growing networks.

    PubMed

    Oh, S M; Son, S-W; Kahng, B

    2016-03-01

    Recent extensive studies of the explosive percolation (EP) model revealed that the EP transition is second order with an extremely small value of the critical exponent β associated with the order parameter. This result was obtained from static networks, in which the number of nodes in the system remains constant during the evolution of the network. However, explosive percolating behavior of the order parameter can be observed in social networks, which are often growing networks, where the number of nodes in the system increases as dynamics proceeds. However, extensive studies of the EP transition in such growing networks are still missing. Here we study the nature of the EP transition in growing networks by extending an existing growing network model to a general case in which m node candidates are picked up in the Achiloptas process. When m = 2, this model reduces to the existing model, which undergoes an infinite-order transition. We show that when m ≥ 3, the transition becomes second order due to the suppression effect against the growth of large clusters. Using the rate-equation approach and performing numerical simulations, we also show that the exponent β decreases algebraically with increasing m, whereas it does exponentially in a corresponding static random network model. Finally, we find that the hyperscaling relations hold but in different forms. PMID:27078375

  18. Blogging from North Pond

    NASA Astrophysics Data System (ADS)

    Marziali, C. G.; Edwards, K. J.

    2009-12-01

    Sea going research expeditions provide an ideal opportunity for outreach through blogs: the finite duration limits the author's commitment; scientists are usually in a remote location with fewer distractions; and fieldwork is visual and interesting to describe. Over four weeks this winter, Katrina Edwards of USC authored a blog about her deep-sea drilling expedition to North Pond, a depression in the ocean crust in the mid-Atlantic. She emailed daily dispatches and photos to USC Media Relations, which maintained a (still accessible) blog. Written for the general public, the blog quickly attracted interest from lay readers as well as from media organizations. Scientific American carried the blog on its web site, and the National Science Foundation linked to it in its "Science 360" electronic news digest. The blog also led to a Q&A with Edwards in the widely-read "Behind the Scenes" feature of LiveScience. Interest from science bloggers and National Geographic towards the end suggests that the blog could have expanded its reach given more time: expeditions lasting between six weeks and three months, such as occur during ocean drilling expeditions, would appear to be ideal candidates for a blog. Most importantly, the blog educated readers about the importance to planetary life of what Edwards calls the "intraterrestrials": the countless microbes that inhabit the oceanic crust and influence major chemical and biological cycles. Considering that the subjects of the expedition were invisible critters in a pitch-dark place, the blog shows what can be accomplished by scientists and institutions committed to public outreach.

  19. 216-B-3 expansion ponds closure plan

    SciTech Connect

    Not Available

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.

  20. Electrical percolation networks of carbon nanotubes in a shear flow.

    PubMed

    Kwon, Gyemin; Heo, Youhee; Shin, Kwanwoo; Sung, Bong June

    2012-01-01

    The effect of shear on the electrical percolation network of carbon nanotube (CNT)-polymer composites is investigated using computer simulations. Configurations of CNTs in a simple shear, obtained by using Monte Carlo simulations, are used to locate the electrical percolation network of CNTs and calculate the electric conductivity. When exposed to the shear, CNTs align parallel to the shear direction and the electrical percolation threshold CNT concentration decreases. Meanwhile, after a certain period of the shear imposition above a critical shear rate, CNTs begin to form an aggregate and the percolating network of CNTs is broken, thus decreasing the electric conductivity significantly. We also construct quasiphase diagrams for the aggregate formation and the electrical percolation network formation to investigate the effect of the shear rate and CNT concentration. PMID:22400548

  1. Percolation of localized attack on complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo

    2015-02-01

    The robustness of complex networks against node failure and malicious attack has been of interest for decades, while most of the research has focused on random attack or hub-targeted attack. In many real-world scenarios, however, attacks are neither random nor hub-targeted, but localized, where a group of neighboring nodes in a network are attacked and fail. In this paper we develop a percolation framework to analytically and numerically study the robustness of complex networks against such localized attack. In particular, we investigate this robustness in Erdős-Rényi networks, random-regular networks, and scale-free networks. Our results provide insight into how to better protect networks, enhance cybersecurity, and facilitate the design of more robust infrastructures.

  2. Cluster size diversity, percolation, and complex systems.

    PubMed

    Tsang, I R; Tsang, I J

    1999-09-01

    Diversity of cluster size has been used as a measurement of complexity in several systems that generate a statistical distribution of clusters. Using Monte Carlo simulations, we present a statistical analysis of the cluster size diversity and the number of clusters generated on randomly occupied lattices for the Euclidean dimensions 1 to 6. A tuning effect for diversity of cluster size and critical probabilities associated with the maximum diversity and the maximum number of clusters are reported. The probability of maximum diversity is related to the percolation threshold and several scaling relations between the variables measured are reported. The statistics of cluster size diversity has important consequences in the statistical description of the Universe as a complex system. PMID:11970070

  3. Explosive Percolation with Multiple Giant Components

    NASA Astrophysics Data System (ADS)

    Chen, Wei; D'Souza, Raissa M.

    2011-03-01

    We generalize the random graph evolution process of Bohman, Frieze, and Wormald [T. Bohman, A. Frieze, and N. C. Wormald, Random Struct. AlgorithmsRSALFD1042-983210.1002/rsa.20038, 25, 432 (2004)]. Potential edges, sampled uniformly at random from the complete graph, are considered one at a time and either added to the graph or rejected provided that the fraction of accepted edges is never smaller than a decreasing function asymptotically approaching the value α=1/2. We show that multiple giant components appear simultaneously in a strongly discontinuous percolation transition and remain distinct. Furthermore, tuning the value of α determines the number of such components with smaller α leading to an increasingly delayed and more explosive transition. The location of the critical point and strongly discontinuous nature are not affected if only edges which span components are sampled.

  4. Percolation of Blast Waves though Sand

    NASA Astrophysics Data System (ADS)

    Proud, William

    2013-06-01

    Previous research has concentrated on the physical processes occurring when samples of sand, of varying moisture content, were shock compressed. In this study quartz sand samples are subjected to blast waves over a range of pressure and duration. Aspects of particle movement are discussed; the global movement of a bed hundreds of particles thick is a fraction of particle width. The main diagnostics used are pressure sensors and high-speed photography. Results are presented for a range of particle sizes, aspect ratio, density and moisture content. While the velocity of the percolation through the bed is primarily controlled by density and porosity the effect of moisture reveals a more complex dependence. The ISP acknowledges the support of the Atomic Weapons Establishment and Imperial College London.

  5. Preliminary design of sedimentation ponds

    SciTech Connect

    Wilson, L.C.; Wayland, L.D.

    1982-12-01

    Almost one-hundred sedimentation ponds were conceptually designed for a large surface mining study are in northeast Texas. An approximate procedure was developed to economically estimate construction quantities in order to predict surface water control costs. This procedure utilized site-specific empirical relationships developed from detailed analyses on a representative number of proposed sedimentation ponds. Use of these equations provided earthwork volumes, and spillway pipe lengths. The procedure developed for this study is presented along with the results of a verification analysis.

  6. Lagoons and oxidation ponds. [Wastewater treatment

    SciTech Connect

    George, D.B.

    1982-06-01

    A review of the literature on waste stabilization pond systems is presented. Factors such as wastewater temperature, and levels of heavy metals that affect the stability of the lagoons and oxidation ponds, and methods to upgrade stabilization pond effluent to meet state and federal effluent requirements are discussed. Model simulations utilized to predict the treatment efficiency of various waste stabilization pond geometries, and inlet and outlet configurations are reviewed. (KRM)

  7. Distance Education of Pennsylvania Pond Owners.

    ERIC Educational Resources Information Center

    Schmidt, Katherine L.; Swistock, Bryan R.; Sharpe, William E.

    2003-01-01

    Evaluations by 175 of 557 Pennsylvania pond owners who attended an Extension program via satellite revealed that most were interested in aesthetic/recreational pond use and pond management. They wanted more in-depth information over a shorter time frame. Only 10% did not favor satellite delivery. Shorter, more focused satellite programs and…

  8. Par Pond Fish, Water, and Sediment Chemistry

    SciTech Connect

    Paller, M.H.; Wike, L.D.

    1996-06-01

    The objectives of this report are to describe the Par Pond fish community and the impact of the drawdown and refill on the community, describe contaminant levels in Par Pond fish, sediments, and water and indicate how contaminant concentrations and distributions were affected by the drawdown and refill, and predict possible effects of future water level fluctuations in Par Pond.

  9. Stabilization Pond Operation and Maintenance Manual.

    ERIC Educational Resources Information Center

    Sexauer, Willard N.; Karn, Roger V.

    This manual provides the waste stabilization pond operator with the basics necessary for the treatment of wastewater in stabilization ponds. The material is organized as a comprehensive guide that follows the normal operation and maintenance procedures from the time the wastewater enters the left station until it leaves the pond. A comprehensive…

  10. Groundwater Monitoring Plan for the 1301-N, 1324-N/NA, and 1325-N RCRA Facilities

    SciTech Connect

    Hartman, Mary J.

    2002-06-08

    The 1301-N and 1325-N Liquid Waste Disposal Facilities, the 1324-N Surface Impoundment, and the 1324-NA Percolation Pond, located in the 100 N Area of the Hanford Site, are regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The closure plans for these facilities stipulate that groundwater is monitored according to the 100-N Pilot Project: Proposed Consolidated Groundwater Monitoring Program (BHI-00725). This document supplements the consolidated plan by providing information on sampling and analysis protocols, quality assurance, data management, and a conceptual model for the RCRA sites. Monitoring well networks, constituents, and sampling frequency remain the same as in the consolidated plan or the previous groundwater monitoring plan (Hartman 1996).

  11. How Healthy Is Our Pond?

    ERIC Educational Resources Information Center

    Sterling, Donna R.; Hargrove, Dori L.

    2014-01-01

    With crosscutting concepts such as stability and change in the "Next Generation Science Standards," this article was written for those who have wondered how to teach these concepts in a way that is relevant to students. In this investigation, students ask the question, "Why is the pond dirty?" As students investigate the health…

  12. Multiple percolation tunneling staircase in metal-semiconductor nanoparticle composites

    NASA Astrophysics Data System (ADS)

    Mukherjee, Rupam; Huang, Zhi-Feng; Nadgorny, Boris

    2014-10-01

    Multiple percolation transitions are observed in a binary system of RuO2-CaCu3Ti4O12 metal-semiconductor nanoparticle composites near percolation thresholds. Apart from a classical percolation transition, associated with the appearance of a continuous conductance path through RuO2 metal oxide nanoparticles, at least two additional tunneling percolation transitions are detected in this composite system. Such behavior is consistent with the recently emerged picture of a quantum conductivity staircase, which predicts several percolation tunneling thresholds in a system with a hierarchy of local tunneling conductance, due to various degrees of proximity of adjacent conducting particles distributed in an insulating matrix. Here, we investigate a different type of percolation tunneling staircase, associated with a more complex conductive and insulating particle microstructure of two types of non-spherical constituents. As tunneling is strongly temperature dependent, we use variable temperature measurements to emphasize the hierarchical nature of consecutive tunneling transitions. The critical exponents corresponding to specific tunneling percolation thresholds are found to be nonuniversal and temperature dependent.

  13. Percolation in binary and ternary mixtures of patchy colloids

    NASA Astrophysics Data System (ADS)

    Seiferling, Felix; de las Heras, Daniel; Telo da Gama, Margarida M.

    2016-08-01

    We investigate percolation in binary and ternary mixtures of patchy colloidal particles theoretically and using Monte Carlo simulations. Each particle has three identical patches, with distinct species having different types of patch. Theoretically we assume tree-like clusters and calculate the bonding probabilities using Wertheim's first-order perturbation theory for association. For ternary mixtures, we find up to eight fundamentally different percolated states. The states differ in terms of the species and pairs of species that have percolated. The strongest gel is a trigel or tricontinuous gel, in which each of the three species has percolated. The weakest gel is a mixed gel in which all of the particles have percolated, but none of the species percolates by itself. The competition between entropy of mixing and internal energy of bonding determines the stability of each state. Theoretical and simulation results are in very good agreement. The only significant difference is the temperature at the percolation threshold, which is overestimated by the theory due to the absence of correlations between bonds in the theoretical description.

  14. Multiple percolation tunneling staircase in metal-semiconductor nanoparticle composites

    SciTech Connect

    Mukherjee, Rupam; Huang, Zhi-Feng; Nadgorny, Boris

    2014-10-27

    Multiple percolation transitions are observed in a binary system of RuO{sub 2}-CaCu{sub 3}Ti{sub 4}O{sub 12} metal-semiconductor nanoparticle composites near percolation thresholds. Apart from a classical percolation transition, associated with the appearance of a continuous conductance path through RuO{sub 2} metal oxide nanoparticles, at least two additional tunneling percolation transitions are detected in this composite system. Such behavior is consistent with the recently emerged picture of a quantum conductivity staircase, which predicts several percolation tunneling thresholds in a system with a hierarchy of local tunneling conductance, due to various degrees of proximity of adjacent conducting particles distributed in an insulating matrix. Here, we investigate a different type of percolation tunneling staircase, associated with a more complex conductive and insulating particle microstructure of two types of non-spherical constituents. As tunneling is strongly temperature dependent, we use variable temperature measurements to emphasize the hierarchical nature of consecutive tunneling transitions. The critical exponents corresponding to specific tunneling percolation thresholds are found to be nonuniversal and temperature dependent.

  15. Percolation in binary and ternary mixtures of patchy colloids.

    PubMed

    Seiferling, Felix; de Las Heras, Daniel; Telo da Gama, Margarida M

    2016-08-21

    We investigate percolation in binary and ternary mixtures of patchy colloidal particles theoretically and using Monte Carlo simulations. Each particle has three identical patches, with distinct species having different types of patch. Theoretically we assume tree-like clusters and calculate the bonding probabilities using Wertheim's first-order perturbation theory for association. For ternary mixtures, we find up to eight fundamentally different percolated states. The states differ in terms of the species and pairs of species that have percolated. The strongest gel is a trigel or tricontinuous gel, in which each of the three species has percolated. The weakest gel is a mixed gel in which all of the particles have percolated, but none of the species percolates by itself. The competition between entropy of mixing and internal energy of bonding determines the stability of each state. Theoretical and simulation results are in very good agreement. The only significant difference is the temperature at the percolation threshold, which is overestimated by the theory due to the absence of correlations between bonds in the theoretical description. PMID:27544122

  16. Truncated Long-Range Percolation on Oriented Graphs

    NASA Astrophysics Data System (ADS)

    van Enter, A. C. D.; de Lima, B. N. B.; Valesin, D.

    2016-07-01

    We consider different problems within the general theme of long-range percolation on oriented graphs. Our aim is to settle the so-called truncation question, described as follows. We are given probabilities that certain long-range oriented bonds are open; assuming that the sum of these probabilities is infinite, we ask if the probability of percolation is positive when we truncate the graph, disallowing bonds of range above a possibly large but finite threshold. We give some conditions in which the answer is affirmative. We also translate some of our results on oriented percolation to the context of a long-range contact process.

  17. Exact Solution of a Drop-Push Model for Percolation

    NASA Astrophysics Data System (ADS)

    Majumdar, Satya N.; Dean, David S.

    2002-08-01

    Motivated by a computer science algorithm known as ``linear probing with hashing,'' we study a new type of percolation model whose basic features include a sequential ``dropping'' of particles on a substrate followed by their transport via a ``pushing'' mechanism. Our exact solution in one dimension shows that, unlike the ordinary random percolation model, the drop-push model has nontrivial spatial correlations generated by the dynamics itself. The critical exponents in the drop-push model are also different from those of the ordinary percolation. The relevance of our results to computer science is pointed out.

  18. Effects of discharging acid-mine drainage into evaporation ponds lined with clay on chemical quality of the surrounding soil and water

    NASA Astrophysics Data System (ADS)

    Mapanda, F.; Nyamadzawo, G.; Nyamangara, J.; Wuta, M.

    Compacted clay layers are commonly used as liners to limit acid-mine drainage (AMD) percolation into the surrounding environment from containment areas or ponds. In the long term, this practical and sometimes economical means of AMD disposal has often presented other considerable environmental challenges. The chemical quality of soil, river water and groundwater surrounding evaporation ponds lined with clay was determined at Iron-Duke Mine in Glendale, Zimbabwe. At this mine over 150 m 3/d of wastewater containing AMD were discharged daily for over a decade. The soils located downslope in relation to the ponds and closer to the ponds were acidified (pH 2.8-4.4) and enriched with salts. The level of contamination was highest within 15 m from the ponds and at 2-6 m depths from the surface. The variability in soil pH and electrical conductivity with position, distance from the ponds and depth from surface was attributed to the vertical and lateral flow of contaminated groundwater containing leachates from the ponds. The groundwater and river water surrounding the ponds were contaminated with arsenic (As), iron (Fe), nickel (Ni), sulphate, salts and acidity, and the level of contamination increased with proximity to the ponds. Potential public health hazards from consumption of the groundwater and river water were high. It was concluded that discharging of AMD into the ponds has not been an environmentally effective means of AMD containment and disposal. There was need for better AMD disposal means, particularly those that would improve the containment of AMD to reduce its seepage.

  19. Effect of upstream ponds on stream temperature

    NASA Astrophysics Data System (ADS)

    Ham, J.; Toran, L.; Cruz, J.

    2006-05-01

    Many tributaries feeding streams are connected to ponds that heat up during summer months; however, the influence of these ponds on receiving stream temperature was not known. Stream temperature affects microfauna and fish habitats in aquatic ecosystems. Three tributaries with headwater ponds exposed to sunlight and one tributary unassociated with a large, upstream pond were selected for study within the Pennypack Creek watershed in the Philadelphia Metropolitan Area. Temperature loggers were installed in the pond (when applicable), associated tributary, and in the Pennypack Creek up and downstream of its confluence with the tributary. Although diurnal temperature fluctuations were apparent, the study showed no significant differences in temperature up and downstream of tributary discharge to Pennypack Creek. Pond water temperatures were up to 4°C warmer than the Pennypack Creek; however, temperatures downstream and upstream of the tributaries leading out of the ponds were within 1°C of each other.

  20. POND MOUNTAIN AND POND MOUNTAIN ADDITION ROADLESS AREAS, TENNESSEE.

    USGS Publications Warehouse

    Griffitts, W.R.; Bitar, Richard

    1984-01-01

    As a result of a mineral study of the Pond Mountain Roadless Areas, Tennessee, a probable potential for the occurrence of tin, niobium, and tungsten resource with associated beryllium, molybdenum, zinc, and fluorite was identified in rocks of Precambrian age particularly in the southeastern part of the area. Detailed geologic mapping and geochemical sampling of the soils and rocks in the area of Precambrian rocks is recommended to identify and delimit the areas of potential resources of tin, niobium, and tungsten.

  1. Bigeodesics in First-Passage Percolation

    NASA Astrophysics Data System (ADS)

    Damron, Michael; Hanson, Jack

    2016-09-01

    In first-passage percolation, we place i.i.d. continuous weights at the edges of Z^2 and consider the weighted graph metric. A distance-minimizing path between points x and y is called a geodesic, and a bigeodesic is a doubly-infinite path whose segments are geodesics. It is a famous conjecture that almost surely, there are no bigeodesics. In the 1990s, Licea-Newman showed that, under a curvature assumption on the "asymptotic shape," all infinite geodesics have an asymptotic direction, and there is a full measure set {D subset [0,2π)} such that for any {θ in D} , there are no bigeodesics with one end directed in direction {θ} . In this paper, we show that there are no bigeodesics with one end directed in any deterministic direction, assuming the shape boundary is differentiable. This rules out existence of ground state pairs for the related disordered ferromagnet whose interface has a deterministic direction. Furthermore, it resolves the Benjamini-Kalai-Schramm "midpoint problem" (Benjamini et al. in Ann Probab 31, p. 1976, 2003). under the extra assumption that the limit shape boundary is differentiable.

  2. Percolation transition in networks with degree-degree correlation

    NASA Astrophysics Data System (ADS)

    Noh, Jae Dong

    2007-08-01

    We introduce an exponential random graph model for networks with a fixed degree distribution and a tunable degree-degree correlation. We then investigate the nature of the percolation transition in a correlated network with a Poisson degree distribution. It is found that negative correlation is irrelevant in that the percolation transition in the disassortative network belongs to the same universality class as in the uncorrelated network. Positive correlation turns out to be relevant. The percolation transition in the assortative network is characterized by the nondiverging mean size of finite clusters and power-law scalings of the density of the largest cluster and the cluster size distribution in the nonpercolating phase as well as at the critical point. Our results suggest that the unusual type of percolation transition in the growing network models reported recently may be inherited from the assortative degree-degree correlation.

  3. Fission gas bubble percolation on crystallographically consistent grain boundary networks

    NASA Astrophysics Data System (ADS)

    Sabogal-Suárez, Daniel; David Alzate-Cardona, Juan; Restrepo-Parra, Elisabeth

    2016-07-01

    Fission gas release in nuclear fuels can be modeled in the framework of percolation theory, where each grain boundary is classified as open or closed to the release of the fission gas. In the present work, two-dimensional grain boundary networks were assembled both at random and in a crystallographically consistent manner resembling a general textured microstructure. In the crystallographically consistent networks, grain boundaries were classified according to its misorientation. The percolation behavior of the grain boundary networks was evaluated as a function of radial cracks and radial thermal gradients in the fuel pellet. Percolation thresholds tend to shift to the left with increasing length and number of cracks, especially in the presence of thermal gradients. In general, the topology and percolation behavior of the crystallographically consistent networks differs from those of the random network.

  4. Social percolation and the influence of mass media

    NASA Astrophysics Data System (ADS)

    Proykova, Ana; Stauffer, Dietrich

    2002-09-01

    In the marketing model of Solomon and Weisbuch, people buy a product only if their neighbours tell them of its quality, and if this quality is higher than their own quality expectations. Now we introduce additional information from the mass media, which is analogous to the ghost field in percolation theory. The mass media shift the percolative phase transition observed in the model, and decrease the time after which the stationary state is reached.

  5. Fiber Optic Distributed Temperature Sensing of Recharge Basin Percolation Dynamics

    NASA Astrophysics Data System (ADS)

    Becker, M.; Allen, E. M.; Hutchinson, A.

    2014-12-01

    Infiltration (spreading) basins are a central component of managed aquifer and recovery operations around the world. The concept is simple. Water is percolated into an aquifer where it can be withdrawn at a later date. However, managing infiltration basins can be complicated by entrapped air in sediments, strata of low permeability, clogging of the recharge surface, and biological growth, among other factors. Understanding the dynamics of percolation in light of these complicating factors provides a basis for making management decisions that increase recharge efficiency. As an aid to understanding percolation dynamics, fiber optic distribute temperature sensing (DTS) was used to track heat as a tracer of water movement in an infiltration basin. The diurnal variation of temperature in the basin was sensed at depth. The time lag between the oscillating temperature signal at the surface and at depth indicated the velocity of water percolation. DTS fiber optic cables were installed horizontally along the basin and vertically in boreholes to measure percolation behavior. The horizontal cable was installed in trenches at 0.3 and 1 m depth, and the vertical cable was installed using direct push technology. The vertical cable was tightly wound to produce a factor of 10 increase in spatial resolution of temperature measurements. Temperature was thus measured every meter across the basin and every 10 cm to a depth of 10 m. Data from the trenched cable suggested homogeneous percolation across the basin, but infiltration rates were a function of stage indicating non-ideal percolation. Vertical temperature monitoring showed significant lateral flow in sediments underlying the basin both during saturation and operation of the basin. Deflections in the vertical temperature profile corresponded with fine grained layers identified in core samples indicating a transient perched water table condition. The three-dimensional flow in this relatively homogenous surficial geology calls

  6. Percolation thresholds for rod-like particles: polydispersity effects

    NASA Astrophysics Data System (ADS)

    Chatterjee, Avik P.

    2008-06-01

    A model based upon excluded volume considerations is presented for the connectedness percolation thresholds in polydisperse systems of cylindrical rod-like nanoparticles. The dependence of the percolation threshold upon polydispersity index and number-averaged aspect ratio is examined for two different distribution functions for the rod radii and lengths. The importance of accounting for polydispersity is explored in the context of measurements of the elastic moduli and electrical conductance in fibre-filled nanocomposites.

  7. Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics.

    PubMed

    Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang

    2016-08-01

    Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics.

  8. Percolation velocity dependence on local concentration in bidisperse granular flows

    NASA Astrophysics Data System (ADS)

    Jones, Ryan P.; Xiao, Hongyi; Deng, Zhekai; Umbanhowar, Paul B.; Lueptow, Richard M.

    The percolation velocity, up, of granular material in size or density bidisperse mixtures depends on the local concentration, particle size ratio, particle density ratio, and shear rate, γ ˙. Discrete element method computational results were obtained for bounded heap flows with size ratios between 1 and 3 and for density ratios between 1 and 4. The results indicate that small particles percolate downward faster when surrounded by large particles than large particles percolate upward when surrounded by small particles, as was recently observed in shear-box experiments. Likewise, heavy particles percolate downward faster when surrounded by light particles than light particles percolate upward when surrounded by heavy particles. The dependence of up / γ ˙ on local concentration results in larger percolation flux magnitudes at high concentrations of large (or light) particles compared to high concentrations of small (or heavy) particles, while local volumetric flux is conserved. The dependence of up / γ ˙ on local concentration can be incorporated into a continuum model, but the impact on global segregation patterns is usually minimal. Partially funded by Dow Chemical Company and NSF Grant No. CBET-1511450.

  9. Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics.

    PubMed

    Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang

    2016-01-01

    Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics. PMID:27476998

  10. Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang

    2016-08-01

    Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics.

  11. Percolation model for selective dissolution of multi-component glasses

    SciTech Connect

    Kale, R.P.; Brinker, C.J.

    1995-03-01

    A percolation model is developed which accounts for most known features of the process of porous glass membrane preparation by selective dissolution of multi-component glasses. The model is founded within tile framework of the classical percolation theory, wherein the components of a glass are represented by random sites on a suitable lattice. Computer simulation is used to mirror the generation of a porous structure during the dissolution process, reproducing many of the features associated with the phenomenon. Simulation results evaluate the effect of the initial composition of the glass on the kinetics of the leaching process as well as the morphology of the generated porous structure. The percolation model establishes the porous structure as a percolating cluster of unreachable constituents in the glass. The simulation algorithm incorporates removal of both, the accessible leachable components in the glass as well as the independent clusters of unreachable components not attached to the percolating cluster. The dissolution process thus becomes limited by the conventional site percolation thresholds of the unreachable components (which restricts the formation of the porous network), as well as the leachable components (which restricts the accessibility of the solvating medium into the glass). The simulation results delineate the range of compositional variations for successful porous glass preparation and predict the variation of porosity, surface area, dissolution rates and effluent composition with initial composition and time. Results compared well with experimental studies and improved upon similar models attempted in die past.

  12. Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics

    PubMed Central

    Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang

    2016-01-01

    Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics. PMID:27476998

  13. Percolation in suspensions of hard nanoparticles: From spheres to needles

    NASA Astrophysics Data System (ADS)

    Schilling, Tanja; Miller, Mark A.; van der Schoot, Paul

    2015-09-01

    We investigate geometric percolation and scaling relations in suspensions of nanorods, covering the entire range of aspect ratios from spheres to extremely slender needles. A new version of connectedness percolation theory is introduced and tested against specialised Monte Carlo simulations. The theory accurately predicts percolation thresholds for aspect ratios of rod length to width as low as 10. The percolation threshold for rod-like particles of aspect ratios below 1000 deviates significantly from the inverse aspect ratio scaling prediction, thought to be valid in the limit of infinitely slender rods and often used as a rule of thumb for nanofibres in composite materials. Hence, most fibres that are currently used as fillers in composite materials cannot be regarded as practically infinitely slender for the purposes of percolation theory. Comparing percolation thresholds of hard rods and new benchmark results for ideal rods, we find that i) for large aspect ratios, they differ by a factor that is inversely proportional to the connectivity distance between the hard cores, and ii) they approach the slender rod limit differently.

  14. Effects of pond draining on biodiversity and water quality of farm ponds.

    PubMed

    Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko

    2013-12-01

    Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo.

  15. Effects of pond draining on biodiversity and water quality of farm ponds.

    PubMed

    Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko

    2013-12-01

    Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo. PMID:23869702

  16. Cooling ponds/lakes and fish

    SciTech Connect

    Monzingo, R.G.; Hughes, J.H.

    1980-01-01

    The discussions concern both cooling ponds and cooling lakes. By regulatory definition, cooling ponds, also called perched ponds, are constructed by building dikes and pumping water, usually from a nearby river, into the diked area. Cooling lakes on the other hand, are created by damming a stream or streams, thereby producing impoundments. The paper begins the discussion with a more detailed examination of the problem at the Collins Station.

  17. Percolation model with an additional source of disorder

    NASA Astrophysics Data System (ADS)

    Kundu, Sumanta; Manna, S. S.

    2016-06-01

    The ranges of transmission of the mobiles in a mobile ad hoc network are not uniform in reality. They are affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference in the environment, etc. How the varying range of transmission of the individual active elements affects the global connectivity in the network may be an important practical question to ask. Here a model of percolation phenomena, with an additional source of disorder, is introduced for a theoretical understanding of this problem. As in ordinary percolation, sites of a square lattice are occupied randomly with probability p . Each occupied site is then assigned a circular disk of random value R for its radius. A bond is defined to be occupied if and only if the radii R1 and R2 of the disks centered at the ends satisfy a certain predefined condition. In a very general formulation, one divides the R1-R2 plane into two regions by an arbitrary closed curve. One defines a point within one region as representing an occupied bond; otherwise it is a vacant bond. The study of three different rules under this general formulation indicates that the percolation threshold always varies continuously. This threshold has two limiting values, one is pc(sq) , the percolation threshold for the ordinary site percolation on the square lattice, and the other is unity. The approach of the percolation threshold to its limiting values are characterized by two exponents. In a special case, all lattice sites are occupied by disks of random radii R ∈{0 ,R0} and a percolation transition is observed with R0 as the control variable, similar to the site occupation probability.

  18. Percolation model with an additional source of disorder.

    PubMed

    Kundu, Sumanta; Manna, S S

    2016-06-01

    The ranges of transmission of the mobiles in a mobile ad hoc network are not uniform in reality. They are affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference in the environment, etc. How the varying range of transmission of the individual active elements affects the global connectivity in the network may be an important practical question to ask. Here a model of percolation phenomena, with an additional source of disorder, is introduced for a theoretical understanding of this problem. As in ordinary percolation, sites of a square lattice are occupied randomly with probability p. Each occupied site is then assigned a circular disk of random value R for its radius. A bond is defined to be occupied if and only if the radii R_{1} and R_{2} of the disks centered at the ends satisfy a certain predefined condition. In a very general formulation, one divides the R_{1}-R_{2} plane into two regions by an arbitrary closed curve. One defines a point within one region as representing an occupied bond; otherwise it is a vacant bond. The study of three different rules under this general formulation indicates that the percolation threshold always varies continuously. This threshold has two limiting values, one is p_{c}(sq), the percolation threshold for the ordinary site percolation on the square lattice, and the other is unity. The approach of the percolation threshold to its limiting values are characterized by two exponents. In a special case, all lattice sites are occupied by disks of random radii R∈{0,R_{0}} and a percolation transition is observed with R_{0} as the control variable, similar to the site occupation probability.

  19. Percolation model with an additional source of disorder.

    PubMed

    Kundu, Sumanta; Manna, S S

    2016-06-01

    The ranges of transmission of the mobiles in a mobile ad hoc network are not uniform in reality. They are affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference in the environment, etc. How the varying range of transmission of the individual active elements affects the global connectivity in the network may be an important practical question to ask. Here a model of percolation phenomena, with an additional source of disorder, is introduced for a theoretical understanding of this problem. As in ordinary percolation, sites of a square lattice are occupied randomly with probability p. Each occupied site is then assigned a circular disk of random value R for its radius. A bond is defined to be occupied if and only if the radii R_{1} and R_{2} of the disks centered at the ends satisfy a certain predefined condition. In a very general formulation, one divides the R_{1}-R_{2} plane into two regions by an arbitrary closed curve. One defines a point within one region as representing an occupied bond; otherwise it is a vacant bond. The study of three different rules under this general formulation indicates that the percolation threshold always varies continuously. This threshold has two limiting values, one is p_{c}(sq), the percolation threshold for the ordinary site percolation on the square lattice, and the other is unity. The approach of the percolation threshold to its limiting values are characterized by two exponents. In a special case, all lattice sites are occupied by disks of random radii R∈{0,R_{0}} and a percolation transition is observed with R_{0} as the control variable, similar to the site occupation probability. PMID:27415234

  20. Review of SERI Solar Pond Work

    NASA Technical Reports Server (NTRS)

    Zangrando, F.; Johnson, D. H.

    1984-01-01

    Development of models of pond thermal performance; analysis of solar pond use for building space heat and hot water production; use of low-temperature pond-produced heat for industrial processes, desalination, and electricity production; development of direct-contact heat exchanger to reduce conversion equipment cost; determination of effects of extracted heat and mass from the storage layer on pond performance; and investigation of factors which determine gradient layer stability and the stability of this interface between this level and the upper and lower convecting layers were described.

  1. Radionuclides in bats using a contaminated pond on the Nevada National Security Site, USA

    DOE PAGES

    Warren, Ronald W.; Hall, Derek B.; Greger, Paul D.

    2014-01-03

    In this study, perched groundwater percolating through radionuclide contamination in the E Tunnel Complex on the Nevada National Security Site, formerly the Nevada Test Site, emerges and is stored in a series of ponds making it available to wildlife, including bats. Since many bat species using the ponds are considered sensitive or protected/regulated and little information is available on dose to bats from radioactive water sources, bats were sampled to determine if the dose they were receiving exceeded the United States Department of Energy dose limit of 1.0E-3 Gy/day. Radionuclide concentrations in water, sediment, and flying insects were also measuredmore » as input parameters to the dose rate model and to examine trophic level relationships. The RESRAD-Biota model was used to calculate dose rates to bats using different screening levels. Efficacy of RESRAD-Biota and suggested improvements are discussed. Finally, dose to bats foraging and drinking at these ponds is well below the dose limit set to protect terrestrial biota populations.« less

  2. Radionuclides in bats using a contaminated pond on the Nevada National Security Site, USA

    SciTech Connect

    Warren, Ronald W.; Hall, Derek B.; Greger, Paul D.

    2014-01-03

    In this study, perched groundwater percolating through radionuclide contamination in the E Tunnel Complex on the Nevada National Security Site, formerly the Nevada Test Site, emerges and is stored in a series of ponds making it available to wildlife, including bats. Since many bat species using the ponds are considered sensitive or protected/regulated and little information is available on dose to bats from radioactive water sources, bats were sampled to determine if the dose they were receiving exceeded the United States Department of Energy dose limit of 1.0E-3 Gy/day. Radionuclide concentrations in water, sediment, and flying insects were also measured as input parameters to the dose rate model and to examine trophic level relationships. The RESRAD-Biota model was used to calculate dose rates to bats using different screening levels. Efficacy of RESRAD-Biota and suggested improvements are discussed. Finally, dose to bats foraging and drinking at these ponds is well below the dose limit set to protect terrestrial biota populations.

  3. Radionuclides in bats using a contaminated pond on the Nevada National Security Site, USA.

    PubMed

    Warren, Ronald W; Hall, Derek B; Greger, Paul D

    2014-03-01

    Perched groundwater percolating through radionuclide contamination in the E Tunnel Complex on the Nevada National Security Site, formerly the Nevada Test Site, emerges and is stored in a series of ponds making it available to wildlife, including bats. Since many bat species using the ponds are considered sensitive or protected/regulated and little information is available on dose to bats from radioactive water sources, bats were sampled to determine if the dose they were receiving exceeded the United States Department of Energy dose limit of 1.0E-3 Gy/day. Radionuclide concentrations in water, sediment, and flying insects were also measured as input parameters to the dose rate model and to examine trophic level relationships. The RESRAD-Biota model was used to calculate dose rates to bats using different screening levels. Efficacy of RESRAD-Biota and suggested improvements are discussed. Dose to bats foraging and drinking at these ponds is well below the dose limit set to protect terrestrial biota populations. PMID:24389555

  4. Radionuclides in bats using a contaminated pond on the Nevada National Security Site, USA.

    PubMed

    Warren, Ronald W; Hall, Derek B; Greger, Paul D

    2014-03-01

    Perched groundwater percolating through radionuclide contamination in the E Tunnel Complex on the Nevada National Security Site, formerly the Nevada Test Site, emerges and is stored in a series of ponds making it available to wildlife, including bats. Since many bat species using the ponds are considered sensitive or protected/regulated and little information is available on dose to bats from radioactive water sources, bats were sampled to determine if the dose they were receiving exceeded the United States Department of Energy dose limit of 1.0E-3 Gy/day. Radionuclide concentrations in water, sediment, and flying insects were also measured as input parameters to the dose rate model and to examine trophic level relationships. The RESRAD-Biota model was used to calculate dose rates to bats using different screening levels. Efficacy of RESRAD-Biota and suggested improvements are discussed. Dose to bats foraging and drinking at these ponds is well below the dose limit set to protect terrestrial biota populations.

  5. Gaussian model of explosive percolation in three and higher dimensions

    NASA Astrophysics Data System (ADS)

    Schrenk, K. J.; Araújo, N. A. M.; Herrmann, H. J.

    2011-10-01

    The Gaussian model of discontinuous percolation, recently introduced by Araújo and Herrmann [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.035701 105, 035701 (2010)], is numerically investigated in three dimensions, disclosing a discontinuous transition. For the simple cubic lattice, in the thermodynamic limit we report a finite jump of the order parameter J=0.415±0.005. The largest cluster at the threshold is compact, but its external perimeter is fractal with fractal dimension dA=2.5±0.2. The study is extended to hypercubic lattices up to six dimensions and to the mean-field limit (infinite dimension). We find that, in all considered dimensions, the percolation transition is discontinuous. The value of the jump in the order parameter, the maximum of the second moment, and the percolation threshold are analyzed, revealing interesting features of the transition and corroborating its discontinuous nature in all considered dimensions. We also show that the fractal dimension of the external perimeter, for any dimension, is consistent with the one from bridge percolation and establish a lower bound for the percolation threshold of discontinuous models with a finite number of clusters at the threshold.

  6. Two-dimensional percolation threshold in confined Si nanoparticle networks

    NASA Astrophysics Data System (ADS)

    Laube, J.; Gutsch, S.; Wang, D.; Kübel, C.; Zacharias, M.; Hiller, D.

    2016-01-01

    Non-percolating and percolating silicon quantum dot (QD) networks were investigated by plane-view energy filtered transmission electron microscopy (EF-TEM). The Si QD networks were prepared by plasma enhanced chemical vapor deposition on free standing 5 nm Si3N4 membranes, followed by high temperature annealing. The percolation threshold from non-percolating to percolating networks is found to be in between a SiOx stoichiometry of SiO0.5 up to SiO0.7. Using the EF-TEM images, key structural parameters of the Si QD ensemble were extracted and compared, i.e., their size distribution, nearest neighbor distance, and circularity. Increasing the silicon excess within the SiOx layer results in an ensemble of closer spaced, less size-controlled, and less circular Si QDs that give rise to coupling effects. Furthermore, the influence of the structural parameters on the optical and electrical Si QD ensemble properties is discussed.

  7. Bounds for percolation thresholds on directed and undirected graphs

    NASA Astrophysics Data System (ADS)

    Hamilton, Kathleen; Pryadko, Leonid

    2015-03-01

    Percolation theory is an efficient approach to problems with strong disorder, e.g., in quantum or classical transport, composite materials, and diluted magnets. Recently, the growing role of big data in scientific and industrial applications has led to a renewed interest in graph theory as a tool for describing complex connections in various kinds of networks: social, biological, technological, etc. In particular, percolation on graphs has been used to describe internet stability, spread of contagious diseases and computer viruses; related models describe market crashes and viral spread in social networks. We consider site-dependent percolation on directed and undirected graphs, and present several exact bounds for location of the percolation transition in terms of the eigenvalues of matrices associated with graphs, including the adjacency matrix and the Hashimoto matrix used to enumerate non-backtracking walks. These bounds correspond t0 a mean field approximation and become asymptotically exact for graphs with no short cycles. We illustrate this convergence numerically by simulating percolation on several families of graphs with different cycle lengths. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-11-1-0027.

  8. Percolation analysis of force networks in anisotropic granular matter

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Miguel, M.-Carmen

    2012-02-01

    We study the percolation properties of force networks in an anisotropic model for granular packings, the so-called q-model. Following the original recipe of Ostojic et al (2006 Nature 439 828), we consider a percolation process in which forces smaller than a given threshold f are deleted in the network. For a critical threshold fc, the system experiences a transition akin to percolation. We determine the point of this transition and its characteristic critical exponents applying a finite-size scaling analysis that takes explicitly into account the directed nature of the q-model. By means of extensive numerical simulations, we show that this percolation transition is strongly affected by the anisotropic nature of the model, yielding characteristic exponents which are neither those found in isotropic granular systems nor those in the directed version of standard percolation. The differences shown by the computed exponents can be related to the presence of strong directed correlations and mass conservation laws in the model under scrutiny.

  9. Numerical modeling of subsurface radioactive solute transport from waste seepage ponds at the Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Robertson, John B.

    1976-01-01

    Aqueous chemical and low-level radioactive effluents have been disposed to seepage ponds since 1952 at the Idaho National Engineering Laboratory. The solutions percolate toward the Snake River Plain aquifer (135 m below) through interlayered basalts and unconsolidated sediments and an extensive zone of ground water perched on a sedimentary layer about 40 m beneath the ponds. A three-segment numerical model was developed to simulate the system, including effects of convection, hydrodynamic dispersion, radioactive decay, and adsorption. Simulated hydraulics and solute migration patterns for all segments agree adequately with the available field data. The model can be used to project subsurface distributions of waste solutes under a variety of assumed conditions for the future. Although chloride and tritium reached the aquifer several years ago, the model analysis suggests that the more easily sorbed solutes, such as cesium-137 and strontium-90, would not reach the aquifer in detectable concentrations within 150 years for the conditions assumed. (Woodard-USGS)

  10. Assessing Chemical Retention Process Controls in Ponds

    NASA Astrophysics Data System (ADS)

    Torgersen, T.; Branco, B.; John, B.

    2002-05-01

    Small ponds are a ubiquitous component of the landscape and have earned a reputation as effective chemical retention devices. The most common characterization of pond chemical retention is the retention coefficient, Ri= ([Ci]inflow-[Ci] outflow)/[Ci]inflow. However, this parameter varies widely in one pond with time and among ponds. We have re-evaluated literature reported (Borden et al., 1998) monthly average retention coefficients for two ponds in North Carolina. Employing a simple first order model that includes water residence time, the first order process responsible for species removal have been separated from the water residence time over which it acts. Assuming the rate constant for species removal is constant within the pond (arguable at least), the annual average rate constant for species removal is generated. Using the annual mean rate constant for species removal and monthly water residence times results in a significantly enhanced predictive capability for Davis Pond during most months of the year. Predictive ability remains poor in Davis Pond during winter/unstratified periods when internal loading of P and N results in low to negative chemical retention. Predictive ability for Piedmont Pond (which has numerous negative chemical retention periods) is improved but not to the same extent as Davis Pond. In Davis Pond, the rate constant for sediment removal (each month) is faster than the rate constant for water and explains the good predictability for sediment retention. However, the removal rate constant for P and N is slower than the removal rate constant for sediment (longer water column residence time for P,N than for sediment). Thus sedimentation is not an overall control on nutrient retention. Additionally, the removal rate constant for P is slower than for TOC (TOC is not the dominate removal process for P) and N is removed slower than P (different in pond controls). For Piedmont Pond, sediment removal rate constants are slower than the removal

  11. Connectivity percolation in suspensions of attractive square-well spherocylinders

    NASA Astrophysics Data System (ADS)

    Dixit, Mohit; Meyer, Hugues; Schilling, Tanja

    2016-01-01

    We have studied the connectivity percolation transition in suspensions of attractive square-well spherocylinders by means of Monte Carlo simulation and connectedness percolation theory. In the 1980s the percolation threshold of slender fibers has been predicted to scale as the fibers' inverse aspect ratio [Phys. Rev. B 30, 3933 (1984), 10.1103/PhysRevB.30.3933]. The main finding of our study is that the attractive spherocylinder system reaches this inverse scaling regime at much lower aspect ratios than found in suspensions of hard spherocylinders. We explain this difference by showing that third virial corrections of the pair connectedness functions, which are responsible for the deviation from the scaling regime, are less important for attractive potentials than for hard particles.

  12. Continuum Nonsimple Loops and 2D Critical Percolation

    NASA Astrophysics Data System (ADS)

    Camia, Federico; Newman, Charles M.

    2004-08-01

    Substantial progress has been made in recent years on the 2D critical percolation scaling limit and its conformal invariance properties. In particular, chordal SLE 6(the Stochastic Loewner Evolution with parameter κ=6) was, in the work of Schramm and of Smirnov, identified as the scaling limit of the critical percolation "exploration process." In this paper we use that and other results to construct what we argue is the fullscaling limit of the collection of allclosed contours surrounding the critical percolation clusters on the 2D triangular lattice. This random process or gas of continuum nonsimple loops in Bbb R2is constructed inductively by repeated use of chordal SLE 6. These loops do not cross but do touch each other—indeed, any two loops are connected by a finite "path" of touching loops.

  13. Percolation-based precursors of transitions in extended systems

    NASA Astrophysics Data System (ADS)

    Rodríguez-Méndez, Víctor; Eguíluz M, Víctor M.; Hernández-García, Emilio; Ramasco, José J.

    2016-07-01

    Abrupt transitions are ubiquitous in the dynamics of complex systems. Finding precursors, i.e. early indicators of their arrival, is fundamental in many areas of science ranging from electrical engineering to climate. However, obtaining warnings of an approaching transition well in advance remains an elusive task. Here we show that a functional network, constructed from spatial correlations of the system’s time series, experiences a percolation transition way before the actual system reaches a bifurcation point due to the collective phenomena leading to the global change. Concepts from percolation theory are then used to introduce early warning precursors that anticipate the system’s tipping point. We illustrate the generality and versatility of our percolation-based framework with model systems experiencing different types of bifurcations and with Sea Surface Temperature time series associated to El Niño phenomenon.

  14. Incomplete and noisy network data as a percolation process

    PubMed Central

    Stumpf, Michael P. H.; Wiuf, Carsten

    2010-01-01

    We discuss the ramifications of noisy and incomplete observations of network data on the existence of a giant connected component (GCC). The existence of a GCC in a random graph can be described in terms of a percolation process, and building on general results for classes of random graphs with specified degree distributions we derive percolation thresholds above which GCCs exist. We show that sampling and noise can have a profound effect on the perceived existence of a GCC and find that both processes can destroy it. We also show that the absence of a GCC puts a theoretical upper bound on the false-positive rate and relate our percolation analysis to experimental protein–protein interaction data. PMID:20378609

  15. Fast and accurate database searches with MS-GF+Percolator

    SciTech Connect

    Granholm, Viktor; Kim, Sangtae; Navarro, Jose' C.; Sjolund, Erik; Smith, Richard D.; Kall, Lukas

    2014-02-28

    To identify peptides and proteins from the large number of fragmentation spectra in mass spectrometrybased proteomics, researches commonly employ so called database search engines. Additionally, postprocessors like Percolator have been used on the results from such search engines, to assess confidence, infer peptides and generally increase the number of identifications. A recent search engine, MS-GF+, has previously been showed to out-perform these classical search engines in terms of the number of identified spectra. However, MS-GF+ generates only limited statistical estimates of the results, hence hampering the biological interpretation. Here, we enabled Percolator-processing for MS-GF+ output, and observed an increased number of identified peptides for a wide variety of datasets. In addition, Percolator directly reports false discovery rate estimates, such as q values and posterior error probabilities, as well as p values, for peptide-spectrum matches, peptides and proteins, functions useful for the whole proteomics community.

  16. Controlling electrical percolation in multicomponent carbon nanotube dispersions

    NASA Astrophysics Data System (ADS)

    Kyrylyuk, Andriy V.; Hermant, Marie Claire; Schilling, Tanja; Klumperman, Bert; Koning, Cor E.; van der Schoot, Paul

    2011-06-01

    Carbon nanotube reinforced polymeric composites can have favourable electrical properties, which make them useful for applications such as flat-panel displays and photovoltaic devices. However, using aqueous dispersions to fabricate composites with specific physical properties requires that the processing of the nanotube dispersion be understood and controlled while in the liquid phase. Here, using a combination of experiment and theory, we study the electrical percolation of carbon nanotubes introduced into a polymer matrix, and show that the percolation threshold can be substantially lowered by adding small quantities of a conductive polymer latex. Mixing colloidal particles of different sizes and shapes (in this case, spherical latex particles and rod-like nanotubes) introduces competing length scales that can strongly influence the formation of the system-spanning networks that are needed to produce electrically conductive composites. Interplay between the different species in the dispersions leads to synergetic or antagonistic percolation, depending on the ease of charge transport between the various conductive components.

  17. Variable percolation threshold of composites with fiber fillers under compression

    NASA Astrophysics Data System (ADS)

    Lin, Chuan; Wang, Hongtao; Yang, Wei

    2010-07-01

    The piezoresistant effect in conducting fiber-filled composites has been studied by a continuum percolation model. Simulation was performed by a Monte Carlo method that took into account both the deformation-induced fiber bending and rotation. The percolation threshold was found to rise with the compression strain, which explains the observed positive piezoresistive coefficients in such composites. The simulations unveiled the effect of the microstructure evolution during deformation. The fibers are found to align perpendicularly to the compression direction. As the fiber is bended, the effective length in making a conductive network is shortened. Both effects contribute to a larger percolation threshold and imply a positive piezoresistive coefficient according the universal power law.

  18. Percolation-based precursors of transitions in extended systems

    PubMed Central

    Rodríguez-Méndez, Víctor; Eguíluz M, Víctor M.; Hernández-García, Emilio; Ramasco, José J.

    2016-01-01

    Abrupt transitions are ubiquitous in the dynamics of complex systems. Finding precursors, i.e. early indicators of their arrival, is fundamental in many areas of science ranging from electrical engineering to climate. However, obtaining warnings of an approaching transition well in advance remains an elusive task. Here we show that a functional network, constructed from spatial correlations of the system’s time series, experiences a percolation transition way before the actual system reaches a bifurcation point due to the collective phenomena leading to the global change. Concepts from percolation theory are then used to introduce early warning precursors that anticipate the system’s tipping point. We illustrate the generality and versatility of our percolation-based framework with model systems experiencing different types of bifurcations and with Sea Surface Temperature time series associated to El Niño phenomenon. PMID:27412567

  19. Scaling behavior of explosive percolation on the square lattice

    NASA Astrophysics Data System (ADS)

    Ziff, Robert M.

    2010-11-01

    Clusters generated by the product-rule growth model of Achlioptas, D’Souza, and Spencer on a two-dimensional square lattice are shown to obey qualitatively different scaling behavior than standard (random growth) percolation. The threshold with unrestricted bond placement (allowing loops) is found precisely using several different criteria based on both moments and wrapping probabilities, yielding pc=0.526565±0.000005 , consistent with the recent result of Radicchi and Fortunato. The correlation-length exponent ν is found to be close to 1. The qualitative difference from regular percolation is shown dramatically in the behavior of the percolation probability P∞ (size of largest cluster), of the susceptibility, and of the second moment of finite clusters, where discontinuities appear at the threshold. The critical cluster-size distribution does not follow a consistent power law for the range of system sizes we study (L≤8192) but may approach a power law with τ>2 for larger L .

  20. Percolation-based precursors of transitions in extended systems.

    PubMed

    Rodríguez-Méndez, Víctor; Eguíluz M, Víctor M; Hernández-García, Emilio; Ramasco, José J

    2016-01-01

    Abrupt transitions are ubiquitous in the dynamics of complex systems. Finding precursors, i.e. early indicators of their arrival, is fundamental in many areas of science ranging from electrical engineering to climate. However, obtaining warnings of an approaching transition well in advance remains an elusive task. Here we show that a functional network, constructed from spatial correlations of the system's time series, experiences a percolation transition way before the actual system reaches a bifurcation point due to the collective phenomena leading to the global change. Concepts from percolation theory are then used to introduce early warning precursors that anticipate the system's tipping point. We illustrate the generality and versatility of our percolation-based framework with model systems experiencing different types of bifurcations and with Sea Surface Temperature time series associated to El Niño phenomenon. PMID:27412567

  1. Par Pond vegetation status Summer 1995 -- Summary

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1996-01-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar to the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.

  2. WMOST v2 Case Study: Monponsett Ponds

    EPA Science Inventory

    This webinar presents an overview of the preliminary results of a case study application of EPA's Watershed Management Optimization Support Tool v2 (WMOST) for stakeholders in the Monponsett Ponds Watershed Workgroup. Monponsett Ponds is a large water system consisting of two ba...

  3. The Pond Community. Primary Level. Teacher's Manual.

    ERIC Educational Resources Information Center

    Conner, Shirley

    This teacher's guide includes four lessons dealing with animals and plants associated with ponds. Species discussed are selected because of their unusual means of adaptation to the pond environment. Each lesson includes suggestions on introducing the unit, discussion suggestions, blackboard activities, and activities with pictures and a magnetic…

  4. 100-D Ponds closure plan. Revision 1

    SciTech Connect

    Petersen, S.W.

    1997-09-01

    The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit is clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure.

  5. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon...

  6. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon...

  7. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon...

  8. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon...

  9. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon...

  10. Sydney Tar Ponds Remediation: Experience to China

    ERIC Educational Resources Information Center

    Liu, Fan; Bryson, Ken A.

    2009-01-01

    The infamous "Sydney Tar Ponds" are well known as one of the largest toxic waste sites of Canada, due to almost 100 years of steelmaking in Sydney, a once beautiful and peaceful city located on the east side of Cape Breton Island, Nova Scotia. This article begins with a contextual overview of the Tar Ponds issue including a brief introduction and…

  11. Correlated percolation models of structured habitat in ecology

    NASA Astrophysics Data System (ADS)

    Huth, Géraldine; Lesne, Annick; Munoz, François; Pitard, Estelle

    2014-12-01

    Percolation offers acknowledged models of random media when the relevant medium characteristics can be described as a binary feature. However, when considering habitat modeling in ecology, a natural constraint comes from nearest-neighbor correlations between the suitable/unsuitable states of the spatial units forming the habitat. Such constraints are also relevant in the physics of aggregation where underlying processes may lead to a form of correlated percolation. However, in ecology, the processes leading to habitat correlations are in general not known or very complex. As proposed by Hiebeler (2000), these correlations can be captured in a lattice model by an observable aggregation parameter q, supplementing the density p of suitable sites. We investigate this model as an instance of correlated percolation. We analyze the phase diagram of the percolation transition and compute the cluster size distribution, the pair-connectedness function C(r) and the correlation function g(r). We find that while g(r) displays a power-law decrease associated with long-range correlations in a wide domain of parameter values, critical properties are compatible with the universality class of uncorrelated percolation. We contrast the correlation structures obtained respectively for the correlated percolation model and for the Ising model, and show that the diversity of habitat configurations generated by the Hiebeler model is richer than the archetypal Ising model. We also find that emergent structural properties are peculiar to the implemented algorithm, leading to questioning the notion of a well-defined model of aggregated habitat. We conclude that the choice of model and algorithm has strong consequences on what insights ecological studies can get using such models of species habitat.

  12. Gas transport through magma near the percolation threshold (Invited)

    NASA Astrophysics Data System (ADS)

    Llewellin, E. W.; Blower, J.; Leslie, D.

    2009-12-01

    Explosive silicic eruptions may simultaneously produce both tube pumice - containing highly-elongate vesicles - and pumice containing sub-spherical vesicles. This has been cited as evidence for strain localization within the volcanic conduit: in a relatively-undeformed axial ‘plug’ bubbles are spherical (regime 1) whilst near the conduit margin rapidly-shearing magma bears elongate bubbles (regime 2). Published numerical studies support this model and indicate that bubbly-magma rheology or viscous heating may be responsible for strain localization. The difference in bubble morphology in these two regimes has important consequences for magma permeability. We present the results of fluid dynamic simulations which quantify the anisotropy of permeability in regime 2 as a function of gas volume fraction and bubble aspect ratio. In this regime, we find that vertical permeability may be many times greater than radial permeability, and that permeability anisotropy is most pronounced near the percolation threshold. We further use a network model to quantify the development of permeability in regime 1. In the case where the predominantly vertical expansion of the magma is slow compared with bubble relaxation time, we find that permeability is, again, anisotropic, but that radial permeability dominates. This effect is also most pronounced near the percolation threshold, and percolation is expected to occur radially before vertical percolation occurs. Our findings imply that gas transport in regime 1 is predominantly radial, whilst vertical gas transport is favoured in regime 2. Consequently, near the percolation threshold, conditions are appropriate for effective degassing of the central magma plug as gas permeates radially to the conduit margin and then vertically upwards. Repeated cycles of percolation, radial gas loss and densification may degas the central magma plug without the development of large gas volume fractions.

  13. Percolation models for boiling and bubble growth in porous media

    SciTech Connect

    Yortsos, Y.C.

    1991-05-01

    We analyze the liquid-to-vapor phase change in single-component fluids in porous media at low superheats. Conditions typical to steam injection in porous media are taken. We examine nucleation, phase equilibria and their stability, and the growth of vapor bubbles. Effects of pore structure are emphasized. It is shown that at low supersaturations, bubble growth can be described as a percolation process. In the absence of spatial gradients, macroscopic flow properties are calculated in terms of nucleation parameters. A modification of gradient percolation is also proposed in the case of spatial temperature gradients, when solid conduction predominates. 22 refs., 10 figs., 1 tab.

  14. Mirrorless lasing from light emitters in percolating clusters

    NASA Astrophysics Data System (ADS)

    Burlak, Gennadiy; Rubo, Y. G.

    2015-07-01

    We describe the lasing effect in the three-dimensional percolation system, where the percolating cluster is filled by active media composed by light emitters excited noncoherently. We show that, due to the presence of a topologically nontrivial photonic structure, the stimulated emission is modified with respect to both conventional and random lasers. The time dynamics and spectra of the lasing output are studied numerically with finite-difference time-domain approach. The Fermat principle and Monte Carlo approach are applied to characterize the optimal optical path and interconnection between the radiating emitters. The spatial structure of the laser mode is found by a long-time FDTD simulation.

  15. Percolation transition in active neural networks with adaptive geometry

    NASA Astrophysics Data System (ADS)

    Iudin, F. D.; Iudin, D. I.; Kazantsev, V. B.

    2015-02-01

    A mathematical model has been proposed for a neural network whose morphological structure varies dynamically depending on activity. This is the property of the so-called structural plasticity typical of developed neural systems of a brain. It has been shown that the spontaneous generation and propagation of a signal in such networks correspond to a percolation transition and the appearance of the connectivity component covering the entire system. Furthermore, adaptive change in the geometric structure of a network results in the clustering of cells and in the reduction of the effective percolation threshold, which corresponds to experimental neurobiological observations.

  16. Remnant percolative disorder in highly-cured networks

    SciTech Connect

    Adolf, D.; Hance, B.; Martin, J.E. )

    1993-05-24

    The authors have previously reported viscoelastic measurements demonstrating that fully-cured networks and critical gels exhibit similar relaxation spectra, implying that fully-cured networks are somewhat ill- connected. Here, they present restricted valence percolation simulations of networks well beyond the percolation transition that explicitly display remnant disorder over length scales less than the correlation length of the network. They conclude that the topology of highly-cured networks is not well described by a regular three- dimensional tennis net but is ill-connected over length scales that correspond to relaxation modes of practical interest.

  17. Jamming versus caging in three dimensional jamming percolation

    NASA Astrophysics Data System (ADS)

    Segall, Nimrod; Teomy, Eial; Shokef, Yair

    2016-05-01

    We investigate a three-dimensional kinetically-constrained model that exhibits two types of phase transitions at different densities. At the jamming density $ \\rho_J $ there is a mixed-order phase transition in which a finite fraction of the particles become frozen, but the other particles may still diffuse throughout the system. At the caging density $ \\rho_C > \\rho_J $, the mobile particles are trapped in finite cages and no longer diffuse. The caging transition occurs due to a percolation transition of the unfrozen sites, and we numerically find that it is a continuous transition with the same critical exponents as random percolation.

  18. Gradient zone erosion in seawater solar ponds

    SciTech Connect

    Shi, J.; Hart, R.A.; Kleis, S.J.; Bannerot, R.B.

    1995-11-01

    An experimental program has been conducted to examine the feasibility of using seawater solar ponds in mariculture operations along the Texas gulf coast to protect fish crops from the potentially lethal, cold temperatures experienced in outdoor ponds. Seawater solar ponds in the form of floating thermal refuge areas are proposed as a method for reducing the loss of heat from small sections of a pond. Gradient zone erosion under various ambient and operating conditions is examined. Comparisons with previous laboratory studies show a much lower entrainment rate in the natural environment. A simple (linear) correlation of entrainment rate with wind speed was found, for conditions which are typical of those encountered in mariculture pond operations.

  19. Intermediate pond sizes contain the highest density, richness, and diversity of pond-breeding amphibians.

    PubMed

    Semlitsch, Raymond D; Peterman, William E; Anderson, Thomas L; Drake, Dana L; Ousterhout, Brittany H

    2015-01-01

    We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes.

  20. Intermediate Pond Sizes Contain the Highest Density, Richness, and Diversity of Pond-Breeding Amphibians

    PubMed Central

    Semlitsch, Raymond D.; Peterman, William E.; Anderson, Thomas L.; Drake, Dana L.; Ousterhout, Brittany H.

    2015-01-01

    We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes. PMID:25906355

  1. Intermediate pond sizes contain the highest density, richness, and diversity of pond-breeding amphibians.

    PubMed

    Semlitsch, Raymond D; Peterman, William E; Anderson, Thomas L; Drake, Dana L; Ousterhout, Brittany H

    2015-01-01

    We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes. PMID:25906355

  2. Stable density stratification solar pond

    NASA Technical Reports Server (NTRS)

    Lansing, F. L. (Inventor)

    1985-01-01

    A stable density-stratification solar pond for use in the collection and storage of solar thermal energy including a container having a first section characterized by an internal wall of a substantially cylindrical configuration and a second section having an internal wall of a substantially truncated conical configuration surmounting the first section in coaxial alignment therewith, the second section of said container being characterized by a base of a diameter substantially equal to the diameter of the first section and a truncated apex defining a solar energy acceptance opening is discussed. A body of immiscible liquids is disposed within the container and comprises a lower portion substantially filling the first section of the container and an upper portion substantially filling the second section of the container, said lower portion being an aqueous based liquid of a darker color than the upper portion and of a greater density. A protective cover plate is removably provided for covering the acceptance opening.

  3. Percolation induced heat transfer in deep unsaturated zones

    USGS Publications Warehouse

    Lu, N.; LeCain, G.D.

    2003-01-01

    Subsurface temperature data from a borehole located in a desert wash were measured and used to delineate the conductive and advective heat transfer regimes, and to estimate the percolation quantity associated with the 1997-1998 El Ni??no precipitation. In an arid environment, conductive heat transfer dominates the variation of shallow subsurface temperature most of the time, except during sporadic precipitation periods. The subsurface time-varying temperature due to conductive heat transfer is highly correlated with the surface atmospheric temperature variation, whereas temperature variation due to advective heat transfer is strongly correlated with precipitation events. The advective heat transfer associated with precipitation and infiltration is the focus of this paper. Disruptions of the subsurface conductive temperature regime, associated with the 1997-1998 El Ni??no precipitation, were detected and used to quantify the percolation quantity. Modeling synthesis using a one-dimensional coupled heat and unsaturated flow model indicated that a percolation per unit area of 0.7 to 1.3 m height of water in two weeks during February 1998 was responsible for the observed temperature deviations down to a depth of 35.2 m. The reported study demonstrated quantitatively, for the first time, that the near surface temperature variation due to advective heat transfer can be significant at a depth greater than 10 m in unsaturated soils and can be used to infer the percolation amount in thick unsaturated soils.

  4. Continuous time random walk approach to dynamic percolation

    NASA Astrophysics Data System (ADS)

    Hilfer, R.; Orbach, R.

    1988-12-01

    We present an approximate solution for time (frequency) dependent response under conditions of dynamic percolation which may be related to excitation transfer in some random structures. In particular, we investigate the dynamics of structures where one random component blocks a second (carrier) component. Finite concentrations of the former create a percolation network for the latter. When the blockers are allowed to move in time, the network seen by the carriers changes with time, allowing for long-range transport even if the instantaneous carrier site availability is less than pc, the critical percolation concentration. A specific example of this situation is electrical transport in sodium β″-alumina. The carriers are Na + ions which can hop on a two-dimensional honeycomb lattice. The blockers are ions of much higher activation energy, such as Ba 2+. We study the frequency dependence of the conductivity for such a system. Given a fixed Ba 2+ hopping rate, 1/τ, the Na + ions experience a frozen site percolation environment for frequencies ω > 1/τ. At frequencies ω < 1/τ, the Na + ions experience a dynamic environment which allows long-range transport, even below pc. A continuous time random walk model combined with an effective medium approximation allows us to arrive at a numerical solution for the frequency-dependent Na+ conductivity σ(ω) which clearly exhibits the crossover from frozen to dynamic environment.

  5. Percolation thresholds on planar Euclidean relative-neighborhood graphs

    NASA Astrophysics Data System (ADS)

    Melchert, O.

    2013-04-01

    In the present article, statistical properties regarding the topology and standard percolation on relative neighborhood graphs (RNGs) for planar sets of points, considering the Euclidean metric, are put under scrutiny. RNGs belong to the family of “proximity graphs”; i.e., their edgeset encodes proximity information regarding the close neighbors for the terminal nodes of a given edge. Therefore they are, e.g., discussed in the context of the construction of backbones for wireless ad hoc networks that guarantee connectedness of all underlying nodes. Here, by means of numerical simulations, we determine the asymptotic degree and diameter of RNGs and we estimate their bond and site percolation thresholds, which were previously conjectured to be nontrivial. We compare the results to regular 2D graphs for which the degree is close to that of the RNG. Finally, we deduce the common percolation critical exponents from the RNG data to verify that the associated universality class is that of standard 2D percolation.

  6. Cell Invasion in Collagen Scaffold Architectures Characterized by Percolation Theory.

    PubMed

    Ashworth, Jennifer C; Mehr, Marco; Buxton, Paul G; Best, Serena M; Cameron, Ruth E

    2015-06-24

    The relationship between biological scaffold interconnectivity and cell migration is an important but poorly understood factor in tissue regeneration. Here a scale-independent technique for characterization of collagen scaffold interconnectivity is presented, using a combination of X-ray microcomputed tomography and percolation theory. Confocal microscopy of connective tissue cells reveals this technique as highly relevant for determining the extent of cell invasion.

  7. The Use of Percolating Filters in Teaching Ecology.

    ERIC Educational Resources Information Center

    Gray, N. F.

    1982-01-01

    Using percolating filters (components of sewage treatment process) reduces problems of organization, avoids damage to habitats, and provides a local study site for field work or rapid collection of biological material throughout the year. Component organisms are easily identified and the habitat can be studied as a simple or complex system.…

  8. The persistent percolation of single-stream voids

    NASA Astrophysics Data System (ADS)

    Falck, B.; Neyrinck, M. C.

    2015-07-01

    We study the nature of voids defined as single-stream regions that have not undergone shell-crossing. We use ORIGAMI to determine the cosmic web morphology of each dark matter particle in a suite of cosmological N-body simulations, which explicitly calculates whether a particle has crossed paths with others along multiple sets of axes and does not depend on a parameter or smoothing scale. The theoretical picture of voids is that of expanding underdensities with borders defined by shell-crossing. We find instead that locally underdense single-stream regions are not bounded on all sides by multi-stream regions, thus they percolate, filling the simulation volume; we show that the set of multi-stream particles also percolates. This percolation persists to high resolution, where the mass fraction of single-stream voids is low, because the volume fraction remains high; we speculate on the fraction of collapsed mass in the continuum limit of infinite resolution. By introducing a volume threshold parameter to define underdense void `cores', we create a catalogue of ORIGAMI voids which consist entirely of single-stream particles and measure their percolation properties, volume functions, and average densities.

  9. Water-network percolation transitions in hydrated yeast

    NASA Astrophysics Data System (ADS)

    Sokołowska, Dagmara; Król-Otwinowska, Agnieszka; Mościcki, Józef K.

    2004-11-01

    We discovered two percolation processes in succession in dc conductivity of bulk baker’s yeast in the course of dehydration. Critical exponents characteristic for the three-dimensional network for heavily hydrated system, and two dimensions in the light hydration limit, evidenced a dramatic change of the water network dimensionality in the dehydration process.

  10. A Simple Soil Percolation Test Device for Field Environmentalists

    ERIC Educational Resources Information Center

    Smith, William H.; Stark, Phillip E.

    1977-01-01

    A primary responsibility of field environmental health workers is evaluation of individual sewage disposal system sites. The authors of this article developed a practical, accurate, and inexpensive measurement device for obtaining reliable percolation test results. Directions for the construction and use of the device are detailed. Drawings…

  11. Continuum percolation of long lifespan clusters in a simple fluid.

    PubMed

    Pugnaloni, Luis A; Carlevaro, Carlos M; Valluzzi, Marcos G; Vericat, Fernando

    2008-08-14

    We present results on the percolation loci for chemical clusters and physical clusters of long lifespan. Chemical clusters are defined as sets of particles connected through particle-particle bonds that last for a given time tau. Physical clusters are sets of particles that remain close together at every instant for a given period of time tau. By using molecular dynamics simulations of a Lennard-Jones system we obtain the percolation loci at different values of tau as the lines in the temperature-density plane at which the system presents a spanning cluster in 50% of the configurations. We find that the percolation loci for chemical clusters shifts rapidly toward high densities as tau is increased. For moderate values of tau this line converges to the low-density branch of the liquid-solid coexistence curve. This implies that no stable chemical clusters can be found in the fluid phase. In contrast, the percolation loci for physical clusters tend to a limiting line, as tau tends to infinity, which is far from the liquid-solid transition line.

  12. Tunable Percolation in Semiconducting Binary Polymer Nanoparticle Glasses.

    PubMed

    Renna, Lawrence A; Bag, Monojit; Gehan, Timothy S; Han, Xu; Lahti, Paul M; Maroudas, Dimitrios; Venkataraman, D

    2016-03-10

    Binary polymer nanoparticle glasses provide opportunities to realize the facile assembly of disparate components, with control over nanoscale and mesoscale domains, for the development of functional materials. This work demonstrates that tunable electrical percolation can be achieved through semiconducting/insulating polymer nanoparticle glasses by varying the relative percentages of equal-sized nanoparticle constituents of the binary assembly. Using time-of-flight charge carrier mobility measurements and conducting atomic force microscopy, we show that these systems exhibit power law scaling percolation behavior with percolation thresholds of ∼24-30%. We develop a simple resistor network model, which can reproduce the experimental data, and can be used to predict percolation trends in binary polymer nanoparticle glasses. Finally, we analyze the cluster statistics of simulated binary nanoparticle glasses, and characterize them according to their predominant local motifs as (p(i), p(1-i))-connected networks that can be used as a supramolecular toolbox for rational material design based on polymer nanoparticles. PMID:26854924

  13. CO₂ efflux from shrimp ponds in Indonesia.

    PubMed

    Sidik, Frida; Lovelock, Catherine E

    2013-01-01

    The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored 'blue' carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO₂) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO₂ efflux from the floors and walls of shrimp ponds. Rates of CO₂ efflux within shrimp ponds were 4.37 kg CO₂ m⁻² y⁻¹ from the walls and 1.60 kg CO₂ m⁻² y⁻¹ from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO₂ emissions to the atmosphere between 5.76 and 13.95 Tg y⁻¹. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO₂ emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO₂ released to atmosphere. PMID:23755306

  14. Percolation exponents and thresholds obtained from the nearly ideal continuum percolation system graphite-boron nitride

    SciTech Connect

    Wu, J.; McLachlan, D.S.

    1997-07-01

    Compressed disks made from graphite and, its mechanical but not electrical isomorph, boron nitride as well as graphite-boron nitride powders, undergoing compression, are nearly ideal continuum percolation systems, as the ratio of their conductivities is nearly 10{sup {minus}18} and the scatter of the experimental points near the critical volume fraction {phi}{sub c} is very small. The following measurements, with the characteristic exponent(s) in brackets, are made on some or all of the samples in (axial) and at right angles (radial) to the direction of compression, as a function of the volume fraction of graphite ({phi}); dc conductivity (s and t), dielectric constant (s), magnetoresistivity (t{sub {perpendicular}}), and noise power (K). The noise power is also measured as function of resistance (w) and volume (b{sup {prime}}). The {phi}{sub c}{close_quote}s obtained for all measurements are consistent and explicable. The results for the exponents are less well understood but, where possible, these results are compared with theoretical predictions and previous experiments. The reasons for the nonuniversality of t are clarified. {copyright} {ital 1997} {ital The American Physical Society}

  15. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers.

    PubMed

    Wang, Zhenhua; Liu, Jun; Wu, Sizhu; Wang, Wenchuan; Zhang, Liqun

    2010-03-28

    Nano-strengthening by employing nanoparticles is necessary for high-efficiency strengthening of elastomers, which has already been validated by numerous researches and industrial applications, but the underlying mechanism is still an open challenge. In this work, we mainly focus our attention on studying the variation of the tensile strength of nanofilled elastomers by gradually increasing the filler content, within a low loading range. Interestingly, the percolation phenomenon is observed in the relationship between the tensile strength and the filler loading, which shares some similarities with the percolation phenomenon occurring in rubber toughened plastics. That is, as the loading of nanofillers (carbon black, zinc oxide) increases, the tensile strength of rubber nanocomposites (SBR, EPDM) increases slowly at first, then increases abruptly and finally levels off. Meanwhile, the bigger the particle size, the higher the filler content at the percolation point, and the lower the corresponding tensile strength of rubber nanocomposites. The concept of a critical particle-particle distance (CPD) is proposed to explain the observed percolation phenomenon. It is suggested that rubber strengthening through nanoparticles is attributed to the formation of stretched straight polymer chains between neighbor particles, induced by the slippage of adsorbed polymer chains on the filler surface during tension. Meanwhile, the factors to govern this CPD and the critical minimum particle size (CMPS) figured out in this work are both discussed and analyzed in detail. Within the framework of this percolation phenomenon, this paper also clearly answers two important and intriguing issues: (1) why is it necessary and essential to strengthen elastomers through nanofillers; (2) why does it need enough loading of nanofillers to effectively strengthen elastomers. Moreover, on the basis of the percolation phenomenon, we give out some guidance for reinforcement design of rubbery materials

  16. Network representation of pore scale imagery for percolation models

    NASA Astrophysics Data System (ADS)

    Klise, K. A.; McKenna, S. A.; Read, E.; Karpyn, Z. T.; Celauro, J.

    2012-12-01

    Multiphase flow under capillary dominated flow regimes is driven by an intricate relationship between pore geometry, material and fluid properties. In this research, high-resolution micro-computed tomography (CT) imaging experiments are used to investigate structural and surface properties of bead packs, and how they influence percolation pathways. Coreflood experiments use a mix of hydrophilic and hydrophobic beads to track the influence of variable contact angle on capillary flow. While high-resolution CT images can render micron scale representation of the pore space, data must be upscaled to capture pore and pore throat geometry for use in percolation models. In this analysis, the pore space is upscaled into a network representation based on properties of the medial axis. Finding the medial axis using micron scale images is computationally expensive. Here, we compare the efficiency and accuracy of medial axes using erosion-based and watershed algorithms. The resulting network representation is defined as a ball-and-stick model which represents pores and pore throats. The ball-and-stick model can be further reduced by eliminating sections of the network that fall below a capillary pressure threshold. In a system of mixed hydrophilic and hydrophobic beads, capillary pressure can change significantly throughout the network based on the interaction between surface and fluid properties. The upscaled network representations are used in percolation models to estimate transport pathway. Current results use a basic percolation model that sequentially fills neighboring pores with the highest potential. Future work will expand the percolation model to include additional mechanics, such as trapping, vacating pores, and viscous fingering. Results from the coreflood experiments will be used to validate upscaling techniques and percolation models. Preliminary results show that the relative strength of water-wet and oil-wet surfaces has a significant impact on percolation

  17. Photosynthesis and fish production in culture ponds

    SciTech Connect

    Szyper, J.P.

    1995-12-31

    The widely-cultured Nile tilapia, Oreochromis niloticus, has been the major species used in standardized experiments by the Pond Dynamics/Aquaculture Collaborative Research Support Program (PD/ACRSP). Yields of Nile Tilapia from fertilized, unfed ponds have served as a bioassay for effectiveness of pond management protocols developed during worldwide tropical experiments. Yield rates near 10 T/ha/y can be achieved without feed inputs in ponds which maintain high standing stocks of phytoplankton and exhibit high rates near 10 T/ha/y can be achieved without feed inputs in ponds which maintain high standing stocks of phytoplankton and exhibit high rates of primary production. Fish production is related to daytime net photosynthetic production, but it is not clear whether production of food materials or oxygen is the more direct influence. Excessively high standing stocks of phytoplankton are not the best net producers, and increase and risk of nighttime oxygen depletion. Fish readily grow to individual sizes of 200-300 g/fish in fertilized ponds, which is sufficient market size in many locations. Supplemental feeding of caged or free-ranging fish greatly accelerates growth beyond 300 g and potentiates high areal yields; the PD/A CRSP has also developed efficient feeding regimes and shown that supplemental feeding need not begin before fish reach 200 g weight. High standing stocks of phytoplankton and high photosynthetic rates in eutrophic ponds make study of photosynthesis possible without radioisotopes. Such ponds also exhibit complete extinction of incident solar radiation within shallow depths, and vertical temperature structure resembling that of deeper bodies of water. These characteristics make ponds useful as microcosms for study of some aspects of photosynthesis in natural waters.

  18. The abundance threshold for plague as a critical percolation phenomenon.

    PubMed

    Davis, S; Trapman, P; Leirs, H; Begon, M; Heesterbeek, J A P

    2008-07-31

    Percolation theory is most commonly associated with the slow flow of liquid through a porous medium, with applications to the physical sciences. Epidemiological applications have been anticipated for disease systems where the host is a plant or volume of soil, and hence is fixed in space. However, no natural examples have been reported. The central question of interest in percolation theory, the possibility of an infinite connected cluster, corresponds in infectious disease to a positive probability of an epidemic. Archived records of plague (infection with Yersinia pestis) in populations of great gerbils (Rhombomys opimus) in Kazakhstan have been used to show that epizootics only occur when more than about 0.33 of the burrow systems built by the host are occupied by family groups. The underlying mechanism for this abundance threshold is unknown. Here we present evidence that it is a percolation threshold, which arises from the difference in scale between the movements that transport infectious fleas between family groups and the vast size of contiguous landscapes colonized by gerbils. Conventional theory predicts that abundance thresholds for the spread of infectious disease arise when transmission between hosts is density dependent such that the basic reproduction number (R(0)) increases with abundance, attaining 1 at the threshold. Percolation thresholds, however, are separate, spatially explicit thresholds that indicate long-range connectivity in a system and do not coincide with R(0) = 1. Abundance thresholds are the theoretical basis for attempts to manage infectious disease by reducing the abundance of susceptibles, including vaccination and the culling of wildlife. This first natural example of a percolation threshold in a disease system invites a re-appraisal of other invasion thresholds, such as those for epidemic viral infections in African lions (Panthera leo), and of other disease systems such as bovine tuberculosis (caused by Mycobacterium bovis) in

  19. Solar ponds. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-08-01

    Federally funded research on the design, performance, and use of solar ponds is discussed on these. Topic areas cover the use of solar ponds in industrial process heat production, roof ponds for passive solar buildings, and solar ponds use in the production of biomass for renewable fuels.

  20. Percolation parameter and percolation-threshold estimates for three-dimensional random ellipses with widely scattered distributions of eccentricity and size

    PubMed

    de Dreuzy JR; Davy; Bour

    2000-11-01

    In fractured materials of very low matrix permeability, fracture connectivity is the first-order determinant of the occurrence of flow. For systems having a narrow distribution of object sizes (short-range percolation), a first-order percolation criterion is given by the total excluded volume which is almost constant at threshold. In the case of fractured media, recent observations have demonstrated that the fracture-length distribution is extremely large. Because of this widely scattered fracture-length distribution, the classical expression of the total excluded volume is no longer scale invariant at the percolation threshold and has no finite limit for infinitely large systems. Thus, the classical estimation method of the percolation threshold established in short-range percolation becomes useless for the connectivity determination of fractured media. In this study, we derive an expression for the total excluded volume that remains scale invariant at the percolation threshold and that can thus be used as the proper control parameter, called the parameter of percolation in percolation theory. We show that the scale-invariant expression of the total excluded volume is the geometrical union normalized by the system volume rather than the summation of the mutual excluded volumes normalized by the system volume. The summation of the mutual excluded volume (classical expression) remains linked to the number of intersections between fractures, whereas the normalized geometrical union of the mutual excluded volume (our expression) can be essentially identified with the percolation parameter. Moreover, fluctuations of this percolation parameter at threshold with length and eccentricity distributions remain limited within a range of less than one order of magnitude, giving in turn a rough percolation criterion. We finally show that the scale dependence of the percolation parameter causes the connectivity of fractured media to increase with scale, meaning especially that

  1. This Pond Is Not for Ducks.

    ERIC Educational Resources Information Center

    American School and University, 1980

    1980-01-01

    The latest development in solar energy is a four-acre pond planned for Clark College in Vancouver (Washington). Filled with brine, it will serve both as collector and heat storage tank for the entire campus. (Author)

  2. Determining the Population Size of Pond Phytoplankton.

    ERIC Educational Resources Information Center

    Hummer, Paul J.

    1980-01-01

    Discusses methods for determining the population size of pond phytoplankton, including water sampling techniques, laboratory analysis of samples, and additional studies worthy of investigation in class or as individual projects. (CS)

  3. Ecologic simulation of warm water aquaculture ponds

    SciTech Connect

    Piedrahitu, R.H.; Brune, D.E.; Orlob, G.T.; Tchobanoglous, G.

    1983-06-01

    A generalized ecologic model of a fertilized warm-water aquaculture pond is under development. The model is intended to represent the pond ecosystem and its response to external stimuli. The major physical, chemical and biological processes and parameters are included in the model. A total of 19 state variables are included in the model (dissolved oxygen, alkalinity, pH, ammonia, phytoplankton, etc.). The model is formulated as a system of mass balance equations. The equations include stimulatory and inhibitory effects of environmental parameters on processes taking place in the pond. The equations may be solved for the entire growth period and diurnal as well as seasonal fluctuations may be identified. The ultimate objective of the model is to predict the fish biomass that can be produced in a pond under a given set of environmental conditions.

  4. Solar perspectives - Israel, solar pond innovator

    NASA Astrophysics Data System (ADS)

    Winsberg, S.

    1981-07-01

    Existing and planned solar pond electricity producing power plants in Israel and California are discussed. Salt ponds, with salinity increasing with depth, are coupled with low temperature, organic working fluid Rankine cycle engines to form self-storage, nonpolluting, electric plants. Average pond thermal gradients range from 25 C surface to 90 C at the bottom; 160 GW of potential power have been projected as currently available from existing natural solar ponds from a partial survey of 14 countries. The largest installation to date has a 220 kW output, and a 5 MW plant is scheduled for completion in 1983. Efficiencies of 10% and a cost of $2,000/kW for a 40 MW plant are projected, a cost which is comparable to that of conventional plants. The 40 MW plant is an optimized design, allowing for modular plant additions to increase capacity.

  5. Wintertime Emissions from Produced Water Ponds

    NASA Astrophysics Data System (ADS)

    Evans, J.; Lyman, S.; Mansfield, M. L.

    2013-12-01

    Every year oil and gas drilling in the U.S. generates billions of barrels of produced water (water brought to the surface during oil or gas production). Efficiently disposing of produced water presents a constant financial challenge for producers. The most noticeable disposal method in eastern Utah's Uintah Basin is the use of evaporation ponds. There are 427 acres of produced water ponds in the Uintah Basin, and these were used to evaporate more than 5 million barrels of produced water in 2012, 6% of all produced water in the Basin. Ozone concentrations exceeding EPA standards have been observed in the Uintah Basin during winter inversion conditions, with daily maximum 8 hour average concentrations at some research sites exceeding 150 parts per billion. Produced water contains ozone-forming volatile organic compounds (VOC) which escape into the atmosphere as the water is evaporated, potentially contributing to air quality problems. No peer-reviewed study of VOC emissions from produced water ponds has been reported, and filling this gap is essential for the development of accurate emissions inventories for the Uintah Basin and other air sheds with oil and gas production. Methane, carbon dioxide, and VOC emissions were measured at three separate pond facilities in the Uintah Basin in February and March of 2013 using a dynamic flux chamber. Pond emissions vary with meteorological conditions, so measurements of VOC emissions were collected during winter to obtain data relevant to periods of high ozone production. Much of the pond area at evaporation facilities was frozen during the study period, but areas that actively received water from trucks remained unfrozen. These areas accounted for 99.2% of total emissions but only 9.5% of the total pond area on average. Ice and snow on frozen ponds served as a cap, prohibiting VOC from being emitted into the atmosphere. Emissions of benzene, toluene, and other aromatic VOCs averaged over 150 mg m-2 h-1 from unfrozen pond

  6. Measurement of the percolation threshold for fully penetrable disks of different radii

    SciTech Connect

    Quintanilla, J.

    2001-06-01

    We perform simulations of gradient percolation to study the percolation threshold for systems of homogeneous fully penetrable disks of variable radii. We find that, if the radii follow a uniform distribution, the percolation threshold is 0.686610{+-}0.000007. We also investigate binary dispersions, studying the influence of constitutive parameters on the percolation threshold and suggesting an empirical formula for the threshold. We find that, with the appropriate parameters, a percolation threshold of approximately 0.76 can be achieved. The minimal threshold of 0.676339{+-}0.000004 is achieved by disks of equal radius.

  7. Integration of Geologic and Geophysical Data to Model Hydrostratigraphy Under a Recharge Pond for Aquifer Storage and Recovery

    NASA Astrophysics Data System (ADS)

    Mitchell, V.; Pidlisecky, A.; Knight, R. J.; Jenni, S.; Will, R.; Lear, J.

    2009-12-01

    The Harkins Slough Recharge Pond (HSRP) near Watsonville, CA, was developed to lessen the adverse impacts of excessive groundwater pumping in the Pajaro Valley. Storm-flow run-off is filtered and diverted into the pond during the winter, percolates through the base of the pond to the alluvial aquifer, and is recovered in the summer. The pond faces two operational challenges. The first is a decrease in the infiltration rate throughout the winter, reducing the amount of run-off that can percolate into the aquifer. The second is a recovery rate of less than 25%. Operators need a clearer understanding of the hydrologic processes governing the movement and storage of water beneath the pond. Efforts to characterize hydrologic processes at the HSRP have resulted in the acquisition of numerous data sets. Geologic data include lithologic descriptions from shallow cores and drillers’ logs of ten, ~50 m deep wells. An additional nine monitoring wells were used to measure hydraulic head every 15 minutes throughout the year. Geophysical surveys, including shallow shear-wave reflection, ground-penetrating radar, electrical resistivity, and seismic cone penetration testing, were collected along the base of the HSRP in Summer 2007 when the pond was drained. In addition, four probes collected 1D resistivity profiles every 3 minutes throughout an infiltration cycle in the winter of 2007-2008. We combined these data, using PETREL software, into a model describing the hydrostratigraphy beneath the pond, and then used ECLIPSE to simulate the variably-saturated flow behavior. The extent of our model, 380 m by 390 m, roughly matches the size of the pond, and extends to a depth of ~60 m. We input all data using the resolution at which they were acquired; this ranged from 0.2 m resolution for the shallow cores to ~3 m resolution for seismic data. The GPR and electrical data were input as images and used with the seismic data to identify hydrostratigraphic boundaries. We elected to use 12

  8. Pits, pipes, ponds--and me.

    PubMed

    Mara, Duncan

    2013-05-01

    My life in low-cost sanitation and low-cost wastewater treatment and the use of treated wastewater in agriculture and aquaculture really has been 'pits, pipes and ponds' - 'pits' are low-cost sanitation technologies (LCST) such as VIP latrines and pour-flush toilets; 'pipes' are low-cost sewerage, principally condominial (simplified) sewerage; and 'ponds' are low-cost wastewater treatment systems, especially waste stabilization ponds, and the use of treated wastewater in agriculture and aquaculture. 'Pits' were mainly working on World Bank LCST research projects, with fieldwork principally in Zimbabwe, 'pipes' were working on condominial sewerage projects in Brazil and disseminating this LCST to a wider global audience, and 'ponds' were waste stabilization ponds, with fieldwork mainly in Brazil, Colombia, Portugal and the United Kingdom, the development of aerated rock filters to polish facultative-pond effluents, and the human-health aspects of treated wastewater use in agriculture and aquaculture, with fieldwork in Brazil and the UK, and the application of quantitative microbial risk analysis. The paper provides a professional perspective and lessons from historical developments and gives recommended future directions based on my career working on low-cost sanitation technologies and treated wastewater use in agriculture and aquaculture.

  9. Pits, pipes, ponds--and me.

    PubMed

    Mara, Duncan

    2013-05-01

    My life in low-cost sanitation and low-cost wastewater treatment and the use of treated wastewater in agriculture and aquaculture really has been 'pits, pipes and ponds' - 'pits' are low-cost sanitation technologies (LCST) such as VIP latrines and pour-flush toilets; 'pipes' are low-cost sewerage, principally condominial (simplified) sewerage; and 'ponds' are low-cost wastewater treatment systems, especially waste stabilization ponds, and the use of treated wastewater in agriculture and aquaculture. 'Pits' were mainly working on World Bank LCST research projects, with fieldwork principally in Zimbabwe, 'pipes' were working on condominial sewerage projects in Brazil and disseminating this LCST to a wider global audience, and 'ponds' were waste stabilization ponds, with fieldwork mainly in Brazil, Colombia, Portugal and the United Kingdom, the development of aerated rock filters to polish facultative-pond effluents, and the human-health aspects of treated wastewater use in agriculture and aquaculture, with fieldwork in Brazil and the UK, and the application of quantitative microbial risk analysis. The paper provides a professional perspective and lessons from historical developments and gives recommended future directions based on my career working on low-cost sanitation technologies and treated wastewater use in agriculture and aquaculture. PMID:23490108

  10. How Inhomogeneous Site Percolation Works on Bethe Lattices: Theory and Application

    PubMed Central

    Ren, Jingli; Zhang, Liying; Siegmund, Stefan

    2016-01-01

    Inhomogeneous percolation, for its closer relationship with real-life, can be more useful and reasonable than homogeneous percolation to illustrate the critical phenomena and dynamical behaviour of complex networks. However, due to its intricacy, the theoretical framework of inhomogeneous percolation is far from being complete and many challenging problems are still open. In this paper, we first investigate inhomogeneous site percolation on Bethe Lattices with two occupation probabilities, and then extend the result to percolation with m occupation probabilities. The critical behaviour of this inhomogeneous percolation is shown clearly by formulating the percolation probability with given occupation probability p, the critical occupation probability , and the average cluster size where p is subject to . Moreover, using the above theory, we discuss in detail the diffusion behaviour of an infectious disease (SARS) and present specific disease-control strategies in consideration of groups with different infection probabilities. PMID:26926785

  11. How Inhomogeneous Site Percolation Works on Bethe Lattices: Theory and Application

    NASA Astrophysics Data System (ADS)

    Ren, Jingli; Zhang, Liying; Siegmund, Stefan

    2016-03-01

    Inhomogeneous percolation, for its closer relationship with real-life, can be more useful and reasonable than homogeneous percolation to illustrate the critical phenomena and dynamical behaviour of complex networks. However, due to its intricacy, the theoretical framework of inhomogeneous percolation is far from being complete and many challenging problems are still open. In this paper, we first investigate inhomogeneous site percolation on Bethe Lattices with two occupation probabilities, and then extend the result to percolation with m occupation probabilities. The critical behaviour of this inhomogeneous percolation is shown clearly by formulating the percolation probability with given occupation probability p, the critical occupation probability , and the average cluster size where p is subject to . Moreover, using the above theory, we discuss in detail the diffusion behaviour of an infectious disease (SARS) and present specific disease-control strategies in consideration of groups with different infection probabilities.

  12. Randomness versus deterministic chaos: Effect on invasion percolation clusters

    NASA Astrophysics Data System (ADS)

    Peng, Chung-Kang; Prakash, Sona; Herrmann, Hans J.; Stanley, H. Eugene

    1990-10-01

    What is the difference between randomness and chaos \\? Although one can define randomness and one can define chaos, one cannot easily assess the difference in a practical situation. Here we compare the results of these two antipodal approaches on a specific example. Specifically, we study how well the logistic map in its chaotic regime can be used as quasirandom number generator by calculating pertinent properties of a well-known random process: invasion percolation. Only if λ>λ*1 (the first reverse bifurcation point) is a smooth extrapolation in system size possible, and percolation exponents are retrieved. If λ≠1, a sequential filling of the lattice with the random numbers generates a measurable anisotropy in the growth sequence of the clusters, due to short-range correlations.

  13. Percolation mechanism drives actin gels to the critically connected state

    NASA Astrophysics Data System (ADS)

    Lee, Chiu Fan; Pruessner, Gunnar

    2016-05-01

    Cell motility and tissue morphogenesis depend crucially on the dynamic remodeling of actomyosin networks. An actomyosin network consists of an actin polymer network connected by cross-linker proteins and motor protein myosins that generate internal stresses on the network. A recent discovery shows that for a range of experimental parameters, actomyosin networks contract to clusters with a power-law size distribution [J. Alvarado, Nat. Phys. 9, 591 (2013), 10.1038/nphys2715]. Here, we argue that actomyosin networks can exhibit a robust critical signature without fine-tuning because the dynamics of the system can be mapped onto a modified version of percolation with trapping (PT), which is known to show critical behavior belonging to the static percolation universality class without the need for fine-tuning of a control parameter. We further employ our PT model to generate experimentally testable predictions.

  14. Colloidal suspensions of C-particles: Entanglement, percolation and microrheology.

    PubMed

    Hoell, Christian; Löwen, Hartmut

    2016-05-01

    We explore structural and dynamical behavior of concentrated colloidal suspensions made up by C-shape particles using Brownian dynamics computer simulations and theory. In particular, we focus on the entanglement process between nearby particles for almost closed C-shapes with a small opening angle. Depending on the opening angle and the particle concentration, there is a percolation transition for the cluster of entangled particles which shows the classical scaling characteristics. In a broad density range below the percolation threshold, we find a stretched exponential function for the dynamical decorrelation of the entanglement process. Finally, we study a setup typical in microrheology by dragging a single tagged particle with constant speed through the suspension. We measure the cluster connected to and dragged with this tagged particle. In agreement with a phenomenological theory, the size of the dragged cluster depends on the dragging direction and increases markedly with the dragging speed.

  15. Effect of threshold disorder on the quorum percolation model

    NASA Astrophysics Data System (ADS)

    Monceau, Pascal; Renault, Renaud; Métens, Stéphane; Bottani, Samuel

    2016-07-01

    We study the modifications induced in the behavior of the quorum percolation model on neural networks with Gaussian in-degree by taking into account an uncorrelated Gaussian thresholds variability. We derive a mean-field approach and show its relevance by carrying out explicit Monte Carlo simulations. It turns out that such a disorder shifts the position of the percolation transition, impacts the size of the giant cluster, and can even destroy the transition. Moreover, we highlight the occurrence of disorder independent fixed points above the quorum critical value. The mean-field approach enables us to interpret these effects in terms of activation probability. A finite-size analysis enables us to show that the order parameter is weakly self-averaging with an exponent independent on the thresholds disorder. Last, we show that the effects of the thresholds and connectivity disorders cannot be easily discriminated from the measured averaged physical quantities.

  16. Percolation mechanism drives actin gels to the critically connected state.

    PubMed

    Lee, Chiu Fan; Pruessner, Gunnar

    2016-05-01

    Cell motility and tissue morphogenesis depend crucially on the dynamic remodeling of actomyosin networks. An actomyosin network consists of an actin polymer network connected by cross-linker proteins and motor protein myosins that generate internal stresses on the network. A recent discovery shows that for a range of experimental parameters, actomyosin networks contract to clusters with a power-law size distribution [J. Alvarado, Nat. Phys. 9, 591 (2013)1745-247310.1038/nphys2715]. Here, we argue that actomyosin networks can exhibit a robust critical signature without fine-tuning because the dynamics of the system can be mapped onto a modified version of percolation with trapping (PT), which is known to show critical behavior belonging to the static percolation universality class without the need for fine-tuning of a control parameter. We further employ our PT model to generate experimentally testable predictions. PMID:27300931

  17. Concurrent enhancement of percolation and synchronization in adaptive networks.

    PubMed

    Eom, Young-Ho; Boccaletti, Stefano; Caldarelli, Guido

    2016-06-02

    Co-evolutionary adaptive mechanisms are not only ubiquitous in nature, but also beneficial for the functioning of a variety of systems. We here consider an adaptive network of oscillators with a stochastic, fitness-based, rule of connectivity, and show that it self-organizes from fragmented and incoherent states to connected and synchronized ones. The synchronization and percolation are associated to abrupt transitions, and they are concurrently (and significantly) enhanced as compared to the non-adaptive case. Finally we provide evidence that only partial adaptation is sufficient to determine these enhancements. Our study, therefore, indicates that inclusion of simple adaptive mechanisms can efficiently describe some emergent features of networked systems' collective behaviors, and suggests also self-organized ways to control synchronization and percolation in natural and social systems.

  18. Quantum percolation in cuprate high-temperature superconductors

    PubMed Central

    Phillips, J. C.

    2008-01-01

    Although it is now generally acknowledged that electron–phonon interactions cause cuprate superconductivity with Tc values ≈100 K, the complexities of atomic arrangements in these marginally stable multilayer materials have frustrated both experimental analysis and theoretical modeling of the remarkably rich data obtained both by angle-resolved photoemission (ARPES) and high-resolution, large-area scanning tunneling microscopy (STM). Here, we analyze the theoretical background in terms of our original (1989) model of dopant-assisted quantum percolation (DAQP), as developed further in some two dozen articles, and apply these ideas to recent STM data. We conclude that despite all of the many difficulties, with improved data analysis it may yet be possible to identify quantum percolative paths. PMID:18626024

  19. Price of anarchy is maximized at the percolation threshold.

    PubMed

    Skinner, Brian

    2015-05-01

    When many independent users try to route traffic through a network, the flow can easily become suboptimal as a consequence of congestion of the most efficient paths. The degree of this suboptimality is quantified by the so-called price of anarchy (POA), but so far there are no general rules for when to expect a large POA in a random network. Here I address this question by introducing a simple model of flow through a network with randomly placed congestible and incongestible links. I show that the POA is maximized precisely when the fraction of congestible links matches the percolation threshold of the lattice. Both the POA and the total cost demonstrate critical scaling near the percolation threshold.

  20. Vulnerability of networks: Fractional percolation on random graphs

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2014-01-01

    We present a theoretical framework for understanding nonbinary, nonindependent percolation on networks with general degree distributions. The model incorporates a partially functional (PF) state of nodes so that both intensity and extensity of error are characterized. Two connected nodes in a PF state cannot sustain the load and therefore break their link. We give exact solutions for the percolation threshold, the fraction of giant cluster, and the mean size of small clusters. The robustness-fragility transition point for scale-free networks with a degree distribution pk∝k-α is identified to be α =3. The analysis reveals that scale-free networks are vulnerable to targeted attack at hubs: a more complete picture of their Achilles' heel turns out to be not only the hubs themselves but also the edges linking them together.

  1. The September 11 attack: A percolation of individual passive support

    NASA Astrophysics Data System (ADS)

    Galam, S.

    2002-04-01

    A model to terrorism is presented using the theory of percolation. Terrorism power is related to the spontaneous formation of random backbones of people who are sympathetic to terrorism but without being directly involved in it. They just don't oppose in case they could. In the past such friendly-to-terrorism backbones have been always existing but were of finite size and localized to a given geographical area. The September 11 terrorist attack on the US has revealed for the first time the existence of a world wide spread extension. It is argued to have result from a sudden world percolation of otherwise unconnected and dormant world spread backbones of passive supporters. The associated strategic question is then to determine if collecting ground information could have predict and thus avoid such a transition. Our results show the answer is no, voiding the major criticism against intelligence services. To conclude the impact of military action is discussed.

  2. Finite-size effects and percolation properties of Poisson geometries

    NASA Astrophysics Data System (ADS)

    Larmier, C.; Dumonteil, E.; Malvagi, F.; Mazzolo, A.; Zoia, A.

    2016-07-01

    Random tessellations of the space represent a class of prototype models of heterogeneous media, which are central in several applications in physics, engineering, and life sciences. In this work, we investigate the statistical properties of d -dimensional isotropic Poisson geometries by resorting to Monte Carlo simulation, with special emphasis on the case d =3 . We first analyze the behavior of the key features of these stochastic geometries as a function of the dimension d and the linear size L of the domain. Then, we consider the case of Poisson binary mixtures, where the polyhedra are assigned two labels with complementary probabilities. For this latter class of random geometries, we numerically characterize the percolation threshold, the strength of the percolating cluster, and the average cluster size.

  3. Stochastic Loewner evolution relates anomalous diffusion and anisotropic percolation

    NASA Astrophysics Data System (ADS)

    Credidio, Heitor F.; Moreira, André A.; Herrmann, Hans J.; Andrade, José S.

    2016-04-01

    We disclose the origin of anisotropic percolation perimeters in terms of the stochastic Loewner evolution (SLE) process. Precisely, our results from extensive numerical simulations indicate that the perimeters of multilayered and directed percolation clusters at criticality are the scaling limits of the Loewner evolution of an anomalous Brownian motion, being superdiffusive and subdiffusive, respectively. The connection between anomalous diffusion and fractal anisotropy is further tested by using long-range power-law correlated time series (fractional Brownian motion) as the driving functions in the evolution process. The fact that the resulting traces are distinctively anisotropic corroborates our hypothesis. Under the conceptual framework of SLE, our study therefore reveals different perspectives for mathematical and physical interpretations of non-Markovian processes in terms of anisotropic paths at criticality and vice versa.

  4. Damage percolation during stretch flange forming of aluminum alloy sheet

    NASA Astrophysics Data System (ADS)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  5. Colloidal suspensions of C-particles: Entanglement, percolation and microrheology

    NASA Astrophysics Data System (ADS)

    Hoell, Christian; Löwen, Hartmut

    2016-05-01

    We explore structural and dynamical behavior of concentrated colloidal suspensions made up by C-shape particles using Brownian dynamics computer simulations and theory. In particular, we focus on the entanglement process between nearby particles for almost closed C-shapes with a small opening angle. Depending on the opening angle and the particle concentration, there is a percolation transition for the cluster of entangled particles which shows the classical scaling characteristics. In a broad density range below the percolation threshold, we find a stretched exponential function for the dynamical decorrelation of the entanglement process. Finally, we study a setup typical in microrheology by dragging a single tagged particle with constant speed through the suspension. We measure the cluster connected to and dragged with this tagged particle. In agreement with a phenomenological theory, the size of the dragged cluster depends on the dragging direction and increases markedly with the dragging speed.

  6. The price of anarchy is maximized at the percolation threshold

    NASA Astrophysics Data System (ADS)

    Skinner, Brian

    2015-03-01

    When many independent users try to route traffic through a network, the flow can easily become suboptimal as a consequence of congestion of the most efficient paths. The degree of this suboptimality is quantified by the so-called ``price of anarchy'' (POA), but so far there are no general rules for when to expect a large POA in a random network. Here I address this question by introducing a simple model of flow through a network with randomly-placed ``congestible'' and ``incongestible'' links. I show that the POA is maximized precisely when the fraction of congestible links matches the percolation threshold of the lattice. Both the POA and the total cost demonstrate critical scaling near the percolation threshold.

  7. Price of anarchy is maximized at the percolation threshold.

    PubMed

    Skinner, Brian

    2015-05-01

    When many independent users try to route traffic through a network, the flow can easily become suboptimal as a consequence of congestion of the most efficient paths. The degree of this suboptimality is quantified by the so-called price of anarchy (POA), but so far there are no general rules for when to expect a large POA in a random network. Here I address this question by introducing a simple model of flow through a network with randomly placed congestible and incongestible links. I show that the POA is maximized precisely when the fraction of congestible links matches the percolation threshold of the lattice. Both the POA and the total cost demonstrate critical scaling near the percolation threshold. PMID:26066138

  8. Concurrent enhancement of percolation and synchronization in adaptive networks

    PubMed Central

    Eom, Young-Ho; Boccaletti, Stefano; Caldarelli, Guido

    2016-01-01

    Co-evolutionary adaptive mechanisms are not only ubiquitous in nature, but also beneficial for the functioning of a variety of systems. We here consider an adaptive network of oscillators with a stochastic, fitness-based, rule of connectivity, and show that it self-organizes from fragmented and incoherent states to connected and synchronized ones. The synchronization and percolation are associated to abrupt transitions, and they are concurrently (and significantly) enhanced as compared to the non-adaptive case. Finally we provide evidence that only partial adaptation is sufficient to determine these enhancements. Our study, therefore, indicates that inclusion of simple adaptive mechanisms can efficiently describe some emergent features of networked systems’ collective behaviors, and suggests also self-organized ways to control synchronization and percolation in natural and social systems. PMID:27251577

  9. Minimal spanning trees at the percolation threshold: a numerical calculation.

    PubMed

    Sweeney, Sean M; Middleton, A Alan

    2013-09-01

    The fractal dimension of minimal spanning trees on percolation clusters is estimated for dimensions d up to d=5. A robust analysis technique is developed for correlated data, as seen in such trees. This should be a robust method suitable for analyzing a wide array of randomly generated fractal structures. The trees analyzed using these techniques are built using a combination of Prim's and Kruskal's algorithms for finding minimal spanning trees. This combination reduces memory usage and allows for simulation of larger systems than would otherwise be possible. The path length fractal dimension d_{s} of MSTs on critical percolation clusters is found to be compatible with the predictions of the perturbation expansion developed by T. S. Jackson and N. Read [Phys. Rev. E 81, 021131 (2010)]. PMID:24125235

  10. Price of anarchy is maximized at the percolation threshold

    NASA Astrophysics Data System (ADS)

    Skinner, Brian

    2015-05-01

    When many independent users try to route traffic through a network, the flow can easily become suboptimal as a consequence of congestion of the most efficient paths. The degree of this suboptimality is quantified by the so-called price of anarchy (POA), but so far there are no general rules for when to expect a large POA in a random network. Here I address this question by introducing a simple model of flow through a network with randomly placed congestible and incongestible links. I show that the POA is maximized precisely when the fraction of congestible links matches the percolation threshold of the lattice. Both the POA and the total cost demonstrate critical scaling near the percolation threshold.

  11. Concurrent enhancement of percolation and synchronization in adaptive networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Boccaletti, Stefano; Caldarelli, Guido

    2016-06-01

    Co-evolutionary adaptive mechanisms are not only ubiquitous in nature, but also beneficial for the functioning of a variety of systems. We here consider an adaptive network of oscillators with a stochastic, fitness-based, rule of connectivity, and show that it self-organizes from fragmented and incoherent states to connected and synchronized ones. The synchronization and percolation are associated to abrupt transitions, and they are concurrently (and significantly) enhanced as compared to the non-adaptive case. Finally we provide evidence that only partial adaptation is sufficient to determine these enhancements. Our study, therefore, indicates that inclusion of simple adaptive mechanisms can efficiently describe some emergent features of networked systems’ collective behaviors, and suggests also self-organized ways to control synchronization and percolation in natural and social systems.

  12. Mesoscale modeling of intergranular bubble percolation in nuclear fuels

    SciTech Connect

    Millett, Paul C.; Tonks, Michael; Biner, S. B.

    2012-04-15

    Phase-field simulations are used to examine the variability of intergranular fission gas bubble growth and percolation on uranium dioxide grain boundaries on a mesoscopic length scale. Three key parameters are systematically varied in this study: the contact angle (or dihedral angle) defining the bubble shape, the initial bubble density on the grain boundary plane, and the ratio of the gas diffusivity on the grain boundary versus the grain interiors. The simulation results agree well with previous experimental data obtained for bubble densities and average bubble areas during coalescence events. Interestingly, the rate of percolation is found to be highly variable, with a large dependency on the contact angle and the initial bubble density and little-to-no dependency on the grain boundary gas diffusivity.

  13. Effect of threshold disorder on the quorum percolation model.

    PubMed

    Monceau, Pascal; Renault, Renaud; Métens, Stéphane; Bottani, Samuel

    2016-07-01

    We study the modifications induced in the behavior of the quorum percolation model on neural networks with Gaussian in-degree by taking into account an uncorrelated Gaussian thresholds variability. We derive a mean-field approach and show its relevance by carrying out explicit Monte Carlo simulations. It turns out that such a disorder shifts the position of the percolation transition, impacts the size of the giant cluster, and can even destroy the transition. Moreover, we highlight the occurrence of disorder independent fixed points above the quorum critical value. The mean-field approach enables us to interpret these effects in terms of activation probability. A finite-size analysis enables us to show that the order parameter is weakly self-averaging with an exponent independent on the thresholds disorder. Last, we show that the effects of the thresholds and connectivity disorders cannot be easily discriminated from the measured averaged physical quantities. PMID:27575157

  14. MESOSCALE MODELING OF INTERGRANULAR BUBBLE PERCOLATION IN NUCLEAR FUELS

    SciTech Connect

    Paul C. Millett; Michael Tonks; S. B. Biner

    2012-04-01

    Phase-field simulations are used to examine the variability of intergranular fission gas bubble growth and percolation on uranium dioxide grain boundaries on a mesoscopic length scale. Three key parameters are systematically varied in this study: the contact angle (or dihedral angle) defining the bubble shape, the initial bubble density on the grain boundary plane, and the ratio of the gas diffusivity on the grain boundary versus the grain interiors. The simulation results agree well with previous experimental data obtained for bubble densities and average bubble areas during coalescence events. Interestingly, the rate of percolation is found to be highly variable, with a large dependency on the contact angle and the initial bubble density, and little-to-no dependency on the grain boundary gas diffusivity.

  15. Finite-size effects and percolation properties of Poisson geometries.

    PubMed

    Larmier, C; Dumonteil, E; Malvagi, F; Mazzolo, A; Zoia, A

    2016-07-01

    Random tessellations of the space represent a class of prototype models of heterogeneous media, which are central in several applications in physics, engineering, and life sciences. In this work, we investigate the statistical properties of d-dimensional isotropic Poisson geometries by resorting to Monte Carlo simulation, with special emphasis on the case d=3. We first analyze the behavior of the key features of these stochastic geometries as a function of the dimension d and the linear size L of the domain. Then, we consider the case of Poisson binary mixtures, where the polyhedra are assigned two labels with complementary probabilities. For this latter class of random geometries, we numerically characterize the percolation threshold, the strength of the percolating cluster, and the average cluster size. PMID:27575099

  16. Percolation threshold determines the optimal population density for public cooperation

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Szolnoki, Attila; Perc, Matjaž

    2012-03-01

    While worldwide census data provide statistical evidence that firmly link the population density with several indicators of social welfare, the precise mechanisms underlying these observations are largely unknown. Here we study the impact of population density on the evolution of public cooperation in structured populations and find that the optimal density is uniquely related to the percolation threshold of the host graph irrespective of its topological details. We explain our observations by showing that spatial reciprocity peaks in the vicinity of the percolation threshold, when the emergence of a giant cooperative cluster is hindered neither by vacancy nor by invading defectors, thus discovering an intuitive yet universal law that links the population density with social prosperity.

  17. Concurrent enhancement of percolation and synchronization in adaptive networks.

    PubMed

    Eom, Young-Ho; Boccaletti, Stefano; Caldarelli, Guido

    2016-01-01

    Co-evolutionary adaptive mechanisms are not only ubiquitous in nature, but also beneficial for the functioning of a variety of systems. We here consider an adaptive network of oscillators with a stochastic, fitness-based, rule of connectivity, and show that it self-organizes from fragmented and incoherent states to connected and synchronized ones. The synchronization and percolation are associated to abrupt transitions, and they are concurrently (and significantly) enhanced as compared to the non-adaptive case. Finally we provide evidence that only partial adaptation is sufficient to determine these enhancements. Our study, therefore, indicates that inclusion of simple adaptive mechanisms can efficiently describe some emergent features of networked systems' collective behaviors, and suggests also self-organized ways to control synchronization and percolation in natural and social systems. PMID:27251577

  18. Random geometric graph description of connectedness percolation in rod systems

    NASA Astrophysics Data System (ADS)

    Chatterjee, Avik P.; Grimaldi, Claudio

    2015-09-01

    The problem of continuum percolation in dispersions of rods is reformulated in terms of weighted random geometric graphs. Nodes (or sites or vertices) in the graph represent spatial locations occupied by the centers of the rods. The probability that an edge (or link) connects any randomly selected pair of nodes depends upon the rod volume fraction as well as the distribution over their sizes and shapes, and also upon quantities that characterize their state of dispersion (such as the orientational distribution function). We employ the observation that contributions from closed loops of connected rods are negligible in the limit of large aspect ratios to obtain percolation thresholds that are fully equivalent to those calculated within the second-virial approximation of the connectedness Ornstein-Zernike equation. Our formulation can account for effects due to interactions between the rods, and many-body features can be partially addressed by suitable choices for the edge probabilities.

  19. Quantum walk coherences on a dynamical percolation graph

    NASA Astrophysics Data System (ADS)

    Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine

    2015-08-01

    Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media.

  20. Tritium percolation, convection, and permeation in fusion solid breeder blankets

    SciTech Connect

    Billone, M.C.; Liu, Y.Y.

    1985-01-01

    Models are developed to describe the percolation of released tritium through the breeder interconnected porosity to the purge stream, convection of tritium by the helium purge stream, and leakage or permeation of tritium through the structural material to the primary coolant system. Important parameters in the models are tritium generation rate, breeder microstructure, tritium species in the gas phase, temperatures, tritium diffusivities and permeabilities, and effectiveness of oxide barriers.

  1. Microwave study of superconducting Sn films above and below percolation

    NASA Astrophysics Data System (ADS)

    Beutel, Manfred H.; Ebensperger, Nikolaj G.; Thiemann, Markus; Untereiner, Gabriele; Fritz, Vincent; Javaheri, Mojtaba; Nägele, Jonathan; Rösslhuber, Roland; Dressel, Martin; Scheffler, Marc

    2016-08-01

    The electronic properties of superconducting Sn films ({T}{{c}}≈ 3.8 {{K}}) change significantly when reducing the film thickness down to a few {nm}, in particular close to the percolation threshold. The low-energy electrodynamics of such Sn samples can be probed via microwave spectroscopy, e.g. with superconducting stripline resonators. Here we study Sn thin films, deposited via thermal evaporation—ranging in thickness between 38 and 842 {nm}—which encompasses the percolation transition. We use superconducting Pb stripline resonators to probe the microwave response of these Sn films in a frequency range between 4 and 20 {GHz} at temperatures from 7.2 down to 1.5 {{K}}. The measured quality factor of the resonators decreases with rising temperature due to enhanced losses. As a function of the sample thickness we observe three regimes with significantly different properties: samples below percolation, i.e. ensembles of disconnected superconducting islands, exhibit dielectric properties with negligible losses, demonstrating that macroscopic current paths are required for appreciable dynamical conductivity of Sn at GHz frequencies. Thick Sn films, as the other limit, lead to low-loss resonances both above and below T c of Sn, as expected for bulk conductors. But in an intermediate thickness regime, just above percolation and with labyrinth-like morphology of the Sn, we observe a quite different behavior: the superconducting state has a microwave response similar to the thicker, completely covering films with low microwave losses; but the metallic state of these Sn films is so lossy that resonator operation is suppressed completely.

  2. Cell Invasion in Collagen Scaffold Architectures Characterized by Percolation Theory.

    PubMed

    Ashworth, Jennifer C; Mehr, Marco; Buxton, Paul G; Best, Serena M; Cameron, Ruth E

    2015-06-24

    The relationship between biological scaffold interconnectivity and cell migration is an important but poorly understood factor in tissue regeneration. Here a scale-independent technique for characterization of collagen scaffold interconnectivity is presented, using a combination of X-ray microcomputed tomography and percolation theory. Confocal microscopy of connective tissue cells reveals this technique as highly relevant for determining the extent of cell invasion. PMID:25881025

  3. Rapidity long range correlations, parton percolation and color glass condensate

    SciTech Connect

    Bautista, I.; Pajares, C.; Dias de Deus, J.

    2011-05-23

    The similarities between string percolation and Glasma results are emphasized, special attention being paid to rapidity long range correlations, ridge structure and elliptic flow. As the string density of high multiplicity pp collisions at LHC energies has similar value as the corresponding to Au-Au semi-central collisions at RHIC we also expect in pp collisions long rapidity correlations and ridge structure, extended more than 8 units in rapidity.

  4. Percolation Problem Describing +/- J Ising Spin Glass System

    NASA Astrophysics Data System (ADS)

    Kasai, Y.; Okiji, A.

    1988-05-01

    The critical concentration of the extended percolation problem on the simple cubic lattice is determined with reference to Bhatt, Young, Ogielski and Morgenstern's simulation data of transition temperature. A relation of dimensional invariants for the critical concentration suggests that in the spin glass phase an infinite number of infinitely-large clusters coexist and each of those clusters is confined in a domain with a connectivity dimension ~ 1.4.

  5. Correlation function of four spins in the percolation model

    NASA Astrophysics Data System (ADS)

    Dotsenko, Vladimir S.

    2016-10-01

    By using the Coulomb gas technics we calculate the four-spin correlation function in the percolation q → 1 limit of the Potts model. It is known that the four-point functions define the actual fusion rules of a particular model. In this respect, we find that fusion of two spins, of dimension Δσ =5/96, produce a new channel, in the 4-point function, which is due to the operator with dimension Δ = 5 / 8.

  6. Can percolation theory be applied to the stock market?

    NASA Astrophysics Data System (ADS)

    Stauffer, Dietrich

    1998-11-01

    The fluctuations of the stock market - the price changes per unit time - seem to deviate from Gaussians for short time steps. Power laws, exponentials, and multifractal descriptions have been offered to explain this short-time behavior. Microscopic models dealing with the decisions of single traders on the market have tried to reproduce this behavior. Possibly the simplest of these models is the herding approach of Cont and Bouchaud. Here a total of Nt traders cluster together randomly as in percolation theory. Each cluster randomly decides by buy or sell an amount proportional to its size, or not to trade. Monte Carlo simulations in two to seven dimensions at the percolation threshold depend on the number N of clusters trading within one time step. For N 1, the changes follow a power law; for 1 N Nt they are bell-shaped with power-law tails; for N Nt they crossover to a Gaussian. The correlations in the absolute value of the change decay slowly with time. Thus percolation not only describes the origin of life or the boiling of your breakfast egg, but also explains why we are not rich.

  7. Cities and regions in Britain through hierarchical percolation.

    PubMed

    Arcaute, Elsa; Molinero, Carlos; Hatna, Erez; Murcio, Roberto; Vargas-Ruiz, Camilo; Masucci, A Paolo; Batty, Michael

    2016-04-01

    Urban systems present hierarchical structures at many different scales. These are observed as administrative regional delimitations which are the outcome of complex geographical, political and historical processes which leave almost indelible footprints on infrastructure such as the street network. In this work, we uncover a set of hierarchies in Britain at different scales using percolation theory on the street network and on its intersections which are the primary points of interaction and urban agglomeration. At the larger scales, the observed hierarchical structures can be interpreted as regional fractures of Britain, observed in various forms, from natural boundaries, such as National Parks, to regional divisions based on social class and wealth such as the well-known North-South divide. At smaller scales, cities are generated through recursive percolations on each of the emerging regional clusters. We examine the evolution of the morphology of the system as a whole, by measuring the fractal dimension of the clusters at each distance threshold in the percolation. We observe that this reaches a maximum plateau at a specific distance. The clusters defined at this distance threshold are in excellent correspondence with the boundaries of cities recovered from satellite images, and from previous methods using population density.

  8. General and exact approach to percolation on random graphs

    NASA Astrophysics Data System (ADS)

    Allard, Antoine; Hébert-Dufresne, Laurent; Young, Jean-Gabriel; Dubé, Louis J.

    2015-12-01

    We present a comprehensive and versatile theoretical framework to study site and bond percolation on clustered and correlated random graphs. Our contribution can be summarized in three main points. (i) We introduce a set of iterative equations that solve the exact distribution of the size and composition of components in finite-size quenched or random multitype graphs. (ii) We define a very general random graph ensemble that encompasses most of the models published to this day and also makes it possible to model structural properties not yet included in a theoretical framework. Site and bond percolation on this ensemble is solved exactly in the infinite-size limit using probability generating functions [i.e., the percolation threshold, the size, and the composition of the giant (extensive) and small components]. Several examples and applications are also provided. (iii) Our approach can be adapted to model interdependent graphs—whose most striking feature is the emergence of an extensive component via a discontinuous phase transition—in an equally general fashion. We show how a graph can successively undergo a continuous then a discontinuous phase transition, and preliminary results suggest that clustering increases the amplitude of the discontinuity at the transition.

  9. Onsite synthesis of thermally percolated nanocomposite for thermal interface material

    NASA Astrophysics Data System (ADS)

    Obori, Masanao; Nita, Satoshi; Miura, Asuka; Shiomi, Junichiro

    2016-02-01

    To solve the problem of lack of thermal percolation in thermal interface materials (TIM), we propose a two-step synthesis method to realize thermally percolated nanofiber network in polymer matrix. First, by packing vapor grown carbon fibers (VGCFs) on top of aluminum heat sink and integrally sintering the whole material, the aluminum partially melts and connects the VGCF network, forming a continuous thermal path, i.e., realizing thermal percolation. Second, the pores in the hybrid network are filled by Silicone oil to obtain a polymer nanocomposite. The direct synthesis of VGCF-aluminum network on the heat sink (onsite synthesis) omits pasting process of the TIM, and thus, removes the restriction on the network morphology. By this onsite synthesis method, we reinforce thermal contact not only between the nanofibers but also between nanofibers and the heat sink. By testing the developed TIM for thermal contact to silicon surface, we demonstrate the potential to significantly reduce thermal contact resistance from what can be achieved by a conventional TIM.

  10. Percolation of heteronuclear dimers irreversibly deposited on square lattices

    NASA Astrophysics Data System (ADS)

    Gimenez, M. C.; Ramirez-Pastor, A. J.

    2016-09-01

    The percolation problem of irreversibly deposited heteronuclear dimers on square lattices is studied. A dimer is composed of two segments, and it occupies two adjacent adsorption sites. Each segment can be either a conductive segment (segment type A ) or a nonconductive segment (segment type B ). Three types of dimers are considered: A A , B B , and A B . The connectivity analysis is carried out by accounting only for the conductive segments (segments type A ). The model offers a simplified representation of the problem of percolation of defective (nonideal) particles, where the presence of defects in the system is simulated by introducing a mixture of conductive and nonconductive segments. Different cases were investigated, according to the sequence of deposition of the particles, the types of dimers involved in the process, and the degree of alignment of the deposited objects. By means of numerical simulations and finite-size scaling analysis, the complete phase diagram separating a percolating from a nonpercolating region was determined for each case. Finally, the consistency of our results was examined by comparing with previous data in the literature for linear k -mers (particles occupying k adjacent sites) with defects.

  11. Percolative theories of strongly disordered ceramic high-temperature superconductors

    PubMed Central

    Phillips, J. C.

    2010-01-01

    Optimally doped ceramic superconductors (cuprates, pnictides, etc.) exhibit transition temperatures T c much larger than strongly coupled metallic superconductors like Pb (T c = 7.2 K, E g/kT c = 4.5) and exhibit many universal features that appear to contradict the Bardeen, Cooper, and Schrieffer theory of superconductivity based on attractive electron-phonon pairing interactions. These complex materials are strongly disordered and contain several competing nanophases that cannot be described effectively by parameterized Hamiltonian models, yet their phase diagrams also exhibit many universal features in both the normal and superconductive states. Here we review the rapidly growing body of experimental results that suggest that these anomalously universal features are the result of marginal stabilities of the ceramic electronic and lattice structures. These dual marginal stabilities favor both electronic percolation of a dopant network and rigidity percolation of the deformed lattice network. This “double percolation” model has previously explained many features of the normal-state transport properties of these materials and is the only theory that has successfully predicted strict lowest upper bounds for T c in the cuprate and pnictide families. Here it is extended to include Coulomb correlations and percolative band narrowing, as well as an angular energy gap equation, which rationalizes angularly averaged gap/T c ratios, and shows that these are similar to those of conventional strongly coupled superconductors. PMID:20080578

  12. Loopless nontrapping invasion-percolation model for fracking.

    PubMed

    Norris, J Quinn; Turcotte, Donald L; Rundle, John B

    2014-02-01

    Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low-permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we utilize a loopless nontrapping invasion percolation previously introduced to model optimal polymers in a strongly disordered medium and for determining minimum energy spanning trees on a lattice. We performed numerical simulations on a two-dimensional square lattice and find significant differences from other percolation models. Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good agreement with a power-law frequency-area distribution. These results are generally consistent with the observed distribution of microseismicity observed during a high-volume frack.

  13. Covering by random intervals and one-dimensional continuum percolation

    SciTech Connect

    Domb, C. )

    1989-04-01

    A brief historical introduction is given to the problem of covering a line by random overlapping intervals. The problem for equal intervals was first solved by Whitworth in the 1890s. A brief resume is given of his solution. The advantages of the present author's approach, which uses a Poisson process, are outlined, and a solution is derived by Laplace transforms. The asymptotic behavior as the line becomes long is calculated and is related to the one-dimensional continuum percolation problem. It is shown that as long as the mean interval size is finite, the probability of complete coverage decays exponentially, so that the critical percolation probability p{sub c} = 1. However, as soon as the mean interval size becomes infinite, the critical percolation probability p{sub c} switches to 0. This is in accord with previous results for a lattice model by Chinese workers, but differs from those of Schulman. A possible reason for the discrepancy is a difference in boundary conditions.

  14. Cities and regions in Britain through hierarchical percolation

    PubMed Central

    Arcaute, Elsa; Molinero, Carlos; Hatna, Erez; Murcio, Roberto; Vargas-Ruiz, Camilo; Masucci, A. Paolo; Batty, Michael

    2016-01-01

    Urban systems present hierarchical structures at many different scales. These are observed as administrative regional delimitations which are the outcome of complex geographical, political and historical processes which leave almost indelible footprints on infrastructure such as the street network. In this work, we uncover a set of hierarchies in Britain at different scales using percolation theory on the street network and on its intersections which are the primary points of interaction and urban agglomeration. At the larger scales, the observed hierarchical structures can be interpreted as regional fractures of Britain, observed in various forms, from natural boundaries, such as National Parks, to regional divisions based on social class and wealth such as the well-known North–South divide. At smaller scales, cities are generated through recursive percolations on each of the emerging regional clusters. We examine the evolution of the morphology of the system as a whole, by measuring the fractal dimension of the clusters at each distance threshold in the percolation. We observe that this reaches a maximum plateau at a specific distance. The clusters defined at this distance threshold are in excellent correspondence with the boundaries of cities recovered from satellite images, and from previous methods using population density. PMID:27152211

  15. Controlling electrical percolation in multicomponent carbon nanotube dispersions.

    PubMed

    Kyrylyuk, Andriy V; Hermant, Marie Claire; Schilling, Tanja; Klumperman, Bert; Koning, Cor E; van der Schoot, Paul

    2011-06-01

    Carbon nanotube reinforced polymeric composites can have favourable electrical properties, which make them useful for applications such as flat-panel displays and photovoltaic devices. However, using aqueous dispersions to fabricate composites with specific physical properties requires that the processing of the nanotube dispersion be understood and controlled while in the liquid phase. Here, using a combination of experiment and theory, we study the electrical percolation of carbon nanotubes introduced into a polymer matrix, and show that the percolation threshold can be substantially lowered by adding small quantities of a conductive polymer latex. Mixing colloidal particles of different sizes and shapes (in this case, spherical latex particles and rod-like nanotubes) introduces competing length scales that can strongly influence the formation of the system-spanning networks that are needed to produce electrically conductive composites. Interplay between the different species in the dispersions leads to synergetic or antagonistic percolation, depending on the ease of charge transport between the various conductive components. PMID:21478868

  16. Transport pathways within percolating pore space networks of granular materials

    NASA Astrophysics Data System (ADS)

    Vo, Kevin; Walker, David M.; Tordesillas, Antoinette

    2013-06-01

    Granular media can be regarded as a mixture of two components: grains and the material filling the voids or pores between the grains. Pore properties give rise to a range of applications such as modelling ground water flow, carbon capture and sequestration. The grains within a dense granular material respond to deformation (e.g., shearing or compression) by rearranging to create local zones of compression and zones of dilatation (i.e., regions of high pore space). Descriptions of the deformation are typically focused on analysis of the solid skeleton via topology of physical contact networks of grains but an alternative perspective is to consider network representations of the evolving anisotropic pore space. We demonstrate how to construct pore space networks that express the local size of voids about a grain through network edge weights. We investigate sectors of the loading history when a percolating giant component of the pore space network exists. At these states the grains are in a configuration more prone to the efficient transport of material (e.g., fluid flow, mineral/gas deposits). These pathways can be found through examination of the weighted shortest paths percolating the boundaries of the material. In particular, network weights biased towards large void space results in efficient percolating pathways traversing the shear band in the direction of principal stress within a 2D granular assembly subject to high strains.

  17. Percolation and cooperation with mobile agents: Geometric and strategy clusters

    NASA Astrophysics Data System (ADS)

    Vainstein, Mendeli H.; Brito, Carolina; Arenzon, Jeferson J.

    2014-08-01

    We study the conditions for persistent cooperation in an off-lattice model of mobile agents playing the Prisoner's Dilemma game with pure, unconditional strategies. Each agent has an exclusion radius rP, which accounts for the population viscosity, and an interaction radius rint, which defines the instantaneous contact network for the game dynamics. We show that, differently from the rP=0 case, the model with finite-sized agents presents a coexistence phase with both cooperators and defectors, besides the two absorbing phases, in which either cooperators or defectors dominate. We provide, in addition, a geometric interpretation of the transitions between phases. In analogy with lattice models, the geometric percolation of the contact network (i.e., irrespective of the strategy) enhances cooperation. More importantly, we show that the percolation of defectors is an essential condition for their survival. Differently from compact clusters of cooperators, isolated groups of defectors will eventually become extinct if not percolating, independently of their size.

  18. The Fermi paradox: An approach based on percolation theory

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1993-01-01

    If even a very small fraction of the hundred billion stars in the galaxy are home to technological civilizations which colonize over interstellar distances, the entire galaxy could be completely colonized in a few million years. The absence of such extraterrestrial civilizations visiting Earth is the Fermi paradox. A model for interstellar colonization is proposed using the assumption that there is a maximum distance over which direct interstellar colonization is feasible. Due to the time lag involved in interstellar communications, it is assumed that an interstellar colony will rapidly develop a culture independent of the civilization that originally settled it. Any given colony will have a probability P of developing a colonizing civilization, and a probability (1-P) that it will develop a non-colonizing civilization. These assumptions lead to the colonization of the galaxy occuring as a percolation problem. In a percolation problem, there will be a critical value of percolation probability, P(sub c). For P less than P(sub c), colonization will always terminate after a finite number of colonies. Growth will occur in 'clusters', with the outside of each cluster consisting of non-colonizing civilizations. For P greater than P(sub c), small uncolonized voids will exist, bounded by non-colonizing civilizations. For P approximately = to P(sub c), arbitrarily large filled regions exist, and also arbitrarily large empty regions.

  19. Loopless nontrapping invasion-percolation model for fracking.

    PubMed

    Norris, J Quinn; Turcotte, Donald L; Rundle, John B

    2014-02-01

    Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low-permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we utilize a loopless nontrapping invasion percolation previously introduced to model optimal polymers in a strongly disordered medium and for determining minimum energy spanning trees on a lattice. We performed numerical simulations on a two-dimensional square lattice and find significant differences from other percolation models. Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good agreement with a power-law frequency-area distribution. These results are generally consistent with the observed distribution of microseismicity observed during a high-volume frack. PMID:25353434

  20. Cities and regions in Britain through hierarchical percolation

    NASA Astrophysics Data System (ADS)

    Arcaute, Elsa; Molinero, Carlos; Hatna, Erez; Murcio, Roberto; Vargas-Ruiz, Camilo; Masucci, A. Paolo; Batty, Michael

    2016-04-01

    Urban systems present hierarchical structures at many different scales. These are observed as administrative regional delimitations which are the outcome of complex geographical, political and historical processes which leave almost indelible footprints on infrastructure such as the street network. In this work, we uncover a set of hierarchies in Britain at different scales using percolation theory on the street network and on its intersections which are the primary points of interaction and urban agglomeration. At the larger scales, the observed hierarchical structures can be interpreted as regional fractures of Britain, observed in various forms, from natural boundaries, such as National Parks, to regional divisions based on social class and wealth such as the well-known North-South divide. At smaller scales, cities are generated through recursive percolations on each of the emerging regional clusters. We examine the evolution of the morphology of the system as a whole, by measuring the fractal dimension of the clusters at each distance threshold in the percolation. We observe that this reaches a maximum plateau at a specific distance. The clusters defined at this distance threshold are in excellent correspondence with the boundaries of cities recovered from satellite images, and from previous methods using population density.

  1. Loopless nontrapping invasion-percolation model for fracking

    NASA Astrophysics Data System (ADS)

    Norris, J. Quinn; Turcotte, Donald L.; Rundle, John B.

    2014-02-01

    Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low-permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we utilize a loopless nontrapping invasion percolation previously introduced to model optimal polymers in a strongly disordered medium and for determining minimum energy spanning trees on a lattice. We performed numerical simulations on a two-dimensional square lattice and find significant differences from other percolation models. Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good agreement with a power-law frequency-area distribution. These results are generally consistent with the observed distribution of microseismicity observed during a high-volume frack.

  2. Investigation of salt stratified solar pond operational characteristics

    NASA Astrophysics Data System (ADS)

    Newell, T. A.

    1980-12-01

    Operational characteristics and economic feasibility of the salt stratified solar pond are examined. A one dimensional transient numerical model is developed which offers flexibility for pond property specifications, thermal energy performance prediction, and thermal energy extraction uses. Stability of the gradient zone of a salt stratified pond is one of the most important areas of pond operational feasibility. A criterion for the operational state of a solar pond which constrains the allowable salinity and temperature profiles is developed and extended for use as a design tool for solar ponds. The decanting method of thermal energy extraction is most feasible for large scale ponds. A two dimensional numerical fluid dynamics program has been developed for this purpose and examines the effect of inlet and outlet jet placement in the storage zone of a pond. A simple laboratory experiment for qualitative investigations of solar pond phenomena is described.

  3. Sport fishery potential of power plant cooling ponds: Final report

    SciTech Connect

    Heidinger, R.C.; Lewis, W.M.

    1986-10-01

    This research was undertaken to determine if cooling ponds could serve as habitat for several coolwater fish species and also to evaluate the potential use of cooling ponds as nursery areas for receiving waters. The work was conducted on two cooling ponds in northern Illinois. Walleye (Stizostedion vitreum), muskellunge (Esox masquinongy), striped bass (Morone saxatilis) fingerlings, and adult threadfin shad (Dorosoma petenense) were stocked into both cooling ponds. The hybrids between the striped bass and white bass (M. chrysops) had been previously stocked into Collins Pond. Smallmouth bass (Micropterus dolomieui) fingerlings and larval striped bass and walleye were stocked in Dresden Pond. Several sampling techniques including seining, electrofishing, and rotenoning were used to monitor growth and survival of stocked species. In addition, escapement of stocked and indigenous species was monitored at the Dresden Pond spillway. Walleye, muskellunge, striped bass and hybrid striped bass exhibited excellent growth in Collins Pond as did smallmouth bass in Dresden Pond. One of the primary differences between an open system (such as Dresden Pond) and a closed system (such as Collins Pond) is the potential that the open system has to serve as a fish nursery area for receiving waters. The stocking of ''coolwater'' species in a closed type system such as Collins Pond is an effective way to control and maintain selected sport species. Dresden Pond was not open to public fishing during this study, but Collins Pond developed an excellent sport fishery as a result of these stockings.

  4. A review of the salt-gradient solar pond technology

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H.

    1982-01-01

    The state of the salt-gradient solar pond technology is reviewed. Highlights of findings and experiences from existing ponds to data are presented, and the behavior, energy yield, operational features, and economics of solar ponds are examined. It is concluded that salt-gradient solar ponds represent a technically feasible, environmentally benign, and economically attractive energy producing alternative. In order to bring this emerging technology to maturity, however, much research and development effort remains to be undertaken. Specific R&D areas requiring the attention and action of technical workers and decision-makers are discussed, both from the perspectives of smaller, thermally-oriented ponds and larger, electricity generating ponds.

  5. SOLPOND: a simulation program for salinity gradient solar ponds

    SciTech Connect

    Henderson, J.; Leboeuf, C.M.

    1980-01-01

    A computer simulation design tool was developed to simulate dynamic thermal performance for salinity gradient solar ponds. Dynamic programming techniques allow the user significant flexibility in analyzing pond performance under realistic load and weather conditions. Finite element techniques describe conduction heat transfer through the pond, earth, and edges. Results illustrate typical thermal performance of salinity gradient ponds. Sensitivity studies of salty pond thermal performance with respect to geometry, load, and optical transmission are included. Experimental validation of the program with an operating pond is also presented.

  6. Heat extraction from a large solar pond

    NASA Astrophysics Data System (ADS)

    Wittenberg, L. J.; Etter, D. E.

    1982-08-01

    The largest operational, salt-gradient solar pond in the United States, occupying 2000 squares meters, was constructed during 1978 in Miamisburg, Ohio. The heat from this solar pond, nearly 1055 GJ/y (1000 million Btu/y) is used to heat an outdoor swimming pool in the summer and an adjacent recreation building during part of the winter. A new heat exchanger system was installed externally to the pond and operated successfully to deliver 391 GJ (271 million Btu) of heat during May to June. Hot brine water is drawn through a diffuser by a self-priming pump fabricated from fiberglass reinforced plastic. The brine water passes through copper 10% nickel tubes of a tube-and-shell heat exchanger and is then returned to the bottom of the pond. Cooling water from the swimming pool circulates through the shell side of the heat exchanger. Several designs and flow velocities of the brine inlet and outlet diffusers into the pond were tested in order to minimize the effect of turbulence upon the salt gradient zone.

  7. Heat extraction from a large solar pond

    SciTech Connect

    Wittenberg, L.J.; Etter, D.E.

    1982-08-01

    The largest operational, salt-gradient solar pond in the United States, occupying 2000 m/sup 2/, was constructed during 1978 in Miamisburg, Ohio. The heat from this solar pond, nearly 1055 GJ/y (1000 million Btu/y) is used to heat an outdoor swimming pool in the summer and an adjacent recreation building during part of the winter. A new heat exchanger system has been installed externally to the pond and operated successfully to deliver 391 GJ (371 million Btu) of heat during May-June. Hot brine water is drawn through a diffuser by a self-priming pump fabricated from fiberglass reinforced plastic. The brine water passes through copper-10% nickel tubes of a tube-and-shell heat exchanger and is then returned to the bottom of the pond. Cooling water from the swimming pool circulates through the shell side of the heat exchanger. Several designs and flow velocities of the brine inlet and outlet diffusers into the pond have been tested in order to minimize the effect of turbulence upon the salt gradient zone.

  8. Heat extraction from a large solar pond

    SciTech Connect

    Wittenberg, L.J.; Etter, D.E.

    1982-01-01

    The largest operational, salt-gradient solar pond in the United States, occupying 2000 m/sup 2/, was constructed during 1978 in Miamisburg, Ohio. The heat from this solar pond, nearly 1055 GJ/yr (1,000 million Btu/yr) is used to heat an outdoor swimming pool in the summer and an adjacent recreation building during part of the winter. A new heat exchanger system has been installed externally to the pond and operated successfully to deliver 391 GJ (371 million BTU) of heat during May-June. Hot brine water is drawn through a diffuser by a self-priming pump fabricated from fiberglass reinforced plastic. The brine water passes through copper-10% nickel tubes of a tube-and-shell heat exchanger and is then returned to the bottom of the pond. Cooling water from the swimming pool circulates through the shell side of the heat exchanger. Several designs and flow velocities of the brine inlet and outlet diffusers into the pond have been tested in order to minimize the effect of turbulence upon the salt gradient zone.

  9. Anaerobic pond treatment of wastewater containing sulphate.

    PubMed

    Rajbhandari, B K; Annachhatre, A P

    2007-01-01

    Anaerobic ponds are usually used for treatment of industrial and agricultural wastes which contain high organic matter and sulphate. Competition for substrate between sulphate reducing bacteria and methane producing archaea, and the inhibitory effects of sulphide produced from microbial sulphate reduction reported in the literature varied considerably. In this research, a laboratory scale column-in-series anaerobic pond reactor, consisting of five cylindrical columns of acrylic tubes, was operated to evaluate the effect of COD and sulphate ratio on pond performance treating wastewater containing high organic matter and sulphate from a tapioca starch industry. The result depicted that no adverse effect of COD:SO4 ratios between 5 and 20 on overall COD removal performance of anaerobic pond operated with organic loading rate (OLR) of 150 to 600 g COD/m3d. Sulphate reducing bacteria could out-compete methane producing archaea for the same substrate at COD:SO4 ratio equal to or lower than 5 and OLR greater than 300 g COD/m3d. Sulphide inhibition was not observed on overall performance of pond up to an influent sulphate concentration of 650 mg/L.

  10. Event-based stormwater management pond runoff temperature model

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Sattar, A. M. A.; Thompson, A. M.

    2016-09-01

    Stormwater management wet ponds are generally very shallow and hence can significantly increase (about 5.4 °C on average in this study) runoff temperatures in summer months, which adversely affects receiving urban stream ecosystems. This study uses gene expression programming (GEP) and artificial neural networks (ANN) modeling techniques to advance our knowledge of the key factors governing thermal enrichment effects of stormwater ponds. The models developed in this study build upon and compliment the ANN model developed by Sabouri et al. (2013) that predicts the catchment event mean runoff temperature entering the pond as a function of event climatic and catchment characteristic parameters. The key factors that control pond outlet runoff temperature, include: (1) Upland Catchment Parameters (catchment drainage area and event mean runoff temperature inflow to the pond); (2) Climatic Parameters (rainfall depth, event mean air temperature, and pond initial water temperature); and (3) Pond Design Parameters (pond length-to-width ratio, pond surface area, pond average depth, and pond outlet depth). We used monitoring data for three summers from 2009 to 2011 in four stormwater management ponds, located in the cities of Guelph and Kitchener, Ontario, Canada to develop the models. The prediction uncertainties of the developed ANN and GEP models for the case study sites are around 0.4% and 1.7% of the median value. Sensitivity analysis of the trained models indicates that the thermal enrichment of the pond outlet runoff is inversely proportional to pond length-to-width ratio, pond outlet depth, and directly proportional to event runoff volume, event mean pond inflow runoff temperature, and pond initial water temperature.

  11. Effects of urbanization on three ponds in Middleton, Wisconsin

    USGS Publications Warehouse

    House, Leo B.

    1984-01-01

    A digital hydrologic model was used to simulate the effects of future residential development on pond inflow volumes and resulting water levels of three ponds in Middleton, Wisconsin. The model computed the daily water budget and the resulting water level for each pond. The results of the model calibration are presented in the report, along with the existing watershed hydrologic conditions and runoff volumes for the 1982 study period. Data was collected during 1982 to claibrate the model; the data included pond stage, ground-water levels, precipitation and other meteorological characteristics. In addition, water-quality samples were collected at each pond to characterize the water quality. Simulation of pond levels with the 1982 rainfall and fully developed watersheds did not result in stages greater than those observed in 1982. Simulation of pond levels with rainfall having a 20-year recurrence interval (1978) and hypothetical, fully developed watersheds resulted in maximum pond stages above those observed in 1982. Peak stage of Tiedeman 's Pond would increase by 2.77 feet, Stricker 's Pond by 3.91 feet, and Esser 's Pond by 1.44 feet. Simulation of pond levels with an estimated 100-year rainfall and hyopthetical, fully developed watersheds would result in peak stage increases of 5.30, 5.32, and 1.97 feet above the peak 1982 observed stages for Tiedeman's, Stricker's, and Esser 's Ponds, respectively. (USGS)

  12. Limnological studies of Papnash pond, Bidar (Karnataka).

    PubMed

    Angadi, S B; Shiddamallayya, N; Patil, P C

    2005-04-01

    The Papnash pond is an oldest pond of Bidar, Kamataka state. It is situated at 77 degrees-32 longitude and 17 degrees-55 latitude, located 551 m above mean sea level. It has been used daily for bathing and washing of clothes by large number of pilgrims. The samples were collected fortnightly during October 1999 to September 2000 to analyze physico-chemical and biological status of water, such as temperature, pH, total alkalinity, total hardness, dissolved oxygen, free carbon dioxide, chloride, organic matter, nitrite, phosphate, sulphate and algal flora. Variations in physico-chemical parameters were noted. The results also revealed that the pond water was hard, alkaline and polluted. Totally 39 species of algae were reported from the four classes.

  13. Trace metal concentrations in oxidation ponds

    SciTech Connect

    Suffern, J.S.; Fitzgerald, C.M.; Szluha, A.T.

    1981-11-01

    Heavy metal concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the wastewater, sludge, and biotic components of the Oak Ridge National Laboratory oxidation ponds were examined to determine whether metals accumulated in tilapia. Results indicated that metal levels in the wastewater and biotic components are generally low and that the major metal reservoir is the sludge. Metals did not accumulate beyond established standards in the muscle or liver of tilapia grown in the oxidation ponds. This result may be partially due to the rapid growth rates of these fish (1-2 g fish/sup -1//day/sup -1/), with new tissue developing more rapidly than metals can accumulate. Another factor may be that the high concentrations of organic complexes in the ponds lower the availability of metals to the biota.

  14. Falmouth pond watchers: Water quality monitoring of Falmouth's coastal ponds. Report from the 1992 season

    SciTech Connect

    Howes, B.L.; Goehringer, D.D.

    1993-04-01

    1992 has seen a significant expansion in the focus of the Pond Watchers program. The long-term, high quality data base for the ponds is now enabling more emphasis on the ecological management and remediation aspects of the study, the ultimate goal of the program. Overall, 1992 saw only slight variation in the water quality conditions of Oyster, Little, Green, Great and Bournes Ponds from previous years, with a declining trend for Green Pond and small improvements in lower Great and Bournes Ponds. However, Oyster Pond showed a potentially significant improvement in bottom water oxygen conditions which suggests a new management direction for this system. All of the ponds continue to exhibit high nutrient levels and periodic bottom water oxygen depletion, especially in their upper reaches, and all stations exceed the nutrient levels specified by the Nutrient Overlay Bylaw. In contrast, the first year measurements in West Falmouth Harbor indicate high levels of water quality, although the inner reaches of the harbor do exceed those levels specified by the Bylaw.

  15. Salt Ponds, South San Francisco Bay

    NASA Technical Reports Server (NTRS)

    2002-01-01

    higher resolution 1000 pixel-wide image The red and green colors of the salt ponds in South San Francisco Bay are brilliant visual markers for astronauts. The STS-111 crew photographed the bay south of the San Mateo bridge in June, 2002. This photograph is timely because a large number of the salt ponds (more than 16,500 acres) that are owned by Cargill, Inc. will be sold in September for wetlands restoration-a restoration project second in size only to the Florida Everglades project. Rough boundaries of the areas to be restored are outlined on the image. Over the past century, more than 80% of San Francisco Bay's wetlands have been filled and developed or diked off for salt mining. San Francisco Bay has supported salt mining since 1854. Cargill has operated most of the bay's commercial salt ponds since 1978, and had already sold thousands of acres to the State of California and the Don Edwards National Wildlife Refuge. This new transaction will increase San Francisco Bay's existing tidal wetlands by 50%. The new wetlands, to be managed by the California Department of Fish and Game and the U.S. Fish and Wildlife Service, will join the Don Edwards National Wildlife Refuge, and provide valuable habitat for birds, fish and other wildlife. The wetlands will contribute to better water quality and flood control in the bay, and open up more coastline for public enjoyment. Additional information: Cargill Salt Ponds (PDF) Turning Salt Into Environmental Gold Salt Ponds on Way to Becoming Wetlands Historic Agreement Reached to Purchase San Francisco Bay Salt Ponds Astronaut photograph STS111-376-3 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth

  16. Graphene liquid crystal retarded percolation for new high-k materials

    PubMed Central

    Yuan, Jinkai; Luna, Alan; Neri, Wilfrid; Zakri, Cécile; Schilling, Tanja; Colin, Annie; Poulin, Philippe

    2015-01-01

    Graphene flakes with giant shape anisotropy are extensively used to establish connectedness electrical percolation in various heterogeneous systems. However, the percolation behaviour of graphene flakes has been recently predicted to be far more complicated than generally anticipated on the basis of excluded volume arguments. Here we confirm experimentally that graphene flakes self-assemble into nematic liquid crystals below the onset of percolation. The competition of percolation and liquid crystal transition provides a new route towards high-k materials. Indeed, near-percolated liquid-crystalline graphene-based composites display unprecedented dielectric properties with a dielectric constant improved by 260-fold increase as compared with the polymer matrix, while maintaining the loss tangent as low as 0.4. This performance is shown to depend on the structure of monodomains of graphene liquid-crystalline phases. Insights into how the liquid crystal phase transition interferes with percolation transition and thus alters the dielectric constant are discussed. PMID:26567720

  17. Graphene liquid crystal retarded percolation for new high-k materials

    NASA Astrophysics Data System (ADS)

    Yuan, Jinkai; Luna, Alan; Neri, Wilfrid; Zakri, Cécile; Schilling, Tanja; Colin, Annie; Poulin, Philippe

    2015-11-01

    Graphene flakes with giant shape anisotropy are extensively used to establish connectedness electrical percolation in various heterogeneous systems. However, the percolation behaviour of graphene flakes has been recently predicted to be far more complicated than generally anticipated on the basis of excluded volume arguments. Here we confirm experimentally that graphene flakes self-assemble into nematic liquid crystals below the onset of percolation. The competition of percolation and liquid crystal transition provides a new route towards high-k materials. Indeed, near-percolated liquid-crystalline graphene-based composites display unprecedented dielectric properties with a dielectric constant improved by 260-fold increase as compared with the polymer matrix, while maintaining the loss tangent as low as 0.4. This performance is shown to depend on the structure of monodomains of graphene liquid-crystalline phases. Insights into how the liquid crystal phase transition interferes with percolation transition and thus alters the dielectric constant are discussed.

  18. Percolation transition in thermal conductivity of β-Si3N4 filledepoxy

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan; Chen, Kexin; Kang, Feiyu

    2013-03-01

    Homemade β-Si3N4 particles of different aspect ratio and commercial epoxy resin were used to form heterogeneous composites and a percolation transition was observed. The pre-percolation phase, near percolation phase and post-percolation phase were discussed with different models. In the near percolation phase, multicrystal model was taken to modify the percolation scaling law and provide physical images to the dumb proportional coefficient. X-ray holograph was used to compare the 3D morphology of the composites, and surface modification was found capable of enhancing the particle dispersion. The aspect ratio dependence was also discussed and the competition between the bridging effect and the interface thermal resistance was considered as the cause of the turning point in the thermal conductivity.

  19. Graphene liquid crystal retarded percolation for new high-k materials.

    PubMed

    Yuan, Jinkai; Luna, Alan; Neri, Wilfrid; Zakri, Cécile; Schilling, Tanja; Colin, Annie; Poulin, Philippe

    2015-11-16

    Graphene flakes with giant shape anisotropy are extensively used to establish connectedness electrical percolation in various heterogeneous systems. However, the percolation behaviour of graphene flakes has been recently predicted to be far more complicated than generally anticipated on the basis of excluded volume arguments. Here we confirm experimentally that graphene flakes self-assemble into nematic liquid crystals below the onset of percolation. The competition of percolation and liquid crystal transition provides a new route towards high-k materials. Indeed, near-percolated liquid-crystalline graphene-based composites display unprecedented dielectric properties with a dielectric constant improved by 260-fold increase as compared with the polymer matrix, while maintaining the loss tangent as low as 0.4. This performance is shown to depend on the structure of monodomains of graphene liquid-crystalline phases. Insights into how the liquid crystal phase transition interferes with percolation transition and thus alters the dielectric constant are discussed.

  20. Natural or Simulated Ponds: An Environmental Baseline Study.

    ERIC Educational Resources Information Center

    Exline, Joseph D.

    1978-01-01

    Presents methods for analyzing soil and water samples in this classroom. Includes a classroom diagram, a listing of suggested materials, and the procedures for a classroom simulated pond. Relates classroom activities to work at a natural pond. (MA)

  1. Investigation of a ponding irrigation system to recycle agricultural wastewater.

    PubMed

    Chen, P H; Leung, K C; Wang, J T

    2000-08-01

    This article presents the results of natural carrying capacity of ponding irrigation system in Taoyuan agricultural zone, Taiwan. Both the systematic water quality and the ponding effects were examined. The ponding irrigation system included a flow channel and storage ponds. The data showed that most water characteristics deteriorated gradually from upper- to down-stream in the flow channel and the flow channel was not attributed to any self-purification in agricultural returning water practically. On the other hand, the results of storage ponds indicated that they can provide a natural treatment (i.e., the outlet water quality of the ponds is more desirable than that of the inlet). Consequently, the ponding irrigation system offers the natural self-purification in ponds to reuse and recycle the returning agricultural wastewater and to extend the irrigation capacity and efficiency.

  2. ESTIMATING AMPHIBIAN OCCUPANCY RATES IN PONDS UNDER COMPLEX SURVEY DESIGNS

    EPA Science Inventory

    Monitoring the occurrence of specific amphibian species in ponds is one component of the US Geological Survey's Amphibian Monitoring and Research Initiative. Two collaborative studies were conducted in Olympic National Park and southeastern region of Oregon. The number of ponds...

  3. 1. ENVIRONMENTAL VIEW OF SOUTHEAST PORTION OF LOWER POND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ENVIRONMENTAL VIEW OF SOUTHEAST PORTION OF LOWER POND AND SPILLWAY, LOOKING SOUTH - Whitman Estate, Lower Pond Spillway, Approx. .5 mile south of intersection of DE72 & Ebeneezer Church Road, Newark, New Castle County, DE

  4. 2. ENVIRONMENTAL VIEW OF SOUTHEAST PORTION OF LOWER POND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ENVIRONMENTAL VIEW OF SOUTHEAST PORTION OF LOWER POND AND SPILLWAY WITH FOREBAY IN FOREGROUND, LOOKING SOUTH - Whitman Estate, Lower Pond Spillway, Approx. .5 mile south of intersection of DE72 & Ebeneezer Church Road, Newark, New Castle County, DE

  5. Rigidity percolation in dispersions with a structured viscoelastic matrix

    NASA Astrophysics Data System (ADS)

    Wilbrink, M. W. L.; Michels, M. A. J.; Vellinga, W. P.; Meijer, H. E. H.

    2005-03-01

    This paper deals with rigidity percolation in composite materials consisting of a dispersion of mineral particles in a microstructured viscoelastic matrix. The viscoelastic matrix in this specific case is a hydrocarbon refinery residue. In a set of model random composites the mean interparticle surface-to-surface distance was controlled, changing particle volume fraction φ and particle number density independently. This was achieved by mixing two sets of monodisperse particles with widely differing radii ( 0.35μm and 17.5μm ) with the matrix. A scaling exponent of 3.9±0.6 for the storage modulus G' vs φ-φc was observed above a threshold φc , in good agreement with theoretical values for rigidity percolation. It is found that at the rigidity-percolation threshold the pore structure, as characterized by the mean surface-to-surface distance for the filler, rather than the filler volume fraction, is similar for different types of composites. This behavior is explained from the internal structure of the viscoelastic matrix, which consists of fractal solid aggregates dissolved in a viscous medium; the effective radius of these aggregates and the mean surface-to-surface distance together determine whether or not the aggregates are capable of providing rigidity to the composite. The explanation is further supported by a qualitative comparison with effective-medium calculations. These indicate that the observed breakdown of time-temperature superposition near φc is due to the appearance of a time scale characteristic for the mechanical interplay between the viscous binder phase and the purely elastic solid particles.

  6. Predicting deep percolation with eddy covariance under mulch drip irrigation

    NASA Astrophysics Data System (ADS)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  7. Limited-path-length entanglement percolation in quantum complex networks

    NASA Astrophysics Data System (ADS)

    Cuquet, Martí; Calsamiglia, John

    2011-03-01

    We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.

  8. Limited-path-length entanglement percolation in quantum complex networks

    SciTech Connect

    Cuquet, Marti; Calsamiglia, John

    2011-03-15

    We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.

  9. Percolation, sliding, localization and relaxation in topologically closed circuits

    PubMed Central

    Hurowitz, Daniel; Cohen, Doron

    2016-01-01

    Considering a random walk in a random environment in a topologically closed circuit, we explore the implications of the percolation and sliding transitions for its relaxation modes. A complementary question regarding the “delocalization” of eigenstates of non-hermitian Hamiltonians has been addressed by Hatano, Nelson, and followers. But we show that for a conservative stochastic process the implied spectral properties are dramatically different. In particular we determine the threshold for under-damped relaxation, and observe “complexity saturation” as the bias is increased. PMID:26961586

  10. On the genre-fication of music: a percolation approach

    NASA Astrophysics Data System (ADS)

    Lambiotte, R.; Ausloos, M.

    2006-03-01

    We analyze web-downloaded data on people sharing their music library. By attributing to each music group usual music genres (Rock, Pop ...), and analysing correlations between music groups of different genres with percolation-idea based methods, we probe the reality of these subdivisions and construct a music genre cartography, with a tree representation. We also discuss an alternative objective way to classify music, that is based on the complex structure of the groups audience. Finally, a link is drawn with the theory of hidden variables in complex networks.

  11. Percolation Theory for the Distribution and Abundance of Species

    NASA Astrophysics Data System (ADS)

    He, Fangliang; Hubbell, Stephen P.

    2003-11-01

    We develop and test new models that unify the mathematical relationships among the abundance of a species, the spatial dispersion of the species, the number of patches occupied by the species, the edge length of the occupied patches, and the scale on which the distribution of species is mapped. The models predict that species distributions will exhibit percolation critical thresholds, i.e., critical population abundances at which the fragmented patches (as measured by the number of patches and edge length) start to coalesce to form large patches.

  12. Percolation in insect nest networks: Evidence for optimal wiring

    NASA Astrophysics Data System (ADS)

    Valverde, Sergi; Corominas-Murtra, Bernat; Perna, Andrea; Kuntz, Pascale; Theraulaz, Guy; Solé, Ricard V.

    2009-06-01

    Optimization has been shown to be a driving force for the evolution of some biological structures, such as neural maps in the brain or transport networks. Here we show that insect networks also display characteristic traits of optimality. By using a graph representation of the chamber organization of termite nests and a disordered lattice model, it is found that these spatial nests are close to a percolation threshold. This suggests that termites build efficient systems of galleries spanning most of the nest volume at low cost. The evolutionary consequences are outlined.

  13. Percolation Blocking as the Origin of Organic Magneto-resistance

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Qing; Sun, Ling-Ling; Wang, Ting

    2016-05-01

    In order to identify the elementary mechanisms governing the organic magneto-resistance (OMAR) phenomenon, we demonstrated how the applied magnetic field acts on the variable hopping mobility. Based on a percolation model of hopping between localized states, we introduced an analytic expression for magneto-mobility and thus the OMAR, and discussed the influence of inter-site electronic interaction, operating bias, film thickness, temperature, and material parameters on the OMAR. The double occupied states and the spin selection rules play a major role in the mechanism.

  14. Resistance of Feynman diagrams and the percolation backbone dimension.

    PubMed

    Janssen, H K; Stenull, O; Oerding, K

    1999-06-01

    We present an alternative view of Feynman diagrams for the field theory of random resistor networks, in which the diagrams are interpreted as being resistor networks themselves. This simplifies the field theory considerably as we demonstrate by calculating the fractal dimension D(B) of the percolation backbone to three loop order. Using renormalization group methods we obtain D(B)=2+epsilon/21-172epsilon(2)/9261+2epsilon(3)[-74 639+22 680zeta(3)]/4 084 101, where epsilon=6-d with d being the spatial dimension and zeta(3)=1.202 057... .

  15. Uncertainty in oil production predicted by percolation theory

    NASA Astrophysics Data System (ADS)

    King, P. R.; Buldyrev, S. V.; Dokholyan, N. V.; Havlin, S.; Lopez, E.; Paul, G.; Stanley, H. E.

    2002-04-01

    In this paper, we apply scaling laws from percolation theory to the problem of estimating the time for a fluid injected into an oilfield to breakthrough into a production well. The main contribution is to show that when these previously published results are used on realistic data they are in good agreement with results calculated in a more conventional way, but they can be obtained significantly and more quickly. As a result, they may be used in practical engineering circumstances and aid decision-making for real field problems.

  16. Using percolation theory to predict oil field performance

    NASA Astrophysics Data System (ADS)

    King, P. R.; Buldyrev, S. V.; Dokholyan, N. V.; Havlin, S.; Lopez, E.; Paul, G.; Stanley, H. E.

    2002-11-01

    In this paper, we apply scaling laws from percolation theory to the problem of estimating the time for a fluid injected into an oilfield to breakthrough into a production well. The main contribution is to show that when these previously published results are used on realistic data they are in good agreement with results calculated in a more conventional way but they can be obtained significantly more quickly. As a result they may be used in practical engineering circumstances and aid decision making for real field problems.

  17. Tight Lower Bound for Percolation Threshold on an Infinite Graph

    NASA Astrophysics Data System (ADS)

    Hamilton, Kathleen E.; Pryadko, Leonid P.

    2014-11-01

    We construct a tight lower bound for the site percolation threshold on an infinite graph, which becomes exact for an infinite tree. The bound is given by the inverse of the maximal eigenvalue of the Hashimoto matrix used to count nonbacktracking walks on the original graph. Our bound always exceeds the inverse spectral radius of the graph's adjacency matrix, and it is also generally tighter than the existing bound in terms of the maximum degree. We give a constructive proof for existence of such an eigenvalue in the case of a connected infinite quasitransitive graph, a graph-theoretic analog of a translationally invariant system.

  18. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Eel Pond Channel. 117.598 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The following requirements apply to the draw of Eel Pond (Water Street) drawbridge at mile 0.0 at...

  19. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Eel Pond Channel. 117.598 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The following requirements apply to the draw of Eel Pond (Water Street) drawbridge at mile 0.0 at...

  20. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Eel Pond Channel. 117.598 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The following requirements apply to the draw of Eel Pond (Water Street) drawbridge at mile 0.0 at...

  1. One year's experience with an operating saturated solar pond

    SciTech Connect

    Ochs, T.L.; Stojanoff, C.G.; Day, D.L.

    1980-01-01

    While the saturated non-convecting solar pond concept is not new, the borax pond at the Desert Research Institute (DRI) is the first application of the concept to an operating solar pond. As with any new application there have been experimentally identified problem areas. Four of these problems are discussed: 1) departure from saturation, 2) contamination, 3) bottom crystalization, and 4) covers.

  2. Contour Mapping for Pools and Ponds.

    ERIC Educational Resources Information Center

    Berry, Noel

    1985-01-01

    Simple jigs (positioning devices) to make contour mapping tasks easier and more accurate are easily constructed from 5mm-thick acetate sheets. These plastic holders are used with meter sticks to provide scanning guides to measure pools and ponds. Instructions for making the jigs and sample results are included. (DH)

  3. MONITORING OF A BEST MANAGEMENT PRACTICE POND

    EPA Science Inventory

    The USEPA's Urban Watershed Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its research program. One BMP currently being monitored, a retention pond with wetland plantings, is in the Richmond Creek (RC) watershed part of New Yor...

  4. Cibola High Levee Pond annual report 2004

    USGS Publications Warehouse

    Mueller, Gordon A.; Carpenter, Jeanette; Marsh, Paul C.

    2005-01-01

    Remaining work will be finished this coming summer and a final report describing CHLP and the ecology of these fish will be completed by the end of 2005. We offer our assistance to the Fish and Wildlife Service in the pond’s renovation and support for the creation of additional refuge ponds. Funding for this work ends September 2005.

  5. Interconnected ponds operation for flood hazard distribution

    NASA Astrophysics Data System (ADS)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  6. Ecology of Great Salt Pond, Block Island

    EPA Science Inventory

    Great Salt Pond is an island of estuarine water on Block Island, which sits in the middle of the Northwest Atlantic Continental Shelf. When the last continental glaciers retreated, they left a high spot on a terminal moraine. The rising sea from melting glaciers formed two island...

  7. Aquatic Habitats: Exploring Desktop Ponds. Teacher's Guide.

    ERIC Educational Resources Information Center

    Barrett, Katharine; Willard, Carolyn

    This book, for grades 2-6, is designed to provide students with a highly motivating and unique opportunity to investigate an aquatic habitat. Students set up, observe, study, and reflect upon their own "desktop ponds." Accessible plants and small animals used in these activities include Elodea, Tubifex worms, snails, mosquito larvae, and fish.…

  8. In-situ denitrification of ponds

    SciTech Connect

    Napier, J.M.

    1984-11-01

    An in-situ biological denitrification process successfully reduced nitrate ion concentrations in four 2.5 million gallon open-air holding ponds from nearly 40,000 mg/L to less than 50 mg/L. Concurrently, heavy metal concentrations were reduced to levels acceptable for discharge. 3 figures.

  9. MONITORING OF A BEST MANAGEMENT PRACTICE POND

    EPA Science Inventory

    The USEPA's Urban Stormwater Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its research program. One BMP being monitored, a wetland/retention pond, is in the Richmond Creek (RC) watershed in the New York City Department of Envi...

  10. Microalgal separation from high-rate ponds

    SciTech Connect

    Nurdogan, Y.

    1988-01-01

    High rate ponding (HRP) processes are playing an increasing role in the treatment of organic wastewaters in sunbelt communities. Photosynthetic oxygenation by algae has proved to cost only one-seventh as much as mechanical aeration for activated sludge systems. During this study, an advanced HRP, which produces an effluent equivalent to tertiary treatment has been studied. It emphasizes not only waste oxidation but also algal separation and nutrient removal. This new system is herein called advanced tertiary high rate ponding (ATHRP). Phosphorus removal in HRP systems is normally low because algal uptake of phosphorus is about one percent of their 200-300 mg/L dry weights. Precipitation of calcium phosphates by autofluocculation also occurs in HRP at high pH levels, but it is generally not complete due to insufficient calcium concentration in the pond. In the case of Richmond where the studies were conducted, the sewage is very low in calcium. Therefore, enhancement of natural autoflocculation was studied by adding small amounts of lime to the pond. Through this simple procedure phosphorus and nitrogen removals were virtually complete justifying the terminology ATHRP.

  11. Electron percolation in realistic models of carbon nanotube networks

    SciTech Connect

    Simoneau, Louis-Philippe Villeneuve, Jérémie Rochefort, Alain

    2015-09-28

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  12. Percolation analysis for cosmic web with discrete points

    NASA Astrophysics Data System (ADS)

    Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung

    2016-03-01

    Percolation analysis has long been used to quantify the connectivity of the cosmic web. Unlike most of the previous works using density field on grids, we have studied percolation analysis based on discrete points. Using a Friends-of-Friends (FoF) algorithm, we generate the S-bb relation, between the fractional mass of the largest connected group (S) and the FoF linking length (bb). We propose a new model, the Probability Cloud Cluster Expansion Theory (PCCET) to relate the S-bb relation with correlation functions. We show that the S-bb relation reflects a combination of all orders of correlation functions. We have studied the S-bb relation with simulation and find that the S-bb relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with Halo Abundance Matching (HAM), we have generated a mock galaxy catalogue. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalogue with the latest galaxy catalogue from SDSS DR12, we have found significant differences in their S-bb relations. This indicates that the mock catalogue cannot accurately recover higher order correlation functions than the two-point correlation function, which reveals the limit of HAM method.

  13. Percolation theory and connectivity of multiscale porous media

    NASA Astrophysics Data System (ADS)

    Perrier, E.; Bird, N.

    2009-04-01

    It is well known that flow and transport properties in porous media vary as non-linear functions of the porosity and that the macroscopic conductivity of a soil sample is stronly dependent on the connectivity of the pore network observed at a microscopic scale. Connectivity is a key parameter which is still difficult to quantify. We present first a review on the basic concepts of percolation theory and on their application to the standard modelling of critical transitions in the connectivity of pore or fracture subnetworks. Then we show how these concepts have to be revisited when the pore network is non longer randomly distributed, and namely when the medium is structured on multiple embedded organisation scales. We finally present some novel research results obtained on multiscale fractal soil models as regards the probability for pore or solid networks to percolate as a function of the type of geometrical organization : in particular we highligt the possibility of high porosity structures supporting impaired flow and transport. The presentation of several computer simulations illustrates the theoretical concepts. In turn, the theoretical formalism will serve as a guide for assessing the asymptotic behavior of multiscale simulated networks, in the growing research field of network modelling applied to complex natural systems.

  14. Percolation transition in dynamical traffic network with evolving critical bottlenecks.

    PubMed

    Li, Daqing; Fu, Bowen; Wang, Yunpeng; Lu, Guangquan; Berezin, Yehiel; Stanley, H Eugene; Havlin, Shlomo

    2015-01-20

    A critical phenomenon is an intrinsic feature of traffic dynamics, during which transition between isolated local flows and global flows occurs. However, very little attention has been given to the question of how the local flows in the roads are organized collectively into a global city flow. Here we characterize this organization process of traffic as "traffic percolation," where the giant cluster of local flows disintegrates when the second largest cluster reaches its maximum. We find in real-time data of city road traffic that global traffic is dynamically composed of clusters of local flows, which are connected by bottleneck links. This organization evolves during a day with different bottleneck links appearing in different hours, but similar in the same hours in different days. A small improvement of critical bottleneck roads is found to benefit significantly the global traffic, providing a method to improve city traffic with low cost. Our results may provide insights on the relation between traffic dynamics and percolation, which can be useful for efficient transportation, epidemic control, and emergency evacuation. PMID:25552558

  15. Rubber elasticity for percolation network consisting of Gaussian chains

    SciTech Connect

    Nishi, Kengo E-mail: sakai@tetrapod.t.u-tokyo.ac.jp Noguchi, Hiroshi; Shibayama, Mitsuhiro E-mail: sakai@tetrapod.t.u-tokyo.ac.jp; Sakai, Takamasa E-mail: sakai@tetrapod.t.u-tokyo.ac.jp

    2015-11-14

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G{sub 0}, must be equal to G/G{sub 0} = (p − 2/f)/(1 − 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  16. Accelerating Gas Adsorption on 3D Percolating Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wen, Chenyu; Zhang, Youwei; Wu, Dongping; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-02-01

    In the field of electronic gas sensing, low-dimensional semiconductors such as single-walled carbon nanotubes (SWCNTs) can offer high detection sensitivity owing to their unprecedentedly large surface-to-volume ratio. The sensitivity and responsivity can further improve by increasing their areal density. Here, an accelerated gas adsorption is demonstrated by exploiting volumetric effects via dispersion of SWCNTs into a percolating three-dimensional (3D) network in a semiconducting polymer. The resultant semiconducting composite film is evaluated as a sensing membrane in field effect transistor (FET) sensors. In order to attain reproducible characteristics of the FET sensors, a pulsed-gate-bias measurement technique is adopted to eliminate current hysteresis and drift of sensing baseline. The rate of gas adsorption follows the Langmuir-type isotherm as a function of gas concentration and scales with film thickness. This rate is up to 5 times higher in the composite than only with an SWCNT network in the transistor channel, which in turn results in a 7-fold shorter time constant of adsorption with the composite. The description of gas adsorption developed in the present work is generic for all semiconductors and the demonstrated composite with 3D percolating SWCNTs dispersed in functional polymer represents a promising new type of material for advanced gas sensors.

  17. Percolation behavior of tritiated water into a soil packed bed

    SciTech Connect

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S.; Takeishi, T.

    2015-03-15

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  18. Agglomerative percolation on the Bethe lattice and the triangular cactus

    NASA Astrophysics Data System (ADS)

    Chae, Huiseung; Yook, Soon-Hyung; Kim, Yup

    2013-08-01

    Agglomerative percolation (AP) on the Bethe lattice and the triangular cactus is studied to establish the exact mean-field theory for AP. Using the self-consistent simulation method based on the exact self-consistent equations, the order parameter P∞ and the average cluster size S are measured. From the measured P∞ and S, the critical exponents βk and γk for k = 2 and 3 are evaluated. Here, βk and γk are the critical exponents for P∞ and S when the growth of clusters spontaneously breaks the Zk symmetry of the k-partite graph. The obtained values are β2 = 1.79(3), γ2 = 0.88(1), β3 = 1.35(5) and γ3 = 0.94(2). By comparing these exponents with those for ordinary percolation (β∞ = 1 and γ∞ = 1), we also find β∞ < β3 < β2 and γ∞ > γ3 > γ2. These results quantitatively verify the conjecture that the AP model belongs to a new universality class if the Zk symmetry is broken spontaneously, and the new universality class depends on k.

  19. Accelerating Gas Adsorption on 3D Percolating Carbon Nanotubes.

    PubMed

    Li, Hui; Wen, Chenyu; Zhang, Youwei; Wu, Dongping; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-01-01

    In the field of electronic gas sensing, low-dimensional semiconductors such as single-walled carbon nanotubes (SWCNTs) can offer high detection sensitivity owing to their unprecedentedly large surface-to-volume ratio. The sensitivity and responsivity can further improve by increasing their areal density. Here, an accelerated gas adsorption is demonstrated by exploiting volumetric effects via dispersion of SWCNTs into a percolating three-dimensional (3D) network in a semiconducting polymer. The resultant semiconducting composite film is evaluated as a sensing membrane in field effect transistor (FET) sensors. In order to attain reproducible characteristics of the FET sensors, a pulsed-gate-bias measurement technique is adopted to eliminate current hysteresis and drift of sensing baseline. The rate of gas adsorption follows the Langmuir-type isotherm as a function of gas concentration and scales with film thickness. This rate is up to 5 times higher in the composite than only with an SWCNT network in the transistor channel, which in turn results in a 7-fold shorter time constant of adsorption with the composite. The description of gas adsorption developed in the present work is generic for all semiconductors and the demonstrated composite with 3D percolating SWCNTs dispersed in functional polymer represents a promising new type of material for advanced gas sensors. PMID:26888337

  20. Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport

    PubMed Central

    Zhang, Yingjie; Hellebusch, Daniel J.; Bronstein, Noah D.; Ko, Changhyun; Ogletree, D. Frank; Salmeron, Miquel; Alivisatos, A. Paul

    2016-01-01

    The sensitivity of semiconductor photodetectors is limited by photocarrier recombination during the carrier transport process. We developed a new photoactive material that reduces recombination by physically separating hole and electron charge carriers. This material has a specific detectivity (the ability to detect small signals) of 5 × 1017 Jones, the highest reported in visible and infrared detectors at room temperature, and 4–5 orders of magnitude higher than that of commercial single-crystal silicon detectors. The material was fabricated by sintering chloride-capped CdTe nanocrystals into polycrystalline films, where Cl selectively segregates into grain boundaries acting as n-type dopants. Photogenerated electrons concentrate in and percolate along the grain boundaries—a network of energy valleys, while holes are confined in the grain interiors. This electrostatic field-assisted carrier separation and percolation mechanism enables an unprecedented photoconductive gain of 1010 e− per photon, and allows for effective control of the device response speed by active carrier quenching. PMID:27323904

  1. Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport.

    PubMed

    Zhang, Yingjie; Hellebusch, Daniel J; Bronstein, Noah D; Ko, Changhyun; Ogletree, D Frank; Salmeron, Miquel; Alivisatos, A Paul

    2016-01-01

    The sensitivity of semiconductor photodetectors is limited by photocarrier recombination during the carrier transport process. We developed a new photoactive material that reduces recombination by physically separating hole and electron charge carriers. This material has a specific detectivity (the ability to detect small signals) of 5 × 10(17) Jones, the highest reported in visible and infrared detectors at room temperature, and 4-5 orders of magnitude higher than that of commercial single-crystal silicon detectors. The material was fabricated by sintering chloride-capped CdTe nanocrystals into polycrystalline films, where Cl selectively segregates into grain boundaries acting as n-type dopants. Photogenerated electrons concentrate in and percolate along the grain boundaries-a network of energy valleys, while holes are confined in the grain interiors. This electrostatic field-assisted carrier separation and percolation mechanism enables an unprecedented photoconductive gain of 10(10) e(-) per photon, and allows for effective control of the device response speed by active carrier quenching. PMID:27323904

  2. Percolation transition in dynamical traffic network with evolving critical bottlenecks

    NASA Astrophysics Data System (ADS)

    Li, Daqing

    A critical phenomenon is an intrinsic feature of traffic dynamics, during which transition between isolated local flows and global flows occurs. However, very little attention has been given to the question of how the local flows in the roads are organized collectively into a global city flow. Here we characterize this organization process of traffic as ``traffic percolation,'' where the giant cluster of local flows disintegrates when the second largest cluster reaches its maximum. We find in real-time data of city road traffic that global traffic is dynamically composed of clusters of local flows, which are connected by bottleneck links. This organization evolves during a day with different bottleneck links appearing in different hours, but similar in the same hours in different days. A small improvement of critical bottleneck roads is found to benefit significantly the global traffic, providing a method to improve city traffic with low cost. Our results may provide insights on the relation between traffic dynamics and percolation, which can be useful for efficient transportation, epidemic control, and emergency evacuation.

  3. Electron percolation in realistic models of carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-09-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  4. Rubber elasticity for percolation network consisting of Gaussian chains

    NASA Astrophysics Data System (ADS)

    Nishi, Kengo; Noguchi, Hiroshi; Sakai, Takamasa; Shibayama, Mitsuhiro

    2015-11-01

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G0, must be equal to G/G0 = (p - 2/f)/(1 - 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  5. Rubber Elasticity for percolation network consisting of Gaussian Chains

    NASA Astrophysics Data System (ADS)

    Nishi, Kengo; Shibayama, Mitsuhiro; Sakai, Takamasa

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation for Hookian spring network (EMA) to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1 ,G0, must be equal to G /G0 = (p - 2 / f) / (1 - 2 / f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA, and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  6. Ultralow percolation threshold in aerogel and cryogel templated composites.

    PubMed

    Irin, Fahmida; Das, Sriya; Atore, Francis O; Green, Micah J

    2013-09-10

    We demonstrate a novel concept for preparing percolating composites with ultralow filler content by utilizing nanofiller-loaded aerogel and cryogels as a conductive template. This concept is investigated for several porous systems, including resorcinol-formaldehyde (RF), silica, and polyacrylamide (PAM) gels, and both graphene and carbon nanotubes are utilized as nanofiller. In each case, a stable, aqueous nanofiller dispersion is mixed with a sol-gel precursor and polymerized to form a hydrogel, which can then be converted to an aerogel by critical point drying or cryogel by freeze-drying. Epoxy resin is infused into the pores of the gels by capillary action without disrupting the monolithic structure. We show that conductive graphene/epoxy composites are formed with a very low graphene loading; a percolation threshold as low as 0.012 vol % is obtained for graphene-RF cryogel/epoxy composite. This is the lowest reported threshold of any graphene-based nanocomposites. Similar values are achieved in other aerogel and nanofiller systems, which demonstrates the versatility of this method. PMID:23927050

  7. Accelerating Gas Adsorption on 3D Percolating Carbon Nanotubes

    PubMed Central

    Li, Hui; Wen, Chenyu; Zhang, Youwei; Wu, Dongping; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-01-01

    In the field of electronic gas sensing, low-dimensional semiconductors such as single-walled carbon nanotubes (SWCNTs) can offer high detection sensitivity owing to their unprecedentedly large surface-to-volume ratio. The sensitivity and responsivity can further improve by increasing their areal density. Here, an accelerated gas adsorption is demonstrated by exploiting volumetric effects via dispersion of SWCNTs into a percolating three-dimensional (3D) network in a semiconducting polymer. The resultant semiconducting composite film is evaluated as a sensing membrane in field effect transistor (FET) sensors. In order to attain reproducible characteristics of the FET sensors, a pulsed-gate-bias measurement technique is adopted to eliminate current hysteresis and drift of sensing baseline. The rate of gas adsorption follows the Langmuir-type isotherm as a function of gas concentration and scales with film thickness. This rate is up to 5 times higher in the composite than only with an SWCNT network in the transistor channel, which in turn results in a 7-fold shorter time constant of adsorption with the composite. The description of gas adsorption developed in the present work is generic for all semiconductors and the demonstrated composite with 3D percolating SWCNTs dispersed in functional polymer represents a promising new type of material for advanced gas sensors. PMID:26888337

  8. Quantum walk coherences on a dynamical percolation graph

    PubMed Central

    Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine

    2015-01-01

    Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media. PMID:26311434

  9. Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Hellebusch, Daniel J.; Bronstein, Noah D.; Ko, Changhyun; Ogletree, D. Frank; Salmeron, Miquel; Alivisatos, A. Paul

    2016-06-01

    The sensitivity of semiconductor photodetectors is limited by photocarrier recombination during the carrier transport process. We developed a new photoactive material that reduces recombination by physically separating hole and electron charge carriers. This material has a specific detectivity (the ability to detect small signals) of 5 × 1017 Jones, the highest reported in visible and infrared detectors at room temperature, and 4-5 orders of magnitude higher than that of commercial single-crystal silicon detectors. The material was fabricated by sintering chloride-capped CdTe nanocrystals into polycrystalline films, where Cl selectively segregates into grain boundaries acting as n-type dopants. Photogenerated electrons concentrate in and percolate along the grain boundaries--a network of energy valleys, while holes are confined in the grain interiors. This electrostatic field-assisted carrier separation and percolation mechanism enables an unprecedented photoconductive gain of 1010 e- per photon, and allows for effective control of the device response speed by active carrier quenching.

  10. Prevention of sewage pollution by stabilization ponds.

    PubMed

    Lakshminarayana, J S

    1975-01-01

    Water is polluted when it constitutes a health hazard or when its usefulness is impaired. The major sources of water pollution are municipal, manufacturing, mining, steam, electric power, cooling and agricultural. Municipal or sewage pollution forms a greater part of the man's activity and it is the immediate need of even smaller communities of today to combat sewage pollution. It is needless to stress that if an economic balance of the many varied services which a stream or a body of water is called upon to render is balanced and taken into consideration one could think of ending up in a wise management programme. In order to eliminate the existing water pollutional levels of the natural water one has to think of preventive and treatment methods. Of the various conventional and non-conventional methods of sewage treatment known today, in India, where the economic problems are complex, the waste stabilization ponds have become popular over the last two decades to let Public Health Engineers use them with confidence as a simple and reliable means of treatment of sewage and certain industrial wastes, at a fraction of the cost of conventional waste treatment plants used hitherto. A waste stabilization pond makes use of natural purification processes involved in an ecosystem through the regulating of such processes. The term "waste stabilization pond" in its simplest form is applied to a body of water, artificial or natural, employed with the intention of retaining sewage or organic waste waters until the wastes are rendered stable and inoffensive for discharge into receiving waters or on land, through physical, chemical and biological processes commonly referred to as "self-purification" and involving the symbiotic action of algae and bacteria under the influence of sunlight and air. Organic matter contained in the waste is stabilized and converted in the pond into more stable matter in the form of algal cells which find their way into the effluent and hence the term

  11. Combining mariculture and seawater-based solar ponds

    SciTech Connect

    Lowrey, P.; Ford, R.; Collando, F.; Morgan, J.; Frusti, E. . Dept. of Mechanical Engineering)

    1990-05-01

    Solar ponds have been thoroughly studied as a means to produce electricity or heat, but there may be comparable potential to use solar ponds to produce optimized environments for the cultivation of some aquaculture crops. For this, conventional brine-based solar ponds could be used. This strategy would probably be most suitable at desert sites where concentrated brine was abundant, pond liners might not be needed, and the crop produced could be shipped to market. Generally, a heat exchanger would be required to transfer heat from the solar pond into the culture ponds. Culture ponds could therefore use either fresh or marine water. In contrast, this paper explores seawater-based solar ponds. These are solar ponds which use seawater in the bottom storage zone and fresh water in the upper convective zone. Because the required temperature elevations for mariculture are only about 10{degrees}C, seawater-based solar ponds are conceivable. Seawater-based ponds should be very inexpensive because, by the shore, salt costs would be negligible and a liner might be unnecessary.

  12. Predicting Saturated Hydraulic Conductivity from Percolation Test Results in Layered Silt Loam Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The size of on-site waste disposal systems is usually determined by one or more percolation tests performed on the proposed site. The objectives of this study were to develop an empirical relationship between the saturated hydraulic conductivity (Ks) of layered soils and their percolation times (PT)...

  13. Message passing theory for percolation models on multiplex networks with link overlap

    NASA Astrophysics Data System (ADS)

    Cellai, Davide; Dorogovtsev, Sergey N.; Bianconi, Ginestra

    2016-09-01

    Multiplex networks describe a large variety of complex systems, including infrastructures, transportation networks, and biological systems. Most of these networks feature a significant link overlap. It is therefore of particular importance to characterize the mutually connected giant component in these networks. Here we provide a message passing theory for characterizing the percolation transition in multiplex networks with link overlap and an arbitrary number of layers M . Specifically we propose and compare two message passing algorithms that generalize the algorithm widely used to study the percolation transition in multiplex networks without link overlap. The first algorithm describes a directed percolation transition and admits an epidemic spreading interpretation. The second algorithm describes the emergence of the mutually connected giant component, that is the percolation transition, but does not preserve the epidemic spreading interpretation. We obtain the phase diagrams for the percolation and directed percolation transition in simple representative cases. We demonstrate that for the same multiplex network structure, in which the directed percolation transition has nontrivial tricritical points, the percolation transition has a discontinuous phase transition, with the exception of the trivial case in which all the layers completely overlap.

  14. Crossover phenomena of percolation transition in evolution networks with hybrid attachment

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolong; Yang, Chun; Zhong, Linfeng; Tang, Ming

    2016-08-01

    A first-order percolation transition, called explosive percolation, was recently discovered in evolution networks with random edge selection under a certain restriction. For many real world networks, the mechanism of preferential attachment plays a significant role in the formation of heterogeneous structures, but the network percolation in evolution process with preferential attachment has not yet been concerned. We propose a tunable network percolation model by introducing a hybrid mechanism of edge selection into the Bohman-Frieze-Wormald model, in which a parameter adjusts the relative weights between random and preferential selections. A large number of simulations indicate that there exist crossover phenomena of percolation transition by adjusting the parameter in the evolution processes. When the strategy of selecting a candidate edge is dominated by random selection, a single discontinuous percolation transition occurs. When a candidate edge is selected more preferentially based on nodes degree, the size of the largest component undergoes multiple discontinuous jumps, which exhibits a peculiar difference from the network percolation of random selection with a certain restriction. Besides, the percolation transition becomes continuous when the candidate edge is selected completely preferentially.

  15. Crossover phenomena of percolation transition in evolution networks with hybrid attachment.

    PubMed

    Chen, Xiaolong; Yang, Chun; Zhong, Linfeng; Tang, Ming

    2016-08-01

    A first-order percolation transition, called explosive percolation, was recently discovered in evolution networks with random edge selection under a certain restriction. For many real world networks, the mechanism of preferential attachment plays a significant role in the formation of heterogeneous structures, but the network percolation in evolution process with preferential attachment has not yet been concerned. We propose a tunable network percolation model by introducing a hybrid mechanism of edge selection into the Bohman-Frieze-Wormald model, in which a parameter adjusts the relative weights between random and preferential selections. A large number of simulations indicate that there exist crossover phenomena of percolation transition by adjusting the parameter in the evolution processes. When the strategy of selecting a candidate edge is dominated by random selection, a single discontinuous percolation transition occurs. When a candidate edge is selected more preferentially based on nodes degree, the size of the largest component undergoes multiple discontinuous jumps, which exhibits a peculiar difference from the network percolation of random selection with a certain restriction. Besides, the percolation transition becomes continuous when the candidate edge is selected completely preferentially. PMID:27586610

  16. Crossover phenomena of percolation transition in evolution networks with hybrid attachment.

    PubMed

    Chen, Xiaolong; Yang, Chun; Zhong, Linfeng; Tang, Ming

    2016-08-01

    A first-order percolation transition, called explosive percolation, was recently discovered in evolution networks with random edge selection under a certain restriction. For many real world networks, the mechanism of preferential attachment plays a significant role in the formation of heterogeneous structures, but the network percolation in evolution process with preferential attachment has not yet been concerned. We propose a tunable network percolation model by introducing a hybrid mechanism of edge selection into the Bohman-Frieze-Wormald model, in which a parameter adjusts the relative weights between random and preferential selections. A large number of simulations indicate that there exist crossover phenomena of percolation transition by adjusting the parameter in the evolution processes. When the strategy of selecting a candidate edge is dominated by random selection, a single discontinuous percolation transition occurs. When a candidate edge is selected more preferentially based on nodes degree, the size of the largest component undergoes multiple discontinuous jumps, which exhibits a peculiar difference from the network percolation of random selection with a certain restriction. Besides, the percolation transition becomes continuous when the candidate edge is selected completely preferentially.

  17. Precise percolation thresholds of two-dimensional random systems comprising overlapping ellipses

    NASA Astrophysics Data System (ADS)

    Li, Jiantong; Östling, Mikael

    2016-11-01

    This work explores the percolation thresholds of continuum systems consisting of randomly-oriented overlapping ellipses. High-precision percolation thresholds for various homogeneous ellipse systems with different aspect ratios are obtained from extensive Monte Carlo simulations based on the incorporation of Vieillard-Baron's contact function of two identical ellipses with our efficient algorithm for continuum percolation. In addition, we generalize Vieillard-Baron's contact function from identical ellipses to unequal ellipses, and extend the Monte Carlo algorithm to heterogeneous ellipse systems where the ellipses have different dimensions and/or aspect ratios. Based on the concept of modified excluded area, a general law is verified for precise prediction of percolation threshold for many heterogeneous ellipse systems. In particular, the study of heterogeneous ellipse systems gains insight into the apparent percolation threshold symmetry observed earlier in systems comprising unequal circles (Consiglio et al., 2004).

  18. Percolation and Burgers' dynamics in a model of capillary formation

    NASA Astrophysics Data System (ADS)

    Coniglio, A.; de Candia, A.; di Talia, S.; Gamba, A.

    2004-05-01

    Capillary networks are essential in vertebrates to supply tissues with nutrients. Experiments of in vitro capillary formation show that cells randomly spread on a gel matrix autonomously organize to form vascular networks. Cells form disconnected networks at low densities and connected ones above a critical density. Above the critical density the network is characterized by a typical mesh size ˜200 μm , which is approximately constant on a wide range of density values. In this paper we present a full characterization of a recently proposed model which reproduces the main features of the biological system, focusing on its dynamical properties, on the fractal properties of patterns, and on the percolative phase transition. We discuss the relevance of the model in relation with some experiments in living beings and proposed diagnostic methods based on the measurement of the fractal dimension of vascular networks.

  19. Lattice percolation approach to 3D modeling of tissue aging

    NASA Astrophysics Data System (ADS)

    Gorshkov, Vyacheslav; Privman, Vladimir; Libert, Sergiy

    2016-11-01

    We describe a 3D percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Lattice sites are designated as regular (healthy) cells, senescent cells, or vacancies left by dead (apoptotic) cells. The system is then studied dynamically with the ongoing processes including regular cell dividing to fill vacant sites, healthy cells becoming senescent or dying, and senescent cells dying. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. The developed theoretical modeling approach is found not only to corroborate recent experimental findings that inhibition of senescence can lead to extended lifespan, but also to confirm that, unlike 2D, in 3D senescent cells can contribute to tissue's connectivity/mechanical stability. The latter effect occurs by senescent cells forming the second infinite cluster in the regime when the regular (healthy) cell's infinite cluster still exists.

  20. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography.

    PubMed

    Burgess, Ian B; Abedzadeh, Navid; Kay, Theresa M; Shneidman, Anna V; Cranshaw, Derek J; Lončar, Marko; Aizenberg, Joanna

    2016-01-01

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids. PMID:26790372

  1. Zipf's law in nuclear multifragmentation and percolation theory

    SciTech Connect

    Paech, Kerstin; Bauer, Wolfgang; Pratt, Scott

    2007-11-15

    We investigate the average sizes of the n largest fragments in nuclear multifragmentation events near the critical point of the nuclear matter phase diagram. We perform analytic calculations employing Poisson statistics as well as Monte Carlo simulations of the percolation type. We find that previous claims of manifestations of Zipf's Law in the rank-ordered fragment size distributions are not borne out in our result, in neither finite nor infinite systems. Instead, we find that Zipf-Mandelbrot distributions are needed to describe the results, and we show how one can derive them in the infinite size limit. However, we agree with previous authors that the investigation of rank-ordered fragment size distributions is an alternative way of looking for the critical point in the nuclear matter diagram.

  2. Round robin testing of a percolation column leaching procedure.

    PubMed

    Geurts, Roeland; Spooren, Jeroen; Quaghebeur, Mieke; Broos, Kris; Kenis, Cindy; Debaene, Luc

    2016-09-01

    Round robin test results of a percolation column leaching procedure (CEN/TS 14405:2004), organised by the Flemish Institute for Technological Research (VITO), over a time span of 13years with a participation of between 8 and 18 different laboratories are presented and discussed. Focus is on the leachability of heavy metals As, Cd, Cr, Cu, Hg, Ni, Pb and Zn from mineral waste materials. By performing statistical analyses on the obtained results, insight into the reproducibility and repeatability of the column leaching test is gathered. A ratio of 1:3 between intra- and inter-laboratory variability is found. The reproducibility of the eluates' element concentrations differ significantly between elements, materials and fractions (i.e. different liquid-to-solid ratios). The reproducibility is discussed in light of the application of the column leaching test for legal and environmental policy purposes. In addition, the performances of laboratories are compared.

  3. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography

    NASA Astrophysics Data System (ADS)

    Burgess, Ian B.; Abedzadeh, Navid; Kay, Theresa M.; Shneidman, Anna V.; Cranshaw, Derek J.; Lončar, Marko; Aizenberg, Joanna

    2016-01-01

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids.

  4. Round robin testing of a percolation column leaching procedure.

    PubMed

    Geurts, Roeland; Spooren, Jeroen; Quaghebeur, Mieke; Broos, Kris; Kenis, Cindy; Debaene, Luc

    2016-09-01

    Round robin test results of a percolation column leaching procedure (CEN/TS 14405:2004), organised by the Flemish Institute for Technological Research (VITO), over a time span of 13years with a participation of between 8 and 18 different laboratories are presented and discussed. Focus is on the leachability of heavy metals As, Cd, Cr, Cu, Hg, Ni, Pb and Zn from mineral waste materials. By performing statistical analyses on the obtained results, insight into the reproducibility and repeatability of the column leaching test is gathered. A ratio of 1:3 between intra- and inter-laboratory variability is found. The reproducibility of the eluates' element concentrations differ significantly between elements, materials and fractions (i.e. different liquid-to-solid ratios). The reproducibility is discussed in light of the application of the column leaching test for legal and environmental policy purposes. In addition, the performances of laboratories are compared. PMID:27311350

  5. Percolation, renormalization, and quantum computing with nondeterministic gates.

    PubMed

    Kieling, K; Rudolph, T; Eisert, J

    2007-09-28

    We apply a notion of static renormalization to the preparation of entangled states for quantum computing, exploiting ideas from percolation theory. Such a strategy yields a novel way to cope with the randomness of nondeterministic quantum gates. This is most relevant in the context of optical architectures, where probabilistic gates are common, and cold atoms in optical lattices, where hole defects occur. We demonstrate how to efficiently construct cluster states without the need for rerouting, thereby avoiding a massive amount of conditional dynamics; we furthermore show that except for a single layer of gates during the preparation, all subsequent operations can be shifted to the final adapted single-qubit measurements. Remarkably, cluster state preparation is achieved using essentially the same scaling in resources as if deterministic gates were available.

  6. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography

    PubMed Central

    Burgess, Ian B.; Abedzadeh, Navid; Kay, Theresa M.; Shneidman, Anna V.; Cranshaw, Derek J.; Lončar, Marko; Aizenberg, Joanna

    2016-01-01

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids. PMID:26790372

  7. Process studies of water percolation in a Mediterranean karst area

    NASA Astrophysics Data System (ADS)

    Lange, J.; Arbel, Y.; Greenbaum, N.; Grodek, T.

    2009-04-01

    In drylands karst environments comprise large areas and their groundwater resources are important for local and regional water supply. Recharge estimations are usually based on long term averages and hence uncertain, because they do not explicitly account for the accentuated variability of dryland precipitation, where a large fraction of annual rainfall is concentrated in a small number of high magnitude events. To provide process information in adequate temporal resolution the present study directly investigates percolation processes in an Eastern Mediterranean karst system, Mt. Carmel, Israel. Therefore the drip response of stalactites in a karstic cave 28m below a sprinkling experiment was measured. Besides hydrometric measurements (soil moisture, surface runoff, stalactite dripping rates) also tracers were applied. Sprinkling water was pumped from two wells of the underlying karst aquifer. The experiment took place at the end of the dry season. Simulating a series of two high intensity storms, 190 mm of artificial rainfall was sprinkled over two days on a 143 m2 plot. Two types of tracers were used: (i) the relatively high conductivity of the sprinkling water facilitated the separation between old (pre-sprinkling) and new (sprinkling) water by mixing analysis, (ii) before second day sprinkling bromide was injected as a dirac impulse on top of selected soil pockets to facilitate direct insights into percolation fluxes. On the plot surface saturation excess runoff was observed towards the end of first day sprinkling and entire soil saturation occurred down to the deepest soil moisture sensor. During the second day the entire soil reached quickly saturation and remained at field capacity until the end of data collection. In the cave the drip response depended on stalactite type: (i) perennial stalactites were already dripping continuously before sprinkling onset. Conductivity dynamics resulted in high percentages of pre-sprinkling water suggesting continuous input

  8. Hybrid Percolation Transition in Cluster Merging Processes: Continuously Varying Exponents.

    PubMed

    Cho, Y S; Lee, J S; Herrmann, H J; Kahng, B

    2016-01-15

    Consider growing a network, in which every new connection is made between two disconnected nodes. At least one node is chosen randomly from a subset consisting of g fraction of the entire population in the smallest clusters. Here we show that this simple strategy for improving connection exhibits a more unusual phase transition, namely a hybrid percolation transition exhibiting the properties of both first-order and second-order phase transitions. The cluster size distribution of finite clusters at a transition point exhibits power-law behavior with a continuously varying exponent τ in the range 2<τ(g)≤2.5. This pattern reveals a necessary condition for a hybrid transition in cluster aggregation processes, which is comparable to the power-law behavior of the avalanche size distribution arising in models with link-deleting processes in interdependent networks. PMID:26824550

  9. Soil porosity correlation and its influence in percolation dynamics

    NASA Astrophysics Data System (ADS)

    Rodriguez, Alfredo; Capa-Morocho, Mirian; Ruis-Ramos, Margarita; Tarquis, Ana M.

    2016-04-01

    The prediction of percolation in natural soils is relevant for modeling root growth and optimizing infiltration of water and nutrients. Also, it would improve our understanding on how pollutants as pesticides, and virus and bacteria (Darnault et al., 2003) reach significant depths without being filtered out by the soil matrix (Beven and Germann, 2013). Random walk algorithms have been used successfully to date to characterize the dynamical characteristics of disordered media. This approach has been used here to describe how soil at different bulk densities and with different threshold values applied to the 3D gray images influences the structure of the pore network and their implications on particle flow and distribution (Ruiz-Ramos et al., 2009). In order to do so first we applied several threshold values to each image analyzed and characterized them through Hurst exponents, then we computed random walks algorithms to calculate distances reached by the particles and speed of those particles. At the same time, 3D structures with a Hurst exponent of ca 0.5 and with different porosities were constructed and the same random walks simulations were replicated over these generated structures. We have found a relationship between Hurst exponents and the speed distribution of the particles reaching percolation of the total soil depth. REFERENCES Darnault, C.J. G., P. Garnier, Y.J. Kim, K.L. Oveson, T.S. Steenhuis, J.Y. Parlange, M. Jenkins, W.C. Ghiorse, and P. Baveye (2003), Preferential transport of Cryptosporidium parvum oocysts in variably saturated subsurface environments, Water Environ. Res., 75, 113-120. Beven, Keith and Germann, Peter. 2013. Macropores and water flow in soils revisited. Water Resources Research, 49(6), 3071-3092. DOI: 10.1002/wrcr.20156. Ruiz-Ramos, M., D. del Valle, D. Grinev, and A.M. Tarquis. 2009. Soil hydraulic behaviour at different bulk densities. Geophysical Research Abstracts, 11, EGU2009-6234.

  10. Modelling heterogeneous meltwater percolation on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Ligtenberg, S.

    2015-12-01

    The Greenland Ice Sheet (GrIS) has experienced an increase of surface meltwater production over the last decades, with the latest record set in the summer of 2012. For current and future ice sheet mass balance assessments, it is important to quantify what part of this meltwater reaches the ocean and contributes to sea level change. Meltwater produced at the surface has several options: it can infiltrate the local firn pack, where it is either stored temporarily or refrozen, or it can run off along the surface or via en-glacial drainage systems. In this study, we focus on the first; more specifically, in which manner meltwater percolates the firn column. Over the past years, GrIS research has shown that meltwater does not infiltrate the firn pack homogeneously (i.e. matrix flow), but that inhomogeneities in horizontal firn layers causes preferential flow paths for meltwater (i.e. piping). Although this process has been observed and studied on a few isolated sites, it has never been examined on the entire GrIS. To do so, we use the firn model IMAU-FDM with new parameterizations for preferential flow, impermeable ice lenses and sub-surface runoff. At the surface, IMAU-FDM is forced with realistic climate data from the regional climate model RACMO2.3. The model results are evaluated with temperatures and density measurements from firn cores across the GrIS. By allowing for heterogeneous meltwater percolation, the model is able to store heat and mass much deeper in the firn column. This is, however, in part counteracted by the inclusion of impermeability of ice lenses, which causes part of the meltwater to run off horizontally.

  11. Water percolation through the root-soil interface

    NASA Astrophysics Data System (ADS)

    Benard, Pascal; Kroener, Eva; Vontobel, Peter; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Plant roots exude a significant fraction of the carbon assimilated via photosynthesis into the soil. The mucilaginous fraction of root exudates affects the hydraulic properties of the soil near the roots, the so called rhizosphere, in a remarkable and dynamic way. After drying, mucilage becomes hydrophobic and limits the rewetting of the rhizosphere. Here, we aim to find a quantitative relation between rhizosphere rewetting, particle size, soil matric potential and mucilage concentration. We used a pore-network model in which mucilage was randomly distributed in a cubic lattice. The general idea was that the mucilage concentration per solid soil surface increases the contact angle between the liquid and solid phases consequently limiting the rewetting of pores covered with dry mucilage. We used the Young-Laplace equation to calculate the mucilage concentration at which pores are not wettable for varying particle sizes and matric potentials. Then, we simulated the percolation of water across a cubic lattice. Our simulations predicted that above a critical mucilage concentration water could not flow through the porous medium. The critical mucilage concentration decreased with increasing particle size and decreasing matric potential. The model was compared with experiments of capillary rise in soils of different particle size and mucilage concentration. The experiments confirmed the percolation behaviour of the rhizosphere rewetting. Mucilage turned hydrophobic at concentrations above 0.1 mg/cm². The critical mucilage concentration at matric potential of -2.5 hPa was ca. 1% [g/g] for fine sand and 0.1 % [g/g] for coarse sand. Our conceptual model is a first step towards a better understanding of the water dynamics in the rhizosphere during rewetting and it can be used to predict in what soil textures rhizosphere water repellency becomes a critical issue for root water uptake.

  12. Water percolation through the root-soil interface

    NASA Astrophysics Data System (ADS)

    Benard, Pascal; Kroener, Eva; Vontobel, Peter; Kaestner, Anders; Carminati, Andrea

    2016-09-01

    Plant roots exude a significant fraction of the carbon assimilated via photosynthesis into the soil. The mucilaginous fraction of root exudates affects the hydraulic properties of the soil near the roots, the so called rhizosphere, in a remarkable and dynamic way. After drying, mucilage becomes hydrophobic and limits the rewetting of the rhizosphere. Here, we aim to find a quantitative relation between rhizosphere rewetting, particle size, soil matric potential and mucilage concentration. We used a pore-network model in which mucilage was randomly distributed in a cubic lattice. The general idea was that the mucilage concentration per solid soil surface increases the contact angle between the liquid and solid phases consequently limiting the rewetting of pores covered with dry mucilage. We used the Young-Laplace equation to calculate the mucilage concentration at which pores are not wettable for varying particle sizes and matric potentials. Then, we simulated the percolation of water across a cubic lattice. Our simulations predicted that above a critical mucilage concentration water could not flow through the porous medium. The critical mucilage concentration decreased with increasing particle size and decreasing matric potential. The model was compared with experiments of capillary rise in soils of different particle size and mucilage concentration. The experiments confirmed the percolation behaviour of the rhizosphere rewetting. Mucilage turned hydrophobic at concentrations above 0.1 mg/cm2. The critical mucilage concentration at matric potential of -2.5 hPa was ca. 1% [g/g] for fine sand and 0.1 % [g/g] for coarse sand. Our conceptual model is a first step towards a better understanding of the water dynamics in the rhizosphere during rewetting and it can be used to predict in what soil textures rhizosphere water repellency becomes a critical issue for root water uptake.

  13. Simulated ground-water flow for a pond-dominated aquifer system near Great Sandy Bottom Pond, Pembroke, Massachusetts

    USGS Publications Warehouse

    Carlson, Carl S.; Lyford, Forest P.

    2005-01-01

    A ground-water flow simulation for a 66.4-square-mile area around Great Sandy Bottom (GSB) Pond (105 acres) near Pembroke, Massachusetts, was developed for use by local and State water managers to assess the yields for public water supply of local ponds and wells for average climatic and drought conditions and the effects of water withdrawals on nearby water levels and streamflows. Wetlands and ponds cover about 30 percent of the study area and the aquifer system is dominated by interactions between ground water and the ponds. The three largest surface-water bodies in the study area are Silver Lake (640 acres), Monponsett Pond (590 acres), and Oldham Pond (236 acres). The study area is drained by tributaries of the Taunton River to the southwest, the South and North Rivers to the northeast, and the Jones River to the southeast. In 2002, 10.8 million gallons per day of water was exported from ponds and 3.5 million gallons per day from wells was used locally for public supply. A transient ground-water-flow model with 69 monthly stress periods spanning the period from January 1998 through September 2003 was calibrated to stage at GSB Pond and nearby Silver Lake and streamflow and water levels collected from September 2002 through September 2003. The calibrated model was used to assess hydrologic responses to a variety of water-use and climatic conditions. Simulation of predevelopment (no pumping or export) average monthly (1949-2002) water-level conditions caused the GSB Pond level to increase by 6.3 feet from the results of a simulation using average 2002 pumping for all wells, withdrawals, and exports. Most of this decline can be attributed to pumping, withdrawals, and exports of water from sites away from GSB Pond. The effects of increasing the export rate from GSB Pond by 1.25 and 1.5 times the 2002 rate were a lowering of pond levels by a maximum of 1.6 and 2.8 feet, respectively. Simulated results for two different drought conditions, one mild drought similar to

  14. Holocene closure of Lib Pond, Marshall Islands.

    PubMed

    Myhrvold, Conor L; Janny, Fran; Nelson, Daniel; Ladd, S Nemiah; Atwood, Alyssa; Sachs, Julian P

    2014-01-01

    Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18' 48.99″ N, 167 22' 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water. PMID:24638020

  15. Holocene closure of Lib Pond, Marshall Islands.

    PubMed

    Myhrvold, Conor L; Janny, Fran; Nelson, Daniel; Ladd, S Nemiah; Atwood, Alyssa; Sachs, Julian P

    2014-01-01

    Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18' 48.99″ N, 167 22' 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water.

  16. Holocene Closure of Lib Pond, Marshall Islands

    PubMed Central

    Myhrvold, Conor L.; Janny, Fran; Nelson, Daniel; Ladd, S. Nemiah; Atwood, Alyssa; Sachs, Julian P.

    2014-01-01

    Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18′ 48.99″ N, 167 22′ 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water. PMID:24638020

  17. Par Pond refill water quality sampling

    SciTech Connect

    Koch, J.W. II; Martin, F.D.; Westbury, H.M.

    1996-08-01

    This study was designed to document anoxia and its cause in the event that the anoxia caused a fish kill. However, no fish kill was observed during this study, and dissolved oxygen and nutrient concentrations generally remained within the range expected for southeastern reservoirs. Par Pond water quality monitoring will continue during the second summer after refill as the aquatic macrophytes become reestablished and nutrients in the sediments are released to the water column.

  18. Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients.

    PubMed

    Roy, Virginie; Amyot, Marc; Carignan, Richard

    2009-08-01

    Beaver impoundments flood forested areas and may be important production sites for methylmercury (MeHg) because of the resulting enhanced microbial activity and oxygen depletion. The influence of 17 beaver impoundments on streamwater chemistry (total mercury (THg), MeHg, nutrients, cations, and anions)] was investigated by sampling sites located along vegetation and pond-age gradients in southwestern Quebec (Canada). Recently inundated beaver ponds (< 10 years old) and those located in coniferous watersheds had the highest MeHg concentrations (range, 0.10-4.53 ng L(-1)) and greatest methylation efficiencies (% THg as MeHg; range, 10-74%). High heterotrophic activity likely occurred in the beaver ponds as suggested by depletions of dissolved oxygen, sulfate and nitrite-nitrate concentrations, and increases in nutrients (e.g., dissolved organic carbon, total phosphorus, and total nitrogen) in outlets compared to inlets. Acidic waters at coniferous sites may have stimulated more MeHg production than in mixed woodland regions. Lower methylation efficiencies in older ponds (> 20 years old) may be due to the degradation of less labile organic matter as ponds age. Beavers actively alter watersheds by building impoundments, and our findings indicate that this landscape disturbance may be a significant source of MeHg to downstream water bodies. PMID:19731651

  19. Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients.

    PubMed

    Roy, Virginie; Amyot, Marc; Carignan, Richard

    2009-08-01

    Beaver impoundments flood forested areas and may be important production sites for methylmercury (MeHg) because of the resulting enhanced microbial activity and oxygen depletion. The influence of 17 beaver impoundments on streamwater chemistry (total mercury (THg), MeHg, nutrients, cations, and anions)] was investigated by sampling sites located along vegetation and pond-age gradients in southwestern Quebec (Canada). Recently inundated beaver ponds (< 10 years old) and those located in coniferous watersheds had the highest MeHg concentrations (range, 0.10-4.53 ng L(-1)) and greatest methylation efficiencies (% THg as MeHg; range, 10-74%). High heterotrophic activity likely occurred in the beaver ponds as suggested by depletions of dissolved oxygen, sulfate and nitrite-nitrate concentrations, and increases in nutrients (e.g., dissolved organic carbon, total phosphorus, and total nitrogen) in outlets compared to inlets. Acidic waters at coniferous sites may have stimulated more MeHg production than in mixed woodland regions. Lower methylation efficiencies in older ponds (> 20 years old) may be due to the degradation of less labile organic matter as ponds age. Beavers actively alter watersheds by building impoundments, and our findings indicate that this landscape disturbance may be a significant source of MeHg to downstream water bodies.

  20. Dairy farm wastewater treatment by an advanced pond system.

    PubMed

    Craggs, R J; Tanner, C C; Sukias, J P S; Davies-Colley, R J

    2003-01-01

    Waste stabilisation ponds (WSPs) have been used for the treatment of dairy farm wastewater in New Zealand since the 1970s. The conventional two pond WSP systems provide efficient removal of wastewater BOD5 and total suspended solids, but effluent concentrations of other pollutants including nutrients and faecal bacteria are now considered unsuitable for discharge to waterways. Advanced Pond Systems (APS) provide a potential solution. A pilot dairy farm APS consisting of an Anaerobic pond (the first pond of the conventional WSP system) followed by three ponds: a High Rate Pond (HRP), an Algae Settling Pond (ASP) and a Maturation Pond (which all replace the conventional WSP system facultative pond) was evaluated over a two year period. Performance was compared to that of the existing conventional dairy farm WSP system. APS system effluent quality was considerably higher than that of the conventional WSP system with respective median effluent concentrations of BOD5: 34 and 108 g m(-3), TSS: 64 and 220 g m(-3), NH4-N: 8 and 29 g m(-3), DRP: 13 and 17 g m(-3), and E. coli: 146 and 16195 MPN/100 ml. APS systems show great promise for upgrading conventional dairy farm WSPs in New Zealand.

  1. Dispersion of plutonium from contaminated pond sediments

    USGS Publications Warehouse

    Rees, T.F.; Cleveland, J.M.; Carl, Gottschall W.

    1978-01-01

    Sediment-water distributions of plutonium as a function of pH and contact time are investigated in a holding pond at the Rocky Flats plant of the Department of Energy. Although plutonium has been shown to sorb from natural waters onto sediments, the results of this study indicate that under the proper conditions it can be redispersed at pH 9 and above. Concentrations greater than 900 pCi Pu/L result after 34 h contact at pH 11 or 12 and the distribution coefficient, defined as the ratio of concentration in the sediment to that in the liquid, decreases from 1.1 ?? 105 at pH 7 to 1.2 ?? 103 at pH 11. The plutonium is probably dispersed as discrete colloids or as hydrolytic species adsorbed onto colloidal sediment particles whose average size decreases with increasing pH above pH 9. About 5% of the total plutonium is dispersed at pH 12, and the dispersion seems to readsorb on the sediment with time. Consequently, migration of plutonium from the pond should be slow, and it would be difficult to remove this element completely from pond sediment by leaching with high pH solutions. ?? 1978 American Chemical Society.

  2. Percolation through leaf litter: What happens during rainfall events of varying intensity?

    NASA Astrophysics Data System (ADS)

    Dunkerley, David

    2015-06-01

    Simulated rainfall experiments with a layer of eucalypt leaf litter showed that the flux of percolate emerging from the layer was influenced by the intensity profile of the incident rainfall. Experiments involved several different fixed rainfall intensities, and also seven different temporal patterns of changing intensity (event profiles). The event profiles all had a mean intensity of 10 mm/h and the same 30 min duration, but included intensity bursts or peaks of up to 100 mm/h early or late within the event, as well as events with multiple intensity peaks. The litter percolate flux associated with early rainfall intensity peaks was typically attenuated by nearly 50% in comparison with the intensity of the incident rainfall. In contrast, percolate flux from late rainfall peaks was often magnified, in some cases by up to 360%. Even under rainfall of constant intensity, the percolate flux exhibits fluctuations of about ±25% of the mean flux. In most cases, peaks in percolate flux lagged peaks in the incident rainfall by 4-5 min. The potential importance of diminished or enlarged litter percolate fluxes is their effect on water partitioning and the potential for lateral flow within and beneath litter layers, especially if the peaks in percolate flux exceed local soil infiltrability.

  3. Evidence of Universal Temperature Scaling in Self-Heated Percolating Networks.

    PubMed

    Das, Suprem R; Mohammed, Amr M S; Maize, Kerry; Sadeque, Sajia; Shakouri, Ali; Janes, David B; Alam, Muhammad A

    2016-05-11

    During routine operation, electrically percolating nanocomposites are subjected to high voltages, leading to spatially heterogeneous current distribution. The heterogeneity implies localized self-heating that may (self-consistently) reroute the percolation pathways and even irreversibly damage the material. In the absence of experiments that can spatially resolve the current distribution and a nonlinear percolation model suitable to interpret them, one relies on empirical rules and safety factors to engineer these materials. In this paper, we use ultrahigh resolution thermo-reflectance imaging, coupled with a new imaging processing technique, to map the spatial distribution ΔT(x, y; I) and histogram f(ΔT) of temperature rise due to self-heating in two types of 2D networks (percolating and copercolating). Remarkably, we find that the self-heating can be described by a simple two-parameter Weibull distribution, even under voltages high enough to reconfigure the percolation pathways. Given the generality of the phenomenological argument supporting the distribution, other percolating networks are likely to show similar stress distribution in response to sufficiently large stimuli. Furthermore, the spatial evolution of the self-heating of network was investigated by analyzing the spatial distribution and spatial correlation, respectively. An estimation of degree of hotspot clustering reveals a mechanism analogous to crystallization physics. The results should encourage nonlinear generalization of percolation models necessary for predictive engineering of nanocomposite materials.

  4. Continuum percolation of overlapping disks with a distribution of radii having a power-law tail.

    PubMed

    Sasidevan, V

    2013-08-01

    We study the continuum percolation problem of overlapping disks with a distribution of radii having a power-law tail; the probability that a given disk has a radius between R and R+dR is proportional to R(-(a+1)), where a>2. We show that in the low-density nonpercolating phase, the two-point function shows a power-law decay with distance, even at arbitrarily low densities of the disks, unlike the exponential decay in the usual percolation problem. As in the problem of fluids with long-range interaction, we argue that in our problem, the critical exponents take their short-range values for a>3-η(sr) whereas they depend on a for a<3-η(sr) where η(sr) is the anomalous dimension for the usual percolation problem. The mean-field regime obtained in the fluid problem corresponds to the fully covered regime, a≤2, in the percolation problem. We propose an approximate renormalization scheme to determine the correlation length exponent ν and the percolation threshold. We carry out Monte Carlo simulations and determine the exponent ν as a function of a. The determined values of ν show that it is independent of the parameter a for a>3-η(sr) and is equal to that for the lattice percolation problem, whereas ν varies with a for 2percolation threshold of the system as a function of the parameter a.

  5. Adjustment of the osmolality of Percoll for the isopycnic separation of cells and cell organelles.

    PubMed

    Vincent, R; Nadeau, D

    1984-09-01

    The addition of 1 part of 1.5 M NaCl or 2.5 M sucrose (10 X concentrate) to 9 parts of Percoll produces a stock solution that is hypertonic (350-360 mOsm/kg H2O). Because the osmolality is a critical variable in the isopycnic separation of cells and cell organelles, the factors accountable for this hypertonicity were investigated. Percoll, a colloidal suspension of silica particles coated with polyvinylpyrrolidone, can be described as a medium composed of two distinct compartments, an aqueous phase and a solid phase. According to this model, solutes (e.g., NaCl, sucrose) should have access to the aqueous phase and add to the intrinsic osmolality of Percoll, but should be excluded from the solid phase. In order to verify this hypothesis, mathematical equations were derived and tested. It was found that the ratio of the aqueous volume to the total volume of Percoll (R value) was dependent on the ionic strength of the stock solution. With this parameter, the osmolality of Percoll stock solutions could be predicted (+/-2%) and, consequently, one could calculate the proper dilution to be used with saline, culture medium, or sucrose concentrates to obtain a truly isotonic Percoll stock solution (congruent to 290 mOsm/kg H2O). The relative importance of an accurate control of the osmolality in the preparation of density gradients made up of Percoll is also discussed.

  6. Shape-controlled percolation transition in 2D random packing of asymmetric dimers

    NASA Astrophysics Data System (ADS)

    Han, Youngkyu; Lee, Juncheol; Choi, Siyoung Q.; Choi, Myung Chul; Kim, Mahn Won

    2015-03-01

    In this paper, we report on an experimental investigation of a shape-controlled percolation transition in two-dimensional (2D) amorphous packing of dimers without long-range order. In the maximally random jammed (MRJ) packing of asymmetric dimers consisting of head and body, a dramatic increase in the connectivity of heads upon increasing the head-to-body size ratio γ leads to a percolation transition of the heads at the well-defined percolation threshold. In comparison with binary disks, the existence of a bond in dimers causes the heads to be homogeneously distributed over a system by inhibiting the local segregation. Interestingly, we found, however, that the cluster structure at the percolation threshold is insensitive to the bond, even though the existence of the bonds affects the percolation threshold as well as the head distribution. The fractal dimensions at the percolation threshold obey the universal law of the 2D percolation theory independently of the existence of bonds. Our finding can provide us with a new perspective of interesting applications of randomly assembled binary composites by using the homogeneous particle distribution and the sensitively tunable connectivity under particle shape control.

  7. Factors affecting water balance and percolate production for a landfill in operation.

    PubMed

    Poulsen, Tjalfe G; Møoldrup, Per

    2005-02-01

    Percolate production and precipitation data for a full-scale landfill in operation measured over a 13-year period were used to evaluate the impact and importance of the hydrological conditions of landfill sections on the percolate production rates. Both active (open) and closed landfill sections were included in the evaluation. A simple top cover model requiring a minimum of input data was used to simulate the percolate production as a function of precipitation and landfill section hydrology. The results showed that changes over time in the hydrology of individual landfill sections (such as section closure or plantation of trees on top of closed sections) can change total landfill percolate production by more than 100%; thus, percolate production at an active landfill can be very different from percolate production at the same landfill after closure. Furthermore, plantation of willow on top of closed sections can increase the evapotranspiration rate thereby reducing percolate production rates by up to 47% compared to a grass cover. This process, however, depends upon the availability of water in the top layer, and so the evaporation rate will be less than optimal during the summer where soil-water contents in the top cover are low.

  8. Universality class of site and bond percolation on multifractal scale-free planar stochastic lattice

    NASA Astrophysics Data System (ADS)

    Hassan, M. K.; Rahman, M. M.

    2016-10-01

    In this article, we investigate both site and bond percolation on a weighted planar stochastic lattice (WPSL), which is a multifractal and whose dual is a scale-free network. The characteristic property of percolation is that it exhibits threshold phenomena as we find sudden or abrupt jump in spanning probability across pc accompanied by the divergence of some other observable quantities, which is reminiscent of a continuous phase transition. Indeed, percolation is characterized by the critical behavior of percolation strength P (p ) ˜(pc-p ) β , mean cluster size S ˜(pc-p ) -γ , and the system size L ˜(pc-p ) -ν , which are known as the equivalent counterpart of the order parameter, susceptibility, and correlation length, respectively. Moreover, the cluster size distribution function ns(pc) ˜s-τ and the mass-length relation M ˜Ldf of the spanning cluster also provide useful characterization of the percolation process. We numerically obtain a value for pc and for all the exponents such as β ,ν ,γ ,τ , and df. We find that, except for pc, all the exponents are exactly the same in both bond and site percolation despite the significant difference in the definition of cluster and other quantities. Our results suggest that the percolation on WPSL belongs to a new universality class, as its exponents do not share the same value as for all the existing planar lattices. Besides, like all other cases, its site and bond type belong to the same universality class.

  9. Truscott Brine Lake solar-pond system conceptual design

    SciTech Connect

    Leboeuf, C.M.; May, E.K.

    1982-08-01

    Discussed is a conceptual design study for a system of electricity-producing salt-gradient solar ponds that will provide power to a chloride control project under construction near Truscott, Tex. The chloride control project comprises a 1200-ha (3000-acre) brine impoundment lake to which brine will be pumped from several salty sources in the Wichita River basin. The solar ponds are formed by natural evaporation of the briny water pumped to Truscott. Heat is extracted from the solar ponds and used to drive organic Rankine-cycle (ORC) generators. Ponds were sized to provide the pumping needs of the chloride control project and the maintenance requirements of the solar ponds. The system includes six solar pond modules for a total area of 63.1 ha, and produces 1290 kW of base load electricity. Although sized for continuous power production, alternative operating scenarios involving production of peak power for shorter durations were also examined.

  10. A gradient maintenance technique for seawater solar ponds

    SciTech Connect

    Kleis, S.J.; Li, H.; Shi, J.

    1997-02-01

    Seawater solar ponds are being evaluated as a means of reducing heat losses from thermal refuge areas in outdoor mariculture ponds during cold weather. The thermal refuge areas are intended to provide a reliable means of protecting fish crops from lethal cold water temperatures in the winter months. A continuous filling technique is demonstrated for use in gradient zone maintenance of the seawater solar ponds. The technique allows indefinite operation of the refuge areas with a minimal amount of fresh water.

  11. Correlated Percolation, Fractal Structures, and Scale-Invariant Distribution of Clusters in Natural Images

    PubMed Central

    Saremi, Saeed; Sejnowski, Terrence J.

    2016-01-01

    Natural images are scale invariant with structures at all length scales. We formulated a geometric view of scale invariance in natural images using percolation theory, which describes the behavior of connected clusters on graphs. We map images to the percolation model by defining clusters on a binary representation for images. We show that critical percolating structures emerge in natural images and study their scaling properties by identifying fractal dimensions and exponents for the scale-invariant distributions of clusters. This formulation leads to a method for identifying clusters in images from underlying structures as a starting point for image segmentation. PMID:26415153

  12. Grain Boundary Percolation Modeling of Fission Gas Release in Oxide Fuels

    SciTech Connect

    Paul C. Millett; Michael R. Tonks; S. B. Biner

    2012-05-01

    We present a new approach to fission gas release modeling in oxide fuels based on grain boundary network percolation. The method accounts for variability in the bubble growth and coalescence rates on individual grain boundaries, and the resulting effect on macroscopic fission gas release. Two-dimensional representa- tions of fuel pellet microstructures are considered, and the resulting gas release rates are compared with traditional two-stage Booth models, which do not account for long-range percolation on grain boundary net- works. The results show that the requirement of percolation of saturated grain boundaries can considerably reduce the total gas release rates, particularly when gas resolution is considered.

  13. 7. PUMPING PLANT, SOUTHWEST AND SOUTHEAST SIDES, AND STILLING POND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. PUMPING PLANT, SOUTHWEST AND SOUTHEAST SIDES, AND STILLING POND - Outlook Irrigation District, Pumping Plant & Woodstave Pipe, Hudson Road & Snipes Lateral Road vicinity, Outlook, Yakima County, WA

  14. 7. William E. Barrett, Photographer, August 1975. LOG PONDS LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. William E. Barrett, Photographer, August 1975. LOG PONDS LOOKING WEST FROM POWERHOUSE ROOF. TRANSFORMER SHED IN FOREGROUND. - Meadow River Lumber Company, Highway 60, Rainelle, Greenbrier County, WV

  15. On solar ponds: salty fare for the world's energy appetite

    SciTech Connect

    Edesess, M.

    1982-11-01

    It is shown how a uniquely simple salt-gradient solar-energy trap is proving an economical source of electricity and low-temperature heat at various sites around the world. Problems with solar ponds include the thickening of the surface layer despite grids of wave-suppressors; the economics of using solar ponds to generate power and desalt water depend largely on the ability to operate without a synthetic liner; and some solar ponds lose much more heat to the ground than predicted. It is concluded that development of solar ponds is likely to depend on energy demand.

  16. Minimizing contamination hazards to waterbirds using agricultural drainage evaporation ponds

    NASA Astrophysics Data System (ADS)

    Bradford, David F.; Smith, Lynda A.; Drezner, Deborah S.; Shoemaker, J. David

    1991-11-01

    In much of the San Joaquin Valley, California, USA, inadequate drainage of applied irrigation water and accumulating salts in the soil have necessitated the installation of subsurface tile drainage systems to preserve crop productivity. At present, these subsurface drainage waters are disposed of by means of evaporation ponds or discharges into the San Joaquin River. Unfortunately, most of these agricultural drainage waters contain high concentrations of salts and naturally occurring trace elements, such as selenium, and recent evidence indicates that substantial numbers of waterbirds are exposed to contamination by selenium in the evaporation ponds. In order to avoid, minimize, or mitigate the adverse impacts on wildlife using the ponds, alternative pond management methods must be identified and evaluated for implementation. A number of methods have the potential to be cost-effective in significantly reducing the contamination hazard to birds using agricultural evaporation ponds. Twenty general methods were evaluated in this study, and four methods are recommended for implementation: remove levee vegetation, remove windbreaks, deepen the ponds, and haze birds. A number of other methods are recommended for further consideration because they appear to have good prospects for reducing the contamination hazard: steepen interior levee slopes, apply herbicides and insecticides, place netting on pond shorelines, and provide freshwater habitat adjacent to evaporation ponds. It may be necessary to use a combination of methods to effectively control selenium contamination of aquatic birds because it is unlikely that a single affordable pond management method will be able to entirely eliminate the contamination hazard.

  17. Effect of root distribution on modelling percolation and groundwater evapotranspiration

    NASA Astrophysics Data System (ADS)

    Orellana, F. A.; Daly, E.

    2011-12-01

    In groundwater-dependent ecosystems, vegetation is able to extend its root system deep in the soil to wet zones strongly influenced by the water table. As a result, either part or all transpired water is supplied by groundwater. In many models, roots are assumed to be submerged in groundwater; however, this is not the case for many species. We analised the effect of using different root systems in estimating evapotranspiration and recharge in groundwater-dependent ecosystems. A 2D finite-elements model was developed using the program SEEPW to simulate the interaction between saturated and unsaturated soil in a riparian area. The domain of the model consists in a soil layer 8 meters deep and 100 meters long, with a constant water table outside of the vegetated area and a variable water table in the opposite side, controlled by the stage level of a river. Five root distributions were simulated: homogeneous in the saturated zone, homogeneous in the unsaturated zone, concentrated in the top layer of the soil, concentrated in the capillary fringe and a dimorphic distribution. The water-table level in the vegetated zone is always close to three meter depth; therefore, the direct evaporation from groundwater is neglected. Preliminary results show a significant impact of differing root distributions on the modelled water-table levels. The daily pattern of transpiration produces daily fluctuations in the water-table level, whose amplitude is higher when the total transpiration is uptaken from groundwater, and is considerably smaller when the root system is only in the unsaturated zone. These differences are also reflected in the net recharge and groundwater evapotranspiration. When transpiration comes directly from groundwater, most of the infiltrated water reaches the water table. However, when roots are distributed in the unsaturated zone, they are able to intercep part of the infiltration, with a decrease in percolation. Likewise, groundwater evapotranspiration reduces

  18. Well-construction, water-quality, and water-level data, and pond-infiltration estimates, for three ground-water subbasins, Riverside County, California

    USGS Publications Warehouse

    Burton, C.A.; Kaehler, C.A.; Christensen, A.H.

    1996-01-01

    Reclaimed water in the Eastern Municipal Water District of Riverside County,California, is used within the service area for agricultural irrigation.Owing to the seasonal demand for reclaimed water, storage/infiltration ponds were constructed in the Winchester, Menifee, and south Perris subbasins.Reclaimed water infiltrates from these ponds and enters the groundwater system. Little is known of the effects of the reclaimed water on groundwater quality. In cooperation with the Eastern MunicipalWater District, the U.S. Geological Survey began a study in 1995 to determine the quantity and fate of reclaimed water percolating from these storage ponds. Data compiled during the first phase of this study are presented in this report. Field reconnaissance of the Winchester, Menifee, and south Perris subbasins indicated the existence of many wells. Wellconstruction data for 115 of these wells were tabulated. Available historical waterquality and waterlevel data for 178 wells in the subbasins also were tabulated. In addition, water levels in 86 wells were measured during the spring and autumn of 1995. On the basis of these data, waterlevel contour lines were drawn and the direction of groundwater flow was determined.Three lithologic sections through the subbasins were constructed from drillers' logs of 26 wells.

  19. Oxygen and nitrogen dyamics in split ponds vs. intensive and conventional catfish production ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Split Pond aquaculture system (SP) has captured the attention of catfish producers across the southern U.S. The SP represents a lower cost adaptation of Clemson University’s Partitioned Aquaculture System (PAS). The original PAS design relied on slowly rotating paddlewheels to move water throu...

  20. Comparison of phytoplankton communities in catfish split-pond aquaculture systems with conventional ponds.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been a growing interest and use of variations of partitioned aquaculture systems (PAS) in recent years by the southeastern United States of America farmed catfish industry. Split-pond systems, one type of PAS, are designed to better manage fish waste byproducts (e.g., ammonia) and dissolv...

  1. Salt-Pond Box Model (SPOOM) and Its Application to the Napa-Sonoma Salt Ponds, San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan L.; Schoellhamer, David H.; Buchanan, Paul A.; Meyer, Scott

    2004-01-01

    A box model to simulate water volume and salinity of a salt pond has been developed by the U.S. Geological Survey to obtain water and salinity budgets. The model, SPOOM, uses the principle of conservation of mass to calculate daily pond volume and salinity and includes a salt crystallization and dissolution algorithm. Model inputs include precipitation, evaporation, infiltration, and water transfers. Salinity and water-surface-elevation data were collected monthly in the Napa-Sonoma Salt-Pond Complex from February 1999 through September 2001 and were used to calibrate and validate the model. The months when water transfers occurred were known but the magnitudes were unknown, so the magnitudes of water transfers were adjusted in the model to calibrate simulated pond volumes to measured pond volumes for three ponds. Modeled salinity was then compared with measured salinity, which remained a free parameter, in order to validate the model. Comparison showed good correlation between modeled and measured salinity. Deviations can be attributed to lack of water-transfer information. Water and salinity budgets obtained through modeling will be used to help interpret ecological data from the ponds. This model has been formulated to be applicable to the Napa-Sonoma salt ponds, but can be applied to other salt ponds.

  2. 30 CFR 817.56 - Postmining rehabilitation of sedimentation ponds, diversions, impoundments, and treatment...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ponds, diversions, impoundments, and treatment facilities. 817.56 Section 817.56 Mineral Resources... Postmining rehabilitation of sedimentation ponds, diversions, impoundments, and treatment facilities. Before... removed and reclaimed, and that all permanent sedimentation ponds, diversions, impoundments, and...

  3. 30 CFR 816.56 - Postmining rehabilitation of sedimentation ponds, diversions, impoundments, and treatment...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ponds, diversions, impoundments, and treatment facilities. 816.56 Section 816.56 Mineral Resources... rehabilitation of sedimentation ponds, diversions, impoundments, and treatment facilities. Before abandoning a... and reclaimed, and that all permanent sedimentation ponds, diversions, impoundments, and...

  4. Hybrid phase transition into an absorbing state: Percolation and avalanches

    NASA Astrophysics Data System (ADS)

    Lee, Deokjae; Choi, S.; Stippinger, M.; Kertész, J.; Kahng, B.

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent βm of the order parameter is 1 /2 under general conditions, while the value of the exponent γm characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, βa and γa. These two critical behaviors are coupled by a scaling law: 1 -βm=γa .

  5. Crystalline Nanojoining Silver Nanowire Percolated Networks on Flexible Substrate.

    PubMed

    Nian, Qiong; Saei, Mojib; Xu, Yang; Sabyasachi, Ganguli; Deng, Biwei; Chen, Yong P; Cheng, Gary J

    2015-10-27

    Optoelectronic performance of metal nanowire networks are dominated by junction microstructure and network configuration. Although metal nanowire printings, such as silver nanowires (AgNWs) or AgNWs/semiconductor oxide bilayer, have great potential to replace traditional ITO, efficient and selective nanoscale integration of nanowires is still challenging owing to high cross nanowire junction resistance. Herein, pulsed laser irradiation under controlled conditions is used to generate local crystalline nanojoining of AgNWs without affecting other regions of the network, resulting in significantly improved optoelectronic performance. The method, laser-induced plasmonic welding (LPW), can be applied to roll-to-roll printed AgNWs percolating networks on PET substrate. First principle simulations and experimental characterizations reveal the mechanism of crystalline nanojoining originated from thermal activated isolated metal atom flow over nanowire junctions. Molecular dynamic simulation results show an angle-dependent recrystallization process during LPW. The excellent optoelectronic performance of AgNW/PET has achieved Rs ∼ 5 Ω/sq at high transparency (91% @λ = 550 nm).

  6. Leveraging percolation theory to single out influential spreaders in networks.

    PubMed

    Radicchi, Filippo; Castellano, Claudio

    2016-06-01

    Among the consequences of the disordered interaction topology underlying many social, technological, and biological systems, a particularly important one is that some nodes, just because of their position in the network, may have a disproportionate effect on dynamical processes mediated by the complex interaction pattern. For example, the early adoption of a commercial product by an opinion leader in a social network may change its fate or just a few superspreaders may determine the virality of a meme in social media. Despite many recent efforts, the formulation of an accurate method to optimally identify influential nodes in complex network topologies remains an unsolved challenge. Here, we present the exact solution of the problem for the specific, but highly relevant, case of the susceptible-infected-removed (SIR) model for epidemic spreading at criticality. By exploiting the mapping between bond percolation and the static properties of the SIR model, we prove that the recently introduced nonbacktracking centrality is the optimal criterion for the identification of influential spreaders in locally tree-like networks at criticality. By means of simulations on synthetic networks and on a very extensive set of real-world networks, we show that the nonbacktracking centrality is a highly reliable metric to identify top influential spreaders also in generic graphs not embedded in space and for noncritical spreading. PMID:27415287

  7. Anisotropy in Fracking: A Percolation Model for Observed Microseismicity

    NASA Astrophysics Data System (ADS)

    Norris, J. Quinn; Turcotte, Donald L.; Rundle, John B.

    2015-01-01

    Hydraulic fracturing (fracking), using high pressures and a low viscosity fluid, allow the extraction of large quantiles of oil and gas from very low permeability shale formations. The initial production of oil and gas at depth leads to high pressures and an extensive distribution of natural fractures which reduce the pressures. With time these fractures heal, sealing the remaining oil and gas in place. High volume fracking opens the healed fractures allowing the oil and gas to flow to horizontal production wells. We model the injection process using invasion percolation. We use a 2D square lattice of bonds to model the sealed natural fractures. The bonds are assigned random strengths and the fluid, injected at a point, opens the weakest bond adjacent to the growing cluster of opened bonds. Our model exhibits burst dynamics in which the clusters extend rapidly into regions with weak bonds. We associate these bursts with the microseismic activity generated by fracking injections. A principal object of this paper is to study the role of anisotropic stress distributions. Bonds in the y-direction are assigned higher random strengths than bonds in the x-direction. We illustrate the spatial distribution of clusters and the spatial distribution of bursts (small earthquakes) for several degrees of anisotropy. The results are compared with observed distributions of microseismicity in a fracking injection. Both our bursts and the observed microseismicity satisfy Gutenberg-Richter frequency-size statistics.

  8. Sub-percolative composites for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Stoyanov, H.; Kollosche, M.; McCarthy, D.; Becker, A.; Risse, S.; Kofod, G.

    2009-07-01

    Dielectric elastomer actuators (DEA) based on Maxwell-stress induced deformation are considered for many potential applications where high actuation strain and energy are required. However, the high electric field and voltage required to drive them limits some of the applications. The high driving field could be lowered by developing composite materials with high-electromechanical response. In this study, a sub-percolative approach for increasing the electromechanical response has been investigated. Composites with conductive carbon black (CB) particles introduced into a soft rubber matrix poly-(styrene-co-ethylene-co-butylene-co-styrene) (SEBS) were prepared by a drop-casting method. The resulting composites were characterized by dielectric spectroscopy, tensile tests, and for electric breakdown strength. The results showed a substantial increase of the relative permittivity at low volume percentages, thereby preserving the mechanical properties of the base soft polymer material. Young's modulus was found to increase with content of CB, however, due to the low volume percentages used, the composites still retain relatively low stiffness, as it is required to achieve high actuation strain. A serious drawback of the approach is the large decrease of the composite electric breakdown strength, due to the local enhancement in the electric field, such that breakdown events will occur at a lower macroscopic electric field.

  9. Percolation in networks composed of connectivity and dependency links

    NASA Astrophysics Data System (ADS)

    Bashan, Amir; Parshani, Roni; Havlin, Shlomo

    2011-05-01

    Networks composed from both connectivity and dependency links were found to be more vulnerable compared to classical networks with only connectivity links. Their percolation transition is usually of a first order compared to the second-order transition found in classical networks. We analytically analyze the effect of different distributions of dependencies links on the robustness of networks. For a random Erdös-Rényi (ER) network with average degree k that is divided into dependency clusters of size s, the fraction of nodes that belong to the giant component P∞ is given by P∞=ps-1[1-exp(-kpP∞)]s, where 1-p is the initial fraction of removed nodes. Our general result coincides with the known Erdös-Rényi equation for random networks for s=1. For networks with Poissonian distribution of dependency links we find that P∞ is given by P∞=fk,p(P∞)e(-1)[pfk,p(P∞)-1], where fk,p(P∞)≡1-exp(-kpP∞) and is the mean value of the size of dependency clusters. For networks with Gaussian distribution of dependency links we show how the average and width of the distribution affect the robustness of the networks.

  10. Hybrid phase transition into an absorbing state: Percolation and avalanches.

    PubMed

    Lee, Deokjae; Choi, S; Stippinger, M; Kertész, J; Kahng, B

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent β_{m} of the order parameter is 1/2 under general conditions, while the value of the exponent γ_{m} characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, β_{a} and γ_{a}. These two critical behaviors are coupled by a scaling law: 1-β_{m}=γ_{a}.

  11. Influence maximization in complex networks through optimal percolation.

    PubMed

    Morone, Flaviano; Makse, Hernán A

    2015-08-01

    The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase. PMID:26131931

  12. Percolation on shopping and cashback electronic commerce networks

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Chen, Yini; Qin, Zhen; Guo, Liping

    2013-06-01

    Many realistic networks live in the form of multiple networks, including interacting networks and interdependent networks. Here we study percolation properties of a special kind of interacting networks, namely Shopping and Cashback Electronic Commerce Networks (SCECNs). We investigate two actual SCECNs to extract their structural properties, and develop a mathematical framework based on generating functions for analyzing directed interacting networks. Then we derive the necessary and sufficient condition for the absence of the system-wide giant in- and out- component, and propose arithmetic to calculate the corresponding structural measures in the sub-critical and supercritical regimes. We apply our mathematical framework and arithmetic to those two actual SCECNs to observe its accuracy, and give some explanations on the discrepancies. We show those structural measures based on our mathematical framework and arithmetic are useful to appraise the status of SCECNs. We also find that the supercritical regime of the whole network is maintained mainly by hyperlinks between different kinds of websites, while those hyperlinks between the same kinds of websites can only enlarge the sizes of in-components and out-components.

  13. Leveraging percolation theory to single out influential spreaders in networks

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo; Castellano, Claudio

    2016-06-01

    Among the consequences of the disordered interaction topology underlying many social, technological, and biological systems, a particularly important one is that some nodes, just because of their position in the network, may have a disproportionate effect on dynamical processes mediated by the complex interaction pattern. For example, the early adoption of a commercial product by an opinion leader in a social network may change its fate or just a few superspreaders may determine the virality of a meme in social media. Despite many recent efforts, the formulation of an accurate method to optimally identify influential nodes in complex network topologies remains an unsolved challenge. Here, we present the exact solution of the problem for the specific, but highly relevant, case of the susceptible-infected-removed (SIR) model for epidemic spreading at criticality. By exploiting the mapping between bond percolation and the static properties of the SIR model, we prove that the recently introduced nonbacktracking centrality is the optimal criterion for the identification of influential spreaders in locally tree-like networks at criticality. By means of simulations on synthetic networks and on a very extensive set of real-world networks, we show that the nonbacktracking centrality is a highly reliable metric to identify top influential spreaders also in generic graphs not embedded in space and for noncritical spreading.

  14. Directed Percolation and Other Systems with Absorbing States

    NASA Astrophysics Data System (ADS)

    Fröjdh, Per; Howard, Martin; Lauritsen, Kent Bækgaard

    We review the critical behavior of nonequilibrium systems, such as directed percolation (DP) and branching-annihilating random walks (BARW), which possess phase transitions into absorbing states. After reviewing the bulk scaling behavior of these models, we devote the main part of this review to analyzing the impact of walls on their critical behavior. We discuss the possible boundary universality classes for the DP and BARW models, which can be described by a general scaling theory which allows for two independent surface exponents in addition to the bulk critical exponents. Above the upper critical dimension dc, we review the use of mean field theories, whereas in the regime d

  15. Hybrid phase transition into an absorbing state: Percolation and avalanches.

    PubMed

    Lee, Deokjae; Choi, S; Stippinger, M; Kertész, J; Kahng, B

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent β_{m} of the order parameter is 1/2 under general conditions, while the value of the exponent γ_{m} characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, β_{a} and γ_{a}. These two critical behaviors are coupled by a scaling law: 1-β_{m}=γ_{a}. PMID:27176256

  16. Examining Water Quality Variations of Tidal Pond System

    NASA Astrophysics Data System (ADS)

    Chui, T. F. M.; Cui, W.

    2014-12-01

    Brackish tidal shrimp ponds, traditionally referred to as gei wais, have been constructed along coastal areas in many parts of the world. The regular exchange of pond water with the surrounding coastal environment is important as it brings shrimp larvae and nutrients, etc. into and out of the pond. Such a water exchange can reduce the quality of the receiving waters; though there are opposing views recently because farming practices are becoming more sustainable while other sources of pollutions in the surroundings are increasing. This project monitors the water quality of a tidal shrimp pond and its receiving water at high temporal resolution. The pond is located within the wetland complex of Mai Po Nature Reserve in Hong Kong, China. Water quality parameters (i.e., dissolved oxygen, temperature, salinity, pH, water depth and chlorophyll) were recorded at 15-minute interval from December 2013 to March 2014 within the pond and also at its receiving water which is a water channel within a mangrove forest. Data reveals both daily and fortnightly fluctuations. Daily variations in mangrove correspond to both tidal flushing and insolation, whereas those within the pond correspond mainly to insolation. For example, dissolved oxygen in mangrove shows two peaks daily which correlate with tidal elevation, and that within the pond shows only one peak which correlates with sunlight. Dissolved oxygen within the pond also shows a fortnightly pattern that corresponds to the schedule of water exchange. Such high temporal resolution of monitoring reveals the two-way water quality influences between the pond and the mangrove. It sheds insights that can possibly lead to refinement of water exchange practice and water sampling schedule given the temporal variations of the water quality both inside and outside the pond. It thus enables us to take a step closer in adopting more sustainable farming practices despite increasing pollution in the surrounding areas.

  17. Experimental canopy removal enhances diversity of vernal pond amphibians.

    PubMed

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have

  18. First description of underwater acoustic diversity in three temperate ponds

    PubMed Central

    Rybak, Fanny; Depraetere, Marion; Gasc, Amandine; Le Viol, Isabelle; Pavoine, Sandrine; Sueur, Jérôme

    2015-01-01

    The past decade has produced an increased ecological interest in sonic environments, or soundscapes. However, despite this rise in interest and technological improvements that allow for long-term acoustic surveys in various environments, some habitats’ soundscapes remain to be explored. Ponds, and more generally freshwater habitats, are one of these acoustically unexplored environments. Here we undertook the first long term acoustic monitoring of three temperate ponds in France. By aural and visual inspection of a selection of recordings, we identified 48 different sound types, and according to the rarefaction curves we calculated, more sound types are likely present in one of the three ponds. The richness of sound types varied significantly across ponds. Surprisingly, there was no pond-to-pond daily consistency of sound type richness variation; each pond had its own daily patterns of activity. We also explored the possibility of using six acoustic diversity indices to conduct rapid biodiversity assessments in temperate ponds. We found that all indices were sensitive to the background noise as estimated through correlations with the signal-to-noise ratio (SNR). However, we determined that the AR index could be a good candidate to measure acoustic diversities using partial correlations with the SNR as a control variable. Yet, research is still required to automatically compute the SNR in order to apply this index on a large data set of recordings. The results showed that these three temperate ponds host a high level of acoustic diversity in which the soundscapes were variable not only between but also within the ponds. The sources producing this diversity of sounds and the drivers of difference in daily song type richness variation both require further investigation. Such research would yield insights into the biodiversity and ecology of temperate ponds. PMID:26587351

  19. First description of underwater acoustic diversity in three temperate ponds.

    PubMed

    Desjonquères, Camille; Rybak, Fanny; Depraetere, Marion; Gasc, Amandine; Le Viol, Isabelle; Pavoine, Sandrine; Sueur, Jérôme

    2015-01-01

    The past decade has produced an increased ecological interest in sonic environments, or soundscapes. However, despite this rise in interest and technological improvements that allow for long-term acoustic surveys in various environments, some habitats' soundscapes remain to be explored. Ponds, and more generally freshwater habitats, are one of these acoustically unexplored environments. Here we undertook the first long term acoustic monitoring of three temperate ponds in France. By aural and visual inspection of a selection of recordings, we identified 48 different sound types, and according to the rarefaction curves we calculated, more sound types are likely present in one of the three ponds. The richness of sound types varied significantly across ponds. Surprisingly, there was no pond-to-pond daily consistency of sound type richness variation; each pond had its own daily patterns of activity. We also explored the possibility of using six acoustic diversity indices to conduct rapid biodiversity assessments in temperate ponds. We found that all indices were sensitive to the background noise as estimated through correlations with the signal-to-noise ratio (SNR). However, we determined that the AR index could be a good candidate to measure acoustic diversities using partial correlations with the SNR as a control variable. Yet, research is still required to automatically compute the SNR in order to apply this index on a large data set of recordings. The results showed that these three temperate ponds host a high level of acoustic diversity in which the soundscapes were variable not only between but also within the ponds. The sources producing this diversity of sounds and the drivers of difference in daily song type richness variation both require further investigation. Such research would yield insights into the biodiversity and ecology of temperate ponds. PMID:26587351

  20. Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states

    NASA Astrophysics Data System (ADS)

    Laurati, Marco; Capellmann, Ronja; Kohl, Matthias; Egelhaaf, Stefan; Schmiedeberg, Michael

    The macroscopic properties of gels arise from their slow dynamics and load bearing network structure, which are exploited by nature and in numerous industrial products. However, a link between these structural and dynamical properties has remained elusive. Here we present confocal microscopy exper- iments and simulations of gel-forming colloid-polymer mixtures with competing interactions. They reveal that gel formation is preceded by continuous and directed percolation. Both transitions lead to system spanning networks, but only directed percolation results in extremely slow dynamics, ageing and a shrinking of the gel that resembles syneresis. Therefore, dynamical arrest in gels is found to be linked to a structural transition, namely directed percolation, which is quantitatively associated with the mean number of bonded neighbours. Directed percolation is a universality class of transitions out of equilibrium, our study hence connects gel formation to a well-developed theoretical framework which now can be exploited to achieve a detailed understanding of arrested gels.

  1. Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states

    PubMed Central

    Kohl, M.; Capellmann, R. F.; Laurati, M.; Egelhaaf, S. U.; Schmiedeberg, M.

    2016-01-01

    The macroscopic properties of gels arise from their slow dynamics and load-bearing network structure, which are exploited by nature and in numerous industrial products. However, a link between these structural and dynamical properties has remained elusive. Here we present confocal microscopy experiments and simulations of gel-forming colloid–polymer mixtures. They reveal that gel formation is preceded by continuous and directed percolation. Both transitions lead to system-spanning networks, but only directed percolation results in extremely slow dynamics, ageing and a shrinking of the gel that resembles synaeresis. Therefore, dynamical arrest in gels is found to be linked to a structural transition, namely directed percolation, which is quantitatively associated with the mean number of bonded neighbours. Directed percolation denotes a universality class of transitions. Our study hence connects gel formation to a well-developed theoretical framework, which now can be exploited to achieve a detailed understanding of arrested gels. PMID:27279005

  2. Electrical and Dielectric Properties of Exfoliated Graphite/Polyimide Composite Films with Low Percolation Threshold

    NASA Astrophysics Data System (ADS)

    Yu, Li; Zhang, Yi-He; Shang, Jiwu; Ke, Shan-Ming; Tong, Wang-shu; Shen, Bo; Huang, Hai-Tao

    2012-09-01

    Exfoliated graphite/polyimide composite films were synthesized by in situ polymerization. The electrical and dielectric properties of composite films with different volume fraction of exfoliated graphite were investigated over the frequency range from 103 Hz to 3 × 106 Hz. The dielectric behavior of the composite films was investigated by percolation theory and a microcapacitor model. A low percolation threshold f c ≈ 3.1 vol.% was obtained due to the high aspect ratio of the exfoliated graphite. Both the dielectric constant and alternating-current (AC) conductivity showed an abrupt increase in the vicinity of the percolation threshold. The ultralarge enhancement of the dielectric constant near and beyond the percolation threshold was due to Maxwell-Wagner-Sillars (MWS) interfacial polarization between the exfoliated graphite and polyimide and interface polarization between the composite film and electrode.

  3. Out-of-equilibrium stationary states, percolation, and subcritical instabilities in a fully nonconservative system

    NASA Astrophysics Data System (ADS)

    Génois, Mathieu; Hersen, Pascal; Bertin, Eric; Courrech du Pont, Sylvain; Grégoire, Guillaume

    2016-10-01

    The exploration of the phase diagram of a minimal model for barchan fields leads to the description of three distinct phases for the system: stationary, percolable, and unstable. In the stationary phase the system always reaches an out-of-equilibrium, fluctuating, stationary state, independent of its initial conditions. This state has a large and continuous range of dynamics, from dilute—where dunes do not interact—to dense, where the system exhibits both spatial structuring and collective behavior leading to the selection of a particular size for the dunes. In the percolable phase, the system presents a percolation threshold when the initial density increases. This percolation is unusual, as it happens on a continuous space for moving, interacting, finite lifetime dunes. For extreme parameters, the system exhibits a subcritical instability, where some of the dunes in the field grow without bound. We discuss the nature of the asymptotic states and their relations to well-known models of statistical physics.

  4. Percolation in random sequential adsorption of extended objects on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Budinski-Petković, Lj.; Lončarević, I.; Petković, M.; Jakšić, Z. M.; Vrhovac, S. B.

    2012-06-01

    The percolation aspect of random sequential adsorption of extended objects on a triangular lattice is studied by means of Monte Carlo simulations. The depositing objects are formed by self-avoiding lattice steps on the lattice. Jamming coverage θjam, percolation threshold θp*, and their ratio θp*/θjam are determined for objects of various shapes and sizes. We find that the percolation threshold θp* may decrease or increase with the object size, depending on the local geometry of the objects. We demonstrate that for various objects of the same length, the threshold θp* of more compact shapes exceeds the θp* of elongated ones. In addition, we study polydisperse mixtures in which the size of line segments making up the mixture gradually increases with the number of components. It is found that the percolation threshold decreases, while the jamming coverage increases, with the number of components in the mixture.

  5. Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials

    PubMed Central

    Kim, Sangwoo; Choi, Seongdae; Oh, Eunho; Byun, Junghwan; Kim, Hyunjong; Lee, Byeongmoon; Lee, Seunghwan; Hong, Yongtaek

    2016-01-01

    A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson’s ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson’s ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties. PMID:27694856

  6. Percolating length scales from topological persistence analysis of micro-CT images of porous materials

    NASA Astrophysics Data System (ADS)

    Robins, Vanessa; Saadatfar, Mohammad; Delgado-Friedrichs, Olaf; Sheppard, Adrian P.

    2016-01-01

    Topological persistence is a powerful and general technique for characterizing the geometry and topology of data. Its theoretical foundations are over 15 years old and efficient computational algorithms are now available for the analysis of large digital images. We explain here how quantities derived from topological persistence relate to other measurements on porous materials such as grain and pore-size distributions, connectivity numbers, and the critical radius of a percolating sphere. The connections between percolation and topological persistence are explored in detail using data obtained from micro-CT images of spherical bead packings, unconsolidated sand packing, a variety of sandstones, and a limestone. We demonstrate how persistence information can be used to estimate the percolating sphere radius and to characterize the connectivity of the percolating cluster.

  7. The Role of Air Percolation in the Disintegration of Entering Meteoroids

    NASA Astrophysics Data System (ADS)

    Tabetah, M. E.; Melosh, H. J.

    2016-08-01

    We discuss the role of air percolation on the break-up of entering meteoroids in an attempt to explain the nearly complete disintegration of the Chelyabinsk meteoroid that led to significantly more than the expected damages from small meteoroids.

  8. Percolation analysis of nonlinear structures in scale-free two-dimensional simulations

    NASA Technical Reports Server (NTRS)

    Dominik, Kurt G.; Shandarin, Sergei F.

    1992-01-01

    Results are presented of applying percolation analysis to several two-dimensional N-body models which simulate the formation of large-scale structure. Three parameters are estimated: total area (a(c)), total mass (M(C)), and percolation density (rho(c)) of the percolating structure at the percolation threshold for both unsmoothed and smoothed (with different scales L(s)) nonlinear with filamentary structures, confirming early speculations that this type of model has several features of filamentary-type distributions. Also, it is shown that, by properly applying smoothing techniques, many problems previously considered detrimental can be dealt with and overcome. Possible difficulties and prospects with the use of this method are discussed, specifically relating to techniques and methods already applied to CfA deep sky surveys. The success of this test in two dimensions and the potential for extrapolation to three dimensions is also discussed.

  9. PERCOLATION ON GRAIN BOUNDARY NETWORKS: APPLICATION TO FISSION GAS RELEASE IN NUCLEAR FUELS

    SciTech Connect

    Paul C. Millett

    2012-02-01

    The percolation behavior of grain boundary networks is characterized in two- and three-dimensional lattices with circular macroscale cross-sections that correspond to nuclear fuel elements. The percolation of gas bubbles on grain boundaries, and the subsequent percolation of grain boundary networks is the primary mechanism of fission gas release from nuclear fuels. Both radial cracks and radial gradients in grain boundary property distributions are correlated with the fraction of grain boundaries vented to the free surfaces. Our results show that cracks surprisingly do not significantly increase the percolation of uniform grain boundary networks. However, for networks with radial gradients in boundary properties, the cracks can considerably raise the vented grain boundary content.

  10. Effect of Percolation on the Cubic Susceptibility of Metal Nanoparticle Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Bender, Matthew W.; Boyd, Robert W.

    1998-01-01

    Generalized two-dimensional and three-dimensional Maxwell Garnett and Bruggeman geometries reveal that a sign reversal in the cubic susceptibility occurs for metal nanoparticle composites near the percolation threshold.

  11. Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states

    NASA Astrophysics Data System (ADS)

    Kohl, M.; Capellmann, R. F.; Laurati, M.; Egelhaaf, S. U.; Schmiedeberg, M.

    2016-06-01

    The macroscopic properties of gels arise from their slow dynamics and load-bearing network structure, which are exploited by nature and in numerous industrial products. However, a link between these structural and dynamical properties has remained elusive. Here we present confocal microscopy experiments and simulations of gel-forming colloid-polymer mixtures. They reveal that gel formation is preceded by continuous and directed percolation. Both transitions lead to system-spanning networks, but only directed percolation results in extremely slow dynamics, ageing and a shrinking of the gel that resembles synaeresis. Therefore, dynamical arrest in gels is found to be linked to a structural transition, namely directed percolation, which is quantitatively associated with the mean number of bonded neighbours. Directed percolation denotes a universality class of transitions. Our study hence connects gel formation to a well-developed theoretical framework, which now can be exploited to achieve a detailed understanding of arrested gels.

  12. The critical role of islands for waterbird breeding and foraging habitat in managed ponds of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    USGS Publications Warehouse

    Ackerman, Joshua T.; Hartman, C. Alex; Herzog, Mark P.; Smith, Lacy M.; Moskal, Stacy M.; De La Cruz, Susan E. W.; Yee, Julie L.; Takekawa, John Y.

    2014-01-01

    The South Bay Salt Pond Restoration Project aims to restore 50–90 percent of former salt evaporation ponds into tidal marsh in South San Francisco Bay, California. However, large numbers of waterbirds use these ponds annually as nesting and foraging habitat. Islands within ponds are particularly important habitat for nesting, foraging, and roosting waterbirds. To maintain current waterbird populations, the South Bay Salt Pond Restoration Project plans to create new islands within former salt ponds in South San Francisco Bay. In a series of studies, we investigated pond and individual island attributes that are most beneficial to nesting, foraging, and roosting waterbirds.

  13. Note: optimization of the numerical data analysis for conductivity percolation studies of drying moist porous systems.

    PubMed

    Moscicki, J K; Sokolowska, D; Kwiatkowski, L; Dziob, D; Nowak, J

    2014-02-01

    A simplified data analysis protocol, for dielectric spectroscopy use to study conductivity percolation in dehydrating granular media is discussed. To enhance visibility of the protonic conductivity contribution to the dielectric loss spectrum, detrimental effects of either low-frequency dielectric relaxation or electrode polarization are removed. Use of the directly measurable monofrequency dielectric loss factor rather than estimated DC conductivity to parameterize the percolation transition substantially reduces the analysis work and time.

  14. Physarum polycephalum Percolation as a Paradigm for Topological Phase Transitions in Transportation Networks

    NASA Astrophysics Data System (ADS)

    Fessel, Adrian; Oettmeier, Christina; Bernitt, Erik; Gauthier, Nils C.; Döbereiner, Hans-Günther

    2012-08-01

    We study the formation of transportation networks of the true slime mold Physarum polycephalum after fragmentation by shear. Small fragments, called microplasmodia, fuse to form macroplasmodia in a percolation transition. At this topological phase transition, one single giant component forms, connecting most of the previously isolated microplasmodia. Employing the configuration model of graph theory for small link degree, we have found analytically an exact solution for the phase transition. It is generally applicable to percolation as seen, e.g., in vascular networks.

  15. Note: Optimization of the numerical data analysis for conductivity percolation studies of drying moist porous systems

    SciTech Connect

    Moscicki, J. K.; Sokolowska, D.; Dziob, D.; Nowak, J.; Kwiatkowski, L.

    2014-02-15

    A simplified data analysis protocol, for dielectric spectroscopy use to study conductivity percolation in dehydrating granular media is discussed. To enhance visibility of the protonic conductivity contribution to the dielectric loss spectrum, detrimental effects of either low-frequency dielectric relaxation or electrode polarization are removed. Use of the directly measurable monofrequency dielectric loss factor rather than estimated DC conductivity to parameterize the percolation transition substantially reduces the analysis work and time.

  16. The state of vortex glass induced by creep of vortices in percolation superconductors

    NASA Astrophysics Data System (ADS)

    Kuzmin, Yu. I.; Pleshakov, I. V.

    2016-07-01

    The influence of magnetic flux creep on the dynamics of vortices in percolation superconductors containing fractal clusters of the normal phase has been considered. Dependences of the resistance of these superconductors on the transport current are obtained for different fractal dimensions of cluster boundaries. It is established that the vortex-glass state is implemented in percolation superconductors with a fractal cluster structure under collective creep of vortices.

  17. Quantitative analysis of voids in percolating structures in two-dimensional N-body simulations

    NASA Technical Reports Server (NTRS)

    Harrington, Patrick M.; Melott, Adrian L.; Shandarin, Sergei F.

    1993-01-01

    We present in this paper a quantitative method for defining void size in large-scale structure based on percolation threshold density. Beginning with two-dimensional gravitational clustering simulations smoothed to the threshold of nonlinearity, we perform percolation analysis to determine the large scale structure. The resulting objective definition of voids has a natural scaling property, is topologically interesting, and can be applied immediately to redshift surveys.

  18. Managed aquifer recharge in South India: What to expect from small percolation tanks in hard rock?

    NASA Astrophysics Data System (ADS)

    Massuel, S.; Perrin, J.; Mascre, C.; Mohamed, W.; Boisson, A.; Ahmed, S.

    2014-05-01

    Many states in India are currently facing general overuse of their groundwater resources mainly due to growing demand for irrigated agriculture. Groundwater levels are declining despite water harvesting measures to enhance aquifer recharge which are supported on a massive scale by watershed development programmes. New programmes are being implemented to improve artificial percolation (i.e., managed aquifer recharge, MAR) although the impact of former measures on aquifer recharge has not yet been assessed. It is therefore crucial to increase our understanding of MAR to successfully overcome the threat of groundwater scarcity in the near future. This paper scrutinizes the ability of a typical percolation tank to recharge the aquifer using a comprehensive approach combining water accounting, geochemistry and hydrodynamic modelling. Over 2 years of observation, the percolation efficiency (percolated fraction of stored water) of the tank ranged from 57% to 63%, the rest being evaporated. Modelling showed that the percolated water was mostly (80%) pumped straight back by the neighbouring boreholes, limiting the area of MAR influence but increasing percolation efficiency.

  19. Comparison of deep percolation rates below contrasting land covers with a joint canopy and soil model

    NASA Astrophysics Data System (ADS)

    Domínguez, C. G.; Pryet, A.; García Vera, M.; Gonzalez, A.; Chaumont, C.; Tournebize, J.; Villacis, M.; d'Ozouville, N.; Violette, S.

    2016-01-01

    A Rutter-type canopy interception model is combined with a 1-D physically-based soil water flow model to compare deep percolation rates below distinct land covers. The joint model allows the quantification of both evaporation and transpiration rates as well as deep percolation from vegetation and soil characteristics. Experimental observations are required to constitute the input and calibration datasets. An appropriate monitoring design is described which consists in meteorological monitoring together with throughfall and soil water tension measurements. The methodology is illustrated in Santa Cruz Island in the Galapagos Archipelago, which has been affected by significant land use changes. Two adjacent study plots are investigated: a secondary forest and a pasture. The results of the model reveal that evaporation of canopy interception is higher in the pasture due to the bigger canopy storage capacity, which promotes evaporation against canopy drainage. This is however compensated by higher transpiration in the secondary forest, due to the smaller surface resistance. As a consequence, total evapotranspiration is similar for the two plots and no marked difference in deep percolation can be observed. In both cases, deep percolation reaches ca. 2 m/year which corresponds to 80% of the incoming rainfall. This methodology not only allows the quantification of deep percolation, but can also be used to identify the controlling factors of deep percolation under contrasting land covers.

  20. Analytic results for the percolation transitions of the enhanced binary tree.

    PubMed

    Minnhagen, Petter; Baek, Seung Ki

    2010-07-01

    Percolation for a planar lattice has a single percolation threshold, whereas percolation for a negatively curved lattice displays two separate thresholds. The enhanced binary tree (EBT) can be viewed as a prototype model displaying two separate percolation thresholds. We present an analytic result for the EBT model which gives two critical percolation threshold probabilities, p(c1) = 1/2 square root(13) - 3/2 and p(c2) = 1/2, and yields a size-scaling exponent Φ = ln[(p(1+p))/(1-p(1-p))]/ln 2. It is inferred that the two threshold values give exact upper limits and that pc1 is furthermore exact. In addition, we argue that p(c2) is also exact. The physics of the model and the results are described within the midpoint-percolation concept: Monte Carlo simulations are presented for the number of boundary points which are reached from the midpoint, and the results are compared to the number of routes from the midpoint to the boundary given by the analytic solution. These comparisons provide a more precise physical picture of what happens at the transitions. Finally, the results are compared to related works, in particular, the Cayley tree and Monte Carlo results for hyperbolic lattices as well as earlier results for the EBT model. It disproves a conjecture that the EBT has an exact relation to the thresholds of its dual lattice.

  1. Percolation of the site random-cluster model by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Songsong; Zhang, Wanzhou; Ding, Chengxiang

    2015-08-01

    We propose a site random-cluster model by introducing an additional cluster weight in the partition function of the traditional site percolation. To simulate the model on a square lattice, we combine the color-assignation and the Swendsen-Wang methods to design a highly efficient cluster algorithm with a small critical slowing-down phenomenon. To verify whether or not it is consistent with the bond random-cluster model, we measure several quantities, such as the wrapping probability Re, the percolating cluster density P∞, and the magnetic susceptibility per site χp, as well as two exponents, such as the thermal exponent yt and the fractal dimension yh of the percolating cluster. We find that for different exponents of cluster weight q =1.5 , 2, 2.5 , 3, 3.5 , and 4, the numerical estimation of the exponents yt and yh are consistent with the theoretical values. The universalities of the site random-cluster model and the bond random-cluster model are completely identical. For larger values of q , we find obvious signatures of the first-order percolation transition by the histograms and the hysteresis loops of percolating cluster density and the energy per site. Our results are helpful for the understanding of the percolation of traditional statistical models.

  2. 2101-M Pond hydrogeologic characterization report

    SciTech Connect

    Chamness, M.A.; Luttrell, S.P.; Bates, D.J.; Martin, W.J.

    1990-09-01

    This report documents information collected by the Pacific Northwest Laboratory {sup (a)} at the request of Westinghouse Hanford Company. Presented in this report is the interpretation of the hydrogeologic environment at the 2101-M Pond, located in the 200-East Area of the Hanford Site. This information and its accompanying interpretation were derived from sampling and testing activities associated with the installation of four ground-water monitoring wells, in addition to data gathered from several previously existing wells. The new monitoring wells were installed as part of a groundwater monitoring program initiated in 1988. The four new monitoring wells were installed around the 2101-M Pond between May 23 and August 27, 1988. Geologic sampling, aquifer testing, and initial ground-water sampling were performed during the installation of these wells. Laboratory analyses of the sediment samples for particle size, calcium carbonate content, and selected natural and contaminant constituents were performed. A full year of quarterly ground-water sampling and the first statistical analysis of background and downgradient data have also been performed. 112 refs., 49 figs., 18 tabs.

  3. Fate of permethrin in model outdoor ponds

    SciTech Connect

    Rawn, G.P.; Webster, G.R.; Muir, D.C.

    1982-01-01

    In 1979 and 1980, outdoor artificial ponds were treated with /sup 14/C-permethrin (labelled at either the cyclopropyl or methylene position) at 0.028 kg/ha (15 ug/L). Uptake of permethrin by duckweed and hydrosoil was monitored by direct combustion, TLC-autoradiography, HPLC, and liquid scintillation counting. Rapid loss of permethrin from the water coincided with the detection of five degradation products in the water at concentrations below 2.0 ug/L. The products were cis- and trans-cyclopropyl acid, phenoxybenzoic acid, and phenoxybenzyl alcohol, and an unknown non-cleaved product of permethrin. Permethrin was readily sorbed by duckweed but was not persistent. Permethrin residues in the hydrosoil, which was the major sink for permethrin added to the ponds, were persistent and were detected at 420 days post-treatment. Cis-permethrin was more persistent in the hydrosoil than the trans-permethrin. The results indicated that permethrin in water was short-lived at an application rate of 15 ug/L because of the rapid degradation of permethrin in the water and sorption of permethrin by the hydrosoil and vegetation. However, at one year post-treatment, permethrin residues were still detected in the hydrosoil at 1.0 ug/kg.

  4. Box Model of a Series of Salt Ponds, as Applied to the Alviso Salt Pond Complex, South San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan A.; Schoellhamer, David H.; Shellenbarger, Gregory; Orlando, James L.; Ganju, Neil K.

    2007-01-01

    This report documents the development and application of a box model to simulate water level, salinity, and temperature of the Alviso Salt Pond Complex in South San Francisco Bay. These ponds were purchased for restoration in 2003 and currently are managed by the U.S. Fish and Wildlife Service to maintain existing wildlife habitat and prevent a build up of salt during the development of a long-term restoration plan. The model was developed for the purpose of aiding pond managers during the current interim management period to achieve these goals. A previously developed box model of a salt pond, SPOOM, which calculates daily pond volume and salinity, was reconfigured to simulate multiple connected ponds and a temperature subroutine was added. The updated model simulates rainfall, evaporation, water flowing between the ponds and the adjacent tidal slough network, and water flowing from one pond to the next by gravity and pumps. Theoretical and measured relations between discharge and corresponding differences in water level are used to simulate most flows between ponds and between ponds and sloughs. The principle of conservation of mass is used to calculate daily pond volume and salinity. The model configuration includes management actions specified in the Interim Stewardship Plan for the ponds. The temperature subroutine calculates hourly net heat transfer to or from a pond resulting in a rise or drop in pond temperature and daily average, minimum, and maximum pond temperatures are recorded. Simulated temperature was compared with hourly measured data from pond 3 of the Napa?Sonoma Salt Pond Complex and monthly measured data from pond A14 of the Alviso Salt-Pond Complex. Comparison showed good agreement of measured and simulated pond temperature on the daily and monthly time scales.

  5. STORMWATER TREATMENT: WET/DRY PONDS VS. CONSTRUCTED WETLANDS

    EPA Science Inventory

    Extant data were used to assess the relative effectiveness of ponds vs. wetland-type BMPs. Compared to wet ponds, wetlands tended toward higher constituent concentrations in effluent, were inefficient at nitrogen removal, and appeared to preferentially retain phosphorous. These d...

  6. Cannibalism in single-batch hybrid catfish production ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid catfish are more efficiently harvested by seining than are Channel Catfish. Due to that, and their faster growth, hybrids are typically produced in “single-batch” production systems, either in intensively-aerated commercial ponds or in split-pond systems. In either production system, hybrids...

  7. Amphibian Oasis: Designing and Building a Schoolyard Pond.

    ERIC Educational Resources Information Center

    Gosselin, Heather; Johnson, Bob

    1996-01-01

    Building a pond in a schoolyard is a rewarding way to help boost local populations of amphibians, to increase the natural value of school grounds, and to serve as a locale for observing the life cycles of plants, invertebrates, and amphibians. This article outlines important considerations in designing and building a pond from siting through…

  8. Gauging the Health of New England's Lakes and Ponds

    EPA Science Inventory

    The New England Lakes and Ponds Project provides a consistent and first time comprehensive assessment of the ecological and water quality condition of lakes and ponds across the New England region. The project is being conducted by EPA along with the New England Interstate Water...

  9. Effects of acidification on algal assemblages in temporary ponds

    SciTech Connect

    Glackin, M.E.; Pratt, J.R.

    1994-12-31

    Atmospheric deposition monitoring in Pennsylvania has characterized a steep gradient of acidic ion depositions across the north-central portion of the state. This study evaluated acidification effects on the composition of algal assemblages in temporary ponds in two forested areas exposed to atmospheric deposition that varied in degree of acidity. Artificial substrates were used to sample and compare the algal assemblages in the two areas. Colonized communities were also transplanted to lower pH ponds to observe changes in species composition. A laboratory microcosm experiment manipulating pH was conducted to reduce the variables that differed between the two areas. Fewer algal taxa were present in lower pH ponds, on colonized substrates after transplant to lower pH ponds, and in lower pH laboratory treatments. Species composition was altered in the lower pH conditions. Most taxa that were excluded from the lower pH ponds naturally also did not survive when experimentally introduced to those conditions. These results suggest that acidification of temporary ponds can alter the structure of algal communities. There is interest in a possible link between acid deposition and reports of worldwide declines in amphibian populations. Algae are an important food source for larval amphibians, such as the wood frog, which require temporary ponds to breed. Changes in algal species composition could potentially impact the temporary pond and forest ecosystem.

  10. Comparing and assessing acid rain-sensitive ponds.

    PubMed

    Hagar, W G; Crosby, B A; Stallsmith, B W

    2000-05-29

    Changes in pH and temperature were monitored in two freshwater ponds in Southeastern Massachusetts from 1990 to 1993 using a remote-sensing system that collected data on a continuous basis. The sensing system included a combination electrode, pH meter and portable computer powered by a marine battery. Temperature and pH information from the pH meter were acquired every 10 min and stored in the computer. The two ponds, located within 2 km of one another, have a different average pH and sensitivity to acid precipitation. Maquan Pond has an average pH of 6.0 and an alkalinity of 7.4 mg/l, while Furnace Pond has an average pH of 6.9 and alkalinity of 14.9 mg/l. The pH of both ponds varied seasonally and showed diel changes due to the photosynthetic and respiratory activity of aquatic organisms. Precipitation events did not change the pH of Furnace Pond. Maquan Pond on the other hand, did exhibit changes in surface water pH due to specific acidic precipitation events. During certain rainstorms, the pH of Maquan surface waters dropped to values as low as pH 4. In addition to the transient changes in pH, the acid-sensitive pond also exhibited differences in planktonic distribution patterns.

  11. A Pond Project for Junior High School Students

    ERIC Educational Resources Information Center

    David, Jim

    1977-01-01

    Described is how a neglected pond was transformed into a useful study area through the efforts of local junior high school students and the community. A chronology of events in the restoration of the pond is included, along with the names of resource personnel and organizations. (MA)

  12. Origin and flatness of ponds on asteroid 433 Eros

    NASA Astrophysics Data System (ADS)

    Roberts, James H.; Kahn, Eliezer G.; Barnouin, Olivier S.; Ernst, Carolyn M.; Prockter, Louise M.; Gaskell, Robert W.

    2014-10-01

    NEAR-Shoemaker Multi-Spectral Imager data reveal several hundred "ponds" on 433 Eros: smooth deposits that sharply embay the bounding depressions in which they lie, and whose spectra appear blue relative to that of the surrounding terrain. We investigate the topography of these ponds on Eros using a new shape model derived from stereophotoclinometric analysis, and validated against altimetry from the NEAR Laser Rangefinder, to constrain the mode of pond formation from three existing models. We update the locations of 55 pond candidates identified in images registered to the new shape model. We classify the flatness of these features according to the behavior of the first and second derivatives of the topography. We find that less than half of pond candidates have clearly flat floors. Based on the pond topography, we favor an external origin for the ponds' deposits. We suggest that fine dust may be transported into bounding depressions by electrostatic levitation, but may adhere to slopes, and that seismic shaking may not be sufficient to bring the deposits to an equipotential surface. Disaggregation of a central boulder should result in an obvious break in slope, such a variation is only observed in roughly half the pond candidates.

  13. Solar pond driven distillation and power production system

    SciTech Connect

    Johnson, D.H.; Leboeuf, C.M.; Waddington, D.

    1981-01-01

    A solar pond driven distillation and power production system is described. The storage layer of the solar pond serves as the holding tank for the concentrated brine effluent from the distillation process as well as the collector and storage medium for solar energy used to heat incoming salty river water. 4 refs.

  14. Some basic considerations and possible improvements on the solar pond

    SciTech Connect

    Sha, W.T.; Cha, Y.S.; Liu, K.V.; Soo, S.L.

    1980-06-01

    Experimental results were compared to theoretical stability criteria of a salt gradient solar pond. Cellular motion in the non-convective layer is expected. Innovative concepts on friction stabilization using stabilizing barriers and longitudinal stratification to improve pond heat extraction efficiency are presented.

  15. Surface Sediments in Precooler Ponds 2, 4, and 5: March 2000

    SciTech Connect

    Dunn, D.L.

    2001-01-29

    Pond 2, Pond 4, and Pond 5 are inactive reactor cooling impoundments built in 1961 on the R-Reactor Effluent System in the east-central portion of the Department of Energy's Savannah River Site in Aiken, South Carolina. These precooler ponds are part of the Par Pond cooling water system and are considered part of the Par Pond operable unit. The intent was not to characterize the ponds, but to identify the maximum levels of contamination that could be exposed if the ponds are drained to remove the danger of dam failure.

  16. Salton Sea Project, Phase 1. [solar pond power plant

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.

    1982-01-01

    A feasibility study was made for a salt gradient solar pond power plant in or near the Salton Sea of California. The conclusions support continuance 5-MWe proof-of-concept experiment, and ultimate construction by an electric utility company of a 600-MWe plant. The Solar Pond concept would be an environmental benefit to the Salton Sea by reversing the increasing salinity trend. The greatest cost drivers are the lake dike construction and pond sealing. Problems to be resolved include method of brine production from Salton Sea water for the first unit (which requires evaporation pond area and time), the high turbidity and color content of the Salton Sea water (which requires pretreatment), and other questions related to pond permeability, bio-activity and soil/brine chemical reactions. All technical and environmental problems appear solvable and/or manageable if care is taken in mitigating impacts.

  17. Solar ponds in alkaline lake and oil well regions

    SciTech Connect

    Lodhi, M.A.K.

    1996-05-01

    Solar ponds are probably the simplest technology available for useful conversion of solar energy. The basic technology is proven. Solar ponds have been shown to be technically feasible and economically viable for many applications particularly for thermal use. The electrical conversion and use of solar energy via solar ponds is still questionable in general for economic viability. By putting the untapped sources together in the South Plains region it looks promising economically both for thermal and electrical conversions and applications. There are a number of alkaline lake basins randomly scattered in the South Plains region of the USA. In that area there are thousands of crude oil producing wells which produce brine in abundance. Selection of suitable alkaline lake basins as a solar pond site and as depository sites of brine from oil wells and using of this brine and salty water from alkaline lakes makes the solar pond economically viable for both thermal and electrical demands in the area.

  18. Walden Pond, Massachusetts: Environmental Setting and Current Investigations

    USGS Publications Warehouse

    Colman, John A.; Waldron, Marcus C.

    1998-01-01

    Introduction Walden Pond, in Concord, Massachusetts, is famous among lakes because of its unique social history. Walden was the setting for American naturalist Henry David Thoreau's well-known essay 'Walden; or, Life in the Woods,' first published in 1854. Thoreau lived and wrote at Walden Pond from July 1845 to September 1847. In 'Walden,' Thoreau combined highly admired writing on Transcendental philosophy with pioneering observations of aquatic ecology and physical aspects of limnology, the study of lakes. Because Thoreau also defended so effectively the value of living close to nature in the Walden woods, the pond is considered by many to be the birthplace of the American conservation movement. Visitors come from all over the world to the pond, which has been designated a National Historic Landmark, and its fame has resulted in a major fund drive to preserve the surrounding woods. Walden Pond has no surfacewater inflow or outflow, and much of its ground-water contributing area likely is preserved within the Walden Pond Reservation area (fig. 1). Only 15 miles from Boston, the pond is unusually clear and pristine for an urban-area lake. However, point sources of nutrients near the pond, and a large annual visitor attendance, concentrated during the summer when the swimming beach (fig. 2) is open, may contribute a nutrient load sufficient to change the pond environment. The occurrence of nuisance algal species, a recent beach closing, and an awareness of water-quality problems suffered by other ponds in the region raise concerns about the risk of ecological change at Walden Pond. Despite the role of Walden Pond as a cultural and environmental icon, little is known about the pond's ecological features, such as its internal nutrient cycling or the structure of its food web, nor have consistent measurements been made to determine whether these features are changing or are stable. Production rates of aquatic plants in lakes and ponds naturally undergo a slow increase

  19. Crossing the final ecological threshold in high Arctic ponds.

    PubMed

    Smol, John P; Douglas, Marianne S V

    2007-07-24

    A characteristic feature of most Arctic regions is the many shallow ponds that dot the landscape. These surface waters are often hotspots of biodiversity and production for microorganisms, plants, and animals in this otherwise extreme terrestrial environment. However, shallow ponds are also especially susceptible to the effects of climatic changes because of their relatively low water volumes and high surface area to depth ratios. Here, we describe our findings that some high Arctic ponds, which paleolimnological data indicate have been permanent water bodies for millennia, are now completely drying during the polar summer. By comparing recent pond water specific conductance values to similar measurements made in the 1980s, we link the disappearance of the ponds to increased evaporation/precipitation ratios, probably associated with climatic warming. The final ecological threshold for these aquatic ecosystems has now been crossed: complete desiccation. PMID:17606917

  20. Gradient-zone erosion in seawater solar ponds

    SciTech Connect

    Shi, J.; Hart, R.A.; Kleis, S.J.; Bannerot, R.B.

    1997-02-01

    An experimental program has been conducted to examine the feasibility of using seawater solar ponds in mariculture operations along the Texas gulf coast to protect fish crops from the potentially lethal, cold temperatures experienced in outdoor ponds. Seawater solar ponds in the form of floating thermal refuge areas are proposed as a method for reducing the loss of heat from small sections of a pond. Gradient zone erosion under various ambient and operating conditions is examined. Comparisons with previous laboratory studies show a much lower entrainment rate in the natural environment. For conditions which are typical of those encountered in mariculture pond operation, the entrainment rate was found to depend only weakly on the Richardson number. For these conditions, a simple (linear) correlation of entrainment rate with wind speed was developed.

  1. Impact of permafrost thaw on Arctic tundra pond geochemistry

    NASA Astrophysics Data System (ADS)

    Reyes, F.; Lougheed, V.

    2012-12-01

    Increasing evidence indicates the arctic tundra is changing physically, biologically, and chemically due to climate warming. With a warmer climate, permafrost is expected to thaw and influence the chemistry of arctic aquatic ecosystems. However, knowledge is limited on how geochemistry of arctic tundra pond ecosystems will respond. By re-sampling historical IBP ponds in Barrow, AK first sampled in the 1970s, previous studies have shown an increase in water temperature, nutrients and algal biomass through time. Results from this study indicate an increase of Ca, Mg, and Na in the water column, and a decrease in pH relative to the 1970s, suggesting an increased rate and magnitude of carbonate and Mg release. Seasonal trends were also examined to understand what processes, such as mineral weathering, peat decomposition and evaporation, were currently most influential in determining pond geochemistry. An increase in Ca/Na molar ratios, and carbonate and magnesium concentrations indicates that these tundra ponds are experiencing greater carbonate weathering compared to the 1970s and the rate of carbonate weathering increases in ponds as the summer progresses. However, increasing dissolved organic carbon (DOC) concentrations originating from peat decomposition are likely neutralizing additional inputs of carbonate, causing pond pH to decrease and exacerbating mineral weathering. A strong positive relationship between element concentrations and active layer pond thaw depth suggests that the origin of these additional solutes is likely from permafrost thaw. Active layer thaw depth has increased substantially over the past 40 years in the IBP ponds. Chloride/Bromide molar ratios and Deuterium/ 18-Oxygen isotope ratios will be used to determine the degree of evaporation occurring in tundra ponds. Ultimately, this study provides evidence for how geochemistry can identify the sources of chemical inputs to Arctic ponds affected by climate change and permafrost thaw.

  2. Factors Influencing Fecal Contamination in Pond of Bangladesh

    NASA Astrophysics Data System (ADS)

    Knappett, P. S.; Escamilla, V.; Layton, A.; McKay, L. D.; Emch, M.; Mailloux, B. J.; Williams, D. E.; Huq, M. R.; Alam, M.; Farhana, L.; Ferguson, A. S.; Sayler, G. S.; Ahmed, K.; Serre, M. L.; Akita, Y.; Yunus, M.; van Geen, A.

    2010-12-01

    Occurrence of diarrheal disease in villages in rural Bangladesh remains relatively common, even though many households have switched to tubewell water for drinking and cooking. One factor contributing to this may be exposure to fecal contamination in ponds, which are often used for bathing and fishing. The objective of this study is to determine the dominant sources of fecal pollution in typical ponds and to explore the relationship between local population, latrine density, latrine quality and concentrations of fecal bacteria and pathogens in pond water. Forty-three ponds were sampled and analyzed for E. coli using culture-based methods and for E. coli, Bacteroides and adenovirus using quantitative PCR. Population and sanitation infrastructure were surveyed and compared to levels of pond fecal contamination. Molecular fecal source tracking using Bacteroides, determined that humans were the dominant source of fecal contamination in 79% of the ponds. Ponds directly receiving latrine effluent had the highest concentrations of fecal indicator bacteria. Concentrations of fecal indicator bacteria correlated with population surveyed within a distance of 30-70 m (p<0.01) and total latrines surveyed within 50-70 m (p<0.05). Unsanitary latrines with visible effluent within the pond drainage basin were also significantly correlated to fecal indicator concentrations (p<0.05). The vast majority of the surveyed ponds contained unsafe levels of fecal contamination primarily due to unsanitary latrines, and to lesser extent to sanitary latrines and cattle. Since the majority of fecal pollution is from humans, use of pond water could help explain the persistence of diarrheal disease in rural Bangladesh.

  3. Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA

    NASA Astrophysics Data System (ADS)

    Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.

    2015-12-01

    An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.

  4. Percolation of partially interdependent scale-free networks

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Gao, Jianxi; Stanley, H. Eugene; Havlin, Shlomo

    2013-05-01

    We study the percolation behavior of two interdependent scale-free (SF) networks under random failure of 1-p fraction of nodes. Our results are based on numerical solutions of analytical expressions and simulations. We find that as the coupling strength between the two networks q reduces from 1 (fully coupled) to 0 (no coupling), there exist two critical coupling strengths q1 and q2, which separate three different regions with different behavior of the giant component as a function of p. (i) For q≥q1, an abrupt collapse transition occurs at p=pc. (ii) For q23, q1 decreases with increasing λ. Here, λ is the scaling exponent of the degree distribution, P(k)∝k-λ. (b) In the hybrid transition, at the q20 for λ>3. Thus, the known theoretical pc=0 for a single network with λ⩽3 is expected to be valid also for strictly partial interdependent networks.

  5. Interacting damage models mapped onto ising and percolation models

    SciTech Connect

    Toussaint, Renaud; Pride, Steven R.

    2004-03-23

    The authors introduce a class of damage models on regular lattices with isotropic interactions between the broken cells of the lattice. Quasistatic fiber bundles are an example. The interactions are assumed to be weak, in the sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith's principle which states that a cell breaks when the release in potential (elastic) energy in the system exceeds the surface-energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched disorder, they obtain the probability distribution of each damage configuration at any level of the imposed external deformation. They demonstrate an isomorphism between the distributions so obtained and standard generalized Ising models, in which the coupling constants and effective temperature in the Ising model are functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In particular, they show that damage models with global load sharing are isomorphic to standard percolation theory, that damage models with local load sharing rule are isomorphic to the standard ising model, and draw consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown transitions corresponding to these models. they also treat damage models having more general power-law interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, they also show that the probability distribution over configurations is a maximum of Shannon's entropy under some specific constraints related to the energetic balance of the fracture process, which firmly relates this type of quenched-disorder based damage model

  6. Reconstruction of Graph Signals Through Percolation from Seeding Nodes

    NASA Astrophysics Data System (ADS)

    Segarra, Santiago; Marques, Antonio G.; Leus, Geert; Ribeiro, Alejandro

    2016-08-01

    New schemes to recover signals defined in the nodes of a graph are proposed. Our focus is on reconstructing bandlimited graph signals, which are signals that admit a sparse representation in a frequency domain related to the structure of the graph. Most existing formulations focus on estimating an unknown graph signal by observing its value on a subset of nodes. By contrast, in this paper, we study the problem of reconstructing a known graph signal using as input a graph signal that is non-zero only for a small subset of nodes (seeding nodes). The sparse signal is then percolated (interpolated) across the graph using a graph filter. Graph filters are a generalization of classical time-invariant systems and represent linear transformations that can be implemented distributedly across the nodes of the graph. Three setups are investigated. In the first one, a single simultaneous injection takes place on several nodes in the graph. In the second one, successive value injections take place on a single node. The third one is a generalization where multiple nodes inject multiple signal values. For noiseless settings, conditions under which perfect reconstruction is feasible are given, and the corresponding schemes to recover the desired signal are specified. Scenarios leading to imperfect reconstruction, either due to insufficient or noisy signal value injections, are also analyzed. Moreover, connections with classical interpolation in the time domain are discussed. The last part of the paper presents numerical experiments that illustrate the results developed through synthetic graph signals and two real-world signal reconstruction problems: influencing opinions in a social network and inducing a desired brain state in humans.

  7. Do diatoms percolate through soil and can they be used for tracing the origin of runoff?

    NASA Astrophysics Data System (ADS)

    De Graaf, Lenka; Cammeraat, Erik; Pfister, Laurent; Wetzel, Carlos; Klaus, Julian; Hissler, Christophe

    2015-04-01

    Tracers are widely used to study the movement of water in a catchment. Because of depletion of scientific possibilities with most common tracer types, we proposed the use of diatoms as a natural tracer. Paradoxical results on the contribution of surface runoff to the storm hydrograph were obtained in pioneer research on this idea. Diatom transport via the subsurface flow to the stream would explain this paradox. Prerequisite for this is vertical transport of diatoms through soils, which is the topic of this study. Emphasis is on percolation behavior (speed of percolation, speed of percolation over time, and species distribution) of Pseudostaurosira sp. and Melosira sp. (Bacillariophyceae) through undisturbed soil columns of contrasting substrates. Co-objective is to study the flowpaths of water through the soil columns. Natural undisturbed soil columns were sampled in the Attert basin (Luxembourg) on schist, marl and sandstone substrates. Rain simulation experiments were performed to study vertical diatom transport. Rhodamine dye experiments were carried out to gain insight in the active flowpaths of water, and breakthrough experiments were performed to study the responses of the soil columns to applied water. Diatoms were transported through the soil columns of the three substrates. A vast majority of diatom percolation took place within the first 15 minutes, percolation hereafter was marginal but nevertheless present. Peaks in diatom percolation corresponded with a high flux caused by the addition of the diatom culture, but seepage of diatoms along the sides is unlikely according to the species distribution and the rhodamine dye experiment. Pseudostaurosira sp. percolated significantly better than Melosira sp. Significantly more diatoms percolated through the marl columns compared to the schist columns and variance within the sandstone group was very high. Absolute differences between substrates however, were marginal. Most preferential flowpaths were observed in

  8. Results of submerged sediment core sampling and analysis on Par Pond, Pond C, and L Lake: July 1995

    SciTech Connect

    Koch, J.W. II; Martin, F.D.; Friday, G.P.

    1996-06-01

    Sediment cores from shallow and deep water locations in Par Pond, Pond C, and L Lake were collected and analyzed in 1995 for radioactive and nonradioactive constituents. This core analysis was conducted to develop a defensible characterization of contaminants found in the sediments of Par Pond, Pond C, and L Lake. Mercury was the only nonradiological constituent with a nonestimated quantity that was detected above the U.S Environmental Protection Agency Region IV potential contaminants of concern screening criteria. It was detected at a depth of 0.3--0.6 meters (1.0--2.0 feet) at one location in L Lake. Cesium-137, promethium-146, plutonium-238, and zirconium-95 had significantly higher concentrations in Par Pond sediments than in sediments from the reference sites. Cobalt-60, cesium-137, plutonium-238, plutonium-239/240, and strontium-90 had significantly higher concentrations in L-Lake sediments than sediments from the reference sites.

  9. Par Pond phytoplankton in association with refilling of the pond: Final Report for sampling from February 1995 -- September 1996

    SciTech Connect

    Wilde, E.W.; Johnson, M.A.; Cody, W.C.

    1996-12-31

    This report describes the results of phytoplankton analyses from Par Pond samples collected between February 1995 and September 1996. The principal objective of the study was to determine the effect of refilling of Par Pond following repair of the dam on the phytoplankton community. Algal blooms are often responsible for fish kills and other detrimental effects in ponds and lakes, and it was postulated that decaying vegetation from formerly exposed sediments might trigger algal blooms that could result in fish kills in Par Pond following the refill. Sporadic algal blooms involving blue-green algae were detected, especially during the summer of 1996. However, the data derived from the study demonstrates that overall, the refilling effort caused no significant negative impact to the pond attributable to phytoplankton dynamics.

  10. Heavy metal composition in stormwater and retention in ponds dependent on pond age, design and catchment type.

    PubMed

    Egemose, Sara; Sønderup, Melanie J; Grudinina, Anna; Hansen, Anders S; Flindt, Mogens R

    2015-01-01

    Heavy metals have toxic effects on flora and fauna in the aquatic environments and are of great concern in stormwater. Heavy metal runoff was studied in 37 stormwater ponds in Denmark with varying heavy metal load, catchment type and pond design. The studied metals were Cu, Cr, Cd, Pb, Ni and Zn. The concentrations varied considerably depending on the catchment type, with the highest concentrations coming from industrial areas and the lowest from uncultivated and rural areas. Ponds can effectively remove heavy metals in particulate forms through sedimentation processes, but the dissolved forms are more difficult to retain. The removal efficiency in the ponds varied considerably, with the highest retention of Pb, Ni and Zn due to higher particulate fraction. The retention increased with increased pond volume-to-reduced catchment area ratio. In addition, the pond age affected the efficiency; whereas ponds less than 1-2 years efficiently removed all metals, 30-40-year-old ponds only removed Pb, Ni and Zn, but steeply decreasing over the years. Physical parameters such as pond size, age and sedimentation patterns were found to play a more significant role in the removal compared with chemical parameters such as pH, oxygen and organic matter. Input of metals to the ponds was reflected in the sediment content, but not significantly for all heavy metals probably due to low or varying retention caused by mineralization and re-suspension. The heavy metal concentration in the outlets was reduced to non-toxic levels, except for Cu and Cr at a few study sites. PMID:25262998

  11. Beyond the percolation universality class: the vertex split model for tetravalent lattices

    NASA Astrophysics Data System (ADS)

    Nachtrab, Susan; Hoffmann, Matthias J. F.; Kapfer, Sebastian C.; Schröder-Turk, Gerd E.; Mecke, Klaus

    2015-04-01

    We propose a statistical model defined on tetravalent three-dimensional lattices in general and the three-dimensional diamond network in particular where the splitting of randomly selected nodes leads to a spatially disordered network, with decreasing degree of connectivity. The terminal state, that is reached when all nodes have been split, is a dense configuration of self-avoiding walks on the diamond network. Starting from the crystallographic diamond network, each of the four-coordinated nodes is replaced with probability p by a pair of two edges, each connecting a pair of the adjacent vertices. For all values 0≤slant p≤slant 1 the network percolates, yet the fraction fp of the system that belongs to a percolating cluster drops sharply at pc = 1 to a finite value fpc. This transition is reminiscent of a percolation transition yet with distinct differences to standard percolation behaviour, including a finite mass fpc\\gt 0 of the percolating clusters at the critical point. Application of finite size scaling approach for standard percolation yields scaling exponents for p\\to {{p}c} that are different from the critical exponents of the second-order phase transition of standard percolation models. This transition significantly affects the mechanical properties of linear-elastic realizations (e.g. as custom-fabricated models for artificial bone scaffolds), obtained by replacing edges with solid circular struts to give an effective density ϕ. Finite element methods demonstrate that, as a low-density cellular structure, the bulk modulus K shows a cross-over from a compression-dominated behaviour, K(φ )\\propto {{φ }κ } with κ ≈ 1, at p = 0 to a bending-dominated behaviour with κ ≈ 2 at p = 1.

  12. Observational bias and the apparent distribution of ponds on Eros

    NASA Astrophysics Data System (ADS)

    Roberts, James H.; Barnouin, Olivier S.; Kahn, Eliezer G.; Prockter, Louise M.

    2014-10-01

    Over 300 “ponds” have been identified on 433 Eros: smooth deposits that sharply embay the bounding depressions in which they lie. The known ponds are largely concentrated near the equator at the ends of the long axis of the asteroid. Here, we examine the pixel scale of images available at the pond locations, and compare the observed distribution of ponds on Eros to that of the image pixel scale. We find that the majority (60%) of ponds are found in the regions covered by images with pixel scales less than 2 m/px, a total of only 13% of the surface area. The correlation between pond density and image pixel scale suggests a significant observational bias in the identification of small ponds. These findings suggest that the distribution of ponds on Eros may not be as clear-cut as previously reported, and that it may be best not to use this distribution to assess existing models regarding their formation of these landforms.

  13. Environmental selection of planktonic methanogens in permafrost thaw ponds

    PubMed Central

    Crevecoeur, Sophie; Vincent, Warwick F.; Lovejoy, Connie

    2016-01-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type. PMID:27501855

  14. Environmental selection of planktonic methanogens in permafrost thaw ponds.

    PubMed

    Crevecoeur, Sophie; Vincent, Warwick F; Lovejoy, Connie

    2016-01-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type. PMID:27501855

  15. Renewable energy for the aeration of wastewater ponds.

    PubMed

    Hobus, I; Hegemann, W

    2003-01-01

    The application of a decentralised renewable energy supply for the aeration of wastewater ponds, and the influence of an unsteady oxygen supply on the specific conversion rate and biocoenose was investigated. With the discontinuous aeration the specific conversion rate is increased as compared to facultative ponds. The estimation of the microorganisms consortia was done with in situ hybridisation techniques. A significant shift in the bacteria population with the chosen specific probes for anaerobic, sulphate reducing and nitrifying bacteria could not be detected. Wastewater ponds have sufficient buffer volume to compensate for the fluctuating energy supply. But the efficiency of the energy supply of a photovoltaic plant decreases in shallow lakes (d < 1.5 m) corresponding to a high oxygen production of algae. For the layout of the individual components: photovoltaic and wind power plant, energy management, aeration system and wastewater pond, a simulation model was developed and tested. The application of renewable energy for the aeration of wastewater ponds is a useful alternative for the redevelopment of overloaded ponds as well as the construction of new wastewater ponds, especially in areas with an inadequate central electricity grid and a high availability of wind and solar energy.

  16. Solar pond research at the Los Alamos National Laboratory

    SciTech Connect

    Jones, G.F.; Meyer, K.A.; Hedstrom, J.C.; Grimmer, D.P.

    1984-01-01

    A description of solar pond research at Los Alamos National Laboratory is presented. The main issues in the theory of solar ponds are discussed. Among these are the interfacial-boundary-layer model, models for interface motion and pond performance, heat extraction, and ground heat loss. The core of the research effort at Los Alamos was the development of a one-dimensional computer program to accurately predict dynamic performance of a solar pond. The computer model and the experiments that were designed and performed to validate it are described. The experiments include two laboratory tanks wherein temperature, salinity, and flow visualization data were obtained and a 232 m/sup 2/ outdoor solar pond. Results from preliminary validation show good agreement between the pond's predicted dynamic behavior and that which actually occurred in the experiments. More validation using data from full-sized solar ponds is needed. A new correlation for the ratio of interfacial salt-flux to heat-flux is proposed which agrees well with our data. Recommendations for future research are given.

  17. Environmental selection of planktonic methanogens in permafrost thaw ponds

    NASA Astrophysics Data System (ADS)

    Crevecoeur, Sophie; Vincent, Warwick F.; Lovejoy, Connie

    2016-08-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type.

  18. Compartmental model for organic matter digestion in facultative ponds.

    PubMed

    Giraldo, E; Garzón, A

    2002-01-01

    A model has been developed for the digestion of organic matter in facultative ponds in tropical regions. Complete mixing has been assumed for the aerobic and anaerobic compartments. Settling, aerobic layer oxidation, and anaerobic layer methanogenesis are the main processes for organic matter removal in the water column. Exchange processes between layers are dispersive or soluble exchange, solubilization and transport of organic matter from sediments to water column are also taken into account. Degradation of organic matter in the sediments produces gaseous emissions to the water column. The exchange between bubbles ascending and the water column was measured. The model was calibrated with data obtained from a pilot facultative pond built in Muña Reservoir in Bogotá. The pond was sampled during 4 months to compare data between its water hyacinth covered section and uncovered section. The results clearly show the relative importance of different BOD removal processes in facultative ponds and suggest modifications to further improve performance. The results from the model suggest that internal loadings to facultative ponds due to solubilization and return of organic matter from the sediments to the aerobic layer greatly influence the soluble BOD effluent concentration. Aerobic degradation activity in the facultative pond does not affect significantly the effluent concentration. Anaerobic degradation activity in the facultative pond can more easily achieve increases in the removal efficiencies of BOD.

  19. Compartmental model for organic matter digestion in facultative ponds.

    PubMed

    Giraldo, E; Garzón, A

    2002-01-01

    A model has been developed for the digestion of organic matter in facultative ponds in tropical regions. Complete mixing has been assumed for the aerobic and anaerobic compartments. Settling, aerobic layer oxidation, and anaerobic layer methanogenesis are the main processes for organic matter removal in the water column. Exchange processes between layers are dispersive or soluble exchange, solubilization and transport of organic matter from sediments to water column are also taken into account. Degradation of organic matter in the sediments produces gaseous emissions to the water column. The exchange between bubbles ascending and the water column was measured. The model was calibrated with data obtained from a pilot facultative pond built in Muña Reservoir in Bogotá. The pond was sampled during 4 months to compare data between its water hyacinth covered section and uncovered section. The results clearly show the relative importance of different BOD removal processes in facultative ponds and suggest modifications to further improve performance. The results from the model suggest that internal loadings to facultative ponds due to solubilization and return of organic matter from the sediments to the aerobic layer greatly influence the soluble BOD effluent concentration. Aerobic degradation activity in the facultative pond does not affect significantly the effluent concentration. Anaerobic degradation activity in the facultative pond can more easily achieve increases in the removal efficiencies of BOD. PMID:11833730

  20. Environmental selection of planktonic methanogens in permafrost thaw ponds.

    PubMed

    Crevecoeur, Sophie; Vincent, Warwick F; Lovejoy, Connie

    2016-01-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type.

  1. Groundwater impact assessment report for the 100-D Ponds

    SciTech Connect

    Alexander, D.J.

    1993-07-01

    The 183-D Water Treatment Facility (WTF) discharges effluent to the 120-0-1 Ponds (100-D Ponds) located north of the 100-D Area perimeter fence. This report satisfies one of the requirements of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-17-00B as agreed by the US Department of Energy, Washington State Department of Ecology, and the US Environmental Protection Agency. Tri-Party Agreement Milestone M-17-00B includes a requirement to assess impacts to groundwater from disposal of the 183-D WTF effluent to the 100-D Ponds. In addition, the 100-D Ponds are a Resource Conservation and Recovery Act of 1976 treatment, storage, and disposal facility covered by the 100-D Ponds Closure Plan (DOE-RL 1993a). There is evidence of groundwater contamination, primarily nitrate, tritium, and chromium, in the unconfined aquifer beneath the 100-D Area and 100 Areas in general. The contaminant plumes are area wide and are a result of past-practice reactor and disposal operations in the 100-D Area currently being investigated as part of the 100-DR-1 and 100-HR-3 Operable Units (DOE-RL 1992b, 1992a). Based on current effluent conditions, continued operation of the 100-D Ponds will not adversely affect the groundwater quality in the 100-D Area. Monitoring wells near the pond have slightly higher alkaline pH values than wells in the rest of the area. Concentrations of known contaminants in these wells are lower than ambient 100-D Area groundwater conditions and exhibit a localized dilution effect associated with discharges to the pond. Hydraulic impact to the local groundwater system from these discharges is minor. The groundwater monitoring well network for the 100-D Ponds is adequate.

  2. Orientation of the toad, Bufo japonicus, toward the breeding pond.

    PubMed

    Ishii, S; Kubokawa, K; Kikuchi, M; Nishio, H

    1995-08-01

    A variety of orientation cues has been suggested for the migration to the breeding site in adult amphibians. We categorized the cues into the following 3 groups: 1) cues from the breeding pond such as male calling and pond odors, 2) celestial cues such as the sun light and the magnetic field of the earth and 3) cues from the area or route of the migration which compose a local map such as a visual and olfactory maps. To determine which of these is used by the toad, Bufo japonicus, we designed and conducted a displacement experiment in which migrating toads from one direction were transported to the ground in the opposite side of the pond. The displaced toads were completely disoriented and moved to random directions. We conclude that the toad uses a local map to orient to the breeding pond and cues from celestial bodies and the pond are not used. We also found that adult toads tracked the same route on both trips from and to the pond. This suggests that the local map was memorized by newly metamorphosed toads at their first terrestrial trip from the pond. The next step of our study was to determine what sense is used to receive the cue. We found blind toads, whose upper and lower eye-lids were stitched together, could reach the pond at a similar rate with the sham-operated and intact toads. However, anosmic toads, whose olfactory mucosa were damaged by the treatment with a 5% silver nitrate solution, rarely reached the pond.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Limnological database for Par Pond: 1959 to 1980

    SciTech Connect

    Tilly, L.J.

    1981-03-01

    A limnological database for Par Pond, a cooling reservoir for hot reactor effluent water at the Savannah River Plant, is described. The data are derived from a combination of research and monitoring efforts on Par Pond since 1959. The approximately 24,000-byte database provides water quality, primary productivity, and flow data from a number of different stations, depths, and times during the 22-year history of the Par Pond impoundment. The data have been organized to permit an interpretation of the effects of twenty years of cooling system operations on the structure and function of an aquatic ecosystem.

  4. A review of virus removal in wastewater treatment pond systems.

    PubMed

    Verbyla, Matthew E; Mihelcic, James R

    2015-03-15

    Wastewater treatment ponds (lagoons) are one of the most common types of technologies used for wastewater management worldwide, especially in small cities and towns. They are particularly well-suited for systems where the effluent is reused for irrigation. However, the efficiency of virus removal in wastewater treatment pond systems is not very well understood. The main objective of this paper is to critically review the major findings related to virus removal in wastewater treatment pond systems and to statistically analyze results reported in the literature from field studies on virus removal in these systems. A comprehensive analysis of virus removal reported in the literature from 71 different wastewater treatment pond systems reveals only a weak to moderate correlation of virus removal with theoretical hydraulic retention time. On average, one log10 reduction of viruses was achieved for every 14.5-20.9 days of retention, but the 95th percentile value of the data analyzed was 54 days. The mechanisms responsible for virus removal in wastewater treatment ponds were also reviewed. One recent finding is that sedimentation may not be a significant virus removal mechanism in some wastewater ponds. Recent research has also revealed that direct and indirect sunlight-mediated mechanisms are not only dependent on pond water chemistry and optics, but also on the characteristics of the virus and its genome. MS2 coliphage is considered to be the best surrogate for studying sunlight disinfection in ponds. The interaction of viruses with particles, with other microorganisms, and with macroinvertebrates in wastewater treatment ponds has not been extensively studied. It is also unclear whether virus internalization by higher trophic-level organisms has a protective or a detrimental effect on virus viability and transport in pond systems. Similarly, the impact of virus-particle associations on sunlight disinfection in ponds is not well understood. Future research should focus on

  5. Evaluation of the Rulison drilling effluent pond as trout habitat

    SciTech Connect

    1998-06-23

    The Rulison Site is located in Section 25, township 7 South, Range 95 West, Garfield County, Colorado. The site is approximately 19 kilometers (km) (12 miles [mi]) southwest of Rifle Colorado, and approximately 65 km (40 mi) northeast of Grand Junction, Colorado. Project Ruhson was an experiment conducted jointly by the U.S. Atomic Energy Commission and Austral Oil Company to test the feasibility of using a nuclear device to increase natural gas production in low permeability geological formations. The experiment was conducted on September 10, 1969, and consisted of detonating a 43-kiloton nuclear device at a depth of 2,568 meters (m) (8,426 feet [ft]) below the ground surface (DOE, 1994). The Rulison Drilling Effluent Pond (called `the pond`) is an engineered structure covering approximately 0.2 hectare (0.5 acre), which was excavated and used to store drilling fluids during drilling of the device emplacement well. The drilling fluids consisted of bentonitic drilling mud with additives such as diesel fuel and chrome lignosulfonate. Most of the drilling muds were removed from the pond when the site was decommissioned in 1976, and the pond was subsequently stocked with rainbow trout by the land owner and used as a fishing pond. In 1994 and 1995, the U.S. Department of Energy (DOE) conducted sampling of the pond to evaluate residual contamination from the drilling fluids. Based on the results of this sampling, the DOE conducted a voluntary cleanup action in order to reduce the levels of total petroleum hydrocarbons and chromium in pond sediments. The cleanup was conducted between August and mid-November of 1995. At the end of cleanup activities, the pond was lined with a clay geofabric and left dry. The geofabric was covered with sod to protect it. The pond has since been refilled by snowmelt and inflow from a spring. Prior to remediation, the pond apparently had sufficient water quality and food resources to support stocked rainbow trout. The purpose of this

  6. Description of work for 216-U-Pond test pits

    SciTech Connect

    Kelty, G.G.

    1993-08-11

    This description of work (DOW) details the field activities associated with the test pit excavation and soil sampling at the 216- U-10 Pond (U-10 Pond) in the 200 West Area and will serve as a field guide for those performing the work. It will be used in conjunction with the 200-UP-2 Resource Conservation and Recovery Act of 1976 (RCRA) Facility Investigation/Corrective Measures Study (DOE-RL 1993a, [LFI]) and Site Characterization Manual (WHC 1988a). Test pits will be constructed to characterize the vertical extent of contaminants in sediments within and beneath the former U-10 pond.

  7. Greenhouse Gas Exchange in Small Arctic Thaw Ponds

    NASA Astrophysics Data System (ADS)

    Laurion, I.; Bégin, P. N.; Bouchard, F.; Preskienis, V.

    2014-12-01

    Arctic lakes and ponds can represent up to one quarter of the land surface in permafrost landscapes, particularly in lowland tundra landscapes characterized by ice wedge organic polygons. Thaw ponds can be defined as the aquatic ecosystems associated to thawing of organic soils, either resulting from active layer processes and located above low-center peat polygons (hereafter low-center polygonal or LCP ponds), or resulting from thermokarst slumping above melting ice wedges linked to the accelerated degradation of permafrost (hereafter ice-wedge trough or IWT ponds). These ponds can merge together forming larger water bodies, but with relatively stable shores (hereafter merged polygonal or MPG ponds), and with limnological characteristics similar to LCP ponds. These aquatic systems are very small and shallow, and present a different physical structure than the larger thermokarst lakes, generated after years of development and land subsidence. In a glacier valley on Bylot Island, Nunavut, Canada, thermokarst and kettle lakes together represent 29% of the aquatic area, with a thermal profile resembling those of more standard arctic lakes (mixed epilimnion). The IWT ponds (44% of the area) are stratified for a large fraction of the summer despite their shallowness, while LCP and MPG ponds (27% of the area) show a more homogeneous water column. This will affect gas exchange in these diverse aquatic systems, in addition to their unique microbiota and organic carbon lability that control the production and consumption rates of greenhouse gases. The stratification in IWT ponds generates hypoxic conditions at the bottom, and together with the larger availability of organic carbon, stimulates methanogenesis and limits the mitigating action of methanotrophs. Overall, thaw ponds are largely supersaturated in methane, with IWT ponds dominating the emissions in this landscape (92% of total aquatic emissions estimated for the same valley), and they present large variations in

  8. Arctic sea ice surface ponds due to saltwater impurities

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-03-01

    During the summer melt season the white surface of Arctic sea ice turns to a mixture of grays and blues as meltwater ponds come to dot the landscape. Rising temperatures in late spring melt ice and snow, and the meltwater pools in depressions left by drifting snow. In just a week, these meltwater ponds can come to dominate the ice surface, increasing their areal extent by up to 35% per day. But just as quickly as they appear, the pools can recede, the water flowing into the ocean. Surface ponds drastically reduce the ice's albedo, increasing the amount of light available for Arctic ecosystems and accelerating ice melt.

  9. Stability and economics of solar ponds using ammonium salts

    SciTech Connect

    Hull, J.R.

    1986-01-01

    The use of ammonium salts in salt gradient solar ponds eliminates the environmental problems associated with NaCl by incorporating the salt discharge from the solar pond into the fertilizer cycle of an agricultural system. An examination of thermophysical properties of several ammonium salts suggests that both ammonium nitrate and ammonium sulfate can provide hydrodynamic stability equivalent to NaCl. The cost of the fertilizer salt is based on the real interest for holding the fertilizer in inventory. Costs are independent of the rate at which the salt is cycled through the pond, which makes desirable a maintenance scheme that minimizes the thickness of the upper convecting zone.

  10. Percolation of spatially constrained Erdős-Rényi networks with degree correlations

    NASA Astrophysics Data System (ADS)

    Schmeltzer, C.; Soriano, J.; Sokolov, I. M.; Rüdiger, S.

    2014-01-01

    Motivated by experiments on activity in neuronal cultures [J. Soriano, M. Rodríguez Martínez, T. Tlusty, and E. Moses, Proc. Natl. Acad. Sci. 105, 13758 (2008), 10.1073/pnas.0707492105], we investigate the percolation transition and critical exponents of spatially embedded Erdős-Rényi networks with degree correlations. In our model networks, nodes are randomly distributed in a two-dimensional spatial domain, and the connection probability depends on Euclidian link length by a power law as well as on the degrees of linked nodes. Generally, spatial constraints lead to higher percolation thresholds in the sense that more links are needed to achieve global connectivity. However, degree correlations favor or do not favor percolation depending on the connectivity rules. We employ two construction methods to introduce degree correlations. In the first one, nodes stay homogeneously distributed and are connected via a distance- and degree-dependent probability. We observe that assortativity in the resulting network leads to a decrease of the percolation threshold. In the second construction methods, nodes are first spatially segregated depending on their degree and afterwards connected with a distance-dependent probability. In this segregated model, we find a threshold increase that accompanies the rising assortativity. Additionally, when the network is constructed in a disassortative way, we observe that this property has little effect on the percolation transition.

  11. Saturation Dependence of Transport in Porous Media Predicted by Percolation and Effective Medium Theories

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Hunt, Allen G.; Skinner, Thomas E.; Ewing, Robert P.

    2015-02-01

    Accurate prediction of the saturation dependence of different modes of transport in porous media, such as those due to conductivity, air permeability, and diffusion, is of broad interest in engineering and natural resources management. Most current predictions use a "bundle of capillary tubes" concept, which, despite its widespread use, is a severely distorted idealization of natural porous media. In contrast, percolation theory provides a reliable and powerful means to model interconnectivity of disordered networks and porous materials. In this study, we invoke scaling concepts from percolation theory and effective medium theory to predict the saturation dependence of modes of transport — hydraulic and electrical conductivity, air permeability, and gas diffusion — in two disturbed soils. Universal scaling from percolation theory predicts the saturation dependence of air permeability and gas diffusion accurately, even when the percolation threshold for airflow is estimated from the porosity. We also find that the non-universal scaling obtained from the critical path analysis (CPA) of percolation theory can make excellent predictions of hydraulic and electrical conductivity under partially saturated conditions.

  12. Percolative metal-insulator transition in LaMnO3

    NASA Astrophysics Data System (ADS)

    Sherafati, M.; Baldini, M.; Malavasi, L.; Satpathy, S.

    2016-01-01

    We show that the pressure-induced metal-insulator transition (MIT) in LaMnO3 is fundamentally different from the Mott-Hubbard transition and is percolative in nature, with the measured resistivity obeying the percolation scaling laws. Using the Gutzwiller method to treat correlation effects in a model Hamiltonian that includes both Coulomb and Jahn-Teller interactions, we show, one, that the MIT is driven by a competition between electronic correlation and the electron-lattice interaction, an issue that has been long debated, and two, that with compressed volume, the system has a tendency towards phase separation into insulating and metallic regions, consisting, respectively, of Jahn-Teller distorted and undistorted octahedra. This tendency manifests itself in a mixed phase of intermixed insulating and metallic regions in the experiment. Conduction in the mixed phase occurs by percolation and the MIT occurs when the metallic volume fraction, steadily increasing with pressure, exceeds the percolation threshold vc≈0.29 . Measured high-pressure resistivity follows the percolation scaling laws quite well, and the temperature dependence follows the Efros-Shklovskii variable-range hopping behavior for granular materials.

  13. Quantum percolation and transition point of a directed discrete-time quantum walk

    PubMed Central

    Chandrashekar, C. M.; Busch, Th.

    2014-01-01

    Quantum percolation describes the problem of a quantum particle moving through a disordered system. While certain similarities to classical percolation exist, the quantum case has additional complexity due to the possibility of Anderson localisation. Here, we consider a directed discrete-time quantum walk as a model to study quantum percolation of a two-state particle on a two-dimensional lattice. Using numerical analysis we determine the fraction of connected edges required (transition point) in the lattice for the two-state particle to percolate with finite (non-zero) probability for three fundamental lattice geometries, finite square lattice, honeycomb lattice, and nanotube structure and show that it tends towards unity for increasing lattice sizes. To support the numerical results we also use a continuum approximation to analytically derive the expression for the percolation probability for the case of the square lattice and show that it agrees with the numerically obtained results for the discrete case. Beyond the fundamental interest to understand the dynamics of a two-state particle on a lattice (network) with disconnected vertices, our study has the potential to shed light on the transport dynamics in various quantum condensed matter systems and the construction of quantum information processing and communication protocols. PMID:25301394

  14. Selective Laser Direct Patterning of Silver Nanowire Percolation Network Transparent Conductor for Capacitive Touch Panel.

    PubMed

    Hong, Sukjoon; Yeo, Junyeob; Lee, Jinhwan; Lee, Habeom; Lee, Phillip; Lee, Seung S; Ko, Seung Hwan

    2015-03-01

    We introduce a facile method to enhance the functionality of a patterned metallic transparent conductor through selective laser ablation of metal nanowire percolation network. By scanning focused nanosecond pulsed laser on silver nanowire percolation network, silver nanowires are selectively ablated and patterned without using any conventional chemical etching or photolithography steps. Various arbitrary patterns of silver nanowire transparent conductors are readily created on the percolation network by changing various laser parameters such as repetition rate and power. The macroscopic optical and electrical properties of the percolation network transparent conductor can be easily tuned by changing the conductor pattern design via digital selective laser ablation. Further investigation on the silver nanowire based electrode line prepared by the ablation process substantiates that the general relation for a conducting thin film fails at a narrow width, which should be considered for the applications that requires a high resolution patterns. Finally, as a proof of concept, a capacitive touch sensor with diamond patterns has been demonstrated by selective laser ablation of metal nanowire percolation network.

  15. Geohydrology and limnology of Walden Pond, Concord, Massachusetts

    USGS Publications Warehouse

    Colman, John A.; Friesz, Paul J.

    2001-01-01

    The trophic ecology and ground-water contributing area of Walden Pond, in Concord and Lincoln, Mass., were investigated by the U.S. Geological Survey in cooperation with the Massachusetts Department of Environmental Management from April 1997 to July 2000. Bathymetric investigation indicated that Walden Pond (24.88 hectares), a glacial kettle-hole lake with no surface inlet or outlet, has three deep areas. The maximum depth (30.5 meters) essentially was unchanged from measurements made by Henry David Thoreau in 1846. The groundwater contributing area (621,000 square meters) to Walden Pond was determined from water-table contours in areas of stratified glacial deposits and from land-surface contours in areas of bedrock highs. Walden Pond is a flow-through lake: Walden Pond gains water from the aquifer along its eastern perimeter and loses water to the aquifer along its western perimeter. Walden Pond contributing area also includes Goose Pond and its contributing area. A water budget calculated for Walden Pond, expressed as depth of water over the lake surface, indicated that 45 percent of the inflow to the lake was from precipitation (1.215 meters per year) and 55 percent from ground water (1.47 meters per year). The groundwater inflow estimate was based on the average of two different approaches including an isotope mass-balance approach. Evaporation accounted for 26 percent of the outflow from the lake (0.71 meters per year) whereas lake-water seepage to the groundwater system contributed 74 percent of the outflow (1.97 meters per year). The water-residence time of Walden Pond is approximately 5 years. Potential point sources of nutrients to ground water, the Concord municipal landfill and a trailer park, were determined to be outside the Walden Pond groundwater contributing area. A third source, the septic leach field for the Walden Pond State Reservation facilities, was within the groundwater contributing area. Nutrient budgets for the lake indicated that

  16. Management and conservation of San Francisco Bay salt ponds: Effects of pond salinity, area, tide, and season on pacific flyway waterbirds

    USGS Publications Warehouse

    Warnock, N.; Page, G.W.; Ruhlen, T.D.; Nur, N.; Takekawa, J.Y.; Hanson, J.T.

    2002-01-01

    Throughout the world, coastal salt ponds provide habitat for large numbers and diversities of waterbirds. San Francisco Bay contains the most important coastal salt pond complexes for waterbirds in the United States, supporting more than a million waterbirds through the year. As an initial step in attempting to understand how the anticipated conversion of salt ponds to tidal marsh might affect the Bay's bird populations, the number of birds using salt ponds on high and low tides was counted during the winter months of 1999/00 and 2000/01. Behavior and habitat use of birds in these ponds were assessed, and the effects of tide cycle, pond salinity, and pond area on bird use were examined. We recorded 75 species of waterbirds in surveys of salt ponds in the South Bay from September 1999 to February 2001, totaling over a million bird use days on high tide. Shorebirds and dabbling ducks were the most abundant groups of birds using the salt ponds. Waterbird numbers and diversity were significantly affected by the salinity of ponds in a non-linear fashion with lower numbers and diversity on the highest salinity ponds. With the exception of ducks and Eared Grebe (Podiceps nigricollis), tide height at the Bay significantly affected bird numbers in the salt ponds with ponds at high tides having higher numbers of birds than the same ponds on low tides. Considerable numbers of birds fed in the salt ponds on high and low tides, although this varied greatly by species. Habitat use varied by tide. Management recommendations include maintaining ponds of varying salinities and depths. Restoring salt ponds to tidal marsh should proceed with caution to avoid loss of waterbird diversity and numbers in San Francisco Bay.

  17. Effects of bile salts on percolation and size of AOT reversed micelles.

    PubMed

    Yang, Hui; Erford, Karen; Kiserow, Douglas J; McGown, Linda B

    2003-06-15

    The effects of two trihydroxy bile salts, sodium taurocholate (NaTC) and 3-[(3-cholamidylpropyl)dimethylammonio]-1-propane sulfonate (CHAPS), on the size, shape and percolation temperature of reversed micelles formed by sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in isooctane were studied. The percolation temperature of the reversed micelles decreased upon inclusion of bile salts, indicating increased water uptake. Dynamic light scattering (DLS) measurements showed consistent enlargement of reversed micelles upon addition of the bile salts; the hydrodynamic radius increased sixfold in the presence of 10 mM CHAPS and doubled in the presence of 5 mM NaTC. Inclusion of the enzyme yeast alcohol dehydrogenase (YADH) increased the percolation temperature and distorted the spherical structure of the AOT reversed micelles. The spherical structure was restored upon addition of bile salt. These results may help to explain the increase in activity of YADH in AOT reversed micelles upon addition of bile salts.

  18. k-core percolation on complex networks: Comparing random, localized, and targeted attacks.

    PubMed

    Yuan, Xin; Dai, Yang; Stanley, H Eugene; Havlin, Shlomo

    2016-06-01

    The type of malicious attack inflicting on networks greatly influences their stability under ordinary percolation in which a node fails when it becomes disconnected from the giant component. Here we study its generalization, k-core percolation, in which a node fails when it loses connection to a threshold k number of neighbors. We study and compare analytically and by numerical simulations of k-core percolation the stability of networks under random attacks (RA), localized attacks (LA) and targeted attacks (TA), respectively. By mapping a network under LA or TA into an equivalent network under RA, we find that in both single and interdependent networks, TA exerts the greatest damage to the core structure of a network. We also find that for Erdős-Rényi (ER) networks, LA and RA exert equal damage to the core structure, whereas for scale-free (SF) networks, LA exerts much more damage than RA does to the core structure. PMID:27415275

  19. Point-to-point connectivity prediction in porous media using percolation theory

    NASA Astrophysics Data System (ADS)

    Tavagh-Mohammadi, Behnam; Masihi, Mohsen; Ganjeh-Ghazvini, Mostafa

    2016-10-01

    The connectivity between two points in porous media is important for evaluating hydrocarbon recovery in underground reservoirs or toxic migration in waste disposal. For example, the connectivity between a producer and an injector in a hydrocarbon reservoir impact the fluid dispersion throughout the system. The conventional approach, flow simulation, is computationally very expensive and time consuming. Alternative method employs percolation theory. Classical percolation approach investigates the connectivity between two lines (representing the wells) in 2D cross sectional models whereas we look for the connectivity between two points (representing the wells) in 2D aerial models. In this study, site percolation is used to determine the fraction of permeable regions connected between two cells at various occupancy probabilities and system sizes. The master curves of mean connectivity and its uncertainty are then generated by finite size scaling. The results help to predict well-to-well connectivity without need to any further simulation.

  20. Rapid separation of Arabidopsis male gametophyte developmental stages using a Percoll gradient.

    PubMed

    Dupl'áková, Nikoleta; Dobrev, Petre I; Reňák, David; Honys, David

    2016-10-01

    Research investigating the dynamics of male gametophyte (MG) development has proven to be challenging for the plant science community. Here we describe our protocol for separating Arabidopsis MG developmental stages, which is based on the centrifugation of pollen through a discontinuous Percoll concentration gradient. This Percoll gradient can be formed using a pipette, and it does not require a gradient maker. The purity of the isolated developing spores is as high as 70%, and in most separations it is well above 80%. Using this protocol, we can separate four different stages of pollen development-uninucleate microspore (UNM), bicellular pollen (BCP), tricellular immature pollen (TCP) and mature pollen grain (MPG). The duration of the separation procedure, excluding the cutting of flower inflorescences, is 6 h. This is reduced to 4 h when using a vacuum cleaning method to remove the MPGs before the Percoll density separation. PMID:27583643