Effective GDR Width of 132Ce at High Spins and Temperatures from the LSD Model
NASA Astrophysics Data System (ADS)
Mazurek, K.; Kmiecik, M.; Maj, A.; Dudek, J.; Schunck, N.
2007-04-01
The Lublin--Strasbourg Drop (LSD) model, which reproduces quite satisfactorily the nuclear fission barriers, has been used as a basis for the thermal shape fluctuation method in order to compute effective GDR shapes of hot nuclei in particular at the regime of Jacobi shape transitions. In particular, the effective GDR width of 132Ce evolution as a function of angular momentum and temperature was calculated and compared to the existing experimental results. The need of including the effect of compound nucleus lifetime for temperatures higher than 2 MeV is discussed.
NASA Astrophysics Data System (ADS)
Gu, Changgui; Yang, Huijie; Rohling, Jos HT
2017-03-01
In mammals, the main clock located in the suprachiasmatic nucleus (SCN) of the brain synchronizes the body rhythms to the environmental light-dark cycle. The SCN is composed of about 2 ×104 neurons which can be classified into three oscillatory phenotypes: self-sustained oscillators, damped oscillators, and arrhythmic neurons. Exposed to an artificial external light-dark cycle with a period of 22 h instead of 24 h , two subgroups of the SCN can become desynchronized (dissociated). The ventrolateral (VL) subgroup receives photic input and is entrained to the external cycle and a dorsomedial (DM) subgroup oscillates with its endogenous (i.e., free running) period and is synchronized to the external light-dark cycle through coupling from the VL. In the present study, we examined the effects of damped oscillatory neurons on the dissociation between VL and DM under an external 22 h cycle. We found that, with increasing numbers of damped oscillatory neurons located in the VL, the dissociation between the VL and DM emerges, but if these neurons are increasingly present in the DM the dissociation disappears. Hence, the damped oscillatory neurons in different subregions of the SCN play distinct roles in the dissociation between the two subregions of the SCN. This shows that synchrony between SCN subregions is affected by the number of damped oscillatory neurons and the location of these cells. We suggest that more knowledge on the number and the location of these cells may explain why some species do show a dissociation between the subregions and others do not, as the distribution of oscillatory types of neurons offers a plausible and novel candidate mechanism to explain heterogeneity.
Heme reversibly damps PERIOD2 rhythms in mouse suprachiasmatic nucleus explants.
Guenthner, C J; Bickar, D; Harrington, M E
2009-12-01
The hypothalamic suprachiasmatic nucleus (SCN), which in mammals serves as the master circadian pacemaker by synchronizing autonomous clocks in peripheral tissues, is composed of coupled single-cell oscillators that are driven by interlocking positive/negative transcriptional/translational feedback loops. Several studies have suggested that heme, a common prosthetic group that is synthesized and degraded in a circadian manner in the SCN, may modulate the function of several feedback loop components, including the REV-ERB nuclear receptors and PERIOD2 (PER2). We found that ferric heme (hemin, 3-100 microM) dose-dependently and reversibly damped luminescence rhythms in SCN explants from mice expressing a PER2::LUCIFERASE (PER2::LUC) fusion protein. Inhibitors of heme oxygenases (HOs, which degrade heme to biliverdin, carbon monoxide, and iron) mimicked heme's effects on PER2 rhythms. In contrast, heme and HO inhibition did not damp luminescence rhythms in thymus and esophagus explants and had only a small effect on PER2::LUC damping in spleen explants, suggesting that heme's effects are tissue-specific. Analysis of the effects of heme's degradation products on SCN PER2::LUC rhythms indicated that they probably were not responsible for heme's effects on rhythms. The heme synthesis inhibitor N-methylprotoporphyrinIX (NMP) lengthened the circadian period of SCN PER2::LUC rhythms by about an hour. These data are consistent with an important role for heme in the circadian system.
Heme Reversibly Damps PERIOD2 Rhythms in Mouse Suprachiasmatic Nucleus Explants
Guenthner, Casey J.; Bickar, David; Harrington, Mary E.
2009-01-01
The hypothalamic suprachiasmatic nucleus (SCN), which in mammals serves as the master circadian pacemaker by synchronizing autonomous clocks in peripheral tissues, is composed of coupled single-cell oscillators that are driven by interlocking positive/negative transcriptional/translational feedback loops. Several studies have suggested that heme, a common prosthetic group that is synthesized and degraded in a circadian manner in the SCN, may modulate the function of several feedback loop components, including the REV-ERB nuclear receptors and PERIOD2 (PER2). We found that ferric heme (hemin, 3-100 μM) dose-dependently and reversibly damped luminescence rhythms in SCN explants from mice expressing a PER2∷LUCIFERASE (PER2∷LUC) fusion protein. Inhibitors of heme oxygenases (HOs, which degrade heme to biliverdin, carbon monoxide, and iron) mimicked heme’s effects on PER2 rhythms. In contrast, heme and HO inhibition did not damp luminescence rhythms in thymus and esophagus explants and had only a small effect on PER2∷LUC damping in spleen explants, suggesting that heme’s effects are tissue-specific. Analysis of the effects of heme’s degradation products on SCN PER2∷LUC rhythms indicated that they probably were not responsible for heme’s effects on rhythms. The heme synthesis inhibitor N-methylprotoporphyrin IX (NMP) lengthened the circadian period of SCN PER2∷LUC rhythms by about an hour. These data are consistent with an important role for heme in the circadian system. PMID:19698763
ERIC Educational Resources Information Center
Fay, Temple H.
2012-01-01
Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…
Kortelahti, M.O. ); Kern, B.D. ); Braga, R.A.; Fink, R.W. ); Girit, I.C. Vanderbilt University, Nashville, TN ); Mlekodaj, R.L. )
1990-10-01
An investigation of low-lying energy levels of {sup 130,132}Ce, {sup 132,134}Nd, and {sup 134}Pm has been made via {beta} decay, especially of those levels in the {ital K}{sup {pi}}=2{sup +} gamma band in the even-even nuclei. The radioactive parent nuclei were produced by the {sup 92}Mo({sup 46}Ti,{ital xpyn}) and {sup 112}Sn({sup 28}Si,{ital xpyn}) reactions with bombarding energies of 170 to 240 MeV. An isotope separator enabled {ital A}=134 mass identification. Level schemes of these five nuclei were constructed from {gamma}-{gamma}-{ital t} coincidence data. The {beta}-decay half-lives of the parent nuclei, {sup 130}Pr, {sup 132}Pr, {sup 132}Pm, {sup 134}Pm, and {sup 134}Sm, were determined to be 40{plus minus}4, 96{plus minus}18, 8.8{plus minus}0.8, 23{plus minus}2, and 9.3{plus minus}0.8 s, respectively. The suitability of the proton-neutron interaction boson model in describing {sup 130}Ce, {sup 132}Ce, {sup 132}Nd, and {sup 134}Nd is supported by the comparison of experimental relative {ital E}2 transition probabilities with proton-neutron interaction boson model predictions.
ERIC Educational Resources Information Center
Fay, Temple H.
2012-01-01
Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…
Zhu, S.; Cai, Y.; Rote, D. M.; ...
1998-01-01
Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.
NASA Astrophysics Data System (ADS)
Chen, Zhong; Chen, Guisheng; Zhang, Xianmin
2015-05-01
Flexure-based mechanism like compliant actuation system embeds complex dynamics that will reduce the control bandwidth and limits their dynamic positioning precision. This paper presents a theoretical model of a leaf flexure hinge with damping layers using strain energy method and Kelvin damping model. The modified loss factor of the damped leaf flexure hinge is derived, and the equivalent viscous damping coefficient of the damped leaf hinge is obtained, which could be used to improve the pseudo-rigid-model. The free vibration signals of the hinge in three different damping configurations are measured. The experimental modal analysis also is performed on the three kinds of damped leaf flexure hinges in order to evaluate their 1st order bending natural frequency and vibration-suppressing effects. The evaluation of modified loss factor model also is performed. The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency, and it is necessary that the dimensional parameters of the damping layers and basic layer of the hinge should be optimized for simplification at the mechanism's design stage.
NASA Astrophysics Data System (ADS)
Oh, J.; Ray, Manas C.; Baz, Amr M.
2001-07-01
Engineered Damping Treatments (EDT) that have high damping characteristics per unit volume are presented. The EDT's under consideration, consist of cellular viscoelastic damping matrices with optimally selected cell configuration, size and distribution. The cellular topology of the EDT's is designed using Computer-Aided-Design (CAD) strategies and the obtained optimal configurations will be manufactured using the state-of-the-art technology of Rapid Prototyping (RP). The EDT's are modeled using the finite element method in an attempt to determine the optimal topologies that maximize the strain energy, maximize the damping characteristics and minimize the total weight. The CAD files of the prototypes of the EDT's. The damping characteristics of the manufactured EDT's are evaluated and compared with the corresponding characteristics obtained by conventional solid damping treatments in order to emphasize the importance of using optimally configured damping treatment to achieve high damping characteristics. The presented procedures are invaluable for designing efficient damping treatments for many military and civilian structures whose vibrations and noise must be effectively controlled.
Critically damped quantum search.
Mizel, Ari
2009-04-17
Although measurement and unitary processes can accomplish any quantum evolution in principle, thinking in terms of dissipation and damping can be powerful. We propose a modification of Grover's algorithm in which the idea of damping plays a natural role. Remarkably, we find that there is a critical damping value that divides between the quantum O(sqrt[N]) and classical O(N) search regimes. In addition, by allowing the damping to vary in a fashion we describe, one obtains a fixed-point quantum search algorithm in which ignorance of the number of targets increases the number of oracle queries only by a factor of 1.5.
Decoherence and Landau-Damping
Ng, K.Y.; /Fermilab
2005-12-01
The terminologies, decoherence and Landau damping, are often used concerning the damping of a collective instability. This article revisits the difference and relation between decoherence and Landau damping. A model is given to demonstrate how Landau damping affects the rate of damping coming from decoherence.
NASA Technical Reports Server (NTRS)
Dominic, R. J.
1984-01-01
Research results and progress on the performance of bladed systems is reported the different topics discussed include: the study of turbine blade damping; forced vibrations of friction damped beam moistures in two dimensions; and a users manual for a computer program for dynamic analysis of bladed systems.
NASA Technical Reports Server (NTRS)
Srinivasan, A. V.; Cutts, D. G.; Sridhar, S.
1981-01-01
The potentials of various sources of nonaerodynamic damping in engine blading are evaluated through a combination of advanced analysis and testing. The sources studied include material hysteresis, dry friction at shroud and root disk interfaces as well as at platform type external dampers. A limited seris of tests was conducted to evaluate damping capacities of composite materials (B/AL, B/AL/Ti) and thermal barrier coatings. Further, basic experiments were performed on titanium specimens to establish the characteristics of sliding friction and to determine material damping constants J and n. All the tests were conducted on single blades. Mathematical models were develthe several mechanisms of damping. Procedures to apply this data to predict damping levels in an assembly of blades are developed and discussed.
NASA Astrophysics Data System (ADS)
Lam, Margaretha J.; Inman, Daniel J.; Saunders, William R.
1998-06-01
Damping is important to structures and can be achieved through the addition of viscoelastic materials (VEM). The damping of the VEM is enhanced if a constraining layer is attached to the VEM. If this constraining layer is active, the treatment is called active constrained layer damping (ACLD). In the last few years, ACLD has proven to be superior in vibration control to active or passive damping. The active element makes ACLD more effective than passive constrained layer damping. It also provides a fail-safe in case of breakdown of the active element that is not present for purely active control. It is shown that the control effort needed to damp vibration using ACLD can be significantly higher than purely active control. In order to combine the inherent damping of passive control with the effectiveness of the active element, this paper will explore different variations of active, passive and hybrid damping. Some of the variations include: passive constrained layer damping (PCLD) separate from active element but on the same side of beam, PCLD separate from active on the opposite side of the beam, and active element underneath PCLD. The discretized system equations will be obtained using assumed modes method and Lagrange's equation. The damping will be modeled using the Golla-Hughes-McTavish (GHM) method. The optimal placement and size of the active, passive, ACLD and hybrid treatments will be found using different schemes. The issue of overshoot and settling time of the output and control force using LQR will be addressed, as well as the control effort, passive and active vibration suppression, and LQR cost function. It will be shown that the hybrid treatments are capable of greater vibration control for lower control effort for different optimization schemes. 31
Damping in Space Constructions
NASA Astrophysics Data System (ADS)
de Vreugd, Jan; de Lange, Dorus; Winters, Jasper; Human, Jet; Kamphues, Fred; Tabak, Erik
2014-06-01
Monolithic structures are often used in optomechanical designs for space applications to achieve high dimensional stability and to prevent possible backlash and friction phenomena. The capacity of monolithic structures to dissipate mechanical energy is however limited due to the high Q-factor, which might result in high stresses during dynamic launch loads like random vibration, sine sweeps and shock. To reduce the Q-factor in space applications, the effect of constrained layer damping (CLD) is investigated in this work. To predict the damping increase, the CLD effect is implemented locally at the supporting struts in an existing FE model of an optical instrument. Numerical simulations show that the effect of local damping treatment in this instrument could reduce the vibrational stresses with 30-50%. Validation experiments on a simple structure showed good agreement between measured and predicted damping properties. This paper presents material characterization, material modeling, numerical implementation of damping models in finite element code, numerical results on space hardware and the results of validation experiments.
DuBois, Neil J.; Amaral, Antonio M.
1992-10-27
A damped flexible seal assembly for a torpedo isolates the tailcone thereof rom vibrational energy present in the drive shaft assembly. A pair of outside flanges, each of which include an inwardly facing groove and an O-ring constrained therein, provide a watertight seal against the outer non-rotating surface of the drive shaft assembly. An inside flange includes an outwardly-facing groove and an O-ring constrained therein, and provides a watertight seal against the inner surface of the tail cone. Two cast-in-place elastomeric seals provide a watertight seal between the flanges and further provide a damping barrier between the outside flanges and the inside flanges for damping vibrational energy present in the drive shaft assembly before the energy can reach the tailcone through the seal assembly.
NASA Astrophysics Data System (ADS)
Yan, Zhang; Tao, Ma; Yongyi, Huang
2016-07-01
The first Chinese space observatory DAMPE (DArk Matter Particle Explorer) was successfully launched on Dec. 17th, 2015. One major scientific object of DAMPE is to measure electrons between 5GeV to 10TeV with excellent energy resolution (1.5% at 800GeV) to search for possible dark matter signatures. The detector consists of four subsystems: a plastic scintillator detector (PSD), a silicon-tungsten tracker (STK), a BGO calorimeter (BGO), and a neutron detector (NUD). The NUD on board DAMPE is designed to detect moderated neutrons via the boron capture of thermal neutrons in boron-doped plastics. Given the fact that hadron showers initiated in the BGO calorimeter by incident nuclei tend to be followed by significantly more neutron activities comparing to electromagnetic cascades triggered by electrons, the NUD provides an additional order of magnitude hadron rejection capability to improve the overall e/p discrimination of DAMPE up to 10 ^{5}. Preliminary analysis of the in-orbit data is given, together with comparisons to the results obtained by a detailed GEANT4 simulation of the NUD instrument.
Palmer, R.B.
1987-05-01
This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.
Radiation damping on cryoprobes.
Shishmarev, Dmitry; Otting, Gottfried
2011-12-01
Radiation damping on 600 and 800 MHz cryoprobes was investigated. The phase angle β between a vector 90° phase shifted to the precessing magnetization and the rf field induced in the coil was found to depend markedly on whether an FID was being acquired or not. The magnitude of the radiation damping field was sufficiently strong to restore 95% of the equilibrium water magnetization of a 90% H2O sample in a 5 mm sample tube within about 5 ms following a 165° pulse. This can be exploited in water flip-back versions of NOESY and TOCSY experiments of proteins, but care must be taken to limit the effect of the radiation damping field from the water on the Ha protons. Long water-selective pulses can be applied only following corrections. We developed a program for correcting pulse shapes if β is non-zero. The WATERGATE scheme is shown to be insensitive to imperfections introduced by radiation damping.
NASA Astrophysics Data System (ADS)
Burns, J. A.; Sharma, I.
2000-10-01
Motivated by the recent detection of complex rotational states for several asteroids and comets, as well as by the ongoing and planned spacecraft missions to such bodies, which should allow their rotational states to be accurately determined, we revisit the problem of the nutational damping of small solar system bodies. The nutational damping of asteroids has been approximately analyzed by Prendergast (1958), Burns and Safronov (1973), and Efroimsky and Lazarian (2000). Many other similar dynamical studies concern planetary wobble decay (e.g., Peale 1973; Yoder and Ward 1979), interstellar dust grain alignment (e.g., Purcell 1979; Lazarian and Efroimsky 1999) and damping of Earth's Chandler wobble (Lambeck 1980). Recall that rotational energy loss for an isolated body aligns the body's angular momentum vector with its axis of maximum inertia. Assuming anelastic dissipation, simple dimensional analysis determines a functional form of the damping timescale, on which all the above authors agree. However, the numerical coefficients of published results are claimed to differ by orders of magnitude. Differences have been ascribed to absent physics, to solutions that fail to satisfy boundary conditions perfectly, and to unphysical choices for the Q parameter. The true reasons for the discrepancy are unclear since, despite contrary claims, the full 3D problem (nutational damping of an anelastic ellipsoid) is analytically intractable so far. To move the debate forward, we compare the solution of a related 2D problem to the expressions found previously, and we present results from a finite element model. On this basis, we feel that previous rates for the decay of asteroidal tumbling (Harris 1994), derived from Burns and Safronov (1973), are likely to be accurate, at least to a factor of a few. Funded by NASA.
High energy nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Wosiek, B.
1986-01-01
Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.
On damping mechanisms in beams
NASA Technical Reports Server (NTRS)
Banks, H. T.; Inman, D. J.
1989-01-01
A partial differential equation model of a cantilevered beam with a tip mass at its free end is used to study damping in a composite. Four separate damping mechanisms consisting of air damping, strain rate damping, spatial hysteresis and time hysteresis are considered experimentally. Dynamic tests were performed to produce time histories. The time history data is then used along with an approximate model to form a sequence of least squares problems. The solution of the least squares problem yields the estimated damping coefficients. The resulting experimentally determined analytical model is compared with the time histories via numerical simulation of the dynamic response. The procedure suggested here is compared with a standard modal damping ratio model commonly used in experimental modal analysis.
On damping mechanisms in beams
NASA Technical Reports Server (NTRS)
Banks, H. T.; Inman, D. J.
1991-01-01
A partial differential equation model of a cantilevered beam with a tip mass at its free end is used to study damping in a composite. Four separate damping mechanisms consisting of air damping, strain rate damping, spatial hysteresis and time hysteresis are considered experimentally. Dynamic tests were performed to produce time histories. The time history data is then used along with an approximate model to form a sequence of least squares problems. The solution of the least squares problem yields the estimated damping coefficients. The resulting experimentally determined analytical model is compared with the time histories via numerical simulation of the dynamic response. The procedure suggested here is compared with a standard modal damping ratio model commonly used in experimental modal analysis.
Magnetically Damped Furnace (MDF)
NASA Technical Reports Server (NTRS)
1998-01-01
The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.
The Joint Damping Experiment (JDX)
NASA Technical Reports Server (NTRS)
Folkman, Steven L.; Bingham, Jeff G.; Crookston, Jess R.; Dutson, Joseph D.; Ferney, Brook D.; Ferney, Greg D.; Rowsell, Edwin A.
1997-01-01
The Joint Damping Experiment (JDX), flown on the Shuttle STS-69 Mission, is designed to measure the influence of gravity on the structural damping of a high precision three bay truss. Principal objectives are: (1) Measure vibration damping of a small-scale, pinjointed truss to determine how pin gaps give rise to gravity-dependent damping rates; (2) Evaluate the applicability of ground and low-g aircraft tests for predicting on-orbit behavior; and (3) Evaluate the ability of current nonlinear finite element codes to model the dynamic behavior of the truss. Damping of the truss was inferred from 'Twang' tests that involve plucking the truss structure and recording the decay of the oscillations. Results are summarized as follows. (1) Damping, rates can change by a factor of 3 to 8 through changing the truss orientation; (2) The addition of a few pinned joints to a truss structure can increase the damping by a factor as high as 30; (3) Damping is amplitude dependent; (4) As gravity induced preloads become large (truss long axis perpendicular to gravity vector) the damping is similar to non-pinjointed truss; (5) Impacting in joints drives higher modes in structure; (6) The torsion mode disappears if gravity induced preloads are low.
Bullock, Jack C.; Kelly, Benjamin E.
1980-01-01
A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.
Damping measurements using operational data
James, G.H.; Carne, T.G.; Veers, P.S.
1996-08-01
The authors have measured modal damping using strain-gauge data from an operating wind turbine. This new technique for measuring modal damping is easier and less expensive than previously used methods. Auto-correlation and cross-correlation functions of the strain-gauge data have been shown to consist of decaying sinusoids which correspond to the modal frequencies and damping ratios of the wind turbine. The authors have verified the method by extracting damping values from an analytically generated data set. Actual operating response data from the DOE/Sandia 34-m Test Bed has been used to calculate modal damping ratios as a function of rotor rotation rate. This capability will allow more accurate fatigue life prediction and control.
NASA Technical Reports Server (NTRS)
Weddendorf, Bruce
1993-01-01
Self-damping sprung wheel provides shock-absorbing suspension for wheelchair, reducing user's discomfort when traversing rough terrain or obstacles. Pair of self-damping sprung wheels installed in place of conventional large rear wheels of standard wheelchair, which user operates in conventional manner. Rim deflects in vicinity of contact with ground or floor. Includes inner and outer hoops bending when obstacle encountered. Shear deformation of elastomeric hoop between them absorbs energy. Thus, three hoops act together as damping spring. Alternative version of wheel designed for bicycle.
Bearing-Cartridge Damping Seal
NASA Technical Reports Server (NTRS)
Goggins, David G.; Scharrer, Joseph K.; Chen, Wei C.
1991-01-01
In proposed design for improved ball-bearing cartridge, damping seal in form of thin-layer fluid journal bearing incorporated into cartridge. Damping seal acts as auxiliary bearing, relieving bearing balls of significant portions of both static and dynamic bearing loads. Damping from seal reduces dynamic loads even further by reducing amplitude of vibrations in second vibrational mode of rotor, which mode occurs when rotor turning at nearly full operating speed. Intended for use in high-pressure-oxygen turbopump of Space Shuttle main engine, also applicable to other turbomachinery bearings.
Electrorheologically damped impact system
NASA Astrophysics Data System (ADS)
Hardt, Lee R.
1991-05-01
An impact switch is described having a housing containing a rigid coaxial conductor entering one end. An inner cylindrical contact extends axially inward from and beyond the in housing end of an outer tubular contact which has a spiral spring extending axially from within a recess therein. The free end of the spring supports a mass spaced from the end of the inner contact. The contacts, spring and mass are enclosed within a flexible shroud spaced from the inner wall of the housing. The space between the shroud and housing contains an electrorheological fluid, the viscosity of which is a function of the voltage supplied by two electrodes extending through the housing and into the fluid. The voltage controlled viscosity permits control of damping of the shroud, mass, and spring movements in response to impact caused switch deceleration and control of time for switch closure and fuze delay by means of mass contact with the inner cylindrical contact, or spring contact with the outer tubular contact.
Landau damping in space plasmas
NASA Technical Reports Server (NTRS)
Thorne, Richard M.; Summers, Danny
1991-01-01
The Landau damping of electrostatic Langmuir waves and ion-acoustic waves in a hot, isotropic, nonmagnetized, generalized Lorentzian plasma is analyzed using the modified plasma dispersion function. Numerical solutions for the real and imaginary parts of the wave frequency omega sub 0 - (i)(gamma) have been obtained as a function of the normalized wave number (k)(lambda sub D), where lambda sub D is the electron Debye length. For both particle distributions the electrostatic modes are found to be strongly damped at short wavelengths. At long wavelengths, this damping becomes less severe, but the attenuation of Langmuir waves is much stronger for a generalized Lorentzian plasma than for a Maxwellian plasma. It is concluded that Landau damping of ion-acoustic waves is only slightly affected by the presence of a high energy tail, but is strongly dependent on the ion temperature.
Damping measurements using operational data
James, G.H.; Carne, T.G.; Veers, P.S.
1991-01-01
We have measured modal damping using strain-gauge data from an operating wind turbine. Previously, such measurements were difficult and expensive. Auto-correlation and cross-correlation functions of the strain-gauge data have been shown to consist of decaying sinusoids which correspond to the modal frequencies and damping ratios of the wind turbine. We have verified the method by extracting damping values from an analytically generated data set. Actual operating response data from the DOE/Sandia 34-meter Test Bed has been used to calculate modal damping ratios as a function of rotor rotation rate. This capability will allow more accurate fatigue life prediction and control. 16 refs., 3 figs., 2 tabs.
Vibration damping method and apparatus
Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.
1999-01-01
The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.
Vibration damping method and apparatus
Redmond, J.M.; Barney, P.S.; Parker, G.G.; Smith, D.A.
1999-06-22
The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof. 38 figs.
Simple suppression of radiation damping.
Khitrin, A K; Jerschow, Alexej
2012-12-01
Radiation damping is known to cause line-broadening and frequency shifts of strong resonances in NMR spectra. While several techniques exist for the suppression of these effects, many require specialized hardware, or are only compatible with the presence of few strong resonances. We describe a simple pulse sequence for radiation damping suppression in spectra with many strong resonances. The sequence can be used as-is to generate simple spectra or as a signal excitation part in more advanced experiments.
Turbomachinery rotor support with damping
NASA Technical Reports Server (NTRS)
Vonpragenau, George L. (Inventor)
1990-01-01
Damping seals, damping bearings, and a support sleeve are presented for the ball bearings of a high speed rotor. The ball bearings consist of a duplex set having the outer races packaged tightly within the sleeve while the sleeve provides a gap with a support member so that the bearings may float with the sleeve. The sleeve has a web extending radially between the pair of outer races and acts in conjunction with one or more springs to apply an axial preload to the outer races. The sleeves have a series of slits which provide the sleeve with a spring-like quality so that the spring acts to center the rotor upon which the bearings are mounted during start up and shut down. A damping seal or a damping bearing may be used in conjunction with the ball bearings and supporting sleeve, the damping seal and damping bearing having rotor portions including rigid outer surfaces mounted within the bore of a stator portion having triangular shaped pockets on the surface facing the rotor. Axial gates are provided between adjacent pockets in sections of the stator permitting fluid to flow with less resistance axially relative to the flow of fluids circumferentially between the rotor and the stator.
Damping characterization in large structures
NASA Technical Reports Server (NTRS)
Eke, Fidelis O.; Eke, Estelle M.
1991-01-01
This research project has as its main goal the development of methods for selecting the damping characteristics of components of a large structure or multibody system, in such a way as to produce some desired system damping characteristics. The main need for such an analytical device is in the simulation of the dynamics of multibody systems consisting, at least partially, of flexible components. The reason for this need is that all existing simulation codes for multibody systems require component-by-component characterization of complex systems, whereas requirements (including damping) often appear at the overall system level. The main goal was met in large part by the development of a method that will in fact synthesize component damping matrices from a given system damping matrix. The restrictions to the method are that the desired system damping matrix must be diagonal (which is almost always the case) and that interbody connections must be by simple hinges. In addition to the technical outcome, this project contributed positively to the educational and research infrastructure of Tuskegee University - a Historically Black Institution.
Damping mechanisms of a pendulum
NASA Astrophysics Data System (ADS)
Dolfo, Gilles; Castex, Daniel; Vigué, Jacques
2016-11-01
In this paper, we study the damping mechanisms of a pendulum. The originality of our setup is the use of a metal strip suspension and the development of extremely sensitive electric measurements of the pendulum velocity and position. Their sensitivity is absolutely necessary for a reliable measurement of the pendulum damping time constant because this measurement is possible only for very low oscillation amplitudes, when air friction forces quadratic in velocity have a negligible contribution to the observed damping. We have thus carefully studied damping by air friction forces, which is the dominant mechanism for large values of the Reynolds number Re but which is negligible in the Stokes regime, {Re} ∼ 1. In this last case, we have found that the dominant damping is due to internal friction in the metal strip, a universal effect called anelasticity, and, for certain frequencies, to resonant coupling to the support of the pendulum. All our measurements are well explained by theory. We believe this paper would be of interest to students in an undergraduate classical mechanics course.
Increased damping in irregular resonators
NASA Astrophysics Data System (ADS)
Sapoval, Bernard; Asch, Mark; Felix, Simon; Filoche, Marcel
2005-04-01
The relation between shape and damping of shallow acoustical cavities has been studied numerically in the case where the dissipation occurs only on the cavity walls. It is first found that whatever the type of geometrical irregularity, many, but not all the modes are localized. It is shown that the localization mechanism is what is called weak localization. The more irregular, the smaller the quality factors are found. However this effect is very different for the non-localized and the localized modes. For non-localized modes the damping increases roughly proportionally to the cavity surface. The localized modes are even more damped. These results generalize the results already obtained both numerically and experimentally on prefractal acoustical cavities. [B. Sapoval, O. Haeberle, and S. Russ, J. Acoust. Soc. Am. 102, 2014-2019 (1997); B. Hebert, B. Sapoval, and S. Russ, ibid. 105, 1567-1576 (1999)].
Increased damping of irregular resonators.
Russ, S; Sapoval, B
2002-03-01
It is shown that fractal drums and jagged geometry resonators may be more damped than ordinary Euclidean systems. Several damping mechanisms are examined and studied by numerical calculations. The results depend on the dissipation mechanisms but globally they increase with localization, frequency, and the irregularity of the resonator. The increased dissipation is due to the uneven spatial distribution of the vibrational amplitude in two different ways. First, it is related to the partial confinement of the vibrational modes. Secondly, increased dissipation may be due to singularities in the amplitude distribution. This is the case when a few points exist where the vibration is pinned to zero inducing local logarithmic singularities. This last effect can be spectacular: a single defect can dominate the surface damping by viscous forces of a square drum.
Pederson, Thoru
2011-01-01
Now is an opportune moment to address the confluence of cell biological form and function that is the nucleus. Its arrival is especially timely because the recognition that the nucleus is extremely dynamic has now been solidly established as a paradigm shift over the past two decades, and also because we now see on the horizon numerous ways in which organization itself, including gene location and possibly self-organizing bodies, underlies nuclear functions. PMID:20660024
Landau damping of auroral hiss
NASA Technical Reports Server (NTRS)
Morgan, D. D.; Gurnett, D. A.; Menietti, J. D.; Winningham, J. D.; Burch, J. L.
1994-01-01
Auroral hiss is observed to propagate over distances comparable to an Earth radius from its source in the auroral oval. The role of Landau damping is investigated for upward propagating auroral hiss. By using a ray tracing code and a simplified model of the distribution function, the effect of Landau damping is calculated for auroral hiss propagation through the environment around the auroral oval. Landau damping is found to be the likely mechanism for explaining some of the one-sided auroral hiss funnels observed by Dynamics Explorer 1. It is also found that Landau damping puts a lower limit on the wavelength of auroral hiss. Poleward of the auroral oval, Landau damping is found in a typical case to limit omega/k(sub parallel) to values of 3.4 x 10(exp 4) km/s or greater, corresponding to resonance energies of 3.2 keV or greater and wavelengths of 2 km or greater. For equatorward propagation, omega/k(sub parallel) is limited to values greater than 6.8 x 10(exp 4) km/s, corresponding to resonance energies greater than 13 keV and wavelengths greater than 3 km. Independent estimates based on measured ratios of the magnetic to electric field intensity also show that omega/k(sub parallel) corresponds to resonance energies greater than 1 keV and wavelengths greater than 1 km. These results lead to the difficulty that upgoing electron beams sufficiently energetic to directly generate auroral hiss of the inferred wavelength are not usually observed. A partial transmission mechanism utilizing density discontinuities oblique to the magnetic field is proposed for converting auroral hiss to wavelengths long enough to avoid damping of the wave over long distances. Numerous reflections of the wave in an upwardly flared density cavity could convert waves to significantly increased wavelengths and resonance velocities.
Vibration Damping Circuit Card Assembly
NASA Technical Reports Server (NTRS)
Hunt, Ronald Allen (Inventor)
2016-01-01
A vibration damping circuit card assembly includes a populated circuit card having a mass M. A closed metal container is coupled to a surface of the populated circuit card at approximately a geometric center of the populated circuit card. Tungsten balls fill approximately 90% of the metal container with a collective mass of the tungsten balls being approximately (0.07) M.
Red cell DAMPs and inflammation.
Mendonça, Rafaela; Silveira, Angélica A A; Conran, Nicola
2016-09-01
Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury.
Surfactant damping of water waves
NASA Astrophysics Data System (ADS)
Lapham, Gary S.; Dowling, David R.; Schultz, William W.
1997-11-01
The most well known and perhaps most important distinguishing characteristic of a water surface laden with surfactant is the profound increase in small-wave damping with the addition of even small amounts of surfactant material. It would seem to follow that damping increases with increasing surfactant concentration. This is undoubtedly true for some surfactants, however our experiments with a soluble surfactant show that it is possible to increase surfactant concentration and measure a decrease in damping. While the increased concentration is accompanied by a dramatic decrease in measured static surface tension, some of the capillary-wave frequency regime is less damped. Experimental measurements of the real and imaginary parts of the wave speed are compared with existing theory where at least one other physical quantity besides surface tension is needed to properly model the interface. Our on-going work with insoluble surfactants may also provide an example of this type of behavior for materials that do not readily transfer to and from the bulk water. [Supported by the Office of Naval Research
Technology Transfer Automated Retrieval System (TEKTRAN)
Damping-off is a common disease that rots and kills both seeds and recently germinated seedlings. The disease is caused by number of different soilborne pathogens, including true fungi (Botrytis, Fusarium, and Rhizoctonia species) and oomycetes (Phytophthora and Pythium species). The seedlings of mo...
Damped Oscillator with Delta-Kicked Frequency
NASA Technical Reports Server (NTRS)
Manko, O. V.
1996-01-01
Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.
Squeezed states of damped oscillator chain
NASA Technical Reports Server (NTRS)
Manko, O. V.
1993-01-01
The Caldirola-Kanai model of one-dimensional damped oscillator is extended to the chain of coupled parametric oscillators with damping. The correlated and squeezed states for the chain of coupled parametric oscillators with damping are constructed. Based on the concept of the integrals of motion, it is demonstrated how squeezing phenomenon arises due to parametric excitation.
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.
1989-01-01
The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Buck, Warren W.; Maung, Khin M.
1989-01-01
Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
Cocured damped layers in composite structure
Rotz, C.A. ); Barrett, D.J. )
1992-01-01
A study was made on the feasibility of laminating and cocuring graphite fiber-epoxy prepreg with plies of commercially available damping materials for form beams and hat-stiffened panels. Experiments showed that cocuring did not adversely affect the damping materials and that excellent structural damping properties could be obtained. The construction of the hat-stiffened panels proved that complex parts containing damping materials could be fabricated. Dynamic testing of these components showed that internal architectural features could be designed to promote damping in primary structure.
Radiation damping in real time.
Mendes, A C; Takakura, F I
2001-11-01
We study the nonequilibrium dynamics of a charge interacting with its own radiation, which originates the radiation damping. The real-time equation of motion for the charge and the associated Langevin equation is found in classical limit. The equation of motion for the charge allows one to obtain the frequency-dependent coefficient of friction. In the lowest order we find that although the coefficient of static friction vanishes, there is dynamical dissipation represented by a non-Markovian dissipative kernel.
Onset of deconfinement in nucleus-nucleus collisions
Gazdzicki, M.; Gorenstein, M. I.; Seyboth, P.
2012-05-15
The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals anomalies-the kink, horn, and step. They were predicted as signals of the deconfinement phase transition and observed by the NA49 Collaboration in central PbPb collisions at the CERN SPS. This indicates the onset of the deconfinement in nucleus-nucleus collisions at about 30 A GeV.
Nonlinear damping identification from transient data
NASA Astrophysics Data System (ADS)
Smith, Clifford B.; Wereley, Norman M.
1999-06-01
To study new damping augmentation methods for helicopter rotor systems, accurate and reliable nonlinear damping identification techniques are needed. For example, current studies on applications of magnetorheological (MR) dampers for rotor stability augmentation suggest that a strong Coulomb damping characteristic will be manifested as the field applied to the MR fluid is maximized. Therefore, in this work, a single degree of freedom (SDOF) system having either nonlinear Coulomb or quadratic damping is considered. This paper evaluates three analyses for identifying damping from transient test data; an FFT-based moving block analysis, an analysis based on a periodic Fourier series decomposition, and a Hilbert transform based technique. Analytical studies are used to determine the effects of block length, noise, and error in identified modal frequency on the accuracy of the identified damping level. The FFT-based moving block has unacceptable performance for systems with nonlinear damping. These problems were remedied in the Fourier series based analysis and acceptable performance is obtained for nonlinear damping identification from both this technique and the Hilbert transform based method. To more closely simulate a helicopter rotor system test, these techniques were then applied to a signal composed of two closely spaced modes. This data was developed to simulate a response containing the first lag and 1/rev modes. The primary mode of interest (simulated lag mode) had either Coulomb or quadratic damping, and the close mode (1/rev) was either undamped or had a specified viscous damping level. A comprehensive evaluation of the effects of close mode amplitude, frequency, and damping level was performed. A classifier was also developed to identify the dominant damping mechanism in a signal of 'unknown' composition. This classifier is based on the LMS error of a fit of the analytical envelope expression to the experimentally identified envelope signal. In most
ICAN/DAMP-integrated composite analyzer with damping analysis capabilities: User's manual
NASA Technical Reports Server (NTRS)
Saravanos, Dimitrious A.; Sanfeliz, Jose G.
1992-01-01
This manual describes the use of the computer code ICAN/DAMP (Integrated Composite Analyzer with Damping Analysis Capabilities) for the prediction of damping in polymer-matrix composites. The code is written in FORTRAN 77 and is a version of the ICAN (Integrated Composite ANalyzer) computer program. The code incorporates a new module for synthesizing the material damping from micromechanics to laminate level. Explicit micromechanics equations based on hysteretic damping are programmed relating the on-axis damping capacities to the fiber and matrix properties and fiber volume ratio. The damping capacities of unidirectional composites subjected to off-axis loading are synthesized from on-axis damping values. The hygrothermal effect on the damping performance of unidirectional composites caused by temperature and moisture variation is modeled along with the damping contributions from interfacial friction between broken fibers and matrix. The temperature rise is continuously vibrating composite plies and composite laminates is also estimated. The ICAN/DAMP user's manual provides descriptions of the damping analysis module's functions, structure, input requirements, output interpretation, and execution requirements. It only addresses the changes required to conduct the damping analysis and is used in conjunction with the 'Second Generation Integrated Composite Analyzer (ICAN) Computer Code' user's manual (NASA TP-3290).
Introduction to DAMPE event reconstruction (On behalf of DAMPE collaboration)
NASA Astrophysics Data System (ADS)
Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. To measure basic attributes of cosmic ray particles, DAMPE is equipped with four sub-detectors, BGO calorimeter (BGO), plastic scintillator detector (PSD), silicon tungsten tracker (STK) and neutron detector (NUD). On orbit, the high energy particle data are acquired and recorded by well-designed Data Acquisition system. After that, a series of elaborate event reconstruction algorithms are implemented to determine the energy, direction and particle ID of each event. The energy reconstruction algorithm firstly treats the sum of the BGO crystal energy as the overall energy estimator and various corrections are performed to calculate energy leakage from side and back of the calorimeter. The track reconstruction starts with cluster finding in STK, then shower axis of BGO and barycentre of clusters are used to extract seed of tracks. These seeds will be projected on the next layer by Kalman Filter method which will finally give location and direction of particle tracks. Based on shower development in BGO and tracks reconstructed by STK, we also combine data from PSD and NUD and developed a series of algorithms to evaluate particle's charge and identification. In this talk, we will describe technical strategies of event reconstruction and provide their basic performance.
Damped transverse oscillations of interacting coronal loops
NASA Astrophysics Data System (ADS)
Soler, Roberto; Luna, Manuel
2015-10-01
Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations. Here we theoretically investigate resonantly damped transverse oscillations of interacting nonuniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. Analytic and numerical results in the specific case of two interacting loops are given as an application.
Vitreous Enamel Damping Material Development.
1982-11-01
PROCEDURES 3 2.1. EXPERIMENTAL 3 2.1.1. GLASS PREPARATION 3 2.1.2. METHOD OF COATING APPLICATION 3 2.1.3. VIBRATION DAMPING MEASUREMENTS 3 2.2. CALCULATION OF...discussion in this report. fL 2 SECTION II TECHNICAL PROCEDURES 2.1 EXPERIMENTAL 2.1.1 Glass Preparation All of the compositions, except the standard...After heat treatments of composition "B", a- cristobalite and devitrite (Na20.3CaO-6SiO 2) appear as crystalline phases; a- cristobalite being the major
CHARACTERIZATION OF DAMPING IN BOLTED LAP JOINTS
C. MALONEY; D. PEAIRS; ET AL
2000-08-01
The dynamic response of a jointed beam was measured in laboratory experiments. The data were analyzed and the system was mathematically modeled to establish plausible representations of joint damping behavior. Damping is examined in an approximate, local linear framework using log decrement and half power bandwidth approaches. in addition, damping is modeled in a nonlinear framework using a hybrid surface irregularities model that employs a bristles-construct. Experimental and analytical results are presented.
Radiation damping in metal nanoparticle pairs.
Dahmen, Christian; Schmidt, Benjamin; von Plessen, Gero
2007-02-01
The radiation damping rate of plasmon resonances in pairs of spherical gold nanoparticles is calculated. The radiative line width of the plasmon resonance indicates significant far-field coupling between the nanoparticles over distances many times the particle diameter. The radiation damping of the coupled particle-plasmon mode alternates between superradiant and subradiant behavior when the particle spacing is varied. At small particle spacings where near-field coupling occurs, the radiation damping rate lies far below that of an isolated particle.
Hysteretic damping in rotordynamics: An equivalent formulation
NASA Astrophysics Data System (ADS)
Genta, Giancarlo; Amati, Nicola
2010-10-01
The hysteretic damping model cannot be applied to time domain dynamic simulations: this is a well-known feature that has been discussed in the literature since the time when analog computers were widespread. The constant equivalent damping often introduced to overcome this problem is also discussed, and its limitations are stated, in particular those linked with its application in rotordynamics to simulate rotating damping. An alternative model based on the nonviscous damping (NVD) model, but with a limited number of additional degrees of freedom, is proposed, and the relevant equations are derived. Some examples show applications to the rotordynamics field.
Viscous damped space structure for reduced jitter
NASA Technical Reports Server (NTRS)
Wilson, James F.; Davis, L. Porter
1987-01-01
A technique to provide modal vibration damping in high performance space structures was developed which uses less than one once of incompressible fluid. Up to 50 percent damping can be achieved which can reduce the settling times of the lowest structural mode by as much as 50 to 1. This concept allows the designers to reduce the weight of the structure while improving its dynamic performance. Damping by this technique is purely viscous and has been shown by test to be linear over 5 orders of input magnitude. Amplitudes as low as 0.2 microinch were demonstrated. Damping in the system is independent of stiffness and relatively insensitive to temperature.
Damping constant estimation in magnetoresistive readers
Stankiewicz, Andrzej Hernandez, Stephanie
2015-05-07
The damping constant is a key design parameter in magnetic reader design. Its value can be derived from bulk or sheet film ferromagnetic resonance (FMR) line width. However, dynamics of nanodevices is usually defined by presence of non-uniform modes. It triggers new damping mechanisms and produces stronger damping than expected from traditional FMR. This work proposes a device-level technique for damping evaluation, based on time-domain analysis of thermally excited stochastic oscillations. The signal is collected using a high bandwidth oscilloscope, by direct probing of a biased reader. Recorded waveforms may contain different noise signals, but free layer FMR is usually a dominating one. The autocorrelation function is a reflection of the damped oscillation curve, averaging out stochastic contributions. The damped oscillator formula is fitted to autocorrelation data, producing resonance frequency and damping constant values. Restricting lag range allows for mitigation of the impact of other phenomena (e.g., reader instability) on the damping constant. For a micromagnetically modeled reader, the technique proves to be much more accurate than the stochastic FMR line width approach. Application to actual reader waveforms yields a damping constant of ∼0.03.
Material Damping Experiments at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Levine, Marie; White, Christopher
2003-01-01
A unique experimental facility has been designed to measure damping of materials at cryogenic temperatures. The test facility pays special attention to removing other sources of damping in the measurement by avoiding frictional interfaces, decoupling the test specimen from the support system, and by using a non-contacting measurement device; Damping data is obtained for materials (AI, GrEp, Be, Fused Quartz), strain amplitudes (less than 10-6 ppm), frequencies (20Hz-330Hz) and temperatures (20K-293K) relevant to future precision optical space missions. The test data shows a significant decrease in viscous damping at cryogenic temperatures and can be as low as 10-4%, but the amount of the damping decrease is a function of frequency and material. Contrary to the other materials whose damping monotonically decreased with temperature, damping of Fused Quartz increased substantially at cryo, after reaching a minimum at around l50 K. The damping is also shown to be insensitive to strain for low strain levels. At room temperatures, the test data correlates well to the analytical predictions of the Zener damping model. Discrepancies at cryogenic temperatures between the model predictions and the test data are observed.
NASA Technical Reports Server (NTRS)
Dolgin, Benjamin P. (Inventor)
1994-01-01
A superconductive load bearing support without a mechanical contact and vibration damping for cryogenic instruments in space is presented. The levitation support and vibration damping is accomplished by the use of superconducting magnets and the 'Meissner' effect. The assembly allows for transfer of vibration energy away from the cryogenic instrument which then can be damped by the use of either an electronic circuit or conventional vibration damping mean.
NASA Astrophysics Data System (ADS)
Petitjean, P.; Ledoux, C.
Recently, Prochaska & Wolfe (1997) have used Keck spectra of 17 DLA absorbers to investigate the kinematics of the neutral gas using unsaturated low excitation transitions such as Si iiλ 1808. They show that the absorption profiles are inconsistent with models of galactic haloes with random motions, spherically infalling gas and slowly rotating hot disks. The CDM model (Kauffmann 1996) is rejected as it produces disks with rotation velocities too small to account for the large observed velocity broadening of the absorption lines. Models of thick disks (h ~0.3 R, where h is the vertical scale and R the radius) with large rotational velocity (v 225kms-1) can reproduce the data. By combining new data on five damped systems with information gathered in the literature, we study the kinematics of the low and high-ionization phases in a sample of 26 damped Lyman-α systems in the redshift range 1.17 - 4.38. We show that the broader the line the more asymmetric, as expected in case rotation dominates the line broadening. However this correlation does not hold for velocities larger than 150 km/s indicating that evidence for rotational motions if any is restricted to velocity broadenings Δ V < 150kms-1. The systems with Δ V > 200kms-1 are peculiar with kinematics consistent with random motions. They show sub-systems as those expected if the objects are in the process of merging.
Relaxation damping in oscillating contacts
Popov, M.; Popov, V.L.; Pohrt, R.
2015-01-01
If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect “relaxation damping”. The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed. PMID:26549011
Acoustic transducer with damping means
Smith, Richard W.; Adamson, Gerald E.
1976-11-02
An ultrasonic transducer specifically suited to high temperature sodium applications is described. A piezoelectric active element is joined to the transducer faceplate by coating the faceplate and juxtaposed active element face with wetting agents specifically compatible with the bonding procedure employed to achieve the joint. The opposite face of the active element is fitted with a backing member designed to assure continued electrical continuity during adverse operating conditions which can result in the fracturing of the active element. The fit is achieved employing a spring-loaded electrode operably arranged to electrically couple the internal transducer components, enclosed in a hermetically sealed housing, to accessory components normally employed in transducer applications. Two alternative backing members are taught for assuring electrical continuity. The first employs a resilient, discrete multipoint contact electrode in electrical communication with the active element face. The second employs a resilient, elastomeric, electrically conductive, damped member in electrical communication with the active element face in a manner to effect ring-down of the transducer. Each embodiment provides continued electrical continuity within the transducer in the event the active element fractures, while the second provides the added benefit of damping.
Tuned vibration absorbers with nonlinear viscous damping for damped structures under random load
NASA Astrophysics Data System (ADS)
Shum, K. M.
2015-06-01
The classical problem for the application of a tuned vibration absorber is to minimize the response of a structural system, such as displacement, velocity, acceleration or to maximize the energy dissipated by tuned vibration absorber. The development of explicit optimal absorber parameters is challenging for a damped structural system since the fixed points no longer exist in the frequency response curve. This paper aims at deriving a set of simple design formula of tuned vibration absorber with nonlinear viscous damping based on the frequency tuning for harmonic load for a damped structural system under white noise excitation. The vibration absorbers being considered include tuned mass damper (TMD) and liquid column vibration absorber (LCVA). Simple approximate expression for the standard deviation velocity response of tuned vibration absorber for damped primary structure is also derived in this study to facilitate the estimation of the damping coefficient of TMD with nonlinear viscous damping and the head loss coefficient of LCVA. The derived results indicate that the higher the structural inherent damping the smaller the supplementary damping provided by a tuned vibration absorber. Furthermore, the optimal damping of tuned vibration absorber is shown to be independent of structural damping when it is tuned using the frequency tuning for harmonic load. Finally, the derived closed-form expressions are demonstrated to be capable of predicting the optimal parameters of tuned vibration absorbers with sufficient accuracy for preliminary design of tuned vibration absorbers with nonlinear viscous damping for a damped primary structure.
Quasienergy formulation of damped response theory.
Kristensen, Kasper; Kauczor, Joanna; Kjaergaard, Thomas; Jørgensen, Poul
2009-07-28
We present a quasienergy-based formulation of damped response theory where a common effective lifetime parameter has been introduced for all excited states in terms of complex excitation energies. The introduction of finite excited state lifetimes leads to a set of (complex) damped response equations, which have the same form to all orders in the perturbation. An algorithm is presented for solving the damped response equations in Hartree-Fock theory and Kohn-Sham density functional theory. The use of the quasienergy formulation allows us to obtain directly the computationally simplest expressions for damped response functions by applying a set of response parameter elimination rules, which minimize the total number of damped response equations to be solved. In standard response theory broadened absorption spectra are obtained by ad hoc superimposing lineshape functions onto the absorption stick spectra, whereas an empirical lineshape function common to all excitations is an integrated part of damped response theory. By superimposing the lineshape functions inherent in damped response theory onto the stick spectra of standard response theory, we show that the absorption spectra obtained in standard and damped response theory calculations are identical. We demonstrate that damped response theory may be applied to obtain absorption spectra in all frequency ranges, also those that are not readily addressed using standard response theory. This makes damped response theory an effective tool, e.g., for determining absorption spectra for large molecules, where the density of the excited states may be very high, and where standard response theory therefore is not applicable in practice. A thorough comparison is given between our formulation of damped response theory and the formulation by Norman et al. [J. Chem. Phys. 123, 194103 (2005)].
Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab
2011-01-01
The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.
NASA Technical Reports Server (NTRS)
Lyttleton, R. A.
1972-01-01
The prime problem of a comet mission must be to settle whether the cometary nucleus has an actual tangible material existence, or whether it arises from some optical effect present only at times within comets. The absence of any large particles in a comet seems to be demonstrated by certain meteor showers. A feature that would seem to indicate that a comet consists primarily of a swarm of particles is that the coma in general contracts as the comet approaches the sun, roughly in proportion within the distance, and then expands again as it recedes.
NASA Astrophysics Data System (ADS)
Hashimoto, Koji; Morita, Takeshi
2011-08-01
In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass-number (A) dependence r∝A1/3 for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multibaryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1)×A1/3[fm], which is consistent with experiments.
Higgs-boson production in nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Norbury, J. W.; Townsend, L. W. (Principal Investigator)
1990-01-01
Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.
Higgs-Boson Production in Nucleus-Nucleus Collisions
NASA Technical Reports Server (NTRS)
Norbury, John W.
1992-01-01
Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.
Study for ILC Damping Ring at KEKB
Flanagan, J.W.; Fukuma, H.; Kanazawa, K.I.; Koiso, H.; Masuzawa, M.; Ohmi, Kazuhito; Ohnishi, Y.; Oide, Katsunobu; Suetsugu, Y.; Tobiyama, M.; Pivi, M.; /SLAC
2011-11-04
ILC damping ring consists of very low emittance electron and positron storage rings. It is necessary for ILC damping ring to study electron cloud effects in such low emittance positron ring. We propose a low emittance operation of KEKB to study the effects.
Understanding the Damped SHM without ODEs
ERIC Educational Resources Information Center
Ng, Chiu-king
2016-01-01
Instead of solving ordinary differential equations (ODEs), the damped simple harmonic motion (SHM) is surveyed qualitatively from basic mechanics and quantitatively by the instrumentality of a graph of velocity against displacement. In this way, the condition b ? [square root]4mk for the occurrence of the non-oscillating critical damping and…
Bending rate damping in elastic systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Wang, Y.; Fabiano, R. H.
1989-01-01
Preliminary results of an investigation of the bending rate damping model for elastic structures are presented. A model for which the internal damping term is physically plausible and which can accomodate cantilevered boundary conditions is discussed. The model formulation and mathematical foundations are given, and numerical results are discussed.
Damping device for a stationary labyrinth seal
NASA Technical Reports Server (NTRS)
El-Aini, Yehia M. (Inventor); Mitchell, William S. (Inventor); Roberts, Lawrence P. (Inventor); Montgomery, Stuart K. (Inventor); Davis, Gary A. (Inventor)
2010-01-01
A stationary labyrinth seal system includes a seal housing having an annular cavity, a plurality of damping devices, and a retaining ring. The damping devices are positioned within the annular cavity and are maintained within the annular cavity by the retaining ring.
Magnetic dipole oscillations and radiation damping
NASA Astrophysics Data System (ADS)
Stump, Daniel R.; Pollack, Gerald L.
1997-01-01
We consider the problem of radiation damping for a magnetic dipole oscillating in a magnetic field. An equation for the radiation reaction torque is derived, and the damping of the oscillations is described. Also discussed are runaway solutions for a rotating magnetic dipole moving under the influence of the reaction torque, with no external torque.
DAMPs from Cell Death to New Life
Vénéreau, Emilie; Ceriotti, Chiara; Bianchi, Marco Emilio
2015-01-01
Our body handles tissue damage by activating the immune system in response to intracellular molecules released by injured tissues [damage-associated molecular patterns (DAMPs)], in a similar way as it detects molecular motifs conserved in pathogens (pathogen-associated molecular patterns). DAMPs are molecules that have a physiological role inside the cell, but acquire additional functions when they are exposed to the extracellular environment: they alert the body about danger, stimulate an inflammatory response, and finally promote the regeneration process. Beside their passive release by dead cells, some DAMPs can be secreted or exposed by living cells undergoing a life-threatening stress. DAMPs have been linked to inflammation and related disorders: hence, inhibition of DAMP-mediated inflammatory responses is a promising strategy to improve the clinical management of infection- and injury-elicited inflammatory diseases. However, it is important to consider that DAMPs are not only danger signals but also central players in tissue repair. Indeed, some DAMPs have been studied for their role in tissue healing after sterile or infection-associated inflammation. This review is focused on two exemplary DAMPs, HMGB1 and adenosine triphosphate, and their contribution to both inflammation and tissue repair. PMID:26347745
Rajapakse, Indika; Scalzo, David; Tapscott, Stephen J; Kosak, Steven T; Groudine, Mark
2010-01-01
The nuclei of differentiating cells exhibit several fundamental principles of self-organization. They are composed of many dynamical units connected physically and functionally to each other—a complex network—and the different parts of the system are mutually adapted and produce a characteristic end state. A unique cell-specific signature emerges over time from complex interactions among constituent elements that delineate coordinate gene expression and chromosome topology. Each element itself consists of many interacting components, all dynamical in nature. Self-organizing systems can be simplified while retaining complex information using approaches that examine the relationship between elements, such as spatial relationships and transcriptional information. These relationships can be represented using well-defined networks. We hypothesize that during the process of differentiation, networks within the cell nucleus rewire according to simple rules, from which a higher level of order emerges. Studying the interaction within and among networks provides a useful framework for investigating the complex organization and dynamic function of the nucleus. PMID:20664641
Landau damping in a turbulent setting
Plunk, G. G.
2013-03-15
To address the problem of Landau damping in kinetic turbulence, we consider the forcing of the linearized Vlasov equation by a stationary random source. It is found that the time-asymptotic density response is dominated by resonant particle interactions that are synchronized with the source. The energy consumption of this response is calculated, implying an effective damping rate, which is the main result of this paper. Evaluating several cases, it is found that the effective damping rate can differ from the Landau damping rate in magnitude and also, remarkably, in sign. A limit is demonstrated in which the density and current become phase-locked, which causes the effective damping to be negligible; this result offers a fresh perspective from which to reconsider recent observations of kinetic turbulence satisfying critical balance.
Damping characteristics of damaged fiber composite components
NASA Technical Reports Server (NTRS)
Eberle, K.
1986-01-01
Defects in fiber composite components produce changes with respect to the vibrational characteristics of the material. These changes can be recognized in the form of a frequency shift or an alteration of the damping process. The present investigation is concerned with questions regarding the possibility of a utilization of the changes in suitable defect-detecting inspection procedures. A description is given of a method for measuring the damping characteristics of a specimen. This method provides a spectrum of the damping coefficients of the sample as a basis for a comprehensive evaluation of the damping behavior. The correlation between defects and change in the damping characteristics is demonstrated with the aid of results obtained in measurements involving specimens of carbon-fiber composites and a component consisting of glass-fiber-reinforced plastics.
Magnetic damping of rotation. [in satellites
NASA Technical Reports Server (NTRS)
Opik, E. J.
1977-01-01
Based on Wilson's (1977) article on the magnetic effects on space vehicles and other celestial bodies, the magnetic damping of rotation is considered. The inadequacy of the interstellar magnetic field in overcoming solar wind shielding and thus influencing the rotation of bodies is described. The ionospheric shielding of the interstellar field is discussed along with the permeability and magnetic damping by the solar or stellar wind. Star formation and angular momentum is discussed and attention is given to the magnetic damping of unshielded small bodies. Calculations of the rate for damping through random particle impact are made. Theories concerning the rotation of asteroids and the origin of meteorites are reviewed. The shielding process of ionospheric plasmas is outlined and the damping effect of the geomagnetic field on the rotation of artificial satellites is evaluated.
VIBRATION DAMPING AND SHOCK MOUNT
Stevens, D.J.; Forman, G.W.
1963-12-10
A shock absorbing mount in which vibrations are damped by an interference fit between relatively movable parts of the mount is described. A pair of generally cup-shaped parts or members have skirt portions disposed in an oppositely facing nesting relationship with the skirt of one member frictionally engaging the skirt of the other. The outermost skirt may be slotted to provide spring-like segments which embrace the inner skirt for effecting the interference fit. Belleville washers between the members provide yieldable support for a load carried by the mount. When a resonant frequency of vibration forces acting upon the moumt attains a certain level the kinetic energy of these forces is absorbed by sliding friction between the parts. (AEC)
Large space structure damping design
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Haviland, J. K.
1983-01-01
Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control quasi synthesis. Methods to control vibrations in large space structure are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described.
Meson multiplicity versus energy in relativistic nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Atwater, T. W.; Freier, P. S.
1986-01-01
A systematic study of meson multiplicity as a function of energy at energies up to 100 GeV/u in nucleus-nucleus collisions has been made, using cosmic-ray data in nuclear emulsion. The data are consistent with simple nucleon-nucleon superposition models. Multiplicity per interacting nucleon in AA collisions does not appear to differ significantly from pp collisions.
Momentum loss in proton-nucleus and nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Khan, Ferdous; Townsend, Lawrence W.
1993-01-01
An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.
Validation Of Equivalent Viscous Damping Methodologies
NASA Astrophysics Data System (ADS)
Vaquer Araujo, Xavier; Fransen, S. H. J. A.; Germes, S.; Thiry, N.
2012-07-01
An important step in the design and verification process of spacecraft structures is the coupled dynamic analysis with the launch vehicle in the low-frequency domain. To obtain accurate predictions of the satellite’s dynamic environment it is essential that the damping of the system is correctly defined and taken into account within the resolution methodologies for the Coupled Loads Analysis (CLA). When working with finite element models, the materials’ damping is characterized by structural damping ratios. In addition, most of the load cases present in the CLA are transient excitations so the resolution of the equations of motion must be done in the time domain. Unfortunately, transient analyses cannot be carried out using structural damping models. Thus, a transformation from a structural to a viscous damping characterization is necessary. Nevertheless, this transformation is not trivial. There exist many methodologies aiming at computing an equivalent viscous damping matrix of the system so it can be used in transient analyses. This paper describes the results obtained in the validation of equivalent viscous damping methodologies used in the European Space Agency. This work permitted to identify the limitations of these methodologies and to come up with an enhanced methodology that predicts more reliable results.
SLC positron damping ring optics design
Delahaye, J.P.; Rivkin, L.
1984-12-01
The basic SLAC Linear Collider operation scheme assumes the use of two damping rings, one for the e/sup -/, one for the e/sup +/, in order to reduce the colliding beam normalized emittances to 30..pi.. ..mu..radm hence raising the corresponding luminosity by a factor 170. The e/sup -/ damping ring which optics was designed by H. Wiedemann, has been extensively studied and modelled since it's completion at the end of 1982. The e/sup +/ damping ring to be built soon will be based on the same design except for some modifications resulting from the studies on the e/sup -/ damping ring which clearly pointed out two major optics weak points: the extracted normalized emittances are 30 to 60% bigger than the design values, which already left no margin for unavoidable blow-up between the damping rings and the SLC interaction point, and the chromaticity correction based on distributed sextupole components provided by shaping the ends of the bending magnet poles was insufficient. Moreover the QDI quadrupoles introduce a strong coupling between transverse planes due to an undesirable skew component. The present note describes the basic modifications of the ring lattice and main equipment positions in order to improve the first two points in the Positron Damping Ring. The QDI quadrupole design has already been modified and magnets of a new type will be implemented in both damping rings.
Material damping experiments at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Levine, Marie B.; White, Christopher
2003-12-01
NASA's James Webb Space Telescope (JWST) will be operating at temperatures below 40K to image in the infrared. The 7-m class telescope will require nanometric jitter stability of the optical elements such as the primary and secondary mirrors. Of particular concern is the vibration response of these cryogenic systems when subjected to on-board disturbance sources such as the reaction wheels, the amplitude of which is governed by damping. Unfortunately there is relatively little data available for flight grade materials at these temperatures and within the frequency bands of interest. The paper will describe the experimental setup designed to measure viscous damping to values as low 10^-4%. The tests measure damping from room temperature all the way down to 20K in a controlled thermal and disturbance free environment. Data is obtained for strain levels of about 0.1 micro-strain down to nano-strains to verify vibration level effects on material damping. Damping is also measured for several frequencies in the range of 20Hz to 300Hz to assess the trend of damping as a function of vibrational frequency. Data for several materials, such as Aluminum, Beryllium, Quartz, and various composites are presented. The data is compared to analytical predictions using the Zener damping theory and is shown to match well at room temperature but to disagree at colder temperatures.
Experimental verification of damping mechanisms in a composite beam
NASA Technical Reports Server (NTRS)
Cudney, Harley H.; Inman, Daniel J.
1989-01-01
A method of estimating the distributed damping parameters based on the measured modal parameters (frequency and damping ratios) was derived. Three different mathematical models were used to model the damping mechanism of a quasi-isotropic pultruded cantilevered beam. These three models were (1) viscous (air) damping, (2) strain rate damping, and (3) both viscous and strain rate damping. The eigenvalues of the partial differential equation model were found to be uninfluenced by any of the three assumed damping models. Values were obtained for each of the damping models as well as the modulus of elasticity of the beam. It was found that the two-parameter damping model provided the best fit to measured modal data. However, the two-parameter damping model could only reproduce the measured damping ratios to within 85 percent.
Investigation on the mechanism of damping behavior of magnetorheological elastomers
NASA Astrophysics Data System (ADS)
Yang, Jie; Gong, Xinglong; Deng, Huaxia; Qin, Lijun; Xuan, Shouhu
2012-12-01
Magnetorheological elastomers (MREs) are a group of smart materials which have many applications such as dynamic vibration absorbers, engine mounts, and so on. The damping behavior is important for applications of MREs. However, the mechanism of the damping of MREs has not been investigated thoroughly. In this study, MREs are modeled as special particle reinforced composites with magneto-induced properties and the mechanism of the damping behavior of MREs is investigated theoretically and experimentally. It has been found that there are three types of damping property in MREs: the intrinsic damping, the interface damping and the magneto-mechanical damping. The presented damping model is successfully validated by damping tests on a series of MRE samples. Furthermore, the relationships between the damping properties and formulas of MREs are discussed; this provides guidance for the manufacture of MREs with various damping properties.
Nonlinear Landau damping of Alfven waves.
NASA Technical Reports Server (NTRS)
Hollweg, J. V.
1971-01-01
Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.
A Resonant Damping Study Using Piezoelectric Materials
NASA Technical Reports Server (NTRS)
Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.
2008-01-01
Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.
Oscillation damped movement of suspended objects
Jones, J.F.; Petterson, B.J.
1988-01-01
Transportation of objects using overhead cranes or manipulators can induce pendulum motion of the object. Residual oscillation from transportation typically must be damped or allowed to decay before the next process can take place. By properly programming the acceleration of the transporting device (e.g., crane) an oscillation damped transport and swing free stop is obtainable. This paper reviews the theory associated with oscillation damped trajectories for simply suspended objects and describes a particular implementation using a CIMCORP XR 6100 gantry robot. 8 refs., 7 figs., 1 tab.
The intercalatus nucleus of Staderini.
Cascella, Marco
2016-01-01
Rutilio Staderini was one of the leading Italian anatomists of the twentieth century, together with some scientists, such as Giulio Chiarugi, Giovanni Vitali, and others. He was also a member of a new generation of anatomists. They had continued the tradition of the most famous Italian scientists, which started from the Renaissance up until the nineteenth century. Although he carried out important studies of neuroanatomy and comparative anatomy, as well as embryology, his name is rarely remembered by most medical historians. His name is linked to the nucleus he discovered: the Staderini nucleus or intercalated nucleus, a collection of nerve cells in the medulla oblongata located lateral to the hypoglossal nucleus. This article focuses on the biography of the neuroanatomist as well as the nucleus that carries his name and his other research, especially on comparative anatomy and embryology.
Turbine blade friction damping study
NASA Technical Reports Server (NTRS)
Dominic, R. J.
1985-01-01
A lumped parameter method, implemented on a VAX 11/780 computer shows that the primary parameters affecting the performance of the friction damper of the first stage turbine of the SSME high pressure fuel pump are: the damper-blade coefficient of friction; the normal force applied to the friction interface; the amplitude of the periodic forcing function; the relative phase angle of the forcing functions for adjacent blades bridged by a damper (effectively, the engine order of the forcing function); and the amount of hysteretic damping that acts to limit the vibration amplitude of the blade in its resonance modes. The low order flexural resonance vibration modes of HPFTP blades without dampers, with production dampers, and with two types of lightweight experimental dampers were evaluated in high speed spin pit tests. Results agree with those of the analytical study in that blades fitted with production friction dampers experienced the airfoil-alone flexural resonance mode, while those without dampers or with lighter weight dampers did not. No blades fitted with dampers experienced the whole blade flexural resonance mode during high speed tests, while those without dampers did.
Eigensolutions of non-proportionally damped systems based on continuous damping sensitivity
NASA Astrophysics Data System (ADS)
Lázaro, Mario
2016-02-01
The viscous damping model has been widely used to represent dissipative forces in structures under mechanical vibrations. In multiple degree of freedom systems, such behavior is mathematically modeled by a damping matrix, which in general presents non-proportionality, that is, it does not become diagonal in the modal space of the undamped problem. Eigensolutions of non-proportional systems are usually estimated assuming that the modal damping matrix is diagonally dominant (neglecting the off-diagonal terms) or, in the general case, using the state-space approach. In this paper, a new closed-form expression for the complex eigenvalues of non-proportionally damped system is proposed. The approach is derived assuming small damping and involves not only the diagonal terms of the modal damping matrix, but also the off-diagonal terms, which appear under higher order. The validity of the proposed approach is illustrated through a numerical example.
NASA Technical Reports Server (NTRS)
Sireteanu, T.
1974-01-01
An oscillating system with quadratic damping subjected to white noise excitation is replaced by a nonlinear, statistically equivalent system for which the associated Fokker-Planck equation can be exactly solved. The mean square responses are calculated and the optimum damping coefficient is determined with respect to the minimum mean square acceleration criteria. An application of these results to the optimization of automobile suspension damping is given.
Simplified Model of Nonlinear Landau Damping
N. A. Yampolsky and N. J. Fisch
2009-07-16
The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.
Roll Damping Characterisation Program: User Guide
2014-06-01
sallying test. The Defence Science and Technology Organisation (DSTO) have developed a software-based tool called the Roll Damping Characterisation...Murray Riding Maritime Division Murray obtained a Bachelor of Science (Honours) Degree from the
Electron beam depolarization in a damping ring
Minty, M.
1993-04-01
Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms.
Oscillation damping means for magnetically levitated systems
Post, Richard F.
2009-01-20
The present invention presents a novel system and method of damping rolling, pitching, or yawing motions, or longitudinal oscillations superposed on their normal forward or backward velocity of a moving levitated system.
Modification of spastic gait through mechanical damping.
Maki, B E; Rosen, M J; Simon, S R
1985-01-01
The effect of dissipative mechanical loads on spastic gait has been studied, to evaluate the feasibility of using mechanically damped orthoses to effect functional improvements in the gait of spastic patients. This concept is based on a hypothesis citing uninhibited, velocity-dependent stretch reflexes as a possible causal factor in spastic gait abnormalities, such as equinus and back-kneeing. In order to screen potential experimental subjects and to quantify velocity-dependent reflex behaviour, ankle rotation experiments and filmed gait analysis were performed. The results supported the existence of a velocity threshold. Orthosis simulation experiments were performed with one spastic subject, using a wearable, computer-controlled, electromechanical, below-knee orthosis simulator to apply a variety of damping loads to the ankle as the subject walked. Results indicated that appropriate damping can improve local joint kinematics. The damping causes a reduction in muscle stretch velocity which apparently results in reduced spastic reflex activity.
Collisional damping of the geodesic acoustic mode
Gao Zhe
2013-03-15
The frequency and damping rate of the geodesic acoustic mode (GAM) is revisited by using a gyrokinetic model with a number-conserving Krook collision operator. It is found that the damping rate of the GAM is non-monotonic as the collision rate increases. At low ion collision rate, the damping rate increases linearly with the collision rate; while as the ion collision rate is higher than v{sub ti}/R, where v{sub ti} and R are the ion thermal velocity and major radius, the damping rate decays with an increasing collision rate. At the same time, as the collision rate increases, the GAM frequency decreases from the (7/4+{tau})v{sub ti}/R to (1+{tau})v{sub ti}/R, where {tau} is the ratio of electron temperature to ion temperature.
Spatial versus time hysteresis in damping mechanisms
NASA Technical Reports Server (NTRS)
Banks, H. T.; Fabiano, R. H.; Wang, Y.; Inman, D. J.; Cudney, H., Jr.
1988-01-01
A description is given of continuing investigations on the task of estimating internal damping mechanisms in flexible structures. Specifically, two models for internal damping in Euler-Bernoulli beams are considered: spatial hysteresis and time hysteresis. A theoretically sound computational algorithm for estimation is described, and experimental results are discussed. It is concluded that both models perform well in the sense that they accurately predict response for the experiments conducted.
Microscale damping using thin film active materials
NASA Astrophysics Data System (ADS)
Kerrigan, Catherine A.; Ho, Ken K.; Mohanchandra, K. P.; Carman, Gregory P.
2007-04-01
This paper focuses on understanding and developing a new approach to dampen MEMS structures using both experiments and analytical techniques. Thin film Nitinol and thin film Terfenol-D are evaluated as a damping solution to the micro scale damping problem. Stress induced twin boundary motion in Nitinol is used to passively dampen potentially damaging vibrations. Magnetic domain wall motion is used to passively dampen vibration in Terfenol-D. The thin films of Nitinol, Nitinol/Silicon laminates and Nitinol/Terfenol-D/Nickel laminates have been produced using a sputter deposition process and damping properties have been evaluated. Dynamic testing shows substantial damping (tan δ) measurable in each case. Nitinol film samples were tested in the Differential Scanning Calorimetry (DSC) to determine phase transformation temperatures. The twin boundary mechanism by which energy absorption occurs is present at all points below the Austenite start temperature (approximately 69°C in our film) and therefore allows damping at cold temperatures where traditional materials fail. Thin film in the NiTi/Si laminate was found to produce substantially higher damping (tan δ = 0.28) due to the change in loading condition. The NiTi/Si laminate sample was tested in bending allowing the twin boundaries to be reset by cyclic tensile and compressive loads. The thin film Terfenol-D in the Nitinol/Terfenol-D/Nickel laminate was shown to produce large damping (tan δ = 0.2). In addition to fabricating and testing, an analytical model of a heterogeneous layered thin film damping material was developed and compared to experimental work.
Turbine blade with tuned damping structure
Campbell, Christian X.; Messmann, Stephen J.
2015-09-01
A turbine blade is provided comprising: a root; an airfoil comprising an external wall extending radially from the root and having a radially outermost portion; and a damping structure. The external wall may comprise first and second side walls joined together to define an inner cavity of the airfoil. The damping structure may be positioned within the airfoil inner cavity and coupled to the airfoil so as to define a tuned mass damper.
Analysis of nonlinear damping properties of carbon
NASA Astrophysics Data System (ADS)
Kazakova, Olga I.; Smolin, Igor Yu.; Bezmozgiy, Iosif M.
2016-11-01
This paper describes research results of nonlinear damping properties of carbon fiber reinforced plastics. The experimental and computational research is performed on flat composite specimens with the gradual structure complication (from 1 to 12 layers). Specimens are subjected to three types of testing which are modal, harmonic and transient analyses. Relationships between the amplitude response and damping ratio are obtained by means of the analysis of variance as the result of this research.
Quantum damped oscillator I: Dissipation and resonances
Chruscinski, Dariusz
2006-04-15
Quantization of a damped harmonic oscillator leads to so called Bateman's dual system. The corresponding Bateman's Hamiltonian, being a self-adjoint operator, displays the discrete family of complex eigenvalues. We show that they correspond to the poles of energy eigenvectors and the corresponding resolvent operator when continued to the complex energy plane. Therefore, the corresponding generalized eigenvectors may be interpreted as resonant states which are responsible for the irreversible quantum dynamics of a damped harmonic oscillator.
Aerospace Structures Technology Damping Design Guide. Volume 3. Damping Material Data
1985-12-01
1.1 DAMPING MATERIAL PROPERTIES 1 3 1.2 THE STANDARIZED MATERIAL DATA I 1.2.1 Nomogram Cover Sheet 3 ’ 1.2.2 The Reduced Nomogram 4 1.2.3 Reading...MATERIALS 6 2 DAMPING MATERIAL PROPERTY DATA 14 3 STRUCTURAL EPOXIES AND OTHER MATERIALS 469 3.1 STRUCTURAL EPOXIES 469 3.2 STRUCTURAL PLASTICS 477 3.3...Data Listing II 6 Temperature Shift Function and Its Properties 12 7 Typical TCA Plot 13 8 Quick Reference Chart for Damping Materials 15 9 Damping vs
NASA Astrophysics Data System (ADS)
Smith, Clifford B.; Wereley, Norman M.
1996-10-01
The first objective of this paper is to evaluate the performance of damping identification algorithms. The second objective is to determine the feasibility of damping augmentation in rotating composite beams via passive constrained layer damping (PCLD). Damping identification schemes were applied to four rectangular cross-section laminated composite beams with cocured integral damping layers over the span of the beam. The cocured beam consisted of a twenty-ply balanced and symmetric cross-ply Gr/Ep composite host structure, a top and bottom damping layer of viscoelastic material (VEM), and a 2-ply Gr/Ep constraining layer sandwiching the viscoelastic material to the host structure. Four VEM thicknesses were considered: 0, 5, 10, and 15 mils. The cantilevered beams were tested at rotational speeds ranging from 0 to 900 RPM in a vacuum chamber. Excitation in bending was provided using piezo actuators, and the bending response was measured using full strain gauge bridges. Transient data were analysed using logarithmic decrement, a Hilbert transform technique, and an FFT- based moving block analysis. When compared to the beam with no VEM, a 19.2% volume fraction (15 mil layer) of viscoelastic in the beam produced a 400% increase in damping ratio in the non-rotating case, while at 900 RPM, the damping ratio increased only 360%. Overall structural damping was reduced as a function of RPM, due to centrifugal stiffening.
Validation of equivalent viscous damping methodologies
NASA Astrophysics Data System (ADS)
Vaquer Araujo, Xavier; Fransen, Sebastiaan H. J. A.; Germès, Sylvain; Thiry, Nicolas
2013-06-01
An important step in the design and verification process of spacecraft structures is the coupled dynamic analysis with the launch vehicle in the low-frequency domain. To obtain accurate predictions of the satellite's dynamic environment, it is essential that the damping of the system is correctly defined and taken into account within the resolution methodologies for the coupled loads analysis (CLA). When working with finite element models, the materials' damping is characterized by structural damping ratios. In addition, most of the load cases present in the CLA are transient excitations, and so the resolution of the equations of motion must be done in the time domain. Unfortunately, in the CLA, transient analyses cannot be carried out using structural damping models. Thus, a transformation from a structural to a viscous damping characterization is necessary in this case. Nevertheless, this transformation is not trivial. There exist many methodologies for computing an equivalent viscous damping (EqVD) matrix of the system which can be used in transient analyses. This paper describes the results obtained from the validation of EqVD methodologies used in the European Space Agency. This work identifies the limitations of these methodologies and comes up with an enhanced methodology that predicts more reliable results.
Hybrid Damping System for an Electronic Equipment Mounting Shelf
NASA Technical Reports Server (NTRS)
Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry
1997-01-01
The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-11. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.
Hybrid Damping System for an Electronic Equipment Mounting Shelf
NASA Technical Reports Server (NTRS)
Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry
1997-01-01
The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-II. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.
Surface albedo of cometary nucleus
NASA Astrophysics Data System (ADS)
Mukai, T.; Mukai, S.
A variation of the albedo on the illuminated disk of a comet nucleus is estimated, taking into account the multiple reflection of incident light due to small scale roughness. The dependences of the average albedo over the illuminated disk on the degree of roughness and on the complex refractive index of the surface materials are examined. The variation estimates are compared with measurements of the nucleus albedo of Comet Halley (Reitsema et al., 1987).
Introduction to the scientific application system of DAMPE (On behalf of DAMPE collaboration)
NASA Astrophysics Data System (ADS)
Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. The science data processing and payload operation maintenance for DAMPE will be provided by the DAMPE Scientific Application System (SAS) at the Purple Mountain Observatory (PMO) of Chinese Academy of Sciences. SAS is consisted of three subsystems - scientific operation subsystem, science data and user management subsystem and science data processing subsystem. In cooperation with the Ground Support System (Beijing), the scientific operation subsystem is responsible for proposing observation plans, monitoring the health of satellite, generating payload control commands and participating in all activities related to payload operation. Several databases developed by the science data and user management subsystem of DAMPE methodically manage all collected and reconstructed science data, down linked housekeeping data, payload configuration and calibration data. Under the leadership of DAMPE Scientific Committee, this subsystem is also responsible for publication of high level science data and supporting all science activities of the DAMPE collaboration. The science data processing subsystem of DAMPE has already developed a series of physics analysis software to reconstruct basic information about detected cosmic ray particle. This subsystem also maintains the high performance computing system of SAS to processing all down linked science data and automatically monitors the qualities of all produced data. In this talk, we will describe all functionalities of whole DAMPE SAS system and show you main performances of data processing ability.
On the modal damping ratios of shear-type structures equipped with Rayleigh damping systems
NASA Astrophysics Data System (ADS)
Trombetti, T.; Silvestri, S.
2006-04-01
The effects of added manufactured viscous dampers upon shear-type structures are analytically investigated here for the class of Rayleigh damping systems. The definitions of mass proportional damping (MPD) and stiffness proportional damping (SPD) systems are briefly recalled and their physical counterpart is derived. From basic physics, a detailed mathematical demonstration that the first modal damping ratio of a structure equipped with the MPD system is always larger than the first modal damping ratio of a structure equipped with the SPD system is provided here. All results are derived for the class of structures characterised by constant values of lateral stiffness and storey mass, under the equal "total size" constraint. The paper also provides closed form demonstrations of other properties of modal damping ratios which further indicate that the MPD and the SPD systems are respectively characterised by the largest and the smallest damping efficiency among Rayleigh damping systems subjected to base excitation. A numerical application with realistic data corresponding to an actual seven-storey building structure is presented to illustrate and verify the theoretical findings.
Effects of damping wigglers on beam dynamics in the NLC damping rings
Wolski, Andrzej; Wu, Ying
2001-06-16
To achieve the required damping time in the main damping rings for the Next Linear Collider (NLC), a wiggler will be required in each ring with integrated squared field strength up to 110 T{sup 2}m. There are concerns that nonlinear components of the wiggler field will damage the dynamic aperture of the ring, leading to poor injection efficiency. Severe effects from an insertion device have been observed and corrected in SPEAR 2. In this paper, we describe a model that we have developed to study the effects of the damping wiggler, compare the predictions of the model with actual experience in the case of the SPEAR 2 wiggler, and consider the predicted effects of current damping wiggler design on the NLC main damping rings.
Gilbert damping in magnetic layered systems
NASA Astrophysics Data System (ADS)
Barati, E.; Cinal, M.; Edwards, D. M.; Umerski, A.
2014-07-01
The Gilbert damping constant present in the phenomenological Landau-Lifshitz-Gilbert equation describing the dynamics of magnetization is calculated for ferromagnetic metallic films as well as Co/nonmagnet (NM) bilayers. The calculations are done within a realistic nine-orbital tight-binding model including spin-orbit coupling. The convergence of the damping constant expressed as a sum over the Brillouin zone is remarkably improved by introducing finite temperature into the electronic occupation factors and subsequent summation over the Matsubara frequencies. We investigate how the Gilbert damping constant depends on the ferromagnetic film thickness as well as on the thickness of the nonmagnetic cap in Co/NM bilayers (NM=Cu, Pd, Ag, Pt, and Au). The obtained theoretical dependence of the damping constant on the electron-scattering rate, describing the average lifetime of electronic states, varies substantially with the ferromagnetic film thickness and it differs significantly from the dependence for bulk ferromagnetic metals. The presence of nonmagnetic caps is found to largely enhance the magnetic damping in Co/NM bilayers in accordance with experimental data. Unlike Cu, Ag, and Au a particularly strong enhancement is obtained for Pd and Pt caps. This is attributed to the combined effect of the large spin-orbit couplings of Pd and Pt and the simultaneous presence of d states at the Fermi level in these two metals. The calculated Gilbert damping constant also shows an oscillatory dependence on the thicknesses of both ferromagnetic and nonmagnetic parts of the investigated systems which is attributed to quantum-well states. Finally, the expression for contributions to the damping constant from individual atomic layers is derived. The obtained distribution of layer contributions in Co/Pt and Co/Pd bilayers proves that the enhanced damping which affects the dynamics of the magnetization in the Co film originates mainly from a region within the nonmagnetic part of the
Hernández-López, S; Flores, G; Rosales, M G; Sierra, A; Martínez-Fong, D; Aceves, J
1996-08-09
The ability of anticholinergic agents microinjected into the subthalamic nucleus to reduce reserpine-induced muscular rigidity was assessed in rats. The electromyographical activity of the gastrocnemius-soleus muscle was used as a parameter of muscular rigidity. Reserpine (5 mg/kg i.p.) produced the appearance of electromyographical activity. The muscarinic antagonists M3 (1.27 nmol of 4-DAMP) and M1 (2.36 nmol of pirenzepine) markedly reduced the reserpine-induced electromyographical activity, whereas the M2 antagonist AFDX-116 (2.37 nmol) had no effect. These results suggest that a high cholinergic tone in the subthalamic nucleus is associated with the reserpine-induced muscular rigidity. Moreover, the M3 muscarinic antagonist is more effective than the M1 muscarinic antagonist in reducing the muscular rigidity in reserpinized rats, a model of Parkinson's disease, by blocking the high cholinergic tone in the subthalamic nucleus.
Damping and spectral formation of upstream whistlers
Orlowski, D.S.; Russell, C.T.; Krauss-Varban, D.
1995-09-01
Previous studies have indicated that damping rates of upstream whistlers strongly depend on the details of the electron distribution function. Moreover, detailed analysis of Doppler shift and the whistler dispersion relation indicate that upstream whistlers propagate obliquely in a finite band of frequencies. In this paper we present results of a kinetic calculation of damping lengths of wideband whistlers using the sum of seven drifting bi-Maxwellian electron distributions as a best fit to the ISEE 1 electron data. For two cases, when upstream whistlers are observed, convective damping lengths derived from ISEE magnetic field and ephemeris data are compared with theoretical results. We find that the calculated convective damping lengths are consistent with the data and that upstream whistlers remain marginally stable. We also show that the slope of plasma frame spectra of upstream whistlers, obtained by direct fitting of the observed spectra, is between 5 and 7. The overall spectral, wave, and particle characteristics, proximity to the shock, as well as propagation and damping properties indicated that these waves cannot be generated locally. Instead, the observed upstream whistlers arise in the shock ramp, most likely by a variety of cross-field drift and/or anisotropy driven instabilities. 57 refs., 11 figs.
Radiation damping in microcoil NMR probes
NASA Astrophysics Data System (ADS)
Krishnan, V. V.
2006-04-01
Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-μL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.
Radiation damping in microcoil NMR probes.
Krishnan, V V
2006-04-01
Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-microL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.
Anti-damping effect of radiation reaction
NASA Astrophysics Data System (ADS)
Wang, G.; Li, H.; Shen, Y. F.; Yuan, X. Z.; Zi, J.
2010-01-01
The anti-damping effect of radiation reaction, which means the radiation reaction does non-negative work on a radiating charge, is investigated at length by using the Lorentz-Dirac equation (LDE) for the motion of a point charge respectively acted on by (a) a pure electric field, (b) a pure magnetic field and (c) the fields of an electromagnetic wave. We found that the curvature of the charge's trajectory plays an important role in the radiation reaction force, and the anti-damping effect cannot take place for the real macroscopic motions of a point charge. The condition for this anti-damping effect to take place is that the gradient of the external force field must exceed a certain value over the region of magnitude of the classical radius of massive charges (~10-15 m). Our results are potentially helpful to lessen the controversy on LDE and justify it as the correct classical equation describing the radiating charge's motion. If this anti-damping effect of LDE were a real existing physical process, it could serve as a mechanism within the context of classical electrodynamics for the stability of hydrogen atoms. Using the picture of an electron in quantum electrodynamics, namely the negative bare charge surrounded by the polarized positive charges of vacuum, we can obtain a reasonable explanation for the energy transferred to the electron during the occurrence of the anti-damping effect, on which the venerable work of Wheeler and Feynman has thrown some light.
Damping by branching: a bioinspiration from trees.
Theckes, B; Langre, E de; Boutillon, X
2011-12-01
Man-made slender structures are known to be sensitive to high levels of vibration due to their flexibility which often cause irreversible damage. In nature, trees repeatedly endure large amplitudes of motion, mostly caused by strong climatic events, yet with minor or no damage in most cases. A new damping mechanism inspired by the architecture of trees is identified here and characterized in the simplest tree-like structure, a Y-shaped branched structure. Through analytical and numerical analyses of a simple two-degree-of-freedom model, branching is shown to be the key ingredient in this protective mechanism that we call damping-by-branching. It originates in the geometrical nonlinearities so that it is specifically efficient to damp out large amplitudes of motion. A more realistic model, using flexible beam approximation, shows that the mechanism is robust. Finally, two bioinspired architectures are analyzed, showing significant levels of damping achieved via branching with typically 30% of the energy being dissipated in one oscillation. This concept of damping-by-branching is of simple practical use in the design of very slender and flexible structures subjected to extreme dynamical loadings.
Alkhazov, G. D.; Sarantsev, V. V.
2012-12-15
In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.
Passive damping concepts for slender columns in space structures
NASA Technical Reports Server (NTRS)
Razzaq, Z.; Ekhelikar, R. K.
1985-01-01
An experimental and theoretical study of three different passive damping concepts is conducted for a slender member with partial rotational end restraints. Over a hundred full-scale natural vibration experiments were conducted to evaluate the effectiveness of mass-string, polyethylene tubing, and chain damping concepts. The damping properties obtained from the experiments were used in the approximate analyses based on the partial differential equation of motion for the problem. The comparison of the experimental and the theoretical deflection-time relations shows that the velocity-dependent damping model used in the theory is adequate. From the experimental results, the effect of end connection friction and induced axial forces on damping is identified. The definition of an efficiency index is proposed based on the damping ratio and the mass of a given passive damping device. Using this definition, the efficiencies of the three damping devices are compared. The polyethylene tubing concept resulted into a low damping efficiency.
Highly damped kinematic coupling for precision instruments
Hale, Layton C.; Jensen, Steven A.
2001-01-01
A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.
Measurement of damping of graphite epoxy materials
NASA Technical Reports Server (NTRS)
Crocker, M. J.
1985-01-01
The design of an experiment to measure the damping of a cylindrical graphite-epoxy specimen with a three point support and a knife edge support is described as well as equipment used in tests conducted to determine the influence of the support at the two ends of the specimen and to simulate an idealized free-free boundary condition at the two edges. A curve fitting technique is being used to process the frequency response data obtained. Experiments conducted on the thin plate specimen also reveal the influence of the end support condition on the damping ratio of the specimen. The damping ratio values measured for both specimens appear to be strongly influenced by the shape of the specimen and appear to depend on length and fiber orientation as well as the presence of discontinuities such as sharp bends, corners, and notches.
Turbine blade damping device with controlled loading
Marra, John J
2013-09-24
A damping structure for a turbomachine rotor. The damping structure including an elongated snubber element including a first snubber end rigidly attached to a first blade and extending toward an adjacent second blade, and an opposite second snubber end positioned adjacent to a cooperating surface associated with the second blade. The snubber element has a centerline extending radially inwardly in a direction from the first blade toward the second blade along at least a portion of the snubber element between the first and second snubber ends. Rotational movement of the rotor effects relative movement between the second snubber end and the cooperating surface to position the second snubber end in frictional engagement with the cooperating surface with a predetermined damping force determined by a centrifugal force on the snubber element.
Radiation damping in focusing-dominated systems
Huang, Zhirong; Chen, Pisin; Ruth, R.D.
1995-06-01
A quasi-classical method is developed to calculate the radiation damping of a relativistic particle in a straight, continuous focusing system. In one limiting case where the pitch angle of the particle {theta}{sub p} is much larger than the radiation opening angle 1/{gamma}, the radiation power spectrum is similar to synchrotron radiation and the relative damping rate of the transverse action is proportional to the relative energy loss rate. In the other limiting case where {theta}{sub p} {much_lt} 1/{gamma}, the radiation is dipole in nature and the relative damping rate of the transverse action is energy-independent and is much faster than the relative energy rate. Quantum excitation to the transverse action is absent in this focusing channel. These results can be extended to bent systems provided that the focusing field dominates over the bending field.
Resolving photons from cosmic ray in DAMPE
NASA Astrophysics Data System (ADS)
Xu, Zunlei; Chang, Jin; Li, Xiang; Dong, TieKuang; Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer(DAMPE), which took to the skies on 17 December, is designed for high energy cosmic ray ion detection. The proportion of photons in the cosmic ray is very small, so it's difficult to distinguish between photons and 'background', but necessary for any DAMPE gamma-ray science goals.The paper present a algorithm to identify photons from 'background' mainly by the tracker/converter, which promote pair conversion and measure the directions of incident particles, and an anticoincidence detector,featuring an array of plastic scintillator to detect the charged particles.The method has been studied by simulating using the GEANT4 Monte Carlo simulation code and adjusted by the BeamTest at CERN in December,2014.In addition,DAMPE photon detection capabilities can be checked using the flight data.
Turbine blade damping device with controlled loading
Marra, John J.
2015-09-29
A damping structure for a turbomachine rotor. The damping structure including an elongated snubber element including a first snubber end rigidly attached to a first blade and extending toward an adjacent second blade, and an opposite second snubber end positioned adjacent to a cooperating surface associated with the second blade. The snubber element has a centerline extending radially inwardly in a direction from the first blade toward the second blade along at least a portion of the snubber element between the first and second snubber ends. Rotational movement of the rotor effects relative movement between the second snubber end and the cooperating surface to position the second snubber end in frictional engagement with the cooperating surface with a predetermined damping force determined by a centrifugal force on the snubber element.
Viscous damping of perforated planar micromechanical structures
Homentcovschi, D.; Miles, R.N.
2008-01-01
The paper gives an analytical approximation to the viscous damping coefficient due to the motion of a gas between a pair of closely spaced fluctuating plates in which one of the plates contains a regular system of circular holes. These types of structures are important parts of many microelectromechanical devices realized in MEMS technology as microphones, microaccelerometers, resonators, etc. The pressure satisfies a Reynolds’ type equation with coefficients accounting for all the important effects: compressibility of the gas, inertia and possibly slip of the gas on the plates. An analytical expression for the optimum number of circular holes which assure a minimum value of the total damping coefficient is given. This value realizes an equilibrium between the squeeze-film damping and the viscous resistance of the holes. The paper also provides analytical design formulas to be used in the case of regular circular perforated plates. PMID:19365579
Passively damped vibration welding system and method
Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao
2013-04-02
A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.
Biomimetic Gradient Polymers with Enhanced Damping Capacities.
Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian
2016-04-01
Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures.
Fluid damping of cylindrical liquid storage tanks.
Habenberger, Joerg
2015-01-01
A method is proposed in order to calculate the damping effects of viscous fluids in liquid storage tanks subjected to earthquakes. The potential equation of an ideal fluid can satisfy only the boundary conditions normal to the surface of the liquid. To satisfy also the tangential interaction conditions between liquid and tank wall and tank bottom, the potential flow is superimposed by a one-dimensional shear flow. The shear flow in this boundary layer yields to a decrease of the mechanical energy of the shell-liquid-system. A damping factor is derived from the mean value of the energy dissipation in time. Depending on shell geometry and fluid viscosity, modal damping ratios are calculated for the convective component.
Radiation Damping in a Focusing Channel
NASA Astrophysics Data System (ADS)
Ruth, Ronald D.
1996-05-01
In electron storage rings synchrotron radiation leads to the damping of the three degrees of freedom of the particle trajectory towards a stable closed orbit transversely and a fixed stable phase longitudinally. At the same time, the emission of discrete quanta leads to diffusion in all three degrees of freedom. These two competing effects result in an equilibrium beam emittance that depends upon the parameters of the storage ring. In the case above, the radiation in the bending fields dominates, and the radiation due to the focusing fields is either neglected or taken into account perturbatively. In this talk we study the opposite case, a continuous focusing channel in which the radiation and its reaction are dominated by the strong focusing field. If there is a bending field, it is much weaker than the focusing field. In such focusing systems, we find that the radiation is synchrotron-like for larger betatron oscillation amplitudes and undulator-like for smaller amplitudes. However, quantum excitation is absent for any oscillation amplitude, and the damping exhibits asymmetry in favor of the transverse degree of freedom as the amplitude becomes smaller. In the undulator regime, the damping turns into exponential in the transverse direction, much faster than the total energy damping in this system. In principle, the particle could damp to the transverse ground state of the harmonic oscillator, reaching a minimum normalized emittance, γ ɛ_min = hbar/2mc, limited only by the uncertainty principle. In the case of a bent focusing system, we find that the lack of quantum excitation and asymmetric damping still hold provided that the bending field is sufficiently weak.
Lag-stabilized force feedback damping
Petterson, B.J.; Robinett, R.D.; Werner, J.C.
1991-05-01
A lag-stabilized, force feedback controller for damping initial and residual oscillations of a planar, cantilevered flexible arm has been analytically developed and experimentally implemented on a commercial robot. The controller feeds back force sensor measurements that are delayed in time and proportional to the displacement (angular orientation) of the arm in order to damp the oscillation. As a result of the lag (contrary to popular belief), the controlled robot system is stable and provides tunable performance on a Cincinnati Milacron T3-786 robot. 3 refs., 9 figs., 2 tabs.
Particle systems and nonlinear Landau damping
Villani, Cédric
2014-03-15
Some works dealing with the long-time behavior of interacting particle systems are reviewed and put into perspective, with focus on the classical Kolmogorov–Arnold–Moser theory and recent results of Landau damping in the nonlinear perturbative regime, obtained in collaboration with Clément Mouhot. Analogies are discussed, as well as new qualitative insights in the theory. Finally, the connection with a more recent work on the inviscid Landau damping near the Couette shear flow, by Bedrossian and Masmoudi, is briefly discussed.
Optimal piezoelectric switching technique for vibration damping
NASA Astrophysics Data System (ADS)
Neubauer, Marcus; Oleskiewicz, Robert
2007-04-01
This paper describes piezoelectric switching techniques for vibration damping. The dynamical behaviour of a piezoceramics connected to a switching LR shunt and the dissipated energy are obtained using a fundamental piezoelectric model. All calculations are performed in a normalized way and highlight the influence of the electromechanical coupling coefficient of the piezoceramics and the shunt parameters. For the first time, a precise result for the dynamics of a shunted piezoceramics is derived. The analytic results are used to determine the optimal switching sequence and external branch parameters in order to maximize the damping performance. The results are validated by measurements of a clamped beam.
Wind turbine blade with viscoelastic damping
Sievers, Ryan A.; Mullings, Justin L.
2017-01-10
A wind turbine blade (60) damped by viscoelastic material (54, 54A-F) sandwiched between stiffer load-bearing sublayers (52A, 52B, 56A, 56B) in portions of the blade effective to damp oscillations (38) of the blade. The viscoelastic material may be located in one or more of: a forward portion (54A) of the shell, an aft portion (54D) of the shell, pressure and suction side end caps (54B) of an internal spar, internal webbing walls (54C, 54E), and a trailing edge core (54F).
Inertia-Wheel Vibration-Damping System
NASA Technical Reports Server (NTRS)
Fedor, Joseph V.
1990-01-01
Proposed electromechanical system would damp vibrations in large, flexible structure. In active vibration-damping system motors and reaction wheels at tips of appendages apply reaction torques in response to signals from accelerometers. Velocity signal for vibrations about one axis processes into control signal to oppose each of n vibrational modes. Various modes suppressed one at a time. Intended primarily for use in spacecraft that has large, flexible solar panels and science-instrument truss assembly, embodies principle of control interesting in its own right and adaptable to terrestrial structures, vehicles, and instrument platforms.
Damping Goes the Distance in Golf
NASA Technical Reports Server (NTRS)
2004-01-01
In the late 1980s, Dr. Benjamin Dolgin of NASA s Jet Propulsion Laboratory developed a concept for a high-damping graphite/viscoelastic material for the Strategic Defense Initiative (popularly referred to as "Star Wars"), as part of a space-based laser anti-missile program called "Asterix." Dolgin drummed up this concept with the intention of stabilizing weapons launch platforms in space, where there is no solid ground to firmly support these structures. Without the inclusion of high-damping material, the orbital platforms were said to vibrate for 20 minutes after force was applied - a rate deemed "unacceptable" by leaders of the Strategic Defense Initiative.
Mechanical Design of the DAMPE BGO Calorimeter
NASA Astrophysics Data System (ADS)
Hu, Yiming; Wu, Jian; Feng, Changqing; Zhang, Yunlong; Chen, Dengyi; Chang, Jin
The Dark Matter Particle Explorer, DAMPE, is a new designed satellite developed for the CASs new Innovation 2020 program. As the main component of DAMPE, the new designed BGO calorimeter consists of 308 BGO Crystals coupled with photomultiplier tube.The reliability and safety of the BGO Calorimeter structure play a very important role in the operation of whole detector. During the rocket launch, the calorimeter structure should be stable against vibration and environmental factors to ensure detector works in good conditions. In this article, we make the BGO calorimeter structure design, and then prove that it will work in the environments of rocket launch and flight.
Delay of Transition Using Forced Damping
NASA Technical Reports Server (NTRS)
Exton, Reginald J.
2014-01-01
Several experiments which have reported a delay of transition are analyzed in terms of the frequencies of the induced disturbances generated by different flow control elements. Two of the experiments employed passive stabilizers in the boundary layer, one leading-edge bluntness, and one employed an active spark discharge in the boundary layer. It is found that the frequencies generated by the various elements lie in the damping region of the associated stability curve. It is concluded that the creation of strong disturbances in the damping region stabilizes the boundary-layer and delays the transition from laminar to turbulent flow.
Damping of the wrist joint during voluntary movement.
Milner, T E; Cloutier, C
1998-10-01
Damping characteristics of the musculoskeletal system were investigated during rapid voluntary wrist flexion movements. Oscillations about the final position were induced by introducing a load with the characteristics of negative damping, which artificially reduced the damping of the wrist. Subjects responded to increases in the negatively damped load by stronger cocontraction of wrist flexor and extensor muscles during the stabilization phase of the movement. However, their ability to counteract the effects of the negatively damped load diminished as the negative damping increased. Consequently, the number and frequency of oscillations increased. The oscillations were accompanied by phase-locked muscle activity superimposed on underlying tonic muscle activation. The wrist stiffness and damping coefficient increased with the increased cocontraction that accompanied more negatively damped loads, although changes in the damping coefficient were less systematic than the stiffness. Analysis of successive half-cycles of the oscillation revealed that the wrist stiffness and damping coefficient increased, despite decreasing muscle activation, as oscillation amplitude and velocity declined. This indicates that the inverse dependence of the damping coefficient on oscillation velocity contributes significantly to damping of joint motion. It is suggested that this property helps to offset a negative contribution to damping from the stretch reflex.
Baarlink, Christian; Grosse, Robert
2014-01-01
Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.
Nonlinear Landau damping and Alfven wave dissipation
NASA Technical Reports Server (NTRS)
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
Active Damping Using Distributed Anisotropic Actuators
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.
2010-01-01
A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.
The Stochastic Nonlinear Damped Wave Equation
Barbu, V. Da Prato, G.
2002-12-19
We prove the existence of an invariant measure for the transition semigroup associated with a nonlinear damped stochastic wave equation in R{sup n} of the Klein-Gordon type. The uniqueness of the invariant measure and the structure of the corresponding Kolmogorov operator are also studied.
Active damping of spacecraft structural appendage vibrations
NASA Technical Reports Server (NTRS)
Fedor, Joseph V. (Inventor)
1990-01-01
An active vibration damper system, for bending in two orthogonal directions and torsion, in each of three mutually perpendicular axes is located at the extremities of the flexible appendages of a space platform. The system components for each axis includes: an accelerometer, filtering and signal processing apparatus, and a DC motor-inertia wheel torquer. The motor torquer, when driven by a voltage proportional to the relative vibration tip velocity, produces a reaction torque for opposing and therefore damping a specific modal velocity of vibration. The relative tip velocity is obtained by integrating the difference between the signal output from the accelerometer located at the end of the appendage with the output of a usually carried accelerometer located on a relatively rigid body portion of the space platform. A selector switch, with sequential stepping logic or highest modal vibration energy logic, steps to another modal tip velocity channel and receives a signal voltage to damp another vibration mode. In this manner, several vibration modes can be damped with a single sensor/actuator pair. When a three axis damper is located on each of the major appendages of the platform, then all of the system vibration modes can be effectively damped.
Radiation damping in pulsed Gaussian beams
NASA Astrophysics Data System (ADS)
Harvey, Chris; Marklund, Mattias
2012-01-01
We consider the effects of radiation damping on the electron dynamics in a Gaussian-beam model of a laser field. For high intensities, i.e., with dimensionless intensity a0≫1, it is found that the dynamics divides into three regimes. For low-energy electrons (low initial γ factor, γ0) the radiation damping effects are negligible. At higher energies, but still at 2γ0
Scattering Theory of Mesoscopic Gilbert Damping
NASA Astrophysics Data System (ADS)
Brataas, Arne
2010-03-01
Magnetic damping determines the performance of magnetic devices including high-frequency oscillators, hard drives, magnetic random access memories, magnetic logic devices, and magnetic field sensors. The drive to improve these devices, to reduce the response time of sensors and the physical dimensions has led to a greater focus on studying the friction force a changing magnetization experiences. We study the magnetization dynamics of single domain ferromagnets and domain walls in contact with a thermal bath by scattering theory. We recover the Landau-Lifshitz-Gilbert equation and express the Gilbert damping tensor in terms of the scattering matrix [1,2]. Dissipation of magnetic energy equals energy current pumped out of the system by the time-dependent magnetization, with separable spin-relaxation induced bulk and spin-pumping generated interface contributions [3]. The scattering theory of Gilbert damping is suitable for first-principles calculations that include disorder and spin-orbit coupling on an equal footing [4]. In linear response, our scattering theory for the Gilbert damping tensor is equivalent with the Kubo formalism. [4pt] [1] A. Brataas, Y. Tserkovnyak, and G. E. W. Bauer, Phys. Rev. Lett. 101, 037207 (2008). [0pt] [2] K. M. D. Hals, A. K. Nguyen, and A. Brataas, Phys. Rev. Lett. 102, 256601 (2009). [0pt] [3] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Rev. Mod. Phys. 77, 1375 (2005). [0pt] [4] A. A. Starikov, P. J. Kelly, A. Brataas, Y. Tserkovnyak, and G. E. W. Bauer, unpublished.
The DAMPE experiment: first data from space
NASA Astrophysics Data System (ADS)
De Mitri, Ivan
2017-03-01
The DAMPE satellite has been successfully launched in orbit on December 2015. The science goals of the mission include the study of high energy cosmic ray electrons, photons, protons and nuclei in a wide energy range: 109 - 1014 eV. A report on the mission status will be presented, together with on-orbit detector performance and first data coming from space.
Vibration damping for the Segmented Mirror Telescope
NASA Astrophysics Data System (ADS)
Maly, Joseph R.; Yingling, Adam J.; Griffin, Steven F.; Agrawal, Brij N.; Cobb, Richard G.; Chambers, Trevor S.
2012-09-01
The Segmented Mirror Telescope (SMT) at the Naval Postgraduate School (NPS) in Monterey is a next-generation deployable telescope, featuring a 3-meter 6-segment primary mirror and advanced wavefront sensing and correction capabilities. In its stowed configuration, the SMT primary mirror segments collapse into a small volume; once on location, these segments open to the full 3-meter diameter. The segments must be very accurately aligned after deployment and the segment surfaces are actively controlled using numerous small, embedded actuators. The SMT employs a passive damping system to complement the actuators and mitigate the effects of low-frequency (<40 Hz) vibration modes of the primary mirror segments. Each of the six segments has three or more modes in this bandwidth, and resonant vibration excited by acoustics or small disturbances on the structure can result in phase mismatches between adjacent segments thereby degrading image quality. The damping system consists of two tuned mass dampers (TMDs) for each of the mirror segments. An adjustable TMD with passive magnetic damping was selected to minimize sensitivity to changes in temperature; both frequency and damping characteristics can be tuned for optimal vibration mitigation. Modal testing was performed with a laser vibrometry system to characterize the SMT segments with and without the TMDs. Objectives of this test were to determine operating deflection shapes of the mirror and to quantify segment edge displacements; relative alignment of λ/4 or better was desired. The TMDs attenuated the vibration amplitudes by 80% and reduced adjacent segment phase mismatches to acceptable levels.
The DAMPE silicon-tungsten tracker
NASA Astrophysics Data System (ADS)
Azzarello, P.; Ambrosi, G.; Asfandiyarov, R.; Bernardini, P.; Bertucci, B.; Bolognini, A.; Cadoux, F.; Caprai, M.; De Mitri, I.; Domenjoz, M.; Dong, Y.; Duranti, M.; Fan, R.; Fusco, P.; Gallo, V.; Gargano, F.; Gong, K.; Guo, D.; Husi, C.; Ionica, M.; La Marra, D.; Loparco, F.; Marsella, G.; Mazziotta, M. N.; Mesa, J.; Nardinocchi, A.; Nicola, L.; Pelleriti, G.; Peng, W.; Pohl, M.; Postolache, V.; Qiao, R.; Surdo, A.; Tykhonov, A.; Vitillo, S.; Wang, H.; Weber, M.; Wu, D.; Wu, X.; Zhang, F.
2016-09-01
The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV-10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m2. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN.
Chiral damping of magnetic domain walls.
Jué, Emilie; Safeer, C K; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles
2016-03-01
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).
Functionalized active-nucleus complex sensor
Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth
2003-11-25
A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.
Apparatus and method of preloading vibration-damping bellows
Cutburth, Ronald W.
1988-01-01
An improved vibration damping bellows mount or interconnection is disclosed. In one aspect, the bellows is compressively prestressed along its length to offset vacuum-generated tensile loads and thereby improve vibration damping characteristics.
Experimental determination of material damping using vibration analyzer
NASA Technical Reports Server (NTRS)
Chowdhury, Mostafiz R.; Chowdhury, Farida
1990-01-01
Structural damping is an important dynamic characteristic of engineering materials that helps to damp vibrations by reducing their amplitudes. In this investigation, an experimental method is illustrated to determine the damping characteristics of engineering materials using a dual channel Fast Fourier Transform (FFT) analyzer. A portable Compaq III computer which houses the analyzer, is used to collect the dynamic responses of three metal rods. Time-domain information is analyzed to obtain the logarithmic decrement of their damping. The damping coefficients are then compared to determine the variation of damping from material to material. The variations of damping from one point to another of the same material, due to a fixed point excitation, and the variable damping at a fixed point due to excitation at different points, are also demonstrated.
Resistor-damped electromechanical lever blocks
NASA Astrophysics Data System (ADS)
Zago, Lorenzo; Genequand, Pierre M.; Kjelberg, Ivar
1998-06-01
The paper presents an innovative technical solution which provides a combined damping and isolation interface with the appropriate transmissibility characteristics between a vibrating base and a sensitive payload, typically an optical terminal/telescope. The novelty of the solution is primarily found in the implementation of uncoupling and magnification of the incurred vibrations by means of flexures combined with the implementation of energy dissipation by means of a linear electro-magnetic actuator to constitute a passive integrated resistor-damped electromechanic lever block. By means of frictionless flexible lever systems, the amplitude of the payload vibrations is adapted to the optimal range of the actuator with a magnification by a factor ranging typically between 10 and 30. Passive viscous damping is obtained by simply short-circuiting the electro-magnetic motor and can be adapted by setting the impedance of the shorting connection. The desired stiffness is provided by the passive springs of the elastic motor suspension and by the stiffness of the lever flexure blades. The mobile mass of the motors also provide a reaction mass which, like damping and stiffness, is amplified by the square of the lever factor. A theoretical model of resistor-damped electromechanical lever blocks has been established. A particular property is it the good attenuation of excited vibrations only over a set frequency range. Above this range the interface properties rejoin the ones of a rigid connection. This performance makes this type of isolators particularly suitable for integration into multi-layer vibration control systems where sensitive equipment is protected by a mix of passive and active damping/isolation devices acting optimally at different frequency ranges. Experiments performed with a dummy load (80 Kg) representative of a satellite based optical terminal demonstrated the efficiency of the system in protecting the payload by passive damping for vibration excitations
Nonlinear damping and quasi-linear modelling.
Elliott, S J; Ghandchi Tehrani, M; Langley, R S
2015-09-28
The mechanism of energy dissipation in mechanical systems is often nonlinear. Even though there may be other forms of nonlinearity in the dynamics, nonlinear damping is the dominant source of nonlinearity in a number of practical systems. The analysis of such systems is simplified by the fact that they show no jump or bifurcation behaviour, and indeed can often be well represented by an equivalent linear system, whose damping parameters depend on the form and amplitude of the excitation, in a 'quasi-linear' model. The diverse sources of nonlinear damping are first reviewed in this paper, before some example systems are analysed, initially for sinusoidal and then for random excitation. For simplicity, it is assumed that the system is stable and that the nonlinear damping force depends on the nth power of the velocity. For sinusoidal excitation, it is shown that the response is often also almost sinusoidal, and methods for calculating the amplitude are described based on the harmonic balance method, which is closely related to the describing function method used in control engineering. For random excitation, several methods of analysis are shown to be equivalent. In general, iterative methods need to be used to calculate the equivalent linear damper, since its value depends on the system's response, which itself depends on the value of the equivalent linear damper. The power dissipation of the equivalent linear damper, for both sinusoidal and random cases, matches that dissipated by the nonlinear damper, providing both a firm theoretical basis for this modelling approach and clear physical insight. Finally, practical examples of nonlinear damping are discussed: in microspeakers, vibration isolation, energy harvesting and the mechanical response of the cochlea.
Damped and zero-damped quasinormal modes of charged, nearly extremal black holes
NASA Astrophysics Data System (ADS)
Zimmerman, Aaron; Mark, Zachary
2016-02-01
Despite recent progress, the complete understanding of the perturbations of charged, rotating black holes as described by the Kerr-Newman metric remains an open and fundamental problem in relativity. In this study, we explore the existence of families of quasinormal modes of Kerr-Newman black holes whose decay rates limit to zero at extremality, called zero-damped modes in past studies. We review the nearly extremal and WKB approximation methods for spin-weighted scalar fields (governed by the Dudley-Finley equation) and give an accounting of the regimes where scalar zero-damped and damped modes exist. Using Leaver's continued fraction method, we verify that these approximations give accurate predictions for the frequencies in their regimes of validity. In the nonrotating limit, we argue that gravito-electromagnetic perturbations of nearly extremal Reissner-Nordström black holes have zero-damped modes in addition to the well-known spectrum of damped modes. We provide an analytic formula for the frequencies of these modes, verify their existence using a numerical search, and demonstrate the accuracy of our formula. These results, along with recent numerical studies, point to the existence of a simple universal equation for the frequencies of zero-damped gravito-electromagnetic modes of Kerr-Newman black holes, whose precise form remains an open question.
Higgs and Particle Production in Nucleus-Nucleus Collisions
NASA Astrophysics Data System (ADS)
Liu, Zhe
We apply a diagrammatic approach to study Higgs boson, a color-neutral heavy particle, pro- duction in nucleus-nucleus collisions in the saturation framework without quantum evolution. We assume the strong coupling constant much smaller than one. Due to the heavy mass and colorless nature of Higgs particle, final state interactions are absent in our calculation. In order to treat the two nuclei dynamically symmetric, we use the Coulomb gauge which gives the appropriate light cone gauge for each nucleus. To further eliminate initial state interactions we choose specific prescriptions in the light cone propagators. We start the calculation from only two nucleons in each nucleus and then demonstrate how to generalize the calculation to higher orders diagrammatically. We simplify the diagrams by the Slavnov-Taylor-Ward identities. The resulting cross section is factorized into a product of two Weizsacker-Williams gluon distributions of the two nuclei when the transverse momentum of the produced scalar particle is around the saturation momentum. To our knowledge this is the first process where an exact analytic formula has been formed for a physical process, involving momenta on the order of the saturation momentum, in nucleus-nucleus collisions in the quasi-classical approximation. Since we have performed the calculation in an unconventional gauge choice, we further confirm our results in Feynman gauge where the Weizsacker-Williams gluon distribution is interpreted as a transverse momentum broadening of a hard gluons traversing a nuclear medium. The transverse momentum factorization manifests itself in light cone gauge but not so clearly in Feynman gauge. In saturation physics there are two different unintegrated gluon distributions usually encountered in the literature: the Weizsacker-Williams gluon distribution and the dipole gluon distribution. The first gluon distribution is constructed by solving classical Yang-Mills equation of motion in the Mc
Single nucleon emission in relativistic nucleus-nucleus reactions
NASA Technical Reports Server (NTRS)
Norbury, John W.; Townsend, Lawrence W.
1992-01-01
Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors.
Analysis of relativistic nucleus-nucleus interactions in emulsion chambers
NASA Technical Reports Server (NTRS)
Mcguire, Stephen C.
1987-01-01
The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.
Dynamical nucleus-nucleus potential at short distances
Jiang Yongying; Wang Ning; Li Zhuxia; Scheid, Werner
2010-04-15
The dynamical nucleus-nucleus potentials for fusion reactions {sup 40}Ca+{sup 40}Ca, {sup 48}Ca+{sup 208}Pb, and {sup 126}Sn+{sup 130}Te are studied with the improved quantum molecular dynamics model together with the extended Thomas-Fermi approximation for the kinetic energies of nuclei. The obtained fusion barrier for {sup 40}Ca+{sup 40}Ca is in good agreement with the extracted fusion barrier from the measured fusion excitation function, and the depths of the fusion pockets are close to the results of time-dependent Hartree-Fock calculations. The energy dependence of the fusion barrier is also investigated. The fusion pocket becomes shallow for a heavy fusion system and almost disappears for heavy nearly symmetric systems, and the obtained potential at short distances is higher than the adiabatic potential.
Azimuthal correlation and collective behavior in nucleus-nucleus collisions
Mali, P.; Mukhopadhyay, A. Sarkar, S.; Singh, G.
2015-03-15
Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see a direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.
Fast damping in mismatched high intensity beam transportation
NASA Astrophysics Data System (ADS)
Variale, V.
2001-08-01
A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571-1582 (1999) and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999), p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.
Determining material damping type by comparing modal frequency estimators.
Anthony, D K; Simón, F; Juan, Jesús
2009-09-01
The accuracy of modal frequency and damping estimators for non-lightly damped single degree of freedom systems depend on the response parameter used as well as the damping mechanism. Therefore, in order to make accurate modal parameter measurements, the damping mechanism at play must be known to be either viscous or hysteretic a priori. Here, comparisons between the evaluated frequency values are used to glean this information. The damping mechanism of an experimental system (consisting of resilient layer and mass plate) is then determined using two simple modal parameter estimators and applying statistical methods.
Effects of Landau-Lifshitz-Gilbert damping on domain growth.
Kudo, Kazue
2016-12-01
Domain patterns are simulated by the Landau-Lifshitz-Gilbert (LLG) equation with an easy-axis anisotropy. If the Gilbert damping is removed from the LLG equation, it merely describes the precession of magnetization with a ferromagnetic interaction. However, even without the damping, domains that look similar to those of scalar fields are formed, and they grow with time. It is demonstrated that the damping has no significant effects on domain growth laws and large-scale domain structure. In contrast, small-scale domain structure is affected by the damping. The difference in small-scale structure arises from energy dissipation due to the damping.
Effects of damping on mode shapes, volume 1
NASA Technical Reports Server (NTRS)
Gates, R. M.
1977-01-01
Displacement, velocity, and acceleration admittances were calculated for a realistic NASTRAN structural model of space shuttle for three conditions: liftoff, maximum dynamic pressure and end of solid rocket booster burn. The realistic model of the orbiter, external tank, and solid rocket motors included the representation of structural joint transmissibilities by finite stiffness and damping elements. Methods developed to incorporate structural joints and their damping characteristics into a finite element model of the space shuttle, to determine the point damping parameters required to produce realistic damping in the primary modes, and to calculate the effect of distributed damping on structural resonances through the calculation of admittances.
A soft damping function for dispersion corrections with less overfitting.
Ucak, Umit V; Ji, Hyunjun; Singh, Yashpal; Jung, Yousung
2016-11-07
The use of damping functions in empirical dispersion correction schemes is common and widespread. These damping functions contain scaling and damping parameters, and they are usually optimized for the best performance in practical systems. In this study, it is shown that the overfitting problem can be present in current damping functions, which can sometimes yield erroneous results for real applications beyond the nature of training sets. To this end, we present a damping function called linear soft damping (lsd) that suffers less from this overfitting. This linear damping function damps the asymptotic curve more softly than existing damping functions, attempting to minimize the usual overcorrection. The performance of the proposed damping function was tested with benchmark sets for thermochemistry, reaction energies, and intramolecular interactions, as well as intermolecular interactions including nonequilibrium geometries. For noncovalent interactions, all three damping schemes considered in this study (lsd, lg, and BJ) roughly perform comparably (approximately within 1 kcal/mol), but for atomization energies, lsd clearly exhibits a better performance (up to 2-6 kcal/mol) compared to other schemes due to an overfitting in lg and BJ. The number of unphysical parameters resulting from global optimization also supports the overfitting symptoms shown in the latter numerical tests.
A soft damping function for dispersion corrections with less overfitting
NASA Astrophysics Data System (ADS)
Ucak, Umit V.; Ji, Hyunjun; Singh, Yashpal; Jung, Yousung
2016-11-01
The use of damping functions in empirical dispersion correction schemes is common and widespread. These damping functions contain scaling and damping parameters, and they are usually optimized for the best performance in practical systems. In this study, it is shown that the overfitting problem can be present in current damping functions, which can sometimes yield erroneous results for real applications beyond the nature of training sets. To this end, we present a damping function called linear soft damping (lsd) that suffers less from this overfitting. This linear damping function damps the asymptotic curve more softly than existing damping functions, attempting to minimize the usual overcorrection. The performance of the proposed damping function was tested with benchmark sets for thermochemistry, reaction energies, and intramolecular interactions, as well as intermolecular interactions including nonequilibrium geometries. For noncovalent interactions, all three damping schemes considered in this study (lsd, lg, and BJ) roughly perform comparably (approximately within 1 kcal/mol), but for atomization energies, lsd clearly exhibits a better performance (up to 2-6 kcal/mol) compared to other schemes due to an overfitting in lg and BJ. The number of unphysical parameters resulting from global optimization also supports the overfitting symptoms shown in the latter numerical tests.
Relativity Damps OPEP in Nuclear Matter
NASA Astrophysics Data System (ADS)
Banerjee, Manoj K.
1998-09-01
Using a relativistic Dirac--Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. We find that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. We show that the damping of derivative-coupled OPEP is actually due to the decrease of M*/M with increasing density. We point out that if derivative-coupled OPEP is the preferred form of nuclear effective Lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M* it cannot replicate the damping. We suggest an examination of the feasibility of using pseudoscalar coupled πN interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.
Nonlinear Landau damping in the ionosphere
NASA Technical Reports Server (NTRS)
Kiwamoto, Y.; Benson, R. F.
1978-01-01
A model is presented to explain the non-resonant waves which give rise to the diffuse resonance observed near 3/2 f sub H by the Alouette and ISIS topside sounders, where f sub H is the ambient electron cyclotron frequency. In a strictly linear analysis, these instability driven waves will decay due to Landau damping on a time scale much shorter than the observed time duration of the diffuse resonance. Calculations of the nonlinear wave particle coupling coefficients, however, indicate that the diffuse resonance wave can be maintained by the nonlinear Landau damping of the sounder stimulated 2f sub H wave. The time duration of the diffuse resonance is determined by the transit time of the instability generated and nonlinearly maintained diffuse resonance wave from the remote short lived hot region back to the antenna. The model is consistent with the Alouette/ISIS observations, and clearly demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.
Harmonic cavities for the NLC damping rings
de Santis, S.; Wolski, A.
2003-05-29
To achieve high luminosity, a linear collider needs damping rings to produce beams with very small transverse emittances. In the NLC, design constraints place the Main Damping Rings in a parameter regime where intrabeam scattering (IBS) is likely to be a limitation on the emittance, and hence on the final luminosity. It is possible to mitigate the effects of IBS by lengthening the bunch: this may be achieved by redesigning the lattice with higher momentum compaction, or by use of higher harmonic cavities. Here, we consider the latter approach. We estimate the required bunch lengthening that might be needed, outline some appropriate parameters for the harmonic cavities, and discuss some of the effects that might be introduced or exacerbated by the cavities, such as synchronous phase variation along the bunch train.
Movers and shakers: granular damping in microgravity.
Bannerman, M N; Kollmer, J E; Sack, A; Heckel, M; Mueller, P; Pöschel, T
2011-07-01
The response of an oscillating granular damper to an initial perturbation is studied using experiments performed in microgravity and granular dynamics simulations. High-speed video and image processing techniques are used to extract experimental data. An inelastic hard sphere model is developed to perform simulations and the results are in excellent agreement with the experiments. In line with previous work, a linear decay of the amplitude is observed. Although this behavior is typical for a friction-damped oscillator, through simulation it is shown that this effect is still present even when friction forces are absent. A simple expression is developed which predicts the optimal damping conditions for a given amplitude and is independent of the oscillation frequency and particle inelasticities.
Relativity damps OPEP in nuclear matter
Banerjee, M.K.
1998-06-01
Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. The author finds that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. He shows that the damping of derivative-coupled OPEP is actually due to the decrease of M{sup *}/M with increasing density. He points out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M{sup *} it cannot replicate the damping. He suggests an examination of the feasibility of using pseudoscalar coupled {pi}N interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.
Enthalpy damping for the steady Euler equations
NASA Technical Reports Server (NTRS)
Jespersen, D. C.
1984-01-01
For inviscid steady flow problems where the enthalpy is constant at steady state, it was previously proposed to use the difference between the local enthalpy and the steady state enthalpy as a driving term to accelerate convergence of iterative schemes. This idea is analyzed, both on the level of the partial differential equation and on the level of a particular finite difference scheme. It is shown that for the two-dimensional unsteady Euler equations, a hyperbolic system with eigenvalues on the imaginary axis, there is no enthalpy damping strategy which moves all the eigenvalues into the open left half plane. For the numerical scheme, however, the analysis shows and examples verify that enthalpy damping is potentially effective in accelerating convergence to steady state.
Enthalpy damping for the steady Euler equations
NASA Technical Reports Server (NTRS)
Jespersen, D. C.
1985-01-01
For inviscid steady flow problems where the enthalpy is constant at steady state, it was previously proposed to use the difference between the local enthalpy and the steady state enthalpy as a driving term to accelerate convergence of iterative schemes. This idea is analyzed, both on the level of the partial differential equation and on the level of a particular finite difference scheme. It is shown that for the two-dimensional unsteady Euler equations, a hyperbolic system with eigenvalues on the imaginary axis, there is no enthalpy damping strategy which moves all the eigenvalues into the open left half plane. For the numerical scheme, however, the analysis shows and examples verify that enthalpy damping is potentially effective in accelerating convergence to steady state.
Utilising HVDC to damp power oscillations
Smed, T.; Andersson, G. . Dept. of Electric Power Systems)
1993-04-01
In this paper, damping of slow oscillations with active and reactive power modulation of HVDC-links is analyzed with the aim of gaining a physical insight into the problem. The analysis shows that active power modulation is efficient when applied to a short mass-scaled electrical distance from one of the swinging machines, and reactive power modulation is most efficient when there exists a well-defined power flow direction and the modulation is made at a point close to the electrical midpoint between the swinging machines. It is shown that the intuitively appealing feedback signals frequency and derivative of the voltage are appropriate for active and reactive power modulation, respectively. The impact of the constraints imposed by the HVDC equations are analyzed, and it is determined when the implicit reactive power modulation resulting from constant [gamma] control may be detrimental for the damping.
On the damping capacity of cast irons
NASA Astrophysics Data System (ADS)
Golovin, S. A.
2012-07-01
The treatment of experimental data on the amplitude-dependent internal friction (ADIF) in terms of various theoretical models has revealed a staged character and the main mechanisms of the processes of energy dissipation in graphite with increasing amplitude of vibrations upon cyclic loading. It is shown that the level of the damping capacity of lamellar cast iron depends on the relationship between the elastic and strength characteristics of graphite and the matrix phase. In cast irons with a rigid matrix structure (pearlite, martensite), the energy dissipation is determined by the volume fraction and morphology of the initial graphite phase. In cast irons with a softer metallic phase (ferrite), the contact interaction of graphite inclusions with the matrix and the properties of the matrix introduce additional sources of high damping.
Pressurized fluid damping of nanoelectromechanical systems.
Svitelskiy, Oleksiy; Sauer, Vince; Liu, Ning; Cheng, Kar-Mun; Finley, Eric; Freeman, Mark R; Hiebert, Wayne K
2009-12-11
Interactions of nanoscale structures with fluids are of current interest both in the elucidation of fluid dynamics at these small scales, and in determining the ultimate performance of nanoelectromechanical systems outside of vacuum. We present a comprehensive study of nanomechanical damping in three gases (He, N2, CO2), and liquid CO2. Resonant dynamics in multiple devices of varying size and frequency is measured over 10 decades of pressure (1 mPa-20 MPa) using time-domain stroboscopic optical interferometry. The wide pressure range allows full exploration of the regions of validity of Newtonian and non-Newtonian flow damping models. Observing free molecular flow behavior extending above 1 atm, we find a fluid relaxation time model to be valid throughout, but not beyond, the non-Newtonian regime, and a Newtonian flow vibrating spheres model to be valid in the viscous limit.
Development of Transverse Modes Damped DLA Structure
Jing, C.; Kanareykin, A.; Schoessow, P.; Gai, W.; Konecny, R.; Power, J. G.; Conde, M.
2009-01-22
As the dimensions of accelerating structures become smaller and beam intensities higher, the transverse wakefields driven by the beam become quite large with even a slight misalignment of the beam from the geometric axis. These deflection modes can cause inter-bunch beam breakup and intra-bunch head-tail instabilities along the beam path, and thus BBU control becomes a critical issue. All new metal based accelerating structures, like the accelerating structures developed at SLAC or power extractors at CLIC, have designs in which the transverse modes are heavily damped. Similarly, minimizing the transverse wakefield modes (here the HEMmn hybrid modes in Dielectric-Loaded Accelerating (DLA) structures) is also very critical for developing dielectric based high energy accelerators. In this paper, we present the design of a 7.8 GHz transverse mode damped DLA structure currently under construction, along with plans for the experimental program.
Active Vibration Damping of Solar Arrays
NASA Astrophysics Data System (ADS)
Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas
2012-07-01
Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.
Plasmon damping in graphene out of equilibrium
NASA Astrophysics Data System (ADS)
Sun, Zhiyuan; Basov, Dimitri; Fogler, Michael
Motivated by recent experiments with graphene under high photoexcitation, we study theoretically plasmons of graphene in the two-temperature regime, i.e., the regime where electrons are much hotter than the lattice. We calculate the plasmon damping due to scattering of electrons by acoustic phonons, which is the dominant intrinsic contribution in clean graphene. As the system relaxes to equilibrium, the plasmon frequency adiabatically changes with time. We show that this causes a partial compensation of the plasmon damping. A similar mechanism may apply to another collective mode (the energy wave) predicted to exist in graphene in the low-frequency hydrodynamic regime. Implications for infrared and THz pump-probe experiments are discussed.
Wakefield Damping for the CLIC Crab Cavity
Ambattu, P.K.; Burt, G.; Dexter, A.C.; Carter, R.G.; Khan, V.; Jones, R.M.; Dolgashev, V.; /SLAC
2011-12-01
A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.
The impact damped harmonic oscillator in free decay
NASA Technical Reports Server (NTRS)
Brown, G. V.; North, C. M.
1987-01-01
The impact-damped oscillator in free decay is studied by using time history solutions. A large range of oscillator amplitude is covered. The amount of damping is correlated with the behavior of the impacting mass. There are three behavior regimes: (1) a low amplitude range with less than one impact per cycle and very low damping, (2) a useful middle amplitude range with a finite number of impacts per cycle, and (3) a high amplitude range with an infinite number of impacts per cycle and progressively decreasing damping. For light damping the impact damping in the middle range is: (1) proportional to impactor mass, (2) additive to proportional damping, (3) a unique function of vibration amplitude, (4) proportional to 1-epsilon, where epsilon is the coefficient of restitution, and (5) very roughly inversely proportional to amplitude. The system exhibits jump phenomena and period doublings. An impactor with 2 percent of the oscillator's mass can produce a loss factor near 0.1.
Damping in Ferrous Shape Memory Alloys
1993-08-01
time it has been proposed that the solution lies in the approach of energy dissipation by using metallic structural materials which have inherent...and automotive manufacturing plants, has never achieved commercial producton . 1-b. Ferromagnetic alloys, such as Fe-Cr alloys High damping Fe-Cr alloys...Pre-exsiring mar~en-si,ýe worms orwie treenred orieL a ion ! A Lr cow s SL AL 14- L AL Figure 26. Schematic illustration of various processes involved
Fluidic Technology Investigation - Suspension Damping Simulations
1977-01-01
IF (w (I LT’ CVM)~4$1 IF ( Wrf 1 0 i CmpY MX2)V?1112wW~ CALL ORPArIP:(Pcx) pP,i.,IERR) .......-or pi i v~,R4p CAlLA (QAI)Rr7,4,?,T.ERR) T F Z (I ~LT C V...Damper Damping Devices Suspension Systems Shock Absorbers Adaptive Suspension Systems Hydro -Fluidics 20. ABSTRACT (Continue on reverse side if necessary
Robot vibration control using inertial damping forces
NASA Technical Reports Server (NTRS)
Lee, Soo Han; Book, Wayne J.
1991-01-01
This paper concerns the suppression of the vibration of a large flexible robot by inertial forces of a small robot which is located at the tip of the large robot. A controller for generating damping forces to a large robot is designed based on the two time scale model. The controller does not need to calculate the quasi-steady variables and is efficient in computation. Simulation results show the effectiveness of the inertial forces and the controller designed.
Robot vibration control using inertial damping forces
NASA Technical Reports Server (NTRS)
Lee, Soo Han; Book, Wayne J.
1989-01-01
The suppression is examined of the vibration of a large flexible robot by inertial forces of a small robot which is located at the tip of the large robot. A controller for generating damping forces to a large robot is designed based on the two time scale mode. The controller does not need to calculate the quasi-steady state variables and is efficient in computation. Simulation results show the effectiveness of the inertial forces and the controller designed.
Damping Materials, Finite Elements and Special Projects.
1982-12-01
made of either Haynes Alloy Number 188, Hastalloy C, Hastalloy X, or 17 - 4PH stainless steel Hastalloy X. Figure 1.26 is a schematic of the test...Motors Corporation (DDA), conducted a cooperative effort to characterize a DDA proprietary temperature damping material. The UDRI supplied two 17 - 4PH ...range at which the 17 - 4PH stainless steel beams could be tested. Serious discrepancy was noted between the structural loss factors derived from the room
Vibration Damping Response of Composite Materials
1991-04-01
to predict the vibration damping of these coposites. L lein Irauu, .. rii. se i-s foi tesi specimel gC-miLtrics oSl0y, so that - material...manner that the strain in the x direction was determined. This development results in the transverse strain given as av (x,y,z) avO (x,y)ei~ t a 2wO(xy) ei
Hummingbird Comet Nucleus Analysis Mission
NASA Technical Reports Server (NTRS)
Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.
2000-01-01
Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.
Collisional damping rates for plasma waves
NASA Astrophysics Data System (ADS)
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2016-06-01
The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.
Synchrosqueezed wavelet transform for damping identification
NASA Astrophysics Data System (ADS)
Mihalec, Marko; Slavič, Janko; Boltežar, Miha
2016-12-01
Synchrosqueezing is a procedure for improving the frequency localization of a continuous wavelet transform. This research focuses on using a synchrosqueezed wavelet transform (SWT) to determine the damping ratios of a vibrating system using a free-response signal. While synchrosqueezing is advantageous due to its localisation in the frequency, damping identification with the original SWT is not sufficiently accurate. Here, the synchrosqueezing was researched in detail, and it was found that an error in the frequency occurs as a result of the numerical calculation of the preliminary frequencies. If this error were to be compensated, a better damping identification would be expected. To minimize the frequency-shift error, three different strategies are investigated: the scale-dependent coefficient method, the shifted-coefficient method and the autocorrelated-frequency method. Furthermore, to improve the SWT, two synchrosqueezing criteria are introduced: the average SWT and the proportional SWT. Finally, the proposed modifications are tested against close modes and the noise in the signals. It was numerically and experimentally confirmed that the SWT with the proportional criterion offers better frequency localization and performs better than the continuous wavelet transform when tested against noisy signals.
A comparison of viscoelastic damping models
NASA Technical Reports Server (NTRS)
Slater, Joseph C.; Belvin, W. Keith; Inman, Daniel J.
1993-01-01
Modern finite element methods (FEM's) enable the precise modeling of mass and stiffness properties in what were in the past overwhelmingly large and complex structures. These models allow the accurate determination of natural frequencies and mode shapes. However, adequate methods for modeling highly damped and high frequency dependent structures did not exist until recently. The most commonly used method, Modal Strain Energy, does not correctly predict complex mode shapes since it is based on the assumption that the mode shapes of a structure are real. Recently, many techniques have been developed which allow the modeling of frequency dependent damping properties of materials in a finite element compatible form. Two of these methods, the Golla-Hughes-McTavish method and the Lesieutre-Mingori method, model the frequency dependent effects by adding coordinates to the existing system thus maintaining the linearity of the model. The third model, proposed by Bagley and Torvik, is based on the Fractional Calculus method and requires fewer empirical parameters to model the frequency dependence at the expense of linearity of the governing equations. This work examines the Modal Strain Energy, Golla-Hughes-McTavish and Bagley and Torvik models and compares them to determine the plausibility of using them for modeling viscoelastic damping in large structures.
Metallic materials for mechanical damping capacity applications
NASA Astrophysics Data System (ADS)
Crăciun, R. C.; Stanciu, S.; Cimpoeșu, R.; (Dragoș Ursanu, A. I.; Manole, V.; Paraschiv, P.; Chicet, D. L.
2016-08-01
Some metallic materials exhibit good damping capacity of mechanical energy into thermal energy. This property along with the others metallic characteristics make this materials interesting for a big number of applications. These materials can be used as bumpers in different applications including automotive field. Beside grey cast iron and shape memory alloys few new metallic materials are presented for the supposition of high damping capacity. We analyze the causes that increase the internal friction of some metallic materials and possibilities to enhance this property through different mechanical, physical or chemical methods. Shape memory alloys, especially those based on copper, present a different damping capacity on martensite, austenite or transition state. In the transformation range M ↔A, which in case of copper base shape memory alloys is quite large, the metallic intelligent materials present a high internal friction, almost comparable with natural rubber behavior that can transform mechanical energy into thermal energy till a certain value of the external solicitation. These materials can be used as noise or small vibrations bumpers or even as shock absorbers in automotive industry.
Active damping of the SOFIA Telescope assembly
NASA Astrophysics Data System (ADS)
Keas, Paul J.; Dunham, Edward; Lampater, Ulrich; Pfüller, Enrico; Teufel, Stefan; Roeser, Hans-Peter; Wiedemann, Manuel; Wolf, Jürgen
2012-09-01
The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) employs a 2.5-meter reflector telescope in a Boeing 747SP. The telescope is housed in an open cavity and is subjected to aeroacoustic and inertial disturbances in flight. To meet pointing requirements, SOFIA must achieve a pointing stability of approximately 0.5 arcseconds RMS. An active damping control system is being developed for SOFIA to reduce image jitter and image degradation due to resonance of the telescope assembly. Our paper discusses the history of the active damping design for SOFIA, from early concepts to the current implementation which has recently completed a ground and flight testing for proof-of-concept. We describe some milestones in the analysis and testing of the telescope assembly which guided the development of the vibration control system. The control synthesis approach and current implementation of the active damping control system is presented. Finally, we summarize the performance observed in early flight tests and the steps that are currently foreseen to completing the development of this system.
Random Response of Linear Hysteretic Damping
Floris, Claudio
2008-07-08
The probabilistic characterization of the response of a single-degree-of-freedom (SDOF) oscillator with linear hysteretic damping excited by ground motion described by zero mean stationary Gaussian processes is achieved by profiting from a steady-state solution of the motion equation, valid when the excitation is given by the superposition of harmonics. The model of linear hysteretic damping has been introduced to fit damping mechanisms in which the dissipation rate is independent of frequency, and mathematically it is described by the Hilbert transform of the response. Though this model is debated since it violates the principle of causality, its intrinsic simplicity makes it preferable to other models. The steady-state solution of the motion equation proposed in this paper allows a closed form evaluation of the respone mean square value. However, the numerical examples show that this quantity is affected by the mechanism of energy dissipation only when this is large. On the contrary, for a low capacity of dissipation the response mean square value is rather insensitive to the dissipation mechanism.
Checkerboard Theory of the Nucleus.
NASA Astrophysics Data System (ADS)
Lach, Theodore
2006-04-01
The Checker Board Model (CBM) is a 2D model of the nucleus that proposes that the synchronization of the 2 outer rotating quarks in the nucleons accounts for magnetic moment of the nucleons and that the magnetic flux from the nucleons couples (weaves) into the 2D checker board array structures and this magnetic coupling in addition to electrostatic forces of the rotating and stationary quarks accounts for the apparent strong nuclear force. The symmetry of the He nucleus helps explain why this 2D structure is so stable. This model explain the mass of the proton and neutron, along with their magnetic moments and their absolute and relative sizes in terms of the above structure and predict the masses of two newly proposed quarks ^(1): the ``up'' and the ``dn'' quarks. Since the masses of the ``up'' and ``dn'' quark determined by the CBM (237.31 MeV and 42.392 MeV respectively) did not fit within the standard model as candidates for u and d, a new model (New Physics) had to be invented. This new particle physics model predicts that nature has 5 generations not 3. (1). T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000). (2). T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/
Nembach, Hans T; Shaw, Justin M; Boone, Carl T; Silva, T J
2013-03-15
We demonstrate a strong dependence of the effective damping on the nanomagnet size and the particular spin-wave mode that can be explained by the theory of intralayer transverse-spin pumping. The effective Landau-Lifshitz damping is measured optically in individual, isolated nanomagnets as small as 100 nm. The measurements are accomplished by use of a novel heterodyne magneto-optical microwave microscope with unprecedented sensitivity. Experimental data reveal multiple standing spin-wave modes that we identify by use of micromagnetic modeling as having either localized or delocalized character, described generically as end and center modes. The damping parameter of the two modes depends on both the size of the nanomagnet as well as the particular spin-wave mode that is excited, with values that are enhanced by as much as 40% relative to that measured for an extended film. Contrary to expectations based on the ad hoc consideration of lithography-induced edge damage, the damping for the end mode decreases as the size of the nanomagnet decreases. The data agree with the theory for damping caused by the flow of intralayer transverse spin currents driven by the magnetization curvature. These results have serious implications for the performance of nanoscale spintronic devices such as spin-torque-transfer magnetic random access memory.
Discrete-layered damping model of multilayer plate with account of internal damping
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Gazizullin, R. K.
2016-11-01
Construction of discrete-layered damping model of multilayer plate in small displacement and deformations with account of internal damping of layers of Thompson- Kelvin-Voight model is presented. Based on derived equations, analytical solution is given to the static damping problem of simply supported single-layer rectangular plate subjected to uniformly distributed pressure, which is applied to one of its boundary planes. Convergence to the three-dimensional case is analysed for the obtained solution with respect to the dependence on dimension of mesh in the thickness direction of plate. For thin plates, dimension reduction of the formulated problem is set on the basis of simplifying hypothesis applied for each layer.
Classifiers for centrality determination in proton-nucleus and nucleus-nucleus collisions
NASA Astrophysics Data System (ADS)
Altsybeev, Igor; Kovalenko, Vladimir
2017-03-01
Centrality, as a geometrical property of the collision, is crucial for the physical interpretation of nucleus-nucleus and proton-nucleus experimental data. However, it cannot be directly accessed in event-by-event data analysis. Common methods for centrality estimation in A-A and p-A collisions usually rely on a single detector (either on the signal in zero-degree calorimeters or on the multiplicity in some semi-central rapidity range). In the present work, we made an attempt to develop an approach for centrality determination that is based on machine-learning techniques and utilizes information from several detector subsystems simultaneously. Different event classifiers are suggested and evaluated for their selectivity power in terms of the number of nucleons-participants and the impact parameter of the collision. Finer centrality resolution may allow to reduce impact from so-called volume fluctuations on physical observables being studied in heavy-ion experiments like ALICE at the LHC and fixed target experiment NA61/SHINE on SPS.
Non-Linear Slosh Damping Model Development and Validation
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can
Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T.
2013-03-25
In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.
Exceptionally bright, compact starburst nucleus
Margon, B.; Anderson, S.F.; Mateo, M.; Fich, M.; Massey, P.
1988-11-01
Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies. 30 references.
Nucleus morphology of Comet Halley
NASA Technical Reports Server (NTRS)
Reitsema, H. J.; Delamere, W. A.; Huebner, W. F.; Keller, H. U.; Schmidt, W. K. H.; Wilhelm, K.; Schmidt, H. U.; Whipple, Fred L.
1986-01-01
Images obtained by the Halley multicolor camera were used to determine the projected size and shape of the nucleus. The location of the terminator and numerous surface features were determined. There is good correlation between the brightest surface features and the dust jets; however, many bright features are seen which are not associated with jets. Most of the observed features are circular and appear to be related to surface elevation. The angularity of the terminator gives an indication of the three-dimensional structure of the face which was observed.
Damping in high-temperature superconducting levitation systems
Hull, John R.
2009-12-15
Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.
Active member bridge feedback control for damping augmentation
NASA Technical Reports Server (NTRS)
Chen, Gun-Shing; Lurie, Boris J.
1992-01-01
An active damping augmentation approach using active members in a structural system is described. The problem of maximizing the vibration damping in a lightly damped structural system is considered using the analogy of impedance matching between the load and source impedances in an electrical network. The proposed active damping augmentation approach therefore consists of finding the desired active member impedances that maximize the vibration damping, and designing a feedback control in order to achieve desired active member impedances. This study uses a bridge feedback concept that feeds back a combination of signals from sensors of the axial force and relative velocity across the active member to realize the desired active member impedance. The proposed active damping augmentation approach and bridge feedback concept were demonstrated on a three-longeron softly suspended truss structure.
Vibration control through passive constrained layer damping and active control
NASA Astrophysics Data System (ADS)
Lam, Margaretha J.; Inman, Daniel J.; Saunders, William R.
1997-05-01
To add damping to systems, viscoelastic materials (VEM) are added to structures. In order to enhance the damping effects of the VEM, a constraining layer is attached. When this constraining layer is an active element, the treatment is called active constrained layer damping (ACLD). Recently, the investigation of ACLD treatments has shown it to be an effective method of vibration suppression. In this paper, the treatment of a beam with a separate active element and passive constrained layer (PCLD) element is investigated. A Ritz- Galerkin approach is used to obtain discretized equations of motion. The damping is modeled using the GHM method and the system is analyzed in the time domain. By optimizing on the performance and control effort for both the active and passive case, it is shown that this treatment is capable of lower control effort with more inherent damping, and is therefore a better approach to damp vibration.
Research on damping properties optimization of variable-stiffness plate
NASA Astrophysics Data System (ADS)
Wen-kai, QI; Xian-tao, YIN; Cheng, SHEN
2016-09-01
This paper investigates damping optimization design of variable-stiffness composite laminated plate, which means fibre paths can be continuously curved and fibre angles are distinct for different regions. First, damping prediction model is developed based on modal dissipative energy principle and verified by comparing with modal testing results. Then, instead of fibre angles, the element stiffness and damping matrixes are translated to be design variables on the basis of novel Discrete Material Optimization (DMO) formulation, thus reducing the computation time greatly. Finally, the modal damping capacity of arbitrary order is optimized using MMA (Method of Moving Asymptotes) method. Meanwhile, mode tracking technique is employed to investigate the variation of modal shape. The convergent performance of interpolation function, first order specific damping capacity (SDC) optimization results and variation of modal shape in different penalty factor are discussed. The results show that the damping properties of the variable-stiffness plate can be increased by 50%-70% after optimization.
Dynamic analyses of viscoelastic dielectric elastomers incorporating viscous damping effect
NASA Astrophysics Data System (ADS)
Zhang, Junshi; Zhao, Jianwen; Chen, Hualing; Li, Dichen
2017-01-01
In this paper, based on the standard linear solid rheological model, a dynamics model of viscoelastic dielectric elastomers (DEs) is developed with incorporation of viscous damping effect. Numerical calculations are employed to predict the damping effect on the dynamic performance of DEs. With increase of damping force, the DEs show weak nonlinearity and vibration strength. Phase diagrams and Poincaré maps are utilized to detect the dynamic stability of DEs, and the results indicate that a transition from aperiodic vibration to quasi-periodic vibration occurs with enlargement of damping force. The resonance properties of DEs including damping effect are subsequently analyzed, demonstrating a reduction of resonant frequency and resonance peak with increase of damping force.
Higher order mode damping in an ALS test cavity
Jacob, A.F.; Lamberston, G.R. ); Barry, W. )
1990-06-01
The higher order mode attenuation scheme proposed for the Advanced Light Source accelerating cavities consists of two broad-band dampers placed 90{degrees} apart on the outer edge. In order to assess the damping efficiency a test assembly was built. The HOM damping was obtained by comparing the peak values of the transmission through the cavity for both the damped and the undamped case. Because of the high number of modes and frequency shifts due to the damping gear, the damping was assessed statistically, by averaging over several modes. In the frequency range from 1.5 to 5.5 GHz, average damping greater than 100 was obtained. 1 ref., 6 figs.
Imaging of Damped Ly-alpha Absorbers
NASA Astrophysics Data System (ADS)
Jim, K. T. C.; Roth, K. C.
1998-05-01
Intervening H I gas clouds toward QSOs give rise to damped Ly-alpha absorption. Because of the high column density (N(H I)>= 2*E(20) cm(-2) ) these systems have been thought to be galactic disks in some stage of formation. However, because potential optical counterparts have not been identified for most damped Ly-alpha systems, it is possible that some of the absorbing systems could be dwarf irregular galaxies or low surface brightness galaxies, and are thus difficult to image. In any case, the absorbers are expected to have small angular separation from the QSOs, and so high resolution imaging is required to differentiate the absorbers from the QSOs. Because previous studies have not shown any dominant morphological form for the few candidate objects known, our images are obtained with the Hawaii tip-tilt system in order to achieve the best possible morphological classification. By imaging in the NIR and optical bands that bracket the 4000 Angstroms break of these Ly-alpha absorbers, we can more readily select candidate objects by photometrically constraining their redshifts. In our sample of 14 QSOs with abosorbers from 1
Researches on Track Reconstruction for DAMPE
NASA Astrophysics Data System (ADS)
Lu, T. S.; Lei, S. J.; Zang, J. J.; Chang, J.; Wu, J.
2016-05-01
The Dark Matter Particle Explorer (DAMPE) is aimed to study the existence and distribution of dark matter via observation of high energy particles in space with unprecedented large energy bandwidth, high energy resolution, and high space resolution. The track reconstruction is to restore the positions and angles of the incident particles using the multiple observations of different channels at different positions, and its accuracy determines the angular resolution of the detector. The track reconstruction is mainly based on the observations of two sub-detectors, namely, the Silicon Tracker (STK) detector and the BGO (Bi_4Ge_3O12) calorimeter. In accordance with the design and structure of the two sub-detectors and using the data collected during the beam tests and ground tests, we provide a detailed introduction of the track reconstruction of DAMPE data, including three basic steps, the selection of track hits, the fitting of track hits, and the judgement of the best track among (most probably) many of them. Since a high energy particle most probably leaves more than one hit in each level of the STK and BGO, we first provide a method to constrain the STK clusters for the track reconstruction using the rough result of the BGO reconstruction. We apply two different algorithms, the Kalman filter and the least square linear fitting, to fit the track hits. The consistency of the results obtained independently via the two algorithms confirms the validity of our track reconstruction results, and we discuss the advantages/disadvantages of each method. Several criteria combining the BGO and STK detection are discussed for picking out the most possible track among all the tracks found in the track reconstruction. Using the track reconstruction methods mentioned in this article and the beam test data, we confirm that the angular resolution of DAMPE satisfies the requirement in design.
Nutation damping in viscoelastic tumbling rotators
NASA Astrophysics Data System (ADS)
Frouard, Julien; Efroimsky, Michael
2015-11-01
Presently, 138 asteroids show signs of being in non-principal spin states (Warner et al. 2009, updated September 2015). Such spin is often called `tumble' or `wobble'. The instantaneous rotation axis of a wobbling body performs nutation about the direction of the (conserved) angular-momentum vector. Incited by collisions and YORP, wobble is mitigated by internal dissipation due to the nutation-caused alternating stresses inside the asteroid.The knowledge of the timescale related to the damping of the nutation angle is complementary to the knowledge of the timescales associated with collisions and YORP. Previous evaluations of the nutation relaxation rate were based on an inherently inconsistent approach that may be called "Q-model". First, the elastic energy in a periodically deforming rotator was calculated in assumption of the deformation being elastic. Therefrom, the energy dissipation rate was determined by introducing an ad hoc quality factor Q. This ignored the fact that friction (and the ensuing existence of Q) is due to deviation from elasticity.We use the viscoelastic Maxwell model which naturally implies dissipation (as any other viscoelastic model would). In this approach, we compute the power and damping time for an oblate ellipsoid and a prism. Now, the viscosity assumes the role of the product μQ in the empirical Q-model, with μ being the rigidity. Contrarily to the Q-model, our model naturally gives a null dissipation for a shape tending to a sphere. We also explore when the constant part of the stress can be ignored in the derivation of the damping time. The neglect of prestressing turns out to be legitimate for the mean viscosity exceeding a certain threshold value.
Status of the SLC damping rings
Hutton, A.M.; Davies-White, W.A.; Delahaye, J.P.; Fieguth, T.H.; Hofmann, A.; Jager, J.; Kloeppel, P.K.; Lee, M.J.; Linebarger, W.A.; Rivkin, L.
1985-06-01
Electron beams of full design energy 1.21 GeV and nearly full design intensity 4 x 10/sup 10/ particles/pulse (design 5 x 10/sup 10/) have been extracted from the Stanford Linac and successfully stored in the electron damping ring. Beams of less intensity have been extracted from the ring and reinjected into the Linac. The present intensity limits are not thought to be fundamental. The operating experience with the electron ring and the status of the construction of the positron ring will be discussed. 11 refs., 1 fig., 2 tabs.
Bridge feedback for active damping augmentation
NASA Technical Reports Server (NTRS)
Chen, G.-S.; Lurie, B. J.
1990-01-01
A method is described for broadband damping augmentation of a structural system in which the active members (with feedback control) were developed such that their mechanical input impedance can be electrically adjusted to maximize the energy dissipation rate in the structural system. The active member consists of sensors, an actuator, and a control scheme. A mechanical/electrical analogy is described to model the passive structures and the active members in terms of their impedance representation. As a result, the problem of maximizing dissipative power is analogous to the problem of impedance matching in the electrical network. Closed-loop performance was demonstrated for single- and multiple-active-member controlled truss structure.
HVDC system control for damping subsynchronous oscillations
Piwko, R.J.; Larsen, E.V.
1982-07-01
A method for designing a supplemental subsynchronous damping control (SSDC) for an HVDC transmission system is described. The SSDC eliminates torsional instabilities caused by interaction between conventional HVDC controls and turbine-generator rotor torsional modes of vibration. Results of digital simulation used in the design process are compared with measurements made on an HVDC simulator. Results of both digital simulations and HVDC simulator tests which demonstrate SSDC performance are shown. This research and development effort was sponsored by EPRI under RP1425-1.
Radiation damping in closed expanding universes
NASA Astrophysics Data System (ADS)
Bernui, Armando
The dynamics of a coupled model (harmonic oscillator-relativistic scalar field) in Conformal Robertson-Walker (k = +1) spacetimes is investigated. The exact radiation-reaction equation of the source-including the retarded radiation terms due to the closed space geometry - is obtained and analyzed. A suitable family of Lyapunov functions is constructed to show that, if the spacetime expands monotonely, then the source's energy damps. A numerical simulation of this equation for expanding Universes, with and without Future Event Horizon, is performed.
System for damping vibrations in a turbine
Roberts, III, Herbert Chidsey; Johnson, Curtis Alan; Taxacher, Glenn Curtis
2015-11-24
A system for damping vibrations in a turbine includes a first rotating blade having a first ceramic airfoil, a first ceramic platform connected to the first ceramic airfoil, and a first root connected to the first ceramic platform. A second rotating blade adjacent to the first rotating blade includes a second ceramic airfoil, a second ceramic platform connected to the second ceramic airfoil, and a second root connected to the second ceramic platform. A non-metallic platform damper has a first position in simultaneous contact with the first and second ceramic platforms.
Coatings for High-Temperature Vibration Damping of Turbines
2009-10-01
damping is provided by both the thin bond- coat and thermal barrier coating (TBC) in TBC coated superalloy system, (ii) the damping from each component...bond- coat and the TBC itself, and (iii) damping from EB-PVD deposited TBCs and platinum-modified nickel aluminide bond- coats occur at the same...closer to chemical equilibrium with existing superalloys than those currently used as bond- coats . Also, depending on the platinum content, the nickel
Test particle study of Landau damping of steepening magnetosonic waves
NASA Technical Reports Server (NTRS)
Matsumoto, H.; Barnes, A.
1982-01-01
A test particle study of Landau damping of steepening large-amplitude magnetosonic waves is made. Motions of test particles in a model of a steepening large-amplitude magnetosonic wave are traced. The kinetic energy change of the ensemble of test particles is computed to estimate the effective Landau damping rate of the magnetosonic wave. The numerical results are compared with the linear kinetic theory of Landau damping and interpreted in terms of a simple physical picture for particle trapping.
Critical damping constant of microwave-assisted magnetization switching
NASA Astrophysics Data System (ADS)
Yamaji, Toshiki; Arai, Hiroko; Matsumoto, Rie; Imamura, Hiroshi
2016-02-01
Microwave-assisted switching of magnetization in a perpendicularly magnetized disk was theoretically studied and special attention was paid to the effect of a damping constant on the switching field. We found that there exists a critical damping constant above which the switching field suddenly increases. We derived an analytical expression of the critical damping constant and showed that it decreases with increasing frequency of the microwave field, while it increases with increasing amplitude of the microwave field and the effective anisotropy field.
Existence and damping of toroidicity-induced Alfven eigenmodes
Mahajan, S.M.; Mett, R.R.
1991-12-01
A new method of analyzing the toroidicity-induced Alfven eigenmode (TAE) from kinetic theory is presented. The analysis includes electron parallel dynamics non-perturbatively, an effect which is found to strongly influence the character and damping of the TAE -- contrary to previous theoretical predictions. The normal electron Landau damping of the TAE is found to be higher than previously expected, and may explain recent experimental measurements of the TAE damping coefficient. 11 refs., 1 fig., 1 tab.
Confinement-dependent damping in a layered liquid.
de Beer, Sissi; van den Ende, Dirk; Mugele, Frieder
2011-03-23
We present atomic force microscopy (AFM) measurements of the conservative oscillatory solvation forces and the damping in confined films of octamethylcyclotetrasiloxane using small amplitude modulation with magnetic driving. We find distinct maxima in the interaction damping upon probing the discrete molecular layers, supporting earlier observations of the same phenomenon using AFM with an acoustic driving scheme. The maxima in the damping are located at the same tip-surface separation as the maxima in the conservative oscillatory interaction stiffness.
Damping element for reducing the vibration of an airfoil
Campbell, Christian X; Marra, John J
2013-11-12
An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.
Design and fabrication of integrally damped composite fan blades
NASA Astrophysics Data System (ADS)
Kosmatka, John B.; Appuhn, Geoffrey
1999-06-01
The design, analysis, and fabrication methods of embedding small viscoelastic damping patches into scaled composite fan blades is presented, where the goal is to improve the blade fatigue characteristics by increasing the damping in the chord-wise modes. This discussion concentrates on improving the damping levels in a research composite shell/titanium spar fan blade, developed by NASA-Lewis and Pratt and Whitney. First, the geometry and material definition of the existing composite fan blade are presented. Second, methods for sizing and locating the damping patch are presented based upon the modal strain energy method. The layered damping patch is composed of outer layers of a TEDLAR (or KAPTON) barrier film, which encompasses a viscoelastic damping material and loose- weave scrim cloth (creep protection). Two different patch sizes and locations are discussed to provide maximum damping as well as optimal damping. Finally, procedures are outlined for fabricating the integrally damped composite fan blades. Fabricated blades will be tested at the NASA-Lewis vacuum facility.
Dependence of Kambersky damping on Fermi level and spin orientation
Qu, T.; Victora, R. H.
2014-05-07
Kambersky damping represents the loss of magnetic energy from the electrons to the lattice through the spin orbit interaction. It is demonstrated that, for bcc Fe-based transition metal alloys, the logarithm of the energy loss is proportional to the density of states at the Fermi level. Both inter and intraband damping are calculated for spins at arbitrary angle to the previously examined [001] direction. Although the easy axis 〈100〉 shows isotropic relaxation and achieves the minimum damping value of 0.002, other directions, such as 〈110〉, show substantial anisotropic damping.
Significance of modeling internal damping in the control of structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Inman, D. J.
1992-01-01
Several simple systems are examined to illustrate the importance of the estimation of damping parameters in closed-loop system performance and stability. The negative effects of unmodeled damping are particularly pronounced in systems that do not use collocated sensors and actuators. An example is considered for which even the actuators (a tip jet nozzle and flexible hose) for a simple beam produce significant damping which, if ignored, results in a model that cannot yield a reasonable time response using physically meaningful parameter values. It is concluded that correct damping modeling is essential in structure control.
Development of Composite Materials with High Passive Damping Properties
2006-05-15
SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14 . ABSTRACT The structures studied in this ONR...2.1.2 Measures of damping 8 2.1.3 Measurement methods 9 2.2 Damping in Sandwich Structures. 9 2.2.1 Analytical models 10 2.2.2 Damping and damage 14 ...2.2.3 Finite element models 14 2.2.4 Statistical energy analysis method 15 CHAPTER 3 ANALYSIS OF DAMPING IN SANDWICH MATERIALS. 24 3.1 Equation of
Damping of superfluid flow by a thermal cloud.
Meppelink, R; Koller, S B; Vogels, J M; Stoof, H T C; van der Straten, P
2009-12-31
One of the principal signatures of superfluidity is the frictionless flow of a superfluid through another substance. Here, we study the flow of a Bose-Einstein condensate through a thermal cloud and study its damping for different harmonic confinements and temperatures. The damping rates close to the collisionless regime are found to be in good agreement with Landau damping and become smaller for more homogeneous systems. In the hydrodynamic regime, we observe additional damping due to collisions, and we discuss the implications of these findings for superfluidity in this system.
Excitation of magnetization using a modulated radiation damping field.
Walls, Jamie D; Huang, Susie Y; Lin, Yung-Ya
2006-10-12
In this work, pulsed-field gradients are used to modulate the radiation damping field generated by the detection coil in an NMR experiment in order that spins with significantly different chemical shifts can affect one another via the radiation damping field. Experiments performed on solutions of acetone/water and acetone/DMSO/water demonstrate that spins with chemical shift differences much greater than the effective radiation damping field strength can still be coupled by modulating the radiation damping field. Implications for applications in high-field NMR and for developing sensitive magnetization detectors are discussed.
Characterization of damping in microfibrous material
NASA Astrophysics Data System (ADS)
Soobramaney, Pregassen; Flowers, George T.; Dean, Robert N.
2012-04-01
MEMS gyroscopes are used in many applications including harsh environments such as high-power, high-frequency acoustic noise. If the latter is at the natural frequency of the gyroscope, the proof mass will be overexcited giving rise to a corrupted gyroscope output. To mitigate the effect of the high-power, high-frequency acoustic noise, it is proposed to use nickel microfibrous sheets as an acoustic damper. For this purpose, the characterization of vibration damping in Nickel microfibrous sheets was examined in the present research effort. The sheets were made from nickel fibers with cellulose as a binding agent using a wet-lay papermaking technique. Sintering was done at 1000 °C to remove all the cellulose giving rise to a porous material. Square sheets of 20 cm were made from three diameters of nickel fibers namely 4, 8, and 12 microns. The sheets were cut into smaller pieces to fit the requirements of a fixture specially designed for this study. The fixture was attached to a LDS V408 shaker with a mass resting on a stack of the microfibrous sheets to simulate transmitted vibration by base motion with the sheet stack acting as a damper. A series of experiments was conducted using these 3 fiber diameters, different number of layers of microfibrous sheets and varying the vibration amplitude. From the collected vibration data, the stiffness and damping ratio of the microfibrous material was characterized.
Quantifying acoustic damping using flame chemiluminescence
NASA Astrophysics Data System (ADS)
Boujo, E.; Denisov, A.; Schuermans, B.; Noiray, N.
2016-12-01
Thermoacoustic instabilities in gas turbines and aeroengine combustors falls within the category of complex systems. They can be described phenomenologically using nonlinear stochastic differential equations, which constitute the grounds for output-only model-based system identification. It has been shown recently that one can extract the governing parameters of the instabilities, namely the linear growth rate and the nonlinear component of the thermoacoustic feedback, using dynamic pressure time series only. This is highly relevant for practical systems, which cannot be actively controlled due to a lack of cost-effective actuators. The thermoacoustic stability is given by the linear growth rate, which results from the combination of the acoustic damping and the coherent feedback from the flame. In this paper, it is shown that it is possible to quantify the acoustic damping of the system, and thus to separate its contribution to the linear growth rate from the one of the flame. This is achieved by post-processing in a simple way simultaneously acquired chemiluminescence and acoustic pressure data. It provides an additional approach to further unravel from observed time series the key mechanisms governing the system dynamics. This straightforward method is illustrated here using experimental data from a combustion chamber operated at several linearly stable and unstable operating conditions.
Damping of Crank-Nicolson error oscillations.
Britz, D; Østerby, O; Strutwolf, J
2003-07-01
The Crank-Nicolson (CN) simulation method has an oscillatory response to sharp initial transients. The technique is convenient but the oscillations make it less popular. Several ways of damping the oscillations in two types of electrochemical computations are investigated. For a simple one-dimensional system with an initial singularity, subdivision of the first time interval into a number of equal subintervals (the Pearson method) works rather well, and so does division with exponentially increasing subintervals, where however an optimum expansion parameter must be found. This method can be computationally more expensive with some systems. The simple device of starting with one backward implicit (BI, or Laasonen) step does damp the oscillations, but not always sufficiently. For electrochemical microdisk simulations which are two-dimensional in space and using CN, the use of a first BI step is much more effective and is recommended. Division into subintervals is also effective, and again, both the Pearson method and exponentially increasing subintervals methods are effective here. Exponentially increasing subintervals are often considerably more expensive computationally. Expanding intervals over the whole simulation period, although capable of satisfactory results, for most systems will require more cpu time compared with subdivision of the first interval only.
Vibrational resonance in Duffing systems with fractional-order damping.
Yang, J H; Zhu, H
2012-03-01
The phenomenon of vibrational resonance (VR) is investigated in over- and under-damped Duffing systems with fractional-order damping. It is found that the factional-order damping can induce change in the number of the steady stable states and then lead to single- or double-resonance behavior. Compared with vibrational resonance in the ordinary systems, the following new results are found in the fractional-order systems. (1) In the overdamped system with double-well potential and ordinary damping, there is only one kind of single-resonance, whereas there are double-resonance and two kinds of single-resonance for the case of fractional-order damping. The necessary condition for these new resonance behaviors is the value of the fractional-order satisfies α > 1. (2) In the overdamped system with single-well potential and ordinary damping, there is no resonance, whereas there is a single-resonance for the case of fractional-order damping. The necessary condition for the new result is α > 1. (3) In the underdamped system with double-well potential and ordinary damping, there are double-resonance and one kind of single-resonance, whereas there are double-resonance and two kinds of single-resonance for the case of fractional-order damping. The necessary condition for the new single-resonance is α < 1. (4) In the underdamped system with single-well potential, there is at most a single-resonance existing for both the cases of ordinary and fractional-order damping. In the underdamped systems, varying the value of the fractional-order is equivalent to change the damping parameter for some cases.
Projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse.
Liang, Huazheng; Watson, Charles; Paxinos, George
2015-01-01
The mouse precuneiform nucleus has been proposed as the midbrain locomotion center, a function ascribed to its caudal neighbor, cuneiform nucleus, in the rat, cat and other species. The present study investigated the projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse using retrograde tracer injections (fluoro-gold) into the precuneiform nucleus and anterograde tracer injections (biotinylated dextran amine) into the central amygdaloid nucleus. The entire central amygdaloid nucleus except the rostral pole had retrogradely labeled neurons, especially in the middle portion where labeled neurons were densely packed. Anterogradely labeled amygdaloid fibers approached the precuneiform nucleus from the area ventrolateral to it and terminated in the entire precuneiform nucleus. Labeled fibers were also found in laminae 5 and 6 in the upper cervical cord on the ipsilateral side. The present study is the first demonstration of projections from the central amygdaloid nucleus to the precuneiform nucleus. This projection may underpin the role of the precuneiform nucleus in the modulation of the cardiovascular activity.
Translational damping on high-frequency flapping wings
NASA Astrophysics Data System (ADS)
Parks, Perry A.
Flapping fliers such as insects and birds depend on passive translational and rotational damping to terminate quick maneuvers and to provide a source of partial stability in an otherwise unstable dynamic system. Additionally, passive translational and rotational damping reduce the amount of active kinematic changes that must be made to terminate maneuvers and maintain stability. The study of flapping-induced damping phenomena also improves the understanding of micro air vehicle (MAV) dynamics needed for the synthesis of effective flight control strategies. Aerodynamic processes which create passive translational and rotational damping as a direct result of symmetric flapping with no active changes in wing kinematics have been previously studied and were termed flapping counter-force (FCF) and flapping counter-torque (FCT), respectively. In this first study of FCF measurement in air, FCF generation is measured using a pendulum system designed to isolate and measure the relationship of translational flapping-induced damping with wingbeat frequency for a 2.86 gram mechanical flapper equipped with real cicada wings. Analysis reveals that FCF generation and wingbeat frequency are directly proportional, as expected from previous work. The quasi-steady FCF model using Blade-Element-Theory is used as an estimate for translational flapping-induced damping. In most cases, the model proves to be accurate in predicting the relationship between flapping-induced damping and wingbeat frequency. "Forward-backward" motion proves to have the strongest flapping-induced damping while "up-down" motion has the weakest.
The Study of Damped Harmonic Oscillations Using an Electronic Counter
ERIC Educational Resources Information Center
Wadhwa, Ajay
2009-01-01
We study damped harmonic oscillations in mechanical systems like the loaded spring and simple pendulum with the help of an oscillation measuring electronic counter. The experimental data are used in a software program that solves the differential equation for damped vibrations of any system and determines its position, velocity and acceleration as…
Interdigitated interdigital transducer for surface elastometry of soft damping tissue.
Danicki, Eugene; Nowicki, Andrzej; Tasinkevych, Yuriy
2013-06-01
Measurement of the shear elastic constant of soft and highly damping tissue of high Poisson ratio is quite a challenging task. It is proposed to evaluate shear wave velocity and damping of tissue by measuring the shear skimming bulk waves using one interdigitated interdigital transducer on a piezoelectric layer, such as polyvinylidene fluoride, applied to the surface of the small tissue sample.
Nonlinear Landau damping in quark-gluon plasma
NASA Astrophysics Data System (ADS)
Xiaofei, Zhang; Jiarong, Li
1995-08-01
The semiclassical kinetic equations for the quark-gluon plasma (QGP) are discussed by the multiple time-scale method. The mechanism of nonlinear Landau damping owing to non-Abelian and nonlinear wave-particle interactions in QGP is investigated, and the nonlinear Landau damping rate for the longitudinal color eigenwaves in the long-wavelength limit is calculated.
Flux-driven algebraic damping of m = 1 diocotron mode
NASA Astrophysics Data System (ADS)
Chim, Chi Yung; O'Neil, Thomas M.
2016-07-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius r = Rw at the wall of the trap. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This paper explains with analytic theory the new algebraic damping due to particle transport by both mobility and diffusion. As electrons are swept around the "cat's eye" orbits of the resonant wave-particle interaction, they form a dipole (m = 1) density distribution. From this distribution, the electric field component perpendicular to the core displacement produces E × B-drift of the core back to the axis, that is, damps the m = 1 mode. The parallel component produces drift in the azimuthal direction, that is, causes a shift in the mode frequency.
Flux-driven algebraic damping of m = 1 diocotron mode
NASA Astrophysics Data System (ADS)
Chim, Chi Yung; O'Neil, Thomas
2015-11-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produce a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius rres, where f = mfE × B (rres) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This poster explains with analytic theory and simulations the new algebraic damping due to both mobility and diffusive fluxes. As electrons are swept around the ``cat's eye'' orbits of resonant wave-particle interaction, they form a dipole (m = 1) density distribution, and the electric field from this distribution produces an E × B drift of the core back to the axis, i.e. damps the m = 1 mode. Supported by National Science Foundation Grant PHY-1414570.
Management of seedling damping-off of alfalfa
Technology Transfer Automated Retrieval System (TEKTRAN)
A vigorous and productive alfalfa stand starts with strong and uniform seedling establishment. Seed rot and seedling damping-off are a significant cause of poor stand establishment in wet soils. A number of organisms cause seed rot and seedling damping-off including several species of Pythium. As a ...
Comparison of damping treatments for gas turbine blades
NASA Astrophysics Data System (ADS)
Gordon, Robert W.; Hollkamp, Joseph J.
1996-05-01
High frequency vibration of gas turbine fan blades is a high cycle fatigue concern. Friction damping devices are ineffective in suppressing high frequency vibration modes and external damping treatments are plagued by creep concerns. An alternative approach is to apply viscoelastic material internally in the blades. In this paper, an analytical comparison of internal damping treatments for fan blades is presented. The fan blade is modeled as a solid, flat, cantilevered titanium plate. Internal portions are removed producing cavities that are filled with viscoelastic material. Configurations with one, two, and three cavities are modeled using the modal strain energy method in conjunction with finite element analysis to estimate damping. Results show that appreciable damping levels for high frequency modes are possible with stiff viscoelastic material. Other design criteria are also considered. Results indicate that the hydrostatic load from the viscoelastic material on the cavity walls may be a concern.
Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1999-01-01
Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.
Prevalence of dampness and mold in European housing stock.
Haverinen-Shaughnessy, Ulla
2012-09-01
An assessment of the prevalence of dampness and mold in European housing stock was carried out. It is based on general indicators of dampness and mold in dwellings reported in the literature. The assessment relies on recent studies, taking into account regional and climatic differences, as well as differences in study design, methodology, and definitions. Data were available from 31 European countries. Weighted prevalence estimates are 12.1% for damp, 10.3% for mold, 10.0% for water damage, and 16.5% for a combination of any one or more indicators. Significant (up to 18%) differences were observed for dampness and mold prevalence estimates depending on survey factors, region, and climate. In conclusion, dampness and/or mold problems could be expected to occur in one of every six of the dwellings in Europe. Prevalence and occurrence of different types of problems may vary across geographical areas, which can be partly explained by differences in climate.
Damping strapdown inertial navigation system based on a Kalman filter
NASA Astrophysics Data System (ADS)
Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Hao, Yong
2016-11-01
A damping strapdown inertial navigation system (DSINS) can effectively suppress oscillation errors of strapdown inertial navigation systems (SINSs) and improve the navigation accuracy of SINSs. Aiming at overcoming the disadvantages of traditional damping methods, a DSINS, based on a Kalman filter (KF), is proposed in this paper. Using the measurement data of accelerometers and calculated navigation parameters during the navigation process, the expression of the observation equation is derived. The calculation process of the observation in both the internal damping state and the external damping state is presented. Finally, system oscillation errors are compensated by a KF. Simulation and test results show that, compared with traditional damping methods, the proposed method can reduce system overshoot errors and shorten the convergence time of oscillation errors effectively.
A Physical Molecular Mechanics Method for Damped Dispersion.
Verma, Pragya; Wang, Bo; Fernandez, Laura E; Truhlar, Donald G
2017-03-22
Damped dispersion can be a significant component of the interaction energy in many physical and chemical processes, for example, physisorption and noncovalent complexation. For physically interpreting and modeling such processes, it is convenient to have an analytic method to calculate damped dispersion that is readily applicable across the entire periodic table. Of the available methods to calculate damped dispersion energy for interacting systems with overlapping charge distributions, we select symmetry-adapted perturbation theory (SAPT) as providing a reasonable definition, and of the possible analytic forms, we choose the D3(BJ) method. However, the available parameterizations of D3(BJ) include not only damped dispersion energy but also corrections for errors in specific exchange-correlation functionals. Here we present a parameterization that provides a physical measure of damped dispersion without such density functional corrections. The method generalizes an earlier method of Pernal and coworkers to all elements from hydrogen to plutonium.
Effects of ion motion on linear Landau damping
NASA Astrophysics Data System (ADS)
Xu, Hui; Sheng, Zheng-Ming; Kong, Xiang-Mu; Su, Fu-Fang
2017-02-01
The effects of ion motion on Landau damping has been studied by the use of one-dimensional Vlasov-Poisson simulation. It is shown that the ion motion may significantly change the development of the linear Landau damping. When the ion mass is multiple of proton mass, its motion will halt the linear Landau damping at some time due to the excitation of ion acoustic waves. The latter will dominate the system evolution at the later stage and hold a considerable fraction of the total energy in the system. With very small ion mass, such as in electron-positron plasma, the ion motion can suppress the linear Landau damping very quickly. When the initial field amplitude is relatively high such as with the density perturbation amplitude δn/n0 > 0.1, the effect of ion motion on Landau damping is found to be weak or even ignorable.
Vibrational modes and damping in the cochlear partition
NASA Astrophysics Data System (ADS)
O'Maoiléidigh, Dáibhid; Hudspeth, A. J.
2015-12-01
It has been assumed in models of cochlear mechanics that the primary role of the cochlear active process is to counteract the damping of the basilar membrane, the vibration of which is much larger in a living animal than post mortem. Recent measurements of the relative motion between the reticular lamina and basilar membrane imply that this assumption is incorrect. We propose that damping is distributed throughout the cochlear partition rather than being concentrated in the basilar membrane. In the absence of significant damping, the cochlear partition possesses three modes of vibration, each associated with its own locus of Hopf bifurcations. Hair-cell activity can amplify any of these modes if the system's operating point lies near the corresponding bifurcation. The distribution of damping determines which mode of vibration predominates. For physiological levels of damping, only one mode produces a vibration pattern consistent with experimental measurements of relative motion and basilar-membrane motion.
Nonlinear damping model for flexible structures. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Zang, Weijian
1990-01-01
The study of nonlinear damping problem of flexible structures is addressed. Both passive and active damping, both finite dimensional and infinite dimensional models are studied. In the first part, the spectral density and the correlation function of a single DOF nonlinear damping model is investigated. A formula for the spectral density is established with O(Gamma(sub 2)) accuracy based upon Fokker-Planck technique and perturbation. The spectral density depends upon certain first order statistics which could be obtained if the stationary density is known. A method is proposed to find the approximate stationary density explicitly. In the second part, the spectral density of a multi-DOF nonlinear damping model is investigated. In the third part, energy type nonlinear damping model in an infinite dimensional setting is studied.
Impact of Damping Uncertainty on SEA Model Response Variance
NASA Technical Reports Server (NTRS)
Schiller, Noah; Cabell, Randolph; Grosveld, Ferdinand
2010-01-01
Statistical Energy Analysis (SEA) is commonly used to predict high-frequency vibroacoustic levels. This statistical approach provides the mean response over an ensemble of random subsystems that share the same gross system properties such as density, size, and damping. Recently, techniques have been developed to predict the ensemble variance as well as the mean response. However these techniques do not account for uncertainties in the system properties. In the present paper uncertainty in the damping loss factor is propagated through SEA to obtain more realistic prediction bounds that account for both ensemble and damping variance. The analysis is performed on a floor-equipped cylindrical test article that resembles an aircraft fuselage. Realistic bounds on the damping loss factor are determined from measurements acquired on the sidewall of the test article. The analysis demonstrates that uncertainties in damping have the potential to significantly impact the mean and variance of the predicted response.
Damping of thermal acoustic oscillations in hydrogen systems
NASA Technical Reports Server (NTRS)
Gu, Youfan; Timmerhaus, Klaus D.
1991-01-01
Acoustic waves initiated by a large temperature gradient along a tube are defined as thermal acoustic oscillations (TAOs). These oscillations have been damped by introducing such sound absorbing techniques as acoustic filters, resonators, etc.. These devices serve as an acoustic sink that is used to absorb or dissipate the acoustic energy thereby eliminating or damping such oscillations. Several empirical damping techniques, such as attaching a resonator as a side branch or inserting a wire in the tube, have been developed in the past and have provided reasonable success. However, the effect of connecting tube radius, length, and resonator volume on the damping of thermal acoustic oscillations has not been evaluated quantitatively. Further, these methods have not been effective when the oscillating tube radius was relatively large. Detailed theoretical analyses of these techniques including a newly developed method for damping oscillations in a tube of relatively large radius are provided in this presentation.
Flow damping due to stochastization of the magnetic field
Ida, K.; Yoshinuma, M.; Tsuchiya, H.; Kobayashi, T.; Suzuki, C.; Yokoyama, M.; Shimizu, A.; Nagaoka, K.; Inagaki, S.; Itoh, K.; Akiyama, T.; Emoto, M.; Evans, T.; Dinklage, A.; Du, X.; Fujii, K.; Goto, M.; Goto, T.; Hasuo, M.; Hidalgo, C.; Ichiguchi, K.; Ishizawa, A.; Jakubowski, M.; Kamiya, K.; Kasahara, H.; Kawamura, G.; Kato, D.; Kobayashi, M.; Morita, S.; Mukai, K.; Murakami, I.; Murakami, S.; Narushima, Y.; Nunami, M.; Ohdach, S.; Ohno, N.; Osakabe, M.; Pablant, N.; Sakakibara, S.; Seki, T.; Shimozuma, T.; Shoji, M.; Sudo, S.; Tanaka, K.; Tokuzawa, T.; Todo, Y.; Wang, H.; Yamada, H.; Takeiri, Y.; Mutoh, T.; Imagawa, S.; Mito, T.; Nagayama, Y.; Watanabe, K. Y.; Ashikawa, N.; Chikaraishi, H.; Ejiri, A.; Furukawa, M.; Fujita, T.; Hamaguchi, S.; Igami, H.; Isobe, M.; Masuzaki, S.; Morisaki, T.; Motojima, G.; Nagasaki, K.; Nakano, H.; Oya, Y.; Suzuki, Y.; Sakamoto, R.; Sakamoto, M.; Sanpei, A.; Takahashi, H.; Tokitani, M.; Ueda, Y.; Yoshimura, Y.; Yamamoto, S.; Nishimura, K.; Sugama, H.; Yamamoto, T.; Idei, H.; Isayama, A.; Kitajima, S.; Masamune, S.; Shinohara, K.; Bawankar, P. S.; Bernard, E.; von Berkel, M.; Funaba, H.; Huang, X. L.; Ii, T.; Ido, T.; Ikeda, K.; Kamio, S.; Kumazawa, R.; Moon, C.; Muto, S.; Miyazawa, J.; Ming, T.; Nakamura, Y.; Nishimura, S.; Ogawa, K.; Ozaki, T.; Oishi, T.; Ohno, M.; Pandya, S.; Seki, R.; Sano, R.; Saito, K.; Sakaue, H.; Takemura, Y.; Tsumori, K.; Tamura, N.; Tanaka, H.; Toi, K.; Wieland, B.; Yamada, I.; Yasuhara, R.; Zhang, H.; Kaneko, O.; Komori, A.
2015-01-01
The driving and damping mechanism of plasma flow is an important issue because flow shear has a significant impact on turbulence in a plasma, which determines the transport in the magnetized plasma. Here we report clear evidence of the flow damping due to stochastization of the magnetic field. Abrupt damping of the toroidal flow associated with a transition from a nested magnetic flux surface to a stochastic magnetic field is observed when the magnetic shear at the rational surface decreases to 0.5 in the large helical device. This flow damping and resulting profile flattening are much stronger than expected from the Rechester–Rosenbluth model. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. This observation suggests that the flow damping is due to the change in the non-diffusive term of momentum transport. PMID:25569268
Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.
2009-01-01
Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.
Damping assembly for a torque converter clutch
Dull, D.C.
1989-12-26
This patent describes a turbine damped torque converter and clutch. It comprises: a pressure plate; a torque converter turbine; a torque converter impeller; means including a control chamber for the pressure plate means for controlling the apply and release of the clutch for engaging the clutch with the impeller; a torque converter output shaft; a planetary gear arrangement including an input gear drivingly connected with the pressure plate, a reaction gear drivingly connected with the turbine, an output member drivingly connected with the output shaft and pinion gear means meshing with the input gear and the reaction gear for drivingly interconnecting the turbine and the pressure plate at a drive ratio of the turbine to the pressure plate of less than 1:1; and one-way drive means disposed between the turbine and the output shaft for preventing the turbine from overrunning the output shaft.
Active vibration damping using smart material
NASA Technical Reports Server (NTRS)
Baras, John S.; Yan, Zhuang
1994-01-01
We consider the modeling and active damping of an elastic beam using distributed actuators and sensors. The piezoelectric ceramic material (PZT) is used to build the actuator. The sensor is made of the piezoelectric polymer polyvinylidene fluoride (PVDF). These materials are glued on both sides of the beam. For the simple clamped beam, the closed loop controller has been shown to be able to extract energy from the beam. The shape of the actuator and its influence on the closed loop system performance are discussed. It is shown that it is possible to suppress the selected mode by choosing the appropriate actuator layout. It is also shown that by properly installing the sensor and determining the sensor shape we can further extract and manipulate the sensor signal for our control need.
Magnetoacoustic heating by ion Landau damping
NASA Technical Reports Server (NTRS)
Turner, L.
1980-01-01
The Vlasov-fluid model of Freidberg (1972) is used to study the resonance heating of a sharp-boundary screw pinch. The analysis provides the first treatment of the magnetoacoustic heating of a cylindrical plasma by means of ion Landau damping, which was identified as a viable dissipative mechanism for the conversion of magnetoacoustic wave energy into ion thermal energy. In addition, local and global energy conservation are considered, and formulae and numerical results for the thermal energy doubling time and the associated induced rf electric fields are presented. It is shown that collisionless absorption can provide a heating mechanism when an equilibrium plasma column is pumped by oscillations of the confining magnetic field at a frequency near the oblique magnetoacoustic frequency.
Exact Damping for Relativistic Plasma Waves
NASA Astrophysics Data System (ADS)
Swanson, D. G.
2000-10-01
The damping coefficient for a relativistic plasma may be reduced to a single integral with no approximations through use of the Newberger sum rules when k_z=0. Expanding the integral in a series, the leading term agrees with the leading term of the weak relativistic function F_7/2(z), but the remaining terms are not alike. The single expansion parameter is proportional to λ z, indicating that the result may NOT be accurately expressed as a series involving products of Bessel functions of argument λ times functions F_q(z). Expressions for the imaginary parts of all dielectric tensor elements will be presented. The real parts of the tensor elements are not as simple, but because the elements are analytic, they must likewise be modified.
Pair creation: Back reactions and damping
Bloch, J. C. R.; Mizerny, V. A.; Prozorkevich, A. V.; Roberts, C. D.; Schmidt, S. M.; Smolyansky, S. A.; Vinnik, D. V.
1999-12-01
We solve the quantum Vlasov equation for fermions and bosons, incorporating spontaneous pair creation in the presence of back reactions and collisions. Pair creation is initiated by an external impulse field and the source term is non-Markovian. A simultaneous solution of Maxwell's equation in the presence of feedback yields an internal current and electric field that exhibit plasma oscillations with a period {tau}{sub pl}. Allowing for collisions, these oscillations are damped on a time scale {tau}{sub r} determined by the collision frequency. Plasma oscillations cannot affect the early stages of the formation of a quark-gluon plasma unless {tau}{sub r}>>{tau}{sub pl} and {tau}{sub pl}{approx}1/{lambda}{sub QCD}{approx}1 fm/c. (c) 1999 The American Physical Society.
Magnetoacoustic heating by ion Landau damping
NASA Astrophysics Data System (ADS)
Turner, L.
1980-07-01
The Vlasov-fluid model of Freidberg (1972) is used to study the resonance heating of a sharp-boundary screw pinch. The analysis provides the first treatment of the magnetoacoustic heating of a cylindrical plasma by means of ion Landau damping, which was identified as a viable dissipative mechanism for the conversion of magnetoacoustic wave energy into ion thermal energy. In addition, local and global energy conservation are considered, and formulae and numerical results for the thermal energy doubling time and the associated induced rf electric fields are presented. It is shown that collisionless absorption can provide a heating mechanism when an equilibrium plasma column is pumped by oscillations of the confining magnetic field at a frequency near the oblique magnetoacoustic frequency.
Transient growth of damped baroclinic waves
NASA Technical Reports Server (NTRS)
Farrell, B.
1985-01-01
A solution of the linear initial value problem for the model of Eady with the inclusion of Ekman damping is presented. This model exhibits large transient growth of perturbations for synoptic cyclone spatial scales and a realistic value of the vertical turbulent viscosity coefficient despite the fact that all normal modes are exponentially decaying. Similar results are found for the model of Charney, implying that exponential instability cannot, in general, serve to explain the occurrence of cyclone scale disturbances in midlatiudes. Rather these are seen to arise additionally and perhaps predominantly from the release of mean flow potential energy by favorably configured initial perturbations. The Petterssen criterion for midlatitude cyclogenesis results naturally from this development as does its extension to the formation of subtropical monsoon depressions. Implications for the maintenance of midlatitude temperature gradients are discussed.
Magnetomechanical damping and magnetoelastic hysteresis in permalloy
NASA Astrophysics Data System (ADS)
Ercuta, A.; Mihalca, I.
2002-11-01
The inverse Wiedemann effect (IWE) consisting in longitudinal magnetization reversals was detected with a cylindrical permalloy layer subjected to circular DC magnetic fields while performing low frequency (~1 Hz) free torsion oscillations. Hysteresis occurring in the magnetization vs elastic strain dependence (the `magnetoelastic hysteresis') suggested irreversible processes activated mechanically. Joint vibration and magnetization time records were carried out by means of an experimental set-up including inverted pendulum and conventional integrating fluxmeter, in order to compare the relative energy losses ascribed to the magnetomechanical damping (MMD) and to the magnetoelastic hysteresis, respectively. The experimental results clearly pointed out a close connection between IWE and MMD providing evidence that, when simultaneously examined, both effects reflect the same basic phenomenon: the irreversible magnetization changes induced by the elastic strain.
Eddy-current-damped microelectromechanical switch
Christenson, Todd R.; Polosky, Marc A.
2007-10-30
A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).
Eddy-current-damped microelectromechanical switch
Christenson, Todd R.; Polosky, Marc A.
2009-12-15
A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).
Radiation damping in atomic photonic crystals.
Horsley, S A R; Artoni, M; La Rocca, G C
2011-07-22
The force exerted on a material by an incident beam of light is dependent upon the material's velocity in the laboratory frame of reference. This velocity dependence is known to be difficult to measure, as it is proportional to the incident optical power multiplied by the ratio of the material velocity to the speed of light. Here we show that this typically tiny effect is greatly amplified in multilayer systems composed of resonantly absorbing atoms exhibiting ultranarrow photonic band gaps. The amplification effect for optically trapped 87Rb is shown to be as much as 3 orders of magnitude greater than for conventional photonic-band-gap materials. For a specific pulsed regime, damping remains observable without destroying the system and significant for material velocities of a few ms(-1).
Forced oscillations in quadratically damped systems
NASA Technical Reports Server (NTRS)
Bayliss, A.
1978-01-01
Bayliss (1975) has studied the question whether in the case of linear differential equations the relationship between the stability of the homogeneous equations and the existence of almost periodic solutions to the inhomogeneous equation is preserved by finite difference approximations. In the current investigation analogous properties are considered for the case in which the damping is quadratic rather than linear. The properties of the considered equation for arbitrary forcing terms are examined and the validity is proved of a theorem concerning the characteristics of the unique solution. By using the Lipschitz continuity of the mapping and the contracting mapping principle, almost periodic solutions can be found for perturbations of the considered equation. Attention is also given to the Lipschitz continuity of the solution operator and the results of numerical tests which have been conducted to test the discussed theory.
Magnetic Damping of Solid Solution Semiconductor Alloys
NASA Technical Reports Server (NTRS)
Szofran, Frank R.; Benz, K. W.; Corell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar
1998-01-01
The objective of this study is to conduct the Earth-based research sufficient to successfully propose a flight experiment (1) to experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in conductive melts as this applies to the bulk growth of solid solution semiconducting materials in the reduced gravitational levels available in low Earth orbit and (2) to assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during space processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system was chosen because it has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit high growth rates compared to many other commonly studied alloy semiconductors. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. Some compositional anomalies observed by us in magnetic grown crystals can only be explained by TEMC; this has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface.
Magnetic Damping of Solid Solution Semiconductor Alloys
NASA Technical Reports Server (NTRS)
Szofran, Frank R.; Benz, K. W.; Croell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar
1999-01-01
The objective of this study is to: (1) experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in electrically conductive melts as this applies to the bulk growth of solid solution semiconducting materials; and (2) assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit reasonable growth rates. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. TEMC has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface. In conclusion, magnetic fields up to 5 Tesla are sufficient to eliminate time-dependent convection in silicon floating zones and possibly Bridgman growth of Ge-Si alloys. In both cases, steady convection appears to be more significant for mass transport than diffusion, even at 5 Tesla in the geometries used here. These results are corroborated in both growth configurations by calculations.
Experimental Observations on Material Damping at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Peng, Chia-Yen; Levine, Marie; Shido, Lillian; Leland, Robert
2004-01-01
This paper describes a unique experimental facility designed to measure damping of materials at cryogenic temperatures for the Terrestrial Planet Finder (TPF) mission at the Jet Propulsion Laboratory. The test facility removes other sources of damping in the measurement by avoiding frictional interfaces, decoupling the test specimen from the support system, and by using a non-contacting measurement device. Damping data reported herein are obtained for materials (Aluminum, Aluminum/Terbium/Dysprosium, Titanium, Composites) vibrating in free-free bending modes with low strain levels (< 10(exp -6) ppm). The fundamental frequencies of material samples are ranged from 14 to 202 Hz. To provide the most beneficial data relevant to TPF-like precision optical space missions, the damping data are collected from room temperatures (around 293 K) to cryogenic temperatures (below 40 K) at unevenly-spaced intervals. More data points are collected over any region of interest. The test data shows a significant decrease in viscous damping at cryogenic temperatures. The cryogenic damping can be as low as 10(exp -4) %, but the amount of the damping decrease is a function of frequency and material. However, Titanium 15-3-3-3 shows a remarkable increase in damping at cryogenic temperatures. It demonstrates over one order of magnitude increase in damping in comparison to Aluminum 6061-T6. Given its other properties (e.g., good stiffness and low conductivity) this may prove itself to be a good candidate for the application on TPF. At room temperatures, the test data are correlated well with the damping predicted by the Zener theory. However, large discrepancies at cryogenic temperatures between the Zener theory and the test data are observed.
Actomyosin contractility rotates the cell nucleus.
Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V
2014-01-21
The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.
Atomistic Mechanisms for Viscoelastic Damping in Inorganic Solids
NASA Astrophysics Data System (ADS)
Ranganathan, Raghavan
Viscoelasticity, a ubiquitous material property, can be tuned to engineer a wide range of fascinating applications such as mechanical dampers, artificial tissues, functional foams and optoelectronics, among others. Traditionally, soft matter such as polymers and polymer composites have been used extensively for viscoelastic damping applications, owing to the inherent viscous nature of interactions between polymer chains. Although this leads to good damping characteristics, the stiffness in these materials is low, which in turn leads to limitations. In this context, hard inorganic materials and composites are promising candidates for enhanced damping, owing to their large stiffness and, in some cases large loss modulus. Viscoelasticity in these materials has been relatively unexplored and atomistic mechanisms responsible for damping are not apparent. Therefore, the overarching goal of this work is to understand mechanisms for viscoelastic damping in various classes of inorganic composites and alloys at an atomistic level from molecular dynamics simulations. We show that oscillatory shear deformation serves as a powerful probe to explain mechanisms for exceptional damping in hitherto unexplored systems. The first class of inorganic materials consists of crystalline phases of a stiff inclusion in a soft matrix. The two crystals within the composite, namely the soft and a stiff phase, individually show a highly elastic behavior and a very small loss modulus. On the other hand, a composite with the two phases is seen to exhibit damping that is about 20 times larger than predicted theoretical bounds. The primary reason for the damping is due to large anharmonicity in phonon-phonon coupling, resulting from the composite microstructure. A concomitant effect is the distribution of shear strain, which is observed to be highly inhomogeneous and mostly concentrated in the soft phase. Interestingly, the shear frequency at which the damping is greatest is observed to scale with
Music and the nucleus accumbens.
Mavridis, Ioannis N
2015-03-01
Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.
SPATIAL DAMPING OF PROPAGATING KINK WAVES IN PROMINENCE THREADS
Soler, R.; Oliver, R.; Ballester, J. L.
2011-01-10
Transverse oscillations and propagating waves are frequently observed in threads of solar prominences/filaments and have been interpreted as kink magnetohydrodynamic (MHD) modes. We investigate the spatial damping of propagating kink MHD waves in transversely nonuniform and partially ionized prominence threads. Resonant absorption and ion-neutral collisions (Cowling's diffusion) are the damping mechanisms taken into account. The dispersion relation of resonant kink waves in a partially ionized magnetic flux tube is numerically solved by considering prominence conditions. Analytical expressions of the wavelength and damping length as functions of the kink mode frequency are obtained in the thin tube and thin boundary approximations. For typically reported periods of thread oscillations, resonant absorption is an efficient mechanism for the kink mode spatial damping, while ion-neutral collisions have a minor role. Cowling's diffusion dominates both the propagation and damping for periods much shorter than those observed. Resonant absorption may explain the observed spatial damping of kink waves in prominence threads. The transverse inhomogeneity length scale of the threads can be estimated by comparing the observed wavelengths and damping lengths with the theoretically predicted values. However, the ignorance of the form of the density profile in the transversely nonuniform layer introduces inaccuracies in the determination of the inhomogeneity length scale.
Experiences with active damping and impedance-matching compensators
NASA Astrophysics Data System (ADS)
Betros, Robert S.; Alvarez, Oscar S.; Bronowicki, Allen J.
1993-09-01
TRW has been implementing active damping compensators on smart structures for the past five years. Since that time there have been numerous publications on the use of impedance matching techniques for structural damping augmentation. The idea of impedance matching compensators came about by considering the flow of power in a structure undergoing vibration. The goal of these compensators is to electronically dissipate as much of this flowing power as possible. This paper shows the performance of impedance matching compensators used in smart structures to be comparable to that of active damping compensators. Theoretical comparisons between active damping and impedance matching methods are made using PZT actuators and sensors. The effects of these collocated and non-collocated PZT sensors and actuators on the types of signals they sense and actuate are investigated. A method for automatically synthesizing impedance matching compensators is presented. Problems with implementing broad band active damping and impedance matching compensators on standard Digital Signal Processing (DSP) chips are discussed. Simulations and measurements that compare the performance of active damping and impedance matching techniques for a lightly damped cantilevered beam are shown.
Design, analysis, and testing of high frequency passively damped struts
NASA Technical Reports Server (NTRS)
Yiu, Y. C.; Davis, L. Porter; Napolitano, Kevin; Ninneman, R. Rory
1993-01-01
Objectives of the research are: (1) to develop design requirements for damped struts to stabilize control system in the high frequency cross-over and spill-over range; (2) to design, fabricate and test viscously damped strut and viscoelastically damped strut; (3) to verify accuracy of design and analysis methodology of damped struts; and (4) to design and build test apparatus, and develop data reduction algorithm to measure strut complex stiffness. In order to meet the stringent performance requirements of the SPICE experiment, the active control system is used to suppress the dynamic responses of the low order structural modes. However, the control system also inadvertently drives some of the higher order modes unstable in the cross-over and spill-over frequency range. Passive damping is a reliable and effective way to provide damping to stabilize the control system. It also improves the robustness of the control system. Damping is designed into the SPICE testbed as an integral part of the control-structure technology.
Perceptual studies of violin body damping and vibrato.
Fritz, Claudia; Woodhouse, Jim; Cheng, Felicia P-H; Cross, Ian; Blackwell, Alan F; Moore, Brian C J
2010-01-01
This work explored how the perception of violin notes is influenced by the magnitude of the applied vibrato and by the level of damping of the violin resonance modes. Damping influences the "peakiness" of the frequency response, and vibrato interacts with this peakiness by producing fluctuations in spectral content as well as in frequency and amplitude. Initially, it was shown that thresholds for detecting a change in vibrato amplitude were independent of body damping, and thresholds for detecting a change in body damping were independent of vibrato amplitude. A study of perceptual similarity using triadic comparison showed that vibrato amplitude and damping were largely perceived as independent dimensions. A series of listening tests was conducted employing synthesized, recorded, or live performance to probe perceptual responses in terms of "liveliness" and preference. The results do not support the conclusion that liveliness results from the combination of the use of vibrato and a "peaky" violin response. Judgments based on listening to single notes showed inconsistent patterns for liveliness, while preferences were highest for damping that was slightly less than for a reference (real) violin. In contrast, judgments by players based on many notes showed preference for damping close to the reference value.
Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications
NASA Astrophysics Data System (ADS)
Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil
2016-01-01
The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.
Flux-driven algebraic damping of diocotron modes
Chim, Chi Yung; O’Neil, Thomas M.
2015-06-29
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 and m = 2 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius R{sub m}, where there is a matching of ω{sub m} = mω{sub E} (R{sub m}) for the mode frequency ω{sub m} and E × B-drift rotation frequency ω{sub E}. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This new mechanism of damping is due to transfer of canonical angular momentum from the mode to halo particles, as they are swept around the “cat’s eye” orbits of the resonant wave-particle interaction. This paper provides a simple derivation of the time dependence of the mode amplitudes.
Flux-driven algebraic damping of diocotron modes
NASA Astrophysics Data System (ADS)
Chim, Chi Yung; O'Neil, Thomas M.
2015-06-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 and m = 2 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius Rm, where there is a matching of ωm = mωE (Rm) for the mode frequency ωm and E × B-drift rotation frequency ωE. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This new mechanism of damping is due to transfer of canonical angular momentum from the mode to halo particles, as they are swept around the "cat's eye" orbits of the resonant wave-particle interaction. This paper provides a simple derivation of the time dependence of the mode amplitudes.
Flux-driven algebraic damping of m=2 diocotron mode
NASA Astrophysics Data System (ADS)
Chim, C. Y.; O'Neil, T. M.
2016-10-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 2 diocotron modes. Due to small field asymmetries a low density halo of electrons is transported radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius rres, where f = mfE × B (rres) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from the exponential spatial Landau damping in a linear wave-particle resonance. This poster uses analytic theory and simulations to explain the new flux-driven algebraic damping of the mode. As electrons are swept around the nonlinear ``cat's eye'' orbits of the resonant wave-particle interaction, they form a quadrupole (m = 2) density distribution, which sets up an electric field that acts back on the plasma core. The field causes an E × B drift motion that symmetrizes the core, i.e. damps the m = 2 mode. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451.
Nonlinear damping calculation in cylindrical gear dynamic modeling
NASA Astrophysics Data System (ADS)
Guilbault, Raynald; Lalonde, Sébastien; Thomas, Marc
2012-04-01
The nonlinear dynamic problem posed by cylindrical gear systems has been extensively covered in the literature. Nonetheless, a significant proportion of the mechanisms involved in damping generation remains to be investigated and described. The main objective of this study is to contribute to this task. Overall, damping is assumed to consist of three sources: surrounding element contribution, hysteresis of the teeth, and oil squeeze damping. The first two contributions are considered to be commensurate with the supported load; for its part however, squeeze damping is formulated using expressions developed from the Reynolds equation. A lubricated impact analysis between the teeth is introduced in this study for the minimum film thickness calculation during contact losses. The dynamic transmission error (DTE) obtained from the final model showed close agreement with experimental measurements available in the literature. The nonlinear damping ratio calculated at different mesh frequencies and torque amplitudes presented average values between 5.3 percent and 8 percent, which is comparable to the constant 8 percent ratio used in published numerical simulations of an equivalent gear pair. A close analysis of the oil squeeze damping evidenced the inverse relationship between this damping effect and the applied load.
Damping and energy dissipation in soft tissue vibrations during running.
Khassetarash, Arash; Hassannejad, Reza; Enders, Hendrik; Ettefagh, Mir Mohammad
2015-01-21
It has been well accepted that the vibrations of soft tissue cannot be simulated by a single sinusoidal function. In fact, these vibrations are a combination of several vibration modes. In this study, these modes are extracted applying a recently developed method namely, partly ensemble empirical mode decomposition (PEEMD). Then, a methodology for estimating the damping properties and energy dissipation caused by damping for each mode is used. Applying this methodology on simulated signals demonstrates high accuracy. This methodology is applied to the acceleration signals of the gastrocnemius muscle during sprinting and the differences between the damping properties of different vibration modes were identified. The results were 1) the damping property of high-frequency mode was higher than that for low-frequency modes. 2) All identified modes were in under damped condition, therefore, the vibrations had an oscillatory nature. 3) The damping ratios of lower modes are about 100% increased compared to higher modes. 4) The energy dissipation occurred in lower modes were much more than that for higher mode; According to the power spectrum of the ground reaction force (GRF), which is the input force into the body, the recent finding supports the muscle tuning paradigm. It is suggested that the damping properties and energy dissipation can be used to distinguish between different running conditions (surface, fatigue, etc.).
Structural dynamics and vibrations of damped, aircraft-type structures
NASA Technical Reports Server (NTRS)
Young, Maurice I.
1992-01-01
Engineering preliminary design methods for approximating and predicting the effects of viscous or equivalent viscous-type damping treatments on the free and forced vibration of lightly damped aircraft-type structures are developed. Similar developments are presented for dynamic hysteresis viscoelastic-type damping treatments. It is shown by both engineering analysis and numerical illustrations that the intermodal coupling of the undamped modes arising from the introduction of damping may be neglected in applying these preliminary design methods, except when dissimilar modes of these lightly damped, complex aircraft-type structures have identical or nearly identical natural frequencies. In such cases, it is shown that a relatively simple, additional interaction calculation between pairs of modes exhibiting this 'modal response' phenomenon suffices in the prediction of interacting modal damping fractions. The accuracy of the methods is shown to be very good to excellent, depending on the normal natural frequency separation of the system modes, thereby permitting a relatively simple preliminary design approach. This approach is shown to be a natural precursor to elaborate finite element, digital computer design computations in evaluating the type, quantity, and location of damping treatment.
Public health and economic impact of dampness and mold
Mudarri, David; Fisk, William J.
2007-06-01
The public health risk and economic impact of dampness and mold exposures was assessed using current asthma as a health endpoint. Individual risk of current asthma from exposure to dampness and mold in homes from Fisk et al. (2007), and asthma risks calculated from additional studies that reported the prevalence of dampness and mold in homes were used to estimate the proportion of U.S. current asthma cases that are attributable to dampness and mold exposure at 21% (95% confidence internal 12-29%). An examination of the literature covering dampness and mold in schools, offices, and institutional buildings, which is summarized in the appendix, suggests that risks from exposure in these buildings are similar to risks from exposures in homes. Of the 21.8 million people reported to have asthma in the U.S., approximately 4.6 (2.7-6.3) million cases are estimated to be attributable to dampness and mold exposure in the home. Estimates of the national cost of asthma from two prior studies were updated to 2004 and used to estimate the economic impact of dampness and mold exposures. By applying the attributable fraction to the updated national annual cost of asthma, the national annual cost of asthma that is attributable to dampness and mold exposure in the home is estimated to be $3.5 billion ($2.1-4.8 billion). Analysis indicates that exposure to dampness and mold in buildings poses significant public health and economic risks in the U.S. These findings are compatible with public policies and programs that help control moisture and mold in buildings.
Damping phenomena in a wire rope vibration isolation system
NASA Technical Reports Server (NTRS)
Tinker, M. L.; Cutchins, M. A.
1992-01-01
A study is presented of the dynamic characteristics of a wire rope vibration isolation system constructed with helical isolators, with emphasis placed on the analytical modeling of damping mechanisms in the system. An experimental investigation is described in which the static stiffness curve, hysteresis curves, phase plane trajectories, and frequency response curves are obtained. A semiempirical model having nonlinear stiffness, nth-power velocity damping, and variable Coulomb friction damping is developed, and the results are compared to experimental data. Several observations and conclusions are made about the dynamic phenomena in a typical wire rope vibration isolation system based on the experimental and semiempirical results.
Damping phenomena in a wire rope vibration isolation system
NASA Technical Reports Server (NTRS)
Tinker, Michael L.; Cutchins, Malcolm A.
1990-01-01
A study of the dynamic characteristics of a wire rope vibration isolation system constructed with helical isolators is presented. Emphasis is placed on the analytical modeling of damping mechanisms in the system. An experimental investigation is described in which the static stiffness curve, hysteresis curves, phase trajectories, and frequency response curves were obtained. A semi-empirical model having nonlinear stiffness, nth-power velocity damping, and variable Coulomb friction damping is developed and results are compared to experimental data. Conclusions about dynamic phenomena in the wire rope system are made based on the experimental and semi-empirical results.
Damping induced by ferrofluid seals in ironless loudspeaker
NASA Astrophysics Data System (ADS)
Pinho, M.; Génevaux, J. M.; Dauchez, N.; Brouard, B.; Collas, P.; Mézière, H.
2014-04-01
Damping induced by ferrofluid seals in ironless loudspeakers is investigated in this paper. The magnetic field is steady but not spatially constant. A model to determine the viscous damping coefficient induced by the ferrofluid seal is derived. It is a function of geometrical parameters and local viscosity of the ferrofluid in which dependence from magnetic field, shear rate and frequency is accounted for. Comparison with experimental results shows a good agreement for the thinner seals. An overestimation of the damping is observed for higher volumes. This discrepancy comes from geometric irregularities of the magnet assembly made out of several tiles.
Backup nutation damping strategy for the Galileo spacecraft
NASA Technical Reports Server (NTRS)
Eke, Fidelis O.; Eke, Estelle M.
1989-01-01
A discussion is presented of the design and testing of remedial measures that can be taken to achieve reasonable nutation damping of the Galileo spacecraft in the event of failure of its boom damper in flight. One scheme exploits the effects of payload motion on the nutational stability of a spinning spacecraft. However, the spacecraft-motion-compensation algorithm can only be used if the scan platform bore sight is pointed in a direction chosen to produce rapid damping of spacecraft nutation. A second method suggested for nutation damping is a thruster-based open-loop control algorithm, utilizing a pair of thrusters as actuators.
Damping MEMS Devices in Harsh Environments Using Active Thin Films
2008-06-17
properties of the layers was developed. Damping properties in Nitinol thin film due only to residual stresses was measured to be as high as tan delta...0.17 for large strain (0.9%). At lower strain levels a Nitinol /Silicon laminate was tested in a cantilever load frame. The damping value of the...film was measured to be 0.28 (at 0.27% strain). A Nitinol /Terfenol-D/Nickel laminate was fabricated and tested in a cantilever loading. The damping
Effects of damping on mode shapes, volume 2
NASA Technical Reports Server (NTRS)
Gates, R. M.; Merchant, D. H.; Arnquist, J. L.
1977-01-01
Displacement, velocity, and acceleration admittances were calculated for a realistic NASTRAN structural model of space shuttle for three conditions: liftoff, maximum dynamic pressure and end of solid rocket booster burn. The realistic model of the orbiter, external tank, and solid rocket motors included the representation of structural joint transmissibilities by finite stiffness and damping elements. Data values for the finite damping elements were assigned to duplicate overall low-frequency modal damping values taken from tests of similar vehicles. For comparison with the calculated admittances, position and rate gains were computed for a conventional shuttle model for the liftoff condition. Dynamic characteristics and admittances for the space shuttle model are presented.
Dissipationless Damping of Compressive MHD Modes in Twisted Flux Tubes
NASA Astrophysics Data System (ADS)
Giagkiozis, I.; Fedun, V.; Verth, G.; Goossens, M. L.; Van Doorsselaere, T.
2015-12-01
Axisymmetric modes in straight magentic flux tubes exhibit a cutoff in the long wavelength limit and no damping is predicted. However, as soon as weak magnetic twist is introduced inside as well as outside the magnetic flux tube the cutoff recedes. Furthermore, when density variations are also incomporated within the modelresonant absorption appears. In this work we explore analytically the expected damping times for waves within the Alfven continuum for different solar atmospheric conditions. Based on the results in this work we offer insight on recent observations of sausage wave damping in the chromosphere.
Investigation of empirical damping laws for the space shuttle
NASA Technical Reports Server (NTRS)
Bernstein, E. L.
1973-01-01
An analysis of dynamic test data from vibration testing of a number of aerospace vehicles was made to develop an empirical structural damping law. A systematic attempt was made to fit dissipated energy/cycle to combinations of all dynamic variables. The best-fit laws for bending, torsion, and longitudinal motion are given, with error bounds. A discussion and estimate are made of error sources. Programs are developed for predicting equivalent linear structural damping coefficients and finding the response of nonlinearly damped structures.
Damping and support in high-temperature superconducting levitation systems
Hull, John R.; McIver, Carl R.; Mittleider, John A.
2009-12-15
Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.
Nonlinear Landau damping in the ionosphere
NASA Technical Reports Server (NTRS)
Kiwamoto, Y.; Benson, R. F.
1979-01-01
A model which explains the nonresonant waves which produce the diffuse resonance observed near 3/2 f(H) by the Alouette and Isis topside sounders, where f(H) is the ambient electron cyclotron frequency, is presented. These waves are the result of plasma wave instabilities driven by anisotropic electron velocity distributions initiated by the high-power short-duration sounder pulse. Calculations of the nonlinear wave-particle coupling coefficients show that the diffuse resonance wave can be maintained by nonlinear Landau damping of the sounder-stimulated 2f(H) wave which is observed with a time duration longer than that of the diffuse resonance wave. The time duration of the diffuse resonance is determined by the transit time of the instability-generated and nonlinearly maintained diffuse resonance wave from the remote short-lived hot region back to the antenna. The model is consistent with the Alouette/Isis observations and it demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.
Influence of quasiparticle damping on magnetic stability
NASA Astrophysics Data System (ADS)
Herrmann, T.; Nolting, W.
1996-04-01
We propose a modified alloy analogy for the single-band Hubbard model, by which we investigate the possibility of spontaneous ferromagnetism in narrow energy bands. It is shown that a proper definition of the fictitious alloy enables self-consistent magnetic solutions to be found. The existence of spontaneous magnetism is mainly influenced by the lattice structure, the effective Coulomb coupling, and the band occupation. In accordance with the simple Stoner criterion, ferromagnetism appears in strongly correlated electron systems for band occupations, which locate the chemical potential μ in regions of high quasiparticle density of states. Rather realistic Curie temperatures are found. The macroscopic magnetic properties explain themselves via temperature-dependent quasiparticle densities of states, quasiparticle band structures, and respective spectral densities. It is shown how quasiparticle damping may depress quite substantially the stability of magnetic states by broadening corresponding spectral density peaks. Correlation effects lead to the expected splitting into two quasiparticle subbands (``Hubbard bands''), and under certain conditions to an additional exchange splitting of each of these quasiparticle subbands, as well as to a spin-dependent band narrowing, the combination of which gives rise to an unconventional ``inverse'' exchange shift at certain positions of the Brillouin zone.
Investigation of damping liquids for aircraft instruments
NASA Technical Reports Server (NTRS)
Keulegan, G H
1929-01-01
This report covers the results of an investigation carried on at the Bureau of Standards under a research authorization from, and with the financial assistance of, the National Advisory Committee for Aeronautics. The choice of a damping liquid for aircraft instruments is difficult owing to the range of temperature at which aircraft operate. Temperature changes affect the viscosity tremendously. The investigation was undertaken with the object of finding liquids of various viscosities otherwise suitable which had a minimum change in viscosity with temperature. The new data relate largely to solutions. The effect of temperature on the kinematic viscosity of the following liquids and solutions was determined in the temperature interval -18 degrees to +30 degrees C. (1) solutions of animal and vegetable oils in xylene. These were poppy-seed oil, two samples of neat's-foot oils, castor oil, and linseed oil. (2) solutions of mineral oil in xylene. These were Squibb's petrolatum of naphthene base and transformer oil. (3) glycerine solutions in ethyl alcohol and in mixture of 50-50 ethyl alcohol and water. (4) mixtures of normal butyl alcohol with methyl alcohol. (5) individual liquids, kerosene, mineral spirits, xylene, recoil oil. The apparatus consisted of four capillary-tube viscometers, which were immersed in a liquid bath in order to secure temperature control. The method of calibration and the related experimental data are presented.
Loss of Landau Damping for Bunch Oscillations
Burov, A.; /Fermilab
2011-04-11
Conditions for the existence, uniqueness and stability of self-consistent bunch steady states are considered. For the existence and uniqueness problems, simple algebraic criteria are derived for both the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. The onset of a discrete van Kampen mode means the emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch or multi-turn wake is sufficient to drive the instability. The method presented here assumes an arbitrary impedance, RF shape, and beam distribution function. Available areas on the intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Thresholds calculated for the Tevatron parameters and impedance model are in agreement with the observations. These thresholds are found to be extremely sensitive to the small-argument behaviour of the bunch distribution function. Accordingly, a method to increase the LLD threshold is suggested. This article summarizes and extends recent author's publications.
Dynamic risk control by human nucleus accumbens.
Nachev, Parashkev; Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio; Strange, Bryan
2015-12-01
Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established.
Microtubules move the nucleus to quiescence.
Laporte, Damien; Sagot, Isabelle
2014-01-01
The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.
Dynamic risk control by human nucleus accumbens
Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio
2015-01-01
Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667
Analysis of coils of wire rope arranged for passive damping
NASA Technical Reports Server (NTRS)
Cutchins, M. A.; Cochran, J. E., Jr.; Kumar, K.; Fitz-Coy, N. G.; Tinker, M. L.
1988-01-01
Vibration dampers constructed with multiple loops of wire rope are studied. The literature on such devices is reviewed briefly, and dynamic and static models of them are examined. Fundamental and advanced NASTRAN models for wire rope damping are considered.
Mooring Line Damping Estimation for a Floating Wind Turbine
Qiao, Dongsheng; Ou, Jinping
2014-01-01
The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design. PMID:25243231
Synchrotron and collisional damping effects on runaway electron distributions
NASA Astrophysics Data System (ADS)
Paz-Soldan, C.; Eidietis, N.; Pace, D.; Cooper, C.; Shiraki, D.; Commaux, N.; Hollmann, E.; Moyer, R.; Granetz, R.; Embreus, O.; Fulop, T.; Stahl, A.; Wilkie, G.; Aleynikov, P.; Brennan, D. P.; Liu, C.
2016-10-01
Validated models of runaway electron (RE) dissipation are required to confidently approve safe ITER Q = 10 operation. DIII-D experiments using quiescent REs are exploring the importance of synchrotron and collisional damping terms to RE dissipation. New time and energy-resolved measurements of RE bremsstrahlung hard X-ray (HXR) emission reveal stark differences between high and low energy REs as damping terms are varied. Previously reported anomalously high RE dissipation only applies to low energy REs. At high energy (where synchrotron effects are strongest) low synchrotron damping cases reach higher peak RE energy despite weaker particle confinement. Low-energy RE decay is observed concurrently with high-energy RE growth. RE dissipation models predict bump-on-tail distributions whose properties depend on the damping terms. Measured HXR spectra are very broad, as expected for bump-on-tail distributions. Work supported by the U.S. DOE under DE-FC02-04ER54698.
Gilbert damping of ferromagnetic metals incorporating inhomogeneous spin dynamics
Umetsu, Nobuyuki Miura, Daisuke; Sakuma, Akimasa
2015-05-07
The effects of inhomogeneous spin dynamics on magnetic damping in ferromagnetic metals are studied. On the basis of linear response theory, we derive the microscopic expression for the Gilbert damping term in a two-dimensional electron gas interacting with the magnetization via exchange coupling in the presence of Rashba spin-orbit coupling (SOC). In the spin wave propagating with the wave vector, q, the behavior of q-dependent damping can be explained in terms of both inter- and intra-band spin excitations. The spatially dependent damping torques originating from Rashba SOC that cancel out in a uniform precession system distort the circular orbit of a magnetization-precession trajectory in the presence of inhomogeneous spin dynamics.
The effect of mechanical damping loads on disabling action tremor.
Aisen, M L; Arnold, A; Baiges, I; Maxwell, S; Rosen, M
1993-07-01
Patients with severe action tremor have uncontrollable, relatively rapid oscillatory motion super-imposed on otherwise useable slower voluntary motor activity. Because a mechanical damper produces an opposing force proportional to velocity, applying damping loads to tremorous limbs should attenuate the (high-velocity) tremor component of movement while permitting the slower purposeful portion to proceed relatively unopposed. In this study, the effect of upper extremity damping in three degrees of freedom was examined in 10 patients with cerebellar action tremor due to multiple sclerosis or traumatic brain injury. Variable amounts of damping were applied by prototype energy-dissipating orthoses which generated resistive viscous loads by means of computer-controlled magnetic particle brakes. All patients experienced statistically and functionally significant tremor reduction with the application of damping.
Mooring line damping estimation for a floating wind turbine.
Qiao, Dongsheng; Ou, Jinping
2014-01-01
The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.
An Active Damping at Blade Resonances Using Piezoelectric Transducers
NASA Technical Reports Server (NTRS)
Choi, Benjamin; Morrison, Carlos; Duffy, Kirsten
2008-01-01
The NASA Glenn Research Center (GRC) is developing an active damping at blade resonances using piezoelectric structure to reduce excessive vibratory stresses that lead to high cycle fatigue (HCF) failures in aircraft engine turbomachinery. Conventional passive damping work was shown first on a nonrotating beam made by Ti-6A1-4V with a pair of identical piezoelectric patches, and then active feedback control law was derived in terms of inductor, resister, and capacitor to control resonant frequency only. Passive electronic circuit components and adaptive feature could be easily programmable into control algorithm. Experimental active damping was demonstrated on two test specimens achieving significant damping on tip displacement and patch location. Also a multimode control technique was shown to control several modes.
Influence of damping on quantum interference - An exactly soluble model
NASA Technical Reports Server (NTRS)
Caldeira, A. O.; Leggett, A. J.
1985-01-01
This paper reports the result of a calculation which shows the effect of damping on the quantum interference of two Gaussian wave packets in a harmonic potential. The influence-functional method, which seems to be the most appropriate one for this kind of calculation, is used. It is shown that quantum-interference effects are severely diminished by the presence of damping even when its influence on the system is only light. The corrections to the undamped formulas are always expressible in terms of the phenomenological damping constant, the temperature (in the high-temperature limit), the cutoff frequency of the reservoir oscillators, and the mean number of quanta of energy intially present in the system. Both weakly and strongly damped systems are analyzed in the regime of low and high temperatures.
Damping Rotor Nutation Oscillations in a Gyroscope with Magnetic Suspension
NASA Technical Reports Server (NTRS)
Komarov, Valentine N.
1996-01-01
A possibility of an effective damping of rotor nutations by modulating the field of the moment transducers in synchronism with the nutation frequency is considered. The algorithms for forming the control moments are proposed and their application is discussed.
Measurements of Aerodynamic Damping in the MIT Transonic Rotor
NASA Technical Reports Server (NTRS)
Crawley, E. F.
1981-01-01
A method was developed and demonstrated for the direct measurement of aerodynamic forcing and aerodynamic damping of a transonic compressor. The method is based on the inverse solution of the structural dynamic equations of motion of the blade disk system in order to determine the forces acting on the system. The disturbing and damping forces acting on a given blade are determined if the equations of motion are expressed in individual blade coordinates. If the structural dynamic equations are transformed to multiblade coordinates, the damping can be measured for blade disk modes, and related to a reduced frequency and interblade phase angle. In order to measure the aerodynamic damping in this way, the free response to a known excitation is studied.
Landau damping of Langmuir twisted waves with kappa distributed electrons
Arshad, Kashif Aman-ur-Rehman; Mahmood, Shahzad
2015-11-15
The kinetic theory of Landau damping of Langmuir twisted modes is investigated in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the Langmuir twisted waves in a nonthermal plasma. The strong damping effects of the Langmuir twisted waves at wavelengths approaching Debye length are also obtained by using an exact numerical method and are illustrated graphically. The damping rates of the planar Langmuir waves are found to be larger than the twisted Langmuir waves in plasmas which shows opposite behavior as depicted in Fig. 3 by J. T. Mendoça [Phys. Plasmas 19, 112113 (2012)].
Estimation of full modal damping matrices from complex test modes
NASA Technical Reports Server (NTRS)
Hasselman, T. K.; Chrostowski, J. D.; Pappa, Richard
1993-01-01
This paper describes the refinements of a previously published method for estimating a full modal damping matrix from complex test modes. It also documents application of the refined method to a structure where complex test modes were derived by the ERA method from multi-input random vibration test data. A numerical example based on simulated test data is presented to demonstrate the validity of the method. The application using real data was not successful, presumably because of noise in the small phase angles of the measured complex modes. Alternative test and data reduction procedures are suggested as possible remedies to the problem. A careful analysis of measurement and data processing errors should be made to examine basic feasibility before implementing the alternative procedures. The ability to estimate a full modal damping matrix is considered important for the preflight estimation of on-orbit damping, and for the synthesis of structural damping from substructure tests.
Flywheel vibration isolation test using a variable-damping isolator
NASA Astrophysics Data System (ADS)
Oh, Hyun-Ung; Taniwaki, Shigemune; Kinjyo, Naofumi; Izawa, Katsuhiko
2006-04-01
This study demonstrates the isolation performance of a variable-damping isolator using a bio-metal fiber (BMF) valve to enhance the pointing performance of observation satellites by isolating disturbances induced by reaction wheel assemblies. Vibration isolation tests of the variable-damping isolator were performed using an air-floating wheel disturbance detector to investigate whether the isolator can actually isolate flywheel vibration. In this paper, we first present a recently developed variable-damping isolator with low power consumption, and a reaction wheel disturbance detector, fabricated in a previous study, which detects low-frequency disturbances. Next, we describe the effectiveness of the variable-damping isolator based on flywheel vibration isolation test results.
Resummation and the gluon damping rate in hot QCD
Pisarski, R.D.
1990-08-01
At high temperature a consistent perturbative expansion requires the resummation of an infinite subset of loop corrections into an effective expansion. This effective exansion is used to compute the gluon damping rate at leading order. 25 refs.
Composite slip table of dissimilar materials for damping longitudinal modes
Gregory, Danny L.; Priddy, Tommy G.; Smallwood, David O.; Woodall, Tommy D.
1991-01-01
A vibration slip table for use in a vibration testing apparatus. The table s comprised of at least three composite layers of material; a first metal layer, a second damping layer, and a third layer having a high acoustic velocity relative to the first layer. The different acoustic velocities between the first and third layers cause relative shear displacements between the layers with the second layer damping the displacements between the first and third layers to reduce the table longitudinal vibration modes.
Viscous damping of toroidal angular momentum in tokamaks
Stacey, W. M.
2014-09-15
The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.
Landau damping of geodesic acoustic mode in toroidally rotating tokamaks
Ren, Haijun; Cao, Jintao
2015-06-15
Geodesic acoustic mode (GAM) is analyzed by using modified gyro-kinetic (MGK) equation applicable to low-frequency microinstabilities in a rotating axisymmetric plasma. Dispersion relation of GAM in the presence of arbitrary toroidal Mach number is analytically derived. The effects of toroidal rotation on the GAM frequency and damping rate do not depend on the orientation of equilibrium flow. It is shown that the toroidal Mach number M increases the GAM frequency and dramatically decreases the Landau damping rate.
An efficient frequency response solution for nonproportionally damped systems
NASA Technical Reports Server (NTRS)
Conti, Paul; Rule, William K.
1987-01-01
A method is presented to accurately and economically calculate steady state frequency responses based on the analysis of large finite element models with nonproportional damping effects. The new method is a hybrid of the traditional nonproportional and proportional damping solution methods. It captures the advantages of each computational approach without the burden of their respective shortcomings, as demonstrated with comparative analysis performed on a large finite element model.
Beliaev damping of quasiparticles in a Bose-Einstein condensate.
Katz, N; Steinhauer, J; Ozeri, R; Davidson, N
2002-11-25
We report a measurement of the suppression of collisions of quasiparticles with ground state atoms within a Bose-Einstein condensate at low momentum. These collisions correspond to Beliaev damping of the excitations, in the previously unexplored regime of the continuous quasiparticle energy spectrum. We use a hydrodynamic simulation of the expansion dynamics, with the Beliaev damping cross section, in order to confirm the assumptions of our analysis.
Development of Damped Metal Matrix Composites for Advanced Structural Applications
1990-04-01
DTIP FiLE COPY Applied Research Laboratory (Dto 00 CD Technical Report NO DEVELOPMENT OF DAMPED METAL MATRIX COMPOSITES FOR ADVANCED STRUCTURAL...DEVELOPMENT OF DAMPED METAL MATRIX COMPOSITES FOR ADVANCED STRUCTURAL APPLICATIONS by Clark A. Updike Ram B. Bhagat Technical Report No. TR 90-004 April 1990... Metal Matrix Composites for Advanced Structural Applications 12 PERSONAL AUTHOR(S) C.A. Updike, R. Bhagat 1 3a TYPE OF REPORT 13b TIME COVERED 14. DATE
Inverse design of nonlinearity in energy harvesters for optimum damping
NASA Astrophysics Data System (ADS)
Ghandchi Tehrani, Maryam; Elliott, S. J.
2016-09-01
This paper presents the inverse design method for the nonlinearity in an energy harvester in order to achieve an optimum damping. A single degree-of-freedom electromechanical oscillator is considered as an energy harvester, which is subjected to a harmonic base excitation. The harvester has a limited throw due to the physical constraint of the device, which means that the amplitude of the relative displacement between the mass of the harvester and the base cannot exceed a threshold when the device is driven at resonance and beyond a particular amplitude. This physical constraint requires the damping of the harvester to be adjusted for different excitation amplitudes, such that the relative displacement is controlled and maintained below the limit. For example, the damping can be increased to reduce the amplitude of the relative displacement. For high excitation amplitudes, the optimum damping is, therefore, dependent on the amplitude of the base excitation, and can be synthesised by a nonlinear function. In this paper, a nonlinear function in the form of a bilinear is considered to represent the damping model of the device. A numerical optimisation using Matlab is carried out to fit a curve to the amplitude-dependent damping in order to determine the optimum bilinear model. The nonlinear damping is then used in the time-domain simulations and the relative displacement and the average harvested power are obtained. It is demonstrated that the proposed nonlinear damping can maintain the relative displacement of the harvester at its maximum level for a wide range of excitation, therefore providing the optimum condition for power harvesting.
Automated dynamic analytical model improvement for damped structures
NASA Technical Reports Server (NTRS)
Fuh, J. S.; Berman, A.
1985-01-01
A method is described to improve a linear nonproportionally damped analytical model of a structure. The procedure finds the smallest changes in the analytical model such that the improved model matches the measured modal parameters. Features of the method are: (1) ability to properly treat complex valued modal parameters of a damped system; (2) applicability to realistically large structural models; and (3) computationally efficiency without involving eigensolutions and inversion of a large matrix.
Improved Cloud Condensation Nucleus Spectrometer
NASA Technical Reports Server (NTRS)
Leu, Ming-Taun
2010-01-01
An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main
BFKL Pomeron calculus: solution to equations for nucleus-nucleus scattering in the saturation domain
NASA Astrophysics Data System (ADS)
Contreras, Carlos; Levin, Eugene; Meneses, Rodrigo
2013-04-01
In this paper we solve the equation for nucleus-nucleus scattering in the BFKL Pomeron calculus, suggested by Braun [1-3]. We find these solutions analytically at high energies as well as numerically in the entire region of energies inside the saturation region. The semi-classical approximation is used to select out the infinite set of the parasite solutions. The nucleus-nucleus cross sections at high energy are estimated and compared with the Glauber-Gribov approach. It turns out that the exact formula gives the estimates that are very close to the ones based on Glauber-Gribov formula which is important for the practical applications.
Spin-orbit precession damping in transition metal ferromagnets (invited)
NASA Astrophysics Data System (ADS)
Gilmore, K.; Idzerda, Y. U.; Stiles, M. D.
2008-04-01
We provide a simple explanation, based on an effective field, for the precession damping rate due to the spin-orbit interaction. Previous effective field treatments of spin-orbit damping include only variations of the state energies with respect to the magnetization direction, an effect referred to as the breathing Fermi surface. Treating the interaction of the rotating spins with the orbits as a perturbation, we include also changes in the state populations in the effective field. In order to investigate the quantitative differences between the damping rates of iron, cobalt, and nickel, we compute the dependence of the damping rate on the density of states and the spin-orbit parameter. There is a strong correlation between the density of states and the damping rate. The intraband terms of the damping rate depend on the spin-orbit parameter cubed, while the interband terms are proportional to the spin-orbit parameter squared. However, the spectrum of band spacings is also an important quantity and does not appear to depend in a simple way on material parameters.
Reducing extrinsic damping of surface acoustic waves at gigahertz frequencies
NASA Astrophysics Data System (ADS)
Gelda, Dhruv; Sadhu, Jyothi; Ghossoub, Marc G.; Ertekin, Elif; Sinha, Sanjiv
2016-04-01
High-frequency surface acoustic waves (SAWs) in the gigahertz range can be generated using absorption from an ultrafast laser in a patterned metallic grating on a substrate. Reducing the attenuation at these frequencies can yield better sensors as well as enable them to better probe phonon and electron-phonon interactions near surfaces. It is not clear from existing experiments which mechanisms dominate damping at high frequencies. We calculate damping times of SAWs due to various mechanisms in the 1-100 GHz range to find that mechanical loading of the grating on the substrate dominates dissipation by radiating energy from the surface into the bulk. To overcome this and enable future measurements to probe intrinsic damping, we propose incorporating distributed acoustic Bragg reflectors in the experimental structure. Layers of alternating materials with contrasting acoustic impedances embedded a wavelength away from the surface serve to reflect energy back to the surface. Using numerical simulations, we show that a single Bragg reflector is sufficient to increase the energy density at the surface by more than five times. We quantify the resulting damping time to find that it is longer than the intrinsic damping time. The proposed structure can enable future measurements of intrinsic damping in SAWs at ˜100 GHz.
Design and responses of Butterworth and critically damped digital filters.
Robertson, D Gordon E; Dowling, James J
2003-12-01
For many years the Butterworth lowpass filter has been used to smooth many kinds of biomechanical data, despite the fact that it is underdamped and therefore overshoots and/or undershoots data during rapid transitions. A comparison of the conventional Butterworth filter with a critically damped filter shows that the critically damped filter not only removes the undershooting and overshooting, but has a superior rise time during rapid transitions. While analog filters always create phase distortion, both the critically damped and Butterworth filters can be modified to become zero-lag filters when the data are processed in both the forward and reverse directions. In such cases little improvement is realized by applying multiple passes. The Butterworth filter has superior 'roll-off' (attenuation of noise above the cutoff frequency) than the critically damped filter, but by increasing the number of passes of the critically damped filter the same 'roll-off' can be achieved. In summary, the critically damped filter was shown to have superior performance in the time domain than the Butterworth filter, but for data that need to be double differentiated (e.g. displacement data) the Butterworth filter may still be the better choice.
Damping capacity of TiNi-based shape memory alloys
NASA Astrophysics Data System (ADS)
Rong, L. J.; Jiang, H. C.; Liu, S. W.; Zhao, X. Q.
2007-07-01
Damping capacity is another primary characteristic of shape memory alloys (SMA) besides shape memory effect and superelasticity. Damping behavior of Ti-riched TiNi SMA, porous TiNi SMA and a novel TiNi/AlSi composite have been investigated using dynamic mechanical analyzer (DMA) in this investigation. All these alloys are in martensitic state at room temperature and thus possess the high potential application value. Ti 50.2Ni 49.8 SMA has better damping capacity in pure martensitic state and phase transformation region due to the motion of martensite twin interface. As a kind of promising material for effective dampers and shock absorbing devices, porous TiNi SMA can exhibit higher damping capacity than the dense one due to the existence of the three-dimensioned connecting pore structure. It is found that the internal friction of porous TiNi SMA mainly originates from microplastic deformation and mobility of martensite interface and increases with the increase of the porosity. A novel TiNi/AlSi composite has been developed successfully by infiltrating AlSi alloy into the open pores of porous TiNi alloy with 60% porosity through compression casting. It shows the same phase transformation characteristics as the porous TiNi alloy. The damping capacity of the composite has been increased and the compressive strength has been also promoted remarkably. Suggestions for developing higher damping alloys based on TiNi shape memory alloy are proposed in this paper.
Pseudo-damping in undamped plates and shells.
Carcaterra, A; Akay, A; Lenti, F
2007-08-01
Pseudo-damping is a counter-intuitive phenomenon observed in a special class of linear structures that exhibit an impulse response characterized by a decaying amplitude, even in the absence of any dissipation mechanism. The conserved energy remains within but designated parts of the system. Pseudo-damping develops when the natural frequency distribution of the system includes condensation points. The recently formulated theoretical foundation of this phenomenon, based on mathematical properties of special trigonometric series, makes it possible to describe a class of mechanical systems capable of displaying pseudo-damping characteristics. They include systems with discrete oscillators and one-dimensional continuous beamlike structures already reported by the authors in recent studies. This paper examines development of pseudo-damping phenomenon in two-dimensional structures, using plates and shells as examples, and shows how a preloaded plate on an elastic foundation can lead to pseudo-damping. Moreover, in the case of curved shell elements examined here, pseudo-damping can result due to the curvature of the structure, which naturally introduces condensation points in the modal density.
Damping filter method for obtaining spatially localized solutions.
Teramura, Toshiki; Toh, Sadayoshi
2014-05-01
Spatially localized structures are key components of turbulence and other spatiotemporally chaotic systems. From a dynamical systems viewpoint, it is desirable to obtain corresponding exact solutions, though their existence is not guaranteed. A damping filter method is introduced to obtain variously localized solutions and adapted in two typical cases. This method introduces a spatially selective damping effect to make a good guess at the exact solution, and we can obtain an exact solution through a continuation with the damping amplitude. The first target is a steady solution to the Swift-Hohenberg equation, which is a representative of bistable systems in which localized solutions coexist and a model for spanwise-localized cases. Not only solutions belonging to the well-known snaking branches but also those belonging to isolated branches known as "isolas" are found with continuation paths between them in phase space extended with the damping amplitude. This indicates that this spatially selective excitation mechanism has an advantage in searching spatially localized solutions. The second target is a spatially localized traveling-wave solution to the Kuramoto-Sivashinsky equation, which is a model for streamwise-localized cases. Since the spatially selective damping effect breaks Galilean and translational invariances, the propagation velocity cannot be determined uniquely while the damping is active, and a singularity arises when these invariances are recovered. We demonstrate that this singularity can be avoided by imposing a simple condition, and a localized traveling-wave solution is obtained with a specific propagation speed.
Spin amplification in solution magnetic resonance using radiation damping.
Walls, Jamie D; Huang, Susie Y; Lin, Yung-Ya
2007-08-07
The sensitive detection of dilute solute spins is critical to biomolecular NMR. In this work, a spin amplifier for detecting dilute solute magnetization is developed using the radiation damping interaction in solution magnetic resonance. The evolution of the solvent magnetization, initially placed along the unstable -z direction, is triggered by the radiation damping field generated by the dilute solute magnetization. As long as the radiation damping field generated by the solute is larger than the corresponding thermal noise field generated by the sample coil, the solute magnetization can effectively trigger the evolution of the water magnetization under radiation damping. The coupling between the solute and solvent magnetizations via the radiation damping field can be further improved through a novel bipolar gradient scheme, which allows solute spins with chemical shift differences much greater than the effective radiation damping field strength to affect the solvent magnetizations more efficiently. Experiments performed on an aqueous acetone solution indicate that solute concentrations on the order of 10(-5) that of the solvent concentration can be readily detected using this spin amplifier.
NASA Astrophysics Data System (ADS)
Zheng, Ling; Zhang, Dongdong; Wang, Yi
2011-02-01
In this paper, the application of active constrained layer damping (ACLD) treatments is extended to the vibration control of cylindrical shells. The governing equation of motion of cylindrical shells partially treated with ACLD treatments is derived on the basis of the constitutive equations of elastic, piezoelectric and visco-elastic materials and an energy approach. The damping of a visco-elastic layer is modeled by the complex modulus formula. A finite element model is developed to describe and predict the vibration characteristics of cylindrical shells partially treated with ACLD treatments. A closed-loop control system based on proportional and derivative feedback of the sensor voltage generated by the piezo-sensor of the ACLD patches is established. The dynamic behaviors of cylindrical shells with ACLD treatments such as natural frequencies, loss factors and responses in the frequency domain are further investigated. The effects of several key parameters such as control gains, location and coverage of ACLD treatments on vibration suppression of cylindrical shells are also discussed. The numerical results indicate the validity of the finite element model and the control strategy approach. The potential of ACLD treatments in controlling vibration and sound radiation of cylindrical shells used as major critical structures such as cabins of aircraft, hulls of submarines and bodies of rockets and missiles is thus demonstrated.
NASA Astrophysics Data System (ADS)
Lian, Yeda; Zhang, Xunan; Sheldon, Cherry
2007-06-01
Based on energy dissipation and structural control principle, a new structural configuration, called the mega-sub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.
Rubin, David L.
2015-01-23
Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams of electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring
Dynamical evolution of comet nucleus rotation
NASA Astrophysics Data System (ADS)
Scheeres, D. J.; Sidorenko, V. V.; Neishtadt, A. I.; Vasiliev, A. A.
2001-11-01
The rotational dynamics of outgassing cometary nuclei are investigated analytically using dynamical systems theory. We develop a general theory for the averaged evolution of a comet nucleus rotation state assuming that the nucleus is a spheroid (either prolate or oblate) and that the outgassing torques are a function of solar insolation and heliocentric distance. The resulting solutions are a function of the comet outgassing properties, its heliocentric orbit, and the assumed distribution of active regions on its surface. We find that the long-term evolution of the comet nucleus rotation is a strong function of the distribution of active regions over its surface. Specifically, we find that a comet nucleus with a uniformly active surface will tend towards a rotation state with a nutation angle of ~ 55 degrees and an angular momentum perpendicular to the sun-perihelion direction. Conversely, a comet nucleus with an isolated active region will tend towards a zero nutation angle with its symmetry axis and angular momentum aligned parallel to the sun-perihelion direction. For active surface regions between these extremes we find 4 qualitatively different dynamical outcomes. In all cases, the theory predicts that the comet nucleus angular momentum will have a secular increase, a phenomenon that could contribute to nucleus splitting of active comets. These results can be used to discriminate between competing theories of comet outgassing based on a nucelus' rotation state. They also allow for a range of plausible a priori constraints to be placed on a comet's rotation state to aid in the interpretation of its outgassing structure. This work was supported by the NASA JURRISS program under Grant NAG5-8715. AIN, AAV and VVS acknowledge support from Russian Foundation for Basic research via Grants 00-01-00538 and 00-01-0174 respectively. DJS acknowledges support from the PG&G program via Grant NAG5-9017.
Landau damping of magnetospherically reflected whistlers
NASA Technical Reports Server (NTRS)
Thorne, Richard M.; Horne, Richard B.
1994-01-01
Unducted VLF signals produced by lightning activity can form a population of magnetospherically reflected (MR) whistlers in the inner magnetosphere. It has been suggested recently that in the absence of significant attenuation such waves could merge into a broadband continuum with sufficient intensity to account for plasmaspheric hiss. To test this conjecture we have evaluated the path-integrated attenuation of MR whistlers along representative ray paths using the HOTRAY code. Using a realistic plasma distribution modeled on in-situ data, we find that the majority of MR waves experience significant damping after a few transits across the equator. This is primarily due to Landau resonance with suprathermal (0.1-1 keV) electrons. The attenuation is most pronounced for waves that propagate through the outer plasmasphere; this can readily account for the infrequent occurrence of multiple-hop MR waves for L greater than or equal to 3.5. Selected waves that originate at intermediate latitudes (15 deg is less than or equal to lambda is less than or equal to 35 deg) and whose ray paths are confined to the inner plasma- sphere may experience up to 10 magnetospheric reflections before substantial attentuation occurs. These waves should form the population of observed MR waves. Wave attenuation becomes more pronounced at higher frequencies; this can account for the absence of multiple-hop waves above 5 kHz. Weakly attenuated MR waves tend to migrate outward to the L shell, where their frequency is comparable to the equatorial lower hybrid frequency. The enhanced concentration of waves due to a merging of ray paths would produce a spectral feature that rises in frequency at lower L. This is quite distinct from the reported properties of plasmaspheric hiss, which maintains a constant frequency band throughout the entire plasmasphere. Furthermore, in the absence of mode conversion, waves below 500 Hz, which often form an important if not dominant part of the spectral properties
The dynamic landscape of the cell nucleus.
Austin, Christopher M; Bellini, Michel
2010-01-01
While the cell nucleus was described for the first time almost two centuries ago, our modern view of the nuclear architecture is primarily based on studies from the last two decades. This surprising late start coincides with the development of new, powerful strategies to probe for the spatial organization of nuclear activities in both fixed and live cells. As a result, three major principles have emerged: first, the nucleus is not just a bag filled with nucleic acids and proteins. Rather, many distinct functional domains, including the chromosomes, resides within the confines of the nuclear envelope. Second, all these nuclear domains are highly dynamic, with molecules exchanging rapidly between them and the surrounding nucleoplasm. Finally, the motion of molecules within the nucleoplasm appears to be mostly driven by random diffusion. Here, the emerging roles of several subnuclear domains are discussed in the context of the dynamic functions of the cell nucleus.
Organisation of the human dorsomedial hypothalamic nucleus.
Koutcherov, Yuri; Mai, Juergen K; Ashwell, Ken W; Paxinos, George
2004-01-19
This study used acetylcholinesterase (AChE) histochemistry to reveal the organization of the dorsomedial hypothalamic nucleus (DM) in the human. Topographically, the human DM is similar to DM in the monkey and rat. It is wedged between the paraventricular nucleus, dorsally, and the ventromedial nucleus, ventrally. Laterally, DM borders the lateral hypothalamic area while medially it approaches the 3rd ventricle. The AChE staining distinguished two subcompartments of the human DM: the larger diffuse and the smaller compact DM. The subcompartmental organization of the human DM appears homologous to that found in the monkey and less complex than that reported in rats. Understanding of the organization of DM creates meaningful anatomical reference for physiological and pharmacological studies in the human hypothalamus.
Hydro-dynamic damping theory in flowing water
NASA Astrophysics Data System (ADS)
Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.
2014-03-01
Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.
Implications of Rarefied Gas Damping for RF MEMS Reliability
NASA Astrophysics Data System (ADS)
Alexeenko, Alina; Chigullapalli, Sruti
2011-05-01
Capacitive and ohmic RF MEMS switches are based on micron-sized structures moving under electrostatic force in a gaseous environment. Recent experimental measurements [4, 5] point to a critical role of gas-phase effects on the lifetime of RF MEMS switches. In this paper, we analyze rarefied flow effects on the gas-damping behavior of typical capacitive switches. Several damping models based on Reynolds equation [7, 8] and on Boltzmann kinetic equation [9, 6] are applied to quantify the effects of uncertainties in fabrication and operating conditions on the impact velocity of switch contact surfaces for various switch configurations. Implications of rarefied flow effects in the gas damping for design and analysis of RF MEMS devices are discussed. It has been demonstrated that although all damping models considered predict a similar damping quality factor and agree well for predictions of closing time, the models differ by a factor of two and more in predicting the impact velocity and acceleration at contact. Implications of parameter uncertainties on the key reliability-related parameters such as the pull-in voltage, closing time and impact velocity are also discussed.
Eddy damping effect of additional conductors in superconducting levitation systems
NASA Astrophysics Data System (ADS)
Jiang, Zhao-Fei; Gou, Xiao-Fan
2015-12-01
Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC-PM levitation system, the HTSC with higher critical current density Jc can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC-PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/VCu, in which VCu is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.
Damping of High-temperature Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.; Padula, Santo A., II; Scheiman, Daniel A.
2008-01-01
Researchers at NASA Glenn Research Center have been investigating high temperature shape memory alloys as potential damping materials for turbomachinery rotor blades. Analysis shows that a thin layer of SMA with a loss factor of 0.04 or more would be effective at reducing the resonant response of a titanium alloy beam. Two NiTiHf shape memory alloy compositions were tested to determine their loss factors at frequencies from 0.1 to 100 Hz, at temperatures from room temperature to 300 C, and at alternating strain levels of 34-35x10(exp -6). Elevated damping was demonstrated between the M(sub s) and M(sub f) phase transformation temperatures and between the A(sub s) and A(sub f) temperatures. The highest damping occurred at the lowest frequencies, with a loss factor of 0.2-0.26 at 0.1 Hz. However, the peak damping decreased with increasing frequency, and showed significant temperature hysteresis in heating and cooling. Keywords: High-temperature, shape memory alloy, damping, aircraft engine blades, NiTiHf
The frictionless damping of a piston in thermodynamics
NASA Astrophysics Data System (ADS)
Bringuier, E.
2015-09-01
The paper revisits Rüchardt’s experiment and the two-chamber variant of Clark and Katz, where the oscillating motion of a freely sliding piston involves the adiabatic exponent of the gas enclosed in a thermally isolated chamber. While the common theoretical account of the experiment correctly predicts the frequency of the oscillation, the damping is usually ascribed to a linear frictional force of an undetermined mechanical nature. In this paper, we argue that the irreversibility of the damped motion calls for a thermodynamical treatment involving dissipation (entropy production). The theory of Rüchardt’s experiment is reworked at the undergraduate level by allowing entropy to change owing to heat transfer into or out of the chamber. It is calculated that a linear heat transfer can explain the observed damping without assuming any mechanical friction. The calculation is quantitatively supported by an experiment. It is also calculated that the mechanical and thermal equilibrations occur at the same rate. Besides possibly improving Rüchardt and Clark-and-Katz apparatuses by shedding light on the damping, the paper helps to better grasp thermodynamics, and how to use entropy, by constrasting the mechanical and thermodynamical reasonings on the example of the damped motion of a piston.
Nucleus model for periodic Comet Tempel 2
NASA Technical Reports Server (NTRS)
Sekanina, Zdenek
1991-01-01
Observational data obtained primarily during 1988 are analyzed and synthesized to develop a comprehensive physical model for the nucleus of Periodic Comet Tempel 2, one of the best studied members of Jupiter's family of short-period comets. It is confirmed that a previous investigation provided reliable information on the comet's spin-axis orientation, which implies and obliquity of 54 degrees of the orbit plane to the equatorial plane and which appears to have varied little - if at all - with time. This conclusion is critical for fitting a triaxial ellipsoid to approximate the figure of the nucleus.
UNCOVERING THE NUCLEUS CANDIDATE FOR NGC 253
Günthardt, G. I.; Camperi, J. A.; Agüero, M. P.; Díaz, R. J.; Gomez, P. L.; Schirmer, M.; Bosch, G. E-mail: camperi@oac.uncor.edu E-mail: rdiaz@gemini.edu E-mail: mschirmer@gemini.edu
2015-11-15
NGC 253 is the nearest spiral galaxy with a nuclear starburst that becomes the best candidate for studying the relationship between starburst and active galactic nucleus activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus to the point that there is no strong evidence that the galaxy harbors a supermassive black hole co-evolving with the starburst as was supposed earlier. Near-infrared (NIR) spectroscopy, especially NIR emission line analysis, could be advantageous in shedding light on the true nucleus identity. Using Flamingos-2 at Gemini South we have taken deep K-band spectra along the major axis of the central structure and through the brightest infrared source. In this work, we present evidence showing that the brightest NIR and mid-infrared source in the central region, already known as radio source TH7 and so far considered just a large stellar supercluster, in fact presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. Mentioning some distinctive aspects, it is the most massive compact infrared object in the central region, located at 2.″0 of the symmetry center of the galactic bar, as measured in the K-band emission. Moreover, our data indicate that this object is surrounded by a large circumnuclear stellar disk and it is also located at the rotation center of the large molecular gas disk of NGC 253. Furthermore, a kinematic residual appears in the H{sub 2} rotation curve with a sinusoidal shape consistent with an outflow centered in the candidate nucleus position. The maximum outflow velocity is located about 14 pc from TH7, which is consistent with the radius of a shell detected around the nucleus candidate, observed at 18.3 μm (Qa) and 12.8 μm ([Ne ii]) with T-ReCS. Also, the Brγ emission line profile shows a pronounced blueshift and this emission line also has the highest equivalent width at this
Uncovering the Nucleus Candidate for NGC 253
NASA Astrophysics Data System (ADS)
Günthardt, G. I.; Agüero, M. P.; Camperi, J. A.; Díaz, R. J.; Gomez, P. L.; Bosch, G.; Schirmer, M.
2015-11-01
NGC 253 is the nearest spiral galaxy with a nuclear starburst that becomes the best candidate for studying the relationship between starburst and active galactic nucleus activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus to the point that there is no strong evidence that the galaxy harbors a supermassive black hole co-evolving with the starburst as was supposed earlier. Near-infrared (NIR) spectroscopy, especially NIR emission line analysis, could be advantageous in shedding light on the true nucleus identity. Using Flamingos-2 at Gemini South we have taken deep K-band spectra along the major axis of the central structure and through the brightest infrared source. In this work, we present evidence showing that the brightest NIR and mid-infrared source in the central region, already known as radio source TH7 and so far considered just a large stellar supercluster, in fact presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. Mentioning some distinctive aspects, it is the most massive compact infrared object in the central region, located at 2.″0 of the symmetry center of the galactic bar, as measured in the K-band emission. Moreover, our data indicate that this object is surrounded by a large circumnuclear stellar disk and it is also located at the rotation center of the large molecular gas disk of NGC 253. Furthermore, a kinematic residual appears in the H2 rotation curve with a sinusoidal shape consistent with an outflow centered in the candidate nucleus position. The maximum outflow velocity is located about 14 pc from TH7, which is consistent with the radius of a shell detected around the nucleus candidate, observed at 18.3 μm (Qa) and 12.8 μm ([Ne ii]) with T-ReCS. Also, the Brγ emission line profile shows a pronounced blueshift and this emission line also has the highest equivalent width at this
Vibration reduction in advanced composite turbo-fan blades using embedded damping materials
NASA Astrophysics Data System (ADS)
Kosmatka, John B.; Lapid, Alex J.; Mehmed, Oral
1996-05-01
A preliminary design and analysis procedure for locating an integral damping treatment in composite turbo-propeller blades has been developed. This finite element based approach, which is based upon the modal strain energy method, is used to size and locate the damping material patch so that the damping (loss factor) is maximized in a particular mode while minimizing the overall stiffness loss (minimal reductions in the structural natural frequencies). Numerical results are presented to illustrate the variation in the natural frequencies and damping levels as a result of stacking sequence, integral damping patch size and location, and border materials. Experimental studies were presented using flat and pretwisted (30 degrees) integrally damped composite blade-like structures to show how a small internal damping patch can significantly increase the damping levels without sacrificing structural integrity. Moreover, the use of a soft border material around the patch can greatly increase the structural damping levels.
Experimental Investigation of Temperature-Dependent Gilbert Damping in Permalloy Thin Films
Zhao, Yuelei; Song, Qi; Yang, See-Hun; Su, Tang; Yuan, Wei; Parkin, Stuart S. P.; Shi, Jing; Han, Wei
2016-01-01
The Gilbert damping of ferromagnetic materials is arguably the most important but least understood phenomenological parameter that dictates real-time magnetization dynamics. Understanding the physical origin of the Gilbert damping is highly relevant to developing future fast switching spintronics devices such as magnetic sensors and magnetic random access memory. Here, we report an experimental study of temperature-dependent Gilbert damping in permalloy (Py) thin films of varying thicknesses by ferromagnetic resonance. From the thickness dependence, two independent contributions to the Gilbert damping are identified, namely bulk damping and surface damping. Of particular interest, bulk damping decreases monotonically as the temperature decreases, while surface damping shows an enhancement peak at the temperature of ~50 K. These results provide an important insight to the physical origin of the Gilbert damping in ultrathin magnetic films. PMID:26961411
Study of modal coupling procedures for the shuttle: A matrix method for damping synthesis
NASA Technical Reports Server (NTRS)
Hasselman, T. K.
1972-01-01
The damping method was applied successfully to real structures as well as analytical models. It depends on the ability to determine an appropriate modal damping matrix for each substructure. In the past, modal damping matrices were assumed diagonal for lack of being able to determine the coupling terms which are significant in the general case of nonproportional damping. This problem was overcome by formulating the damped equations of motion as a linear perturbation of the undamped equations for light structural damping. Damped modes are defined as complex vectors derived from the complex frequency response vectors of each substructure and are obtained directly from sinusoidal vibration tests. The damped modes are used to compute first order approximations to the modal damping matrices. The perturbation approach avoids ever having to solve a complex eigenvalue problem.
Spatial damping identification in the frequency domain-A theoretical and experimental comparison
NASA Astrophysics Data System (ADS)
Brumat, Matija; Slavič, Janko; Boltežar, Miha
2016-08-01
This paper deals with spatial damping identification methods. In contrast to the commonly used damping methods (modal, proportional) the spatial damping information improves structural models with a known location of the damping sources. The Lee-Kim, Chen-Ju-Tsuei, Fritzen IV and local equation of motion methods were theoretically and experimentally compared. Experimentally, the spatial damping identification was tested against: modal and spatial incompleteness, differences in viscous and hysteretic damping models, the performance of identification methods and the effect of damping treatments. It was found that for a structure with a known equation of motion (beam, plate) the local equation of motion method is more efficient and gives a more precise location of the damping. Full frequency response function (FRF) matrix methods can also identify the spatial damping, but are more demanding because the numerical and measurement effort increases with n2, where n is the number of measurement points and, consequently, the size of the FRF matrix.
Integrated mechanics for the passive damping of polymer-matrix composites and composite structures
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, Christos C.
1991-01-01
Some recent developments on integrated damping mechanics for unidirectional composites, laminates, and composite structures are reviewed. Simplified damping micromechanics relate the damping of on-axis and off-axis composites to constituent properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate and structural damping mechanics for thin composites are summarized. Discrete layer damping mechanics for thick laminates, including the effects of interlaminar shear damping, are developed and semianalytical predictions of modal damping in thick simply supported specialty composite plates are presented. Applications show the advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber orientation, structural geometry, and temperature on the damping. Additional damping properties for composite plates of various laminations, aspect ratios, fiber content, and temperature illustrate the merits and ranges of applicability of each theory (thin or thick laminates).
Dynamic buckling of containments: The influence of damping
Farrar, C.R.; Duffey, T.A.; Goldman, P.A.; Bennett, J.G.
1993-02-01
The seismic buckling capacities of representative thin, unstiffened elastic containment shells are investigated to evaluate the sensitivity of buckling to the damping level. The finite element method with transient time integration is utilized with both actual earthquake acceleration-time signals and artificial time histories generated from regulatory spectra. The dynamic response and subsequent buckling of the selected containment shells are found to be highly dependent on both damping level and the degree to which the input signal excites the fundamental shear-bending mode of the shell. Transient stresses and buckling levels for the two containment shells induced by the seismic inputs were reduced in the range of 12% to 111% by increasing the damping level from 1% to 4% of critical.
Damping Performance of Taut Cables with Passive Absorbers Incorporating Inerters
NASA Astrophysics Data System (ADS)
Luo, Jiannan; Jiang, Jason Zheng; Macdonald, John H. G.
2016-09-01
As stay cables are prone to vibrations due to their low inherent damping, a common method to limit unwanted vibrations is to install a viscous damper normal to the cable near one of its supports. This paper investigates the potential performance improvement that can be delivered by a numbers of candidate absorbers that incorporate inerters. The inerter device is the true network dual of a spring, with the property that the force is proportional to the relative acceleration between its two terminals. A finite element taut cable model is used for this study. A specific cost function indicating the damping performance of a cable with an absorber attached is proposed. An optimisation of the performance is then carried out. Based on optimisation results, the best damping performance for each of the candidate absorber structures against a specific range of inertance values is presented.
Nonlinear Landau damping of wave envelopes in a quantum plasma
NASA Astrophysics Data System (ADS)
Chatterjee, Debjani; Misra, A. P.
2016-10-01
The nonlinear theory of Landau damping of electrostatic wave envelopes (WEs) is revisited in a quantum electron-positron pair plasma. Starting from a Wigner-Moyal equation coupled to the Poisson equation and applying the multiple scale technique, we derive a nonlinear Schrödinger (NLS) equation which governs the evolution of electrostatic WEs. It is shown that the coefficients of the NLS equation, including the nonlocal nonlinear term, which appears due to the resonant particles having a group velocity of the WEs, are significantly modified by the particle dispersion. The effects of the quantum parameter H (the ratio of the plasmon energy to the thermal energy densities), associated with the particle dispersion, are examined on the Landau damping rate of carrier waves, as well as on the modulational instability of WEs. It is found that the Landau damping rate and the decay rate of the solitary wave amplitude are greatly reduced compared to their classical values (H = 0).
New contributions to transit-time damping in multidimensional systems
NASA Technical Reports Server (NTRS)
Robinson, P. A.
1989-01-01
The existence of two previously unrecognized contributions to transit-time damping in systems of more than one dimension is demonstrated and discussed. It is shown that these contributions cannot be treated by one-dimensional analyses unless it is assumed that the gradient of the field perpendicular to itself always vanishes. Such an assumption is unjustified in general and the new contributions can dominate damping by fast particles in more general situations. Analytic expressions obtained using a Born approximation are found to be in excellent agreement with numerical test-particle calculations of transit-time damping for a variety of field configurations. These configurations include those of a resonance layer and of a spherical wave packet, which approximates a collapsing wave packet in a strongly turbulent plasma. It is found that the fractional power absorption can be strongly enhanced in non-slablike field configurations.
Modulation of effective damping constant using spin Hall effect
Kasai, Shinya Kondou, Kouta; Sukegawa, Hiroaki; Mitani, Seiji; Tsukagoshi, Kazuhito; Otani, Yoshichika
2014-03-03
We have investigated modulation of the effective damping constant α{sub eff} via spin currents through the spin Hall effect for Permalloy/Pt bilayer films with various thicknesses. The observed linear and sinusoidal dependences of current density and field direction on α{sub eff} are in agreement with the analytical model. By comparing the thickness dependence of spin Hall angle obtained from the damping modulation with that previously obtained by spin-torque-induced ferromagnetic resonance, we show that there is no clear extrinsic contribution in the present method. We also show the large modulation of the effective damping constant (down to ∼20%) in the high-current-density region.
Landau damping of a driven plasma wave from laser pulses
Bu Zhigang; Ji Peiyong
2012-01-15
The interaction between a laser pulse and a driven plasma wave with a phase velocity approaching the speed of light is studied, and our investigation is focused on the Gaussian laser pulse. It is demonstrated that when the resonance condition between the plasma wave and the laser pulse is satisfied, the Landau damping phenomenon of the plasma wave originated from the laser pulse will emerge. The dispersion relations for the plasma waves in resonance and non-resonance regions are obtained. It is proved that the Landau damping rate for a driven plasma wave is {gamma}>0 in the resonance region, so the laser pulse can produce an inverse damping effect, namely Landau growth effect, which leads an instability for the plasma wave. The Landau growth means that the energy is transmitted from the laser pulse to the plasma wave, which could be an effective process for enhancing the plasma wave.
Active damping performance of the KAGRA seismic attenuation system prototype
NASA Astrophysics Data System (ADS)
Fujii, Yoshinori; Sekiguchi, Takanori; Takahashi, Ryutaro; Aso, Yoichi; Barton, Mark; Erasmo Peña Arellano, Fabián; Shoda, Ayaka; Akutsu, Tomotada; Miyakawa, Osamu; Kamiizumi, Masahiro; Ishizaki, Hideharu; Tatsumi, Daisuke; Hirata, Naoatsu; Hayama, Kazuhiro; Okutomi, Koki; Miyamoto, Takahiro; Ishizuka, Hideki; DeSalvo, Riccardo; Flaminio, Raffaele
2016-05-01
The Large-scale Cryogenic Gravitational wave Telescope (formerly LCGT now KAGRA) is presently under construction in Japan. This May we assembled a prototype of the seismic attenuation system (SAS) for the beam splitter and the signal recycling mirrors of KAGRA, which we call Type-B SAS, and evaluated its performance at NAOJ (Mitaka, Toyko). We investigated its frequency response, active damping performance, vibration isolation performance and long-term stability both in and out of vacuum. From the frequency response test and the active damping performance test, we confirmed that the SAS worked as we designed and that all mechanical resonances which could disturb lock acquisition and observation are damped within 1 minute, which is required for KAGRA, by the active controls.
Stability, vibration and passive damping of partially restrained imperfect columns
NASA Technical Reports Server (NTRS)
Razzaq, Z.; Voland, R. T.; Bush, H. G.; Mikulas, M. M., Jr.
1983-01-01
A theoretical and experimental study of slender tubular columns for possible use in space structures is conducted in the presence of partial rotational end restraints. Explicit formulas are derived for computing the buckling load and the lowest natural frequency of perfectly straight uniform elastic members with rotational end restraints possessing linear moment-rotation characteristics. An exact solution in the form of a transcendental equation, and a numerical solution using second-order finite-differences are also presented. The presence of an initial imperfection is also incorporated into the numerical procedure. Vibration tests are conducted on an imperfect tubular steel member in the absence of an axial load. A damping concept consisting of a string-mass assembly is explored. Three passive damping configurations involving combinations of three lead shots were investigated. The three lead shot configurations provided considerably greater damping than the single lead shot.
Spin-Damping in an RF atomic magnetometer
NASA Astrophysics Data System (ADS)
Alem, Orang; Romalis, Michael V.; Sauer, Karen L.
2009-05-01
Optically pumped atomic magnetometers have demonstrated an improved sensitivity over standard tuned coils for frequencies less than 50 MHz, making these radio-frequency (RF) magnetometers attractive for low-field NMR (for example, Budker and Romalis, Nature Physics 3, April 2007). Such magnetometers are often plagued by transient effects resulting in decreased sensitivity. The decay time of these transients, or ringing, can last for milliseconds, which is particularly detrimental for rapidly decaying NMR signals. We have found that actively damping the ringing of the atomic spins can significantly reduce such dead time. This spin-damping of the atomic transients is achieved through a negative feedback mechanism in which part of the optical signal during ringing is used to apply an RF field forcing the realignment of the atomic spins with the static magnetic field. We have successfully implemented spin-damping in 100 μs and recovered our femto-Tesla signal previously obscured by the ringing.
Monitoring of soft high damping elastomeric bearings for earthquake isolation
Coveney, V.A.; Kuroda, T.; Kobatake, M.; Nita, Y.; Kulak, R.F.; Chang, Y.W.; Seidensticker, R.W.
1993-07-01
Over the last 20 years several practical systems for the protection of buildings and their contents against the effects of earthquakes were developed. These systems rely on effectively decoupling the building from the strong horizontal ground accelerations that are some of the most damaging features of an earthquake. The isolation of small buildings against earthquakes poses particular problems for high damping elastomer. systems. It was recognized that one way to overcome these problems was to use elastomers with particularly low moduli, high damping and other necessary characteristics. This paper describes some key features of the development of soft high damping natural bearings. Their use for the earthquake isolation of a small highly instrumented building at Tohoku University in Sendai, Japan is discussed. The paper focuses on the monitoring of the bearings during production and their performance in situ under static and earthquake (dynamic) conditions.
Nanoscale shape-memory alloys for ultrahigh mechanical damping.
San Juan, Jose; Nó, Maria L; Schuh, Christopher A
2009-07-01
Shape memory alloys undergo reversible transformations between two distinct phases in response to changes in temperature or applied stress. The creation and motion of the internal interfaces between these phases during such transformations dissipates energy, making these alloys effective mechanical damping materials. Although it has been shown that reversible phase transformations can occur in nanoscale volumes, it is not known whether these transformations have a sample size dependence. Here, we demonstrate that the two phases responsible for shape memory in Cu-Al-Ni alloys are more stable in nanoscale pillars than they are in the bulk. As a result, the pillars show a damping figure of merit that is substantially higher than any previously reported value for a bulk material, making them attractive for damping applications in nanoscale and microscale devices.
Damping of Magnetohydrodynamic Waves in Solar Prominence Fine Structures
NASA Astrophysics Data System (ADS)
Soler, Roberto
2010-05-01
High-resolution observations of solar filaments and prominences reveal that these large-scale coronal structures are formed by a myriad of long and thin ribbons, here called threads, which are piled up to form the prominence body. Evidences suggest that these fine structures are magnetic flux tubes anchored in the solar photosphere, which are partially filled with the cool and dense prominence material. Individual and collective oscillations of prominence and filament fine structures are frequently reported by means of oscillatory variations in Doppler signals and spectral line intensity. Common features of these observations are that the reported oscillatory periods are usually in a narrow range between 2 and 10 minutes, that the velocity amplitudes are smaller than ˜3 km/s, and that the oscillations seem to be strongly damped after a few periods. Typically, the ratio of the damping time, tD, to the period, P, is tD/P < 10. While the oscillations have been interpreted in the context of the magnetohydrodynamic (MHD) theory, i.e., in terms of the MHD normal modes supported by the filament thread body and/or propagating MHD waves, the mechanism or mechanisms responsible for the damping are not well-known and a comparative study between different damping mechanisms is needed. In this Thesis, we study the efficiency of several physical mechanisms for the damping of MHD oscillations in prominence fine structures. Both individual and collective oscillations of threads are analyzed. We model a filament thread as a straight cylindrical magnetic flux tube with prominence conditions, embedded in a magnetized environment representing the solar coronal medium. The basic MHD equations are applied to the model and contain non-ideal terms accounting for effects as, e.g., non-adiabatic mechanisms, magnetic diffusion, ion-neutral collisions, etc., that may be of relevance in prominence plasmas and whose role on the damping of the oscillations is assessed. Our method combines
Damping of Resonantly Forced Density Waves in Dense Planetary Rings
NASA Astrophysics Data System (ADS)
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of
Problems with the equation for viscous damping of density waves
NASA Astrophysics Data System (ADS)
Schmidt, J.; Salo, H.; Spahn, F.
2011-12-01
Numerous resonances with external satellites excite density waves in Saturn's rings. A theoretical expression for the damping of these waves, when they propagate away from the resonance location, is derived from a fluid model (GT78: Goldreich and Tremaine, 1978, Icarus, 34, 240, see also: Shu et al., 1984, in Planetary Rings). The magnitude of the shear viscosity of Saturn's rings is inferred from comparison of this theory to the actual damping length of density waves observed in various data sets (e.g. Esposito et al., 1983, Lissauer et al., 1984, Tiscareno et al., 2007). In the theoretical expression for the damping length the fluid's bulk viscosity enters (in addition to the shear viscosity) as well as the dependence of both viscosities on the density of the ring matter. However, generally the bulk viscosity and the effects of the density dependences are neglected when the shear viscosity is inferred from the data. It has already been pointed out in the original paper (GT78) that this neglect lacks adequate justification. This raises the question in how far the inferred viscosities are representative for the rings. In particular, if one takes into acount the density dependence of the viscosities, the expression for the viscous damping transforms into a relation that is equivalent to the stability criterion for viscous overstability. In this case the theory implies that there might be ring regions where density waves do not damp at all but grow in amplitude (GT78). In this paper we re-derive the expression for the wave damping, including the terms stemming from the density dependence of the viscosities. We discuss their effect in the light of the presence of self-gravity wakes in the rings, contributing to viscosity, the probable detection of viscous overstability in parts of Saturn's ring system, and the behaviour of the Janus/Epimetheus m:m-1 wavetrains.
Weakly damped modes in star clusters and galaxies
NASA Technical Reports Server (NTRS)
Weinberg, Martin D.
1994-01-01
A perturber may excite a coherent mode in a star cluster or galaxy. If the stellar system is stable, it is commonly assumed that such a mode will be strongly damped and therefore of little practical consequence other than redistributing momentum and energy deposited by the perturber. This paper demonstrates that this assumption is false; weakly damped modes exist and may persist long enough to have observable consequences. To do this, a method for investigating the dispersion relation for spherical stellar systems and for locating weakly damped modes in particular is developed and applied to King models of varying concentration. This leads to a following remarkable result: King models exhibit very weakly damped m = 1 modes over a wide range of concentration (0.67 less than or equal to c less than or equal to 1.5 have been examined). The predicted damping time is tens of hundreds of crossing times. This mode causes the peak density to shift from and slowly revolve about the initial center. The existence of the mode is supported by n-body simulation. Higher order modes and possible astronomical consequences are discussed. Weakly damped modes, for example, may provide a neutral explanation for observed discrepancies between density and kinematic centers in galaxies, off-center nuclei, the location of velocity cusps due to massive black holes, and both m = 1 and barlike disturbances of disks enbedded in massive halos or spheroids. Gravitational shocking may excite the m = 1 mode in globular clusters, which could modify their subsequent evolution and displace the positions of exotic remnants.
Fermi-motion effect on the intermediate energy nucleus-nucleus collision
NASA Astrophysics Data System (ADS)
Fan, G. W.; Kong, W. Y.; Han, T. F.; Li, X. C.; Ma, J. B.; Sheng, Z. Q.; Shi, G. Z.; Tian, F.; Wang, J.; Zhang, C.
2016-11-01
The Glauber model is modified with the Fermi-motion effect in the calculation of elastic differential cross-sections and momentum distributions of a fragment from mother nucleus. Different reaction systems at low energies are calculated with the modified Glauber model. It is found that calculations including the Fermi-motion provide a better prescription relating the model to a proper nuclear density distribution by comparing with the experimental data. On the basis of the studies, the influence of the correction on the extracted nuclear radius is quantified. The results further confirm the importance of the Fermi-motion in the nucleus-nucleus collision reactions at low energies.
Poloidal flow damping with potato orbits in tokamaks
Shaing, K.C.
2005-10-01
The poloidal flow damping rate in the vicinity of the magnetic axis in tokamaks is calculated using the time-dependent plasma viscosity. It is found that the damping rate is of the order of {nu}{sub ii}/f{sub t}{sup 2}, where {nu}{sub ii} is the ion-ion collision frequency, and f{sub t} is the fraction of the trapped potatoes. The corresponding neoclassical polarization or inertia enhancement factor is [1+({sigma}{sub p}q{sup 2}/f{sub t})], where {sigma}{sub p} is a numerical number of the order of unity, and q is the safety factor.
Kraus representation of a damped harmonic oscillator and its application
Liu Yuxi; Oezdemir, Sahin K.; Miranowicz, Adam; Imoto, Nobuyuki
2004-10-01
By definition, the Kraus representation of a harmonic oscillator suffering from the environment effect, modeled as the amplitude damping or the phase damping, is directly given by a simple operator algebra solution. As examples and applications, we first give a Kraus representation of a single qubit whose computational basis states are defined as bosonic vacuum and single particle number states. We further discuss the environment effect on qubits whose computational basis states are defined as the bosonic odd and even coherent states. The environment effects on entangled qubits defined by two different kinds of computational basis are compared with the use of fidelity.
Composite slip table of dissimilar materials for damping longitudinal modes
Gregory, D.L.; Priddy, T.G.; Smallwood, D.O.; Woodall, T.D.
1991-06-18
A vibration slip table for use in a vibration testing apparatus is disclosed. The tables comprised of at least three composite layers of material; a first metal layer, a second damping layer, and a third layer having a high acoustic velocity relative to the first layer. The different acoustic velocities between the first and third layers cause relative shear displacements between the layers with the second layer damping the displacements between the first and third layers to reduce the table longitudinal vibration modes. 6 figures.
Landau damping in a multi-component dusty plasma
Zhang, Heng; Yang, Yang; Zhang, Jie; Hong, Xue-Ren; Lin, Mai-Mai; Qi, Xin E-mail: duanws@nwnu.edu.cn; Duan, Wen-Shan E-mail: duanws@nwnu.edu.cn; Yang, Lei
2014-11-15
Effect of the dust size distribution on the landau damping and the wave frequency is studied in the present paper. It is found that wave frequency increases as either the difference between the largest and the smallest dust size increases or the wave number increases. It seems that wave frequency is smaller for dusty plasma whose density of the smaller grains is larger than that of the larger ones, while it is larger in the opposite case. The effect of the dust size distribution can increase the Landau damping in the cases where the temperature of the dust grains is small enough or high enough.
Enthalpy damping for high Mach number Euler solutions
NASA Technical Reports Server (NTRS)
Moitra, Anutosh
1990-01-01
An improvement on the enthalpy damping procedure currently in use in solving supersonic flow fields is described. A correction based on entropy values is shown to produce a very efficient scheme for simulation of high Mach number three-dimensional flows. Substantial improvements in convergence rates have been achieved by incorporating this enthalpy damping scheme in a finite-volume Runge-Kutta method for solving the Euler equations. Results obtained for blended wing-body geometries at very high Mach numbers are presented.
Active Constrained Layer Damping of Thin Cylindrical Shells
NASA Astrophysics Data System (ADS)
RAY, M. C.; OH, J.; BAZ, A.
2001-03-01
The effectiveness of the active constrained layer damping (ACLD) treatments in enhancing the damping characteristics of thin cylindrical shells is presented. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. Experiments are performed to verify the numerical predictions. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.
Magnetization damping in noncollinear spin valves with antiferromagnetic interlayer couplings
NASA Astrophysics Data System (ADS)
Chiba, Takahiro; Bauer, Gerrit E. W.; Takahashi, Saburo
2015-08-01
We study the magnetic damping in the simplest of synthetic antiferromagnets, i.e., antiferromagnetically exchange-coupled spin valves, in the presence of applied magnetic fields that enforce noncolliear magnetic configurations. We formulate the dynamic exchange of spin currents in a noncollinear texture based on the spin-diffusion theory with quantum mechanical boundary conditions at the ferrromagnet/normal-metal interfaces and derive the Landau-Lifshitz-Gilbert equations coupled by the interlayer static and dynamic exchange interactions. We predict noncollinearity-induced additional damping that is modulated by an applied magnetic field. We compare theoretical results with published experiments.
Exact linearization of the radiation-damped spin system
Rourke; Augustine
2000-02-21
Nonlinear evolution of the Landau-Lifshitz type can be exactly linearized. Special cases include the radiation-damped spin system and the superradiant system in the semiclassical regime, in the presence of time-varying driving fields. For these, the resultant linear system is simply that of a spin 1 / 2 particle, with the radiation damping rate, or superradiant characteristic time, manifested as an imaginary addition to the spin's resonance frequency. Consequently, methods from inverse scattering theory can be used to design driving fields. The behavior of these systems under stochastic excitation can be determined exactly.
The Nonlinear Landau Damping Rate of a Driven Plasma Wave
Benisti, D; Strozzi, D J; Gremillet, L; Morice, O
2009-08-04
In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.
Dynamic aperture study for the NLC main damping rings
Wolski, Andrzej; Venturini, Marco; Marks, Steve
2004-07-05
A sufficiently large acceptance is critical for the NLC Main Damping Rings (MDR) as the high power carried by the beams demands very high injection efficiency. Chromatic sextupoles and wiggler insertions (needed for rapid damping) are substantial sources of nonlinearities limiting the dynamic aperture. We report on the techniques we are using for analysis of single-particle beam dynamics in the presence of wiggler fields with significant nonlinear components. We demonstrate that our approach gives results in good agreement with experimental data when applied to the BL11 wiggler in SPEAR2, and discuss the present status of studies for the NLC MDR.
On passive damping mechanisms in large space structures
NASA Technical Reports Server (NTRS)
Ashley, H.
1982-01-01
The significance is explained of even tiny amounts of passive energy dissipation to ensure successful stabilization of large, flexible space structures. Study of scale effects on various mechanisms indicates that modal damping ratios are likely to decrease as size increases in a family of similar structures. Paper focuses on thermal dissipation induced by strain gradients during vibration of monolithic configurations. Past work and the expected magnitudes of this damping are reviewed, along with reasons why it is, to some degree, under the designer's control. In the search for the highest practical values, unidirectional metallic composites and other arrangements are examined
The Checkerboard Model of the Nucleus
NASA Astrophysics Data System (ADS)
Lach, Theodore
2015-04-01
The Checker Board Model (CBM) of the nucleus and the associated extended standard model predicts that nature has 5 generations of quarks not 3 and that Nucleus is 2 dimensional. The CBM theory began with an insight into the structure of the He nucleus around the year 1989. Details of how this theory evolved which took many years, and is found on my web site (http://checkerboard.dnsalias.net) or in the following references One independent check of this model is that the wavelength of the ``up'' quark orbiting inside the proton at 84.8123% the speed of light (around the ``dn'' quark in the center of the proton) turns out to be exactly one de Broglie wavelength something determined after the mass and speed of the up quark were determined by other means. This theory explains the mass of the proton and neutron and their magnetic moments and this along with the beautiful symmetric 2D structure of the He nucleus led to the evolution of this theory. When this theory was first presented at Argonne in 1996, it was the first time that anyone had predicted the quarks orbited inside the proton at relativistic speeds and it was met with skepticism.
New developments in nucleus pulposus replacement technology.
Carl, Allen; Ledet, Eric; Yuan, Hansen; Sharan, Alok
2004-01-01
Attempts to alleviate the pain attributed to degeneration of the nucleus pulposus using replacement or reinforcement techniques dating back to the 1950s are reviewed. The various materials and their insertion techniques are discussed as are results available from early clinical experiences. These techniques are in evolution and clinical outcomes will be necessary to establish the efficacy of these approaches.
Nucleus-associated actin in Amoeba proteus.
Berdieva, Mariia; Bogolyubov, Dmitry; Podlipaeva, Yuliya; Goodkov, Andrew
2016-10-01
The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms.
Nucleon-nucleus interactions from JACEE
NASA Technical Reports Server (NTRS)
Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.
1985-01-01
Results on hadron-nucleus interactions from the Japanese-American Cooperation Emulsion Experiment experiment are presented. Angular distributions for charged particles, and angular and transverse momentum spectra for photons have been measured for a sample of events with sigma epsilon sub gamma. Results on central rapidity density and transverse energy flow are discussed.
A ghostly damped Ly α system revealed by metal absorption lines
NASA Astrophysics Data System (ADS)
Fathivavsari, H.; Petitjean, P.; Zou, S.; Noterdaeme, P.; Ledoux, C.; Krühler, T.; Srianand, R.
2017-03-01
We report the discovery of the first 'ghostly' damped Ly α absorption system (DLA), which is identified by the presence of absorption from strong low-ion species at zabs = 1.704 65 along the line of sight to the quasar SDSS J113341.29-005740.0 with zem = 1.704 41. No Ly α absorption trough is seen associated with these absorptions because the DLA trough is filled with the leaked emission from the broad emission-line region of the quasar. By modelling the quasar spectrum and analysing the metal lines, we derive log N(H I)(cm-2) ∼21.0 ± 0.3. The DLA cloud is small (≤0.32 pc), thus not covering entirely the broad-line region and is located at ≥39 pc from the central active galactic nucleus (AGN). Although the DLA is slightly redshifted relative to the quasar, its metallicity ([S/H] = -0.41 ± 0.30) is intermediate between what is expected from infalling and outflowing gas. It could be possible that the DLA is part of some infalling material accreting on to the quasar host galaxy through filaments, and that its metallicity is raised by mixing with the enriched outflowing gas emanating from the central AGN. Current DLA surveys miss these 'ghostly' DLAs, and it would be important to quantify the statistics of this population by searching the Sloan Digital Sky Survey (SDSS) data base using metal absorption templates.
Mendell, Mark J.; Mirer, Anna G.; Cheung, Kerry; Tong, My; Douwes, Jeroen
2011-01-01
Objectives Many studies have shown consistent associations between evident indoor dampness or mold and respiratory or allergic health effects, but causal links remain unclear. Findings on measured microbiologic factors have received little review. We conducted an updated, comprehensive review on these topics. Data sources We reviewed eligible peer-reviewed epidemiologic studies or quantitative meta-analyses, up to late 2009, on dampness, mold, or other microbiologic agents and respiratory or allergic effects. Data extraction We evaluated evidence for causation or association between qualitative/subjective assessments of dampness or mold (considered together) and specific health outcomes. We separately considered evidence for associations between specific quantitative measurements of microbiologic factors and each health outcome. Data synthesis Evidence from epidemiologic studies and meta-analyses showed indoor dampness or mold to be associated consistently with increased asthma development and exacerbation, current and ever diagnosis of asthma, dyspnea, wheeze, cough, respiratory infections, bronchitis, allergic rhinitis, eczema, and upper respiratory tract symptoms. Associations were found in allergic and nonallergic individuals. Evidence strongly suggested causation of asthma exacerbation in children. Suggestive evidence was available for only a few specific measured microbiologic factors and was in part equivocal, suggesting both adverse and protective associations with health. Conclusions Evident dampness or mold had consistent positive associations with multiple allergic and respiratory effects. Measured microbiologic agents in dust had limited suggestive associations, including both positive and negative associations for some agents. Thus, prevention and remediation of indoor dampness and mold are likely to reduce health risks, but current evidence does not support measuring specific indoor microbiologic factors to guide health-protective actions. PMID
Embedding viscoelastic damping materials in low-cost VARTM composite structures
NASA Astrophysics Data System (ADS)
Robinson, M. J.; Kosmatka, J. B.
2005-05-01
It has been well established that using viscoelastic damping materials in structural applications can greatly reduce the dynamic response and thus improve structural fatigue life. Previously these materials have been used to solve vibration problems in metallic structures, where the damping material is attached to the structure and then a stiff outer layer is attached to promote shear deformation in the damping material. More recently, these materials have been used successfully in expensive aerospace composite structures, where the damping material is embedded between plies of prepreg graphite/epoxy prior to being cured in a high-temperature, high-pressure autoclave. The current research involves embedding these damping layers into low-cost composite structures fabricated using the Vacuum Assisted Resin Transfer Molding (VARTM) process. The damping layers are perforated with a series of small holes to allow the resin to flow through the damping layer and completely wet-out the structure. Experimental fabrication, vibration testing, and stiffness testing investigate the effect of hole diameter versus hole spacing. Results show that the damping and stiffness can be very sensitive to perforation spacing and size. It is shown that for closely spaced perforations (95% damping area) that damping increases by only a factor of 2.2 over the undamped plate. However, for greater perforation spacing (99.7% damping area) the damping is increased by a factor of 14.3. Experimental results as well as practical design considerations for fabricating damped composite structures using the VARTM process are presented.
Average transverse momentum and energy density in high-energy nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.
1986-01-01
Emulsion chambers were used to measure the transverse momenta of photons or pi(0) mesons produced in high-energy cosmic-ray nucleus-nucleus collisions. A group of events having large average transverse momenta has been found which apparently exceeds the expected limiting values. Analysis of the events at early interaction times, of the order of 1 fm/c, indicates that the observed transverse momentum increases with both rapidity density and energy density.
Vibration damping using a spiral acoustic black hole.
Lee, Jae Yeon; Jeon, Wonju
2017-03-01
This study starts with a simple question: can the vibration of plates or beams be efficiently reduced using a lightweight structure that occupies a small space? As an efficient technique to damp vibration, the concept of an acoustic black hole (ABH) is adopted with a simple modification of the geometry. The original shape of an ABH is a straight wedge-type profile with power-law thickness, with the reduction of vibration in beams or plates increasing as the length of the ABH increases. However, in real-world applications, there exists an upper bound of the length of an ABH due to space limitations. Therefore, in this study, the authors propose a curvilinear shaped ABH using the simple mathematical geometry of an Archimedean spiral, which allows a uniform gap distance between adjacent baselines of the spiral. In numerical simulations, the damping performance increases as the arc length of the Archimedean spiral increases, regardless of the curvature of the spiral in the mid- and high-frequency ranges. Adding damping material to an ABH can also strongly enhance the damping performance while not significantly increasing the weight. In addition, the radiated sound power of a spiral ABH is similar to that of a standard ABH.
Nozzle Admittance and Damping Analysis Using the LEE Method
NASA Astrophysics Data System (ADS)
Mu-xin, Wang; Pei-jin, Liu; Wen-jing, Yang; Xiang-geng, Wei
2017-04-01
The nozzle admittance is very important in the theoretical analysis of nozzle damping in combustion instability. The linearized Euler equations (LEE) are used to determine the nozzle admittance with consideration of the mean flow properties. The acoustic energy flux through the nozzle is calculated to evaluate the nozzle damping upon longitudinal oscillation modes. Then the parametric study, involving the nozzle convergent geometry, convergent half angle and nozzle size, is carried out. It is shown that the imaginary part of the nozzle admittance plays a non-negligible role in the determination of the nozzle damping. Under the conditions considered in this work (f*=1,000 Hz, de*=0.18 m), the acoustic energy flux released from the nozzle with a 30o convergent half angle is highest (30o:6.0 × 10^4 kg s^{-3}, 45o:5.2 × 10^4 kg s^{-3}, 60o: 4.9 × 10^4 kg s^{-3}). The change of nozzle convergent geometry is more sensitive for the large size nozzle to increase the nozzle damping.
Optimum Damping in a Non-Linear Base Isolation System
NASA Astrophysics Data System (ADS)
Jangid, R. S.
1996-02-01
Optimum isolation damping for minimum acceleration of a base-isolated structure subjected to earthquake ground excitation is investigated. The stochastic model of the El-Centro1940 earthquake, which preserves the non-stationary evolution of amplitude and frequency content of ground motion, is used as an earthquake excitation. The base isolated structure consists of a linear flexible shear type multi-storey building supported on a base isolation system. The resilient-friction base isolator (R-FBI) is considered as an isolation system. The non-stationary stochastic response of the system is obtained by the time dependent equivalent linearization technique as the force-deformation of the R-FBI system is non-linear. The optimum damping of the R-FBI system is obtained under important parametric variations; i.e., the coefficient of friction of the R-FBI system, the period and damping of the superstructure; the effective period of base isolation. The criterion selected for optimality is the minimization of the top floor root mean square (r.m.s.) acceleration. It is shown that the above parameters have significant effects on optimum isolation damping.
Six degree of freedom active vibration damping for space application
NASA Technical Reports Server (NTRS)
Haynes, Leonard S.
1993-01-01
Work performed during the period 1 Jan. - 31 Mar. 1993 on six degree of freedom active vibration damping for space application is presented. A performance and cost report is included. Topics covered include: actuator testing; mechanical amplifier design; and neural network control system development and experimental evaluation.
Landau damping effects on solar wind fast streams
NASA Technical Reports Server (NTRS)
Dangelo, N.; Joyce, G.; Pesses, M. E.
1979-01-01
Recent measurements by the Pioneer 10 and Helios 1 spacecraft show that the leading edge of a corotating structure spreads as it moves from 0.3 AU to the orbit of the earth and steepens again farther out. By including Landau damping effects in the dynamical behavior of the streams, the above qualitative features can be accounted for.
Ultrasoft Quark Damping in High-T QCD
Abada, Abdessamad; Daira-Aifa, Nacera; Bouakaz, Karima
2007-02-27
We determine the ultrasoft quark damping rates in the context of next-to-leading order hard-thermal-loop summed perturbation of high-temperature QCD. Three types of divergences are encountered: infrared, light-cone and at specific points determined by the gluon energies. The infrared divergence persists and is logarithmic whereas the two others are circumvented.
Damping of Ultrasoft Fermions in Finite Temperature QED
Bouakaz, K.; Abada, A.
2008-04-21
We calculate the fermion damping rates to second order in powers of the external momentum in the context of QED at finite temperature using the hard-thermal-loop summation scheme. We find the coefficients of zeroth and first orders finite whereas that of second order logarithmically infrared sensitive. The calculation is done in covariant gauge and the result is independent of gauge fixing.
The One-Dimensional Damped Forced Harmonic Oscillator Revisited
ERIC Educational Resources Information Center
Flores-Hidalgo, G.; Barone, F. A.
2011-01-01
In this paper we give a general solution to the problem of the damped harmonic oscillator under the influence of an arbitrary time-dependent external force. We employ simple methods accessible for beginners and useful for undergraduate students and professors in an introductory course of mechanics.
A Look at Damped Harmonic Oscillators through the Phase Plane
ERIC Educational Resources Information Center
Daneshbod, Yousef; Latulippe, Joe
2011-01-01
Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…
Landau-Khalatnikov phonon damping in strongly interacting Fermi gases
NASA Astrophysics Data System (ADS)
Kurkjian, Hadrien; Castin, Yvan; Sinatra, Alice
2016-11-01
We derive the phonon damping rate due to the four-phonon Landau-Khalatnikov process in low-temperature strongly interacting Fermi gases using quantum hydrodynamics, correcting and extending the original calculation of Landau and Khalatnikov (Zh. Eksp. Teor. Fiz., 19 (1949) 637). Our predictions can be tested in state-of-the-art experiments with cold atomic gases in the collisionless regime.
Rhizoctonia seedling damping-off in sugar beet in Michigan
Technology Transfer Automated Retrieval System (TEKTRAN)
Rhizoctonia solani is an important seedling pathogen of sugar beet, causing damping-off following seedling emergence. Anastomosis group (AG)-4 has been the primary seedling pathogen reported on sugar beet, however, recent screening has found high incidence of infection by AG-2-2. Isolations of R. so...
Frequency and temperature dependence of high damping elastomers
Kulak, R.F.; Hughes, T.H.
1993-08-01
High damping steel-laminated elastomeric seismic isolation bearings are one of the preferred devices for isolating large buildings and structures. In the US, the current reference design for the Advanced Liquid Metal Reactor (ALMR) uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of high damping rubber and steel plates. They are typically designed for shear strains between 50 and 100% and are expected to sustain two to three times these levels for beyond design basis loading conditions. Elastomeric bearings are currently designed to provide a system frequency between 0.4 and 0.8 Hz and expected to operate between {minus}20 and 40 degrees Centigrade. To assure proper performance of isolation bearings, it is necessary to characterize the elastomer`s response under expected variations of frequency and temperature. The dynamic response of the elastomer must be characterized within the frequency range that spans the bearing acceptance test frequency, which may be as low as 0.005 Hz, and the design frequency. Similarly, the variation in mechanical characteristics of the elastomer must be determined over the design temperature range, which is between {minus}20 and 40 degrees Centigrade. This paper reports on (1) the capabilities of a testing facility at ANL for testing candidate elastomers, (2) the variation with frequency and temperature of the stiffness and damping of one candidate elastomer, and (3) the effect of these variations on bearing acceptance testing criteria and on the choice of bearing design values for stiffness and damping.
Damping insert materials for settling chambers of supersonic wind tunnels
NASA Astrophysics Data System (ADS)
Wu, Jie; Radespiel, Rolf
2017-03-01
This study describes the application of a novel damping insert material for reducing the flow fluctuations in a tandem nozzle supersonic wind tunnel. This new damping material is composed of multi-layer stainless steel wired meshes. The influences of the multi-layer mesh, such as the quantity of the mesh layer and the installed location in the settling chamber, to the freestream quality have been investigated. A Pitot probe instrumented with a Kulite pressure sensor and a hot-wire probe are employed to monitor the flow fluctuation in the test section of the wind tunnel. Thereafter, a combined modal analysis is applied for the disturbance qualification. Additionally, the transient Mach number in the test section is measured. The disturbance qualification indicates that the multi-layer mesh performs well in providing reduction of vorticity reduction and acoustic fluctuations. Comparable flow quality of the freestream was also obtained using a combination of flexible damping materials. However, the life-span of the new damping materials is much longer. The time transient of the Mach number measured in the test section indicates that the mean flow is rather constant over run time. Furthermore, the time-averaged pressure along the settling chamber is recorded and it shows the distribution of pressure drop by settling chamber inserts.
Damping capacity of a sealed squeeze film bearing
NASA Technical Reports Server (NTRS)
Dede, M. M.; Dogan, M.; Holmes, R.
1984-01-01
The advantages of incorporating an open-ended or weakly-sealed squeeze-film bearing in a flexible support structure simulating an aero-engine assembly were examined. Attention is given to empirically modelling the hydrodynamics of the more usual tightly-sealed squeeze-film bearing, with a view to assessing its damping performance.
Cancer immunogenicity, danger signals, and DAMPs: what, when, and how?
Garg, Abhishek D; Dudek, Aleksandra M; Agostinis, Patrizia
2013-01-01
Cancer immunosurvelliance usually leads to formation of cancer cells that have been "immunoedited" to resist anti-tumor immunity. One of the consequences of immunoediting that is, reduced immunogenicity, is an important roadblock in revival of stable and long-lasting anti-tumor immune responses. Research done during the last decade has shown that emission by the dying cancer cells of immunomodulatory factors or damage-associated molecular patterns (DAMPs), which can act as danger signals, is a critical event in accentuating the immunogenicity of cancer cells, in response to a subset of anticancer treatments. Recent evidence has defined that an apoptotic cell death subroutine and its underlying biochemistry, which has been termed as "immunogenic cell death (ICD)" or "immunogenic apoptosis," is required for the efficient emission of DAMPs and inciting anti-tumor immunity. Here, we review the basic concepts of ICD, like cancer immunogenicity, danger signals, and DAMPs. Moreover, we discuss the emerging molecular links between endoplasmic reticulum (ER) stress, induction of a viral response-like gene expression, danger signals, and anti-tumor immunity. We envisage that along with ER stress-based trafficking of DAMPs (which is a "short-range communicator" of danger), the accompanying induction of a viral response-like gene expression and the secretion of anti-tumorigenic cytokines may become a crucial signature of ICD induction by anticancer therapy.
Spatial damping of propagating sausage waves in coronal cylinders
NASA Astrophysics Data System (ADS)
Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui
2015-09-01
Context. Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. Aims: We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Methods: Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued, longitudinal wavenumber k at given real angular frequencies ω. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of ωc, the critical angular frequency separating trapped from leaky waves. Results: In contrast to the standing case, propagating sausage waves are allowed for ω much lower than ωc. However, while able to direct their energy upward, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping length shows little dependence on the density contrast between the cylinder and its surroundings, and depends only weakly on frequency. This spatial damping length is of the order of the cylinder radius for ω ≲ 1.5vAi/a, where a and vAi are the cylinder radius and the Alfvén speed in the cylinder, respectively. Conclusions: If a coronal cylinder is perturbed by symmetric boundary drivers (e.g., granular motions) with a broadband spectrum, wave leakage efficiently filters out the low-frequency components.
Parametric resonance induced chaos in magnetic damped driven pendulum
NASA Astrophysics Data System (ADS)
Khomeriki, Giorgi
2016-07-01
A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments.
PUBLIC HEALTH AND ECONOMIC IMPACT OF DAMPNESS AND MOLD
There is a rapidly growing body of scientific literature examining the relationship between dampness and mold in buildings and associated health effects. Reviews by expert groups in Europe (Bornehag et al. 2001; Bornehag et al. 2004) and the United States (IOM, 2004) conclude th...
Vibration control of cylindrical shells using active constrained layer damping
NASA Astrophysics Data System (ADS)
Ray, Manas C.; Chen, Tung-Huei; Baz, Amr M.
1997-05-01
The fundamentals of controlling the structural vibration of cylindrical shells treated with active constrained layer damping (ACLD) treatments are presented. The effectiveness of the ACLD treatments in enhancing the damping characteristics of thin cylindrical shells is demonstrated theoretically and experimentally. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. The FEM is used to predict the natural frequencies and the modal loss factors of shells which are partially treated with patches of the ACLD treatments. The predictions of the FEM are validated experimentally using stainless steel cylinders which are 20.32 cm in diameter, 30.4 cm in length and 0.05 cm in thickness. The cylinders are treated with ACLD patches of different configurations in order to target single or multi-modes of lobar vibrations. The ACLD patches used are made of DYAD 606 visco-elastic layer which is sandwiched between two layers of PVDF piezo-electric films. Vibration attenuations of 85% are obtained with maximum control voltage of 40 volts. Such attenuations are attributed to the effectiveness of the ACLD treatment in increasing the modal damping ratios by about a factor of four over those of conventional passive constrained layer damping (PCLD) treatments. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.
Damped Mechanical Oscillator: Experiment and Detailed Energy Analysis
ERIC Educational Resources Information Center
Corridoni, Tommaso; D'Anna, Michele; Fuchs, Hans
2014-01-01
The damped oscillator is discussed in every high school textbook or introductory physics course, and a large number of papers are devoted to it in physics didactics journals. Papers typically focus on kinematic and dynamic aspects and less often on energy. Among the latter, some are devoted to the peculiar decreasing behavior of energy…
Injection and Extraction Lines for the ILC Damping Rings
Reichel, Ina
2007-06-20
The current design for the injection and extraction linesintoand out of the ILC Damping Rings is presented as well as the designfor the abort line. Due to changes of the geometric boundary conditionsby other subsystems of the ILC, a modular approach has been used to beable to respond to recurring layout changes whilereusing previouslydesigned parts.
Gravitational damping of Alfven waves in stellar atmospheres and winds
NASA Technical Reports Server (NTRS)
Khabibrakhmanov, I. K.; Mullan, D. J.
1994-01-01
We consider how gravity affects the propagation of Alfven waves in a stellar atmosphere. We show that when the ion gyrofrequency exceeds the collision rate, the waves are absorbed at a rate proportional to the gravitational acceleration g. Estimates show that this mechanism can readily account for the observed energy losses in the solar chromosphere. The mechanism predicts that the pressure at the top of the chromosphere P(sub Tc) should scale with g as P(sub Tc) proportional to g(exp delta), where delta approximately equals 2/3; this is close to empirical results which suggest delta approximately equals 0.6. Gravitational damping leads to deposition of energy at a rate proportional to the mass of the particles. Hence, heavier ion are heated more effectively than protons. This is consistent with the observed proportionality between ion temperature and mass in the solar wind. Gravitational damping causes the local g to be effectively decreased by an amount proportional to the wave energy. This feature affects the acceleration of the solar wind. Gravitational damping may also lead to self-regulation of the damping of Alfven waves in stellar winds: this is relevant in the context of slow massive winds in cool giants.
Variable structure controller design for spacecraft nutation damping
NASA Technical Reports Server (NTRS)
Sira-Ramirez, Hebertt; Dwyer, Thomas A. W., III
1987-01-01
Variable structure systems theory is used to design an automatic controller for active nutation damping in momentum biased stabilized spacecraft. Robust feedback stabilization of roll and yaw angular dynamics is achieved with prescribed qualitative characteristics which are totally independent of the spacecraft defining parameters.
Rubber-coated bellows improves vibration damping in vacuum lines
NASA Technical Reports Server (NTRS)
Hegland, D. E.; Smith, R. J.
1966-01-01
Compact-vibration damping systems, consisting of rubber-coated metal bellows with a sliding O-ring connector, are used in vacuum lines. The device presents a metallic surface to the vacuum system and combines flexibility with the necessary stiffness. It protects against physical damage, reduces fatigue failure, and provides easy mating of nonparallel lines.
Damping coefficients due to tail surfaces in aircraft
NASA Technical Reports Server (NTRS)
Chu, Lynn
1923-01-01
The object of the investigation described in this report was to compare the damping coefficients of an airfoil as calculated from a knowledge of the static characteristics of the section with those obtained experimentally with an oscillation. The damping coefficients as obtained, according to the conventional notation, can be considered either as due to pitching or as due to yawing, the oscillation in these experiments being so arranged that the surfaces oscillate about a vertical axis. This is in reality the case when the influence is yawing about the standard Z-axis, but it can also be considered as a pitching motion when the model is so rigged that its standard Y-axis becomes vertical. The horizontal oscillation has the advantage of eliminating the gravity action and avoiding the use of counterweights, whose presence in the wind tunnel is undesirable because of their interference with the air flow. The real point of the investigation was to separate the damping due to rotation from that due to translation. By varying the distance between the center of pressure and the center of rotation on the oscillator, the variation of damping moment can be observed and the rotational and translational effects can be separated.
SPACE LAUNCH VEHICLE FULL-SCALE DAMPING TESTS
The wind study portion of testing showed that the SLV gantry tower is sufficiently stable to be used as a base for forced oscillation of the vehicle...experimental damping factors agreed reasonably well with the results of previous tests. Increased confidence in the recent SLV ground wind restrictions has been the direct result of this test.
Danish Teachers' Conception of Challenging Behaviour and DAMP/ADHD
ERIC Educational Resources Information Center
Holst, Jesper
2008-01-01
This study examines how teachers of young children in Denmark perceived challenging behaviours in children who have characteristics consistent with Deficit in Attention, Motor Control and Perception (DAMP) or Attention Deficit/Hyperactivity Disorder (ADHD). This study was conducted in schools and kindergartens in three demographically different…
Recommendation for the Feasibility of more Compact LC Damping Rings
Pivi, M.T.F.; Wang, L.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Shibata, K.; Ohmi, K.; Dugan, G.; Palmer, M.; Crittenden, J.A.; Harkay, K.; Boon, L.; Furman, M.A.; Venturini, M.; Celata, C.; Malyshev, O.B.; Papaphilippou, I.; /CERN
2010-06-15
As part of the international Linear Collider (ILC) collaboration, we have compared the electron cloud (EC) effect for different Damping Ring (DR) designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of the shorter damping ring with respect to the electron cloud build-up and related beam instabilities. The studies for a 3.2 km ring were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design SB2009 [1] and would allow considerable reduction of the number of components, wiggler magnets and costs. We discuss the impact of the proposed operation of the ILC at high repetition rate 10 Hz and address the necessary modifications for the DRs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigation techniques and the integration of the CesrTA results into the Damping Ring design.
Recommendation for the Feasibility of more Compact LC Damping Rings
Pivi, M. T. F.; Wang, L.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Fukuma, H.; Shibata, K.; Dugan, K.,G.; Palmer, M.; Crittenden, J.; Harkay, K.; Boon, L.; Furman, M. A.; Venturini, M.; Celata, C.; Malyshev, O.; Papaphilippou, I.
2010-05-23
As part of the international Linear Collider (ILC) collaboration, we have compared the electron cloud (EC) effect for different Damping Ring (DR) designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of a shorter damping ring with respect to the electron cloud build-up and related beam instability. The studies for a 3.2 km ring were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design SB2009 [1] and would allow to considerably reduce the number of components, wiggler magnets and costs. We discuss the impact of the proposed operation of the ILC at high repetition rate 10 Hz and address the necessary modifications for the DRs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigations and the integration of the CesrTA results into the Damping Ring design.
Simultaneously high stiffness and damping in nanoengineered microtruss composites.
Meaud, Julien; Sain, Trisha; Yeom, Bongjun; Park, Sei Jin; Shoultz, Anna Brieland; Hulbert, Gregory; Ma, Zheng-Dong; Kotov, Nicholas A; Hart, A John; Arruda, Ellen M; Waas, Anthony M
2014-04-22
Materials combining high stiffness and mechanical energy dissipation are needed in automotive, aviation, construction, and other technologies where structural elements are exposed to dynamic loads. In this paper we demonstrate that a judicious combination of carbon nanotube engineered trusses held in a dissipative polymer can lead to a composite material that simultaneously exhibits both high stiffness and damping. Indeed, the combination of stiffness and damping that is reported is quite high in any single monolithic material. Carbon nanotube (CNT) microstructures grown in a novel 3D truss topology form the backbone of these nanocomposites. The CNT trusses are coated by ceramics and by a nanostructured polymer film assembled using the layer-by-layer technique. The crevices of the trusses are then filled with soft polyurethane. Each constituent of the composite is accurately modeled, and these models are used to guide the manufacturing process, in particular the choice of the backbone topology and the optimization of the mechanical properties of the constituent materials. The resulting composite exhibits much higher stiffness (80 times) and similar damping (specific damping capacity of 0.8) compared to the polymer. Our work is a step forward in implementing the concept of materials by design across multiple length scales.
High-Speed Video Analysis of Damped Harmonic Motion
ERIC Educational Resources Information Center
Poonyawatpornkul, J.; Wattanakasiwich, P.
2013-01-01
In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…
The Neutrophil Nucleus and Its Role in Neutrophilic Function.
Carvalho, Leonardo Olivieri; Aquino, Elaine Nascimento; Neves, Anne Caroline Dias; Fontes, Wagner
2015-09-01
The cell nucleus plays a key role in differentiation processes in eukaryotic cells. It is not the nucleus in particular, but the organization of the genes and their remodeling that provides the data for the adjustments to be made according to the medium. The neutrophil nucleus has a different morphology. It is a multi-lobed nucleus where some researchers argue no longer function. However, studies indicate that it is very probable the occurrence of chromatin remodeling during activation steps. It may be that the human neutrophil nucleus also contributes to the mobility of neutrophils through thin tissue spaces. Questions like these will be discussed in this small review. The topics include morphology of human neutrophil nucleus, maturation process and modifications of the neutrophil nucleus, neutrophil activation and chromatin modifications, causes and consequences of multi-lobulated segmented morphology, and importance of the nucleus in the formation of neutrophil extracellular traps (NETs).
Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene
NASA Astrophysics Data System (ADS)
Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson-Rae, I.; Bachtold, A.
2011-06-01
The theory of damping is discussed in Newton's Principia and has been tested in objects as diverse as the Foucault pendulum, the mirrors in gravitational-wave detectors and submicrometre mechanical resonators. In general, the damping observed in these systems can be described by a linear damping force. Advances in nanofabrication mean that it is now possible to explore damping in systems with one or more atomic-scale dimensions. Here we study the damping of mechanical resonators based on carbon nanotubes and graphene sheets. The damping is found to strongly depend on the amplitude of motion, and can be described by a nonlinear rather than a linear damping force. We exploit the nonlinear nature of damping in these systems to improve the figures of merit for both nanotube and graphene resonators. For instance, we achieve a quality factor of 100,000 for a graphene resonator.
Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene.
Eichler, A; Moser, J; Chaste, J; Zdrojek, M; Wilson-Rae, I; Bachtold, A
2011-05-15
The theory of damping is discussed in Newton's Principia and has been tested in objects as diverse as the Foucault pendulum, the mirrors in gravitational-wave detectors and submicrometre mechanical resonators. In general, the damping observed in these systems can be described by a linear damping force. Advances in nanofabrication mean that it is now possible to explore damping in systems with one or more atomic-scale dimensions. Here we study the damping of mechanical resonators based on carbon nanotubes and graphene sheets. The damping is found to strongly depend on the amplitude of motion, and can be described by a nonlinear rather than a linear damping force. We exploit the nonlinear nature of damping in these systems to improve the figures of merit for both nanotube and graphene resonators. For instance, we achieve a quality factor of 100,000 for a graphene resonator.
Graphite/epoxy Composite Laminates with Co-cured Interlaminar Damping Layers
NASA Technical Reports Server (NTRS)
Pereira, J. Michael
1993-01-01
Damped composite laminates were fabricated by co-curing viscoelastic damping film with graphite/epoxy prepreg plies. The dynamic response of the damped plates was measured using an impulse response technique and compared with the response of similar undamped laminates. Modal damping was computed from the frequency response data. Micrographs of the damped laminates showed that the damping layers retained their integrity during the fabrication process. The layers significantly increased the damping in the composite laminates. The use of the constrained viscoelastic film as an integral part of composite structures appears to be a feasible approach to passive vibration control. Composite plates manufactured with co-cured damping layers may have commercial applications in cases where light weight, strength, and vibration and noise reduction are important considerations.
Elastic response of the atomic nucleus in gauge space: Giant Pairing Vibrations
NASA Astrophysics Data System (ADS)
Bortignon, P. F.; Broglia, R. A.
2016-09-01
Due to quantal fluctuations, the ground state of a closed shell system A0 can become virtually excited in a state made out of the ground state of the neighbour nucleus \\vert gs(A_0+2) rangle ( \\vert gs(A_0-2) rangle ) and of two uncorrelated holes (particles) below (above) the Fermi surface. These J^{π} = 0+ pairing vibrational states have been extensively studied with two-nucleon transfer reactions. Away from closed shells, these modes eventually condense, leading to nuclear superfluidity and thus to pairing rotational bands with excitation energies much smaller than hbarω0, the energy separation between major shells. Pairing vibrations are the plastic response of the nucleus in gauge space, in a similar way in which low-lying quadrupole vibrations, i.e. surface vibrations with energies much smaller than hbarω0 whose eventual condensation leads to quadrupole deformed nuclei, provide an example of the plastic nuclear response in 3D space. While much is known, in particular concerning its damping, regarding the counterpart of quadrupole plastic modes, i.e. regarding the giant quadrupole resonances (GQR), J^{π} = 2+ elastic response of the nucleus with energies of the order of hbarω0, little is known regarding this subject concerning pairing modes (giant pairing vibrations, GPV). Consequently, the recently reported observation of L = 0 resonances, populated in the reactions 12C(18O,16O)14C and 13C(18O,16O)15C and lying at an excitation energy of the order of hbarω0, likely constitutes the starting point of a new field of research, that of the study of the elastic response of nuclei in gauge space. Not only that, but also the fact that the GPV have likely been serendipitously observed in these light nuclei when it has failed to show up in more propitious nuclei like Pb, provides unexpected and fundamental insight into the relation existing between basic mechanisms -Landau, doorway, compound damping- through which giant resonances acquire a finite lifetime, let
Why do we have a caudate nucleus?
Villablanca, Jaime R
2010-01-01
In order to understand the physiological role of the caudate nucleus, we combine here our laboratory data on cats with reports of patients with selective damage to this nucleus. Cats with bilateral removal of the caudate nuclei showed a stereotyped behavior consisting of persistently approaching and then following a person, another cat, or any object, and attempting to contact the target. Simultaneously, the animals exhibited a friendly disposition and persistent docility together with purring and forelimbs treading/kneading. The magnitude and duration of this behavior was proportional to the extent of the removal reaching a maximum after ablations of 65% or more of the caudate tissue. These cats were hyperactive but they had lost the feline elegance of movements. Additional features of acaudate cats were: (1) postural and accuracy deficits (plus perseveration) in paw usage tasks including bar pressing for food reward; (2) cognitive and perceptual impairments on a T-maze battery of tasks and on the bar pressing tasks; (3) blockage or blunting of the species-specific behavioral response to a single injection of morphine; Unilateral caudate nucleus removal did not produce global behavioral effects, but only deficit in the contralateral paw contact placing reaction and paw usage/bar pressing. Moreover and surprisingly, we found hypertrophy of the ipsilateral caudate nucleus following prenatal focal neocortical removal. The findings in human were also behavioral (not neurological) and also occurred with unilateral caudate damage. The main manifestations consisted of loss of drive (apathy), obsessive-compulsive behavior, cognitive deficits, stimulus-bound perseverative behavior, and hyperactivity. Based on all of the above data we propose that the specific function of the caudate nucleus is to control approach-attachment behavior, ranging from plain approach to a target, to romantic love. This putative function would account well for the caudate involvement in the
Liang, Shao-Hua; Yin, Jun-Bin; Sun, Yi; Bai, Yang; Zhou, Kai-Xiang; Zhao, Wen-Jun; Wang, Wei; Dong, Yu-Lin; Li, Yun-Qing
2016-08-26
Combined the retrograde double tracing with immunofluorescence histochemical staining, we examined the neurons in the lateral parabrachial nucleus (LPB) sent collateral projections to the paraventricular thalamic nucleus (PVT) and central amygdaloid nucleus (CeA) and their roles in the nociceptive transmission in the rat. After the injection of Fluoro-gold (FG) into the PVT and tetramethylrhodamine-dextran (TMR) into the CeA, respectively, FG/TMR double-labeled neurons were observed in the LPB. The percentages of FG/TMR double-labeled neurons to the total number of FG- or TMR-labeled neurons were 6.18% and 9.09%, respectively. Almost all of the FG/TMR double-labeled neurons (95%) exhibited calcitonin gene-related peptide (CGRP) immunoreactivity. In the condition of neuropathic pain, 94% of these neurons showed FOS immunoreactivity. The present data indicates that some of CGRP-expressing neurons in the LPB may transmit nociceptive information toward the PVT and CeA by way of axon collaterals.
Novel Nano-particle, Temperature-Independent Damping System: Basic Science and Applications
2009-12-31
the mechanical components of the dampers are filled with selected particles. The advantages of particle damping over the conventional damping...temperature ranges. 2. The particle size is much smaller than the scale of the container surface roughness, therefore the particles will fill the...For thrust damping or radial damping, the mechanical components of the dampers are filled with properly selected nanoparticles. -U- Vertical
Torsional and axial damping properties of the AZ31B-F magnesium alloy
NASA Astrophysics Data System (ADS)
Anes, V.; Lage, Y. E.; Vieira, M.; Maia, N. M. M.; Freitas, M.; Reis, L.
2016-10-01
Damping properties for the AZ31B-F magnesium alloy were evaluated for pure axial and pure shear loading conditions at room temperature. Hysteretic damping results were measured through stress-strain controlled tests. Moreover, the magnesium alloy viscous damping was measured with frequency response functions and free vibration decay, both results were obtained by experiments. The axial and shear damping ratio (ASDR) has been identified and described, specifically for free vibration conditions.
NASA Technical Reports Server (NTRS)
Alberts, Thomas E.; Xia, Houchun; Chen, Yung
1992-01-01
The effectiveness of constrained viscoelastic layer damping treatment designs is evaluated separately as passive control measures for low frequency joint dominated modes and higher frequency boom flexure dominated modes using a NASTRAN finite element analysis. Passive damping augmentation is proposed which is based on a constrained viscoelastic layer damping treatment applied to the surface of the manipulators's flexible booms. It is pointed out that even the joint compliance dominated modes can be damped to some degree through appropriate design of the treatment.
Damping performance of bean bag dampers in zero gravity environments
NASA Astrophysics Data System (ADS)
Zhang, Chao; Chen, Tianning; Wang, Xiaopeng
2016-06-01
Bean bag dampers (BBDs), developed from impact damping technology, have been widely applied in engineering field to attenuate the vibration of a structural system. The damping effect of a BBD on vibration control in ground gravity environments is good, but its performance in zero gravity environments is not clear, and there are few studies on it. Therefore, the damping effect of BBDs in zero gravity environments was investigated based on the discrete element method (DEM) in this paper. Firstly, a three-dimensional DEM model of a BBD was established, and the damping effects of the single degree of freedom (SDOF) systems with BBDs and non-obstructive particle dampers (NOPDs) in zero gravity environments were compared. Moreover, the influences of the diameter of the inner ball, the tightness of BBD, the vibration frequency of SDOF system and the gap between BBD and cavity on the vibration reduction effect of BBD in zero gravity environments were also studied, and the results were compared with the system with BBD in ground gravity environments. There are optimum ranges of the diameter of the inner ball, tightness and gap for BBD, and the effects of these parameters on the damping performances of BBD in gravity and zero gravity environments are similar in evolving trends, and the values are without big differences in the optimum ranges. Thereby the parameter selection in BBD design in zero gravity environments is similar to that in gravity environments. However, the diameter of BBD should be a slightly larger than the size of the cavity when the structures with BBD work in zero gravity environments. The BBD is supposed to be picked tightly when the vibration frequency is high, and the BBD has better to be picked more tightly in zero gravity environments. These results can be used as a guide in the design of BBDs in zero gravity environments.
Optimization of SMA layers in composite structures to enhance damping
NASA Astrophysics Data System (ADS)
Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.
2016-04-01
The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.
Damping Effects of Drogue Parachutes on Orion Crew Module Dynamics
NASA Technical Reports Server (NTRS)
Aubuchon, Vanessa V.; Owens, D. Bruce
2016-01-01
Because simulations of the Orion Crew Module (CM) dynamics with drogue parachutes deployed were under-predicting the amount of damping seen in free-flight tests, an attach-point damping model was applied to the Orion system. A key hypothesis in this model is that the drogue parachutes' net load vector aligns with the CM drogue attachment point velocity vector. This assumption seems reasonable and has historically produced good results, but has never been experimentally verified. The wake of the CM influences the drogue parachutes, which makes performance predictions of the parachutes difficult. Many of these effects are not currently modeled in the simulations. A forced oscillation test of the CM with parachutes was conducted in the NASA LaRC 20-Ft Vertical Spin Tunnel (VST) to gather additional data to validate and refine the attach-point damping model. A second loads balance was added to the original Orion VST model to measure the drogue parachute loads independently of the CM. The objective of the test was to identify the contribution of the drogues to CM damping and provide additional information to quantify wake effects and the interactions between the CM and parachutes. The drogue parachute force vector was shown to be highly dependent on the CM wake characteristics. Based on these wind tunnel test data, the attach-point damping model was determined to be a sufficient approximation of the parachute dynamics in relationship to the CM dynamics for preliminary entry vehicle system design. More wake effects should be included to better model the system.
Numerical Study of Magnetic Damping During Unidirectional Solidification
NASA Technical Reports Server (NTRS)
Li, Ben Q.
1997-01-01
A fully 3-D numerical model is developed to represent magnetic damping of complex fluid flow, heat transfer and electromagnetic field distributions in a melt cavity. The model is developed based on our in-house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The computer code has been tested against benchmark test problems that are solved by other commercial codes as well as analytical solutions whenever available. The numerical model is tested against numerical and experimental results for water reported in literature. With the model so tested, various numerical simulations are carried out for the Sn-35.5% Pb melt convection and temperature distribution in a cylindrical cavity with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to reduce turbulence and flow levels in the melt undergoing solidification and over a certain threshold value a higher magnetic field resulted in a higher velocity reduction. It is found also that for a fully 3-D representation of the magnetic damping effects, the electric field induced in the melt by the applied DC magnetic field does not vanish, as some researchers suggested, and must be included even for molten metal and semiconductors. Also, for the study of the melt flow instability, a long enough time has to be applied to ensure the final fluid flow recirculation pattern. Moreover, our numerical results suggested that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the convection in the melt is actually enhanced. Because of the limited financial resource allocated for the project, we are unable to carry out extensive study on this effect, which should warrant further theoretical and experimental study. In that endeavor, the developed numerical model should be very useful; and the model should serve as a useful tool for exploring
Analytical Solution and Physics of a Propellant Damping Device
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John
2011-01-01
NASA design teams have been investigating options for "detuning" Ares I to prevent oscillations originating in the vehicle solid-rocket main stage from synching up with the natural resonance of the rest of the vehicle. An experimental work started at NASA MSFC center in 2008 using a damping device showed great promise in damping the vibration level of an 8 resonant tank. However, the mechanisms of the vibration damping were not well understood and there were many unknowns such as the physics, scalability, technology readiness level (TRL), and applicability for the Ares I vehicle. The objectives of this study are to understand the physics of intriguing slosh damping observed in the experiments, to further validate a Computational Fluid Dynamics (CFD) software in propellant sloshing against experiments with water, and to study the applicability and efficiency of the slosh damper to a full scale propellant tank and to cryogenic fluids. First a 2D fluid-structure interaction model is built to model the system resonance of liquid sloshing and structure vibration. A damper is then added into the above model to simulate experimentally observed system damping phenomena. Qualitative agreement is found. An analytical solution is then derived from the Newtonian dynamics for the thrust oscillation damper frequency, and a slave mass concept is introduced in deriving the damper and tank interaction dynamics. The paper will elucidate the fundamental physics behind the LOX damper success from the derivation of the above analytical equation of the lumped Newtonian dynamics. Discussion of simulation results using high fidelity multi-phase, multi-physics, fully coupled CFD structure interaction model will show why the LOX damper is unique and superior compared to other proposed mitigation techniques.
Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects
NASA Technical Reports Server (NTRS)
Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.
2011-01-01
Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.
Damping Behavior of Alumina Epoxy Nano-Composites
NASA Astrophysics Data System (ADS)
Katiyar, Priyanka; Kumar, Anand
2016-10-01
Polymer nano composites, consisting of a polymer matrix with nanoparticle filler, have been predicted to be one of the most beneficial applications of nanotechnology. Addition of nano particulates to a polymer matrix enhances its performance by capitalizing on the nature and properties of the nano-scale fillers. The damping behavior of composites with nano structured phases is significantly different from that of micro structured materials. Viscoelastic homopolymer exhibit a high material damping response over a relatively narrow range of temperature and frequencies. In many practical situations, a polymeric structure is required to possess better strength and stiffness properties together with a reasonable damping behavior. Viscoelastic polymers show higher loss factor beyond the glassy region which comes with a significant drop in the specific modulus. Addition of nano alumina particles to epoxy leads to improved strength and stiffness properties with an increase in glass transition temperature while retaining its damping capability. Experimental investigations are carried out on composite beam specimen fabricated with different compositions of alumina nano particles in epoxy to evaluate loss factor, tan δ. Impact damping method is used for time response analysis. A single point Laser is used to record the transverse displacement of a point on the composite beam specimen. The experimental results are compared with theoretical estimation of loss factor using Voigt estimation. The effect of inter phase is included in theoretical estimation of loss factor. The result reveals that the study of interface properties is very important in deriving the overall loss factor of the composite since interface occupies a significant volume fraction in the composite.
Cell Nucleus-Targeting Zwitterionic Carbon Dots
Jung, Yun Kyung; Shin, Eeseul; Kim, Byeong-Su
2015-01-01
An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using β-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation. PMID:26689549
Gustatory Reward and the Nucleus Accumbens
Norgren, R.; Hajnal, A.; Mungarndee, S.S.
2011-01-01
The concept of reward is central to psychology, but remains a cipher for neuroscience. Considerable evidence implicates dopamine in the process of reward and much of the data derives from the nucleus accumbens. Gustatory stimuli are widely used for animal studies of reward, but the connections between the taste and reward systems are unknown. In a series of experiments, our laboratory has addressed this issue using functional neurochemistry and neuroanatomy. First, using microdialysis probes, we demonstrated that sapid sucrose releases dopamine in the nucleus accumbens. The effect is dependent on oral stimulation and concentration. We subsequently determined that this response was independent of the thalamocortical gustatory system, but substantially blunted by damage to the parabrachial limbic taste projection. Further experiments using c-fos histochemistry confirmed that the limbic pathway was the prime carrier for the gustatory afferent activity that drives accumbens dopamine release. PMID:16822531
Cell Nucleus-Targeting Zwitterionic Carbon Dots.
Jung, Yun Kyung; Shin, Eeseul; Kim, Byeong-Su
2015-12-22
An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using β-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation.
Core-nucleus distortation in hypernuclei
Bodmer, A.R.; Usmani, Q.N.
1995-08-01
We are completing a study of the effects of the spherical distortion of the {open_quotes}core{close_quotes} nucleus by the {Lambda} in a hypernucleus. The response of the core was determined by an appropriately chosen energy-density functional which depends, in particular, on the nuclear compressibility. The forcing action of the A is determined by the nuclear density dependence of the {Lambda} binding in nuclear matter which is obtained from our work on the {Lambda} single-particle energies. Because of the strongly repulsive {Lambda}NN forces, this {Lambda} binding {open_quotes}saturates{close_quotes} at a density close to the central density of nuclei, and results in a reduced core-nucleus distortion much less than would otherwise be obtained. The effects of the core distortion then turn out to be very small even for quite light hypernuclei. This result justifies the assumption that spherical core nuclei are effectively undistorted in a hypernucleus.
Finite nucleus effects on relativistic energy corrections
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.; Faegri, Knut, Jr.
1993-01-01
The effect of using a finite nucleus model in quantum-chemical calculations is examined. Relativistic corrections from the first order Foldy-Wouthuysen terms are affected indirectly by the change in wavefunction, but also directly as a result of revised expressions for the Darwin and spin-orbit terms due to the change in nuclear potential. A calculation for the Rn atom indicates that the mass-velocity and Darwin corrections are much more sensitive to the finite nucleus than the non-relativistic total energy, but that the total contribution for these two terms is quite stable provided the revised form of the Darwin term is used. The spin-orbit interaction is not greatly affected by the choice of nuclear model.
Relation of squeezed states between damped harmonic and simple harmonic oscillators
NASA Technical Reports Server (NTRS)
Um, Chung-In; Yeon, Kyu-Hwang; George, Thomas F.; Pandey, Lakshmi N.
1993-01-01
The minimum uncertainty and other relations are evaluated in the framework of the coherent states of the damped harmonic oscillator. It is shown that the coherent states of the damped harmonic oscillator are the squeezed coherent states of the simple harmonic oscillator. The unitary operator is also constructed, and this connects coherent states with damped harmonic and simple harmonic oscillators.
Physical Properties of Cometary Nucleus Candidates
NASA Technical Reports Server (NTRS)
Jewitt, David; Hillman, John (Technical Monitor)
2003-01-01
In this proposal we aim to study the physical properties of the Centaurs and the dead comets, these being the precursors to, and the remnants from, the active cometary nuclei. The nuclei themselves are very difficult to study, because of the contaminating effects of near-nucleus coma. Systematic investigation of the nuclei both before they enter the zone of strong sublimation and after they have depleted their near-surface volatiles should neatly bracket the properties of these objects, revealing evolutionary effects.
Pygmy dipole response in 238U nucleus
NASA Astrophysics Data System (ADS)
Guliyev, Ekber; Kuliev, Ali Akbar; Quliyev, Huseynqulu
2017-02-01
The presence of the El pygmy dipole resonance (PDR) in the actinide nucleus 238U was shown via QRPA. Below the particle threshold energy, 24 excitation states were calculated. The calculations, is demonstrating the presence of a PDR with evidence for K splitting. The calculations further suggest that the PDR in 238U is predominantly K=0. The obtained results show universality of the PDR in atomic nuclei.
Absolute cross sections of compound nucleus reactions
NASA Astrophysics Data System (ADS)
Capurro, O. A.
1993-11-01
The program SEEF is a Fortran IV computer code for the extraction of absolute cross sections of compound nucleus reactions. When the evaporation residue is fed by its parents, only cumulative cross sections will be obtained from off-line gamma ray measurements. But, if one has the parent excitation function (experimental or calculated), this code will make it possible to determine absolute cross sections of any exit channel.
Development of a Mobile Ice Nucleus Counter
Kok, Gregory; Kulkarni, Gourihar
2014-07-10
An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70°C, and a single stage system can operate the warm wall at -45C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.
Wong, Hua; Arbona, Jean-Michel; Zimmer, Christophe
2013-01-01
Biological functions including gene expression and DNA repair are affected by the 3D architecture of the genome, but the underlying mechanisms are still unknown. Notably, it remains unclear to what extent nuclear architecture is driven by generic physical properties of polymers or by specific factors such as proteins binding particular DNA sequences. The budding yeast nucleus has been intensely studied by imaging and biochemical techniques, resulting in a large quantitative data set on locus positions and DNA contact frequencies. We recently described a quantitative model of the interphase yeast nucleus in which chromosomes are represented as passively moving polymer chains. This model ignores the DNA sequence information except for specific constraints at the centromeres, telomeres, and the ribosomal DNA (rDNA). Despite its simplicity, the model accounts for a large majority of experimental data, including absolute and relative locus positions and contact frequency patterns at chromosomal and subchromosomal scales. Here, we also illustrate the model's ability to reproduce observed features of chromatin movements. Our results strongly suggest that the dynamic large-scale architecture of the yeast nucleus is dominated by statistical properties of randomly moving polymers with a few sequence-specific constraints, rather than by a large number of DNA-specific factors or epigenetic modifications. In addition, we show that our model accounts for recently measured variations in homologous recombination efficiency, illustrating its potential for quantitatively understanding functional consequences of nuclear architecture.
Comet nucleus and asteroid sample return missions
NASA Astrophysics Data System (ADS)
1992-06-01
Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.
Theoretical predictions for the nucleus 296118
NASA Astrophysics Data System (ADS)
Sobiczewski, A.
2016-11-01
Theoretical predictions for the α -decay chain of the nucleus 296118 are performed. The synthesis of this nucleus is being attempted in experiments running in Dubna. The α -decay energies Qα, and the α -decay and spontaneous-fission half-lives, Tα and Tsf, are studied. The analysis of the α decay is based on a phenomenological model using only three parameters. The calculations are performed in nine variants using masses obtained within nine nuclear-mass models describing masses of the heaviest nuclei. The experimental Qα energies, known from earlier experiments for the potential daughter, 292Lv, and grand-daughter, 288Fl, nuclei are reproduced with an average of the absolute values of the discrepancies: from 0.13 to 1.52 MeV within the considered variants. Measured half-lives Tα are reconstructed within average ratios: from 1.7 to 1054. Within all variants considered, the half-life Tα of the nucleus 296118 is obtained larger than needed (around 1 μ s ) for its observation.
Comet nucleus and asteroid sample return missions
NASA Technical Reports Server (NTRS)
1992-01-01
Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.
Dynamical evolution of comet nucleus rotation
NASA Astrophysics Data System (ADS)
Scheeres, D. J.; Sidorenko, V. V.; Neishtadt, A. I.; Vasiliev, A. A.
2002-09-01
The rotational dynamics of outgassing cometary nuclei are investigated analytically. We develop a general theory for the evolution of a comet nucleus' rotation state using averaging theory and assuming that the outgassing torques are a function of solar insolation and heliocentric distance. The resulting solutions are a function of the nucleus inertia ellipsoid, its outgassing properties, its heliocentric orbit, and the assumed distribution of active regions on its surface. We find that the long-term evolution of the comet nucleus rotation is a strong function of the distribution of active regions over its surface. In particular, we find that nuclei with nearly axisymmetric inertia ellipsoids and a uniformly active surface will tend towards a rotation state that has a nutation angle of ~ 55 degrees and its angular momentum perpendicular to the sun-perihelion direction. If such a comet nucleus has only one isolated active region, it will tend towards a zero nutation angle with its approximate symmetry axis and rotational angular momentum aligned parallel to the sun-perihelion direction. In the general case for an inertia ellipsoid that is not close to being axisymmetric we find a much richer set of possible steady-state solutions that are stable, ranging from rotation about the maximum moment of the inertia axis, to SAM and LAM non-principal axis rotation states. The resulting stable rotation states are a strong function of outgassing activity distribution, which we show using a simplified model of the comet Halley nucleus. Also, we demonstrate that comet Borrely observations are consistent with a stable rotation state. Our results can be used to discriminate between competing theories of comet outgassing based on a nucelus' rotation state. They also allow for a range of plausible a priori constraints to be placed on a comet's rotation state to aid in the interpretation of its outgassing structure. This work was supported by the NASA JURRISS program under Grant NAG5
Damping Effects of Drogue Parachutes on Orion Crew Module Dynamics
NASA Technical Reports Server (NTRS)
Aubuchon, Vanessa V.
2013-01-01
Currently, simulation predictions of the Orion Crew Module (CM) dynamics with drogue parachutes deployed are under-predicting the amount of damping as seen in free-flight tests. The Apollo Legacy Chute Damping model has been resurrected and applied to the Orion system. The legacy model has been applied to predict CM damping under drogue parachutes for both Vertical Spin Tunnel free flights and the Pad Abort-1 flight test. Comparisons between the legacy Apollo prediction method and test data are favorable. A key hypothesis in the Apollo legacy drogue damping analysis is that the drogue parachutes' net load vector aligns with the CM drogue attachment point velocity vector. This assumption seems reasonable and produces good results, but has never been quantitatively proven. The wake of the CM influences the drogue parachutes, which makes performance predictions of the parachutes difficult. Many of these effects are not currently modeled in the simulations. A forced oscillation test of the CM with parachutes was conducted in the NASA LaRC 20-Ft Vertical Spin Tunnel (VST) to gather additional data to validate and refine the Apollo legacy drogue model. A second loads balance was added to the original Orion VST model to measure the drogue parachute loads independently of the CM. The objective of the test was to identify the contribution of the drogues to CM damping and provide additional information to quantify wake effects and the interactions between the CM and parachutes. The drogue parachute force vector was shown to be highly dependent on the CM wake characteristics. Based on these wind tunnel test data, the Apollo Legacy Chute Damping model was determined to be a sufficient approximation of the parachute dynamics in relationship to the CM dynamics for preliminary entry vehicle system design. More wake effects should be included to better model the system. These results are being used to improve simulation model fidelity of CM flight with drogues deployed, which has
Modeling active constrained-layer damping using Golla-Hughes-McTavish approach
NASA Astrophysics Data System (ADS)
Lam, Margaretha J.; Saunders, William R.; Inman, Daniel J.
1995-05-01
Viscoelastic material (VEM) adds damping to structures. In order to enhance the damping effects of the viscoelastic material, a constraining layer is attached. If this constraining layer is a piezoelectric patch, the system is said to have active constrained layer damping (ACLD). In this paper, the damping effects due to viscoelastic material which has an active constraining layer is modeled using the Golla-Hughes-McTavish (GHM) damping method. The piezoelectric patch and structure are modeled using a Galerkin approach in order to account for the effect of the constraining layer on the beam.
Nuclear radii calculations in various theoretical approaches for nucleus-nucleus interactions
Merino, C.; Novikov, I. S.; Shabelski, Yu.
2009-12-15
The information about sizes and nuclear density distributions in unstable (radioactive) nuclei is usually extracted from the data on interaction of radioactive nuclear beams with a nuclear target. We show that in the case of nucleus-nucleus collisions the values of the parameters depend somewhat strongly on the considered theoretical approach and on the assumption about the parametrization of the nuclear density distribution. The obtained values of root-mean-square radii (R{sub rms}) for stable nuclei with atomic weights A=12-40 vary by approximately 0.1 fm when calculated in the optical approximation, in the rigid target approximation, and using the exact expression of the Glauber theory. We present several examples of R{sub rms} radii calculations using these three theoretical approaches and compare these results with the data obtained from electron-nucleus scattering.
Dynamic damping control: Implementation issues and simulation results
Anderson, R.J.
1989-01-01
Computed torque algorithms are used to compensate for the changing dynamics of robot manipulators in order to ensure that a constant level of damping is maintained for all configurations. Unfortunately, there are three significant problems with existing computed torque algorithms. First, they are nonpassive and can lead to unstable behavior; second, they make inefficient use of actuator capability; and third, they cannot be used to maintain a constant end-effector stiffness for force control tasks. Recently, we introduced a new control algorithm for robots which, like computed torque, uses a model of the manipulator's dynamics to maintain a constant level of damping in the system, but does so passively. This new class of passive control algorithms has guaranteed stability properties, utilizes actuators more effectively, and can also be used to maintain constant end-effector stiffness. In this paper, this approach is described in detail, implementation issues are discussed, and simulation results are given. 15 refs., 6 figs., 2 tabs.
Gravitational Landau damping for an isotropic cluster of stars
NASA Technical Reports Server (NTRS)
Habib, Salman; Kandrup, Henry E.; Yip, Ping F.
1986-01-01
The problem of ascertaining the dynamical stability and the existence of Landau damping in static, isotropic 'collisionless' star clusters is addressed. The second-order formalism of Kandrup and Sygnet (1985) is applied to a homogeneous and isotropic plasma, demonstrating formally that the unperturbed configuration will always be stable and that the modes must be purely oscillatory. The form of these modes is explicitly examined, culminating in an analytic expression for the time evolution of the density induced by an initial perturbation. It is shown how these considerations can be adapted trivially to localized, nonradial disturbances of a self-gravitating system of stars. The possible existence of gravitational Landau damping for more generic perturbations is discussed.
Dynamic stiffness and damping of porcine muscle specimens.
Aimedieu, P; Mitton, D; Faure, J P; Denninger, L; Lavaste, F
2003-11-01
The aim of this study was to quantify the mechanical properties of the muscles of the buttock, using dynamic compression (5-->30 Hz). Tests were conducted in vitro on porcine muscles, using a lever arm device, which applied a dynamic load onto cylindrical samples. A two-parameter viscoelastic model allowed the calculation of stiffness and damping of the samples with respect to frequency. The average stiffness curve showed a monotonous increase (5 Hz: 8.5 kN/m-->30 Hz: 347 kN/m). Concerning damping, between 5 and 20 Hz, values were typically inferior to 300 Ns/m, which then increased till 30 Hz (556 Ns/m). The lever arm device may be used to evaluate dynamic properties of other biological tissues also.
Calibration of BGO Calorimeter of the DAMPE in Space
NASA Astrophysics Data System (ADS)
Wang, Chi
2016-07-01
The Dark Matter Particle Explore (DAMPE) is a satellite based experiment which launched on December 2015 and aims at indirect searching for dark matter by measuring the spectra of high energy e±, γ from 5GeV up to 10TeV originating from deep space. The 3D imaging BGO calorimeter of DAMPE was designed to precisely measurement the primary energy of the electromagnetic particle and provides a highly efficient rejection of the hadronic background by reconstruct the longitudinal and lateral profiles of showers. To achieve the expected accuracy on the energy measurement, each signal channel has to be calibrated. The energy equalization is performed using the signal that Minimum Ionizing Particles (MIP) leave in each BGO bar, the MIPs measurement method with orbit data and, data quality, time stability using MIPs data will be presented, too.
Manifold damping of the NLC detuned accelerating structure
NASA Astrophysics Data System (ADS)
Kroll, N.; Thompson, K.; Bane, K.; Gluckstern, R.; Ko, K.; Miller, R.; Ruth, R.
1995-06-01
In order to mitigate the reappearance of the HOM wakefield of a detuned accelerator structure and relax tolerance requirements, we propose to provide low level damping by coupling all cavities to several identical and symmetrically located waveguides (manifolds) which run parallel to each accelerator structure and are terminated at each end by matched loads. The waveguides are designed such that all modes which couple to the acceleration mode are non-propagating at the acceleration mode frequency. Hence the coupling irises can be designed to provide large coupling to higher frequency modes without damping the acceleration mode. Because the higher order modes are detuned, they are localized and have a broad spectrum of phase velocities of both signs. They are therefore capable of coupling effectively to all propagating modes in the waveguides. Methods of analyzing and results obtained for the very complex system of modes in the accelerating structure and manifolds are presented.
Design of a 30 GHz Damped Detuned Accelerating Structure
NASA Astrophysics Data System (ADS)
Dehler, M.; Wilson, I.; Wuensch, W.; Jones, R. M.; Kroll, N. M.; Miller, R. H.
1997-05-01
Within the framework of the SLAC/CERN studies of 30 GHz linear colliders, an attempt has been made to scale the existing X-band NLC damped detuned accelerating structure to 30 GHz. A simple scaling was not chosen because of anticipated manufacturing difficulties. The new manifold-damped design has 101 cells and a minimum aperture of 3.4 mm. In order to obtain acceptably small values for both the single-bunch transverse wakefield and the long-range multibunch wakefield a relatively large non-linear variation of the iris thickness was introduced in addition to the iris diameter variation. The resulting short-range wakefield is 1270 V/pC/mm/m decreasing to less than 1after 1 ns.
Manifold damping of the NLC detuned accelerating structure
Kroll, N.; Thompson, K.; Bane, K.; Ko, K.; Miller, R.; Ruth, R.; Gluckstern, R.
1994-09-01
In order to investigate the reappearance of the HOM wakefield of a detuned accelerator structure and relax tolerance requirements, we propose to provide low level damping by coupling all cavities to several identical and symmetrically located waveguides (manifolds) which run parallel to each accelerator structure and are terminated at each end by matched loads. The waveguides are designed such that all modes which couple to the acceleration mode are non-propagating at the acceleration mode frequency. Hence the coupling irises can be designed to provide large coupling to higher frequency modes without damping the acceleration mode. Because the higher order modes are detuned, they are localized and have a broad spectrum of phase velocities of both signs. They are therefore capable of coupling effectively to all propagating modes in the waveguides. Methods of analyzing and results obtained for the very complex system of modes in the accelerating structure and manifolds are presented.
Viscous cavity damping of a microlever in a simple fluid.
Siria, A; Drezet, A; Marchi, F; Comin, F; Huant, S; Chevrier, J
2009-06-26
We consider the problem of oscillation damping in air of a thermally actuated microlever as it gradually approaches an infinite wall in parallel geometry. As the gap is decreased from 20 microm down to 400 nm, we observe the increasing damping of the lever Brownian motion in the fluid laminar regime. This manifests itself as a linear decrease in the lever quality factor accompanied by a dramatic softening of its resonance, and eventually leads to the freezing of the CL oscillation. We are able to quantitatively explain this behavior by analytically solving the Navier-Stokes equation with perfect slip boundary conditions. Our findings may have implications for microfluidics and micro- and nanoelectromechanical applications.
Configuration Studies and Recommendations for the ILC DampingRings
Wolski, Andrzej; Gao, Jie; Guiducci, Susanna
2006-02-04
We describe the results of studies comparing differentoptions for the baseline configuration of the ILC damping rings. Theprincipal configuration decisions apply to the circumference, beamenergy, lattice type, and technology options for key components,including the injection/extraction kickers and the damping wigglers. Toarrive at our recommended configuration, we performed detailed studies ofa range of lattices representing a variety of different configurationoptions; these lattices are described in Chapter 2. The results of thevarious studies are reported in chapters covering issues of beamdynamics, technical subsystems, costs, and commissioning, reliability andupgradeability. Our detailed recommendations for the baselineconfiguration are given in Chapter 7, where we also outline furtherresearch and development that is needed before a machine using ourrecommended configuration can be built and operated successfully. In thesame chapter, we suggest possible alternatives to the baselineconfiguration.
Configuration Studies and Recommendations for the ILC DampingRings
Wolski, Andrzej; Gao, Jie; Guiducci, Susanna
2006-02-04
We describe the results of studies comparing different options for the baseline configuration of the ILC damping rings. The principal configuration decisions apply to the circumference, beam energy, lattice type, and technology options for key components, including the injection/extraction kickers and the damping wigglers. To arrive at our recommended configuration, we performed detailed studies of a range of lattices representing a variety of different configuration options; these lattices are described in Chapter 2. The results of the various studies are reported in chapters covering issues of beam dynamics, technical subsystems, costs, and commissioning, reliability and upgrade ability. Our detailed recommendations for the baseline configuration are given in Chapter 7, where we also outline further research and development that is needed before a machine using our recommended configuration can be built and operated successfully. In the same chapter, we suggest possible alternatives to the baseline configuration.
Quantum correlations in pumped and damped Bose-Hubbard dimers
NASA Astrophysics Data System (ADS)
Olsen, M. K.; Chianca, C. V.; Dechoum, K.
2016-10-01
We propose and analyze two-well Bose-Hubbard models with pumping and losses, finding that these models, with damping and loss able to be added independently to each well, offer a flexibility not found in optical coupled cavity systems. With one well pumped, we find that both the mean-field dynamics and the quantum statistics show a quantitative dependence on the choice of damped well. Both the systems we analyze remain far from equilibrium, preserving good coherence between the wells in the steady state. We find a degree of quadrature squeezing and mode entanglement in these systems. Due to recent experimental advances, it should be possible to demonstrate the effects we investigate and predict.
Active vibration control using an inertial actuator with internal damping.
Paulitsch, Christoph; Gardonio, Paolo; Elliott, Stephen J
2006-04-01
Collocated direct velocity feedback with ideal point force actuators mounted on structures is unconditionally stable and generates active damping. When inertial actuators are used to generate the control force, the system can become unstable even for moderate velocity feedback gains due to an additional -180 degree phase lag introduced by the fundamental axial resonant mode of the inertial actuator. In this study a relative velocity sensor is used to implement an inner velocity feedback loop that generates internal damping in a lightweight, electrodynamic, inertial actuator. Simulation results for a model problem with the actuator mounted on a clamped plate show that, when internal relative velocity feedback is used in addition to a conventional external velocity feedback loop, there is an optimum combination of internal and external velocity feedback gains, which, for a given gain margin, maximizes vibration reduction. These predictions are validated in experiments with a specially built lightweight inertial actuator.
Kinetic damping of resistive wall modes in ITER
Chapman, I. T.; Liu, Y. Q.; Graves, J. P.; Jucker, M.
2012-05-15
Full drift kinetic modelling including finite orbit width effects has been used to assess the passive stabilisation of the resistive wall mode (RWM) that can be expected in the ITER advanced scenario. At realistic plasma rotation frequency, the thermal ions have a stabilising effect on the RWM, but the stability limit remains below the target plasma pressure to achieve Q = 5. However, the inclusion of damping arising from the fusion-born alpha particles, the NBI ions, and ICRH fast ions extends the RWM stability limit above the target {beta} for the advanced scenario. The fast ion damping arises primarily from finite orbit width effects and is not due to resonance between the particle frequencies and the instability.
Optimization of the selective frequency damping parameters using model reduction
NASA Astrophysics Data System (ADS)
Cunha, Guilherme; Passaggia, Pierre-Yves; Lazareff, Marc
2015-09-01
In the present work, an optimization methodology to compute the best control parameters, χ and Δ, for the selective frequency damping method is presented. The optimization does not suppose any a priori knowledge of the flow physics, neither of the underlying numerical methods, and is especially suited for simulations requiring large quantity of grid elements and processors. It allows for obtaining an optimal convergence rate to a steady state of the damped Navier-Stokes system. This is achieved using the Dynamic Mode Decomposition, which is a snapshot-based method, to estimate the eigenvalues associated with global unstable dynamics. Validations test cases are presented for the numerical configurations of a laminar flow past a 2D cylinder, a separated boundary-layer over a shallow bump, and a 3D turbulent stratified-Poiseuille flow.
Sinusoidal response of composite-material plates with material damping.
NASA Technical Reports Server (NTRS)
Siu, C. C.; Bert, C. W.
1973-01-01
A general forced-vibration analysis is presented for laminated anisotropic rectangular plates including material damping. The theory used is the laminated version of the Mindlin plate theory and includes thickness-shear flexibility and rotatory and coupling inertia. A solution is obtained by the Rayleigh-Ritz method, extended to include the energy dissipated and the work done by the excitation. The analysis is applied to prediction of the resonant frequencies and associated nodal patterns and damping ratios of the first five modes for a series of rectangular plates with free edges. The plates considered consist of unidirectional boron-fiber/epoxy composite material with respective fiber orientations of 0, 10, 30, 45, 60, and 90 deg.
On damping in the vicinity of critical points.
Virgin, L N; Wiebe, R
2013-06-28
The effect of damping on the behaviour of oscillations in the vicinity of bifurcations of nonlinear dynamical systems is investigated. Here, our primary focus is single degree-of-freedom conservative systems to which a small linear viscous energy dissipation has been added. Oscillators with saddle-node, pitchfork and transcritical bifurcations are shown analytically to exhibit several interesting characteristics in the free decay response near a bifurcation. A simple mechanical oscillator with a transcritical bifurcation is used to experimentally verify the analytical results. A transcritical bifurcation was selected because it may be used to represent generic bifurcation behaviour. It is shown that the damping ratio can be used to predict a change in the stability with respect to changing system parameters.
Bubble-induced damping in displacement-driven microfluidic flows.
Lee, Jongho; Rahman, Faizur; Laoui, Tahar; Karnik, Rohit
2012-08-01
Bubble damping in displacement-driven microfluidic flows was theoretically and experimentally investigated for a Y-channel microfluidic network. The system was found to exhibit linear behavior for typical microfluidic flow conditions. The bubbles induced a low-pass filter behavior with a characteristic cutoff frequency that scaled proportionally with flow rate and inversely with bubble volume and exhibited a minimum with respect to the relative resistances of the connecting channels. A theoretical model based on the electrical circuit analogy was able to predict experimentally observed damping of fluctuations with excellent agreement. Finally, a flowmeter with high resolution (0.01 μL/min) was demonstrated as an application of the bubble-aided stabilization. This study may aid in the design of many other bubble-stabilized microfluidic systems.
Note on the Poisson structure of the damped oscillator
Hone, A. N. W.; Senthilvelan, M.
2009-10-15
The damped harmonic oscillator is one of the most studied systems with respect to the problem of quantizing dissipative systems. Recently Chandrasekar et al. [J. Math. Phys. 48, 032701 (2007)] applied the Prelle-Singer method to construct conserved quantities and an explicit time-independent Lagrangian and Hamiltonian structure for the damped oscillator. Here we describe the associated Poisson bracket which generates the continuous flow, pointing out that there is a subtle problem of definition on the whole phase space. The action-angle variables for the system are also presented, and we further explain how to extend these considerations to the discrete setting. Some implications for the quantum case are briefly mentioned.
Effects of radiation damping on Z-spectra.
Williamson, David C; Närväinen, Johanna; Hubbard, Penny L; Kauppinen, Risto A; Morris, Gareth A
2006-12-01
Radiation damping induced by the strong water magnetization in Z-spectroscopy experiments can be sufficient to perturb significantly the resultant Z-spectrum. With a probe tuned to exact electrical resonance the effects are relatively straightforward, narrowing the central feature of the Z-spectrum. Where, as is commonly the case, the probe is tuned sufficiently well to give optimum signal-to-noise ratio and radiofrequency field strength but is not at exact resonance, radiation damping introduces an unexpected asymmetry into the Z-spectrum. This has the potential to complicate the use of Z-spectrum asymmetry to study chemical exchange, for example in the estimation of pH in vivo.
Secondary metabolites from Penicillium corylophilum isolated from damp buildings.
McMullin, David R; Nsiama, Tienabe K; Miller, J David
2014-01-01
Indoor exposure to the spores and mycelial fragments of fungi that grow on damp building materials can result in increased non-atopic asthma and upper respiratory disease. The mechanism appears to involve exposure to low doses of fungal metabolites. Penicillium corylophilum is surprisingly common in damp buildings in USA, Canada and western Europe. We examined isolates of P. corylophilum geographically distributed across Canada in the first comprehensive study of secondary metabolites of this fungus. The sesquiterpene phomenone, the meroterpenoids citreohybridonol and andrastin A, koninginin A, E and G, three new alpha pyrones and four new isochromans were identified from extracts of culture filtrates. This is the first report of koninginins, meroterpenoids and alpha pyrones from P. corylophilum. These secondary metabolite data support the removal of P. corylophilum from Penicillium section Citrina and suggest that further taxonomic studies are required on this species.
Comments on Landau damping due to synchrotron frequency spread
Ng, K.Y.; /Fermilab
2005-01-01
An inductive/space-charge impedance shifts the synchrotron frequency downwards above/below transition, but it is often said that the coherent synchrotron frequency of the bunch is not shifted in the rigid-dipole mode. On the other hand, the incoherent synchrotron frequency due to the sinusoidal rf always spreads in the downward direction. This spread will therefore not be able to cover the coherent synchrotron frequency, implying that there will not be any Landau damping no matter how large the frequency spread is. By studying the dispersion relation, it is shown that the above argument is incorrect, and there will be Landau damping if there is sufficient frequency spread. The main reason is that the coherent frequency of the rigid-dipole mode will no longer remain unshifted in the presence of a synchrotron frequency spread.
Intrabeam Scattering in the NLC Main Damping Rings
Wolski, Andrzej
2006-06-08
We use Bane's approximation to the Bjorken-Mtingwa theory of intrabeam scattering to calculate the emittance growth as a function of bunch charge in the KEK ATF. We find that our results are consistent with the experimental data. We then calculate the emittance growth in the NLC Main Damping Rings using the same formulae; we allow for some uncertainty in the ATF data by using two different values for the Coulomb log factor in the formulae for the emittance growth rates. We find that despite the IBS emittance growth, it should still be possible to achieve the specified transverse and longitudinal emittances in the NLC Main Damping Rings at the specified bunch charge.
DAMPE silicon tracker on-board data compression algorithm
NASA Astrophysics Data System (ADS)
Dong, Yi-Fan; Zhang, Fei; Qiao, Rui; Peng, Wen-Xi; Fan, Rui-Rui; Gong, Ke; Wu, Di; Wang, Huan-Yu
2015-11-01
The Dark Matter Particle Explorer (DAMPE) is an upcoming scientific satellite mission for high energy gamma-ray, electron and cosmic ray detection. The silicon tracker (STK) is a subdetector of the DAMPE payload. It has excellent position resolution (readout pitch of 242 μm), and measures the incident direction of particles as well as charge. The STK consists of 12 layers of Silicon Micro-strip Detector (SMD), equivalent to a total silicon area of 6.5 m2. The total number of readout channels of the STK is 73728, which leads to a huge amount of raw data to be processed. In this paper, we focus on the on-board data compression algorithm and procedure in the STK, and show the results of initial verification by cosmic-ray measurements. Supported by Strategic Priority Research Program on Space Science of Chinese Academy of Sciences (XDA040402) and National Natural Science Foundation of China (1111403027)
The mixed level damping of the single-axial rotation of INS
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhu, Hai; Li, Gang; Gao, Dayuan
2011-12-01
In order to improve the accuracy of the Single-axial Rotation of INS (SRINS), the idea of the level damping of the platform INS is introduced to the system, and the principle of the damping is offered. On the basic of analyzing on both of inner level damping and outer level damping, the mixed level damping is put forward. The results show that by introducing the damping network to the system, both of the Schuler oscillation and the Foucault oscillation are eliminated, and the precision of the SRINS is greatly enhanced; At the same time, by used of the mixed level damping, which can not only reduce the effect of the vehicle power-driven to the precision of the system, but also avoid the limit of the accurate reference velocity.
Screening effects on plasmon damping in an electron liquid
NASA Astrophysics Data System (ADS)
Bachlechner, Martina E.; Böhm, Helga M.; Schinner, Andreas
1993-03-01
Plasmon damping in the three-dimensional homogeneous electron gas is investigated within the formalism of second-order perturbation theory, concentrating on the effects of static and dynamic screening. We have found several different theoretical approaches leading to comparable results, especially in the metallic-density regime. Using a spin-dependent interaction, however, significantly improves the results of our theory towards a better agreement with the experiments.
Damping of Electron Density Structures and Implications for Interstellar Scintillation
NASA Astrophysics Data System (ADS)
Smith, K. W.; Terry, P. W.
2011-04-01
The forms of electron density structures in kinetic Alfvén wave (KAW) turbulence are studied in connection with scintillation. The focus is on small scales L ~ 108-1010 cm where the KAW regime is active in the interstellar medium, principally within turbulent H II regions. Scales at 10 times the ion gyroradius and smaller are inferred to dominate scintillation in the theory of Boldyrev et al. From numerical solutions of a decaying KAW turbulence model, structure morphology reveals two types of localized structures, filaments and sheets, and shows that they arise in different regimes of resistive and diffusive damping. Minimal resistive damping yields localized current filaments that form out of Gaussian-distributed initial conditions. When resistive damping is large relative to diffusive damping, sheet-like structures form. In the filamentary regime, each filament is associated with a non-localized magnetic and density structure, circularly symmetric in cross section. Density and magnetic fields have Gaussian statistics (as inferred from Gaussian-valued kurtosis) while density gradients are strongly non-Gaussian, more so than current. This enhancement of non-Gaussian statistics in a derivative field is expected since gradient operations enhance small-scale fluctuations. The enhancement of density gradient kurtosis over current kurtosis is not obvious, yet it suggests that modest density fluctuations may yield large scintillation events during pulsar signal propagation. In the sheet regime the same statistical observations hold, despite the absence of localized filamentary structures. Probability density functions are constructed from statistical ensembles in both regimes, showing clear formation of long, highly non-Gaussian tails.
Quadratic and Cubic Nonlinear Oscillators with Damping and Their Applications
NASA Astrophysics Data System (ADS)
Li, Jibin; Feng, Zhaosheng
We apply the qualitative theory of dynamical systems to study exact solutions and the dynamics of quadratic and cubic nonlinear oscillators with damping. Under certain parametric conditions, we also consider the van der Waals normal form, Chaffee-Infante equation, compound Burgers-KdV equation and Burgers-KdV equation for explicit representations of kink-profile wave solutions and unbounded traveling wave solutions.
Higher order mode damping for a detuned structure
Kroll, N.; Thompson, K.; Bane, K.; Ko, K.; Miller, R.; Ruth, R.; Gluckstern, R.
1994-08-01
We report in this paper the current status of our investigation of the possibility of suppressing the wake reappearance by providing relatively weak damping via the vacuum manifolds. The four vacuum manifolds running the length of the structure also function as multimode waveguides which serve to drain power from the HOM`s through the large coupling slots located in each cell, except, as discussed later, for a few at each end of the manifolds.
Estimation on nonlinear damping in second order distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1989-01-01
An approximation and convergence theory for the identification of nonlinear damping in abstract wave equations is developed. It is assumed that the unknown dissipation mechanism to be identified can be described by a maximal monotone operator acting on the generalized velocity. The stiffness is assumed to be linear and symmetric. Functional analytic techniques are used to establish that solutions to a sequence of finite dimensional (Galerkin) approximating identification problems in some sense approximate a solution to the original infinite dimensional inverse problem.
Status of the SLC damping ring kicker systems
Mattison, T.; Cassel, R.; Donaldson, A.; Gough, D.; Gross, G.; Harvey, A.; Hutchinson, D.; Nguyen, M.
1991-05-01
The damping ring kickers for the SLAC Linear Collider must meet extreme requirements on rise and fall time, flatness, time and amplitude jitter and drift, voltage, repetition rate, and reliability. After several generations of improvements to the pulsers, magnets, and controls, and evolution in the understanding of the requirements, the kicker systems are no longer a serious constraint on SLC performance. Implications for future linear colliders are discussed. 14 refs.
Viscoelastic Damping of Turbine and Compressor Blade Vibrations.
1982-03-01
Model Description....................3 rest Set-Up......................9 Test Procedures....................12 Data and Discus sion...34erental and analytical models are delinea-,ed. ix S 4 r ,-, n - 4 - ~ - . -- .... .. - .... ....... .... 4esign. :n ccI t i nim n te . t e...means of damping vibratory oscillations. The avenues to this exploration were an experimental and an analytical model of the blade along with a
Experimental Program for the Determination of Hull Structural Damping Coefficients.
1981-09-01
experimental conditions must be recorded and presented as part of the data. Completeness requires that all factors related to the data must be measured...carrier, and a Ŕ,000 ton container ship). - 17. Ley Weds I. Distribution Steemen, Damping Document is available to the Hull vibrations public through the...Vibration ............................... 18 2.1.1.2 Forced Vibration Steady State ............... 19 2.1.1.3 Transient or Non- Harmonic Vibration
Backscattering and Nonparaxiality Arrest Collapse of Damped Nonlinear Waves
NASA Technical Reports Server (NTRS)
Fibich, G.; Ilan, B.; Tsynkov, S.
2002-01-01
The critical nonlinear Schrodinger equation (NLS) models the propagation of intense laser light in Kerr media. This equation is derived from the more comprehensive nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. It is known that if the input power of the laser beam (i.e., L(sub 2) norm of the initial solution) is sufficiently high, then the NLS model predicts that the beam will self-focus to a point (i.e.. collapse) at a finite propagation distance. Mathematically, this behavior corresponds to the formation of a singularity in the solution of the NLS. A key question which has been open for many years is whether the solution to the NLH, i.e., the 'parent' equation, may nonetheless exist and remain regular everywhere, in particular for those initial conditions (input powers) that lead to blowup in the NLS. In the current study, we address this question by introducing linear damping into both models and subsequently comparing the numerical solutions of the damped NLH (boundary-value problem) with the corresponding solutions of the damped NLS (initial-value problem). Linear damping is introduced in much the same way as done when analyzing the classical constant-coefficient Helmholtz equation using the limiting absorption principle. Numerically, we have found that it provides a very efficient tool for controlling the solutions of both the NLH and NHS. In particular, we have been able to identify initial conditions for which the NLS solution does become singular. whereas the NLH solution still remains regular everywhere. We believe that our finding of a larger domain of existence for the NLH than that for the NLS is accounted for by precisely those mechanisms, that have been neglected when deriving the NLS from the NLH, i.e., nonparaxiality and backscattering.
Methods for elimination of dampness in Building walls
NASA Astrophysics Data System (ADS)
Campian, Cristina; Pop, Maria
2016-06-01
Dampness elimination in building walls is a very sensitive problem, with high costs. Many methods are used, as: chemical method, electro osmotic method or physical method. The RECON method is a representative and a sustainable method in Romania. Italy has the most radical method from all methods. The technology consists in cutting the brick walls, insertion of a special plastic sheeting and injection of a pre-mixed anti-shrinking mortar.
Active vibration damping of the Space Shuttle remote manipulator system
NASA Technical Reports Server (NTRS)
Scott, Michael A.; Gilbert, Michael G.; Demeo, Martha E.
1991-01-01
The feasibility of providing active damping augmentation of the Space Shuttle Remote Manipulator System (RMS) following normal payload handling operations is investigated. The approach used in the analysis is described, and the results for both linear and nonlinear performance analysis of candidate laws are presented, demonstrating that significant improvement in the RMS dynamic response can be achieved through active control using measured RMS tip acceleration data for feedback.
Active vibration damping of the Space Shuttle Remote Manipulator System
NASA Technical Reports Server (NTRS)
Scott, Michael A.; Gilbert, Michael G.; Demeo, Martha E.
1991-01-01
The feasibility of providing active damping augmentation of the Space Shuttle Remote Manipulator System (RMS) following normal payload-handling operations is investigated. The approach used in the analysis is described and the results from both linear and nonlinear performance analyses of candidate laws are presented, demonstrating that significant improvement in the RMS dynamic response can be achieved through active control using measured RMS tip acceleration data for feedback.
Gravitational radiation resistance, radiation damping and field fluctuations
NASA Astrophysics Data System (ADS)
Schaefer, G.
1981-03-01
Application is made of two different generalized fluctuation-dissipation theorems and their derivations to the calculation of the gravitational quadrupole radiation resistance using the radiation-reaction force given by Misner, Thorne and Wheeler and the usual tidal force on one hand and the tidal force and the free gravitational radiation field on the other hand. The quantum-mechanical version (including thermal generalizations) of the well known classical quadrupole radiation damping formula is obtained as a function of the radiation resistance.