Science.gov

Sample records for 13c 15n labeled

  1. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    PubMed

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  2. Measurement of multiple psi torsion angles in uniformly 13C,15N-labeled alpha-spectrin SH3 domain using 3D 15N-13C-13C-15N MAS dipolar-chemical shift correlation spectroscopy.

    PubMed

    Ladizhansky, Vladimir; Jaroniec, Christopher P; Diehl, Annette; Oschkinat, Hartmut; Griffin, Robert G

    2003-06-01

    We demonstrate the simultaneous measurement of several backbone torsion angles psi in the uniformly (13)C,(15)N-labeled alpha-Spectrin SH3 domain using two different 3D 15N-13C-13C-15N dipolar-chemical shift magic-angle spinning (MAS) NMR experiments. The first NCCN experiment utilizes double quantum (DQ) spectroscopy combined with the INADEQUATE type 13C-13C chemical shift correlation. The decay of the DQ coherences formed between 13C'(i) and 13C(alphai) spin pairs is determined by the "correlated" dipolar field due to 15N(i)-13C(alphai) and 13C'(i)-15N(i+1) dipolar couplings and is particularly sensitive to variations of the torsion angle in the regime |psi| > 140 degrees. However, the ability of this experiment to constrain multiple psi-torsion angles is limited by the resolution of the 13C(alpha)-(13)CO correlation spectrum. This problem is partially addressed in the second approach described here, which is an NCOCA NCCN experiment. In this case the resolution is enhanced by the superior spectral dispersion of the 15N resonances present in the 15N(i+1)-13C(alphai) part of the NCOCA chemical shift correlation spectrum. For the case of the 62-residue alpha-spectrin SH3 domain, we determined 13 psi angle constraints with the INADEQUATE NCCN experiment and 22 psi constraints were measured in the NCOCA NCCN experiment.

  3. Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction

    DOEpatents

    Chen, Xian; Gupta, Goutam; Bradbury, E. Morton

    2001-01-01

    Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.

  4. An economical method for (15)N/(13)C isotopic labeling of proteins expressed in Pichia pastoris.

    PubMed

    Rodriguez, E; Krishna, N R

    2001-07-01

    We report a new and cost-effective approach to prepare (15)N/(13)C labeled proteins for NMR using the Pichia pastoris expression system. Four protocols (P1 to P4) were defined and compared using recombinant Ovine interferon-tau (rOvIFN-tau). Our results demonstrate that in order to get full incorporation of (15)N and (13)C, the isotopes are not totally required during the initial growth phase of P. pastoris culture. The addition of small amounts of (15)N and (13)C compounds 6 h prior to the methanol induction phase is sufficient to obtain 99% incorporation of heavy isotopes into the protein. Our optimized protocol P4 is two-thirds less costly than the classical method using (15)N and (13)C isotopes during the entire growth phase.

  5. Differential growth of the fungus Absidia cylindrospora on 13C/15N-labelled media.

    PubMed

    Crotty, F V; Blackshaw, R P; Murray, P J

    2011-06-15

    Many studies utilise enrichment of stable isotopes as tracers to follow the interactions occurring within soil food webs and methods have been developed to enrich bacteria, soil fauna and plant litter, Here for the first time we attempt to enrich a soil fungus to 99 atom% with (13)C and (15)N stable isotopes. In this study our objectives were to (a) assess whether the saprotrophic zygomycete fungus Absidia cylindrospora could grow on a medium enriched to 99 atom% with (13)C-glucose and (15)N-ammonium chloride, (b) to determine the level of enrichment obtained, and (c) to examine the change in growth rate of this fungus while it was growing on the dually enriched medium. To achieve this, the fungus was grown on agar enriched with (13)C and (15)N to 99 atom% and its growth rate monitored. The results showed that A. cylindrospora would grow on the highly labelled growth medium, but that its rate of growth was affected compared with the rate on either natural abundance media or media highly enriched with a single isotope ((13)C or (15)N). The implications of these results is that although the fungus is able to utilise these heavier isotopes, the biochemical processes involved in growth are affected, and consideration should be given to these differences when using stable isotope tracers in, for example, soil food web studies.

  6. Synthesis of 13C and 15N labeled 2,4-dinitroanisole.

    PubMed

    Jagadish, Bhumasamudram; Field, Jim A; Chorover, Jon; Sierra-Alvarez, Reyes; Abrell, Leif; Mash, Eugene A

    2014-05-30

    Syntheses of [(13)C6]-2,4-dinitroanisole (ring-(13)C6) from [(13)C6]-anisole (ring-(13)C6) and [(15)N2]-2,4-dinitroanisole from anisole using in situ generated acetyl nitrate and [(15)N]-acetyl nitrate, respectively, are described. Treatment of [(13)C6]-anisole (ring-(13)C6) with acetyl nitrate generated in 100% HNO3 gave [(13)C6]-2,4-dinitroanisole (ring-(13)C6) in 83% yield. Treatment of anisole with [(15)N]-acetyl nitrate generated in 10 N [(15)N]-HNO3 gave [(15)N2 ]-2,4-dinitroanisole in 44% yield after two cycles of nitration. Byproducts in the latter reaction included [(15)N]-2-nitroanisole and [(15)N]-4-nitroanisole.

  7. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins. PMID:25929326

  8. Triple resonance experiments for aligned sample solid-state NMR of 13C and 15N labeled proteins

    PubMed Central

    Sinha, Neeraj; Grant, Christopher V.; Park, Sang Ho; Brown, Jonathan Miles; Opella, Stanley J.

    2013-01-01

    Initial steps in the development of a suite of triple-resonance 1H/13C/15N solid-state NMR experiments applicable to aligned samples of 13C and 15N labeled proteins are described. The experiments take advantage of the opportunities for 13C detection without the need for homonuclear 13C/13C decoupling presented by samples with two different patterns of isotopic labeling. In one type of sample, the proteins are ~20% randomly labeled with 13C in all backbone and side chain carbon sites and ~100% uniformly 15N labeled in all nitrogen sites; in the second type of sample, the peptides and proteins are 13C labeled at only the α-carbon and 15N labeled at the amide nitrogen of a few residues. The requirement for homonuclear 13C/13C decoupling while detecting 13C signals is avoided in the first case because of the low probability of any two 13C nuclei being bonded to each other; in the second case, the labeled 13Cα sites are separated by at least three bonds in the polypeptide chain. The experiments enable the measurement of the 13C chemical shift and 1H–13C and 15N–13C heteronuclear dipolar coupling frequencies associated with the 13Cα and 13C′ backbone sites, which provide orientation constraints complementary to those derived from the 15N labeled amide backbone sites. 13C/13C spin-exchange experiments identify proximate carbon sites. The ability to measure 13C–15N dipolar coupling frequencies and correlate 13C and 15N resonances provides a mechanism for making backbone resonance assignments. Three-dimensional combinations of these experiments ensure that the resolution, assignment, and measurement of orientationally dependent frequencies can be extended to larger proteins. Moreover, measurements of the 13C chemical shift and 1H–13C heteronuclear dipolar coupling frequencies for nearly all side chain sites enable the complete three-dimensional structures of proteins to be determined with this approach. PMID:17293139

  9. High Resolution 13C MRI With Hyperpolarized Urea: In Vivo T2 Mapping and 15N Labeling Effects

    PubMed Central

    Reed, Galen D.; von Morze, Cornelius; Bok, Robert; Koelsch, Bertram L.; Van Criekinge, Mark; Smith, Kenneth J.; Shang, Hong; Larson, Peder E. Z.; Kurhanewicz, John; Vigneron, Daniel B.

    2014-01-01

    13C steady state free precession (SSFP) magnetic resonance imaging and effective spin-spin relaxation time (T2) mapping were performed using hyperpolarized [13C] urea and [13C, 15N2] urea injected intravenously in rats. 15N labeling gave large T2 increases both in solution and in vivo due to the elimination of a strong scalar relaxation pathway. The T2 increase was pronounced in the kidney, with [13C, 15N2] urea giving T2 values of 6.3±1.3 s in the cortex and medulla, and 11±2 s in the renal pelvis. The measured T2 in the aorta was 1.3±0.3 s. [13C] urea showed shortened T2 values in the kidney of 0.23±0.03 s compared to 0.28±0.03 s measured in the aorta. The enhanced T2 of [13C, 15N2] urea was utilized to generate large signal enhancement by SSFP acquisitions with flip angles approaching the fully refocused regime. Projection images at 0.94 mm in-plane resolution were acquired with both urea isotopes, with [13C, 15N2] urea giving a greater than four-fold increase in signal-to-noise ratio [13C] over urea. PMID:24235273

  10. Site-specific φ- and ψ-torsion angle determination in a uniformly/extensively 13C- and 15N-labeled peptide

    NASA Astrophysics Data System (ADS)

    Wi, Sungsool; Spano, Justin

    2011-10-01

    A solid-state rotational-echo double resonance (REDOR) NMR method was introduced to identify the ϕ- and ψ-torsion angle from a 1H- 15N or 1H- 13C' spin system of alanine-like residues in a selectively, uniformly, or extensively 15N-/ 13C-labeled peptide. When a C α( i) or a 15N peak is site-specifically obtainable in the NMR spectrum of a uniformly 15N/ 13C-labeled sample system, the ψ- or ϕ-torsion angle specified by the conformational structure of peptide geometry involving 15N( i)- 1H αi - 15N( i + 1) or 13C'( i - 1)- 1H Ni- 13C'( i) spin system can be identified based on 13C α- or 15N-detected 1H α- 15N or 1H N- 13C REDOR experiment. This method will conveniently be utilized to identify major secondary motifs, such as α-helix, β-sheet, and β-turn, from a uniformly 15N-/ 13C-labled peptide sample system. When tested on a 13C-/ 15N-labeled model system of a three amino acid peptide Gly-[U- 13C, 15N]Ala-[U- 13C, 15N]Leu, the ψ-angle of alanine obtained experimentally, ψ = -40 ± 30°, agreed reasonably well with the X-ray determined angle, ψ = -39°.

  11. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    SciTech Connect

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  12. Nitrogen and Carbon Flows Estimated by 15N and 13C Pulse-Chase Labeling during Regrowth of Alfalfa.

    PubMed Central

    Avice, J. C.; Ourry, A.; Lemaire, G.; Boucaud, J.

    1996-01-01

    The flow of 15N and 13C from storage compounds in organs remaining after defoliation (sources) to regrowing tissue (sinks), and 13C losses through root or shoot respiration were assessed by pulse-chase labeling during regrowth of alfalfa (Medicago sativa L.) following shoot removal. A total of 73% of labeled C and 34% of labeled N were mobilized in source organs within 30 d. Although all of the 15N from source organs was recovered in the regrowing tissue, much of the 13C was lost, mainly as CO2 respired from the root (61%) or shoot (8%), and was found to a lesser extent in sink tissue (5%). After 3, 10, or 30 d of regrowth, 87, 66, and 52% of shoot N, respectively, was derived from source tissue storage compounds; the rest resulted from translocation of fixed N2. Overall results suggest that most shoot C was linked to photosynthetic activity rather than being derived from mobilization of stored C in source organs. Furthermore, isotopic analysis of different chemical fractions of plant tissue suggests that between 14 and 58% of the shoot C derived from source tissues was linked to the mobilization of N compounds, not carbohydrates. PMID:12226391

  13. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins.

    PubMed

    Kumar, Dinesh; Hosur, Ramakrishna V

    2011-09-01

    A three-dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in (15)N/(13)C-labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147]; t2 evolution is used to frequency label (13)C' rather than (15)N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880-12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter-residue correlation peaks (i.e. Hi , Ci-1), the spectrum also contains additional intra-residue correlation peaks (i.e. Hi-1 , Ci-1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide (1) H chemical shifts (5-6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] leads to a more robust assignment protocol for backbone resonances ((1) H(N) , (15)N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727-14735]. Further, this new protocol enables assignment of (13)C' resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural-and functional-proteomics research by NMR. Performance of this experiment has been demonstrated using (13)C/(15)N labeled ubiquitin.

  14. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins.

    PubMed

    Kumar, Dinesh; Hosur, Ramakrishna V

    2011-09-01

    A three-dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in (15)N/(13)C-labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147]; t2 evolution is used to frequency label (13)C' rather than (15)N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880-12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter-residue correlation peaks (i.e. Hi , Ci-1), the spectrum also contains additional intra-residue correlation peaks (i.e. Hi-1 , Ci-1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide (1) H chemical shifts (5-6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] leads to a more robust assignment protocol for backbone resonances ((1) H(N) , (15)N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727-14735]. Further, this new protocol enables assignment of (13)C' resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural-and functional-proteomics research by NMR. Performance of this experiment has been demonstrated using (13)C/(15)N labeled ubiquitin. PMID:21818779

  15. Ner protein of phage Mu: Assignments using {sup 13}C/{sup 15}N-labeled protein

    SciTech Connect

    Strzelecka, T.; Gronenborn, A.M.; Clore, G.M.

    1994-12-01

    The Ner protein is a small (74-amino acid) DNA-binding protein that regulates a switch between the lysogenic and lytic stages of phage Mu. It inhibits expression of the C repressor gene and down-regulates its own expression. Two-dimensional NMR experiments on uniformly {sup 15}N-labeled protein provided most of the backbone and some of the sidechain proton assignments. The secondary structure determination using two-dimensional NOESY experiments showed that Ner consists of five {alpha}-helices. However, because most of the sidechain protons could not be assigned, the full structure was not determined. Using uniformly {sup 13}C/{sup 15}N-labeled Ner and a set of three-dimensional experiments, we were able to assign all of the backbone and 98% of the sidechain protons. In particular, the CBCANH and CBCA(CO)NH experiments were used to sequentially assign the C{alpha} and C{beta} resonances; the HCCH-CTOCSY and HCCH-COSY were used to assign sidechain carbon and proton resonances.

  16. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant isotope labeling.

    PubMed

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M Francesca

    2014-01-16

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as (13)C with (15)N, (18)O or (2)H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation(1-4). From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage(5-7). The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing (13)C and (15)N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous (13)C and (15)N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%(13)C and 6.7 atom%(15)N uniform plant label, or material that is differentially labeled by up to 1.29 atom%(13)C and 0.56 atom%(15)N in its metabolic and structural components (hot water extractable and hot water

  17. Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling

    PubMed Central

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M. Francesca

    2014-01-01

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components

  18. Simultaneous CT-13C and VT-15N chemical shift labelling: application to 3D NOESY-CH3NH and 3D 13C,15N HSQC-NOESY-CH3NH.

    PubMed

    Uhrín, D; Bramham, J; Winder, S J; Barlow, P N

    2000-11-01

    Based on the HSQC scheme, we have designed a 2D heterocorrelated experiment which combines constant time (CT) 13C and variable time (VT) 15N chemical shift labelling. Although applicable to all carbons, this mode is particularly suitable for simultaneous recording of methyl-carbon and nitrogen chemical shifts at high digital resolution. The methyl carbon magnetisation is in the transverse plane during the whole CT period (1/J(CC) = 28.6 ms). The magnetisation originating from NH protons is initially stored in the 2HzNz state, then prior to the VT chemical shift labelling period is converted into 2HzNy coherence. The VT -15N mode eliminates the effect of 1J(N,CO) and 1,2J(N,CA) coupling constants without the need for band-selective carbon pulses. An optional editing procedure is incorporated which eliminates signals from CH2 groups, thus removing any potential overlap with the CH3 signals. The CT-13CH3,VT-15N HSQC building block is used to construct two 3D experiments: 3D NOESY-CH3NH and 3D 13C,15N HSQC-NOESY-CH3NH. Combined use of these experiments yields proton and heteronuclear chemical shifts for moieties experiencing NOEs with CH3 and NH protons. These NOE interactions are resolved as a consequence of the high digital resolution in the carbon and nitrogen chemical shifts of CH3 and NH groups, respectively. The techniques are illustrated using a double labelled sample of the CH domain from calponin.

  19. A solution NMR study of the selectively 13C, 15N-labeled peptaibol chrysospermin C in methanol.

    PubMed

    Anders, R; Wenschuh, H; Soskic, V; Fischer-Frühholz, S; Ohlenschläger, O; Dornberger, K; Brown, L R

    1998-07-01

    The conformation of the 19-residue peptaibol chrysospermin C in methanol has been investigated by NMR spectroscopy using selective 15N and 13C labeling of the alpha-aminoisobutyric acid (Aib) residues. Complete 1H and 13C sequential assignments, including stereospecific assignments for the heavily overlapped resonances from the two Cbeta methyl groups of the eight Aib residues, are reported for a peptaibol for the first time. An Aib residue followed by a Pro is an exception to previous suggestions regarding stereospecific assignment of the two Cbeta methyl groups of Aib residues. Local nuclear Overhauser effects and 3J(HNC') and 3J(HNCbeta) scalar couplings indicate that the phi angles of the Aib residues are restricted sterically to local conformations consistent with right-handed helices. Despite these constraints on the eight Aib residues, the NMR data for chrysospermin C in methanol are generally most consistent with an ensemble of transient conformations, including backbone conformations inconsistent with helical structures. Initial NMR measurements for chrysospermin C bound to micelles suggest structural and dynamic differences relative to alamethicin bound to micelles which may be related to differences in gating voltages for formation of ion channels.

  20. Expression, purification, and mass spectrometric analysis of 15N, 13C-labeled RGD-hirudin, expressed in Pichia pastoris, for NMR studies.

    PubMed

    Huang, Yinong; Zhang, Yanling; Wu, Yi; Wang, Jue; Liu, Xingang; Dai, Linsen; Wang, Longsheng; Yu, Min; Mo, Wei

    2012-01-01

    A novel recombinant hirudin, RGD-hirudin, inhibits the activity of thrombin and the aggregation of platelets. Here, we successfully expressed (15)N, (13)C-labeled RGD-hirudin in Pichia pastoris in a fermenter. The protein was subsequently purified to yield sufficient quantities for structural and functional studies. The purified protein was characterized by HPLC and MALDI-TOF mass spectroscopy. Analysis revealed that the protein was pure and uniformly labeled with (15)N and (13)C. A bioassay showed that the anti-thrombin activity and the anti-platelet aggregation ability of the labeled protein were the same as those of unlabeled RGD-hirudin. Multidimensional heteronuclear NMR spectroscopy has been used to determine almost complete backbone (15)N, (13)C and (1)H resonance assignments of the r-RGD-Hirudin. The (15)N-(1)H HSQC spectrum of uniformly (15)N, (13)C-labeled RGD-hirudin allowed successful assignment of the signals. Examples of the quality of the data are provided for the (15)N-(l)H correlation spectrum, and by selected planes of the CBCA(CO)NH, CBCANH, and HNCO experiments. These results provide a basis for further studies on the structure-function relationship of RGD-hirudin with thrombin and platelets. PMID:22879918

  1. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C, 15N-labeled peptides and proteins

    NASA Astrophysics Data System (ADS)

    Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir

    2010-03-01

    In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly 13C, 15N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22 kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600 MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i - 2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed.

  2. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C,15N-labeled peptides and proteins.

    PubMed

    Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir

    2010-03-01

    In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly (13)C,(15)N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i-2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed. PMID:20060344

  3. Combining combing and secondary ion mass spectrometry to study DNA on chips using (13)C and (15)N labeling.

    PubMed

    Cabin-Flaman, Armelle; Monnier, Anne-Francoise; Coffinier, Yannick; Audinot, Jean-Nicolas; Gibouin, David; Wirtz, Tom; Boukherroub, Rabah; Migeon, Henri-Noël; Bensimon, Aaron; Jannière, Laurent; Ripoll, Camille; Norris, Victor

    2016-01-01

    Dynamic secondary ion mass spectrometry ( D-SIMS) imaging of combed DNA - the combing, imaging by SIMS or CIS method - has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to (13)C-labeling via the detection and quantification of the (13)C (14)N (-) recombinant ion and the use of the (13)C: (12)C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS. PMID:27429742

  4. Combining combing and secondary ion mass spectrometry to study DNA on chips using 13C and 15N labeling

    PubMed Central

    Cabin-Flaman, Armelle; Monnier, Anne-Francoise; Coffinier, Yannick; Audinot, Jean-Nicolas; Gibouin, David; Wirtz, Tom; Boukherroub, Rabah; Migeon, Henri-Noël; Bensimon, Aaron; Jannière, Laurent; Ripoll, Camille; Norris, Victor

    2016-01-01

    Dynamic secondary ion mass spectrometry ( D-SIMS) imaging of combed DNA – the combing, imaging by SIMS or CIS method – has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to 13C-labeling via the detection and quantification of the 13C 14N - recombinant ion and the use of the 13C: 12C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS. PMID:27429742

  5. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  6. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis.

    PubMed

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian; Ulrich, Anne S

    2015-06-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly (13)C/(15)N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive (13)C/(15)N-labeled amino acids. The most cost-effective production of (13)C/(15)N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% (13)C-glycerol and 0.5% (15)N-ammonium sulfate, supplemented with only 0.025% of (13)C/(15)N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state.

  7. Sensitivity-Enhanced MQ-HCN-CCH-TOCSY and MQ-HCN-CCH-COSY Pulse Schemes for 13C/ 15N Labeled RNA Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Hu, Weidong; Jiang, Licong; Gosser, Yuying Q.

    2000-07-01

    Sensitivity enhanced multiple-quantum 3D HCN-CCH-TOCSY and HCN-CCH-COSY experiments are presented for the ribose resonance assignment of 13C/15N-labeled RNA sample. The experiments make use of the chemical shift dispersion of N1/N9 of pyrimidine/purine to distinguish the ribose spin systems. They provide a complementary approach for the assignment of ribose resonance to the currently used HCCH-COSY and HCCH-TOCSY type experiments in which either 13C or 1H is utilized to separate the different ribose spin systems. The pulse schemes have been demonstrated on a 23-mer 13C/15N-labeled RNA aptamer complexed with neomycin and tested on a 32-mer RNA complexed with a 23-residue peptide.

  8. An intraresidual i(HCA)CO(CA)NH experiment for the assignment of main-chain resonances in 15N, 13C labeled proteins.

    PubMed

    Mäntylahti, Sampo; Tossavainen, Helena; Hellman, Maarit; Permi, Perttu

    2009-11-01

    An improved pulse sequence, intraresidual i(HCA)CO(CA)NH, is described for establishing solely (13)C'(i), (15)N(i), (1)HN(i) connectivities in uniformly 15N/13C-labeled proteins. In comparison to the "out-and-back" style intra-HN(CA)CO experiment, the new pulse sequence offers at least two-fold higher experimental resolution in the (13)C' dimension and on average 1.6 times higher sensitivity especially for residues in alpha-helices. Performance of the new experiment was tested on a small globular protein ubiquitin and an intrinsically unfolded 110-residue cancer/testis antigen CT16/PAGE5. Use of intraresidual i(HCA)CO(CA)NH experiment in combination with the established HNCO experiment was crucial for the assignment of highly disordered CT16. PMID:19768387

  9. Importance of bacterivory and preferential selection toward diatoms in larvae of Crepidula fornicata (L.) assessed by a dual stable isotope (13C, 15N) labeling approach

    NASA Astrophysics Data System (ADS)

    Leroy, Fanny; Riera, Pascal; Jeanthon, Christian; Edmond, Frédérique; Leroux, Cédric; Comtet, Thierry

    2012-05-01

    In Europe, the gastropod Crepidula fornicata is an invasive species characterized by a long reproductive period (from February to November). Thus, its larvae are exposed to variations in available food sources (in terms of quantity and quality). We aimed to investigate if bacteria could contribute to larval food both in presence or absence of phytoplankton, and to compare these results to seasonal variations of bacteria and phytoplankton abundances at a coastal site in the English Channel. First, ingestion of fluorescent beads of 0.5 to 2 μm diameter, showed that larvae were able to ingest particles of typical bacterial size. Then we used a dual stable isotope labeling approach which consisted in labeling a bacterial pelagic community with 15N and a diatom (Chaetoceros gracilis) culture with 13C, and supplying larvae with 15N-labeled bacteria, 13C-labeled diatoms, and both labeled sources. This technique has, to our knowledge, never been applied to invertebrate larvae. After 24 h of experiment, larvae were significantly enriched in all treatments: + 21.5‰ (∆δ13C) when supplied with diatoms, + 1364‰ (∆δ15N) when supplied with bacteria, and + 24‰ (∆δ13C) and + 135‰ (∆δ15N) when supplied with the two mixed sources. These results indicated that bacteria can contribute to the larval nutrition in C. fornicata, even in the presence of phytoplankton. Our results however suggested that larvae of C. fornicata preferentially used diatoms and showed that the supply of free bacteria did not alter the uptake of diatoms. Considering the seasonal variations of bacteria and phytoplankton abundances at the study site, these results suggested that bacteria may constitute a complementary resource for the larvae of C. fornicata when phytoplankton is abundant and may become a substitute resource when phytoplankton is less available. This approach offers promising perspectives to trace food sources and assess nitrogen and carbon fluxes between planktotrophic larvae

  10. HCN, A Triple-Resonance NMR Technique for Selective Observation of Histidine and Tryptophan Side Chains in 13C/ 15N-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Sudmeier, James L.; Ash, Elissa L.; Günther, Ulrich L.; Luo, Xuelian; Bullock, Peter A.; Bachovchin, William W.

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from1H to13C to15N and reverse through direct spin couplings1JCHand1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain1H,13C, and15N resonances in uniformly13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay τ3were employed for determination of optimal τ3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 121H and13C chemical shifts and 10 of the 1215N chemical shifts were determined. The13C dimension proved essential in assignment of the multiply overlapping1H and15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mMsample of phenylmethanesulfonyl fluoride (PMSF)-inhibited α-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited α-lytic protease after 18 h at various temperatures ranging from 5 to 55°C, probably due to efficient relaxation of active-site imidazole1H and/or15N nuclei.

  11. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts.

    PubMed

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan

    2015-07-01

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein (15)N and (13)C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.

  12. 13C- and 15N-Labeling Strategies Combined with Mass Spectrometry Comprehensively Quantify Phospholipid Dynamics in C. elegans

    PubMed Central

    Drechsler, Robin; Gafken, Philip R.; Olsen, Carissa Perez

    2015-01-01

    Membranes define cellular and organelle boundaries, a function that is critical to all living systems. Like other biomolecules, membrane lipids are dynamically maintained, but current methods are extremely limited for monitoring lipid dynamics in living animals. We developed novel strategies in C. elegans combining 13C and 15N stable isotopes with mass spectrometry to directly quantify the replenishment rates of the individual fatty acids and intact phospholipids of the membrane. Using multiple measurements of phospholipid dynamics, we found that the phospholipid pools are replaced rapidly and at rates nearly double the turnover measured for neutral lipid populations. In fact, our analysis shows that the majority of membrane lipids are replaced each day. Furthermore, we found that stearoyl-CoA desaturases (SCDs), critical enzymes in polyunsaturated fatty acid production, play an unexpected role in influencing the overall rates of membrane maintenance as SCD depletion affected the turnover of nearly all membrane lipids. Additionally, the compromised membrane maintenance as defined by LC-MS/MS with SCD RNAi resulted in active phospholipid remodeling that we predict is critical to alleviate the impact of reduced membrane maintenance in these animals. Not only have these combined methodologies identified new facets of the impact of SCDs on the membrane, but they also have great potential to reveal many undiscovered regulators of phospholipid metabolism. PMID:26528916

  13. In vivo, large-scale preparation of uniformly (15)N- and site-specifically (13)C-labeled homogeneous, recombinant RNA for NMR studies.

    PubMed

    Le, My T; Brown, Rachel E; Simon, Anne E; Dayie, T Kwaku

    2015-01-01

    Knowledge of how ribonucleic acid (RNA) structures fold to form intricate, three-dimensional structures has provided fundamental insights into understanding the biological functions of RNA. Nuclear magnetic resonance (NMR) spectroscopy is a particularly useful high-resolution technique to investigate the dynamic structure of RNA. Effective study of RNA by NMR requires enrichment with isotopes of (13)C or (15)N or both. Here, we present a method to produce milligram quantities of uniformly (15)N- and site-specifically (13)C-labeled RNAs using wild-type K12 and mutant tktA Escherichia coli in combination with a tRNA-scaffold approach. The method includes a double selection protocol to obtain an E. coli clone with consistently high expression of the recombinant tRNA-scaffold. We also present protocols for the purification of the tRNA-scaffold from a total cellular RNA extract and the excision of the RNA of interest from the tRNA-scaffold using DNAzymes. Finally, we showcase NMR applications to demonstrate the benefit of using in vivo site-specifically (13)C-labeled RNA. PMID:26577743

  14. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant tissue isotope labeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tracing heavy stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O o...

  15. hnCOcaNH and hncoCANH pulse sequences for rapid and unambiguous backbone assignment in (13C, 15N) labeled proteins.

    PubMed

    Kumar, Dinesh; Reddy, Jithender G; Hosur, Ramakrishna V

    2010-09-01

    Time-saving in data acquisition is a major thrust of NMR pulse sequence development in the context of structural proteomics research. The conventional HNCA and HN(CA)CO pulse sequences, routinely used for sequential backbone assignment, have the limitation that they cannot distinguish inter- and intra-residue correlations. In order to remove this ambiguity, one has to record HNCO and HN(CO)CA or sequential HNCA experiments which provide unambiguous information of sequential correlations. However, this almost doubles the experimental time. Besides, they require repeated scanning through the (15)N planes to search for the matching peaks along the carbon dimension. In this background, we present here two pulse sequences, termed as hncoCANH and hnCOcaNH that lead to spectra equivalent to HNCA and HN(CA)CO spectra, respectively, but with direct distinction of inter- and intra-residue peaks; these occur with opposite signs in the new experiments. The two pulse sequences have been derived by simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] to frequency-label (13)C(alpha) or (13)C' instead of (15)N during the t(1) period. Like HN(C)N, these spectra also exhibit special patterns of self and sequential peaks around glycines and prolines, which enable direct identification of certain triplets of residues and thus provide internal checks during the sequential assignment walk. The spectra enable rapid and unambiguous assignment of H(N), (15)N and (13)C(alpha) (or (13)C') in a single experiment, and thus would be of great value in high-throughput structural proteomics. PMID:20643567

  16. Balancing the (carbon) budget: Using linear inverse models to estimate carbon flows and mass-balance 13C:15N labelling experiments in low oxygen sediments.

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Van Oevelen, Dick; Witte, Ursula

    2013-04-01

    Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.

  17. Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N–15N and carbonyl 13C–13C dipolar recoupling data

    PubMed Central

    Hu, Kan-Nian; Qiang, Wei; Bermejo, Guillermo A.; Schwieters, Charles D.; Tycko, Robert

    2013-01-01

    Recent structural studies of uniformly 15N, 13C-labeled proteins by solid state nuclear magnetic resonance (NMR) rely principally on two sources of structural restraints: (i) restraints on backbone conformation from isotropic 15N and 13C chemical shifts, based on empirical correlations between chemical shifts and backbone torsion angles; (ii) restraints on inter-residue proximities from qualitative measurements of internuclear dipole–dipole couplings, detected as the presence or absence of inter-residue crosspeaks in multidimensional spectra. We show that site-specific dipole–dipole couplings among 15N-labeled backbone amide sites and among 13C-labeled backbone carbonyl sites can be measured quantitatively in uniformly-labeled proteins, using dipolar recoupling techniques that we call 15N-BARE and 13C-BARE (BAckbone REcoupling), and that the resulting data represent a new source of restraints on backbone conformation. 15N-BARE and 13C-BARE data can be incorporated into structural modeling calculations as potential energy surfaces, which are derived from comparisons between experimental 15N and 13C signal decay curves, extracted from crosspeak intensities in series of two-dimensional spectra, with numerical simulations of the 15N-BARE and 13C-BARE measurements. We demonstrate this approach through experiments on microcrystalline, uniformly 15N, 13C-labeled protein GB1. Results for GB1 show that 15N-BARE and 13C-BARE restraints are complementary to restraints from chemical shifts and inter-residue crosspeaks, improving both the precision and the accuracy of calculated structures. PMID:22449573

  18. 13C-13C and 15N-13C correlation spectroscopy of membrane-associated and uniformly labeled human immunodeficiency virus and influenza fusion peptides: Amino acid-type assignments and evidence for multiple conformations

    NASA Astrophysics Data System (ADS)

    Bodner, Michele L.; Gabrys, Charles M.; Struppe, Jochem O.; Weliky, David P.

    2008-02-01

    Many viruses which cause disease including human immunodeficiency virus (HIV) and influenza are "enveloped" by a membrane and infection of a host cell begins with joining or "fusion" of the viral and target cell membranes. Fusion is catalyzed by viral proteins in the viral membrane. For HIV and for the influenza virus, these fusion proteins contain an ˜20-residue apolar "fusion peptide" that binds to target cell membranes and plays a critical role in fusion. For this study, the HIV fusion peptide (HFP) and influenza virus fusion peptide (IFP) were chemically synthesized with uniform C13, N15 labeling over large contiguous regions of amino acids. Two-dimensional C13-C13 and N15-C13 spectra were obtained for the membrane-bound fusion peptides and an amino acid-type C13 assignment was obtained for the labeled residues in HFP and IFP. The membrane used for the HFP sample had a lipid headgroup and cholesterol composition comparable to that of host cells of the virus, and the C13 chemical shifts were more consistent with β strand conformation than with helical conformation. The membrane used for the IFP sample did not contain cholesterol, and the chemical shifts of the dominant peaks were more consistent with helical conformation than with β strand conformation. There were additional peaks in the IFP spectrum whose shifts were not consistent with helical conformation. An unambiguous C13 and N15 assignment was obtained in an HFP sample with more selective labeling, and two shifts were identified for the Leu-9 CO, Gly-10 N, and Gly-10 Cα nuclei. These sets of two shifts may indicate two β strand registries such as parallel and antiparallel. Although most spectra were obtained on a 9.4T instrument, one C13-C13 correlation spectrum was obtained on a 16.4T instrument and was better resolved than the comparable 9.4T spectrum. More selective labeling and higher field may, therefore, be approaches to obtaining unambiguous assignments for membrane-associated fusion peptides.

  19. Uniform {sup 15}N- and {sup 15}N/{sup 13}C-labeling of proteins in mammalian cells and solution structure of the amino terminal fragment of u-PA

    SciTech Connect

    Hansen, A.P.; Petros, A.M.; Meadows, R.P.; Mazar, A.P.; Nettesheim, D.G.; Pederson, T.M.; Fesik, S.W.

    1994-12-01

    Urokinase-type plasminogen activator (u-PA) is a 54-kDa glycoprotein that catalyzes the conversion of plasminogen to plasmin, a broad-specificity protease responsible for the degradation of fibrin clots and extracellular matrix components. The u-PA protein consists of three individual modules: a growth factor domain (GFD), a kringle, and a serine protease domain. The amino terminal fragment (ATF) includes the GFD-responsible for u-PA binding to its receptor-and the kringle domains. This protein was expressed and uniformly {sup 15}N-and {sup 15}N/{sup 13}C-labeled in mammalian cells by methods that will be described. In addition, we present the three-dimensional structure of ATF that was derived from 1299 NOE-derived distance restraints along with the {phi} angle and hydrogen bonding restraints. Although the individual domains in the structures were highly converged, the two domains are structurally independent. The overall structures of the individual domains are very similar to the structures of homologous proteins. However, important structural differences between the growth factor domain of u-PA and other homologous proteins were observed in the region that has been implicated in binding the urokinase receptor. These results may explain, in part, why other growth factors show no appreciable affinity for the urokinase receptor.

  20. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  1. Measurement of 13C and 15N isotope labeling by gas chromatography/combustion/isotope ratio mass spectrometry to study amino acid fluxes in a plant-microbe symbiotic association.

    PubMed

    Molero, Gemma; Aranjuelo, Iker; Teixidor, Pilar; Araus, José Luis; Nogués, Salvador

    2011-03-15

    We have developed a method based on a double labeling with stable isotopes and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analyses to study amino acid exchange in a symbiotic plant-microbe association. Isotopic precision was studied for 21 standards including 15 amino acid derivatives, three N-protected amino acid methyl esters, three amines and one international standard. High correlations were observed between the δ(13)C and δ(15)N values obtained by GC/C/IRMS and those obtained by an elemental analyzer (EA) coupled to an isotope ratio mass spectrometer (R(2) = 0.9868 and 0.9992, respectively). The mean precision measured was 0.04‰ for δ(13)C and 0.28‰ for δ(15)N (n = 15). This method was applied in vivo to the symbiotic relationship between alfalfa (Medicago sativa L.) and N(2)-fixing bacteria. Plants were simultaneously labeled over 10 days with (13)C-depleted CO(2) ((12)CO(2)), which was assimilated through photosynthesis by leaves, and (15)N(2) fixed via nodules. Subsequently, the C and N isotope compositions (i.e. δ(13)C and δ(15)N) of free amino acids were analyzed in leaves and nodules by GC/C/IRMS. The method revealed the pattern of C and N exchange between leaves and nodules, highlighting that γ-aminobutanoic acid and glycine may represent an important form of C transport from leaves to the nodules. The results confirmed the validity, reliability and accuracy of the method for assessing C and N fluxes between plants and symbiotic bacteria and support the use of this technique in a broad range of metabolic and fluxomic studies.

  2. High-throughput backbone resonance assignment of small 13C, 15N-labeled proteins by a triple-resonance experiment with four sequential connectivity pathways using chemical shift-dependent, apparent 1J ( 1H, 13C): HNCACB codedHAHB

    NASA Astrophysics Data System (ADS)

    Pegan, Scott; Kwiatkowski, Witek; Choe, Senyon; Riek, Roland

    2003-12-01

    The proposed three-dimensional triple-resonance experiment HNCACB codedHAHB correlates sequential 15N, 1H moieties via the chemical shifts of 13C α, 13C β, 1H α, and 1H β. The four sequential correlation pathways are achieved by the incorporation of the concept of chemical shift-coding [J. Biomol. NMR 25 (2003) 281] to the TROSY-HNCACB experiment. The monitored 1H α and 1H β chemical shifts are then coded in the line shape of the cross-peaks of 13C α, 13C β along the 13C dimension through an apparent residual scalar coupling, the size of which depends on the attached hydrogen chemical shift. The information of four sequential correlation pathways enables a rapid backbone assignment. The HNCACB codedHAHB experiment was applied to ˜85% labeled 13C, 15N-labeled amino-terminal fragment of Vaccinia virus DNA topoisomerase I comprising residues 1-77. After one day of measurement on a Bruker Avance 700 MHz spectrometer and 8 h of manual analysis of the spectrum 93% of the backbone assignment was achieved.

  3. Measurement of 1J(Ni,Calpha(i)), 1J(Ni,C'i-1), 2J(Ni,Calpha(i-1)), 2J(H(N)i,C'i-1) and 2J(H(N)i,Calpha(i)) values in 13C/15N-labeled proteins.

    PubMed

    Mukherjee, Sulakshana; Mustafi, Sourajit M; Atreya, H S; Chary, K V R

    2005-04-01

    Use of partial or selective (13)C/(15)N labeling of specific amino acid residues in a given protein to measure the values of (1)J((15)N(i),(13)C(alpha) (i)), (2)J((1)H(N),(13)C(alpha) (i)), (2)J((15)N(i),(13)C(alpha) (i-1)), (1)J((15)N(i),(13)C'(i-1)) and (2)J((1)H(N),(13)C'(i-1)) is described. This was achieved by recording a sensitivity-enhanced 2D [(15)N-(1)H] HSQC experiment, without mixing the spin states of C(alpha) and C' during the course of entire experiment.

  4. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  5. Post-translational heterocyclic backbone modifications in the 43-peptide antibiotic microcin B17. Structure elucidation and NMR study of a 13C,15N-labelled gyrase inhibitor.

    PubMed

    Bayer, A; Freund, S; Jung, G

    1995-12-01

    Microcin B17 (McB17), the first known gyrase inhibitor of peptidic nature, is produced by ribosomal synthesis and post-translational modification of the 69-residue precursor protein by an Escherichia coli strain. To elucidate the chemical structure of the mature 43-residue peptide antibiotic, fermentation and purification protocols were established and optimized which allowed the isolation and purification of substantial amounts of highly pure McB17 (non-labelled, 15N-labelled and 13C/15N-labelled peptide. By ultraviolet-absorption spectroscopy. HPLC-electrospray mass spectrometry and GC-mass spectrometry, amino acid analysis, protein sequencing, and, in particular, multidimensional NMR, we could demonstrate and unequivocally prove that the enzymic modification of the precursor backbone at Gly-Cys and Gly-Ser segments leads to the formation of 2-aminomethylthiazole-4-carboxylic acid and 2-aminomethyloxazole-4-carboxylic acid, respectively. In addition, two bicyclic modifications 2-(2-aminomethyloxazolyl)thiazole-4-carboxylic acid and 2-(2-aminomethylthiazolyl)oxazole-4-carboxylic acid were found that consist of directly linked thiazole and oxazole rings derived from one Gly-Ser-Cys and one Gly-Cys-Ser segment. Analogous to the thiazole and oxazole rings found in antitumor peptides of microbial and marine origin, these heteroaromatic ring systems of McB17 presumably play an important role in its gyrase-inhibiting activity, e.g. interacting with the DNA to trap the covalent protein-DNA intermediate of the breakage-reunion reaction of the gyrase.

  6. SIMS ion microscopy imaging of boronophenylalanine (BPA) and 13C15N-labeled phenylalanine in human glioblastoma cells: Relevance of subcellular scale observations to BPA-mediated boron neutron capture therapy of cancer

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash; Lorey, Daniel R., II

    2007-02-01

    p-Boronophenylalanine (BPA) is a clinically approved boron neutron capture therapy (BNCT) agent currently being used in clinical trials of glioblastoma multiforme, melanoma and liver metastases. Secondary ion mass spectrometry (SIMS) observations from the Cornell SIMS Laboratory provided support for using a 6 h infusion of BPA, instead of a 2 h infusion, for achieving higher levels of boron in brain tumor cells. These observations were clinically implemented in Phase II experimental trials of glioblastoma multiforme in Sweden. However, the mechanisms for higher BPA accumulation with longer infusions have remained unknown. In this work, by using 13C15N-labeled phenylalanine and T98G human glioblastoma cells, comparisons between the 10B-delivery of BPA and the accumulation of labeled phenylalanine after 2 and 6 h treatments were made with a Cameca IMS-3f SIMS ion microscope at 500 nm spatial resolution in fast frozen, freeze-fractured, freeze-dried cells. Due to the presence of the Na-K-ATPase in the plasma membrane of most mammalian cells, the cells maintain an approximately 10/1 ratio of K/Na in the intracellular milieu. Therefore, the quantitative imaging of these highly diffusible species in the identical cell in which the boron or labeled amino acid was imaged provides a rule-of-thumb criterion for validation of SIMS observations and the reliability of the cryogenic sampling. The labeled phenylalanine was detected at mass 28, as the 28(13C15N)- molecular ion. Correlative analysis with optical and confocal laser scanning microscopy revealed that fractured freeze-dried glioblastoma cells contained well-preserved ultrastructural details with three discernible subcellular regions: a nucleus or multiple nuclei, a mitochondria-rich perinuclear cytoplasmic region and the remaining cytoplasm. SIMS analysis revealed that the overall cellular signals of both 10B from BPA and 28CN- from labeled phenylalanine increased approximately 1.6-fold between the 2 and 6 h exposures

  7. Backbone and sidechain 1H, 15N and 13C assignments of the KSR1 CA1 domain

    PubMed Central

    Koveal, Dorothy; Pinheiro, Anderson S.; Peti, Wolfgang; Page, Rebecca

    2014-01-01

    The backbone and side chain resonance assignments of the murine KSR1 CA1 domain have been determined based on triple-resonance experiments using uniformly [13C, 15N]-labeled protein. This assignment is the first step towards the determination of the three-dimensional structure of the unique KSR1 CA1 domain. PMID:20737253

  8. Food webs in Mongolian grasslands: the analysis of 13C and 15N natural abundances.

    PubMed

    Kohzu, Ayato; Iwata, T; Kato, M; Nishikawa, J; Wada, Eitaro; Amartuvshin, N; Namkhaidorj, B; Fujita, N

    2009-09-01

    Overgrazing often lowers species richness and productivity of grassland communities. For Mongolian grassland ecosystems, a lack of detailed information about food-web structures makes it difficult to predict the effects of overgrazing on species diversity and community composition. We analysed the delta13C and delta15N signatures of herbaceous plants, arthropods (grouped by feeding habit), wild and domestic mammals, and humans in central Mongolia to understand the predominant food-web pathways in this grassland ecosystem. The delta13C and delta15N values of mammals showed little variation within species, but varied considerably with slope position for arthropods. The apparent isotopic discrimination between body tissue and hair of mammals was estimated as 2.0 per thousand for delta13C and 2.1 per thousand for delta15N, which was large enough to cause overestimation of the trophic level of mammals if not taken into account when using hair samples to measure isotopic enrichment.

  9. Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments

    NASA Astrophysics Data System (ADS)

    Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.

    2013-12-01

    Labeling plant material with heavy isotopes of carbon and nitrogen can produce a traceable nutrient signal that can be followed into the different trophic levels and decomposer food web. We treated 60 tree saplings with 13C-enriched CO2 gas and 15N-enriched ammonium nitrate over a three-month period to create dually-labeled plant material for future decomposition experiments. The trees included both early (Red maple, Sweetgum, Tulip poplar) and late (American beech, White oak) successional deciduous tree species, and a conifer, White pine. We constructed a 2.4 m × 2.4 m × 2.4 m environmental chamber that was climate-controlled using an air conditioning system. An Arduino microcontroller interfaced with a Vaisala GMP343 CO2 probe maintained a CO2 concentration between 500-520 ppm by controlling a solenoid valve on the CO2 tank regulator. The trees were placed into the chamber in August 2012 and remained until senescence unless they were lost to death or disease. Ammonium nitrate was added twice, in September and October. Leaf samples were collected prior to the start of the experiment and after senescence, whereas root samples were collected only in December. Samples were dried, ground and analyzed using an isotope ratio mass spectrometer. American beech and White oak had 40% mortality, and 34% of tulip poplar trees were removed because of powdery mildew overgrowth or death. Most tulip poplar trees exhibited a second leaf out following senescence in late September. Nearly 1 kg of litter was produced with tulip poplar representing over half of the total mass. Levels of enrichment varied greatly by species. Beech (-14.2‰) and White oak (-4.8‰) had low levels of enrichment in comparison to early successional species such as Sweetgum (41.7‰) and Tulip poplar (30.7‰ [first leaf fall] and 238.0‰ [second leaf fall]). Leaf enrichment with 15N followed a similar pattern, though it was achieved at a higher level with δ15N values varying from 271.6‰ to 1354.2

  10. Vertical δ13C and δ15N changes during pedogenesis

    NASA Astrophysics Data System (ADS)

    Brunn, Melanie; Spielvogel, Sandra; Wells, Andrew; Condron, Leo; Oelmann, Yvonne

    2015-04-01

    The natural abundance of soil organic matter (SOM) stable C and N isotope ratios are subjected to vertical changes throughout the soil profile. This vertical distribution is a widely reported phenomenon across varieties of ecosystems and constitutes important insights of soil carbon cycling. In most ecosystems, SOM becomes enriched in heavy isotopes by several per mill in the first few centimeters of the topsoil. The enrichment of 13C in SOM with soil depth is attributed to biological and physical-chemical processes in soil e.g., plant physiological impacts, microbial decomposition, sorption and transport processes. Such vertical trends in 13C and 15N abundance have rarely been related to SOM composition during pedogenesis. The aims of our study were to investigate short and long-term δ13C and δ15N depth changes and their interrelations under progressing pedogenesis and ecosystem development. We sampled soils across the well studied fordune progradation Haast-chronosequence, a dune ridge system under super-humid climate at the West Coast of New Zealand's South Island (43° 53' S, 169° 3' E). Soils from 11 sites with five replicates each covered a time span of around 2870 yr of soil development (from Arenosol to Podzol). Vertical changes of δ13C and δ15N values of SOM were investigated in the organic layers and in 1-cm depth intervals of the upper 10 cm of the mineral soil. With increasing soil depth SOM became enriched in δ13C by 1.9 ± SE 0.1 o and in δ15N by 6.0 ± 0.4 ‰˙Litter δ13C values slightly decreased with increasing soil age (r = -0.61; p = 0.00) likely due to less efficient assimilation linked to nutrient limitations. Fractionation processes during mycorrhizal transfer appeared to affect δ15N values in the litter. We found a strong decrease of δ15N in the early succession stages ≤ 300 yr B.P. (r = -0.95; p = 0.00). Positive relations of vertical 13C and 15N enrichment with soil age might be related to decomposition and appeared to be

  11. Differentiation of histidine tautomeric states using 15N selectively filtered 13C solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-08-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C, 15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture.

  12. Aliphatic (1)H, (13)C and (15)N chemical shift assignments of dihydrofolate reductase from the psychropiezophile Moritella profunda in complex with NADP(+) and folate.

    PubMed

    Loveridge, E Joel; Matthews, Stella M; Williams, Christopher; Whittaker, Sara B-M; Günther, Ulrich L; Evans, Rhiannon M; Dawson, William M; Crump, Matthew P; Allemann, Rudolf K

    2013-04-01

    Dihydrofolate reductase from the deep-sea bacterium Moritella profunda (MpDHFR) has been (13)C/(15)N isotopically labelled and purified. Here, we report the aliphatic (1)H, (13)C and (15)N resonance assignments of MpDHFR in complex with NADP(+) and folate. The spectra of MpDHFR suggest considerably greater conformational heterogeneity than is seen in the closely related DHFR from Escherichia coli.

  13. Labeling strategies for 13C-detected aligned-sample solid-state NMR of proteins

    NASA Astrophysics Data System (ADS)

    Filipp, Fabian V.; Sinha, Neeraj; Jairam, Lena; Bradley, Joel; Opella, Stanley J.

    2009-12-01

    13C-detected solid-state NMR experiments have substantially higher sensitivity than the corresponding 15N-detected experiments on stationary, aligned samples of isotopically labeled proteins. Several methods for tailoring the isotopic labeling are described that result in spatially isolated 13C sites so that dipole-dipole couplings among the 13C are minimized, thus eliminating the need for homonuclear 13C- 13C decoupling in either indirect or direct dimensions of one- or multi-dimensional NMR experiments that employ 13C detection. The optimal percentage for random fractional 13C labeling is between 25% and 35%. Specifically labeled glycerol and glucose can be used at the carbon sources to tailor the isotopic labeling, and the choice depends on the resonances of interest for a particular study. For investigations of the protein backbone, growth of the bacteria on [2- 13C]-glucose-containing media was found to be most effective.

  14. Isotopic variability of cave bears (δ15N, δ13C) across Europe during MIS 3

    NASA Astrophysics Data System (ADS)

    Krajcarz, Magdalena; Pacher, Martina; Krajcarz, Maciej T.; Laughlan, Lana; Rabeder, Gernot; Sabol, Martin; Wojtal, Piotr; Bocherens, Hervé

    2016-01-01

    Collagen, the organic fraction of bone, records the isotopic parameters of consumed food for carbon (δ13C) and nitrogen (δ15N). This relationship of isotopic signature between diet and tissue is an important tool for the study of dietary preferences of modern and fossil animal species. Since the first information on the isotopic signature of cave bear was reported, numerous data from Europe have become available. The goal of this work is to track the geographical variation of cave bear collagen isotopic values in Europe during Marine Isotopic Stage 3 (about 60,000-25,000 yr BP). In this study the results of new δ13C and δ15N isotopic analyses of cave bear collagen from four Central-Eastern European sites are presented, as well as a review of all published isotopic data for cave bears of the same period. The main conclusion is a lack of geographical East-West pattern in the variations of δ13C and δ15N values of cave bear collagen. Moreover, no relationship was found between cave bear taxonomy and isotopic composition. The cave bears from Central-Eastern Europe exhibit δ13C and δ15N values near the average of the range of Central, Western and Southern European cave bears. Despite the fact that most cave bear sites follow an altitudinal gradient, separate groups of sites exhibit shift in absolute values of δ13C, what disturbs an altitude-related isotopic pattern. The most distinct groups are: high Alpine sites situated over 1500 m a.s.l. - in terms of δ13C; and two Romanian sites Peştera cu Oase and Urşilor - in case of δ15N. Although the cave bear isotopic signature is driven by altitude, the altitudinal adjustment of isotopic data is not enough to explain the isotopic dissimilarity of these cave bears. The unusually high δ15N signature of mentioned Romanian sites is an isolated case in Europe. Cave bears from relatively closely situated Central-Eastern European sites and other Romanian sites are more similar to Western European than to Romanian

  15. NMR structure analysis of uniformly 13C-labeled carbohydrates.

    PubMed

    Fontana, Carolina; Kovacs, Helena; Widmalm, Göran

    2014-06-01

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.

  16. NMR structure analysis of uniformly 13C-labeled carbohydrates.

    PubMed

    Fontana, Carolina; Kovacs, Helena; Widmalm, Göran

    2014-06-01

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra. PMID:24771296

  17. Food webs in Mongolian grasslands: the analysis of 13C and 15N natural abundances.

    PubMed

    Kohzu, Ayato; Iwata, T; Kato, M; Nishikawa, J; Wada, Eitaro; Amartuvshin, N; Namkhaidorj, B; Fujita, N

    2009-09-01

    Overgrazing often lowers species richness and productivity of grassland communities. For Mongolian grassland ecosystems, a lack of detailed information about food-web structures makes it difficult to predict the effects of overgrazing on species diversity and community composition. We analysed the delta13C and delta15N signatures of herbaceous plants, arthropods (grouped by feeding habit), wild and domestic mammals, and humans in central Mongolia to understand the predominant food-web pathways in this grassland ecosystem. The delta13C and delta15N values of mammals showed little variation within species, but varied considerably with slope position for arthropods. The apparent isotopic discrimination between body tissue and hair of mammals was estimated as 2.0 per thousand for delta13C and 2.1 per thousand for delta15N, which was large enough to cause overestimation of the trophic level of mammals if not taken into account when using hair samples to measure isotopic enrichment. PMID:19507080

  18. Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton

    PubMed Central

    Muscatine, Leonard; Goiran, Claire; Land, Lynton; Jaubert, Jean; Cuif, Jean-Pierre; Allemand, Denis

    2005-01-01

    The evolutionary success of reef-building corals in nutrient-poor tropical waters is attributed to endosymbiotic dinoflagellates. The algae release photosynthetic products to the coral animal cells, augment nutrient flux, and enhance the rate of coral calcification. Natural abundance of stable isotopes (δ13C and δ18O) provides answers to modern and paleobiological questions about the effect of photosymbiosis on sources of carbon and oxygen in coral skeletal calcium carbonate. Here we compare 17 species of symbiotic and nonsymbiotic corals to determine whether evidence for photosymbiosis appears in stable isotopes (δ13C and δ15N) of an organic skeletal compartment, the coral skeletal organic matrix (OM). Mean OM δ13C in symbiotic and nonsymbiotic corals was similar (-26.08‰ vs. -24.31‰), but mean OM δ15N was significantly depleted in 15N in the former (4.09‰) relative to the latter (12.28‰), indicating an effect of the algae on OM synthesis and revealing OM δ15N as a proxy for photosymbiosis. To answer an important paleobiological question about the origin of photosymbiosis in reef-building corals, we applied this proxy test to a fossil coral (Pachythecalis major) from the Triassic (240 million years ago) in which OM is preserved. Mean OM δ15N was 4.66‰, suggesting that P. major was photosymbiotic. The results show that symbiotic algae augment coral calcification by contributing to the synthesis of skeletal OM and that they may have done so as early as the Triassic. PMID:15671164

  19. The economical synthesis of [2'-(13)C, 1,3-(15)N2]uridine; preliminary conformational studies by solid state NMR.

    PubMed

    Patching, Simon G; Middleton, David A; Henderson, Peter J F; Herbert, Richard B

    2003-06-21

    The synthesis of [2'-(13)C, 1,3-(15)N2]uridine 11 was achieved as follows. An epimeric mixture of D-[1-(13)C]ribose 3 and D-[1-(13)C]arabinose 4 was obtained in excellent yield by condensation of K13CN with D-erythrose 2 using a modification of the Kiliani-Fischer synthesis. Efficient separation of the two aldose epimers was pivotally achieved by a novel ion-exchange (Sm3+) chromatography method. D-[2-(13)C]Ribose 5 was obtained from D-[1-(13)C]arabinose 4 using a Ni(II) diamine complex (nickel chloride plus TEMED). Combination of these procedures in a general cycling manner can lead to the very efficient preparation of specifically labelled 13C-monosaccharides of particular chirality. 15N-labelling was introduced in the preparation of [2'-(13)C, 1,3-(15)N2]uridine 11 via [15N2]urea. Cross polarisation magic angle spinning (CP-MAS) solid-state NMR experiments using rotational echo double resonance (REDOR) were carried out on crystals of the labelled uridine to show that the inter-atomic distance between C-2' and N-1 is closely similar to that calculated from X-ray crystallographic data. The REDOR method will be used now to determine the conformation of bound substrates in the bacterial nucleoside transporters NupC and NupG.

  20. Effects of trichloroacetic acid on the nitrogen metabolism of Pinus sylvestris--a 13C/15N tracer study.

    PubMed

    Hafner, Christoph; Jung, Klaus; Schüürmann, Gerrit

    2002-01-01

    Trichloroacetic acid (TCA) can be found in various environmental compartments like air, rain and plants all over the world. It is assumed that TCA is an atmospheric degradation product of volatile chloroorganic hydrocarbons. The herbicide effect of TCA in higher concentrations is well known, but not much is known about the phytotoxic effects in environmentally relevant concentrations. It can be shown in this study by using the 13C/15N stable isotope tracer technique that [13C]TCA is taken up by roots of two-year-old seedlings of Pinus sylvestris L. and transported into the needles. At the same time the effect of the substance on nitrogen metabolism can be analyzed by measuring the incorporation of 15NO3- into different nitrogen fractions of the plant. The more [13C]TCA incorporation, the higher the synthesis of 15N labelled amino acids and proteins is. These effects on the nitrogen metabolism are probably based on the activation of stress- and detoxification metabolism. It has to be assumed that there is an influence on N metabolism of Pinus sylvestris caused by the deposition of environmentally relevant TCA concentrations.

  1. Determination of 15N/14N and 13C/12C in Solid and Aqueous Cyanides

    USGS Publications Warehouse

    Johnson, C.A.

    1996-01-01

    The stable isotopic compositions of nitrogen and carbon in cyanide compounds can be determined by combusting aliquots in sealed tubes to form N2 gas and CO2 gas and analyzing the gases by mass spectrometry. Free cyanide (CN-aq + HCNaq) in simple solutions can also be analyzed by first precipitating the cyanide as copper(II) ferrocyanide and then combusting the precipitate. Reproducibility is ??0.5??? or better for both ??15N and ??13C. If empirical corrections are made on the basis of carbon yields, the reproducibility of ??13C can be improved to ??0.2???. The analytical methods described herein are sufficiently accurate and precise to apply stable isotope techniques to problems of cyanide degradation in natural waters and industrial process solutions.

  2. 1H, 13C and 15N NMR assignments of phenazopyridine derivatives.

    PubMed

    Burgueño-Tapia, Eleuterio; Mora-Pérez, Yolanda; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2005-03-01

    Phenazopyridine hydrochloride (1), a drug in clinical use for many decades, and some derivatives were studied by one- and two-dimensional (1)H, (13)C and (15)N NMR methodology. The assignments, combined with DFT calculations, reveal that the preferred protonation site of the drug is the pyridine ring nitrogen atom. The chemoselective acetylation of phenazopyridine (2) and its influence on the polarization of the azo nitrogen atoms were evidenced by the (15)N NMR spectra. Molecular calculations of the phenazopyridines 2-4 show that the pyridine and phenyl groups are oriented in an antiperiplanar conformation with intramolecular hydrogen bonding between the N-b atom and the C-2 amino group preserving the E-azo stereochemistry.

  3. Application of (13)C and (15)N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions.

    PubMed

    Cho, Kun-Ching; Lee, Do Gyun; Fuller, Mark E; Hatzinger, Paul B; Condee, Charles W; Chu, Kung-Hui

    2015-10-30

    This study identified microorganisms capable of using the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or its metabolites as carbon and/or nitrogen sources under different electron-accepting conditions using (13)C and (15)N stable isotope probing (SIP). Mesocosms were constructed using groundwater and aquifer solids from an RDX-contaminated aquifer. The mesocosms received succinate as a carbon source and one of four electron acceptors (nitrate, manganese(IV), iron(III), or sulfate) or no additional electron acceptor (to stimulate methanogenesis). When RDX degradation was observed, subsamples from each mesocosm were removed and amended with (13)C3- or ring-(15)N3-, nitro-(15)N3-, or fully-labeled (15)N6-RDX, followed by additional incubation and isolation of labeled nucleic acids. A total of fifteen 16S rRNA sequences, clustering in α- and γ-Proteobacteria, Clostridia, and Actinobacteria, were detected in the (13)C-DNA fractions. A total of twenty seven sequences were derived from different (15)N-DNA fractions, with the sequences clustered in α- and γ-Proteobacteria, and Clostridia. Interestingly, sequences identified as Desulfosporosinus sp. (in the Clostridia) were not only observed to incorporate the labeled (13)C or (15)N from labeled RDX, but also were detected under each of the different electron-accepting conditions. The data suggest that (13)C- and (15)N-SIP can be used to characterize microbial communities involved in RDX biodegradation, and that the dominant pathway of RDX biodegradation may differ under different electron-accepting conditions. PMID:25935409

  4. Precursor discrimination of designer drug benzylpiperazine using δ13C and δ15N stable isotopes.

    PubMed

    Beckett, Nicola M; Grice, Darren I; Carter, James F; Cresswell, Sarah L

    2015-01-01

    Advances in analytical technology and emerging techniques have resulted in the increased exploitation of chemical and isotopic profiling for source linkage/discrimination of illicit drugs for forensic purposes. Although not routinely used for illicit drug investigations, such information has been obtained and its application demonstrated through the use of isotope ratio mass spectrometry (IRMS). There is a solid platform of research available relating to the isotopic analysis of methylenedioxymethamphetamine (MDMA) and methamphetamine (MA), however with the recently flourishing designer drug market it was of interest to examine the isotopic profiles of the popular 'party drug' benzylpiperazine hydrochloride (BZP·HCl). A preliminary analysis of δ13C and δ15N isotopic ratios in BZP·HCl products and corresponding synthetic intermediates (piperazine·HCl) synthesized in-house from three different precursor suppliers was conducted using IRMS. Analysis of the δ13C and δ15N isotopic data indicated that discrimination and correct grouping of all the intermediates and some of the product samples examined in this study were achievable.

  5. Experimental and calculated 1H, 13C, 15N NMR spectra of famotidine

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Czarniecki, K.; Proniewicz, L. M.

    2001-05-01

    Famotidine, 3-[[[2-[(aminoiminomethyl)amino]-4-thiazolyl]methyl]thio]- N-(aminosulfonyl), is a histamine H 2-receptor blocker that has been used mainly for the treatment of peptic ulcers and the Zollinger-Ellison syndrome. Its NMR spectra in different solvents were reported earlier; however, detailed interpretation has not been done thus far. In this work, experimental 1H, 13C and 15N NMR spectra of famotidine dissolved in DMSO-d 6 are shown. The assignment of observed chemical shifts is based on quantum chemical calculation at the Hartree-Fock/6-31G ∗ level. The geometry optimization of the famotidine molecule with two internal hydrogen bonds, i.e. [N(3)-H(23)⋯N(9) and N(3)⋯H(34)-N(20)], is done by using the B3LYP method with the 6-31G ∗ basis set.

  6. Regional, seasonal and interspecific variation in 15N and 13C in sympatric mouse lemurs.

    PubMed

    Rakotondranary, S Jacques; Struck, Ulrich; Knoblauch, Christian; Ganzhorn, Jörg U

    2011-11-01

    Madagascar provides some of the rare examples where two or more primate species of the same genus and with seemingly identical niche requirements occur in sympatry. If congeneric primate species co-occur in other parts of the world, they differ in size in a way that is consistent with Hutchinson's rule for coexisting species, or they occupy different ecological niches. In some areas of Madagascar, mouse lemurs do not follow these "rules" and thus seem to violate one of the principles of community ecology. In order to understand the mechanisms that allow coexistence of sympatric congeneric species without obvious niche differentiation, we studied food composition of two identical sized omnivorous mouse lemur species, Microcebus griseorufus and M. murinus with the help of stable isotope analyses (δ(15)N and δ(13)C). The two species are closely related sister species. During the rich season, when food seems abundant, the two species do not differ in their nitrogen isotope composition, indicating that the two species occupy the same trophic level. But they differ in their δ(13)C values, indicating that M. griseorufus feeds more on C(4) and CAM (Crassulacean-acid-metabolism) plants than M. murinus. During the lean season, M. murinus has lower δ(15)N values, indicating that the two species feed at different trophic levels during times of food shortage. Hybrids between the two species showed intermediate food composition. The results reflect subtle differences in foraging or metabolic adaptations that are difficult to quantify by traditional observations but that represent possibilities to allow coexistence of species. PMID:21881908

  7. Regional, seasonal and interspecific variation in 15N and 13C in sympatric mouse lemurs

    NASA Astrophysics Data System (ADS)

    Rakotondranary, S. Jacques; Struck, Ulrich; Knoblauch, Christian; Ganzhorn, Jörg U.

    2011-11-01

    Madagascar provides some of the rare examples where two or more primate species of the same genus and with seemingly identical niche requirements occur in sympatry. If congeneric primate species co-occur in other parts of the world, they differ in size in a way that is consistent with Hutchinson's rule for coexisting species, or they occupy different ecological niches. In some areas of Madagascar, mouse lemurs do not follow these "rules" and thus seem to violate one of the principles of community ecology. In order to understand the mechanisms that allow coexistence of sympatric congeneric species without obvious niche differentiation, we studied food composition of two identical sized omnivorous mouse lemur species, Microcebus griseorufus and M. murinus with the help of stable isotope analyses ( δ 15N and δ 13C). The two species are closely related sister species. During the rich season, when food seems abundant, the two species do not differ in their nitrogen isotope composition, indicating that the two species occupy the same trophic level. But they differ in their δ 13C values, indicating that M. griseorufus feeds more on C4 and CAM (Crassulacean-acid-metabolism) plants than M. murinus. During the lean season, M. murinus has lower δ 15N values, indicating that the two species feed at different trophic levels during times of food shortage. Hybrids between the two species showed intermediate food composition. The results reflect subtle differences in foraging or metabolic adaptations that are difficult to quantify by traditional observations but that represent possibilities to allow coexistence of species.

  8. Afforestation impacts microbial biomass and its natural (13)C and (15)N abundance in soil aggregates in central China.

    PubMed

    Wu, Junjun; Zhang, Qian; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli

    2016-10-15

    We investigated soil microbial biomass and its natural abundance of δ(13)C and δ(15)N in aggregates (>2000μm, 250-2000μm, 53-250μm and <53μm) of afforested (implementing woodland and shrubland plantations) soils, adjacent croplands and open area (i.e., control) in the Danjiangkou Reservoir area of central China. The afforested soils averaged higher microbial biomass carbon (MBC) and nitrogen (MBN) levels in all aggregates than in open area and cropland, with higher microbial biomass in micro-aggregates (<250μm) than in macro-aggregates (>2000μm). The δ(13)C of soil microbial biomass was more enriched in woodland soils than in other land use types, while δ(15)N of soil microbial biomass was more enriched compared with that of organic soil in all land use types. The δ(13)C and δ(15)N of microbial biomass were positively correlated with the δ(13)C and δ(15)N of organic soil across aggregates and land use types, whereas the (13)C and (15)N enrichment of microbial biomass exhibited linear decreases with the corresponding C:N ratio of organic soil. Our results suggest that shifts in the natural (13)C and (15)N abundance of microbial biomass reflect changes in the stabilization and turnover of soil organic matter (SOM) and thereby imply that afforestation can greatly impact SOM accumulation over the long-term.

  9. Effect of body size and body mass on δ 13 C and δ 15 N in coastal fishes and cephalopods

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Máguas, C.; Cabral, H. N.; Costa, M. J.

    2011-11-01

    Carbon and nitrogen isotopes have been widely used in the investigation of trophic relations, energy pathways, trophic levels and migrations, under the assumption that δ 13C is independent of body size and that variation in δ 15N occurs exclusively due to ontogenetic changes in diet and not body size increase per se. However, several studies have shown that these assumptions are uncertain. Data from food-webs containing an important number of species lack theoretical support on these assumptions because very few species have been tested for δ 13C and δ 15N variation in captivity. However, if sampling comprises a wide range of body sizes from various species, the variation of δ 13C and δ 15N with body size can be investigated. While correlation between body size and δ 13C and δ 15N can be due to ontogenetic diet shifts, stability in such values throughout the size spectrum can be considered an indication that δ 13C and δ 15N in muscle tissues of such species is independent of body size within that size range, and thus the basic assumptions can be applied in the interpretation of such food webs. The present study investigated the variation in muscle δ 13C and δ 15N with body size and body mass of coastal fishes and cephalopods. It was concluded that muscle δ 13C and δ 15N did not vary with body size or mass for all bony fishes with only one exception, the dragonet Callionymus lyra. Muscle δ 13C and δ 15N also did not vary with body size or mass in cartilaginous fishes and cephalopods, meaning that body size/mass per se have no effect on δ 13C or δ 15N, for most species analysed and within the size ranges sampled. The assumption that δ 13C is independent of body size and that variation in δ 15N is not affected by body size increase per se was upheld for most organisms and can be applied to the coastal food web studied taking into account that C. lyra is an exception.

  10. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Geilmann, Heike; Brand, Willi A.; Bohlke, John Karl

    2003-01-01

    Analytical grade L-glutamic acid is chemically stable and has a C/N mole ratio of 5, which is close to that of many of natural biological materials, such as blood and animal tissue. Two L-glutamic acid reference materials with substantially different 13C and 15N abundances have been prepared for use as organic reference materials for C and N isotopic measurements. USGS40 is analytical grade L-glutamic acid and has a δ13C value of −26.24‰ relative to VPDB and a δ15N value of −4.52‰ relative to N2 in air. USGS41 was prepared by dissolving analytical grade L-glutamic acid with L-glutamic acid enriched in 13C and 15N. USGS41 has a δ13C value of +37.76‰ and a δ15N value of +47.57‰. The δ13C and δ15N values of both materials were measured against the international reference materials NBS 19 calcium carbonate (δ13C = +1.95‰), L-SVEC lithium carbonate (δ13C = −46.48‰), IAEA-N-1 ammonium sulfate (δ15N = 0.43‰), and USGS32 potassium nitrate (δ15N = 180‰) by on-line combustion continuous-flow and off-line dual-inlet isotope-ratio mass spectrometry. Both USGS40 and USGS41 are isotopically homogeneous; reproducibility of δ13C is better than 0.13‰, and that of δ15N is better than 0.13‰ in 100-μg amounts. These two isotopic reference materials can be used for (i) calibrating local laboratory reference materials, and (ii) quantifying drift with time, mass-dependent fractionations, and isotope-ratio-scale contraction in the isotopic analysis of various biological materials. Isotopic results presented in this paper yield a δ13C value for NBS 22 oil of −29.91‰, in contrast to the commonly accepted value of −29.78‰ for which off-line blank corrections probably have not been quantified satisfactorily.

  11. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    PubMed Central

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-01-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes. PMID:27678172

  12. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    NASA Astrophysics Data System (ADS)

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-09-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes.

  13. delta15N and delta13C diet-tissue discrimination factors for large sharks under semi-controlled conditions.

    PubMed

    Hussey, Nigel E; Brush, Jaclyn; McCarthy, Ian D; Fisk, Aaron T

    2010-04-01

    Stable isotopes (delta(15)N and delta(13)C) are being widely applied in ecological research but there has been a call for ecologists to determine species- and tissue-specific diet discrimination factors ((13)C and (15)N) for their study animals. For large sharks stable isotopes may provide an important tool to elucidate aspects of their ecological roles in marine systems, but laboratory based controlled feeding experiments are impractical. By utilizing commercial aquaria, we estimated (15)N and (13)C of muscle, liver, vertebral cartilage and a number of organs of three large sand tiger (Carcharias taurus) and one large lemon shark (Negaprion brevirostris) under a controlled feeding regime. For all sharks mean+/-SD for (15)N and (13)C in lipid extracted muscle using lipid extracted prey data were 2.29 per thousand+/-0.22 and 0.90 per thousand+/-0.33, respectively. The use of non-lipid extracted muscle and prey resulted in very similar (15)N and (13)C values but mixing of lipid and non-lipid extracted data produced variable estimates. Values of (15)N and (13)C in lipid extracted liver and prey were 1.50 per thousand+/-0.54 and 0.22 per thousand+/-1.18, respectively. Non-lipid extracted diet discrimination factors in liver were highly influenced by lipid content and studies that examine stable isotopes in shark liver, and likely any high lipid tissue, should strive to remove lipid effects through standardising C:N ratios, prior to isotope analysis. Mean vertebral cartilage (15)N and (13)C values were 1.45 per thousand+/-0.61 and 3.75 per thousand+/-0.44, respectively. Organ (15)N and (13)C values were more variable among individual sharks but heart tissue was consistently enriched by approximately 1-2.5 per thousand. Minimal variability in muscle and liver delta(15)N and delta(13)C sampled at different intervals along the length of individual sharks and between liver lobes suggests that stable isotope values are consistent within tissues of individual animals. To our

  14. 1H, 13C, and 15N resonance assignments of murine amelogenin, an enamel biomineralization protein.

    SciTech Connect

    Buchko, Garry W.; Bekhazi, Jacky G.; Cort, John R.; Valentine, Nancy B.; Snead, Malcolm L.; Shaw, Wendy J.

    2008-06-01

    Amelogenin is the predominant matrix protein in developing dental enamel. Making extensive use of residue-specific 15N-labeled amino acids samples, the majority of the main and side chain resonances for murine amelogenin were assigned in 2% aqueous acetic acid at pH 3.0. This research was performed at Pacific Northwest National Laboratory, operated by Battelle for the US-DOE. A large part of this research was performed at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biological and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL).

  15. Species specific and environment induced variation of δ13C and δ15N in alpine plants

    PubMed Central

    Yang, Yang; Siegwolf, Rolf T. W.; Körner, Christian

    2015-01-01

    Stable carbon and nitrogen isotope signals in plant tissues integrate plant-environment interactions over long periods. In this study, we hypothesized that humid alpine life conditions are narrowing the scope for significant deviations from common carbon, water and nitrogen relations as captured by stable isotope signals. We explored the variation in δ13C and δ15N in 32 plant species from tissue type to ecosystem scale across a suite of locations at c. Two thousand five hundred meter elevation in the Swiss Alps. Foliar δ13C and δ15N varied among species by about 3–4‰ and 7–8‰ respectively. However, there was no overall difference in means of δ13C and δ15N for species sampled in different plant communities or when bulk plant dry matter harvests of different plant communities were compared. δ13C was found to be highly species specific, so that the ranking among species was mostly maintained across 11 habitats. However, δ15N varied significantly from place to place in all species (a range of 2.7‰) except in Fabaceae (Trifolium alpinum) and Juncaceae (Luzula lutea). There was also a substantial variation among individuals of the same species collected next to each other. No difference was found in foliar δ15N of non-legumes, which were either collected next to or away from the most common legume, T. alpinum. δ15N data place Cyperaceae and Juncaceae, just like Fabaceae, in a low discrimination category, well separated from other families. Soil δ15N was higher than in plants and increased with soil depth. The results indicate a high functional diversity in alpine plants that is similar to that reported for low elevation plants. We conclude that the surprisingly high variation in δ13C and δ15N signals in the studied high elevation plants is largely species specific (genetic) and insensitive to obvious environmental cues. PMID:26097487

  16. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene: Characterization of Products by 13C and 15N NMR

    USGS Publications Warehouse

    Thorn, K.A.; Thorne, P.G.; Cox, L.G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp 3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp 2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  17. Choice of dietary protein of vegetarians and omnivores is reflected in their hair protein 13C and 15N abundance.

    PubMed

    Petzke, Klaus J; Boeing, Heiner; Metges, Cornelia C

    2005-01-01

    Stable isotopic (15N, 13C) composition of tissues depends on isotopic pattern of food sources. We investigated whether the isotopic compositions of human hair protein and amino acids reflect the habitual dietary protein intake. Hair samples were analyzed from 100 omnivores (selected randomly out of the 1987-1988 German nutrition survey VERA), and from 15 ovo-lacto-vegetarians (OLV), and from 6 vegans recruited separately. Hair bulk and amino acid specific isotopic compositions were analyzed by isotope-ratio mass spectrometry (EA/IRMS and GC/C/IRMS, respectively) and the results were correlated with data of the 7 day dietary records. Hair bulk 15N and 13C abundances clearly reflect the particular eating habits. Vegans can be distinguished from OLV and both are significantly distinct from omnivores in both 15N and 13C abundances. 15N and 13C abundances rose with a higher proportion of animal to total protein intake (PAPI). Individual proportions of animal protein consumption (IPAP) were calculated using isotopic abundances and a linear regression model using animal protein consumption data of vegans (PAPI = 0) and omnivores (mean PAPI = 0.639). IPAP values positively correlated with the intake of protein, meat, meat products, and animal protein. Distinct patterns for hair amino acid specific 15N and 13C abundances were measured but with lower resolution between food preference groups compared with bulk values. In conclusion, hair 13C and 15N values both reflected the extent of animal protein consumption. Bulk isotopic abundance of hair can be tested for future use in the validation of dietary assessment methods. PMID:15880664

  18. Choice of dietary protein of vegetarians and omnivores is reflected in their hair protein 13C and 15N abundance.

    PubMed

    Petzke, Klaus J; Boeing, Heiner; Metges, Cornelia C

    2005-01-01

    Stable isotopic (15N, 13C) composition of tissues depends on isotopic pattern of food sources. We investigated whether the isotopic compositions of human hair protein and amino acids reflect the habitual dietary protein intake. Hair samples were analyzed from 100 omnivores (selected randomly out of the 1987-1988 German nutrition survey VERA), and from 15 ovo-lacto-vegetarians (OLV), and from 6 vegans recruited separately. Hair bulk and amino acid specific isotopic compositions were analyzed by isotope-ratio mass spectrometry (EA/IRMS and GC/C/IRMS, respectively) and the results were correlated with data of the 7 day dietary records. Hair bulk 15N and 13C abundances clearly reflect the particular eating habits. Vegans can be distinguished from OLV and both are significantly distinct from omnivores in both 15N and 13C abundances. 15N and 13C abundances rose with a higher proportion of animal to total protein intake (PAPI). Individual proportions of animal protein consumption (IPAP) were calculated using isotopic abundances and a linear regression model using animal protein consumption data of vegans (PAPI = 0) and omnivores (mean PAPI = 0.639). IPAP values positively correlated with the intake of protein, meat, meat products, and animal protein. Distinct patterns for hair amino acid specific 15N and 13C abundances were measured but with lower resolution between food preference groups compared with bulk values. In conclusion, hair 13C and 15N values both reflected the extent of animal protein consumption. Bulk isotopic abundance of hair can be tested for future use in the validation of dietary assessment methods.

  19. Variation in hair δ(13)C and δ (15)N values in long-tailed macaques (Macaca fascicularis) from Singapore.

    PubMed

    Schillaci, Michael A; Castellini, J Margaret; Stricker, Craig A; Jones-Engel, Lisa; Lee, Benjamin P Y-H; O'Hara, Todd M

    2014-01-01

    Much of the primatology literature on stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) has focused on African and New World species, with comparatively little research published on Asian primates. Here we present hair δ(13)C and δ(15)N isotope values for a sample of 33 long-tailed macaques from Singapore. We evaluate the suggestion by a previous researcher that forest degradation and biodiversity loss in Singapore have led to a decline in macaque trophic level. The results of our analysis indicated significant spatial variability in δ(13)C but not δ(15)N. The range of variation in δ(13)C was consistent with a diet based on C3 resources, with one group exhibiting low values consistent with a closed canopy environment. Relative to other macaque species from Europe and Asia, the macaques from Singapore exhibited a low mean δ(13)C value but mid-range mean δ(15)N value. Previous research suggesting a decline in macaque trophic level is not supported by the results of our study.

  20. Variation in hair δ13C and δ15N values in long-tailed macaques (Macaca fascicularis) from Singapore

    USGS Publications Warehouse

    Schillaci, Michael A.; Castellini, J. Margaret; Stricker, Craig A.; Jones-Engel, Lisa; Lee, Benjamin P.Y.-H.

    2014-01-01

    Much of the primatology literature on stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) has focused on African and New World species, with comparatively little research published on Asian primates. Here we present hair δ13C and δ15N isotope values for a sample of 33 long-tailed macaques from Singapore. We evaluate the suggestion by a previous researcher that forest degradation and biodiversity loss in Singapore have led to a decline in macaque trophic level. The results of our analysis indicated significant spatial variability in δ13C but not δ15N. The range of variation in δ13C was consistent with a diet based on C3 resources, with one group exhibiting low values consistent with a closed canopy environment. Relative to other macaque species from Europe and Asia, the macaques from Singapore exhibited a low mean δ13C value but mid-range mean δ15N value. Previous research suggesting a decline in macaque trophic level is not supported by the results of our study.

  1. Variation in hair δ13C and δ15N values in long-tailed macaques (Macaca fascicularis) from Singapore

    PubMed Central

    Castellini, J. Margaret; Stricker, Craig A.; Jones-Engel, Lisa; Lee, Benjamin P.Y.-H.; O'Hara, Todd M.

    2015-01-01

    Much of the primatology literature on stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) has focused on African and New World species, with comparatively little research published on Asian primates. Here we present hair δ13C and δ15N isotope values for a sample of 33 long-tailed macaques from Singapore. We evaluate the suggestion by a previous researcher that forest degradation and biodiversity loss in Singapore have led to a decline in macaque trophic level. The results of our analysis indicated significant spatial variability in δ13C but not δ15N. The range of variation in δ13C was consistent with a diet based on C3 resources, with one group exhibiting low values consistent with a closed canopy environment. Relative to other macaque species from Europe and Asia, the macaques from Singapore exhibited a low mean δ13C value but mid-range mean δ15N value. Previous research suggesting a decline in macaque trophic level is not supported by the results of our study. PMID:23729223

  2. Spatial Patterns of Plant δ13C and δ15N Along a Topoedaphic Gradient in a Subtropical Savanna Landscape

    NASA Astrophysics Data System (ADS)

    Bai, E.; Boutton, T. W.; Liu, F.; Wu, B.; Archer, S. R.

    2005-12-01

    δ13C and δ15N values of plants are powerful tools in physiological ecology, ecosystem science, and global biogeochemistry, yet we know relatively little about their variation and controls at the landscape scale. In this study, we investigated landscape-scale spatial variations in the foliar isotopic composition of 3 woody plant species across a 308 m topoedaphic gradient, along which soil texture and plant resources (water and nitrogen availability) varied from upland (86 m) to lowland (84 m) portions of the landscape. The study was conducted in a subtropical savanna at the La Copita Research Area, approximately 60 km west of Corpus Christi, TX. Foliar δ13C, δ15N, leaf nitrogen concentration ([N]), and specific leaf area (SLA) were measured on all individuals of Prosopis glandulosa, Condalia hookeri, and Zanthoxylum fagara present within a belt transect 308 m long x 12 m wide. Soil texture, available soil moisture, and total N were measured at 1 m intervals along the center-line of the belt transect. Clay content, available soil moisture, and soil total N were all negatively correlated with elevation along the transect. Leaf δ13C and δ15N values for all 3 species increased by 1-4 o/oo with decreasing elevation along the transect. Contrary to theory and previous studies, δ13C values were highest where soil water was most available, suggesting that some other variable could be overriding or interacting with water availability. Foliar [N] appeared to exert the strongest control over landscape-level variation, and was positively correlated with δ13C of all species (R 2 = 0.58, p<0.0001). Since leaf [N] is positively related to photosynthetic capacity, plants with high [N] are likely to have low Ci/Ca ratios and therefore higher δ13C values. δ15N values of Zanthoxylum and Condalia were positively correlated with leaf [N] and soil water availability; however, these relationships were absent for Prosopis, an N-fixing tree legume. We speculate that the

  3. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    PubMed

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs. PMID:27302905

  4. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    PubMed

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs.

  5. The influence of fish cage culture on δ13C and δ15N of filter-feeding Bivalvia (Mollusca).

    PubMed

    Benedito, E; Figueroa, L; Takeda, A M; Manetta, G I

    2013-11-01

    The objective of this study was to evaluate the effect of Oreochromis niloticus cage culture promoted variations in the δ13C and δ15N in Corbicula fluminea (Mollusca; Bivalvia) and in the sediment of an aquatic food web. Samples were taken before and after net cage installation in the Rosana Reservoir (Paranapanema River, PR-SP). Samples of specimens of the bivalve filterer C. fluminea and samples of sediment were collected using a modified Petersen grab. All samples were dried in an oven (60 °C) for 72 hours, macerated to obtain homogenous fine powders and sent for carbon (δ13C) and nitrogen (δ15N) isotopic value analysis in a mass spectrometer. There were significant differences in the δ13C and δ15N values of the invertebrate C. fluminea between the beginning and the end of the experiment. There were no differences between the δ13C and δ15N values of sediment. These results indicate that the installation of fish cage culture promoted impacts in the isotopic composition of the aquatic food web organisms, which could exert influence over the native species and the ecosystem.

  6. Stable isotope (13C, 15N and 34S) analysis of the hair of modern humans and their domestic animals.

    PubMed

    Bol, Roland; Pflieger, Christian

    2002-01-01

    Relationships between dietary status and recent migration were examined by delta(13)C, delta(15)N and delta(34)S analysis of hair samples from 43 modern humans living in a rural community in SW England. The isotopic content of 38 'local' hair samples was compared with that of five recently arrived individuals (from Canada, Chile, Germany and the USA). Hair samples from domestic animals (i.e. mainly cats, dogs, cows and horses) were analysed to examine the difference in delta(13)C, delta(15)N and delta(34)S values between herbivores and carnivores. Generally, modern human hair data from the triple stable isotope (delta(13)C, delta(15)N and delta(34)S) provided enough information to confirm the dietary status and origin of the individual subjects. The dietary intake was generally reflected in the animal hair delta(15)N and delta(13)C values, i.e. highest in the carnivores (cats). However, a non-local origin of food sources given to domesticated omnivores (i.e. dogs) was suggested by their hair delta(34)S values.

  7. Elucidating the trophodynamics of four coral reef fishes of the Solomon Islands using δ15N and δ13C

    NASA Astrophysics Data System (ADS)

    Greenwood, N. D. W.; Sweeting, C. J.; Polunin, N. V. C.

    2010-09-01

    Size-related diet shifts are important characteristics of fish trophodynamics. Here, body size-related changes in muscle δ15N and δ13C of four coral reef fishes, Acanthurus nigrofuscus (herbivore), Chaetodon lunulatus (corallivore) , Chromis xanthura (planktivore) and Plectropomus leopardus (piscivore) were investigated at two locations in the Solomon Islands. All four species occupied distinct isotopic niches and the concurrent δ13C' values of C. xanthura and P. leopardus suggested a common planktonic production source. Size-related shifts in δ15N, and thus trophic level, were observed in C. xanthura, C. lunulatus and P. leopardus, and these trends varied between location, indicating spatial differences in trophic ecology. A literature review of tropical fishes revealed that positive δ15N-size trends are common while negative δ15N-size trends are rare. Size-δ15N trends fall into approximately equal groups representing size-based feeding within a food chain, and that associated with a basal resource shift and occurs in conjunction with changes in production source, indicated by δ13C. The review also revealed large scale differences in isotope-size trends and this, combined with small scale location differences noted earlier, highlights a high degree of plasticity in the reef fishes studied. This suggests that trophic size analysis of reef fishes would provide a productive avenue to identify species potentially vulnerable to reef impacts as a result of constrained trophic behaviour.

  8. 15N chemical shift tensors and conformation of solid polypeptides containing 15N-labeled glycine residue by 15N NMR

    NASA Astrophysics Data System (ADS)

    Shoji, Akira; Ozaki, Takuo; Fujito, Teruaki; Deguchi, Kenzo; Ando, Isao; Magoshi, Jun

    1998-01-01

    The correlation between the isotropic 15N chemical shift ( δiso) and 15N chemical shift tensor components ( δ11, δ22 and δ33) and the main-chain conformation such as the polyglycine I (PGI: β-sheet), II (PGII: 3 1-helix), α-helix and β-sheet forms of solid polypeptides [Gly∗,X] n consisting of 15N-labeled glycine (Gly∗) and other amino acids (X: natural abundance of 15N) has been studied by solid-state 15N NMR method. A series of polypeptides [Gly∗,X] n (X = glycine, L-alanine, L-leucine, L-valine, L-isoleucine, β-benzyl L-aspartate, γ-benzyl L-glutamate, ɛ-carbobenzoxy L-lysine, and sarcosine) were synthesized by the α-amino acid N-carboxy anhydride (NCA) method. Conformations of these polypeptides in the solid state were characterized on the basis of conformation-dependent 13C chemical shifts in the 13C cross-polarization-magic angle spinning (CP-MAS) NMR spectra and by the characteristic bands in the IR and far-IR spectra. The δiso, δ11, δ22 and δ33 of the polypetides were determined from the 15N CP-MAS and 15N CP-static (powder pattern) spectra. It was found that the δiso, δ11, δ22 and δ33 in the PGI form (δ 83.5, 185, 40.7 and 25 ppm, resp.) are upfield from those in the PGII form (88.5, 194, 42.1 and 29 ppm, resp.), which were reproduced by the calculated 15N shielding constants using the finite perturbation theory (FPT)-INDO method. It was also found that the δ22 of the Gly∗ of [Gly∗,X] n is closely related to the main-chain conformation and the neighboring amino acid sequence, although the δiso is almost independent of the glycine content and conformation. Consequently, the δ22 value of Gly∗ containing copolypeptides is useful for the structural (main-chain conformation and neighboring amino acid sequence) analysis in the solid state by 15N NMR, if the 15N-labeled copolypeptide or natural protein can be provided. In addition, it is shown that the δiso of the glycine residue is useful for the conformational study of some

  9. Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    PubMed Central

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice

  10. Characterization of uniformly and atom-specifically 13C-labeled heparin and heparan sulfate polysaccharide precursors using 13C NMR spectroscopy and ESI mass spectrometry

    PubMed Central

    Nguyen, Thao K. N.; Tran, Vy M.; Victor, Xylophone V.; Skalicky, Jack J.; Kuberan, Balagurunathan

    2010-01-01

    The biological actions of heparin and heparan sulfate, two structurally related glycosaminoglycans, depend on the organization of the complex heparanome. Due to the structural complexity of the heparanome, the sequence of variably sulfonated uronic acid and glucosamine residues is usually characterized by the analysis of smaller oligosaccharide and disaccharide fragments. Even characterization of smaller heparin/heparan sulfate oligosaccharide or disaccharide fragments using simple 1D 1H NMR spectroscopy is often complicated by the extensive signal overlap. 13C NMR signals, on the other hand, overlap less and therefore, 13C NMR spectroscopy can greatly facilitate the structural elucidation of the complex heparanome and provide finer insights into the structural basis for biological functions. This is the first report of the preparation of anomeric carbon-specific 13C-labeled heparin/heparan sulfate precursors from the Escherichia coli K5 strain. Uniformly 13C- and 15N-labeled precursors were also produced and characterized by 13C NMR spectroscopy. Mass spectrometric analysis of enzymatically fragmented disaccharides revealed that anomeric carbon-specific labeling efforts resulted in a minor loss/scrambling of 13C in the precursor backbone, whereas uniform labeling efforts resulted in greater than 95% 13C isotope enrichment in the precursor backbone. These labeled precursors provided high-resolution NMR signals with great sensitivity and set the stage for studying the heparanome–proteome interactions. PMID:20832774

  11. Carbon-rich presolar grains from massive stars. Subsolar 12 C/ 13 C and 14 N/ 15 N ratios and the mystery of 15 N

    DOE PAGES

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-07-30

    We compared carbon-rich grains with isotopic anomalies to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. Furthermore, we present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. All of the explosion energies and H concentrations aremore » considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.« less

  12. Carbon-rich Presolar Grains from Massive Stars: Subsolar 12C/13C and 14N/15N Ratios and the Mystery of 15N

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.

  13. Isotope ratio mass spectrometry: delta13C and delta15 N analysis for tracing the origin of illicit drugs.

    PubMed

    Galimov, E M; Sevastyanov, V S; Kulbachevskaya, E V; Golyavin, A A

    2005-01-01

    Gas chromatography/combustion/mass spectrometry (GC-C-MS) and elemental analysis/mass spectrometry (EA-MS) techniques are proposed to estimate delta(13)C and delta(15)N values in heroin, morphine, cocaine and hemp leaves, for the purposes of tracing the geographical origins of seized drugs. The values of isotope ratios for pure drugs and drugs with impurities were compared. It was demonstrated that large samples (up to 3 x 10(-6) g C) were combusted completely, so that the results obtained were valid. The data are considered to be an essential supplement to a wide-scale database designed specifically for the delta(13)C and delta(15)N values of drugs. The potential forensic and academic significance of the results is discussed.

  14. NMR study of Met-1 human Angiogenin: (1)H, (13)C, (15)N backbone and side-chain resonance assignment.

    PubMed

    Tsika, Aikaterini C; Chatzileontiadou, Demetra S M; Leonidas, Demetres D; Spyroulias, Georgios A

    2016-10-01

    Here, we report the high yield expression and preliminary structural analysis via solution hetero-nuclear NMR spectroscopy of the recombinant Met-1 human Angiogenin. The analysis reveals a well folded as well as, a monomeric polypeptide. Τhe sequence-specific assignment of its (1)H, (15)N and (13)C resonances at high percentage was obtained. Also, using TALOS+ its secondary structure elements were determined.

  15. Tracing the diet of the monitor lizard Varanus mabitang by stable isotope analyses (δ15N, δ13C)

    NASA Astrophysics Data System (ADS)

    Struck, Ulrich; Altenbach, Alexander; Gaulke, Maren; Glaw, Frank

    2002-09-01

    In this study, we used analyses of stable isotopes of nitrogen (δ15N) and carbon (δ13C) to determine the trophic ecology of the monitor lizard Varanus mabitang. Stable isotopes from claws, gut contents, and soft tissues were measured from the type specimen. Samples from Varanus olivaceus, Varanus prasinus, Varanus salvator, the herbivorous agamid lizard Hydrosaurus pustulatus, and some plant matter were included for comparison. Our data show a rapid decrease in δ13C (about10‰) from food plants towards gut contents and soft tissues of herbivorous species. For the varanids, we found a significant linear correlation of decreasing δ13C and increasing δ15N from herbivorous towards carnivorous species. In terms of trophic isotope ecology, the type specimen of V. mabitang is a strict herbivore. Thus it differs significantly in its isotopic composition from the morphologically next closest related species V. olivaceus. The most highly carnivorous species is V. salvator, while δ15N values for V. prasinus and V. olivaceus are intermediate. Claws provide very valuable samples for such measurements, because they can be sampled from living animals without harm. Additionally, their range of variability is relatively small in comparison with measurements from soft tissues.

  16. Seasonal δ13C and δ15N isoscapes of fish populations along a continental shelf trophic gradient

    NASA Astrophysics Data System (ADS)

    Radabaugh, Kara R.; Hollander, David J.; Peebles, Ernst B.

    2013-10-01

    The West Florida Shelf, located in the eastern Gulf of Mexico, transitions from a eutrophic ecosystem dominated by the Mississippi River plume to mesotrophic and oligotrophic ecosystems off the coast of peninsular Florida. Three extensive trawl surveys in this region were used to acquire samples of fish muscle, benthic algae from sea urchin stomach contents, and filtered particulate organic matter (POM) to create δ13C and δ15N isoscapes. Muscle δ15N from three widely distributed fish species, Synodus foetens (inshore lizardfish), Calamus proridens (littlehead porgy), and Syacium papillosum (dusky flounder), exhibited strong longitudinal correlations (Pearson‧s r=-0.67 to -0.90, p<0.001) that coincided with the principal trophic gradient, whereas δ13C values of fish muscle and benthic algae were correlated with depth (Pearson‧s r=-0.34 to -0.73, p<0.05). Correlations between isotopic values and surface concentrations of chlorophyll and particulate organic carbon (POC) imply linkages between the isotopic baseline and transitions from eutrophic to oligotrophic waters. The δ13C depth gradient and the δ15N longitudinal gradient were consistent between seasons and years, providing a foundation for future stable isotope studies of animal migration in the Gulf of Mexico.

  17. Individual protein balance strongly influences δ15N and δ13C values in Nile tilapia, Oreochromis niloticus

    NASA Astrophysics Data System (ADS)

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    Although stable isotope ratios in animals have often been used as indicators of the trophic level and for the back-calculation of diets, few experiments have been done under standardized laboratory conditions to investigate factors influencing δ15N and δ13C values. An experiment using Nile tilapia [Oreochromis niloticus (L.)] was therefore carried out to test the effect of different dietary protein contents (35.4, 42.3, and 50.9%) on δ15N and δ13C values of the whole tilapia. The fish were fed the isoenergetic and isolipidic semi-synthetic diets at a relatively low level. δ15N and δ13C values of the lipid-free body did not differ between the fish fed the diets with different protein contents, but the trophic shift for N and C isotopes decreased with increasing protein accretion in the individual fish, for N from 6.5‰ to 4‰ and for C in the lipid-free body from 4‰ to 2.5‰. This is the first study showing the strong influence of the individual protein balance to the degree to which the isotopic signature of dietary protein was modified in tissue protein of fish. The extrapolation of the trophic level or the reconstruction of the diet of an animal from stable isotope ratios without knowledge of the individual physiological condition and the feeding rate may lead to erroneous results.

  18. Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth

    USGS Publications Warehouse

    Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.

    2009-01-01

    Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic ??13C and ??15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes-resident and transient - collected across ???25?? of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in ??15N values of ???2.5% through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable ??15N and ??13C values throughout the remainder of their lives, whereas ??15N values of most (n = 11) increased by ???1.5%, suggestive of an ontogenetic increase in trophic level. Significant differences in mean ??13C and ??15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean. ?? Inter-Research 2009.

  19. Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth

    USGS Publications Warehouse

    Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.

    2009-01-01

    Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic δ13C and δ15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes—resident and transient—collected across ~25° of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in δ15N values of ~2.5‰ through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable δ15N and δ13C values throughout the remainder of their lives, whereas δ15N values of most (n = 11) increased by ~1.5‰, suggestive of an ontogenetic increase in trophic level. Significant differences in mean δ13C and δ15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean

  20. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.

    PubMed

    Lamley, Jonathan M; Lougher, Matthew J; Sass, Hans Juergen; Rogowski, Marco; Grzesiek, Stephan; Lewandowski, Józef R

    2015-09-14

    Typically, protein dynamics involve a complex hierarchy of motions occurring on different time scales between conformations separated by a range of different energy barriers. NMR relaxation can in principle provide a site-specific picture of both the time scales and amplitudes of these motions, but independent relaxation rates sensitive to fluctuations in different time scale ranges are required to obtain a faithful representation of the underlying dynamic complexity. This is especially pertinent for relaxation measurements in the solid state, which report on dynamics in a broader window of time scales by more than 3 orders of magnitudes compared to solution NMR relaxation. To aid in unraveling the intricacies of biomolecular dynamics we introduce (13)C spin-lattice relaxation in the rotating frame (R1ρ) as a probe of backbone nanosecond-microsecond motions in proteins in the solid state. We present measurements of (13)C'R1ρ rates in fully protonated crystalline protein GB1 at 600 and 850 MHz (1)H Larmor frequencies and compare them to (13)C'R1, (15)N R1 and R1ρ measured under the same conditions. The addition of carbon relaxation data to the model free analysis of nitrogen relaxation data leads to greatly improved characterization of time scales of protein backbone motions, minimizing the occurrence of fitting artifacts that may be present when (15)N data is used alone. We also discuss how internal motions characterized by different time scales contribute to (15)N and (13)C relaxation rates in the solid state and solution state, leading to fundamental differences between them, as well as phenomena such as underestimation of picosecond-range motions in the solid state and nanosecond-range motions in solution.

  1. Accurate measurements of {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    SciTech Connect

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Nielsen, Niels Chr.; Khaneja, Navin

    2014-09-21

    Application of sets of {sup 13}C-{sup 13}C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ({sup 13}C′) and aliphatic ({sup 13}C{sub aliphatic}) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly {sup 13}C,{sup 15}N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of {sup 13}C′-{sup 13}C{sub aliphatic} distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform {sup 13}C,{sup 15}N-labeling on the FGAIL fragment.

  2. 13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua A.; Stern, Jennifer C.; Mandt, Kathleen E.; Domagal-Goldman, Shawn D.; Trainer, Melissa G.

    2016-05-01

    The ratios of the stable isotopes that comprise each chemical species in Titan's atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have conducted a laboratory study to measure the isotopic fractionation associated with the formation of Titan aerosol analogs, commonly referred to as 'tholins', via far-UV irradiation of several methane (CH4) and dinitrogen (N2) mixtures. Analysis of the δ13C and δ15N isotopic signatures of the photochemical aerosol products using an isotope ratio mass spectrometer (IRMS) show that fractionation direction and magnitude are dependent on the initial bulk composition of the gas mixture. In general, the aerosols showed enrichment in 13C and 14N, and the observed fractionation trends can provide insight into the chemical mechanisms controlling photochemical aerosol formation.

  3. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    PubMed

    Paradowska, Katarzyna; Wolniak, Michał; Pisklak, Maciej; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm.

  4. Validating the Incorporation of 13C and 15N in a Shorebird That Consumes an Isotopically Distinct Chemosymbiotic Bivalve

    PubMed Central

    van Gils, Jan A.; Ahmedou Salem, Mohamed Vall

    2015-01-01

    The wealth of field studies using stable isotopes to make inferences about animal diets require controlled validation experiments to make proper interpretations. Despite several pleas in the literature for such experiments, validation studies are still lagging behind, notably in consumers dwelling in chemosynthesis-based ecosystems. In this paper we present such a validation experiment for the incorporation of 13C and 15N in the blood plasma of a medium-sized shorebird, the red knot (Calidris canutus canutus), consuming a chemosymbiotic lucinid bivalve (Loripes lucinalis). Because this bivalve forms a symbiosis with chemoautotrophic sulphide-oxidizing bacteria living inside its gill, the bivalve is isotopically distinct from ‘normal’ bivalves whose food has a photosynthetic basis. Here we experimentally tested the hypothesis that isotope discrimination and incorporation dynamics are different when consuming such chemosynthesis-based prey. The experiment showed that neither the isotopic discrimination factor, nor isotopic turnover time, differed between birds consuming the chemosymbiotic lucinid and a control group consuming a photosynthesis-based bivalve. This was true for 13C as well as for 15N. However, in both groups the 15N discrimination factor was much higher than expected, which probably had to do with the birds losing body mass over the course of the experiment. PMID:26458005

  5. Direct uptake of organic carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    NASA Astrophysics Data System (ADS)

    Alexandre, A.; Balesdent, J.; Cazevieille, P.; Chevassus-Rosset, C.; Signoret, P.; Mazur, J.-C.; Harutyunyan, A.; Doelsch, E.; Basile-Doelsch, I.; Miche, H.; Santos, G. M.

    2015-12-01

    In the rhizosphere, the uptake of low molecular weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relatively to total uptake is important, organic C uptake is supposed to be low relatively to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and in which extent organic C absorbed by grass roots, under the form of either intact amino acids (AAs) or microbial metabolites, can feed the organic C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled AAs to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C-excess and 15N-excess) in the roots, stems and leaves, and phytoliths, as well as the 13C-excess in AAs extracted from roots and stems and leaves, were quantified relatively to a control experiment in which no labelled AAs were added. The net uptake of 13C derived from the labeled AAs supplied to the nutritive solution (AA-13C) by Festuca arundinacea represented 4.5 % of the total AA-13C supply. AA-13C fixed in the plant represented only 0.13 % of total C. However, the experimental conditions may have underestimated the extent of the process under natural and field conditions. Previous studies showed that 15N and 13C can be absorbed by the roots in several organic and inorganic forms. In the present experiment, the fact that phenylalanine and methionine, that were supplied in high amount to the nutritive solution, were more 13C-enriched than other AAs in the roots and stems and leaves strongly suggested that part of AA-13C was absorbed and translocated in its original AA form. The concentration of AA-13C represented only 0.15 % of the

  6. 13C and 15N allocations of two alpine species from early and late snowmelt locations reflect their different growth strategies.

    PubMed

    Baptist, Florence; Tcherkez, Guillaume; Aubert, Serge; Pontailler, Jean-Yves; Choler, Philippe; Nogués, Salvador

    2009-01-01

    Intense efforts are currently devoted to disentangling the relationships between plant carbon (C) allocation patterns and soil nitrogen (N) availability because of their consequences for growth and more generally for C sequestration. In cold ecosystems, only a few studies have addressed whole-plant C and/or N allocation along natural elevational or topographical gradients. (12)C/(13)C and (14)N/(15)N isotope techniques have been used to elucidate C and N partitioning in two alpine graminoids characterized by contrasted nutrient economies: a slow-growing species, Kobresia myosuroides (KM), and a fast-growing species, Carex foetida (CF), located in early and late snowmelt habitats, respectively, within the alpine tundra (French Alps). CF allocated higher labelling-related (13)C content belowground and produced more root biomass. Furthermore, assimilates transferred to the roots were preferentially used for growth rather than respiration and tended to favour N reduction in this compartment. Accordingly, this species had higher (15)N uptake efficiency than KM and a higher translocation of reduced (15)N to aboveground organs. These results suggest that at the whole-plant level, there is a compromise between N acquisition/reduction and C allocation patterns for optimized growth.

  7. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.

    PubMed

    Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O

    2016-08-21

    The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490

  8. The Titan 14N/ 15N and 12C/ 13C isotopic ratios in HCN from Cassini/CIRS

    NASA Astrophysics Data System (ADS)

    Vinatier, Sandrine; Bézard, Bruno; Nixon, Conor A.

    2007-11-01

    We report the detection of H 13CN and HC 15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/ 13C and 14N/ 15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm -1 resolution. The spectral range 1210-1310 cm -1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H 12C 14N, H 13CN and HC 15N from their bands at 713, 706 and 711 cm -1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find C12/C13=89-18+22 at 15° S, and 68-12+16 at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/ 13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane ( 82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/ 15N isotopic ratio is found equal to 56-13+16 at 15° S and 56-9+10 at 83° N. Combining the two values yields 14N/ 15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/ 14N ratio found in HCN is ˜3 times higher than in N 2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779

  9. Diode laser spectroscopy of the fundamental bands of 12C14N, 13C14N, 12C15N, 13C15N free radicals in the ground 2 Sigma+ electronic state.

    PubMed

    Hübner, M; Castillo, M; Davies, P B; Röpcke, J

    2005-01-01

    Rotationally resolved spectra of the fundamental band of the CN free radical in four isotopic forms have been measured using tunable diode laser absorption spectroscopy. The source of the radical was a microwave discharge in a mixture of isotopically selected methane and nitrogen diluted with argon. The lines were measured to an accuracy of 5 x 10(-4) cm(-1) and fitted to the formula for the vibration rotation spectrum of a diatomic molecule, including quartic distortion constants. The band origins of each of the isotopomers from the five parameter fits were found to be 12C14N: 2042.42115(38) cm(-1), 13C14N: 2000.08479(23) cm(-1), 12C15N: 2011.25594(25) cm(-1), 13C15N: 1968.22093(33) cm(-1) with one standard deviation from the fit given in parenthesis. Some of the lines showed a resolved splitting due to the spin rotation interaction. This was averaged for fitting purposes. The average equilibrium internuclear distance derived from the upsilon = 0 and 1 rotational constants of the four isotopomers is 1.171800(6) A which is in good agreement with the value determined from microwave spectroscopy.

  10. (1)H, (13)C and (15)N backbone resonance assignments and dynamic properties of the PDZ tandem of Whirlin.

    PubMed

    Delhommel, Florent; Wolff, Nicolas; Cordier, Florence

    2016-10-01

    Mammals perceive sounds thanks to mechanosensory hair cells located in the inner ear. The stereocilia of these cells are tightly bound together in bundles by a network of cadherins and scaffolding proteins. Stereocilia deflection induces stretching of this network and is responsible for hair cell depolarization that triggers the neuronal message, transducing the mechanical signal into an electric signal transmissible to the brain. Nearly all proteins involved in this mechano-electrical transduction network contain short C-terminal motifs of interaction with PDZ domains (PSD-95, Discs Large, ZO-1). Interestingly only two of these proteins encompass PDZ domains: Harmonin and Whirlin. As our first step towards a comprehensive structural study of Whirlin, we have assigned the (1)H, (13)C and (15)N backbone resonances of a tandem formed by the first two PDZ domains of Whirlin, reported the secondary structure elements of this tandem as predicted by the TALOS+ server and evaluated its dynamics from (15)N relaxation measurements.

  11. Evaluating mercury biomagnification in fish from a tropical marine environment using stable isotopes (delta13C and delta15N).

    PubMed

    Al-Reasi, Hassan A; Ababneh, Fuad A; Lean, David R

    2007-08-01

    Concentrations of total mercury (T-Hg) and methylmercury (MeHg) were measured in zooplankton and 13 fish species from a coastal food web of the Gulf of Oman, an arm of the Arabian Sea between Oman and Iran. Stable isotope ratios (delta13C and delta15N) also were determined to track mercury biomagnification. The average concentration of T-Hg in zooplankton was 21 +/- 8.0 ng g(-1) with MeHg accounting 10% of T-Hg. Total mercury levels in fish species ranged from 3.0 ng g(-1) (Sardinella longiceps) to 760 ng g(-1) (Rhizoprionodon acutus) with relatively lower fraction of MeHg (72%) than that found in other studies. The average trophic difference (Deltadelta13C) between zooplankton and planktivorous fish (Selar crumenopthalmus, Rastrelliger kanagurta, and S. longiceps) was higher (3.4 per thousandth) than expected, suggesting that zooplankton may not be the main diet or direct carbon source for these fish species. However, further sampling would be required to compensate for temporal changes in zooplankton and the influence of their lipid content. Trophic position inferred by delta15N and and slopes of the regression equations (log10[T-Hg] = 0.13[delta15N] - 3.57 and log10[MeHg] = 0.14[delta15N] - 3.90) as estimates of biomagnification indicate that biomagnification of T-Hg and MeHg was lower in this tropical ocean compared to what has been observed in arctic and temperate ecosystems and tropical African lakes. The calculated daily intake of methylmercury in the diet of local people through fish consumption was well below the established World Health Organization (WHO) tolerable daily intake threshold for most of the fish species except Euthynnus affinis, Epinephelus epistictus, R. acutus, and Thunnus tonggol, illustrating safe consumption of the commonly consumed fish species.

  12. Backbone 1H, 13C, and 15N NMR assignments for the Cyanothece 51142 protein cce_0567: a protein associated with nitrogen fixation in the DUF683 family

    SciTech Connect

    Buchko, Garry W.; Sofia, Heidi J.

    2008-06-01

    The recently sequenced genome of the diurnal cyanobacterium Cyanothece sp. PCC 51142 (contig 83.1_1_243_746) contains the sequence for an hypothetical protein that falls into the DUF683 family. As observed for the other 54 DUF683 proteins currently listed in the GenBank database, this 78-residue (9.0 kDa) protein in Cyanothece is also found in a nitrogen fixation gene cluster suggesting that it is involved in the process. To date no structural information exists for any of the proteins in the DUF683 family. In an effort to elucidate the biochemical role DUF683 may play in nitrogen fixation and to obtain structural information for a member of the DUF683 protein family, a construct containing DUF683 from Cyanothece 51142 was generated, expressed, purified, and the solution properties characterized. A total rotational correlation time (tc) of 17.1 ns was estimated by nuclear magnetic resonance (NMR) spectroscopy suggesting a molecular weight of ~ 40 kDa, an observation dictating that DUF683 is a tetramer in solution. Using triple-labeled (2H, 13C, 15N) and residue-specific 15N-labeled amino acids (L, K, V, and E/Q) samples, most of the backbone and side chain resonances for DUF683 were assigned. The 13C alpha chemical shifts and NOESY NMR data indicate that the protein is helical from K18-E75.

  13. Stable isotope analysis (δ13C and δ15N) of soil nematodes from four feeding groups

    PubMed Central

    Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis (13C/12C and 15N/14N, expressed as δ13C and δ15N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis–isotopic ratio mass spectrometry (μEA–IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ15N (p = 0.290) or δ13C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ15N = 1.08 to 3.22 mUr‰, δ13C = –29.58 to –27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ15N between the plant feeder and the predator group (δ15N = 9.89 to 12.79 mUr, δ13C = –27.04 to –25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr2) and the predators (1.73 mUr2), but largest for omnivores (3.83 mUr2

  14. Stable isotope analysis (δ13C and δ15N) of soil nematodes from four feeding groups

    PubMed Central

    Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis (13C/12C and 15N/14N, expressed as δ13C and δ15N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis–isotopic ratio mass spectrometry (μEA–IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ15N (p = 0.290) or δ13C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ15N = 1.08 to 3.22 mUr‰, δ13C = –29.58 to –27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ15N between the plant feeder and the predator group (δ15N = 9.89 to 12.79 mUr, δ13C = –27.04 to –25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr2) and the predators (1.73 mUr2), but largest for omnivores (3.83 mUr2

  15. Stable isotope analysis (δ (13)C and δ (15)N) of soil nematodes from four feeding groups.

    PubMed

    Melody, Carol; Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis ((13)C/(12)C and (15)N/(14)N, expressed as δ (13)C and δ (15)N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis-isotopic ratio mass spectrometry (μEA-IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ (15)N (p = 0.290) or δ (13)C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ (15)N = 1.08 to 3.22 mUr‰, δ (13)C = -29.58 to -27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ (15)N between the plant feeder and the predator group (δ (15)N = 9.89 to 12.79 mUr, δ (13)C = -27.04 to -25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr(2)) and the predators (1.73 mUr(2)), but largest for

  16. Stable isotope analysis (δ (13)C and δ (15)N) of soil nematodes from four feeding groups.

    PubMed

    Melody, Carol; Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis ((13)C/(12)C and (15)N/(14)N, expressed as δ (13)C and δ (15)N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis-isotopic ratio mass spectrometry (μEA-IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ (15)N (p = 0.290) or δ (13)C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ (15)N = 1.08 to 3.22 mUr‰, δ (13)C = -29.58 to -27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ (15)N between the plant feeder and the predator group (δ (15)N = 9.89 to 12.79 mUr, δ (13)C = -27.04 to -25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr(2)) and the predators (1.73 mUr(2)), but largest for

  17. δ13C and δ15N values in scales of Micropterus salmoides largemouth bass as a freshwater environmental indicator.

    PubMed

    Inamura, O; Zhang, J; Minagawa, M

    2012-01-15

    We have investigated the effectiveness of using the Micropterus salmoides largemouth bass, which is a top predator found throughout the world, as the index of a hydrosphere environment and its food chain. To this end, we used stable carbon and nitrogen isotope analysis (SIA). Largemouth bass were collected from eight dam reservoirs and two ponds in Toyama Prefecture, Japan. Toyama is located in central Japan and features a variety of distinct geographical environments, a result of the 3000-m elevation that changes over short distances, and abundant water systems. The mean δ(13)C and δ(15)N values for the lipid-extracted muscle of largemouth bass from all sampling locations showed large variability, but there were only small standard deviations at each sampling location. The isotope ratios for largemouth bass express the characteristics of each investigated hydrosphere environment and food chain. A very high correlation (δ(13)C: Y(scale) = 0.96 X(muscle) + 1.58, R(2) = 0.98, δ(15)N: Y(scale) = 0.92 X(muscle) - 1.15, R(2) = 0.95) of SIA values was found between largemouth bass scales and lipid-extracted muscles, which suggests that the more easily analyzed scales are useful as SIA samples for the monitoring and comparison of hydrosphere environments throughout the world. PMID:22215573

  18. δ13C and δ15N values in scales of Micropterus salmoides largemouth bass as a freshwater environmental indicator.

    PubMed

    Inamura, O; Zhang, J; Minagawa, M

    2012-01-15

    We have investigated the effectiveness of using the Micropterus salmoides largemouth bass, which is a top predator found throughout the world, as the index of a hydrosphere environment and its food chain. To this end, we used stable carbon and nitrogen isotope analysis (SIA). Largemouth bass were collected from eight dam reservoirs and two ponds in Toyama Prefecture, Japan. Toyama is located in central Japan and features a variety of distinct geographical environments, a result of the 3000-m elevation that changes over short distances, and abundant water systems. The mean δ(13)C and δ(15)N values for the lipid-extracted muscle of largemouth bass from all sampling locations showed large variability, but there were only small standard deviations at each sampling location. The isotope ratios for largemouth bass express the characteristics of each investigated hydrosphere environment and food chain. A very high correlation (δ(13)C: Y(scale) = 0.96 X(muscle) + 1.58, R(2) = 0.98, δ(15)N: Y(scale) = 0.92 X(muscle) - 1.15, R(2) = 0.95) of SIA values was found between largemouth bass scales and lipid-extracted muscles, which suggests that the more easily analyzed scales are useful as SIA samples for the monitoring and comparison of hydrosphere environments throughout the world.

  19. Characterising ontogenetic niche shifts in Nile crocodile using stable isotope (δ13C, δ15N) analyses of scute keratin.

    PubMed

    Radloff, Frans G T; Hobson, Keith A; Leslie, Alison J

    2012-09-01

    Nile crocodiles undergo a three to five order of magnitude increase in body size during their lifespan. This shift coincides with a change in resource and habitat use which influences the strength, type and symmetry of interactions with other species. Identifying size-specific crocodile groups displaying similar traits is important for conservation planning. Here, we illustrate how stable carbon (δ(13) C) and nitrogen (δ(15) N) isotope analysis of scute keratin, together with breakpoint modelling analysis can be used to characterise ontogenetic niche shifts. Using a sample set of 238 crocodiles from the Okavango Delta, Botswana (35-463 cm total length), we found prominent size-related changes in the scute keratin δ(13) C and δ(15) N profiles close to 40 and 119 cm snout-vent length. The first shift corroborated the findings of a traditional stomach-content study conducted on the same population at the same time, and the second conformed to known crocodile ecology. This approach can be used as a first approximation to identify size-specific groups within crocodile populations, and these can then be investigated further using isotopic or other methods.

  20. Experimental design principles for isotopically instationary 13C labeling experiments.

    PubMed

    Nöh, Katharina; Wiechert, Wolfgang

    2006-06-01

    13C metabolic flux analysis (MFA) is a well-established tool in Metabolic Engineering that found numerous applications in recent years. However, one strong limitation of the current method is the requirement of an-at least approximate-isotopic stationary state at sampling time. This requirement leads to a principle lower limit for the duration of a 13C labeling experiment. A new methodological development is based on repeated sampling during the instationary transient of the 13C labeling dynamics. The statistical and computational treatment of such instationary experiments is a completely new terrain. The computational effort is very high because large differential equations have to be solved and, moreover, the intracellular pool sizes play a significant role. For this reason, the present contribution works out principles and strategies for the experimental design of instationary experiments based on a simple example network. Hereby, the potential of isotopically instationary experiments is investigated in detail. Various statistical results on instationary flux identifiability are presented and possible pitfalls of experimental design are discussed. Finally, a framework for almost optimal experimental design of isotopically instationary experiments is proposed which provides a practical guideline for the analysis of large-scale networks.

  1. Food web structure in two counter-rotating eddies based on δ15N and δ13C isotopic analyses

    NASA Astrophysics Data System (ADS)

    Waite, A. M.; Muhling, B. A.; Holl, C. M.; Beckley, L. E.; Montoya, J. P.; Strzelecki, J.; Thompson, P. A.; Pesant, S.

    2007-04-01

    We measured the natural inventories of nitrogen and carbon stable isotopes within various ecosystem fractions of two counter-rotating eddies associated with the poleward Leeuwin Current (LC), off Western Australia. Isotopic signatures ( δ15N and δ13C) were used as proxies for trophic transformation of inorganic and organic matter and are the basis for our discussion on food web functions in the two eddies. We present the first measurements of dissolved inorganic nitrogen (DIN) isotopic composition for the eastern Indian Ocean. We show that the large autotrophs (sampled within the >5-μm and >20-μm fractions of particulate organic matter (POM)), including a distinctive diatom population in the warm-core (WC) eddy, are likely to have taken up sources of DIN which were primarily nitrate, while the picoplankton are likely to have assimilated a large fraction of recycled ammonium. We show that phytoplankton in the cold-core (CC) eddy had distinctly more enriched δ15N signatures than in the WC eddy, probably due to the higher vertical fluxes of nitrate into the CC eddy. A clear negative correlation between mixed-layer depth and δ15N in POM across both eddies also supports the role of vertical nitrate fluxes in determining the primary δ15N signature of the autotrophs. Within the WC eddy, there was a significant δ13C-enrichment in comparison to the CC eddy across all size fractions of the mesozooplankton community, which, in combination with a low C:N molar ratio the >200- and >500-μm mesozooplankton size fractions, suggests a healthier mesozooplankton community, with greater lipid storage, in the WC eddy. This is consistent with the greater productivity and biomass of large diatoms in the WC eddy. Larval fish from the WC eddy also had an enriched δ13C signature compared to those from the CC eddy. The WC eddy had higher production rates than the CC eddy, and harboured a physiologically healthier population of zooplankton. Paradoxically, this seemed to occur

  2. The effects of sex, tissue type, and dietary components on stable isotope discrimination factors (Δ13C and Δ15N) in mammalian omnivores.

    PubMed

    Kurle, Carolyn M; Koch, Paul L; Tershy, Bernie R; Croll, Donald A

    2014-01-01

    We tested the effects of sex, tissue, and diet on stable isotope discrimination factors (Δ(13)C and Δ(15)N) for six tissues from rats fed four diets with varied C and N sources, but comparable protein quality and quantity. The Δ(13)C and Δ(15)N values ranged from 1.7-4.1‰ and 0.4-4.3‰, respectively. Females had higher Δ(15)N values than males because males grew larger, whereas Δ(13)C values did not differ between sexes. Differences in Δ(13)C values among tissue types increased with increasing variability in dietary carbon sources. The Δ(15)N values increased with increasing dietary δ(15)N values for all tissues except liver and serum, which have fast stable isotope turnover times, and differences in Δ(15)N values among tissue types decreased with increasing dietary animal protein. Our results demonstrate that variability in dietary sources can affect Δ(13)C values, protein source affects Δ(15)N values even when protein quality and quantity are controlled, and the isotope turnover rate of a tissue can influence the degree to which diet affects Δ(15)N values.

  3. Refining cotton-wick method for 15N plant labelling.

    NASA Astrophysics Data System (ADS)

    Fustec, Joëlle; Mahieu, Stéphanie

    2010-05-01

    The symbiosis Fabaceae/Rhizobiaceae plays a critical role in the nitrogen cycle. It gives the plant the ability to fix high amounts of atmospheric N. A part of this N can be transferred to the soil via rhizodeposition. The contribution of Fabaceae to the soil N pool is difficult to measure, since it is necessary for assessing N benefits for other crops, for soil biological activity, and for reducing water pollution in sustainable agriculture (Fustec, 2009). The aim of this study was to test and improve the reliability of the 15N cotton-wick method for measuring the soil N derived from plant rhizodeposition (Mahieu et al., 2007). The effects of the concentration of the 15N-urea labelling solution and of the feeding frequency (continuous or pulses) on the assessment of nitrogen rhizodeposition were studied in two greenhouse experiments using the field pea (Pisum sativum L.) and the non-nodulating isoline P2. The plant parts and the soil were prepared for 15N:14N measurements for assessing N rhizodeposition (Mahieu et al., 2009). The fraction of plants' belowground nitrogen allocated to rhizodeposition in both Frisson pea and P2 was 20 to more than 50% higher when plants were labelled continuously than when they were labelled using fortnightly pulses. Our results suggested that when 15N root enrichment was high, nitrogen rhizodeposition was underestimated only for plants that were 15N-fed by fortnightly pulses, and not in plants 15N-fed continuously. This phenomenon was especially observed for plants relying on symbiotic N fixation for N acquisition; it may be linked to the concentration of the labelling solution. In conclusion, N rhizodeposition assessment was strongly influenced by the 15N-feeding frequency and the concentration of the labelling solution. The estimation of N rhizodeposition was more reliable when plants were labelled continuously with a dilute solution of 15N urea. Fustec et al. 2009. Agron. Sustain. Dev., DOI 10.1051/agro/2009003, in press. Mahieu

  4. Isotopic profiling of seized benzylpiperazine and trifluoromethylphenylpiperazine tablets using δ13C and δ15N stable isotopes.

    PubMed

    Beckett, Nicola M; Cresswell, Sarah L; Grice, Darren I; Carter, James F

    2015-01-01

    This paper demonstrates the use of isotopic analysis of 23 benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP) containing tablets seized on two independent occasions by the Northern Territory (NT) Police, Australia. Isolation (High Performance Liquid Chromatography (HPLC)) of BZP and TFMPP followed by Isotope Ratio Mass Spectrometry (IRMS) (carbon and nitrogen stable isotopes) analysis was performed. Results are presented for δ13C and δ15N values of the respective piperazine analogues. The isotopic data and statistical analysis suggest a common source of manufacture for the BZP samples but suggest different sources for the TFMPP isolated from the corresponding BZP containing tablets investigated. The use of IRMS in this case study demonstrated the ability to obtain information regarding the BZP/TFMPP sources unattainable via conventional chemical analysis.

  5. Multiple regression models of δ13C and δ15N for fish populations in the eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Radabaugh, Kara R.; Peebles, Ernst B.

    2014-08-01

    Multiple regression models were created to explain spatial and temporal variation in the δ13C and δ15N values of fish populations on the West Florida Shelf (eastern Gulf of Mexico, USA). Extensive trawl surveys from three time periods were used to acquire muscle samples from seven groundfish species. Isotopic variation (δ13Cvar and δ15Nvar) was calculated as the deviation from the isotopic mean of each fish species. Static spatial data and dynamic water quality parameters were used to create models predicting δ13Cvar and δ15Nvar in three fish species that were caught in the summers of 2009 and 2010. Additional data sets were then used to determine the accuracy of the models for predicting isotopic variation (1) in a different time period (fall 2010) and (2) among four entirely different fish species that were collected during summer 2009. The δ15Nvar model was relatively stable and could be applied to different time periods and species with similar accuracy (mean absolute errors 0.31-0.33‰). The δ13Cvar model had a lower predictive capability and mean absolute errors ranged from 0.42 to 0.48‰. δ15N trends are likely linked to gradients in nitrogen fixation and Mississippi River influence on the West Florida Shelf, while δ13C trends may be linked to changes in algal species, photosynthetic fractionation, and abundance of benthic vs. planktonic basal resources. These models of isotopic variability may be useful for future stable isotope investigations of trophic level, basal resource use, and animal migration on the West Florida Shelf.

  6. Early-stage changes in natural (13)C and (15)N abundance and nutrient dynamics during different litter decomposition.

    PubMed

    Gautam, Mukesh Kumar; Lee, Kwang-Sik; Song, Byeong-Yeol; Lee, Dongho; Bong, Yeon-Sik

    2016-05-01

    Decomposition, nutrient, and isotopic (δ(13)C and δ(15)N) dynamics during 1 year were studied for leaf and twig litters of Pinus densiflora, Castanea crenata, Erigeron annuus, and Miscanthus sinensis growing on a highly weathered soil with constrained nutrient supply using litterbags in a cool temperate region of South Korea. Decay constant (k/year) ranged from 0.58 to 1.29/year, and mass loss ranged from 22.36 to 58.43 % among litter types. The results demonstrate that mass loss and nutrient dynamics of decomposing litter were influenced by the seasonality of mineralization and immobilization processes. In general, most nutrients exhibited alternate phases of rapid mineralization followed by gradual immobilization, except K, which was released throughout the field incubation. At the end of study, among all the nutrients only N and P showed net immobilization. Mobility of different nutrients from decomposing litter as the percentage of initial litter nutrient concentration was in the order of K > Mg > Ca > N ≈ P. The δ(13)C (0.32-6.70 ‰) and δ(15)N (0.74-3.90 ‰) values of residual litters showed nonlinear increase and decrease, respectively compared to initial isotopic values during decomposition. Litter of different functional types and chemical quality converged toward a conservative nutrient use strategy through mechanisms of slow decomposition and slow nutrient mobilization. Our results indicate that litter quality and season, are the most important regulators of litter decomposition in these forests. The results revealed significant relationships between litter decomposition rates and N, C:N ratio and P, and seasonality (temperature). These results and the convergence of different litters towards conservative nutrient use in these nutrient constrained ecosystems imply optimization of litter management because litter removal can have cascading effects on litter decomposition and nutrient availability in these systems. PMID:26915037

  7. Early-stage changes in natural (13)C and (15)N abundance and nutrient dynamics during different litter decomposition.

    PubMed

    Gautam, Mukesh Kumar; Lee, Kwang-Sik; Song, Byeong-Yeol; Lee, Dongho; Bong, Yeon-Sik

    2016-05-01

    Decomposition, nutrient, and isotopic (δ(13)C and δ(15)N) dynamics during 1 year were studied for leaf and twig litters of Pinus densiflora, Castanea crenata, Erigeron annuus, and Miscanthus sinensis growing on a highly weathered soil with constrained nutrient supply using litterbags in a cool temperate region of South Korea. Decay constant (k/year) ranged from 0.58 to 1.29/year, and mass loss ranged from 22.36 to 58.43 % among litter types. The results demonstrate that mass loss and nutrient dynamics of decomposing litter were influenced by the seasonality of mineralization and immobilization processes. In general, most nutrients exhibited alternate phases of rapid mineralization followed by gradual immobilization, except K, which was released throughout the field incubation. At the end of study, among all the nutrients only N and P showed net immobilization. Mobility of different nutrients from decomposing litter as the percentage of initial litter nutrient concentration was in the order of K > Mg > Ca > N ≈ P. The δ(13)C (0.32-6.70 ‰) and δ(15)N (0.74-3.90 ‰) values of residual litters showed nonlinear increase and decrease, respectively compared to initial isotopic values during decomposition. Litter of different functional types and chemical quality converged toward a conservative nutrient use strategy through mechanisms of slow decomposition and slow nutrient mobilization. Our results indicate that litter quality and season, are the most important regulators of litter decomposition in these forests. The results revealed significant relationships between litter decomposition rates and N, C:N ratio and P, and seasonality (temperature). These results and the convergence of different litters towards conservative nutrient use in these nutrient constrained ecosystems imply optimization of litter management because litter removal can have cascading effects on litter decomposition and nutrient availability in these systems.

  8. Mangrove isotopic (δ15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient

    USGS Publications Warehouse

    Mckee, Karen L.; Feller, Ilka C.; Popp, Marianne; Wanek, Wolfgang

    2002-01-01

    Mangrove islands in Belize are characterized by a unique switching from nitrogen (N) to phosphorus (P) limitation to tree growth from shoreline to interior. Fertilization has previously shown that Rhizophora mangle (red mangrove) fringe trees (5–6 m tall) growing along the shoreline are N limited; dwarf trees (!1.5 m tall) in the forestinterior are P limited; and transition trees (2–4 m tall) are co-limited by both N and P.  Growth patterns paralleled a landward decrease in soil flushing by tides and an increase in bioavailable N, but P availability remained consistently low across the gradient. Stable isotopic composition was measured in R. mangle leaves to aid in explaining this nutrient switching pattern and growth variation. Along control transects, leaf !15N decreased from "0.10‰ (fringe) to #5.38‰ (dwarf). The !15N of N-fertilized trees also varied spatially, but the values were consistently more negative (by $3‰) compared to control trees. Spatial variation in !15N values disappeared when the trees were fertilized with P, and values averaged "0.12‰, similar to that in control fringe trees. Neither variation in source inputs nor microbial fractionation could fully account for the observed patterns in !15N. The results instead suggest that the lower !15N values in transition and dwarf control trees were due to plant fractionation as a consequence of slower growth and lower N demand. P fertilization increased N demand and decreased fractionation. Although leaf !13C was unaffected by fertilization, values increased from fringe (#28.6‰) to transition (#27.9‰) to dwarf (#26.4‰) zones, indicating spatial variation in environmental stresses affecting stomatal conductance or carboxylation. The results thus suggest an interaction of external supply, internal demand, and plant ability to acquire nutrients under different hydro-edaphic conditions that vary across this tree-height gradient. The findings not only aid in understanding

  9. Comparing isotope signatures of prey fish: does gut removal affect δ13C or δ15N?

    USGS Publications Warehouse

    Chipps, Steven R.; Fincel, Mark J.; VanDeHey, Justin A.; Wuestewald, Andrew

    2011-01-01

    Stable isotope analysis is a quick and inexpensive method to monitor the effects of food web changes on aquatic communities. Traditionally, whole specimens have been used when determining isotope composition of prey fish or age-0 recreational fishes. However, gut contents of prey fish could potentially alter isotope composition of the specimen, especially when recent foraging has taken place or when the gut contains non-assimilated material that would normally pass through fishes undigested. To assess the impacts of gut content on prey fish isotope signatures, we examined the differences in isotopic variation of five prey fish species using whole fish, whole fish with the gut contents removed, and dorsal muscle only. We found significant differences in both δ15N and δ13C between the three tissue treatments. In most cases, muscle tissue was enriched compared to whole specimens or gut-removed specimens. Moreover, differences in mean δ15N within a species were up to 2‰ among treatments. This would result in a change of over half a trophic position (TP) based on a 3.4‰ increase per trophic level. However, there were no apparent relationships between tissue isotope values in fish with increased gut fullness (more prey tissue present). We suggest that muscle tissue should be used as the standard tissue for determining isotope composition of prey fish or age-0 recreational fishes, especially when determining enrichment for mixing models, calculating TP, or constructing aquatic food webs.

  10. Nic1 inactivation enables stable isotope labeling with 13C615N4-arginine in Schizosaccharomyces pombe.

    PubMed

    Carpy, Alejandro; Patel, Avinash; Tay, Ye Dee; Hagan, Iain M; Macek, Boris

    2015-01-01

    Stable Isotope Labeling by Amino Acids (SILAC) is a commonly used method in quantitative proteomics. Because of compatibility with trypsin digestion, arginine and lysine are the most widely used amino acids for SILAC labeling. We observed that Schizosaccharomyces pombe (fission yeast) cannot be labeled with a specific form of arginine, (13)C(6) (15)N(4)-arginine (Arg-10), which limits the exploitation of SILAC technology in this model organism. We hypothesized that in the fission yeast the guanidinium group of (13)C(6) (15)N(4)-arginine is catabolized by arginase and urease activity to (15)N1-labeled ammonia that is used as a precursor for general amino acid biosynthesis. We show that disruption of Ni(2+)-dependent urease activity, through deletion of the sole Ni(2+) transporter Nic1, blocks this recycling in ammonium-supplemented EMMG medium to enable (13)C(6) (15)N(4)-arginine labeling for SILAC strategies in S. pombe. Finally, we employed Arg-10 in a triple-SILAC experiment to perform quantitative comparison of G1 + S, M, and G2 cell cycle phases in S. pombe.

  11. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  12. (1)H, (13)C, and (15)N chemical shifts assignments for human endothelial monocyte-activating polypeptide EMAP II.

    PubMed

    Lozhko, Dmytro; Stanek, Jan; Kazimierczuk, Krzysztof; Zawadzka-Kazimierczuk, Anna; Kozminski, Wiktor; Zhukov, Igor; Kornelyuk, Alexander

    2013-04-01

    Endothelial and monocyte-activating polypeptide II (EMAP II) is a cytokine that plays an important role in inflammation, apoptosis and angiogenesis processes in tumour tissues. Structurally, the EMAP II is a 169 amino acid residues long C-terminal domain (residues 147-312) of auxiliary tRNA binding protein p43. In spite of existence in pdb databank of two X-ray structures there are some important aspects of EMAP II cytokine function which are still not fully understood in detail. To obtain information about 3D structure and backbone dynamic processes in solution we perform structure evaluation of human EMAP II cytokine by NMR spectroscopy. The standard approach to sequence-specific backbone assignment using 3D NMR data sets was not successful in our studies and was supplemented by recently developed 4D NMR experiments with random sampling of evolution time space. Here we report the backbone and side chain (1)H, (13)C, and (15)N chemical shifts in solution for recombinant EMAP II cytokine together with secondary structure provided by TALOS + software.

  13. 1H, 13C and 15N assignment of the C-terminal domain of GNA2132 from Neisseria meningitidis.

    PubMed

    Esposito, Veronica; Musi, Valeria; Veggi, Daniele; Pastore, Annalisa; Pizza, Mariagrazia

    2010-04-01

    GNA2132 (Genome-derived Neisseria Antigen 2132) is a surface-exposed lipoprotein discovered by reverse vaccinology and expressed by genetically diverse Neisseria meningitidis strains (Pizza et al. 2000). The protein induces bactericidal antibodies against most strains of Meningococccus and has been included in a multivalent recombinant vaccine against N. meningitidis serogroup B. Structure determination of GNA2132 is important for understanding the antigenic properties of the protein in view of increased efficiency vaccine development. We report practically complete (1)H, (13)C and (15)N assignment of the detectable spectrum of a highly conserved C-terminal region of GNA2132 (residues 245-427) in micellar solution, a medium used to improve the spectral quality. The first 32 residues of our construct up to residue 277 were not visible in the spectrum, presumably because of line broadening due to solvent and/or conformational exchange. Secondary structure predictions based on chemical shift information indicate the presence of an all beta-protein with eight beta strands.

  14. δ13C and δ15N changes after dietary shift in veliger larvae of the slipper limpet Crepidula fornicata: an experimental evidence

    NASA Astrophysics Data System (ADS)

    Comtet, T.; Riera, P.

    2006-12-01

    δ13C and δ15N measurements are still poorly conducted in benthic invertebrate larvae. To assess the δ13C and δ15N changes occurring after a dietary shift, experiments were conducted on veliger larvae of Crepidula fornicata fed with two cultured microalgae ( Isochrysis galbana and Pavlova lutheri) of known isotopic composition, 13C-enriched and 15N-depleted compared to the initial values of the larvae. Rapid changes in larval δ13C and δ15N were observed after the dietary shift, with an increase in δ13C and a decrease in δ15N. After 19 days of feeding, isotopic equilibrium was still not reached, a period which is close to the duration of the pelagic life of the larvae. This implies that the isotopic composition measured in field-collected larvae might only partly reflect actual larval feeding but also the parental isotopic signature, especially during the early developmental stages. Isotopic measurements in marine invertebrate larvae should thus be interpreted cautiously. In planktonic food web investigations, the study of field-collected larvae of different size/developmental stage may reduce potential misinterpretations.

  15. Similarities and differences in 13C and 15N stable isotope ratios in two non-lethal tissue types from shovelnose sturgeon Scaphirhynchus platorynchus (Rafinesque, 1820)

    USGS Publications Warehouse

    DeVries, R. J.; Schramm, Harold L.

    2015-01-01

    We tested the hypothesis that δ13C and δ15N signatures of pectoral spines would provide measures of δ13C and δ15N similar to those obtained from fin clips for adult shovelnose sturgeon Scaphirhynchus platorynchus. Thirty-two shovelnose sturgeon (fork length [FL] = 500–724 mm) were sampled from the lower Mississippi River, USA on 23 February 2013. Isotopic relationships between the two tissue types were analyzed using mixed model analysis of covariance. Tissue types differed significantly for both δ13C (P < 0.01; spine: mean = −23.83, SD = 0.62; fin clip: mean = −25.74, SD = 0.97) and δ15N (P = 0.01; spine: mean = 17.01, SD = 0.51; fin clip: mean = 17.19, SD = 0.62). Neither FL nor the FL × tissue type interaction had significant (P > 0.05) effects on δ13C. Fin clip δ13C values were highly variable and weakly correlated (r = 0.16, P = 0.40) with those from pectoral spines. We found a significant FL-tissue type interaction for δ15N, reflecting increasing δ15N with FL for spines and decreasing δ15N with FL for fin clips. These results indicate that spines are not a substitute for fin clip tissue for measuring δ13C and δ15N for shovelnose sturgeon in the lower Mississippi River, but the two tissues have different turnover rates they may provide complementary information for assessing trophic position at different time scales.

  16. Simultaneous cross polarization to 13C and 15N with 1H detection at 60 kHz MAS solid-state NMR

    NASA Astrophysics Data System (ADS)

    Das, Bibhuti B.; Opella, Stanley J.

    2016-01-01

    We describe high resolution MAS solid-state NMR experiments that utilize 1H detection with 60 kHz magic angle spinning; simultaneous cross-polarization from 1H to 15N and 13C nuclei; bidirectional cross-polarization between 13C and 15N nuclei; detection of both amide nitrogen and aliphatic carbon 1H; and measurement of both 13C and 15N chemical shifts through multi-dimensional correlation experiments. Three-dimensional experiments correlate amide 1H and alpha 1H selectively with 13C or 15N nuclei in a polypeptide chain. Two separate three-dimensional spectra correlating 1Hα/13Cα/1HN and 1HN/15N/1Hα are recorded simultaneously in a single experiment, demonstrating that a twofold savings in experimental time is potentially achievable. Spectral editing using bidirectional coherence transfer pathways enables simultaneous magnetization transfers between 15N, 13Cα(i) and 13C‧(i-1), facilitating intra- and inter-residue correlations for sequential resonance assignment. Non-uniform sampling is integrated into the experiments, further reducing the length of experimental time.

  17. Direct uptake of organically derived carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    NASA Astrophysics Data System (ADS)

    Alexandre, Anne; Balesdent, Jérôme; Cazevieille, Patrick; Chevassus-Rosset, Claire; Signoret, Patrick; Mazur, Jean-Charles; Harutyunyan, Araks; Doelsch, Emmanuel; Basile-Doelsch, Isabelle; Miche, Hélène; Santos, Guaciara M.

    2016-03-01

    In the rhizosphere, the uptake of low-molecular-weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relative to total uptake is important, organic C uptake is supposed to be low relative to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and to what extent organically derived C absorbed by grass roots can feed the C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled amino acids (AAs) to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C excess and 15N excess) in the roots, stems and leaves as well as phytoliths were measured relative to a control experiment in which no labeled AAs were added. Additionally, the 13C excess was measured at the molecular level, in AAs extracted from roots and stems and leaves. The net uptake of labeled AA-derived 13C reached 4.5 % of the total AA 13C supply. The amount of AA-derived 13C fixed in the plant was minor but not nil (0.28 and 0.10 % of total C in roots and stems/leaves, respectively). Phenylalanine and methionine that were supplied in high amounts to the nutritive solution were more 13C-enriched than other AAs in the plant. This strongly suggested that part of AA-derived 13C was absorbed and translocated into the plant in its original AA form. In phytoliths, AA-derived 13C was detected. Its concentration was on the same order of magnitude as in bulk stems and leaves (0.15 % of the phytolith C). This finding strengthens the body of evidences showing that part of organic compounds occluded in phytoliths can be fed by C entering the plant through the roots. Although this experiment was done in

  18. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Somes, C. J.

    2016-06-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the model's Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient

  19. Food partitioning of leaf-eating mangrove crabs ( Sesarminae): Experimental and stable isotope ( 13C and 15N) evidence

    NASA Astrophysics Data System (ADS)

    Kristensen, Ditte K.; Kristensen, Erik; Mangion, Perrine

    2010-05-01

    The feasibility of mangrove leaves as a full diet for sesarmid crabs has been questioned for decades. Since these leaves are nitrogen-poor, sesarmids probably obtain nitrogen from other sources to sustain growth. The aim of this study was to assess the food partitioning of the sesarmid species Neoepisesarma versicolor with emphasis on nitrogen allocation. The preference for animal tissue when crabs were pre-fed diets of different nitrogen content was determined in the laboratory. Furthermore, the possible in situ diet composition of N. versicolor was established from carbon and nitrogen stable isotope signature ( δ13C and δ15N) of freshly caught individuals and their potential food sources, using a concentration-dependent mixing model. N. versicolor showed significantly higher feeding preferences for fish meat when pre-fed leaf material without than with access to meat, indicating that this crab species can meet its nitrogen demand by ingesting animal tissue. The stable isotope mixing model based on in situ materials suggests that the diet of N. versicolor consists of ˜60% leaves in terms of biomass, leaving ˜40% for other sources such as animal tissue and benthic microorganisms. The biomass contribution from animal tissues, in form of e.g. other crustaceans and fish carcasses, was found to account for ˜15%. Despite the relative low biomass fraction, animal food sources may contribute with up to half of the nitrogen in the diet of N. versicolor. The quantity of ingested sediment most likely exceeds that of animal tissues. However, due to the low concentration of assimilable microalgae and other microorganism, we propose that sediment associated sources are less important as a nitrogen source for N. versicolor than hitherto presumed.

  20. Computational identification of a phospholipidosis toxicophore using (13)C and (15)N NMR-distance based fingerprints.

    PubMed

    Slavov, Svetoslav H; Wilkes, Jon G; Buzatu, Dan A; Kruhlak, Naomi L; Willard, James M; Hanig, Joseph P; Beger, Richard D

    2014-12-01

    Modified 3D-SDAR fingerprints combining (13)C and (15)N NMR chemical shifts augmented with inter-atomic distances were used to model the potential of chemicals to induce phospholipidosis (PLD). A curated dataset of 328 compounds (some of which were cationic amphiphilic drugs) was used to generate 3D-QSDAR models based on tessellations of the 3D-SDAR space with grids of different density. Composite PLS models averaging the aggregated predictions from 100 fully randomized individual models were generated. On each of the 100 runs, the activities of an external blind test set comprised of 294 proprietary chemicals were predicted and averaged to provide composite estimates of their PLD-inducing potentials (PLD+ if PLD is observed, otherwise PLD-). The best performing 3D-QSDAR model utilized a grid with a density of 8ppm×8ppm in the C-C region, 8ppm×20ppm in the C-N region and 20ppm×20ppm in the N-N region. The classification predictive performance parameters of this model evaluated on the basis of the external test set were as follows: accuracy=0.70, sensitivity=0.73 and specificity=0.66. A projection of the most frequently occurring bins on the standard coordinate space suggested a toxicophore composed of an aromatic ring with a centroid 3.5-7.5Å distant from an amino-group. The presence of a second aromatic ring separated by a 4-5Å spacer from the first ring and at a distance of between 5.5Å and 7Å from the amino-group was also associated with a PLD+ effect. These models provide comparable predictive performance to previously reported models for PLD with the added benefit of being based entirely on non-confidential, publicly available training data and with good predictive performance when tested in a rigorous, external validation exercise.

  1. Studies of nitrogen metabolism using /sup 13/C NMR spectroscopy. 3. Synthesis of DL-(3-/sup 13/C,2-/sup 15/N)Lysine and its incorporation into streptothricin F/sup 1/

    SciTech Connect

    Gould, S.J.; Thiruvengadam, T.K.

    1981-11-04

    A scheme for the synthesis of DL-(3-/sup 13/C, 2-/sup 15/N)Lysine, I, is presented. Data are also reported to show that the mutase reaction occurring in the biosynthesis of I occurs with an intramolecular migration of nitrogen from C-2 to C-3. (BLM)

  2. sup 15 N and sup 13 C NMR studies of ligands bound to the 280,000-dalton protein porphobilinogen synthase elucidate the structures of enzyme-bound product and a Schiff base intermediate

    SciTech Connect

    Jaffe, E.K.; Rajagopalan, J.S. ); Markham, G.D. )

    1990-09-11

    Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). Despite the 280,000-dalton size of PBGS, much can be learned about the reaction mechanism through {sup 13}C and {sup 15}N NMR. The authors knowledge, these studies represent the largest protein complex for which individual nuclei have been characterized by {sup 13}C or {sup 15}N NMR. Here they extend their {sup 13}C NMR studies to PBGS complexes with (3,3-{sup 2}H{sub 2},3-{sup 13}C)ALA and report {sup 15}N NMR studies of ({sup 15}N)ALA bound to PBGS. As in their previous {sup 13}C NMR studies, observation of enzyme-bound {sup 15}N-labeled species was facilitated by deuteration at nitrogens that are attached to slowly exchanging hydrogens. For holo-PBGS at neutral pH, the NMR spectra reflect the structure of the enzyme-bound product porphobilinogen (PBG), whose chemical shifts are uniformly consistent with deprotonation of the amino group whose solution pK{sub a} is 11. Despite this local environment, the protons of the amino group are in rapid exchange with solvent. For methyl methanethiosulfonate (MMTS) modified PBGS, the NMR spectra reflect the chemistry of an enzyme-bound Schiff base intermediate that is formed between C{sub 4} of ALA and an active-site lysine. The {sup 13}C chemical shift of (3,3-{sup 2}H{sub 2},3-{sup 13}C)ALA confirms that the Schiff base is an imine of E stereochemistry. By comparison to model imines formed between ({sup 15}N)ALA and hydrazine or hydroxylamine, the {sup 15}N chemical shift of the enzyme-bound Schiff base suggests that the free amino group is an environment resembling partial deprotonation. Deprotonation of the amino group would facilitate formation of a Schiff base between the amino group of the enzyme-bound Schiff base and C{sub 4} of the second ALA substrate. This is the first evidence supporting carbon-nitrogen bond formation as the initial site of interaction between the two substrate molecules.

  3. The magnitude of spatial and temporal variation in δ15N and δ13C differs between taxonomic groups: Implications for food web studies

    NASA Astrophysics Data System (ADS)

    Hyndes, Glenn A.; Hanson, Christine E.; Vanderklift, Mathew A.

    2013-03-01

    Understanding variability in stable isotope abundance is essential for effective hypothesis testing and evaluating food sources, trophic levels and food web structure. The magnitude and sources of variability are likely to differ among taxonomic and functional groups. We aimed to quantify variability of δ13C and δ15N for 16 species representing seven distinct taxonomic groups of benthic invertebrates and autotrophs in a marine ecosystem. We quantified the magnitude of variability among individuals or shoots separated by metres, among eight sites separated by kilometres, and between two survey occasions separated by months. δ13C varied by as much as 7‰ for primary producers, 4‰ for consumers, while δ15N varied by as much as 9‰ and 2‰ respectively. Variation in δ15N of seagrass was largely accounted for by differences among sites, while variation in δ13C was mainly attributable to shoots collected a few metres apart. Compared to seagrasses, variation in macroalgae was mainly explained by differences between the two survey occasions for δ15N and among individuals collected a few metres apart for δ13C. Variation was generally lower for consumers and typically explained by differences among individuals for δ15N but displayed inconsistent patterns for δ13C. Dual isotope Bayesian mixing models showed that the potential contributions of food sources for herbivorous consumers varied among sites and between survey occasions, and also that there was high variability or uncertainty in the contributions of sources within sites. The relative consistency in the main sources of variation among broad taxonomic groups in autotrophs suggests that aspects of physiology that are phylogenetically conserved might be important influences on variation in natural abundances of stable isotopes. In comparison, the sources of variability were less consistent within and among broad consumer groups, suggesting complex interactions between consumers and their food sources.

  4. Stable nitrogen and carbon isotope (δ 15N and δ 13C) variability in shallow tropical Pacific soft coral and black coral taxa and implications for paleoceanographic reconstructions

    NASA Astrophysics Data System (ADS)

    Williams, Branwen; Grottoli, Andréa G.

    2010-09-01

    Soft corals and black corals are useful proxy tools for paleoceanographic reconstructions. However, most work has focused on deep-water taxa and few studies have used these corals as proxy organisms in shallow water (<200 m). To facilitate the use of stable nitrogen and carbon isotope (δ 15N and δ 13C) records from shallow-water soft coral and black coral taxa for paleoceanographic reconstructions, quantification of the inherent variability in skeletal isotope values between sites, across depth, and among taxa is needed. Here, skeletal δ 15N and δ 13C values were measured in multiple colonies from eleven genera of soft corals and two genera of black corals from across a depth transect (5-105 m) at two sites in Palau located in the tropical western Pacific Ocean. Overall, no difference in skeletal δ 15N and δ 13C values between sites was present. Skeletal δ 15N values significantly increased and δ 13C values decreased with depth. This is consistent with changes in isotope values of suspended particulate organic matter (POM) across the photic zone, suggesting that the primary food source to these corals is suspended POM and that the stable isotopic composition of POM controls the skeletal isotopic composition of these corals. Thus, to compare the isotope records of corals collected across a depth range in the photic zone, first order depth corrections of -0.013‰ m -1 and +0.023‰ m -1 are recommended for δ 15N and δ 13C, respectively. Average depth-corrected δ 15N values were similar between black corals and soft corals, indicating that corals in these orders feed at a similar trophic level. In contrast, average depth-corrected δ 13C values of black corals were significantly lower than that of soft corals, potentially resulting from metabolic processes associated with differing skeletal compositions among the orders (i.e., gorgonin vs. chitin based). Thus, a correction of +1.0‰ is recommended for black corals when comparing their δ 13C-based proxy

  5. Effects of climate on deer bone δ15N and δ13C: Lack of precipitation effects on δ15N for animals consuming low amounts of C 4 plants

    NASA Astrophysics Data System (ADS)

    Cormie, A. B.; Schwarcz, H. P.

    1996-11-01

    We have examined the relationship of bone collagen δ15N and δ13C to climatic variables, humidity, temperature, and amount of precipitation using fifty-nine specimens of North American white-tailed deer ( Odocoileus virginianus) from forty-six different locations. In previous studies of African mammals there was a significant correlation between bone collagen δ15N and local amount of precipitation. Results presented here similarly show an increase in δ15N with decreasing amount of precipitation but only for 25% of the animals, namely those consuming more than 10% C 4 plants. These animals also exhibited a significant correlation between δ13C and temperature which mirrors previous observations for grasses suggesting that these deer consume grasses during times of population and nutrient stress. In contrast, even in dry areas containing high proportions of C 4 grasses, the majority of the deer had consumed low amounts of C 4 plants and these deer did not have δ15N which correlate with amount of precipitation. Only when deer deviated from their normal feeding pattern by consuming C 4 plants or grasses did their δ15N correlate with amount of rainfall. For these animals, consumption of C 4 plants or grasses may signal conditions of water and nutrient stress. An increase in δ15N of bone collagen may result from combined effects from excretion of concentrated urine (to conserve water) and increased internal recycling of nitrogen (to conserve nitrogen).

  6. Comparative effect of salinity on growth, grain yield, water use efficiency, δ(13)C and δ(15)N of landraces and improved durum wheat varieties.

    PubMed

    Chamekh, Zoubeir; Ayadi, Sawsen; Karmous, Chahine; Trifa, Youssef; Amara, Hajer; Boudabbous, Khaoula; Yousfi, Salima; Serret, Maria Dolors; Araus, José Luis

    2016-10-01

    Supplemental irrigation with low-quality water will be paramount in Mediterranean agriculture in the future, where durum wheat is a major crop. Breeding for salinity tolerance may contribute towards improving resilience to irrigation with brackish water. However, identification of appropriate phenotyping traits remains a bottleneck in breeding. A set of 25 genotypes, including 19 landraces and 6 improved varieties most cultivated in Tunisia, were grown in the field and irrigated with brackish water (6, 13 and 18dSm(-1)). Improved genotypes exhibited higher grain yield (GY) and water use efficiency at the crop level (WUEyield or 'water productivity'), shorter days to flowering (DTF), lower N concentration (N) and carbon isotope composition (δ(13)C) in mature kernels and lower nitrogen isotope composition (δ(15)N) in the flag leaf compared with landraces. GY was negatively correlated with DTF and the δ(13)C and N of mature kernels and was positively correlated with the δ(15)N of the flag leaf. Moreover, δ(13)C of mature kernels was negatively correlated with WUEyield. The results highlight the importance of shorter phenology together with photosynthetic resilience to salt-induced water stress (lower δ(13)C) and nitrogen metabolism (higher N and δ(15)N) for assessing genotypic performance to salinity. PMID:27593462

  7. Comparative effect of salinity on growth, grain yield, water use efficiency, δ(13)C and δ(15)N of landraces and improved durum wheat varieties.

    PubMed

    Chamekh, Zoubeir; Ayadi, Sawsen; Karmous, Chahine; Trifa, Youssef; Amara, Hajer; Boudabbous, Khaoula; Yousfi, Salima; Serret, Maria Dolors; Araus, José Luis

    2016-10-01

    Supplemental irrigation with low-quality water will be paramount in Mediterranean agriculture in the future, where durum wheat is a major crop. Breeding for salinity tolerance may contribute towards improving resilience to irrigation with brackish water. However, identification of appropriate phenotyping traits remains a bottleneck in breeding. A set of 25 genotypes, including 19 landraces and 6 improved varieties most cultivated in Tunisia, were grown in the field and irrigated with brackish water (6, 13 and 18dSm(-1)). Improved genotypes exhibited higher grain yield (GY) and water use efficiency at the crop level (WUEyield or 'water productivity'), shorter days to flowering (DTF), lower N concentration (N) and carbon isotope composition (δ(13)C) in mature kernels and lower nitrogen isotope composition (δ(15)N) in the flag leaf compared with landraces. GY was negatively correlated with DTF and the δ(13)C and N of mature kernels and was positively correlated with the δ(15)N of the flag leaf. Moreover, δ(13)C of mature kernels was negatively correlated with WUEyield. The results highlight the importance of shorter phenology together with photosynthetic resilience to salt-induced water stress (lower δ(13)C) and nitrogen metabolism (higher N and δ(15)N) for assessing genotypic performance to salinity.

  8. Millimeter-Wave Observations of Circumstellar 14N/15N and 12C/13C Ratios: New Insights into J-Type Stars

    NASA Astrophysics Data System (ADS)

    Adande, Gilles; Ziurys, Lucy M.; Woolf, Neville

    2016-06-01

    Measurements of 14N/15N and 12C/13C isotopic ratios have been conducted towards circumstellar envelopes of a sample of evolved stars using the J = 3→2 rotational transitions of the isotopologues of HCN, observed with the Submillimeter Telescope (SMT) of the Arizona Radio Observatory (ARO). Towards the J-type stars Y CVn and RY Dra, where 12C/13C ~ 3, the 14N/15N ratios were found to be 120-180 and 225, respectively. The 14N/15N ratio is thus anomalously low relative to interstellar values and a factor ~100 lower than equilibrium values predicted from the CNO cycle. Combining these results with previous chemical and isotopic prior observations of these stars, we conclude that two anomalous behaviors are likely to have occurred in Y CVn and RY Dra. First, the stellar envelope failed to participate in the normal mixing seen in low mass red giants, in which C and then O are substantially converted to N. Secondly, both the carbon enrichment and anomalous isotopic composition of both 13C and15N could have been caused by a plume of hot gas, hydrogen poor but enriched in 12C, from a helium flash mixing into the envelope.

  9. Tracking spatial distribution of human-derived wastewater from Davis Station, East Antarctica, using δ15N and δ13C stable isotopes.

    PubMed

    Corbett, Patricia A; King, Catherine K; Mondon, Julie A

    2015-01-15

    Stable isotope ratios, δ15N and δ13C were effectively used to determine the geographical dispersion of human derived sewage from Davis Station, East Antarctica, using Antarctic rock cod (Trematomus bernacchii). Fish within 0-4 km downstream of the outfall exhibited higher δ15N and δ13C values relative to reference sites. Nitrogen in particular showed a stepped decrease in δ15N with increasing distance from the discharge point by 1-2‰. Stable isotopes were better able to detect the extent of wastewater contamination than other techniques including faecal coliform and sterol measures. Uptake and assimilation of δ15N and δ13C up to 4 km from the outfall adds to growing evidence indicating the current level of wastewater treatment at Davis Station is not sufficient to avoid impact to the surrounding environment. Isotopic assimilation in T. bernacchii is a viable biomarker for investigation of initial sewage exposure and longer term monitoring in the future.

  10. Assessing waterbird habitat use in coastal evaporative systems using stable isotopes (δ 13C, δ 15N and δD) as environmental tracers

    NASA Astrophysics Data System (ADS)

    Ramírez, Francisco; Abdennadher, Aida; Sanpera, Carola; Jover, Lluís; Wassenaar, Leonard I.; Hobson, Keith A.

    2011-04-01

    Isotopic patterns of biota across salinity gradients in man-made evaporative systems could assist in determining the use of these habitats by animals. Here we report δ 13C, δ 15N and δD measurements of a euryhaline fish, the Mediterranean toothcarp ( Aphanius fasciatus), inhabiting a range of salinities in the Thyna saltworks near Sfax (Tunisia). The contribution of these salinity niches to egg formation of two typically piscivorous bird species breeding in the area and feeding within saltworks, Little Tern ( Sternula albifrons) and Little Egret ( Egretta garzetta), was inferred trough a triple-isotope (δ 13C, δ 15N and δD) Bayesian mixing model. Isotopic trends for fish δ 15N and δD across the salinity gradient followed the equations: δ 15N = e (1.1 + 47.68/Salinity) and δD = -175.74 + Salinity + Salinity 2; whereas fish δ 13C increased as salinity rose (δ 13C = -10.83 + 0.02·Salinity), after a sudden drop in fish isotopic values for salinities >60 (Practical Salinity Scale) (average fish δ 13C for salinities <60 = -5.92‰). Both bird species fed largely on low hypersalinity ponds (salinity = 43; average contribution = 37% and 22% for Little Egrets and Little Terns, respectively), although the use of intermediate hypersalinities (salinities 63 and 70) by Little Terns also occurred (16% and 21%, respectively). Isotopic patterns across salinity gradients allow the use of isotopic measurements to inform studies of habitat occupancy within evaporative systems and provide further insights into how wildlife communities interact with them.

  11. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    PubMed Central

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

  12. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    PubMed

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  13. Bomb-pulse 14C analysis combined with 13C and 15N measurements in blood serum from residents of Malmö, Sweden.

    PubMed

    Georgiadou, Elisavet; Stenström, Kristina Eriksson; Uvo, Cintia Bertacchi; Nilsson, Peter; Skog, Göran; Mattsson, Sören

    2013-05-01

    The (14)C content of 60 human blood serum samples from residents of Malmö (Sweden) in 1978, obtained from a biobank, has been measured to estimate the accuracy of (14)C bomb-pulse dating. The difference between the date estimated using the Calibomb software and sampling date varied between -3 ± 0.4 and +0.2 ± 0.5 years. The average age deviation of all samples was -1.5 ± 0.7 years, with the delay between production and consumption of foodstuffs being probably the dominating cause. The potential influence of food habits on the (14)C date has been evaluated using stable isotope δ(13)C and δ(15)N analysis and information about the dietary habits of the investigated individuals. Although the group consisting of lacto-ovo vegetarians and vegans (pooled group) was not completely separated from the omnivores in a stable isotopic trophic level diagram, this analysis proved to add valuable information on probable dietary habits. The age deviation of the sampling date from the respective Calibomb date was found strongly correlated with the δ(13)C values, probably due to influence from marine diet components. For the omnivore individuals, there were indications of seasonal effects on δ(13)C and the age deviation. No significant correlation was found between the age deviation and the δ(15)N values of any dietary group. No influence of sex or year of birth was found on neither the (14)C nor the δ(13)C and δ(15)N values of the serum samples. The data were also divided into two groups (omnivores and pooled group), based on the level of δ(15)N in the samples. The consumption of high δ(15)N-valued fish and birds can be responsible for this clustering.

  14. Synthesis of isotopically labeled R- or S-[.sup.13C, .sup.2H] glycerols

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2008-01-22

    The present invention is directed to asymmetric chiral labeled glycerols including at least one chiral atom, from one to two .sup.13C atoms and from zero to four deuterium atoms bonded directly to a carbon atom, e.g., (2S) [1,2-.sup.13C.sub.2]glycerol and (2R) [1,2-.sup.13C.sub.2]glycerol, and to the use of such chiral glycerols in the preparation of labeled amino acids.

  15. Overexpression of a homogeneous oligosaccharide with 13C labeling by genetically engineered yeast strain.

    PubMed

    Kamiya, Yukiko; Yamamoto, Sayoko; Chiba, Yasunori; Jigami, Yoshifumi; Kato, Koichi

    2011-08-01

    This report describes a novel method for overexpression of (13)C-labeled oligosaccharides using genetically engineered Saccharomyces cerevisiae cells, in which a homogeneous high-mannose-type oligosaccharide accumulates because of deletions of genes encoding three enzymes involved in the processing pathway of asparagine-linked oligosaccharides in the Golgi complex. Using uniformly (13)C-labeled glucose as the sole carbon source in the culture medium of these engineered yeast cells, high yields of the isotopically labeled Man(8)GlcNAc(2) oligosaccharide could be successfully harvested from glycoprotein extracts of the cells. Furthermore, (13)C labeling at selected positions of the sugar residues in the oligosaccharide could be achieved using a site-specific (13)C-enriched glucose as the metabolic precursor, facilitating NMR spectral assignments. The (13)C-labeling method presented provides the technical basis for NMR analyses of structures, dynamics, and interactions of larger, branched oligosaccharides.

  16. Measurements of 12C/13C, 14N/15N, and 32S/34S ratios in comet Hale-Bopp (C/1995 O1).

    PubMed

    Jewitt, D C; Matthews, H E; Owen, T; Meier, R

    1997-10-01

    The 12C/13C, 14N/15N, and 32S/34S isotope ratios in comet Hale-Bopp (C/1995 O1) were determined through observations taken with the James Clerk Maxwell Telescope. Measurements of rare isotopes in HCN and CS revealed isotope ratios of H12CN/H13CN = 111 +/- 12, HC14N/HC15N = 323 +/- 46, and C32S/C34S = 27 +/- 3. Within the measurement uncertainties, the isotopic ratios are consistent with solar system values. The cometary volatiles thus have an origin in the solar system and show no evidence for an interstellar component.

  17. A new organic reference material, L-glutamic acid, USGS41a, for δ13C and δ15N measurements − a replacement for USGS41

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Mroczkowski, Stanley J.; Brand, Willi A.; Brandes, Lauren; Geilmann, Heike; Schimmelmann, Arndt

    2016-01-01

    RationaleThe widely used l-glutamic acid isotopic reference material USGS41, enriched in both 13C and 15N, is nearly exhausted. A new material, USGS41a, has been prepared as a replacement for USGS41.MethodsUSGS41a was prepared by dissolving analytical grade l-glutamic acid enriched in 13C and 15N together with l-glutamic acid of normal isotopic composition. The δ13C and δ15N values of USGS41a were directly or indirectly normalized with the international reference materials NBS 19 calcium carbonate (δ13CVPDB = +1.95 mUr, where milliurey = 0.001 = 1 ‰), LSVEC lithium carbonate (δ13CVPDB = −46.6 mUr), and IAEA-N-1 ammonium sulfate (δ15NAir = +0.43 mUr) and USGS32 potassium nitrate (δ15N = +180 mUr exactly) by on-line combustion, continuous-flow isotope-ratio mass spectrometry, and off-line dual-inlet isotope-ratio mass spectrometry.ResultsUSGS41a is isotopically homogeneous; the reproducibility of δ13C and δ15N is better than 0.07 mUr and 0.09 mUr, respectively, in 200-μg amounts. It has a δ13C value of +36.55 mUr relative to VPDB and a δ15N value of +47.55 mUr relative to N2 in air. USGS41 was found to be hydroscopic, probably due to the presence of pyroglutamic acid. Experimental results indicate that the chemical purity of USGS41a is substantially better than that of USGS41.ConclusionsThe new isotopic reference material USGS41a can be used with USGS40 (having a δ13CVPDB value of −26.39 mUr and a δ15NAir value of −4.52 mUr) for (i) analyzing local laboratory isotopic reference materials, and (ii) quantifying drift with time, mass-dependent isotopic fractionation, and isotope-ratio-scale contraction for isotopic analysis of biological and organic materials. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  18. Investigating Past Ocean Ecosystem Variability with δ13C and δ15N Records in Long Lived Deep Sea Proteinaceous Corals from the Central Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Miles, K. W.; Glynn, D. S.; McMahon, K.; McCarthy, M. D.

    2014-12-01

    The Central Tropical Pacific Ocean may experience large, abrupt climate variations on a century to millennial time scale that greatly impact ocean ecosystem structure and function, including primary productivity, plankton community composition, and biogeochemical cycling. Stable carbon and nitrogen isotope analyses of exported production are valuable proxies for past ocean plankton community composition, trophic structure, and nutrient utilization. However, very few long-term, high-resolution records exist from the tropics, which can establish how millennial climate variability is inherently linked to tropical ecosystem dynamics. Sediment cores are valuable archives of past ocean ecosystem dynamics, but have limited temporal resolution. In contrast, deep-sea proteinaceous corals act as living sediment traps due to direct incorporation of sinking organic matter into their organic skeletons. Since colonies can live for thousands of years, proteinaceous coral archives can significantly extend the length and resolution of δ13C and δ15N records in the open ocean. Here we present three δ13C and δ15N records obtained from the coral species Kulamanamana haumeaae that provide multi-decadal scale resolution δ13C and δ15N records, for the first time extending up to ~2600 years into the past. We observed large-scale oscillations in δ13C and δ15N values on century to millennial time scales that correspond to known major climate events, including the Medieval Climate Anomaly, the Little Ice Age, and the onset of the Industrial Revolution. These records will provide new insights into the variations in plankton community structure and nutrient dynamics in the equatorial pacific linked to long-term climate oscillations.

  19. Carbon flow and trophic structure of an Antarctic coastal benthic community as determined by δ 13C and δ 15N

    NASA Astrophysics Data System (ADS)

    Gillies, C. L.; Stark, J. S.; Johnstone, G. J.; Smith, S. D. A.

    2012-01-01

    Stable isotopes of carbon and nitrogen were used to determine the different carbon pathways and trophic assemblages amongst coastal benthic fauna of the Windmill Islands, East Antarctica. Macroalgae, pelagic POM, sediment POM and sea ice POM had well-separated δ 13C signatures, which ranged from -36.75‰ for the red alga Phyllophora antarctica, to -10.35‰ for sea ice POM. Consumers were also well separated by δ 13C, ranging from -21.42‰ for the holothurian Staurocucumis sp. up to -7.47‰ for the urchin Sterechinus neumayeri. Analysis of δ 13C and δ 15N revealed distinct groups for suspension feeders, grazer/herbivores and deposit feeders, whilst predators and predator/scavengers showed less grouping. Consumers spanned a δ 15N range of 8.71‰, equivalent to four trophic levels, although δ 15N ratios amongst consumers were continuous, rather than grouped into discrete trophic levels. The study has built a trophic model for the Windmill Islands and summarises three main carbon pathways utilised by the benthos: (1) pelagic POM; (2) macroalgae/epiphytic/benthic diatoms and (3) sediment POM/benthic diatoms. The movement of carbon within the coastal benthic community of the Windmill Islands is considered complex, and stable isotopes of carbon and nitrogen were valuable tools in determining specific feeding guilds and in tracing carbon flow, particularly amongst lower-order consumers.

  20. Intraspecific variation in hair delta(13)C and delta(15)N values of ring-tailed lemurs (Lemur catta) with known individual histories, behavior, and feeding ecology.

    PubMed

    Loudon, James E; Sponheimer, Matt; Sauther, Michelle L; Cuozzo, Frank P

    2007-07-01

    Stable carbon and nitrogen isotope compositions were analyzed from hair samples of 30 sympatric ring-tailed lemurs (Lemur catta) inhabiting the Beza Mahafaly Special Reserve, Madagascar. All lemurs were known individuals involved in a longitudinal study, which allowed us to explore the degree to which group membership, sex, health status, and migration influenced their stable isotope compositions. The differences in delta(13)C and delta(15)N values between groups were small (<1.5 per thousand) but highly significant. In fact, each group was tightly clustered, and discriminant function analysis of the stable isotope data assigned individuals to the group in which they were originally collared with over 90% accuracy. In general, the differences between groups reflected the degree to which they utilized forested versus open habitats. As open habitats at Beza Mahafaly often correspond to areas of anthropogenic disturbance, these data suggest that isotopic data can be useful for addressing questions of lemur conservation. There were few sex differences, but significant differences did occur between individuals of normal and suboptimal health, with those in poor health (especially those in the worst condition) being enriched in (15)N and to a lesser degree (13)C compared with healthy individuals. Moreover, lemurs that had emigrated between 2003 and 2004 had different delta(13)C and delta(15)N compositions than their original groups. PMID:17455284

  1. Multi-isotope ((15)N, (18)O and (13)C) indicators of sources and fate of nitrate in the upper stream of Chaobai River, Beijing, China.

    PubMed

    Li, Cai; Jiang, Yongbin; Guo, Xinyue; Cao, Yang; Ji, Hongbing

    2014-11-01

    Dual isotopes of nitrate ((15)N and (18)O) and carbon isotopes of dissolved inorganic carbon ((13)C) together with water chemistry were used to identify the sources and fate of nitrate in the upper stream of Chaobai River, north China. The results show that NO3(-) concentrations ranges from 0.03 mmol L(-1) to 0.80 mmol L(-1). Sampling sites from watershed with dominant forest land had higher NO3(-) concentrations and lower δ(15)N-NO3(-) (<10‰) in the wet season than in the dry season, while those from watershed with more anthropogenic activities had lower NO3(-) concentrations and higher δ(15)N-NO3(-) (>10‰) in the wet season. Compositions of isotopes and chemistry indicated that NO3(-) originated mainly from soil N, sewage and livestock wastes and atmospheric nitrogen. Furthermore, the mixing model suggested that soil N was the major NO3(-) source in the wet season, while the sewage and livestock wastes contributed the most in the dry season. Compared to rivers, the Miyun Reservoir had a higher contribution of atmospheric N and the N input from the upper rivers exerted significant influence over the reservoir. Mineralization and nitrification played an important role in N biogeochemistry based on the isotopes ((15)N and (18)O and (13)C) and chemical data. There appeared to be no significant denitrification in the watershed according to the three isotopes and chemical ions. The combined use of (15)N, (18)O and (13)C proved to be useful for further identification of the sources and fate of nitrate in watersheds with dominant forest land in the wet season. PMID:25283837

  2. Structure and reactivity of lithium amides. /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies and colligative measurements of lithium diphenylamide and lithium diphenylamide-lithium bromide complex solvated by tetrahydrofuran

    SciTech Connect

    DePue, J.S.; Collum, D.B.

    1988-08-03

    /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies of lithium diphenylamide in THF/hydrocarbon solutions (THF = tetrahydrofuran) detected two different species. /sup 6/Li and /sup 15/N NMR spectroscopic studies of (/sup 6/Li, /sup 15/N)lithium diphenylamide showed the species observed at low THF concentrations to be a cyclic oligomer. Structural analogies provided strong support for a dimer while colligative measurements at 0/degrees/C indicated the dimer to be di- or trisolvated. On the basis of the observed mass action effects, the species appearing at intermediate THF concentrations is assigned as a contact or solvent-separated ion-paired monomer. Lithium diphenylamide forms a 1:1 adduct with lithium bromide at low THF concentrations. A combination of /sup 6/Li-/sup 15/N double labeling studies and colligative measurements supports a trisolvated cyclic mixed dimer structure. Although detailed spectroscopic studies at elevated THF concentrations were precluded by high fluctionality, the similarity of the /sup 13/C chemical shifts of lithium diphenylamide in the presence and absence of lithium bromide provide indirect evidence that the mixed dimer undergoes a THF concentration dependent dissociation to the monomeric amide and free lithium bromide. 24 references, 9 figures, 2 tables.

  3. Stereospecificity of (1) H, (13) C and (15) N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on (1) H chemical shifts.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Ushakov, Igor A; Keiko, Natalia A

    2012-07-01

    In the (13) C NMR spectra of methylglyoxal bisdimethylhydrazone, the (13) C-5 signal is shifted to higher frequencies, while the (13) C-6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the (1) H-6 chemical shift and (1) J(C-6,H-6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the -CH═N- bond does not change. This paradox can be rationalized by the C-H⋯N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum-chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ((1) H-6) and (1) J(C-6,H-6) parameters. The effect of the C-H⋯N hydrogen bond on the (1) H shielding and one-bond (13) C-(1) H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The (1) H, (13) C and (15) N chemical shifts of the 2- and 8-(CH(3) )(2) N groups attached to the -C(CH(3) )═N- and -CH═N- moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8-(CH(3) )(2) N group conjugate effectively with the π-framework, and the 2-(CH(3) )(2) N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N-2- and N-8- nitrogen lone pairs to the π-framework varies, which affects the (1) H, (13) C and (15) N shieldings. PMID:22615146

  4. Trophic ecology of the rocky shore community associated with the Ascophyllum nodosum zone (Roscoff, France): A δ 13C vs δ 15N investigation

    NASA Astrophysics Data System (ADS)

    Riera, Pascal; Escaravage, Carole; Leroux, Cédric

    2009-01-01

    This study aimed to characterize the structure and functioning of the benthic food web associated with the Ascophyllum nodosum zone of the rocky shore of Roscoff by using δ 13C and δ 15N. Several characteristics of the trophic ecology of the invertebrates associated with this mid-littoral habitat and which belong to different functional groups (e.g., grazers, filter-feeders, predators and omnivores) were highlighted. In particular, the filter feeder species (including mostly sponges) used macroalgae-derived organic matter as a substantial food requirement. The results also pointed out an important stable isotopes variability for strict coexisting primary consumers which: (1) is directly related to the high δ 15N range of the food sources; (2) makes it impossible to establish a unique trophic level scale based on δ 15N values, as previously done in coastal environments; and (3) points out the existence of major co-occurring trophic pathways which characterise the Ascophyllum nodosum habitat.

  5. Abundance of 13C and 15N in emmer, spelt and naked barley grown on differently manured soils: towards a method for identifying past manuring practice.

    PubMed

    Kanstrup, Marie; Thomsen, Ingrid K; Andersen, Astrid J; Bogaard, Amy; Christensen, Bent T

    2011-10-15

    The shortage of plant-available nutrients probably constrained prehistoric cereal cropping but there is very little direct evidence relating to the history of ancient manuring. It has been shown that the long-term addition of animal manure elevates the δ(15)N value of soil and of modern crops grown on the soil. We have examined the δ(15)N and δ(13)C values of soil and of the grain and straw fractions of three ancient cereal types grown in unmanured, PK amended and cattle manured plots of the Askov long-term field experiment. Manure increased biomass yields and the δ(15)N values of soil and of grain and straw fractions of the ancient cereal types; differences in δ(15)N between unmanured and PK treatments were insignificant. The offset in straw and grain δ(15)N due to manure averaged 7.9 and 8.8 ‰, respectively, while the soil offset was 1.9 ‰. The soil and biomass δ(13)C values were not affected by nutrient amendments. Grain weights differed among cereal types but increased in the order: unmanured, PK, and animal manure. The grain and straw total-N concentration was generally not affected by manure addition. Our study suggests that long-term application of manure to permanently cultivated sites would have provided a substantial positive effect on cereals grown in early agriculture and will have left a significant N isotopic imprint on soil, grains and straw. We suggest that the use of animal manure can be identified by the (15)N abundance in remains of ancient cereals (e.g. charred grains) from archaeological sites and by growing test plants on freshly exposed palaeosols.

  6. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  7. Effect of salinity and water stress during the reproductive stage on growth, ion concentrations, Delta 13C, and delta 15N of durum wheat and related amphiploids.

    PubMed

    Yousfi, Salima; Serret, Maria Dolores; Voltas, Jordi; Araus, José Luis

    2010-08-01

    The physiological performance of durum wheat and two related amphiploids was studied during the reproductive stage under different combinations of salinity and irrigation. One triticale, one tritordeum, and four durum wheat genotypes were grown in pots in the absence of stress until heading, when six different treatments were imposed progressively. Treatments resulted from the combination of two irrigation regimes (100% and 35% of container water capacity) with three levels of water salinity (1.8, 12, and 17 dS m(-1)), and were maintained for nearly 3 weeks. Gas exchange and chlorophyll fluorescence and content were measured prior to harvest; afterwards shoot biomass and height were recorded, and Delta(13)C, delta(15)N, and the concentration of nitrogen (N), phosphorus, and several ions (K(+), Na(+), Ca(2+), Mg(2+)) were analysed in shoot material. Compared with control conditions (full irrigation with Hoagland normal) all other treatments inhibited photosynthesis through stomatal closure, accelerated senescence, and decreased biomass. Full irrigation with 12 dS m(-1) outperformed other stress treatments in terms of biomass production and physiological performance. Biomass correlated positively with N and delta(15)N, and negatively with Na(+) across genotypes and fully irrigated treatments, while relationships across deficit irrigation conditions were weaker or absent. Delta(13)C did not correlate with biomass across treatments, but it was the best trait correlating with phenotypic differences in biomass within treatments. Tritordeum produced more biomass than durum wheat in all treatments. Its low Delta(13)C and high K(+)/Na(+) ratio, together with a high potential growth, may underlie this finding. Mechanisms relating delta(15)N and Delta(13)C to biomass are discussed.

  8. Food web structure of the epibenthic and infaunal invertebrates on the Catalan slope (NW Mediterranean): Evidence from δ 13C and δ 15N analysis

    NASA Astrophysics Data System (ADS)

    Fanelli, E.; Papiol, V.; Cartes, J. E.; Rumolo, P.; Brunet, C.; Sprovieri, M.

    2011-01-01

    The food-web structure of the epibenthic and infaunal invertebrates on the continental slope of the Catalan Sea (Balearic basin, NW Mediterranean) was investigated using carbon and nitrogen stable isotopes on a total of 34 species, and HPLC pigment analyses for three key species. Samples were collected close to Barcelona (NE Iberian Peninsula), between 650 and 800 m depth and between February 2007 and February 2008. Mean δ 13C values ranged from -21.0‰ (small Calocaris macandreae and Amphipholis squamata) to -14.5‰ ( Sipunculus norvegicus). Values of δ 15N ranged from 4.0‰ ( A. squamata) to 12.1‰ ( Molpadia musculus). The stable isotope ratios of benthic fauna displayed a continuum of values (e.g. δ 15N range of 8‰), confirming a wide spectrum of feeding strategies (from active suspension feeders to predators) and complex food webs. According to the available information on diets of benthic fauna, the lowest values were found for surface deposit feeders (small C. macandrae and the two ophiuroids A. squamata and Amphiura chiajei) and active suspension feeders ( Abra longicallus and Scalpellum scalpellum) feeding on different sizes of particulate organic matter (POM), among which small particles may exhibit lower δ 15N. High annual mean δ 15N values were found among sub-surface deposit feeders, exploiting refractory or frequently recycled organic matter that is enriched in δ 15N. Carnivorous polychaetes ( Nephtys spp., Oenonidae and Polynoidae) and large decapods ( Geryon longipes and Paromola cuvieri) also displayed high δ 15N values. δ 13C ranges were particularly wide among surface deposit feeders (ranging from -21.0‰ to -16.4‰), suggesting exploitation of POM of both terrigenous and oceanic origins. Correlation between δ 13C and δ 15N was generally weak, indicating multiple carbon sources, likely due to the consumption of different kinds of sinking particles (e.g. marine snow, phytodetritus, etc.), sedimented and frequently recycled POM

  9. Natural abundances of 15N and 13C in leaves of some N2-fixing and non-N2-fixing trees and shrubs in Syria.

    PubMed

    Kurdali, F; Al-Shamma'a, M

    2009-09-01

    A survey study was conducted on man-made plantations located at two different areas in the arid region of Syria to determine the variations in natural abundances of the (15)N and (13)C isotopes in leaves of several woody legume and non-legume species, and to better understand the consequence of such variations on nitrogen fixation and carbon assimilation. In the first study area (non-saline soil), the delta(15)N values in four legume species (Acacia cyanophylla,-1.73 per thousand Acacia farnesiana,-0.55 per thousand Prosopis juliflora,-1.64 per thousand; and Medicago arborea,+1.6 \\textperthousand) and one actinorhizal plant (Elaeagnus angustifolia,-0.46 to-2.1 per thousand) were found to be close to that of the atmospheric value pointing to a major contribution of N(2) fixing in these species; whereas, delta(15)N values of the non-fixing plant species were highly positive. delta(13)C per thousand; in leaves of the C3 plants were found to be affected by plant species, ranging from a minimum of-28.67 per thousand; to a maximum of-23 per thousand. However, they were relatively similar within each plant species although they were grown at different sites. In the second study area (salt affected soil), a higher carbon discrimination value (Delta(13)C per thousand) was exhibited by P. juliflora, indicating that the latter is a salt tolerant species; however, its delta(15)N was highly positive (+7.03 per thousand) suggesting a negligible contribution of the fixed N(2). Hence, it was concluded that the enhancement of N(2) fixation might be achieved by selection of salt-tolerant Rhizobium strains.

  10. Millennial scale oscillations in bulk δ15N and δ13C over the Mid- to Late Holocene seen in proteinaceous corals from the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Glynn, D. S.; Mccarthy, M. D.; McMahon, K.; Guilderson, T. P.

    2014-12-01

    The North Pacific Subtropical Gyre (NPSG) is the largest continuous ecosystem on this planet and is an important regulator of biogeochemical cycling and carbon sequestration. With evidence of its expansion in a warming climate, it is necessary to develop a more complete understanding of the variability in productivity and nutrient dynamics in this important ecosystem through time. We constructed a long-term, high resolution record of bulk record of stable nitrogen (δ15N) and carbon isotopes (δ13C) from multiple proteinaceous deep sea corals around Hawaii extending back ~5300 years with few gaps. Our data confirms the decreasing trend in δ15N since the Little Ice Age (1850s), which matches previously published results in part attributed to anthropogenic climate change (e.g. Sherwood et al. 2014). However, while the rate of change since the Little Ice Age (δ15N declines ~1‰ over ~150yrs) remains by far the most rapid throughout the longer record, there also appear to be longer-term (near-millennial scale) climatic oscillations of even greater magnitude (δ15N shifts ~1.5-2‰ over ~1000yrs). After removal of the Seuss Effect, δ13C values also declined ~1.5‰ since the Little Ice Age. Furthermore, there also appear to be oscillations in δ13C of ~1-2‰ over millennial timescales. These results reveal the existence of previously unrecognized long-term oscillations in NPSG biogeochemical cycles, which are likely linked to changes in phytoplankton species composition, food web dynamics, and/or variability in source nutrients and productivity possibly caused by changes in climate. This study provides insight into nutrient dynamics in the NPSG over the past five millennia, and offers a historical baseline to better analyze the effects of current anthropogenic climate forcing.

  11. Changes in leaf δ13C and δ15N for three Mediterranean tree species in relation to soil water availability

    NASA Astrophysics Data System (ADS)

    Ogaya, Romà; Peñuelas, Josep

    2008-11-01

    A rain exclusion experiment simulating drought conditions expected in Mediterranean areas for the following decades (15% decrease in soil moisture) was conducted in a Mediterranean holm oak forest to study the response of leaf δ13C, δ15N, and N concentrations to the predicted climatic changes for the coming decades. Plant material was sampled in 2000, 2003, 2004, and 2005 in eight plots: four of them were control plots and the other four plots received the rain exclusion treatment. Although there was a negative relationship between δ13C and soil moisture, for each species and year, the rain exclusion treatment did not have any significant effect on δ13C, and therefore on the intrinsic water use efficiency (iWUE) of the three dominant species: Phillyrea latifolia, Arbutus unedo, and Quercus ilex. On the other hand, rain exclusion clearly increased the δ15N values in the three species studied, probably indicating higher N losses at the soil level leading to a 15N enrichment of the available N. It suggested that rain exclusion exerted a greater effect on the nitrogen biogeochemical cycle than on the carbon assimilation process. δ15N values were inversely correlated with summer soil moisture in Q. ilex and A. unedo, but no relationship was observed in P. latifolia. This latter species showed the lowest iWUE values, but it was the only species with no decrease in annual basal increment in response to the rain exclusion treatment, and it also had the highest resistance to the hot and dry conditions projected for the Mediterranean basin in the coming decades. The different strategies to resist rain exclusion conditions of these species could induce changes in their competitive ability and future distribution. The losses of N from the ecosystem may further limit plant growth and ecosystem functioning.

  12. 13C/12C and 15N/14N Isotope Analysis to Characterize Natural Degradation of Atrazine: Evidence from Parent and Daughter Compound Values

    NASA Astrophysics Data System (ADS)

    Elsner, Martin; Meyer, Armin

    2013-04-01

    The mobile and still herbicidal metabolites desethylatrazine (DEA) and desisopropylatrazine (DIA) are frequently detected together with its parent compound atrazine (Atz) in the aquatic environment. Interpretation of their transformation state is often difficult with current methods, which are mainly measuring concentrations. Alternatively, compound specific isotope analyses (CSIA) has become a novel tool to detect degradation processes of contaminants in groundwater. The aim of our study was to investigate on the lab scale 13C/12C and 15N/14N isotope trends in parent and daughter compounds associated with different degradation scenarios of atrazine likely to occur in the environment. Thus atrazine was dealkylated with (i) permanganate and (ii) the bacterium Rhodococcus sp. NI86/21. In both transformations, 13C/12C ratios of atrazine increased strongly (epsilon carbon/permanganate = -4.6 ± 0.6 ‰ and epsilon carbon/Rhodoccoccus = -3.8 ± 0.2 ‰) whereas nitrogen isotope fractionation was small. 13C/12C ratios of DEA showed the following trends. (i) When DEA was formed as only product (Atz + permanganate) 13C/12C remained constant, close to the initial value of Atz. (ii) When DEA was formed together with deisopropylatrazine (biodegradation of Atz) 13C/12C increased, but only within 2‰. (iii) When DEA and DIA was further biodegraded, 13C/12C increased for both metabolites up to 9‰. Thus strong enrichment of 13C/12C in the metabolites in comparison to Atz can give strong testimony for further breakdown of the metabolite.

  13. Paleobiological Implications of the Isotopic Signatures ( 13C, 15N) of Fossil Mammal Collagen in Scladina Cave (Sclayn, Belgium)

    NASA Astrophysics Data System (ADS)

    Bocherens, Hervé; Billiou, Daniel; Patou-Mathis, Marylène; Bonjean, Dominique; Otte, Marcel; Mariotti, André

    1997-11-01

    An isotopic investigation of upper Pleistocene mammal bones and teeth from Scladina cave (Sclayn, Belgium) demonstrated the very good quality of collagen preservation. A preliminary screening of the samples used the amount of nitrogen in whole bone and dentine in order to estimate the preserved amount of collagen before starting the extraction process. The isotopic abundances of fossil specimens from still-extant species are consistent with their trophic position. Moreover, the 15N isotopic abundance is higher in dentine than in bone in bears and hyenas, a phenomenon already observed in modern specimens. These results demonstrate that the isotopic compositions of samples from Scladina cave can be interpreted in ecological terms. Mammoths exhibit a high 15N isotopic abundance relative to other herbivores, as was the case in Siberian and Alaskan samples. These results suggest distinctive dietary adaptations in herbivores living in the mammoth steppe. Cave bears are clearly isotopically different from coeval brown bears, suggesting an ecological separation between species, with a pure vegetarian diet for cave bear and an omnivorous diet for brown bear.

  14. CARBON-RICH PRESOLAR GRAINS FROM MASSIVE STARS: SUBSOLAR {sup 12}C/{sup 13}C AND {sup 14}N/{sup 15}N RATIOS AND THE MYSTERY OF {sup 15}N

    SciTech Connect

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing {sup 12}C/{sup 13}C and {sup 14}N/{sup 15}N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of {sup 13}C and {sup 15}N. The short-lived radionuclides {sup 22}Na and {sup 26}Al are increased by orders of magnitude. The production of radiogenic {sup 22}Ne from the decay of {sup 22}Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with {sup 14}N/{sup 15}N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of {sup 14}N and {sup 15}N in the Galaxy, helping to produce the {sup 14}N/{sup 15}N ratio in the solar system.

  15. (15)N and (13)C group-selective techniques extend the scope of STD NMR detection of weak host-guest interactions and ligand screening.

    PubMed

    Kövér, Katalin E; Wéber, Edit; Martinek, Tamás A; Monostori, Eva; Batta, Gyula

    2010-10-18

    Saturation transfer difference (STD) is a valuable tool for studying the binding of small molecules to large biomolecules and for obtaining detailed information on the binding epitopes. Here, we demonstrate that the proposed (15)N/(13)C variants of group-selective, "GS-STD" experiments provide a powerful approach to mapping the binding epitope of a ligand even in the absence of efficient spin diffusion within the target protein. Therefore, these experimental variants broaden the scope of STD studies to smaller and/or more-dynamic targets. The STD spectra obtained in four different experimental setups (selective (1)H STD, (15)N GS-STD, (13)C(Ar) and (13)C(aliphatic) GS-STD approaches) revealed that the signal-intensity pattern of the difference spectra is affected by both the type and the spatial distribution of the excited "transmitter" atoms, as well as by the efficiency of the spin-diffusion-mediated magnetization transfer. The performance of the experiments is demonstrated on a system by using the lectin, galectin-1 and its carbohydrate ligand, lactose.

  16. [Isotopic signature (15N/14N and 13C/12C) confirms similarity of trophic niches of millipedes (Myriapoda, Diplopoda) in a temperate deciduous forest].

    PubMed

    Semeniuk, I I; Tiunov, A V

    2011-01-01

    The species composition, abundance, and isotopic signature of millipedes (Myriapoda, Diplopoda) were investigated in seven biotopes of Kaluzhskie Zaseki State Nature Reserve. Nine Diplopoda species were found in total, and the local species diversity (within a sampling plot) reached seven species. The Diplopoda tissues were similar to the plant litter in the isotopic composition of nitrogen (delta15N was by 0.4% per hundred higher, on average), but were more strongly enriched in heavy carbon (delta13C was by 4% per hundred higher, on average). Removal of mineral carbon from the cuticle reduced delta13C of Diplopoda by about 1.4% per hundred on average. Differences in the delta15N and delta13C values between the species did not exceed 2.5 per hundred. Differences in the isotopic compositions of the considered species are insignificant, and thus, it is impossible to distinguish particular trophic guilds in the Diplopoda community. Analysis of the published data confirmed that isotopic differentiation of millipedes was much less pronounced than in other investigated groups of soil animals. Hence, millipedes of the deciduous forest form a uniform trophic group.

  17. sup 13 C and sup 15 N nuclear magnetic resonance evidence of the ionization state of substrates bound to bovine dihydrofolate reductase

    SciTech Connect

    Selinsky, B.S.; Perlman, M.E.; London, R.E. ); Unkefer, C.J. ); Mitchell, J. ); Blakley, R.L. Univ. of Tennessee, Memphis )

    1990-02-06

    The state of protonation of substrates bound to mammalian dihydrofolate reductase (DHFR) has significance for the mechanism of catalysis. To investigate this, dihydrofolate and dihydropteroylpentaglutamate have been synthesized with {sup 15}N enrichment at N-5. {sup 15}N NMR studies have been performed on the binary complexes formed by bovine DHFR with these compounds and with (5-{sup 15}N)dihydrobiopterin. The results indicate that there is no protonation at N-5 in the binary complexes, and this was confirmed by {sup 13}C NMR studies with folate and dihydrofolate synthesized with {sup 13}C enrichment at C-6. The chemical shift displacements produced by complex formation are in the same direction as those which result from deprotonation of the N-3/C-4-O amide group and are consistent with at least partial loss of the proton from N-3. This would be possible if, as crystallographic data indicate, there is interaction of N-3 and the 2-amino group of the bound ligands with the carboxylate of the active site glutamate residue (Glu{sup 30}).

  18. Deuterium isotope effects on 13C and 15N chemical shifts of intramolecularly hydrogen-bonded enaminocarbonyl derivatives of Meldrum’s and Tetronic acid

    NASA Astrophysics Data System (ADS)

    Ullah, Saif; Zhang, Wei; Hansen, Poul Erik

    2010-07-01

    Secondary deuterium isotope effects on 13C and 15N nuclear shieldings in a series of cyclic enamino-diesters and enamino-esters and acyclic enaminones and enamino-esters have been examined and analysed using NMR and DFT (B3LYP/6-31G(d,p)) methods. One-dimensional and two-dimensional NMR spectra of enaminocarbonyl and their deuterated analogues were recorded in CDCl 3 and CD 2Cl 2 at variable temperatures and assigned. 1JNH coupling constants for the derivatives of Meldrum's and tetronic acids reveal that they exist at the NH-form. It was demonstrated that deuterium isotope effects, for the hydrogen bonded compounds, due to the deuterium substitution at the nitrogen nucleus lead to large one-bond isotope effects at nitrogen, 1Δ 15N(D), and two-bond isotope effects on carbon nuclei, 2ΔC(ND), respectively. A linear correlations exist between 2ΔC(ND) and 1Δ 15N(D) whereas the correlation with δNH is divided into two. A good agreement between the experimentally observed 2ΔC(ND) and calculated dσ 13C/dR NH was obtained. A very good correlation between calculated NH bond lengths and observed NH chemical shifts is found. The observed isotope effects are shown to depend strongly on Resonance Assisted Hydrogen bonding.

  19. Marine mammals from northeast Atlantic: relationship between their trophic status as determined by delta13C and delta15N measurements and their trace metal concentrations.

    PubMed

    Das, K; Beans, C; Holsbeek, L; Mauger, G; Berrow, S D; Rogan, E; Bouquegneau, J M

    2003-09-01

    The relationship between trophic position through delta13C and delta15N and trace metal concentrations (Zn, Cd, Cu and Hg) was investigated in the tissues of six marine mammal species from the Northeast Atlantic: striped dolphin Stenella coeruleoalba, common dolphin, Delphinus delphis, Atlantic white-sided dolphin Lagenorhynchus acutus, harbour porpoise Phocoena phocoena, white beaked-dolphin Lagenorhynchus albirostris, grey seal Halichoerus grypus stranded on French Channel and Irish coasts. White-beaked dolphins, harbour porpoises, white-sided dolphins, common and striped dolphins display the same relative and decreasing trophic position, as measured by delta15N values, along both the Irish and French channel coasts, reflecting conservative trophic habits between these two places. Hepatic and renal Cd concentrations were significantly correlated to muscle delta13C and delta15N values while Hg, Zn and Cu did not. These results suggest that Cd accumulation is partly linked to the diet while other factors such as age or body condition might explain Hg, Zn or Cu variability in marine mammals. Combined stable isotope and trace metal analyses appear to be useful tools for the study of marine mammal ecology. PMID:12738219

  20. Effects of growth and tissue type on the kinetics of 13C and 15N incorporation in a rapidly growing ectotherm.

    PubMed

    Reich, Kimberly J; Bjorndal, Karen A; Martínez Del Rio, Carlos

    2008-04-01

    The use of stable isotopes to investigate animal diets, habitat use, and trophic level requires understanding the rate at which animals incorporate the 13C and 15N from their diets and the factors that determine the magnitude of the difference in isotopic composition between the animal's diet and that of its tissues. We determined the contribution of growth and catabolic turnover to the rate of 13C and 15N incorporation into several tissues that can be sampled non-invasively (skin, scute, whole blood, red blood cells, and plasma solutes) in two age classes of a rapidly growing ectotherm (loggerhead turtles, Caretta caretta). We found significant differences in C and N incorporation rates and isotopic discrimination factors (Delta 13C = delta 13Ctissues - delta 13Cdiet and Delta 15N = delta 15Ntissues - delta 15Ndiet) among tissues and between age classes. Growth explained from 26 to 100% of the total rate of incorporation in hatchling turtles and from 15 to 52% of the total rate of incorporation in juvenile turtles. Because growth contributed significantly to the rate of isotopic incorporation, variation in rates among tissues was lower than reported in previous studies. The contribution of growth can homogenize the rate of isotopic incorporation and limit the application of stable isotopes to identify dietary changes at contrasting time scales and to determine the timing of diet shifts. The isotopic discrimination factor of nitrogen ranged from -0.64 to 1.77 per thousand in the turtles' tissues. These values are lower than the commonly assumed average 3.4 per thousand discrimination factors reported for whole body and muscle isotopic analyses. The increasing reliance on non-invasive and non-destructive sampling in animal isotopic ecology requires that we recognize and understand why different tissues differ in isotopic discrimination factors.

  1. Carbon (δ13C) and Nitrogen (δ15N) Stable Isotope Signatures in Bat Fur Indicate Swarming Sites Have Catchment Areas for Bats from Different Summering Areas

    PubMed Central

    Segers, Jordi L.; Broders, Hugh G.

    2015-01-01

    Migratory patterns of bats are not well understood and traditional methods to study this, like capture-mark-recapture, may not provide enough detail unless there are many records. Stable isotope profiles of many animal species have been used to make inferences about migration. Each year Myotis lucifugus and M. septentrionalis migrate from summering roosts to swarming caves and mines in the fall, but the pattern of movement between them is not well understood. In this study, fur δ13C and δ15N values of 305 M. lucifugus and 200 M. septentrionalis were analyzed to make inferences about migration patterns between summering areas and swarming sites in Nova Scotia, Canada. We expected that there would be greater variability in δ13C and δ15N among individuals at swarming sites because it was believed that these sites are used by individuals originating from many summering areas. There was extensive overlap in the standard ellipse area, corrected for small sample sizes (SEAc), of bats at swarming sites and much less overlap in SEAc among groups sampled at summering areas. Meaningful inference could not be made on M. septentrionalis because their low variation in SEAc may have been the result of sampling only 3 summering areas. However, for M. lucifugus, swarming sites had larger SEAc than summering areas and predictive discriminant analysis assigned swarming bats to multiple summering areas, supporting the contention that swarming bats are mixed aggregations of bats from several summering areas. Together, these data support the contention that swarming sites have catchment areas for bats from multiple summering areas and it is likely that the catchment areas for swarming sites overlap. These data suggest that δ13C and δ15N profiling of bat fur offer some potential to make inferences about regional migration in bats. PMID:25923696

  2. Characterization (δ13C, δ15N and TOC/TN) of marine sediments from restored seagrass (Zostera marina) meadows in coastal lagoons of Virginia

    NASA Astrophysics Data System (ADS)

    Egge, N.; Macko, S. A.

    2011-12-01

    Restoration of the Chesapeake Bay and its neighboring coastal areas has been a major focus of scientific research in the last ten years. The decline of the area is often linked with the explosive population growth and subsequent increases in agriculture and urbanization of the region. In the coastal bays of Virginia, large efforts have been made to restore seagrass (Zostera marina) meadows, which were devastated by a combination of events in the 1930s. As a result of the restoration efforts begun in 2001, seagrass has come to dominate portions of South Bay and Hog Island Bay. Sedimentary characterization (δ13C, δ15N, total organic carbon and total nitrogen) is used to assess sources of organic matter in marine environments. Push cores were used to collect samples from sites that have different records of seagrass cover. Sediments dominated by seagrass contain organic matter enriched in 13C relative to autochthonous algal sources. Within the sediment record there are two regions that show heightened 13C content-one near the surface and another at lower depths. Organic matter enriched in 13C near the surface is from current seagrass cover. Similar characteristics of sediment deeper in the core imply that the area was previously dominated comparable vegetation. Results may be used as a proxy to infer the spatial extent of the historic (prior to 1930) presence of seagrass and guide future restoration projects.

  3. Selective {sup 2}H and {sup 13}C labeling in NMR analysis of solution protein structure and dynamics

    SciTech Connect

    LeMaster, D.M.

    1994-12-01

    Preparation of samples bearing combined isotope enrichment patterns has played a central role in the recent advances in NMR analysis of proteins in solution. In particular, uniform {sup 13}C, {sup 15}N enrichment has made it possible to apply heteronuclear multidimensional correlation experiments for the mainchain assignments of proteins larger than 30 KDa. In contrast, selective labeling approaches can offer advantages in terms of the directedness of the information provided, such as chirality and residue type assignments, as well as through enhancements in resolution and sensitivity that result from editing the spectral complexity, the relaxation pathways and the scalar coupling networks. In addition, the combination of selective {sup 13}C and {sup 2}H enrichment can greatly facilitate the determination of heteronuclear relaxation behavior.

  4. δ(13)C and δ(15)N in deep-living fishes and shrimps after the Deepwater Horizon oil spill, Gulf of Mexico.

    PubMed

    Quintana-Rizzo, Ester; Torres, Joseph J; Ross, Steve W; Romero, Isabel; Watson, Kathleen; Goddard, Ethan; Hollander, David

    2015-05-15

    The blowout of the Deepwater Horizon (DWH) drill-rig produced a surface oil layer, dispersed micro-droplets throughout the water column, and sub-surface plumes. We measured stable carbon and nitrogen isotopes in mesopelagic fishes and shrimps in the vicinity of DWH collected prior to, six weeks after, and one year after the oil spill (2007, 2010 and 2011). In 2010, the year of the oil spill, a small but significant depletion of δ(13)C was found in two mesopelagic fishes (Gonostoma elongatum and Chauliodus sloani) and one shrimp (Systellaspis debilis); a significant δ(15)N enrichment was identified in the same shrimp and in three fish species (G. elongatum, Ceratoscopelus warmingii, and Lepidophanes guentheri). The δ(15)N change did not suggest a change of trophic level, but did indicate a change in diet. The data suggest that carbon from the Deepwater Horizon oil spill was incorporated into the mesopelagic food web of the Gulf of Mexico.

  5. 1H, 13C, and 15N NMR assignments of StnII-Y111N, a highly impaired mutant of the sea anemone actinoporin Sticholysin II.

    PubMed

    Pardo-Cea, Miguel A; Alegre-Cebollada, Jorge; Martínez-del-Pozo, Alvaro; Gavilanes, José G; Bruix, Marta

    2010-04-01

    Sticholysin II is an actinoporin of 175 amino acids produced by the sea anemone Stichodactyla helianthus. Several studies with different mutants have been performed to characterize its molecular properties and activity. As a first step towards a 3D structural characterization and its interaction with membrane models at a residue level, herein we report the nearly complete NMR (15)N, (13)C and (1)H chemical shifts assignments of the Y111N variant at pH 4.0 and 25 degrees C (BMRB No. 16630). The assignment is complete for the biologically relevant residues, specially for those implicated in membrane interactions.

  6. Sequence-specific 1H, 13C and 15N backbone resonance assignments of the plakin repeat domain of human envoplakin.

    PubMed

    Jeeves, Mark; Fogl, Claudia; Al-Jassar, Caezar; Chidgey, Martyn; Overduin, Michael

    2016-04-01

    The plakin repeat domain is a distinctive hallmark of the plakin superfamily of proteins, which are found within all epithelial tissues. Plakin repeat domains mediate the interactions of these proteins with the cell cytoskeleton and are critical for the maintenance of tissue integrity. Despite their biological importance, no solution state resonance assignments are available for any homologue. Here we report the essentially complete (1)H, (13)C and (15)N backbone chemical shift assignments of the singular 22 kDa plakin repeat domain of human envoplakin, providing the means to investigate its interactions with ligands including intermediate filaments. PMID:26590577

  7. Determination of the δ15N and δ13C of total nitrogen and carbon in solids; RSIL lab code 1832

    USGS Publications Warehouse

    Revesz, Kinga; Qi, Haiping; Coplan, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1832 is to determine the δ(15N/14N), abbreviated as δ15N, and the δ(13C/12C), abbreviated as δ13C, of total nitrogen and carbon in a solid sample. A Carlo Erba NC 2500 elemental analyzer (EA) is used to convert total nitrogen and carbon in a solid sample into N2 and CO2 gas. The EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines the relative difference in stable nitrogen isotope-amount ratio (15N/14N) of the product N2 gas and the relative difference in stable carbon isotope-amount ratio (13C/12C) of the product CO2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in tin capsules and loaded into a Costech Zero Blank Autosampler on the EA. Under computer control, samples then are dropped into a heated reaction tube that contains an oxidant, where combustion takes place in a helium atmosphere containing an excess of oxygen gas. Combustion products are transported by a helium carrier through a reduction furnace to remove excess oxygen and to convert all nitrous oxides into N2 and through a drying tube to remove water. The gas-phase products, mainly CO2 and N2, are separated by a gas chromatograph. The gas is then introduced into the IRMS through a Finnigan MAT (now Thermo Scientific) ConFlo II interface. The Finnigan MAT ConFlo II interface is used for introducing not only sample into the IRMS but also N2 and CO2 reference gases and helium for sample dilution. The flash combustion is quantitative; no isotopic fractionation is involved. The IRMS is a Thermo Scientific Delta V CF-IRMS. It has a universal triple collector, two wide cups with a narrow cup in the middle; it is capable of measuring mass/charge (m/z) 28, 29, 30 or with a magnet current change 44, 45, 46, simultaneously. The ion beams from these m/z values are as follows: m/z 28 = N2 = 14N/14N; m/z 29 = N2 = 14N/15N primarily; m/z 30 = NO = 14N/16O

  8. A mantle origin for Paleoarchean peridotitic diamonds from the Panda kimberlite, Slave Craton: Evidence from 13C-, 15N- and 33,34S-stable isotope systematics

    NASA Astrophysics Data System (ADS)

    Cartigny, Pierre; Farquhar, James; Thomassot, Emilie; Harris, Jeffrey W.; Wing, Bozwell; Masterson, Andy; McKeegan, Kevin; Stachel, Thomas

    2009-11-01

    In order to address diamond formation and origin in the lithospheric mantle underlying the Central Slave Craton, we report N- and C-stable isotopic compositions and N-contents and aggregation states for 85 diamonds of known paragenesis (73 peridotitic, 8 eclogitic and 4 from lower mantle) from the Panda kimberlite (Ekati Mine, Lac de Gras Area, Canada). For 12 peridotitic and two eclogitic sulfide inclusion-bearing diamonds from this sample set, we also report multiple-sulfur isotope ratios. The 73 peridotitic diamonds have a mean δ13C-value of - 5.2‰ and range from - 6.9 to - 3.0‰, with one extreme value at - 14.1‰. The associated δ15N-values range from - 17.0 to + 8.5‰ with a mean value of - 4.0‰. N-contents range from 0 to 1280 ppm. The 8 eclogitic diamonds have δ13C-values ranging from - 11.2 to - 4.4‰ with one extreme value at - 19.4‰. Their δ15N ranges from - 2.1 to + 7.9‰ and N-contents fall between 0 and 3452 ppm. Four diamonds with an inferred lower mantle origin are all Type II (i.e. nitrogen-free) and have a narrow range of δ13C values, between - 4.5 and - 3.5‰. The δ34S of the 14 analyzed peridotitic and eclogitic sulfide inclusions ranges from - 3.5 to +5.7‰. None of them provide evidence for anomalous δ33S-values; observed variations in δ33S are from +0.19 to - 0.33‰, i.e. within the 2 sigma uncertainties of mantle sulfur ( δ33S = 0‰). At Panda, the N contents and the δ13C of sulfide-bearing peridotitic diamonds show narrower ranges than silicate-bearing peridotitic diamonds. This evidence supports the earlier suggestion established from eclogitic diamonds from the Kaapvaal that sulfide-(±silicate) bearing diamonds sample a more restricted portion of sublithospheric mantle than silicate-(no sulfide) bearing diamonds. Our findings at Panda suggest that sulfide-bearing diamonds should be considered as a specific diamond population on a global-scale. Based on our study of δ34S, Δ 33S, δ15N and δ13C, we find no

  9. δ 13C and δ 15N biogeographic trends in rocky intertidal communities along the coast of South Africa: Evidence of strong environmental signatures

    NASA Astrophysics Data System (ADS)

    Hill, Jaclyn M.; McQuaid, Christopher D.

    2008-11-01

    Ecosystem dynamics driven by top-down controls have been well documented in rocky intertidal communities, while the effects of bottom-up influences are comparatively poorly understood. We hypothesized that large-scale signatures of the physical environment may be identifiable along the South African coastline as it is subject to two very different current systems (Benguela and Agulhas Currents) that profoundly influence primary production and thus both food type and availability. Through stable isotope analysis, we examined biogeographic patterns in multiple trophic levels at four sites along a 1400-km stretch of South African coastline and investigated the dietary role of macroalgal-derived organic carbon in rocky intertidal communities. The general positioning of trophic groups was comparable across all sites, with animals from the same trophic levels grouping together and with a δ 15N fractionation of 1-2‰ between levels. The species found at all sites demonstrated east-west δ 15N enrichment, presumably reflecting a biogeographic shift in nitrogen sources linked to upwelling on the west coast. Filter-feeders gave particularly clear results. Using discriminant analysis, mussels could be categorized into four geographic groups based on carbon and nitrogen signatures: east coast, southeast coast, south-west coast and west coast. Barnacles and polychaetes showed similar geographic groupings to mussels, but with shifts in actual values (1‰ depletion in δ 13C and 3‰ enrichment in δ 15N relative to mussels). This suggests that fractionation varies between species within a trophic level. IsoSource models showed that Ulva sp. made large contributions to the diets of two microalgal grazers ( Siphonaria capensis and Scutellastra granularis) and this dietary dependence increased when moving from west to east coast, along the shoreline. Additionally, IsoSource models determined that relative to phytoplankton, macroalgae accounted for upwards of 60% of suspended

  10. Kinetic isotope effects significantly influence intracellular metabolite 13C labeling patterns and flux determination

    PubMed Central

    Wasylenko, Thomas M.; Stephanopoulos, Gregory

    2014-01-01

    Rigorous mathematical modeling of carbon-labeling experiments allows estimation of fluxes through the pathways of central carbon metabolism, yielding powerful information for basic scientific studies as well as for a wide range of applications. However, the mathematical models that have been developed for flux determination from 13C labeling data have commonly neglected the influence of kinetic isotope effects on the distribution of 13C label in intracellular metabolites, as these effects have often been assumed to be inconsequential. We have used measurements of the 13C isotope effects on the pyruvate dehydrogenase enzyme from the literature to model isotopic fractionation at the pyruvate node and quantify the modeling errors expected to result from the assumption that isotope effects are negligible. We show that under some conditions kinetic isotope effects have a significant impact on the 13C labeling patterns of intracellular metabolites, and the errors associated with neglecting isotope effects in 13C-metabolic flux analysis models can be comparable in size to measurement errors associated with GC–MS. Thus, kinetic isotope effects must be considered in any rigorous assessment of errors in 13C labeling data, goodness-of-fit between model and data, confidence intervals of estimated metabolic fluxes, and statistical significance of differences between estimated metabolic flux distributions. PMID:23828762

  11. Economical synthesis of 13C-labeled opiates, cocaine derivatives and selected urinary metabolites by derivatization of the natural products.

    PubMed

    Karlsen, Morten; Liu, Huiling; Johansen, Jon Eigill; Hoff, Bård Helge

    2015-01-01

    The illegal use of opiates and cocaine is a challenge world-wide, but some derivatives are also valuable pharmaceuticals. Reference samples of the active ingredients and their metabolites are needed both for controlling administration in the clinic and to detect drugs of abuse. Especially, (13)C-labeled compounds are useful for identification and quantification purposes by mass spectroscopic techniques, potentially increasing accuracy by minimizing ion alteration/suppression effects. Thus, the synthesis of [acetyl-(13)C4]heroin, [acetyl-(13)C4-methyl-(13)C]heroin, [acetyl-(13)C2-methyl-(13)C]6-acetylmorphine, [N-methyl-(13)C-O-metyl-(13)C]codeine and phenyl-(13)C6-labeled derivatives of cocaine, benzoylecgonine, norcocaine and cocaethylene was undertaken to provide such reference materials. The synthetic work has focused on identifying (13)C atom-efficient routes towards these derivatives. Therefore, the (13)C-labeled opiates and cocaine derivatives were made from the corresponding natural products.

  12. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in marine zooplankton.

    PubMed

    Pomerleau, Corinne; Stern, Gary A; Pućko, Monika; Foster, Karen L; Macdonald, Robie W; Fortier, Louis

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea. PMID:26874765

  13. Abrupt recent shift in delta 13C and delta 15N values in Adélie penguin eggshell in Antarctica.

    PubMed

    Emslie, Steven D; Patterson, William P

    2007-07-10

    Stable isotope values of carbon (delta13C) and nitrogen (delta15N) in blood, feathers, eggshell, and bone have been used in seabird studies since the 1980s, providing a valuable source of information on diet, foraging patterns, and migratory behavior in these birds. These techniques can also be applied to fossil material when preservation of bone and other tissues is sufficient. Excavations of abandoned Adélie penguin (Pygoscelis adeliae) colonies in Antarctica often provide well preserved remains of bone, feathers, and eggshell dating from hundreds to thousands of years B.P. Herein we present an approximately 38,000-year time series of delta13C and delta15N values of Adélie penguin eggshell from abandoned colonies located in three major regions of Antarctica. Results indicate an abrupt shift to lower-trophic prey in penguin diets within the past approximately 200 years. We posit that penguins only recently began to rely on krill as a major portion of their diet, in conjunction with the removal of baleen whales and krill-eating seals during the historic whaling era. Our results support the "krill surplus" hypothesis that predicts excess krill availability in the Southern Ocean after this period of exploitation.

  14. Abrupt recent shift in δ13C and δ15N values in Adélie penguin eggshell in Antarctica

    PubMed Central

    Emslie, Steven D.; Patterson, William P.

    2007-01-01

    Stable isotope values of carbon (δ13C) and nitrogen (δ15N) in blood, feathers, eggshell, and bone have been used in seabird studies since the 1980s, providing a valuable source of information on diet, foraging patterns, and migratory behavior in these birds. These techniques can also be applied to fossil material when preservation of bone and other tissues is sufficient. Excavations of abandoned Adélie penguin (Pygoscelis adeliae) colonies in Antarctica often provide well preserved remains of bone, feathers, and eggshell dating from hundreds to thousands of years B.P. Herein we present an ≈38,000-year time series of δ13C and δ15N values of Adélie penguin eggshell from abandoned colonies located in three major regions of Antarctica. Results indicate an abrupt shift to lower-trophic prey in penguin diets within the past ≈200 years. We posit that penguins only recently began to rely on krill as a major portion of their diet, in conjunction with the removal of baleen whales and krill-eating seals during the historic whaling era. Our results support the “krill surplus” hypothesis that predicts excess krill availability in the Southern Ocean after this period of exploitation. PMID:17620620

  15. Provenancing Archaeological Wool Textiles from Medieval Northern Europe by Light Stable Isotope Analysis (δ13C, δ15N, δ2H)

    PubMed Central

    von Holstein, Isabella C. C.; Walton Rogers, Penelope; Craig, Oliver E.; Penkman, Kirsty E. H.; Newton, Jason; Collins, Matthew J.

    2016-01-01

    We investigate the origin of archaeological wool textiles preserved by anoxic waterlogging from seven medieval archaeological deposits in north-western Europe (c. 700–1600 AD), using geospatial patterning in carbon (δ13C), nitrogen (δ15N) and non-exchangeable hydrogen (δ2H) composition of modern and ancient sheep proteins. δ13C, δ15N and δ2H values from archaeological wool keratin (n = 83) and bone collagen (n = 59) from four sites were interpreted with reference to the composition of modern sheep wool from the same regions. The isotopic composition of wool and bone collagen samples clustered strongly by settlement; inter-regional relationships were largely parallel in modern and ancient samples, though landscape change was also significant. Degradation in archaeological wool samples, examined by elemental and amino acid composition, was greater in samples from Iceland (Reykholt) than in samples from north-east England (York, Newcastle) or northern Germany (Hessens). A nominal assignment approach was used to classify textiles into local/non-local at each site, based on maximal estimates of isotopic variability in modern sheep wool. Light element stable isotope analysis provided new insights into the origins of wool textiles, and demonstrates that isotopic provenancing of keratin preserved in anoxic waterlogged contexts is feasible. We also demonstrate the utility of δ2H analysis to understand the location of origin of archaeological protein samples. PMID:27764106

  16. Effects of Boron Nutrition and Water Stress on Nitrogen Fixation, Seed δ15N and δ13C Dynamics, and Seed Composition in Soybean Cultivars Differing in Maturities

    PubMed Central

    Bellaloui, Nacer; Mengistu, Alemu

    2015-01-01

    Therefore, the objective of the current research was to investigate the effects of foliar B nutrition on seed protein, oil, fatty acids, and sugars under water stress conditions. A repeated greenhouse experiment was conducted using different maturity group (MG) cultivars. Plants were well-watered with no foliar B (W − B), well-watered with foliar B (W + B), water-stressed with no foliar B (WS − B), and water-stressed with foliar B (WS + B). Foliar B was applied at rate of 0.45 kg·ha−1 and was applied twice at flowering and at seed-fill stages. The results showed that seed protein, sucrose, fructose, and glucose were higher in W + B treatment than in W − B, WS + B, and WS − B. The increase in protein in W + B resulted in lower seed oil, and the increase of oleic in WS − B or WS + B resulted in lower linolenic acid. Foliar B resulted in higher nitrogen fixation and water stress resulted in seed δ15N and δ13C alteration. Increased stachyose indicated possible physiological and metabolic changes in carbon and nitrogen pathways and their sources under water stress. This research is beneficial to growers for fertilizer management and seed quality and to breeders to use 15N/14N and 13C/12C ratios and stachyose to select for drought tolerance soybean. PMID:25667936

  17. Feeding and migration habits of white shark Carcharodon carcharias (Lamniformes: Lamnidae) from Isla Guadalupe inferred by analysis of stable isotopes delta15N and delta13C.

    PubMed

    Jaime-Rivera, Mario; Caraveo-Patiño, Javier; Hoyos-Padilla, Mauricio; Galván-Magaña, Felipe

    2014-06-01

    Stable isotope composition of marine top predator's tissues provides insight information of its trophic ecology and migratory behavior. Previous reports have shown that dermal tissues could record longer patterns of hunting and movement. Based on this, the aim of this study was to describe the feeding and migratory habits of the white shark from Isla Guadalupe, using stable isotopic analysis of dermis. We considered a small subset of many possible prey taxa that the sharks could have eaten throughout their migration: pinnipeds, squid and tuna. We grouped the data in five focal areas: Gulf of California, Coast of California, Isla Guadalupe, SOFA and Hawaii. We performed a Bayesian mixing model to study the trophic ecology of this top predator. Average isotopic values for dermis tissue of white shark were delta13C (-14.5 per thousand) and delta15N (19.1 per thousand). Corrected white shark dermal mean values to resemble muscle were delta13C (-16.6 per thousand) and delta15N (21.2 per thousand). Mixing model data from dermis showed predation in offshore areas such the SOFA and a main importance of pinnipeds as prey of the white shark in Isla Guadalupe. PMID:25102646

  18. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in marine zooplankton.

    PubMed

    Pomerleau, Corinne; Stern, Gary A; Pućko, Monika; Foster, Karen L; Macdonald, Robie W; Fortier, Louis

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea.

  19. Effects of boron nutrition and water stress on nitrogen fixation, seed δ15N and δ13C dynamics, and seed composition in soybean cultivars differing in maturities.

    PubMed

    Bellaloui, Nacer; Mengistu, Alemu

    2015-01-01

    Therefore, the objective of the current research was to investigate the effects of foliar B nutrition on seed protein, oil, fatty acids, and sugars under water stress conditions. A repeated greenhouse experiment was conducted using different maturity group (MG) cultivars. Plants were well-watered with no foliar B (W - B), well-watered with foliar B (W + B), water-stressed with no foliar B (WS - B), and water-stressed with foliar B (WS + B). Foliar B was applied at rate of 0.45 kg · ha(-1) and was applied twice at flowering and at seed-fill stages. The results showed that seed protein, sucrose, fructose, and glucose were higher in W + B treatment than in W - B, WS + B, and WS - B. The increase in protein in W + B resulted in lower seed oil, and the increase of oleic in WS - B or WS + B resulted in lower linolenic acid. Foliar B resulted in higher nitrogen fixation and water stress resulted in seed δ (15)N and δ (13)C alteration. Increased stachyose indicated possible physiological and metabolic changes in carbon and nitrogen pathways and their sources under water stress. This research is beneficial to growers for fertilizer management and seed quality and to breeders to use (15)N/(14)N and (13)C/(12)C ratios and stachyose to select for drought tolerance soybean.

  20. Effects of boron nutrition and water stress on nitrogen fixation, seed δ15N and δ13C dynamics, and seed composition in soybean cultivars differing in maturities.

    PubMed

    Bellaloui, Nacer; Mengistu, Alemu

    2015-01-01

    Therefore, the objective of the current research was to investigate the effects of foliar B nutrition on seed protein, oil, fatty acids, and sugars under water stress conditions. A repeated greenhouse experiment was conducted using different maturity group (MG) cultivars. Plants were well-watered with no foliar B (W - B), well-watered with foliar B (W + B), water-stressed with no foliar B (WS - B), and water-stressed with foliar B (WS + B). Foliar B was applied at rate of 0.45 kg · ha(-1) and was applied twice at flowering and at seed-fill stages. The results showed that seed protein, sucrose, fructose, and glucose were higher in W + B treatment than in W - B, WS + B, and WS - B. The increase in protein in W + B resulted in lower seed oil, and the increase of oleic in WS - B or WS + B resulted in lower linolenic acid. Foliar B resulted in higher nitrogen fixation and water stress resulted in seed δ (15)N and δ (13)C alteration. Increased stachyose indicated possible physiological and metabolic changes in carbon and nitrogen pathways and their sources under water stress. This research is beneficial to growers for fertilizer management and seed quality and to breeders to use (15)N/(14)N and (13)C/(12)C ratios and stachyose to select for drought tolerance soybean. PMID:25667936

  1. Submillimeter Observations of Titan: Global Measures of Stratospheric Temperature, CO, HCN, HC3N, and the Isotopic Ratios 12C/13C and 14N/15N

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark A.

    2004-11-01

    Interferometric observations of the atmosphere of Titan were performed with the Submillimeter Array on two nights in 2004 February to investigate the global average vertical distributions of several molecular species above the tropopause. Rotational transitions of CO, isomers of HCN, and HC3N were simultaneously recorded. The abundance of CO is determined to be 51+/-4 parts per million (ppm), constant with altitude. The vertical profile of HCN is dependent on the assumed temperature but generally increases from 30 parts per billion at the condensation altitude (~83 km) to 5 ppm at ~300 km. Furthermore, the central core of the HCN emission is strong and can be reproduced only if the upper stratospheric temperature increases with altitude. The isotopic ratios are determined to be 12C/13C=132+/-25 and 14N/15N=94+/-13 assuming the Coustenis & Bézard temperature profile. If the Lellouch temperature profile is assumed, the ratios decrease to 12C/13C=108+/-20 and 14N/15N=72+/-9. The vertical profile of HC3N is consistent with that derived by Marten et al.

  2. Variation in Fish δ13C and δ15N along a Climatic Gradient: An Isoscape Perspective for the West Florida Shelf

    NASA Astrophysics Data System (ADS)

    Radabaugh, K. R.; Huelster, S. A.; Peebles, E. B.

    2010-12-01

    Climatic gradients and geographic variations in river discharge impart spatiotemporal heterogeneity to the stable-isotope baselines of coastal food webs. This baseline variation increases the utility of stable-isotope maps, or “isoscapes,” by providing new spatial and temporal perspectives on the site fidelities of motile marine organisms and the dominant primary production pathways that support their biomass. Routine trawl surveys at more than 120 locations on the West Florida Shelf (eastern Gulf of Mexico) were used to acquire more than 1,400 fish and invertebrate specimens for analysis of bulk-tissue δ13C and δ15N. The first West Florida Shelf isoscape, which was completed during summer 2009, revealed strong isotopic trends along latitudinal, longitudinal, and depth gradients. δ15N composition revealed site fidelities were generally high for trawl-caught fishes, yet specimens collected along the Florida peninsula exhibited greater spatial variability in δ13C composition than specimens collected along the Florida panhandle. This heterogeneity may be associated with variability in surface-water runoff that occurs during the peninsula’s summer rainy season. Comparisons of subsequent isoscapes are being used to explore interannual and seasonal stability of isoscapes on the West Florida Shelf.

  3. Late Holocene monsoon climate of northeastern Taiwan inferred from elemental (C, N) and isotopic (δ13C, δ15N) data in lake sediments

    NASA Astrophysics Data System (ADS)

    Selvaraj, Kandasamy; Wei, Kuo-Yen; Liu, Kon-Kee; Kao, Shuh-Ji

    2012-03-01

    Little information exists about centennial-scale climate variability on oceanic islands in the western Pacific where the East Asian monsoon (EAM) strongly influences the climate, mountain ecosystem and the society. In this study, we investigate a 168 cm long sediment core recovered from Emerald Peak Lake in subalpine NE Taiwan for the contents of grain size, total organic carbon (TOC), C/N ratio, and stable isotopes (δ13C and δ15N) to reconstruct the monsoon climate and vegetation density during the late Holocene. Six radiocarbon (14C) ages obtained on plant remains used for the chronology indicate that the sediment core has been accumulated since ˜3770 cal BP with a mean sedimentation rate of 44.6 cm/ka. The sub-centennial resolution of our proxy records reveals strong fluctuations of the EAM and vegetation density for the past ˜3770 cal BP. The greater contents of coarse and medium sediments with overall decreasing trends from 3770 to 2000 cal BP suggest an increasing fine sediment influx from the catchment likely due to an increasing lake water level. Although low TOC content, C/N ratio, and enriched δ13C values in bulk and fine sediments during this interval suggest a sparsely vegetated catchment, increasing trends of TOC content and C/N ratio together with decreasing trends of δ13C and δ15N values indicate a strengthening pattern of summer monsoon. This is in contrast to a decreasing monsoon strength inferred from Dongge Cave δ18O record at that time, supporting the idea of anti-phasing of summer EAM and Indian summer monsoon. Since 2000 cal BP, higher content of fine sediments with high TOC content and C/N ratio but relatively depleted δ13C and low δ15N values suggest a high but stable lake water level and dense C3 plants, consistent with a stronger summer monsoon in a wet climate. Within this general trend, we interpret a prominent change of proxy parameters in sediments from ˜560 to 150 cal BP, as subtropical evidence for the Little Ice Age in NE

  4. Soil organic matter stability in agricultural land: New insights using δ15N, δ13C and C:N ratio

    NASA Astrophysics Data System (ADS)

    Mao, Yanling; Heiling, Maria; De Clercq, Tim; Resch, Christian; Aigner, Martina; Mayr, Leo; Vanlauwe, Bernard; Thuita, Moses; Steier, Peter; Leifeld, Jens; Merckx, Roel; Spiegel, Heide; Cepuder, Peter; Nguyen, Minh-Long; Zaman, Mohammad; Dercon, Gerd

    2014-05-01

    Soil organic matter (SOM) contains three times more carbon than in the atmosphere or terrestrial vegetation. This major pool of organic carbon is sensitive to climate change, but the mechanisms for carbon stabilization in soils are still not well understood and the ultimate potential for carbon stabilization is unknown. For predicting SOM dynamics, it is necessary to gain information on the turnover rates or stability of different soil organic carbon pools. The common method to determine stability and age of SOM is the 14C radio carbon technique, which is very expensive and therefore limited in use. Conen et al. (2008) developed a model to estimate the SOM stability based on the isotopic discrimination of 15N natural abundance by soil micro-organisms, and the decreasing C:N ratio during organic matter decomposition. This model has been developed for permanent grasslands in the Swiss Alps under steady-state conditions. The objective of our study was to validate whether this model could be used or adapted, in combination with 13C isotope signatures of SOM, to predict the relative age and stability of SOM fractions in more disturbed agricultural ecosystems. The present study was carried out on soils collected from six long-term experimental trials (from 12 to 50 years) under different agricultural management practices (e.g. no tillage vs conventional tillage, and mulch, fertilizer, green or animal manure application), located in Austria, Belgium, Kenya and China. Top and subsoil were sampled until 80-100 cm depth. Particulate organic matter (POM) fraction was obtained by wet sieving (> 63μm) after sonification and density separation (<1.8 g cm-3). Carbon and nitrogen contents and their stable isotopic ratios (i.e. 15N and 13C) were measured in POM and bulk soils. The mineral associated matter fraction (mOM), as the protected carbon, was calculated by difference to the bulk soil organic carbon. The relative age of the SOM was calculated using the Conen model and

  5. Variations of soil δ13C and δ15N across a precipitation gradient in a savanna ecosystem: Implications of climate change on the carbon cycle

    NASA Astrophysics Data System (ADS)

    Dintwe, K.; Gilhooly, W., III; Wang, L.; O'Donnell, F. C.; Bhattachan, A.; D'Odorico, P.; Okin, G. S.

    2015-12-01

    Savannas are the third largest terrestrial carbon pool after only tropical and borealforests. They are highly productive ecosystems and contribute about 30% of the globalterrestrial net primary productivity and potentially contain 20% of the world's soilorganic carbon. Global circulation models have predicted that many savannas willbecome warmer and drier during the twenty-first century. The impacts of the projectedclimatic trend on the productivity and biogeochemical cycles of savannas are not fullyunderstood. Here, we assessed the abundance of stable carbon (δ13C) and nitrogen (δ15N)isotopes in soil profiles at four sites along a 1000 km transect with a strong south-northprecipitation gradient in southern Africa. The south receives about 180 mm of rainfall peryear and dominated by grass species (C4) whereas the north receives 540 mm·yr-1 anddominated by woody plants (C3). Soil surface δ13C showed that woody vegetation contributedmore than 75% of soil carbon input in the wet sites whereas grasses contributed about65% of soil carbon input in the dry sites. The soil profile δ13C indicated that intermediatesites have shifted from grass dominated to woody-shrub-dominated statesduring recent past. The dry sites had relatively higher δ15N (~10‰) compared to the wetsites (~5‰) indicating significantly greater N2 fixation in the wetter sites or high rates ofNH3 volatilization in the drier sites. Our results suggest that as savannas become warmerand drier due to climate change, woody shrubs are likely to be the dominant form ofvegetation structure, a process that could alter biogeochemical processes and results insavannas becoming net carbon sink or source.

  6. Variation in δ13C and δ15N diet–vibrissae trophic discrimination factors in a wild population of California sea otters

    USGS Publications Warehouse

    Newsome, Seth D.; Bentall, Gena B.; Tinker, M. Tim; Oftedal, Olav T.; Ralls, Katherine; Estes, James A.; Fogel, Marilyn L.

    2010-01-01

    The ability to quantify dietary inputs using stable isotope data depends on accurate estimates of isotopic differences between a consumer (c) and its diet (d), commonly referred to as trophic discrimination factors (TDFs) and denoted by Δc-d. At present, TDFs are available for only a few mammals and are usually derived in captive settings. The magnitude of TDFs and the degree to which they vary in wild populations is unknown. We determined δ13C and δ15N TDFs for vibrissae (i.e., whiskers), a tissue that is rapidly becoming an informative isotopic substrate for ecologists, of a wild population of sea otters for which individual diet has been quantified through extensive observational study. This is one of the very few studies that report TDFs for free-living wild animals feeding on natural diets. Trophic discrimination factors of 2.2‰ ± 0.7‰ for δ13C and 3.5‰ ± 0.6‰ for δ15N (mean ± SD) were similar to those reported for captive carnivores, and variation in individual δ13C TDFs was negatively but significantly related to sea urchin consumption. This pattern may relate to the lipid-rich diet consumed by most sea otters in this population and suggests that it may not be appropriate to lipid-extract prey samples when using the isotopic composition of keratinaceous tissues to examine diet in consumers that frequently consume lipid-rich foods, such as many marine mammals and seabirds. We suggest that inherent variation in TDFs should be included in isotopically based estimates of trophic level, food chain length, and mixing models used to quantify dietary inputs in wild populations; this practice will further define the capabilities and limitations of isotopic approaches in ecological studies.

  7. The response of the foliar antioxidant system and stable isotopes (δ(13)C and δ(15)N) of white willow to low-level air pollution.

    PubMed

    Wuytack, Tatiana; AbdElgawad, Hamada; Staelens, Jeroen; Asard, Han; Boeckx, Pascal; Verheyen, Kris; Samson, Roeland

    2013-06-01

    In this study we aimed to determine and elucidate the effect of ambient air pollution on the foliar antioxidant system and stable carbon and nitrogen isotopes of white willow (Salix alba L.). We grew white willow in uniform potting soil in the near vicinity of sixteen air quality monitoring stations in Belgium where nitrogen dioxide (NO2), ozone, sulfur dioxide and particulate matter concentrations were continuously measured. The trees were exposed to ambient air during six months (April-September 2011), and, thereafter, the degree of lipid peroxidation and foliar content of antioxidant molecules (ascorbate, glutathione, polyphenols, flavonoids), antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, peroxidase) and foliar stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes were measured. We found that lipid peroxidation was caused by air pollution stress, arising from high ambient NO2 concentrations, as shown by an increased amount of malondialdehyde. The antioxidant system was activated by increasing the amount of polyphenols at monitoring stations with a high atmospheric NO2 and low O3 concentration, while no increase of key enzymes (e.g., ascorbate, glutathione) was observed. The δ(13)C also decreased with increasing NO2 concentrations and decreasing O3 concentrations, probably reflecting a decreased net photosynthesis and/or a concomitant decrease of (13)CO2 in the atmosphere. Shade also influenced foliar δ(13)C and the content of leaf ascorbate and glutathione.

  8. The “Speedy” Synthesis of Atom-Specific 15N Imino/Amido-Labeled RNA

    PubMed Central

    Kreutz, Christoph; Micura, Ronald

    2016-01-01

    Although numerous reports on the synthesis of atom-specific 15N-labeled nucleosides exist, fast and facile access to the corresponding phosphoramidites for RNA solid-phase synthesis is still lacking. This situation represents a severe bottleneck for NMR spectroscopic investigations on functional RNAs. Here, we present optimized procedures to speed up the synthesis of 15N(1) adenosine and 15N(1) guanosine amidites, which are the much needed counterparts of the more straightforward-to-achieve 15N(3) uridine and 15N(3) cytidine amidites in order to tap full potential of 1H/15N/15N-COSY experiments for directly monitoring individual Watson–Crick base pairs in RNA. Demonstrated for two preQ1 riboswitch systems, we exemplify a versatile concept for individual base-pair labeling in the analysis of conformationally flexible RNAs when competing structures and conformational dynamics are encountered. PMID:26237536

  9. Tracking the incorporation of 15N from labeled beech litter into mineral-organic associations

    NASA Astrophysics Data System (ADS)

    Kleber, M.; Hatton, P.; Derrien, D.; Lajtha, K.; Zeller, B.

    2008-12-01

    Nitrogen containing organic compounds are thought to have a role in the complex web of processes that control the turnover time of soil organic matter. The sequential density fractionation technique is increasingly used for the purpose of investigating the association of organic materials with the mineral matrix. Organic materials in the denser fractions (>2.0 kg L-1) typically show 13C NMR signals indicative of carbohydrate and aliphatic structures, an absence of lignin and tannin structures and a narrow C:N ratio, suggesting a microbial origin of organic matter in these fractions. Here we take advantage of a labeling experiment conducted at two different sites in Germany and in France to investigate the incorporation of organic nitrogen into physical fractions of increasing density, representing a proximity gradient to mineral surfaces. 15N labeled beech litter was applied to two acidic forest topsoils 8 and 12 years ago. Although there are differences in the distribution patterns between the two soils, and the majority of the organic nitrogen was recovered in fractions representing organic matter of plant origin and not bound to the mineral matrix, our data clearly show that after a decade, significant amounts of the nitrogen had been incorporated in mineral-organic fractions of supposedly slow turnover. It remains to be shown to which extent the N in the densest fractions was incorporated by soil microbiota and associated with mineral surfaces in organic form or adsorbed to mineral surfaces in inorganic form (NH4+).

  10. A roadmap for interpreting 13C metabolite labeling patterns from cells

    PubMed Central

    Buescher, Joerg M.; Antoniewicz, Maciek R.; Boros, Laszlo G.; Burgess, Shawn C.; Brunengraber, Henri; Clish, Clary B.; DeBerardinis, Ralph J.; Feron, Olivier; Frezza, Christian; Ghesquiere, Bart; Gottlieb, Eyal; Hiller, Karsten; Jones, Russell G.; Kamphorst, Jurre J.; Kibbey, Richard G.; Kimmelman, Alec C.; Locasale, Jason W.; Lunt, Sophia Y.; Maddocks, Oliver D. K.; Malloy, Craig; Metallo, Christian M.; Meuillet, Emmanuelle J.; Munger, Joshua; Nöh, Katharina; Rabinowitz, Joshua D.; Ralser, Markus; Sauer, Uwe; Stephanopoulos, Gregory; St-Pierre, Julie; Tennant, Daniel A.; Wittmann, Christoph; Vander Heiden, Matthew G.; Vazquez, Alexei; Vousden, Karen; Young, Jamey D.; Zamboni, Nicola; Fendt, Sarah-Maria

    2015-01-01

    Measuring intracellular metabolism has increasingly led to important insights in biomedical research. 13C tracer analysis, although less information-rich than quantitative 13C flux analysis that requires computational data integration, has been established as a time-efficient method to unravel relative pathway activities, qualitative changes in pathway contributions, and nutrient contributions. Here, we review selected key issues in interpreting 13C metabolite labeling patterns, with the goal of drawing accurate conclusions from steady state and dynamic stable isotopic tracer experiments. PMID:25731751

  11. The complete set of spin observables for the (13)C(polarized proton, polarized neutron)(13)N and (15)N(polarized proton, polarized neutron)(15)O reactions

    NASA Astrophysics Data System (ADS)

    Du, Qun Qun

    1998-12-01

    The 13C(p,n)13N and 15N(p,n)15O reactions have been a puzzle for more than ten years. The ground state transitions are Jπ=1/2- to Jπ=1/2-. These are 'mixed' transitions because they can involve quantum number changes either (/Delta T=1,/ /Delta J=0,/ /Delta/pi=0,/ /Delta S=0), or (/Delta T=1,/ /Delta J=1,/ /Delta/pi=0,/ /Delta S=1); these quantum number changes are refered to as 'Fermi' and 'Gamow-Teller' respectively. Because the quantum number changes are the same as for Fermi and Gamow-Teller beta decay. From the systematics of (p,n) and (n,p) reactions on pure Fermi transitions (e.g. 0 + to 0+) and pure Gamow-Teller transitions (e.g. 0+ to 1+), calibrations have been established of cross section per unit B(F) or unit B(GT), where 'B' refers to doubly reduced matrix elements extracted from beta decay. However, cross sections for the 13C(p,n)13N(g.s.) and 15N(p,n)15O(g.s.) reactions are substantially larger than one would then predict from the known B(F)s and B(GT)s for these transitions. To explore this anomaly, spin observables were used to extract separately the Fermi and Gamow-Teller cross sections for these reactions. To acquire the complete sets of polarization- transfer observables, a new neutron polarimeter was designed, built, commissioned and calibrated. This polarimeter, call the '2π polarimeter' because of its complete azimuthal coverage for scattered neutrons, has very good position and timing resolution (354 ps). The complete sets of spin-transfer coefficients Dij for 13C(p,n)13N (at 0o , 5.5o , and 11o ) and 15N(p,n)15O (at 0o ) at 135 MeV were measured. Following the formalism of Ichimura and Kawahigashi, we extracted the spin-longitudinal, and spin-transverse and spin-independent responses D0,/ Dq,/ Dn and Dp from the measured Dijs. The F and GT fractions of the (p,n) cross sections are then extracted as f F=D0 and fGT=Dn+Dp+Dq=1- d0. Values of Dk for both the 13C(p,n)13N(g.s) and 15N(p,n)15O(g.s.) were extracted. From these responses, we

  12. A Method to Constrain Genome-Scale Models with 13C Labeling Data

    PubMed Central

    García Martín, Héctor; Kumar, Vinay Satish; Weaver, Daniel; Ghosh, Amit; Chubukov, Victor; Mukhopadhyay, Aindrila; Arkin, Adam; Keasling, Jay D.

    2015-01-01

    Current limitations in quantitatively predicting biological behavior hinder our efforts to engineer biological systems to produce biofuels and other desired chemicals. Here, we present a new method for calculating metabolic fluxes, key targets in metabolic engineering, that incorporates data from 13C labeling experiments and genome-scale models. The data from 13C labeling experiments provide strong flux constraints that eliminate the need to assume an evolutionary optimization principle such as the growth rate optimization assumption used in Flux Balance Analysis (FBA). This effective constraining is achieved by making the simple but biologically relevant assumption that flux flows from core to peripheral metabolism and does not flow back. The new method is significantly more robust than FBA with respect to errors in genome-scale model reconstruction. Furthermore, it can provide a comprehensive picture of metabolite balancing and predictions for unmeasured extracellular fluxes as constrained by 13C labeling data. A comparison shows that the results of this new method are similar to those found through 13C Metabolic Flux Analysis (13C MFA) for central carbon metabolism but, additionally, it provides flux estimates for peripheral metabolism. The extra validation gained by matching 48 relative labeling measurements is used to identify where and why several existing COnstraint Based Reconstruction and Analysis (COBRA) flux prediction algorithms fail. We demonstrate how to use this knowledge to refine these methods and improve their predictive capabilities. This method provides a reliable base upon which to improve the design of biological systems. PMID:26379153

  13. Biogeochemical Indicators in High- and Low-Arctic Marine and Terrestrial Avian Community Changes: Comparative Isotopic (13C, 15N, and 34S) Studies in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Causey, D.; Bargmann, N. A.; Burnham, K. K.; Burnham, J. L.; Padula, V. M.; Johnson, J. A.; Welker, J. M.

    2011-12-01

    Understanding the complex dynamics of environmental change in northern latitudes is of paramount importance today, given documented rapid shifts in sea ice, plant phenology, temperatures, deglaciation, and habitat fidelity. This knowledge is particularly critical for Arctic avian communities, which are integral components by which biological teleconnections are maintained between the mid and northern latitudes. Furthermore, Arctic birds are fundamental to Native subsistence lifestyles and a focus for conservation activities. Avian communities of marine and terrestrial Arctic environments represent a broad spectrum of trophic levels, from herbivores (eg., geese Chen spp.), planktivores (eg., auklets Aethia spp.), and insectivores (eg., passerines: Wheatears Oenanthe spp., Longspurs Calcarius spp.), to predators of marine invertebrates (eg., eiders Somateria spp.), nearshore and offshore fish (eg., cormorants Phalacrocorax spp, puffins Fratercula spp.), even other bird species (eg., gulls Larus spp., falcons Peregrinus spp.). This diversity of trophic interconnections is an integral factor in the dynamics of Arctic ecosystem ecology, and they are key indicators for the strength and trajectories of change. We are especially interested in their feeding ecology, using stable isotope-diet relations to examine historical diets and to predict future feeding ecology by this range of species. Since 2009, we have been studying the foodweb ecology using stable isotopes (δ13C, δ15N, δ34S) of contemporaneous coastal and marine bird communities in High Arctic (Northwest Greenland) and Low Arctic (western Aleutian Islands, AK). We are quantifying the isotopic values of blood, organ tissues, and feathers, and have carried out comparisons between native and lipid-extracted samples. Although geographically distant, these communities comprise similar taxonomic and ecological congeners, including several species common to both (eg., Common Eider, Black-legged Kittiwake, Northern

  14. The fate of (13)C-labelled and non-labelled inulin predisposed to large bowel fermentation in rats.

    PubMed

    Butts, Christine A; Paturi, Gunaranjan; Tavendale, Michael H; Hedderley, Duncan; Stoklosinski, Halina M; Herath, Thanuja D; Rosendale, Douglas; Roy, Nicole C; Monro, John A; Ansell, Juliet

    2016-04-01

    The fate of stable-isotope (13)C labelled and non-labelled inulin catabolism by the gut microbiota was assessed in a healthy rat model. Sprague-Dawley male rats were randomly assigned to diets containing either cellulose or inulin, and were fed these diets for 3 days. On day (d) 4, rats allocated to the inulin diet received (13)C-labelled inulin. The rats were then fed the respective non-labelled diets (cellulose or inulin) until sampling (d4, d5, d6, d7, d10 and d11). Post feeding of (13)C-labelled substrate, breath analysis showed that (13)C-inulin cleared from the host within a period of 36 hours. Faecal (13)C demonstrated the clearance of inulin from gut with a (13)C excess reaching maximum at 24 hours (d5) and then declining gradually. There were greater variations in caecal organic acid concentrations from d4 to d6, with higher concentrations of acetic, butyric and propionic acids observed in the rats fed inulin compared to those fed cellulose. Inulin influenced caecal microbial glycosidase activity, increased colon crypt depth, and decreased the faecal output and polysaccharide content compared to the cellulose diet. In summary, the presence of inulin in the diet positively influenced large bowel microbial fermentation.

  15. Assessment of trace elements, POPs, (210)Po and stable isotopes ((15)N and (13)C) in a rare filter-feeding shark: The megamouth.

    PubMed

    Moura, Jailson Fulgencio de; Merico, Agostino; Montone, Rosalinda Carmela; Silva, Josilene; Seixas, Tércia Guedes; Godoy, José Marcus de Oliveira; Saint'Pierre, Tatiana Dillenburg; Hauser-Davis, Rachel Ann; Di Beneditto, Ana Paula Madeira; Reis, Estéfane Cardinot; Tavares, Davi Castro; Lemos, Leila Soledade; Siciliano, Salvatore

    2015-06-15

    With less than 60 records being reported worldwide, the megamouth (Megachasma pelagios) is today one of the least known shark species inhabiting our oceans. Therefore, information concerning the biology and ecology of this enigmatic organism is very scarce and limited to feeding behaviour and preferred habitat. The present work reports new data on the concentrations of trace elements, organic mercury, POPs and (210)Po in hepatic and muscular tissues of a specimen found stranded in the southeastern coast of Brazil. Additionally, we provide new evidence based on stable isotope analysis (δ(15)N and δ(13)C) confirming the preference for the pelagic habitat and the zooplanktivorous feeding behaviour of the megamouth. These results are consistent with the low concentrations of organic pollutant compounds and other elements measured in our samples.

  16. Complete 1H, 15N and 13C assignment of trappin-2 and 1H assignment of its two domains, elafin and cementoin.

    PubMed

    Loth, Karine; Alami, Soha Abou Ibrahim; Habès, Chahrazed; Garrido, Solène; Aucagne, Vincent; Delmas, Agnès F; Moreau, Thierry; Zani, Marie-Louise; Landon, Céline

    2016-04-01

    Trappin-2 is a serine protease inhibitor with a very narrow inhibitory spectrum and has significant anti-microbial activities. It is a 10 kDa cationic protein composed of two distinct domains. The N-terminal domain (38 residues) named cementoin is known to be intrinsically disordered when it is not linked to the elafin. The C-terminal domain (57 residues), corresponding to elafin, is a cysteine-rich domain stabilized by four disulfide bridges and is characterized by a flat core and a flexible N-terminal part. To our knowledge, there is no structural data available on trappin-2. We report here the complete (1)H, (15)N and (13)C resonance assignment of the recombinant trappin-2 and the (1)H assignments of cementoin and elafin, under the same experimental conditions. This is the first step towards the 3D structure determination of the trappin-2.

  17. 1H, 15N and 13C assignments of the N-terminal domain of the Mediator complex subunit MED26.

    PubMed

    Peruzzini, Riccardo; Lens, Zoé; Verger, Alexis; Dewitte, Frédérique; Ferreira, Elisabeth; Baert, Jean-Luc; Villeret, Vincent; Landrieu, Isabelle; Cantrelle, François-Xavier

    2016-04-01

    MED26 is a subunit of the Mediator, a very large complex involved in regulation of gene transcription by RNA Polymerase II. MED26 regulates the switch between initiation and elongation phases of the transcription. This function requires interaction of its N-terminal domain (NTD) with several protein partners implicated in transcriptional regulation. Molecular details of the structure and interaction mode of MED26 NTD would improve understanding of this complex regulation. As a first step towards structural characterization, sequence specific (1)H, (13)C and (15)N assignments for MED26 NTD was performed based on Nuclear Magnetic Resonance spectroscopy. TALOS+ analysis of the chemical shifts data revealed a domain solely composed of helices. Assignments will be further used to solve NMR structure and dynamics of MED26 NTD and investigate the molecular details of its interaction with protein partners.

  18. Assessment of trace elements, POPs, (210)Po and stable isotopes ((15)N and (13)C) in a rare filter-feeding shark: The megamouth.

    PubMed

    Moura, Jailson Fulgencio de; Merico, Agostino; Montone, Rosalinda Carmela; Silva, Josilene; Seixas, Tércia Guedes; Godoy, José Marcus de Oliveira; Saint'Pierre, Tatiana Dillenburg; Hauser-Davis, Rachel Ann; Di Beneditto, Ana Paula Madeira; Reis, Estéfane Cardinot; Tavares, Davi Castro; Lemos, Leila Soledade; Siciliano, Salvatore

    2015-06-15

    With less than 60 records being reported worldwide, the megamouth (Megachasma pelagios) is today one of the least known shark species inhabiting our oceans. Therefore, information concerning the biology and ecology of this enigmatic organism is very scarce and limited to feeding behaviour and preferred habitat. The present work reports new data on the concentrations of trace elements, organic mercury, POPs and (210)Po in hepatic and muscular tissues of a specimen found stranded in the southeastern coast of Brazil. Additionally, we provide new evidence based on stable isotope analysis (δ(15)N and δ(13)C) confirming the preference for the pelagic habitat and the zooplanktivorous feeding behaviour of the megamouth. These results are consistent with the low concentrations of organic pollutant compounds and other elements measured in our samples. PMID:25858662

  19. Trace elements (Cu, Zn, and Hg) and δ13C15N in seabird subfossils from three islands of the South China Sea and its implications.

    PubMed

    Xu, Liqiang; Liu, Xiaodong; Nie, Yaguang

    2016-05-01

    Seabird subfossils were collected on three islands of the Xisha Archipelago, South China Sea. Via elemental analysis, we identified that bird guano was a significant source for heavy metals Cu, Zn, and Hg. Cu and Zn levels in these guano samples are comparable to their levels in wildbird feces, but guano Hg was lower than previously reported. Trophic positions significantly impacted transfer efficiency of heavy metals by seabirds. Despite of a common source, trace elements, as well as stable isotopes (i.e., guano δ(13)C and collagen δ(15)N), showed island-specific characteristics. Bird subfossils on larger island had relatively greater metal concentrations and revealed higher trophic positions. Partition of element and isotope levels among the islands suggested that transfer efficacy of seabirds on different islands was different, and bird species were probably unevenly distributed among the islets. Island area is possibly a driving factor for distributions of seabird species.

  20. Quantification of soy protein using the isotope method (δ(13)C and δ(15)N) for commercial brands of beef hamburger.

    PubMed

    Ducatti, Rhani; de Almeida Nogueira Pinto, José Paes; Sartori, Maria Márcia Pereira; Ducatti, Carlos

    2016-12-01

    Hamburgers (beef patties) may be adulterated through the overuse of protein extenders. Among vegetables, soy protein is the best substitute for animal protein. These ingredients help to reduce the cost of producing a final product, and they maximize profits for fraudulent industries. Moreover, the ingestion of soy or other non-meat proteins by allergic individuals may present a health risk. In addition, monitoring by supervisory bodies is hampered by a lack of appropriate analytical methodologies. Within this context, the aim of this study was to determine and quantify the levels of added soy protein by determination of (15)N and (13)C stable isotopes. A total of 100 beef hamburger samples from 10 commercial brands were analyzed. Only three samples of the G brand were within the standards set the Brazilian legislation. The remaining 97 samples from 10 commercial brands contained >4% soy protein; therefore, they are adulterated and not in compliance with the current legislation. PMID:27501234

  1. 1H, 13C, and 15N resonance assignments for Escherichia coli ytfP, a member of the broadly conserved UPF0131 protein domain family

    SciTech Connect

    Aramini, James M.; Swapna, G.V.T.; Huang, Yuanpeng; Rajan, Paranji K.; Xiao, Rong; Shastry, Ritu; Acton, Thomas; Cort, John R.; Kennedy, Michael A.; Montelione, Gaetano

    2005-11-01

    Protein ytfP from Escherichia coli (Swiss-Prot ID: YTFP-ECOLI; NESG target ID: ER111; Wunderlich et al., 2004) is a 113-residue member of the UPF0131 protein family (Pfam ID: PF03674) of unknown function. This domain family is found in organisms from all three kingdoms, archaea, eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 97% of backbone and 91% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a mixed a/b topology,????????. BMRB deposit with Accession No. 6448. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.

  2. 1H, 13C, and 15N resonance assignments for the protein coded by gene locus BB0938 of Bordetella bronchiseptica

    SciTech Connect

    Rossi, Paolo; Ramelot, Theresa A.; Xiao, Rong; Ho, Chi K.; Ma, LiChung; Acton, Thomas; Kennedy, Michael A.; Montelione, Gaetano

    2005-11-01

    The product of gene locus BB0938 from Bordetella bronchiseptica (Swiss-Prot ID: Q7WNU7-BORBR; NESG target ID: BoR11; Wunderlich et al., 2004; Pfam ID: PF03476) is a 128-residue protein of unknown function. This broadly conserved protein family is found in eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 98% of backbone and 94% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a b topology with a seven-residue helical insert, ??????????. BMRB deposit with accession number 6693. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.

  3. Complete assignment of the methionyl carbonyl carbon resonance in switch variant anti-dansyl antibodies labeled with (1- sup 13 C)methionine

    SciTech Connect

    Kato, Koichi; Matsunaga, C.; Igarashi, Takako; Kim, Hahyung; Odaka, Asano; Shimada, Ichio; Arata, Yoji )

    1991-01-01

    A {sup 13}C NMR study is reported of switch variant anti-dansyl antibodies developed by Dangl et al. who had used the fluorescence-activated cell sorter to select and clone these variants. These switch variant antibodies possess the identical V{sub H}, V{sub L}, and C{sub L} domains in conjunction with different heavy chain constant regions. In the present study, switch variant antibodies of IgG1, IgG2a, and IgG2b subclasses were used along with a short-chain IgG2a antibody, in which the entire C{sub H}1 domain is deleted. The switch variant antibodies were specifically labeled with (1-{sup 13}C)methionine by growing hybridoma cells in serum-free medium. Assignments of all the methionyl carbonyl carbon resonances have been completed by using the intact antibodies along with their fragments and recombined proteins in which either heavy or light chain is labeled. A double labeling method has played a crucial role in the process of the spectral assignments. The strategy used for the assignments has been described in detail. In incorporating {sup 15}N-labeled amino acids into the antibodies for the double labeling, isotope dilution caused a serious problem except in the cases of ({alpha}-{sup 15}N)lysine and ({sup 15}N)threonine, both of which cannot become the substrate of transaminases. It was found that {beta}-chloro-L-alanine is most effective in suppressing the isotope scrambling. So far, spectral assignments by the double labeling method have been possible with {sup 15}N-labeled Ala, His, Ile, Lys, Met, Ser, Thr, Tyr, and Val. On the basis of the results of the present {sup 13}C study, possible use of the assigned carbonyl carbon resonances for the elucidation of the structure-function relationship in the antibody system has been briefly discussed.

  4. Effect of age and ration on diet-tissue isotopic (Δ13C, Δ15N) discrimination in striped skunks (Mephitis mephitis).

    PubMed

    Hobson, Keith A; Quirk, Travis W

    2014-01-01

    An important prerequisite for the effective use of stable isotopes in animal ecology is the accurate assessment of isotopic discrimination factors linking animals to their diets for a multitude of tissue types. Surprisingly, these values are poorly known in general and especially for mammalian carnivores and omnivores in particular. Also largely unknown are the factors that influence diet-tissue isotopic discrimination such as nutritional quality and age. We raised adult and juvenile striped skunks (Mephitis mephitis) in captivity on a constant omnivore diet (Mazuri Omnivore A 5635). Adults (n=6) and juveniles (n=3) were kept for 7 months and young (n=7) to the age of 50 days. We then examined individuals for stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values of hair, nails, lipid, liver, muscle, bone collagen and the plasma, and cellular fractions of blood. Discrimination values differed among age groups and were significantly higher for young compared with their mothers, likely due to the effects of weaning. Δ(15)N isotopic discrimination factors ranged from 3.14 (nails) to 5.6‰ (plasma) in adults and 4.3 (nails) to 5.8‰ (liver) for young. For Δ(13)C, values ranged from-3.3 (fat) to 3.0‰ (collagen) in adults and from-3.3 (fat) to 2.0‰ (collagen) in young. Our data provide an important tool for predicting diets and source of feeding for medium-sized mammalian omnivorous adults integrated over short (e.g. liver, plasma) through long (e.g. collagen) periods and underline the potential effects of age on isotopic values in omnivore diets. PMID:24506487

  5. Effect of age and ration on diet-tissue isotopic (Δ13C, Δ15N) discrimination in striped skunks (Mephitis mephitis).

    PubMed

    Hobson, Keith A; Quirk, Travis W

    2014-01-01

    An important prerequisite for the effective use of stable isotopes in animal ecology is the accurate assessment of isotopic discrimination factors linking animals to their diets for a multitude of tissue types. Surprisingly, these values are poorly known in general and especially for mammalian carnivores and omnivores in particular. Also largely unknown are the factors that influence diet-tissue isotopic discrimination such as nutritional quality and age. We raised adult and juvenile striped skunks (Mephitis mephitis) in captivity on a constant omnivore diet (Mazuri Omnivore A 5635). Adults (n=6) and juveniles (n=3) were kept for 7 months and young (n=7) to the age of 50 days. We then examined individuals for stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values of hair, nails, lipid, liver, muscle, bone collagen and the plasma, and cellular fractions of blood. Discrimination values differed among age groups and were significantly higher for young compared with their mothers, likely due to the effects of weaning. Δ(15)N isotopic discrimination factors ranged from 3.14 (nails) to 5.6‰ (plasma) in adults and 4.3 (nails) to 5.8‰ (liver) for young. For Δ(13)C, values ranged from-3.3 (fat) to 3.0‰ (collagen) in adults and from-3.3 (fat) to 2.0‰ (collagen) in young. Our data provide an important tool for predicting diets and source of feeding for medium-sized mammalian omnivorous adults integrated over short (e.g. liver, plasma) through long (e.g. collagen) periods and underline the potential effects of age on isotopic values in omnivore diets.

  6. Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas--characterization by multivariate analysis.

    PubMed

    Foan, L; Leblond, S; Thöni, L; Raynaud, C; Santamaría, J M; Sebilo, M; Simon, V

    2014-01-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations and N, C stable isotope signatures were determined in mosses Hypnum cupressiforme Hedw. from 61 sites of 3 European regions: Île-de-France (France); Navarra (Spain); the Swiss Plateau and Basel area (Switzerland). Total PAH concentrations of 100-700 ng g(-1), as well as δ(13)C values of -32 to -29‰ and δ(15)N values of -11 to -3‰ were measured. Pearson correlation tests revealed opposite trends between high molecular weight PAH (4-6 aromatic rings) content and δ(13)C values. Partial Least Square regressions explained the very significant correlations (r > 0.91, p < 0.001) between high molecular weight PAH concentrations by local urban land use (<10 km) and environmental factors such as elevation and pluviometry. Finally, specific correlations between heavy metal and PAH concentrations were attributed to industrial emissions in Switzerland and road traffic emissions in Spain.

  7. Seasonal mercury concentrations and δ15N and δ13C values of benthic macroinvertebrates and sediments from a historically polluted estuary in south central Chile.

    PubMed

    Díaz-Jaramillo, Mauricio; Muñoz, Claudia; Rudolph, Ignacio; Servos, Mark; Barra, Ricardo

    2013-01-01

    The Lenga Estuary is one of the most industrialized sites in south central Chile where the historic operation of chlor-alkali plants resulted in large quantities of mercury (Hg) being deposited into the estuary. This historical contamination may still represent a risk to the biota in the estuary. To investigate this four macroinvertebrates, Neotrypaea uncinata (ghostshrimp), Elminius kingii (barnacle), Hemigrapsus crenulatus (shore crab) and Perinereis gualpensis (ragworm) were collected seasonally from three different sites in the Lenga Estuary and one in a reference estuary (Tubul Estuary), and analyzed for Hg and stable isotopes (δ(15)N and δ(13)C). Mercury concentrations in Lenga sediments ranged from 0.4 ± 0.1 to 13 ± 3 mg/kg, while those in Tubul sediments ranged from 0.02 ± 0.01 to 0.07 ± 0.09 mg/kg. Total Hg concentrations of invertebrates were significantly different between estuaries (p<0.05), but not by species or season for each estuary (p>0.05). In contrast, organic Hg concentrations were different by species and season with shore crab muscle tissues exhibiting the greatest percent difference. Site-specific relationships demonstrated that total Hg concentrations in ragworm best reflected the total Hg sediment mercury concentrations. Signatures of δ(13)C were correlated to the organic Hg % rather than total Hg. This suggests that organic Hg concentrations in these species were related to the carbon sources.

  8. Sedimentary records of δ(13)C, δ(15)N and organic matter accumulation in lakes receiving nutrient-rich mine waters.

    PubMed

    Widerlund, Anders; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, δ(15)N and δ(13)C values in (210)Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15-20% and 20-35%, respectively, since ~1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ(15)N~+9‰ to +19‰) were clearly shifted from the primary signal in explosives (δ(15)N-NO3=+3.4±0.3‰; δ(15)N-NH4=-8.0±0.3‰) and NaCN (δ(15)N=+1.1±0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters. PMID:24727038

  9. Sedimentary records of δ(13)C, δ(15)N and organic matter accumulation in lakes receiving nutrient-rich mine waters.

    PubMed

    Widerlund, Anders; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, δ(15)N and δ(13)C values in (210)Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15-20% and 20-35%, respectively, since ~1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ(15)N~+9‰ to +19‰) were clearly shifted from the primary signal in explosives (δ(15)N-NO3=+3.4±0.3‰; δ(15)N-NH4=-8.0±0.3‰) and NaCN (δ(15)N=+1.1±0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters.

  10. δ(13)C and δ(15)N in deep-living fishes and shrimps after the Deepwater Horizon oil spill, Gulf of Mexico.

    PubMed

    Quintana-Rizzo, Ester; Torres, Joseph J; Ross, Steve W; Romero, Isabel; Watson, Kathleen; Goddard, Ethan; Hollander, David

    2015-05-15

    The blowout of the Deepwater Horizon (DWH) drill-rig produced a surface oil layer, dispersed micro-droplets throughout the water column, and sub-surface plumes. We measured stable carbon and nitrogen isotopes in mesopelagic fishes and shrimps in the vicinity of DWH collected prior to, six weeks after, and one year after the oil spill (2007, 2010 and 2011). In 2010, the year of the oil spill, a small but significant depletion of δ(13)C was found in two mesopelagic fishes (Gonostoma elongatum and Chauliodus sloani) and one shrimp (Systellaspis debilis); a significant δ(15)N enrichment was identified in the same shrimp and in three fish species (G. elongatum, Ceratoscopelus warmingii, and Lepidophanes guentheri). The δ(15)N change did not suggest a change of trophic level, but did indicate a change in diet. The data suggest that carbon from the Deepwater Horizon oil spill was incorporated into the mesopelagic food web of the Gulf of Mexico. PMID:25778549

  11. Trophic ecology of the supralittoral rocky shore (Roscoff, France): A dual stable isotope (δ 13C, δ 15N) and experimental approach

    NASA Astrophysics Data System (ADS)

    Laurand, Sandrine; Riera, Pascal

    2006-07-01

    The present study investigates the trophic transfers on the upper littoral rocky shore (i.e. the supralittoral zone together with the upper midlittoral and adlittoral) of northern Brittany. The population mainly consists of four invertebrate species: the littorinids Littorina saxatilis and Melarhaphe neritoides, the isopod Ligia oceanica and the insect Petrobius maritimus. The utilisation of food sources available to these grazers was examined in a laboratory microcosm feeding experiment and a field study using stable isotopes (δ 13C, δ 15N). The results indicated that although Ligia oceanica preferentially occurs in the supralittoral zone, its trophic subsidies originate mostly from the adlittoral and lower intertidal zones. The stable isotope data also suggested that adlittoral terrestrial organic material may be the major food source of Petrobius maritimus. δ 15N of Littorina saxatilis indicated a highly variable diet consisting of supralittoral lichens, midlittoral macroalgae and other food sources (e.g. microalgae). Both feeding experiments and stable isotope data show that only Melarhaphe neritoides has a clearly identifiable diet based on a mixture of lichens, mostly Verrucaria maura and Caloplaca marina, as estimated by an isotopic mixing model. Hence, the food web of this intertidal zone appears largely based on trophic subsidies from other habitats (i.e. upper and lower intertidal zones).

  12. delta 15N and non-carbonate delta 13C values for two petroleum source rock reference materials and a marine sediment reference material

    USGS Publications Warehouse

    Dennen, Kristin O.; Johnson, Craig A.; Otter, Marshall L.; Silva, Steven R.; Wandless, Gregory A.

    2006-01-01

    Samples of United States Geological Survey (USGS) Certified Reference Materials USGS Devonian Ohio Shale (SDO-1), and USGS Eocene Green River Shale (SGR-1), and National Research Council Canada (NRCC) Certified Marine Sediment Reference Material (PACS-2), were sent for analysis to four separate analytical laboratories as blind controls for organic rich sedimentary rock samples being analyzed from the Red Dog mine area in Alaska. The samples were analyzed for stable isotopes of carbon (delta13Cncc) and nitrogen (delta15N), percent non-carbonate carbon (Wt % Cncc) and percent nitrogen (Wt % N). SDO-1, collected from the Huron Member of the Ohio Shale, near Morehead, Kentucky, and SGR-1, collected from the Mahogany zone of the Green River Formation are petroleum source rocks used as reference materials for chemical analyses of sedimentary rocks. PACS-2 is modern marine sediment collected from the Esquimalt, British Columbia harbor. The results presented in this study are, with the exceptions noted below, the first published for these reference materials. There are published information values for the elemental concentrations of 'organic' carbon (Wt % Corg measured range is 8.98 - 10.4) and nitrogen (Wt % Ntot 0.347 with SD 0.043) only for SDO-1. The suggested values presented here should be considered 'information values' as defined by the NRCC Institute for National Measurement Reference Materials and should be useful for the analysis of 13C, 15N, C and N in organic material in sedimentary rocks.

  13. Oligomeric complexes of some heteroaromatic ligands and aromatic diamines with rhodium and molybdenum tetracarboxylates: 13C and 15N CPMAS NMR and density functional theory studies.

    PubMed

    Leniak, Arkadiusz; Kamieński, Bohdan; Jaźwiński, Jarosław

    2015-05-01

    Seven new oligomeric complexes of 4,4'-bipyridine; 3,3'-bipyridine; benzene-1,4-diamine; benzene-1,3-diamine; benzene-1,2-diamine; and benzidine with rhodium tetraacetate, as well as 4,4'-bipyridine with molybdenum tetraacetate, have been obtained and investigated by elemental analysis and solid-state nuclear magnetic resonance spectroscopy, (13)C and (15)N CPMAS NMR. The known complexes of pyrazine with rhodium tetrabenzoate, benzoquinone with rhodium tetrapivalate, 4,4'-bipyridine with molybdenum tetrakistrifluoroacetate and the 1 : 1 complex of 2,2'-bipyridine with rhodium tetraacetate exhibiting axial-equatorial ligation mode have been obtained as well for comparison purposes. Elemental analysis revealed 1 : 1 complex stoichiometry of all complexes. The (15)N CPMAS NMR spectra of all new complexes consist of one narrow signal, indicating regular uniform structures. Benzidine forms a heterogeneous material, probably containing linear oligomers and products of further reactions. The complexes were characterized by the parameter complexation shift Δδ (Δδ = δcomplex  - δligand). This parameter ranged from around -40 to -90 ppm in the case of heteroaromatic ligands, from around -12 to -22 ppm for diamines and from -16 to -31 ppm for the complexes of molybdenum tetracarboxylates with 4,4'-bipyridine. The experimental results have been supported by a density functional theory computation of (15)N NMR chemical shifts and complexation shifts at the non-relativistic Becke, three-parameter, Perdew-Wang 91/[6-311++G(2d,p), Stuttgart] and GGA-PBE/QZ4P levels of theory and at the relativistic scalar and spin-orbit zeroth order regular approximation/GGA-PBE/QZ4P level of theory. Nucleus-independent chemical shifts have been calculated for the selected compounds.

  14. Establishing spatial trends in water chemistry and stable isotopes (δ15N and δ13C) in the Elwha River prior to dam removal and salmon recolonization

    USGS Publications Warehouse

    Duda, J.J.; Coe, H.J.; Morley, S.A.; Kloehn, K.K.

    2011-01-01

    Two high-head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine-derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine-derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented.

  15. Optimization of 13C dynamic nuclear polarization: isotopic labeling of free radicals

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Parish, Christopher; Kiswandi, Andhika; Lumata, Lloyd

    Dynamic nuclear polarization (DNP) is a physics technique that amplifies the nuclear magnetic resonance (NMR) signals by transferring the high polarization of the electrons to the nuclear spins. Thus, the choice of free radical is crucial in DNP as it can directly affect the NMR signal enhancement levels, typically on the order of several thousand-fold in the liquid-state. In this study, we have investigated the efficiency of four variants of the well-known 4-oxo-TEMPO radical (normal 4-oxo-TEMPO plus its 15N-enriched and/or perdeuterated variants) for use in DNP of an important metabolic tracer [1-13C]acetate. Though the variants have significant differences in electron paramagnetic resonance (EPR) spectra, we have found that changing the composition of the TEMPO radical through deuteration or 15N doping yields no significant difference in 13C DNP efficiency at 3.35 T and 1.2 K. On the other hand, deuteration of the solvent causes a significant increase of 13C polarization that is consistent over all the 4-oxo-TEMPO variants. These findings are consistent with the thermal mixing model of DNP. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  16. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    SciTech Connect

    Jones, R.A.

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  17. Fungal Functioning In A Pine Forest: Evidence From A 15N-Labeled Global Change Experiment

    NASA Astrophysics Data System (ADS)

    Hobbie, E. A.; Hofmockel, K.; van Diepen, L.

    2012-12-01

    In this study, we used tracer 15N labeling and a concurrent six-year nitrogen fertilization experiment in a Pinus taeda Free Air CO2 Enrichment (FACE) experiment to investigate the functioning of saprotrophic and ectomycorrhizal fungi in nitrogen cycling. Ectomycorrhizal fungi with hydrophobic ectomycorrhizae acquired nitrogen from deeper in the soil profile than taxa with hydrophilic ectomycorrhizae, whereas saprotrophic fungi acquired nitrogen primarily from relatively recent surface litter. By combining natural abundance and tracer measurements, we estimated the 15N enrichment of fungi relative to source nitrogen at between 4‰ and 9‰, depending on genus, with some genera sampling pools more 15N-enriched in the labeling experiment than could be measured by bulk analyses. Thus, biologically relevant nitrogen fractions may correspond poorly to what can be extracted chemically. The multiple 15N labels in this FACE experiment proved useful for tracking nitrogen into different fungal taxa from potential nitrogen sources.

  18. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  19. Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (δ (13)C and δ (15)N).

    PubMed

    Stallings, Christopher D; Nelson, James A; Rozar, Katherine L; Adams, Charles S; Wall, Kara R; Switzer, Theodore S; Winner, Brent L; Hollander, David J

    2015-01-01

    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ (13)C and δ (15)N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ (15)N values in nearly all comparisons. Ethanol also had strong effects on the δ (13)C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and

  20. Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (δ (13)C and δ (15)N).

    PubMed

    Stallings, Christopher D; Nelson, James A; Rozar, Katherine L; Adams, Charles S; Wall, Kara R; Switzer, Theodore S; Winner, Brent L; Hollander, David J

    2015-01-01

    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ (13)C and δ (15)N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ (15)N values in nearly all comparisons. Ethanol also had strong effects on the δ (13)C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and

  1. Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (δ13C and δ15N)

    PubMed Central

    Nelson, James A.; Rozar, Katherine L.; Adams, Charles S.; Wall, Kara R.; Switzer, Theodore S.; Winner, Brent L.; Hollander, David J.

    2015-01-01

    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ13C and δ15N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ15N values in nearly all comparisons. Ethanol also had strong effects on the δ13C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and corresponding

  2. Chlorophyll a specific Δ14C, δ13C and δ15N values in stream periphyton: implications for aquatic food web studies

    NASA Astrophysics Data System (ADS)

    Ishikawa, N. F.; Yamane, M.; Suga, H.; Ogawa, N. O.; Yokoyama, Y.; Ohkouchi, N.

    2015-07-01

    We determined the isotopic composition of chlorophyll a in periphytic algae attached to a streambed substrate (periphyton). The samples were collected from a stream flowing on limestone bedrock in the Seri River, central Japan. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) and natural radiocarbon abundances (Δ14C) were measured in chlorophyll a (δ13Cchl, δ15Nchl and Δ14Cchl) and bulk (δ13Cbulk, δ15Nbulk and Δ14Cbulk) for periphyton, pure aquatic primary producer (Cladophora sp.) and terrestrial primary producer (Quercus glauca). Periphyton δ13Cbulk and δ13Cchl values did not necessarily correspond to δ13Cbulk for an algal-grazing specialist (Mayfly larva, Epeorus latifolium), suggesting that periphyton δ13C values do not faithfully trace carbon transfer between primary producers and primary consumers. Periphyton Δ14Cchl values (-258 ‰ in April and -190 ‰ in October) were slightly lower than Δ14Cbulk values (-228 ‰ in April and -179 ‰ in October), but were close to the Δ14C value for dissolved inorganic carbon (DIC) (-217 ± 31 ‰), which is a mixture of weathered carbonates (Δ14C = -1000 ‰) and dissolved atmospheric CO2 (Δ14C approximately +30 ‰ in 2013). Δ14Cchl values were also close to Δ14Cbulk for E. latifolium (-215 ‰ in April and -199 ‰ in October) and Cladophora sp. (-210 ‰), whereas the Δ14Cbulk value for Q. glauca (+27 ‰) was closer to Δ14C for atmospheric CO2. Although the bulk isotopic composition of periphyton is recognised as a surrogate for the photosynthetic algal community, natural periphyton is a mixture of aquatic and terrestrial organic materials. Our results indicate that the bulk periphyton matrix at the study site consists of 89 to 95 % algal carbon (derived from 14C-depleted DIC) and 5 to 11 % terrestrial organic carbon (derived from 14C-enriched atmospheric CO2).

  3. Numerical evaluation of subsoil diffusion of (15) N labelled denitrification products during employment of the (15) N gas flux method in the field

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Lewicka-Szczebak, Dominika; Ruoss, Nicolas

    2016-04-01

    Common methods for measuring soil denitrification in situ include monitoring the accumulation of 15N labelled N2 and N2O evolved from 15N labelled soil nitrate pool in soil surface chambers. Gas diffusion is considered to be the main accumulation process. Because accumulation of the gases decreases concentration gradients between soil and chamber over time, gas production rates are underestimated if calculated from chamber concentrations. Moreover, concentration gradients to the non-labelled subsoil exist, inevitably causing downward diffusion of 15N labelled denitrification products. A numerical model for simulating gas diffusion in soil was used in order to determine the significance of this source of error. Results show that subsoil diffusion of 15N labelled N2 and N2O - and thus potential underestimation of denitrification derived from chamber fluxes - increases with cover closure time as well as with increasing diffusivity. Simulations based on the range of typical gas diffusivities of unsaturated soils show that the fraction of subsoil diffusion after chamber closure for 1 hour is always significant with values up to >30 % of total production of 15N labelled N2 and N2O. Field experiments for measuring denitrification with the 15N gas flux method were conducted. The ability of the model to predict the time pattern of gas accumulation was evaluated by comparing measured 15N2 concentrations and simulated values.

  4. Stable Isotope (δ13C, δ15N, δ34S) Analysis and Satellite Telemetry Depict the Complexity of Gray Wolf (Canis lupus) Diets in Southwest Alaska

    NASA Astrophysics Data System (ADS)

    Stanek, A.; Watts, D. E.; Cohn, B. R.; Spencer, P.; Mangipane, B.; Welker, J. M.

    2010-12-01

    Throughout Alaska, gray wolves (Canis lupus) are a top predator of large ungulates. While they primarily rely on ungulates such as moose (Alces alces) and caribou (Rangifer tarandus) as food, they are opportunistic and use alternative resources. The variation and supplemental protein sources in wolf diet has not been studied extensively on live animals currently using the landscape. With large seasonal influxes of Pacific salmon (Oncorhynchus sp.) into Alaska, terrestrial carnivore use of marine species is of particular interest. Using stable isotope (δ13C, δ15N, δ34S) analysis of wolf guard hair and blood, this study aims to determine the proportion of marine derived nutrients (MDN) in the diet of wolf packs within and surrounding Lake Clark National Park and Preserve and Alaska Peninsula and Becharof National Wildlife Refuges in Southwest Alaska. Satellite telemetry from the animals sampled facilitates quantification of landscape use patterns in correspondence with isotopic traits. Wolf pack territories within and surrounding the Lake Clark region appear to vary in spatial extent and in availability of MDN, such as salmon. Initial analysis shows that two packs with smaller home ranges, centrally located around areas with greater salmon availability, have enriched δ15N values compared to packs that have larger home ranges not centralized around salmon spawning waters. This pattern of isotopic enrichment is found in red blood cells, blood serum and hair, representing diets over different time scales. The enrichment in both blood and hair indicates a sustained use of MDN over the previous six to nine months. In the Lake Clark region, simple mixing model estimates suggest that up to 30% of wolf pack diets may be from marine sources. In contrast, packs with larger home ranges and less access to salmon have stable isotope values representative of a terrestrial diet.

  5. Inter- and intrahabitat dietary variability of chacma baboons (Papio ursinus) in South African savannas based on fecal delta13C, delta15N, and %N.

    PubMed

    Codron, Daryl; Lee-Thorp, Julia A; Sponheimer, Matt; de Ruiter, Darryl; Codron, Jacqueline

    2006-02-01

    Baboons are dietary generalists, consuming a wide range of food items in varying proportions. It is thus difficult to quantify and explain the dietary behavior of these primates. We present stable carbon (delta(13)C) and nitrogen (delta(15)N) isotopic data, and percentage nitrogen (%N), of feces from chacma baboons (Papio ursinus) living in two savanna environments of South Africa: the mountainous Waterberg region and the low-lying Kruger National Park. Baboons living in the more homogeneous landscapes of the Waterberg consume a more isotopically heterogeneous diet than their counterparts living in Kruger Park. Grasses and other C(4)-based foods comprise between approximately 10-20% (on average) of the bulk diet of Kruger Park baboons. Carbon isotopic data from the Waterberg suggest diets of approximately 30-50% grass, which is higher than generally reported for baboons across the African savanna. Based on observations of succulent-feeding, we propose that baboons in the Waterberg consume a mix of C(4) grasses and CAM-photosynthesizing succulents in combined proportions varying between approximately 5-75% (average, approximately 35%). Fecal delta(15)N of baboons is lower than that of sympatric ungulates, which may be due to a combination of low levels of faunivory, foraging on subterranean plant parts, or the use of human foods in the case of Kruger Park populations. Fecal N levels in baboons are consistently higher than those of sympatric ungulate herbivores, indicating that baboons consume a greater proportion of protein-rich foods than do other savanna mammals. These data suggest that chacma baboons adapt their dietary behavior so as to maximize protein intake, regardless of their environment.

  6. Monitoring electron donor metabolism under variable electron acceptor conditions using 13C-labeled lactate

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.; Yang, L.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Three sets of flow-through columns constructed with aquifer sediment from Hanford (WA) were used to study reduction of Cr(VI) to poorly soluble Cr(III) under denitrifying, sulfate-reducing/fermentative, and iron-reducing conditions with lactate as the electron donor. In order to understand the relationship between electron donors and biomarkers, and to determine the differences in carbon isotope fractionation resulting from different microbial metabolic processes, we monitored the variation in carbon isotopes in dissolved inorganic carbon (DIC), in total organic carbon (TOC), and in lactate, acetate and propionate. The greatest enrichment in 13C in columns was observed under denitrifying conditions. The δ13C of DIC increased by ~1750 to ~2000‰ fifteen days after supplementation of natural abundance lactate with a 13C-labeled lactate tracer (for an influent δ13C of ~2250‰ for the lactate) indicating almost complete oxidation of the electron donor. The denitrifying columns were among the most active columns and had the highest cell counts and the denitrification rate was highly correlated with Cr(VI) reduction rate. δ13C values of DIC ranged from ~540 to ~1170‰ for iron-reducing conditions. The lower enrichment in iron columns was related to the lower biological activity observed with lower yields of RNA and cell numbers in the column effluents. The carbon isotope shift in the sulfate-reducing ~198 to ~1960‰ for sulfate-reducing conditions reflecting the lower levels of the lactate in these columns. Additionally, in two of the sulfate columns, almost complete fermentation of the lactate occurred, producing acetate and propionate with the labeled carbon signature, but relatively smaller amounts of inorganic carbon. For all electron-accepting conditions, TOC yielded similar δ13C values as lactate stock solutions. Differences in C use efficiency, metabolic rate or metabolic pathway contributed to the differing TOC δ13C to DIC δ13C ratios between treatments

  7. In vivo uniform (15)N-isotope labelling of plants: using the greenhouse for structural proteomics.

    PubMed

    Ippel, Johannes H; Pouvreau, Laurice; Kroef, Toos; Gruppen, Harry; Versteeg, Geurt; van den Putten, Peter; Struik, Paul C; van Mierlo, Carlo P M

    2004-01-01

    Isotope labelling of proteins is important for progress in the field of structural proteomics. It enables the utilisation of the power of nuclear magnetic resonance spectroscopy (NMR) for the characterisation of the three-dimensional structures and corresponding dynamical features of proteins. The usual approach to obtain isotopically labelled protein molecules is by expressing the corresponding gene in bacterial or yeast host organisms, which grow on isotope-enriched media. This method has several drawbacks. Here, we demonstrate that it is possible to fully label a plant with (15)N-isotopes. The advantage of in vivo labelling of higher organisms is that all constituting proteins are labelled and become available as functional, post-translationally modified, correctly folded proteins. A hydroponics set-up was used to create the first example of a uniformly (15)N-labelled (> 98%) plant species, the potato plant (Solanum tuberosum L., cv. Elkana). Two plants were grown at low costs using potassium-[(15)N]-nitrate as the sole nitrogen source. At harvest time, a total of 3.6 kg of potato tubers and 1.6 kg of foliage, stolons and roots were collected, all of which were fully (15)N-labelled. Gram quantities of soluble (15)N-labelled proteins (composed mainly of the glycoprotein patatin and Kunitz-type protease inhibitors) were isolated from the tubers. NMR results on the complete proteome of potato sap and on an isolated protease inhibitor illustrate the success of the labelling procedure. The presented method of isotope labelling is easily modified to label other plants. Its envisioned impact in the field of structural proteomics of plants is discussed.

  8. Synthesis and applications of selectively {sup 13}C-labeled RNA

    SciTech Connect

    SantaLucia, J. Jr.; Shen, L.X.; Lewis, H.; Cai, Z.; Tinoci, I. Jr.

    1994-12-01

    Spectral overlap is a substantial problem in NMR studies of RNA molecules >30 nucleotides. To overcome this difficulty, we synthesized selectively {sup 13}C-labeled RNAs and adapted several isotope-edited two- and three-dimensional NMR experiments originally developed for protein studies. We optimized protocols for synthesis of multi-gram quantities of CTP, UTp, ATP, and GTP using a combination of synthetic organic and enzymatic methods. Uracil is prepared in 40 to 50% yield from {sup 13}C-cyanide in two steps. Using acetyl- tribenzoyl-ribose and standard chemistry uracil is then attached to the sugar (90% yield). The tribenzoyl-uridine intermediate is converted into uridine or cytidine quantitatively, depending on the deblocking protocol. Labeled purines are synthesized using simple pyrimidine precursors and reacting with {sup 13}C-formic acid (80% yield). Purine nucleosides are then synthesized using uridine phosphorylase and purine nucleoside phosphorylase. The nucleosides were converted to NMPs by treatment with POC1{sub 3} in triethylphosphate. We converted NMPs to NTPs by standard enzymatic methods. Selectively labeled RNAs were synthesized by run-off transcription using {sup 13}C-labeled NTPs. Several different strategies help solve over-lap problems in larger RNAs. Isotope-edited two-dimensional NMR experiments such as {omega}1-1/2 X-filtered NOESY simplify NMR spectra by dividing the normal NOESY spectrum into two subspectra-one involving NOEs from protons bound to {sup 12}C and one from protons bound to {sup 13}C. For example, we labeled A and U residues of a 34-nucleotide pseudoknot, and the {sup 12}C subspectrum of the 1/2 X-filtered NOESY contained NOEs only from G and C residues (along with adenine 2H); the {sup 13}C subspectrum contained NOEs only from A and U residues. Each subspectrum has less overlap than the NOESY of an unlabeled sample; the editing strategy allows each resonance to be identified by residue type (A, C, G, or U).

  9. 1H, 13C and 15N resonance assignments and secondary structure analysis of CmPI-II, a serine protease inhibitor isolated from marine snail Cenchritis muricatus.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Alonso-del-Rivero Antigua, Maday; Pires, José Ricardo

    2016-04-01

    A protease inhibitor (CmPI-II) (UNIPROT: IPK2_CENMR) from the marine mollusc Cenchritis muricatus, has been isolated and characterized. It is the first member of a new group (group 3) of non-classical Kazal-type inhibitors. CmPI-II is a tight-binding inhibitor of serine proteases: trypsin, human neutrophil elastase (HNE), subtilisin A and pancreatic elastase. This specificity is exceptional in the members of Kazal-type inhibitor family. Several models of three-dimensional structure of CmPI-II have been constructed by homology with other inhibitors of the family but its structure has not yet been solved experimentally. Here we report the (1)H, (15)N and (13)C chemical shift assignments of CmPI-II as basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified three β-strands β1: residues 14-19, β2: 23-35 and β3: 43-45 and one helix α1: 28-37 arranged in the sequential order β1-β2-α1-β3. These secondary structure elements suggest that CmPI-II adopts the typical scaffold of a Kazal-type inhibitor. PMID:26547437

  10. Chemical weathering and the role of sulfuric and nitric acids in carbonate weathering: Isotopes (13C, 15N, 34S, and 18O) and chemical constraints

    NASA Astrophysics Data System (ADS)

    Li, Cai; Ji, Hongbing

    2016-05-01

    Multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-) and water chemistry were used to evaluate weathering rates and associated CO2 consumption by carbonic acid and strong acids (H2SO4 and HNO3) in a typical karst watershed (Wujiang River, Southwest China). The dual sulfate isotopes indicate that sulfate is mainly derived from sulfide oxidation in coal stratum and sulfide-containing minerals, and dual nitrate isotopes indicate that nitrate is mainly derived from soil N and nitrification. The correlation between isotopic compositions and water chemistry suggests that sulfuric and nitric acids, in addition to carbonic acid, are involved in carbonate weathering. The silicate and carbonate weathering rates are 7.2 t km-2 yr-1 and 76 t km-2 yr-1, respectively. In comparison with carbonate weathering rates (43 t km-2 yr-1) by carbonic acid alone, the subsequent increase in rates indicates significant enhancement of weathering when combined with sulfuric and nitric acids. Therefore, the role of sulfuric and nitric acids in the rock weathering should be considered in the global carbon cycle.

  11. (1)H, (15)N and (13)C resonance assignments of the conserved region in the middle domain of S. pombe Sin1 protein.

    PubMed

    Kataoka, Saori; Furuita, Kyoko; Hattori, Yoshikazu; Kobayashi, Naohiro; Ikegami, Takahisa; Shiozaki, Kazuhiro; Fujiwara, Toshimichi; Kojima, Chojiro

    2015-04-01

    SAPK-interacting protein 1 (Sin1) is an important component of the target of rapamycin (TOR) complex 2 (TORC2). TOR is a serine/threonine-specific protein kinase and forms functionally distinct protein complexes referred to as TORC1 and TORC2. TORC2, conserved from yeast to humans, phosphorylates AGC-family protein kinases and has many cellular functions including the regulation of actin cytoskeleton. The Sin1 subunit of TORC2 is required for the binding of TORC2 to substrates, and the conserved region in the middle (CRIM) domain of Sin1 is important in the substrate recognition of TORC2. Here, we report on the (1)H, (13)C and (15)N resonance assignments of fission yeast Schizosaccharomyces pombe Sin1 (amino acids 247-400) (Sin1CRIM), which possesses the CRIM domain. These data contribute toward the structure determination of Sin1CRIM and an understanding of the interactions of Sin1CRIM with substrates of TORC2.

  12. Identifying the African Wintering Grounds of Hybrid Flycatchers Using a Multi–Isotope (δ2H, δ13C, δ15N) Assignment Approach

    PubMed Central

    Van Wilgenburg, Steven L.; Hobson, Keith A.; Folmer, Eelke; Font, Laura; Klaassen, Marcel

    2014-01-01

    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher. PMID:24847717

  13. 1H, 15N, and 13C resonance assignments and secondary structure of the SWIRM domain of human BAF155, a chromatin remodeling complex component.

    PubMed

    Moon, Sunjin; Shin, Joon; Lee, Dongju; Seong, Rho H; Lee, Weontae

    2013-10-01

    Mammalian SWI/SNF complexes are evolutionary conserved, ATP-dependent chromatin remodeling units. BAF155 in the SWI/SNF complex contains several highly conserved domains, including SANT, SWIRM, and leucine zipper domains. The biological roles of the SWIRM domain remain unclear; however, both structural and biochemical analyses of this domain have suggested that it could mediate protein-protein or protein-DNA interactions during the chromatin remodeling process. The human BAF155 SWIRM domain was cloned into the Escherichia coli expression vector pMAL-c2X and purified using affinity chromatography for structural analysis. We report the backbone (1)H, (15)N, and (13)C resonance assignments and secondary structure of this domain using nuclear magnetic resonance (NMR) spectroscopy and the TALOS+ program. The secondary structure consists of five α-helices that form a typical histone fold for DNA interactions. Our data suggest that the BAF155 SWIRM domain interacts with nucleosome DNA (Kd = 0.47 μM).

  14. Identifying the African wintering grounds of hybrid flycatchers using a multi-isotope (δ2H, δ13C, δ15N) assignment approach.

    PubMed

    Veen, Thor; Hjernquist, Mårten B; Van Wilgenburg, Steven L; Hobson, Keith A; Folmer, Eelke; Font, Laura; Klaassen, Marcel

    2014-01-01

    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher.

  15. 15N, 13C and 1H backbone resonance assignments of an artificially engineered TEM-1/PSE-4 class A β-lactamase chimera and its deconvoluted mutant.

    PubMed

    Gobeil, Sophie M C; Gagné, Donald; Doucet, Nicolas; Pelletier, Joelle N

    2016-04-01

    The widespread use of β-lactam antibiotics has given rise to a dramatic increase in clinically-relevant β-lactamases. Understanding the structure/function relation in these variants is essential to better address the ever-growing incidence of antibiotic resistance. We previously reported the backbone resonance assignments of a chimeric protein constituted of segments of the class A β-lactamases TEM-1 and PSE-4 (Morin et al. in Biomol NMR Assign 4:127-130, 2010. doi: 10.1007/s12104-010-9227-8 ). That chimera, cTEM17m, held 17 amino acid substitutions relative to TEM-1 β-lactamase, resulting in a well-folded and fully functional protein with increased dynamics. Here we report the (1)H, (13)C and (15)N backbone resonance assignments of chimera cTEM-19m, which includes 19 substitutions and exhibits increased active-site perturbation, as well as one of its deconvoluted variants, as the first step in the analysis of their dynamic behaviours.

  16. A stable isotope ( δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants

    NASA Astrophysics Data System (ADS)

    Hobson, Keith A.; Fisk, Aaron; Karnovsky, Nina; Holst, Meike; Gagnon, Jean-Marc; Fortier, Martin

    fundamentally in transferring energy and carbon flux to higher trophic-level seabirds and marine mammals. We measured PCB 153 among selected organisms to investigate the behavior of bioaccumulating contaminants within the food web. Our isotopic model confirmed the trophic magnification of PCB 153 in this high-Arctic food web due to a strong correlation between contaminant concentration and organism δ15N values, demonstrating the utility of combining isotopic and contaminant approaches to food-web studies. Stable-carbon isotope analysis confirmed an enrichment in 13C between POM and ice algae (-22.3 vs. -17.7‰). Benthic organisms were generally enriched in 13C compared to pelagic species. We discuss individual species isotopic data and the general utility of our stable isotope model for defining carbon flux and contaminant flow through the North Water food web.

  17. Anaerobic Methane Oxidation in Soils - revealed using 13C-labelled methane tracers

    NASA Astrophysics Data System (ADS)

    Riekie, G. J.; Baggs, E. M.; Killham, K. S.; Smith, J. U.

    2008-12-01

    In marine sediments, anaerobic methane oxidation is a significant biogeochemical process limiting methane flux from ocean to atmosphere. To date, evidence for anaerobic methane oxidation in terrestrial environments has proved elusive, and its significance is uncertain. In this study, an isotope dilution method specifically designed to detect the process of anaerobic methane oxidation in methanogenic wetland soils is applied. Methane emissions of soils from three contrasting permanently waterlogged sites in Scotland are investigated in strictly anoxic microcosms to which 13C- labelled methane is added, and changes in the concentration and 12C/13C isotope ratios of methane and carbon dioxide are subsequently measured and used to calculate separate the separate components of the methane flux. The method used takes into account the 13C-methane associated with methanogenesis, and the amount of methane dissolved in the soil. The calculations make no prior assumptions about the kinetics of methane production or oxidation. The results indicate that methane oxidation can take place in anoxic soil environments. The clearest evidence for anaerobic methane oxidation is provided by soils from a minerotrophic fen site (pH 6.0) in Bin Forest underlain by ultra-basic and serpentine till. In the fresh soil anoxic microcosms, net consumption methane was observed, and the amount of headspace 13C-CO2 increased at a greater rate than the 12+13C-CO2, further proof of methane oxidation. A net increase in methane was measured in microcosms of soil from Murder Moss, an alkaline site, pH 6.5, with a strong calcareous influence. However, the 13C-CH4 data provided evidence of methane oxidation, both in the disappearance of C- CH4 and appearance of smaller quantities of 13C-CO2. The least alkaline (pH 5.5) microcosms, of Gateside Farm soil - a granitic till - exhibited net methanogenesis and the changes in 13C-CH4 and 13C-CO2 here followed the pattern expected if no methane is consumed

  18. Microbial metabolism in soil at low temperatures: Mechanisms unraveled by position-specific 13C labeling

    NASA Astrophysics Data System (ADS)

    Bore, Ezekiel

    2016-04-01

    Microbial transformation of organic substances in soil is the most important process of the C cycle. Most of the current studies base their information about transformation of organic substances on incubation studies under laboratory conditions and thus, we have a profound knowledge on SOM transformations at ambient temperatures. However, metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5, -5 -20 oC. Soils were sampled after 1, 3 and 10 days and additionally after 30 days for samples at -20 °C. The 13C from individual molecule position was quantifed in respired CO2, bulk soil, extractable organic C and extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of microbial communities classified by 13C phospholipid fatty acid (PLFA) analysis. 13CO2 released showed a dominance of the flux from C-1 position at 5 °C. Consequently, at 5 °C, pentose phosphate pathway activity is a dominant metabolic pathway of glucose metabolization. In contrast to -5 °C and -20 oC, metabolic behaviors completely switched towards a preferential respiration of the glucose C-4 position. With decreasing temperature, microorganism strongly shifted towards metabolization of glucose via glycolysis which indicates a switch to cellular maintenance. High recoveries of 13C in extractable microbial biomass at -5 °C indicates optimal growth condition for the microorganisms. PLFA analysis showed high incorporation of 13C into Gram negative bacteria at 5 °C but decreased with temperature. Gram positive bacteria out-competed Gram negatives with decreasing temperature. This study revealed a remarkable microbial activity at temperatures below 0 °C, differing significantly from that at ambient

  19. 3D HCCH 3-TOCSY for Resonance Assignment of Methyl-Containing Side Chains in 13C-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Uhrín, Dušan; Uhrínová, Stanislava; Leadbeater, Claire; Nairn, Jacqueline; Price, Nicholas C.; Barlow, Paul N.

    2000-02-01

    Two 3D experiments, (H)CCH3-TOCSY and H(C)CH3-TOCSY, are proposed for resonance assignment of methyl-containing amino acid side chains. After the initial proton-carbon INEPT step, during which either carbon or proton chemical shift labeling is achieved (t1), the magnetization is spread along the amino acid side chains by a carbon spin lock. The chemical shifts of methyl carbons are labeled (t2) during the following constant time interval. Finally the magnetization is transferred, in a reversed INEPT step, to methyl protons for detection (t3). The proposed experiments are characterized by high digital resolution in the methyl carbon dimension (t2max = 28.6 ms), optimum sensitivity due to the use of proton decoupling during the long constant time interval, and an optional removal of CH2, or CH2 and CH, resonances from the F2F3 planes. The building blocks used in these experiments can be implemented in a range of heteronuclear experiments focusing on methyl resonances in proteins. The techniques are illustrated using a 15N, 13C-labeled E93D mutant of Schizosacharomyces pombe phosphoglycerate mutase (23.7 kDa).

  20. Enhancing Phospholipid Fatty Acid Profiling of Soil Bacterial Communities via Substrate- Specific 13C-labelling

    NASA Astrophysics Data System (ADS)

    Evershed, R. P.; Maxfield, P. J.; Bingham, E. M.; Dildar, N.; Brennand, E. L.; Hornibrook, E.

    2008-12-01

    A range of culture-independent methods, has recently emerged to study environmental microorganisms in situ[1]. One such method is phospholipid fatty acid (PLFA) analysis, wherein these ubiquitous membrane lipids provide a powerful tool for the study of unculturable soil microorganisms. PLFA analyses have been used to investigate the impacts of a wide range of environmental factors on the soil microbial community. An acknowledged shortcoming of the PLFAs approach is the lack the chemotaxonoic specificity, which restricts the ability of the method to probe the activities of specific functional groups of the microbial community selectively. However, the selectivity of PLFAs analyses can be enhanced by incubating soils with 13C- labelled substrates followed by gas chromatography-combustion-isotope ratio mass spectrometry to reveal the specific PLFAs incorporating the 13C-label. The application of this approach will be demonstrated through our recent work on methanotrophic bacteria in soils. We applied this approach initially to mineral soils[2] and then extended chemotaxonomic assessments by using a combination of 13C-labelled PLFAs and hopanoids [3]. We have used this approach to explore the properties of high affinity methanotrophs in a range of environments, investigating the relationship between methane oxidation rates and the nature and magnitude of the methanotrophic community for the first time[4,5] More recently we extended the technique using a novel time series 13C-labelling of PLFAs[6] to estimate the rate and progression of 13C- label incorporation and turnover of methanotrophic populations. This modified approach has been used to investigate the impacts of various environmental variables, e.g. soil type, vegetation cover and land use, on the methanotrophic biomass[7.8]. The unique nature of the 13CH4 as a gaseous substate/carbon source means that can be readily introduced into soils via a specific subset of the soil microbial biomass, thereby offering many

  1. A facile method for expression and purification of (15)N isotope-labeled human Alzheimer's β-amyloid peptides from E. coli for NMR-based structural analysis.

    PubMed

    Sharma, Sudhir C; Armand, Tara; Ball, K Aurelia; Chen, Anna; Pelton, Jeffrey G; Wemmer, David E; Head-Gordon, Teresa

    2015-12-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting millions of people worldwide. AD is characterized by the presence of extracellular plaques composed of aggregated/oligomerized β-amyloid peptides with Aβ42 peptide representing a major isoform in the senile plaques. Given the pathological significance of Aβ42 in the progression of AD, there is considerable interest in understanding the structural ensembles for soluble monomer and oligomeric forms of Aβ42. This report describes an efficient method to express and purify high quality (15)N isotope-labeled Aβ42 for structural studies by NMR. The protocol involves utilization of an auto induction system with (15)N isotope labeled medium, for high-level expression of Aβ42 as a fusion with IFABP. After the over-expression of the (15)N isotope-labeled IFABP-Aβ42 fusion protein in the inclusion bodies, pure (15)N isotope-labeled Aβ42 peptide is obtained following a purification method that is streamlined and improved from the method originally developed for the isolation of unlabeled Aβ42 peptide (Garai et al., 2009). We obtain a final yield of ∼ 6 mg/L culture for (15)N isotope-labeled Aβ42 peptide. Mass spectrometry and (1)H-(15)N HSQC spectra of monomeric Aβ42 peptide validate the uniform incorporation of the isotopic label. The method described here is equally applicable for the uniform isotope labeling with (15)N and (13)C in Aβ42 peptide as well as its other variants including any Aβ42 peptide mutants.

  2. Benthic macroinvertebrates and the use of stable isotopes (δ13C and δ15N) in the impact assessment of peatland use on boreal stream ecosystems

    NASA Astrophysics Data System (ADS)

    Nieminen, Mika L.; Daza Secco, Emmanuela; Nykänen, Hannu; Meissner, Kristian

    2013-04-01

    Stable isotope analysis (SIA) can provide insights into carbon flow dynamics and trophic positions of consumers in food webs. SIA is used in this study, where we assess the possible changes in the basal resources of Finnish boreal stream ecosystems and differences in the impact of two forms of peatland use, forestry and peat mining. About 30% of the total land area of Finland is classified as peatland, of which about 55% has been drained for forestry and about 0.6% is in peat production. Unlike forestry, peat production is regionally less scattered and can thus have measurable local impacts although the total area of peat production is small. Three watersheds were used as study areas. Within each watershed, one stream drains a subcatchment affected only by peat mining, whereas the other stream flows through a subcatchment affected by forestry. The two subcatchment streams merge to form a single stream flowing into a lake. Studied watersheds were subject to no other forms of land use. In addition to the impacted sites, we used two pristine natural mire and two natural forest catchments as controls. We analysed the stable isotopes of carbon (δ13C) and nitrogen (δ15N) from benthic macroinvertebrates, stream bank soil, stream sediment, and dissolved organic carbon (DOC) in stream water. Samples for stable isotope analyses were collected in the summer of 2011 and samples for invertebrate community analyses in the autumn of 2011. Upon sampling we measured several physical parameters at each sampling site. In addition, stream water samples collected in summer and autumn 2012 were analysed for CH4 and CO2 gas concentrations and autumn gas samples also for their δ13C values. Our initial SIA results of invertebrates suggest some degree of discrimination between different sources of OM and possible effects on feeding habits, presumably due to the quality of the basal resources. We will explore this result further by examining not only taxonomical structure, but also the

  3. 1H, 13C, and 15N backbone, side-chain, and heme chemical shift assignments for oxidized and reduced forms of the monoheme c-type cytochrome ApcA isolated from the acidophilic metal-reducing bacterium Acidiphilium cryptum.

    SciTech Connect

    Cort, John R.; Swenson, Michael; Magnuson, Timothy S.

    2011-03-04

    We report the 1H, 13C, and 15N chemical shift assignments of both oxidized and reduced forms of an abundant periplasmic c-type cytochrome, designated ApcA, from the acidophilic gram-negative facultatively anaerobic metal-reducing alpha-proteobacterium Acidiphilium cryptum. These resonance assignments prove that ApcA is a monoheme cytochrome c2 and the product of the Acry_2099 gene. An absence of resonance peaks in the NMR spectra for the 21 N-terminal residues suggests that a predicted N-terminal signal sequence is cleaved. We also describe the preparation and purification of the protein in labeled form from laboratory cultures of A. cryptum growing on 13C- and 15N- labeled substrates.

  4. Economical synthesis of 13C-labeled opiates, cocaine derivatives and selected urinary metabolites by derivatization of the natural products.

    PubMed

    Karlsen, Morten; Liu, Huiling; Johansen, Jon Eigill; Hoff, Bård Helge

    2015-01-01

    The illegal use of opiates and cocaine is a challenge world-wide, but some derivatives are also valuable pharmaceuticals. Reference samples of the active ingredients and their metabolites are needed both for controlling administration in the clinic and to detect drugs of abuse. Especially, (13)C-labeled compounds are useful for identification and quantification purposes by mass spectroscopic techniques, potentially increasing accuracy by minimizing ion alteration/suppression effects. Thus, the synthesis of [acetyl-(13)C4]heroin, [acetyl-(13)C4-methyl-(13)C]heroin, [acetyl-(13)C2-methyl-(13)C]6-acetylmorphine, [N-methyl-(13)C-O-metyl-(13)C]codeine and phenyl-(13)C6-labeled derivatives of cocaine, benzoylecgonine, norcocaine and cocaethylene was undertaken to provide such reference materials. The synthetic work has focused on identifying (13)C atom-efficient routes towards these derivatives. Therefore, the (13)C-labeled opiates and cocaine derivatives were made from the corresponding natural products. PMID:25816077

  5. The signatures of stable isotopes δ 15N and δ 13C in anadromous and non-anadromous Coilia nasus living in the Yangtze River, and the adjacent sea waters

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Tang, Wenqiao; Dong, Wenxia

    2015-12-01

    Stable isotopes are increasingly used to investigate seasonal migrations of aquatic organisms. This study employed stable isotopes ( δ 13C and δ 15N) for Coilia nasus from the lower Yangtze River and the adjacent East China Sea to distinguish different ecotypic groups, ascertain trophic nutrition positions, and reflect environmental influences on C. nasus. δ 13C signatures of C. nasus sampled from Zhoushan (ZS), Chongming (CM), and Jingjiang (JJ) waters were significantly higher than those from the Poyang Lake (PYL) ( P < 0.05). By contrast, δ 15N signatures of C. nasus in ZS, CM, and JJ groups were significantly lower than those in PYL group ( P < 0.05). Basing on δ 13C and δ 15N signatures, we could distinguish anadromous (ZS, CM, and JJ) and non-anadromous (PYL) groups. The trophic level (TL) of anadromous C. nasus ranged from 2.90 to 3.04, whereas that of non-anadromous C. nasus was 4.38. C. nasus occupied the middle and top nutrition positions in the marine and Poyang Lake food webs, respectively. C. nasus in Poyang Lake were significantly more enriched in δ 15N but depleted in δ 13C, suggesting that anthropogenic nutrient inputs and terrigenous organic carbon are important to the Poyang Lake food web. This study is the first to apply δ 15N and δ 13C to population assignment studies of C. nasus in the Yangtze River and its affiliated waters. Analysis of stable isotopes ( δ 15N and δ 13C) is shown to be a useful tool for discriminating anadromous and non-anadromous C. nasus.

  6. Uniformly 13C-labeled algal protein used to determine amino acid essentiality in vivo.

    PubMed Central

    Berthold, H K; Hachey, D L; Reeds, P J; Thomas, O P; Hoeksema, S; Klein, P D

    1991-01-01

    The edible alga Spirulina platensis was uniformly labeled with 13C by growth in an atmosphere of pure 13CO2. The labeled biomass was then incorporated into the diet of a laying hen for 27 days. The isotopic enrichment of individual amino acids in egg white and yolk proteins, as well as in various tissues of the hen at the end of the feeding period, was analyzed by negative chemical ionization gas chromatography/mass spectrometry. The amino acids of successive eggs showed one of two exclusive enrichment patterns: complete preservation of the intact carbon skeleton or extensive degradation and resynthesis. The same observation was made in tissue proteins. These patterns were cleanly divided according to known nutritional amino acid essentiality/nonessentiality but revealed differences in labeling among the nonessential amino acids: most notable was that proline accretion was derived entirely from the diet. Feeding uniformly 13C-labeled algal protein and recovering and analyzing de novo-synthesized protein provides a useful method to examine amino acid metabolism and determine conditional amino acid essentially in vivo. Images PMID:11607211

  7. Metabolic Flux Elucidation for Large-Scale Models Using 13C Labeled Isotopes

    PubMed Central

    Suthers, Patrick F.; Burgard, Anthony P.; Dasika, Madhukar S.; Nowroozi, Farnaz; Van Dien, Stephen; Keasling, Jay D.; Maranas, Costas D.

    2007-01-01

    A key consideration in metabolic engineering is the determination of fluxes of the metabolites within the cell. This determination provides an unambiguous description of metabolism before and/or after engineering interventions. Here, we present a computational framework that combines a constraint-based modeling framework with isotopic label tracing on a large-scale. When cells are fed a growth substrate with certain carbon positions labeled with 13C, the distribution of this label in the intracellular metabolites can be calculated based on the known biochemistry of the participating pathways. Most labeling studies focus on skeletal representations of central metabolism and ignore many flux routes that could contribute to the observed isotopic labeling patterns. In contrast, our approach investigates the importance of carrying out isotopic labeling studies using a more comprehensive reaction network consisting of 350 fluxes and 184 metabolites in Escherichia coli including global metabolite balances on cofactors such as ATP, NADH, and NADPH. The proposed procedure is demonstrated on an E. coli strain engineered to produce amorphadiene, a precursor to the anti-malarial drug artemisinin. The cells were grown in continuous culture on glucose containing 20% [U-13C]glucose; the measurements are made using GC-MS performed on 13 amino acids extracted from the cells. We identify flux distributions for which the calculated labeling patterns agree well with the measurements alluding to the accuracy of the network reconstruction. Furthermore, we explore the robustness of the flux calculations to variability in the experimental MS measurements, as well as highlight the key experimental measurements necessary for flux determination. Finally, we discuss the effect of reducing the model, as well as shed light onto the customization of the developed computational framework to other systems. PMID:17632026

  8. Methanogenic capabilities of ANME-archaea deduced from (13) C-labelling approaches.

    PubMed

    Bertram, Sebastian; Blumenberg, Martin; Michaelis, Walter; Siegert, Michael; Krüger, Martin; Seifert, Richard

    2013-08-01

    Anaerobic methanotrophic archaea (ANME) are ubiquitous in marine sediments where sulfate dependent anaerobic oxidation of methane (AOM) occurs. Despite considerable progress in the understanding of AOM, physiological details are still widely unresolved. We investigated two distinct microbial mat samples from the Black Sea that were dominated by either ANME-1 or ANME-2. The (13) C lipid stable isotope probing (SIP) method using labelled substances, namely methane, bicarbonate, acetate, and methanol, was applied, and the substrate-dependent methanogenic capabilities were tested. Our data provide strong evidence for a versatile physiology of both, ANME-1 and ANME-2. Considerable methane production rates (MPRs) from CO2 -reduction were observed, particularly from ANME-2 dominated samples and in the presence of methane, which supports the hypothesis of a co-occurrence of methanotrophy and methanogenesis in the AOM systems (AOM/MPR up to 2:1). The experiments also revealed strong methylotrophic capabilities through (13) C-assimilation from labelled methanol, which was independent of the presence of methane. Additionally, high MPRs from methanol were detected in both of the mat samples. As demonstrated by the (13) C-uptake into lipids, ANME-1 was found to thrive also under methane free conditions. Finally, C35 -isoprenoid hydrocarbons were identified as new lipid biomarkers for ANME-1, most likely functioning as a hydrogen sink during methanogenesis.

  9. Major Sources of Organic Matter in a Complex Coral Reef Lagoon: Identification from Isotopic Signatures (δ13C and δ15N).

    PubMed

    Briand, Marine J; Bonnet, Xavier; Goiran, Claire; Guillou, Gaël; Letourneur, Yves

    2015-01-01

    A wide investigation was conducted into the main organic matter (OM) sources supporting coral reef trophic networks in the lagoon of New Caledonia. Sampling included different reef locations (fringing, intermediate and barrier reef), different associated ecosystems (mangroves and seagrass beds) and rivers. In total, 30 taxa of macrophytes, plus pools of particulate and sedimentary OM (POM and SOM) were sampled. Isotopic signatures (C and N) of each OM sources was characterized and the composition of OM pools assessed. In addition, spatial and seasonal variations of reef OM sources were examined. Mangroves isotopic signatures were the most C-depleted (-30.17 ± 0.41 ‰) and seagrass signatures were the most C-enriched (-4.36 ± 0.72 ‰). Trichodesmium spp. had the most N-depleted signatures (-0.14 ± 0.03 ‰) whereas mangroves had the most N-enriched signatures (6.47 ± 0.41 ‰). The composition of POM and SOM varied along a coast-to-barrier reef gradient. River POM and marine POM contributed equally to coastal POM, whereas marine POM represented 90% of the POM on barrier reefs, compared to 10% river POM. The relative importance of river POM, marine POM and mangroves to the SOM pool decreased from fringing to barrier reefs. Conversely, the relative importance of seagrass, Trichodesmium spp. and macroalgae increased along this gradient. Overall, spatial fluctuations in POM and SOM were much greater than in primary producers. Seasonal fluctuations were low for all OM sources. Our results demonstrated that a large variety of OM sources sustain coral reefs, varying in their origin, composition and role and suggest that δ13C was a more useful fingerprint than δ15N in this endeavour. This study also suggested substantial OM exchanges and trophic connections between coral reefs and surrounding ecosystems. Finally, the importance of accounting for environmental characteristics at small temporal and spatial scales before drawing general patterns is highlighted. PMID

  10. Investigations of (Delta)14C, (delta)13C, and (delta)15N in vertebrae of white shark (Carcharodon carcharias) from the eastern North Pacific Ocean

    SciTech Connect

    Kerr, L A; Andrews, A H; Cailliet, G M; Brown, T A; Coale, K H

    2006-06-08

    The white shark (Carcharodon carcharias) has a complex life history that is characterized by large scale movements and a highly variable diet. Estimates of age and growth for the white shark from the eastern North Pacific Ocean indicate they have a slow growth rate and a relatively high longevity. Age, growth, and longevity estimates useful for stock assessment and fishery models, however, require some form of validation. By counting vertebral growth band pairs, ages can be estimated, but because not all sharks deposit annual growth bands and many are not easily discernable, it is necessary to validate growth band periodicity with an independent method. Radiocarbon ({sup 14}C) age validation uses the discrete {sup 14}C signal produced from thermonuclear testing in the 1950s and 1960s that is retained in skeletal structures as a time-specific marker. Growth band pairs in vertebrae, estimated as annual and spanning the 1930s to 1990s, were analyzed for {Delta}{sup 14}C and stable carbon and nitrogen isotopes ({delta}{sup 13}C and {delta}{sup 15}N). The aim of this study was to evaluate the utility of {sup 14}C age validation for a wide-ranging species with a complex life history and to use stable isotope measurements in vertebrae as a means of resolving complexity introduced into the {sup 14}C chronology by ontogenetic shifts in diet and habitat. Stable isotopes provided useful trophic position information; however, validation of age estimates was confounded by what may have been some combination of the dietary source of carbon to the vertebrae, large-scale movement patterns, and steep {sup 14}C gradients with depth in the eastern North Pacific Ocean.

  11. 1H, 13C and 15N resonance assignments and secondary structure analysis of translation initiation factor 1 from Pseudomonas aeruginosa

    PubMed Central

    Bernal, Alejandra; Hu, Yanmei; Palmer, Stephanie O.; Silva, Aaron; Bullard, James; Zhang, Yonghong

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen and a primary cause of infection in humans. P. aeruginosa can acquire resistance against multiple groups of antimicrobial agents, including β-lactams, aminoglycosides and fluoroquinolones, and multidrug resistance is increasing in this organism which makes treatment of the infections difficult and expensive. This has led to the unmet need for discovery of new compounds distinctly different from present antimicrobials. Protein synthesis is an essential metabolic process and a validated target for the development of new antibiotics. Translation initiation factor 1 from P. aeruginosa (Pa-IF1) is the smallest of the three initiation factors that acts to establish the 30S initiation complex to initiate translation during protein biosynthesis, and its structure is unknown. Here we report the 1H, 13C and 15N chemical shift assignments of Pa-IF1 as the basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified five β-strands with an unusually extended β-strand at the C-terminal end of the protein and one short α-helix arranged in the sequential order β1–β2–β3–α1–β4–β5. This is further supported by 15N–{1H} hetero NOEs. These secondary structure elements suggest the Pa-IF1 adopts the typical β-barrel structure and is composed of an oligomer-binding motif. PMID:26983940

  12. Experimentally Derived δ13C and δ15N Discrimination Factors for Gray Wolves and the Impact of Prior Information in Bayesian Mixing Models

    PubMed Central

    Bucci, Melanie E.; Callahan, Peggy; Koprowski, John L.; Polfus, Jean L.; Krausman, Paul R.

    2015-01-01

    Stable isotope analysis of diet has become a common tool in conservation research. However, the multiple sources of uncertainty inherent in this analysis framework involve consequences that have not been thoroughly addressed. Uncertainty arises from the choice of trophic discrimination factors, and for Bayesian stable isotope mixing models (SIMMs), the specification of prior information; the combined effect of these aspects has not been explicitly tested. We used a captive feeding study of gray wolves (Canis lupus) to determine the first experimentally-derived trophic discrimination factors of C and N for this large carnivore of broad conservation interest. Using the estimated diet in our controlled system and data from a published study on wild wolves and their prey in Montana, USA, we then investigated the simultaneous effect of discrimination factors and prior information on diet reconstruction with Bayesian SIMMs. Discrimination factors for gray wolves and their prey were 1.97‰ for δ13C and 3.04‰ for δ15N. Specifying wolf discrimination factors, as opposed to the commonly used red fox (Vulpes vulpes) factors, made little practical difference to estimates of wolf diet, but prior information had a strong effect on bias, precision, and accuracy of posterior estimates. Without specifying prior information in our Bayesian SIMM, it was not possible to produce SIMM posteriors statistically similar to the estimated diet in our controlled study or the diet of wild wolves. Our study demonstrates the critical effect of prior information on estimates of animal diets using Bayesian SIMMs, and suggests species-specific trophic discrimination factors are of secondary importance. When using stable isotope analysis to inform conservation decisions researchers should understand the limits of their data. It may be difficult to obtain useful information from SIMMs if informative priors are omitted and species-specific discrimination factors are unavailable. PMID:25803664

  13. Chlorophyll a-specific Δ14C, δ13C and δ15N values in stream periphyton: implications for aquatic food web studies

    NASA Astrophysics Data System (ADS)

    Ishikawa, N. F.; Yamane, M.; Suga, H.; Ogawa, N. O.; Yokoyama, Y.; Ohkouchi, N.

    2015-11-01

    Periphytic algae attached to a streambed substrate (periphyton) are an important primary producer in stream ecosystems. We determined the isotopic composition of chlorophyll a in periphyton collected from a stream flowing on limestone bedrock in the Seri River, central Japan. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) and natural radiocarbon abundances (Δ14C) were measured in chlorophyll a (δ13Cchl, δ15Nchl and Δ14Cchl) and bulk (δ13Cbulk, δ15Nbulk and Δ14Cbulk) for periphyton, a pure aquatic primary producer (Cladophora sp.) and a terrestrial primary producer (Quercus glauca). Periphyton δ13Cbulk and δ13Cchl values did not necessarily correspond to δ13Cbulk for an algal-grazing specialist (Epeorus latifolium). Periphyton Δ14Cchl values (-258 ‰ in April and -190 ‰ in October) were slightly lower than Δ14Cbulk values (-228 ‰ in April and -179 ‰ in October) but were close to the Δ14C value for dissolved inorganic carbon (DIC; -217 ± 31 ‰), which is a mixture of weathered carbonates (Δ14C = -1000 ‰), CO2 derived from aquatic and terrestrial organic matters (variable Δ14C) and dissolved atmospheric CO2 (Δ14C approximately +30 ‰ in 2013). Δ14Cchl values were also close to Δ14Cbulk for E. latifolium (-215 ‰ in April and -199 ‰ in October) and Cladophora sp. (-210 ‰), whereas the Δ14Cbulk value for Q. glauca (+27 ‰) was closer to Δ14C for atmospheric CO2. Although the bulk isotopic composition of periphyton is recognised as a surrogate for the photosynthetic algal community, natural periphyton is a mixture of aquatic and terrestrial organic materials. Our results indicate that the bulk periphyton matrix at the study site consists of 89 to 95 % algal carbon (derived from 14C-depleted DIC) and 5 to 11 % terrestrial organic carbon (derived from 14C-enriched atmospheric CO2).

  14. Major Sources of Organic Matter in a Complex Coral Reef Lagoon: Identification from Isotopic Signatures (δ13C and δ15N)

    PubMed Central

    Briand, Marine J.; Bonnet, Xavier; Goiran, Claire; Guillou, Gaël; Letourneur, Yves

    2015-01-01

    A wide investigation was conducted into the main organic matter (OM) sources supporting coral reef trophic networks in the lagoon of New Caledonia. Sampling included different reef locations (fringing, intermediate and barrier reef), different associated ecosystems (mangroves and seagrass beds) and rivers. In total, 30 taxa of macrophytes, plus pools of particulate and sedimentary OM (POM and SOM) were sampled. Isotopic signatures (C and N) of each OM sources was characterized and the composition of OM pools assessed. In addition, spatial and seasonal variations of reef OM sources were examined. Mangroves isotopic signatures were the most C-depleted (-30.17 ± 0.41 ‰) and seagrass signatures were the most C-enriched (-4.36 ± 0.72 ‰). Trichodesmium spp. had the most N-depleted signatures (-0.14 ± 0.03 ‰) whereas mangroves had the most N-enriched signatures (6.47 ± 0.41 ‰). The composition of POM and SOM varied along a coast-to-barrier reef gradient. River POM and marine POM contributed equally to coastal POM, whereas marine POM represented 90% of the POM on barrier reefs, compared to 10% river POM. The relative importance of river POM, marine POM and mangroves to the SOM pool decreased from fringing to barrier reefs. Conversely, the relative importance of seagrass, Trichodesmium spp. and macroalgae increased along this gradient. Overall, spatial fluctuations in POM and SOM were much greater than in primary producers. Seasonal fluctuations were low for all OM sources. Our results demonstrated that a large variety of OM sources sustain coral reefs, varying in their origin, composition and role and suggest that δ13C was a more useful fingerprint than δ15N in this endeavour. This study also suggested substantial OM exchanges and trophic connections between coral reefs and surrounding ecosystems. Finally, the importance of accounting for environmental characteristics at small temporal and spatial scales before drawing general patterns is highlighted. PMID

  15. Spatio-temporal isotopic signatures (δ13 C and δ15 N) reveal that two sympatric West African mullet species do not feed on the same basal production sources.

    PubMed

    Le Loc'h, F; Durand, J-D; Diop, K; Panfili, J

    2015-04-01

    Potential trophic competition between two sympatric mullet species, Mugil cephalus and Mugil curema, was explored in the hypersaline estuary of the Saloum Delta (Senegal) using δ(13) C and δ(15) N composition of muscle tissues. Between species, δ(15) N compositions were similar, suggesting a similar trophic level, while the difference in δ(13) C compositions indicated that these species did not feed from exactly the same basal production sources or at least not in the same proportions. This result provides the first evidence of isotopic niche segregation between two limno-benthophageous species belonging to the geographically widespread, and often locally abundant, Mugilidae family.

  16. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    PubMed Central

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  17. Computational Platform for Flux Analysis Using 13C-Label Tracing- Phase I SBIR Final Report

    SciTech Connect

    Van Dien, Stephen J.

    2005-04-12

    Isotopic label tracing is a powerful experimental technique that can be combined with metabolic models to quantify metabolic fluxes in an organism under a particular set of growth conditions. In this work we constructed a genome-scale metabolic model of Methylobacterium extorquens, a facultative methylotroph with potential application in the production of useful chemicals from methanol. A series of labeling experiments were performed using 13C-methanol, and the resulting distribution of labeled carbon in the proteinogenic amino acids was determined by mass spectrometry. Algorithms were developed to analyze this data in context of the metabolic model, yielding flux distributions for wild-type and several engineered strains of M. extorquens. These fluxes were compared to those predicted by model simulation alone, and also integrated with microarray data to give an improved understanding of the metabolic physiology of this organism.

  18. Stable Carbon and Nitrogen isoscapes of the California Coast: integrated δ15N and δ13C of suspended particulate organic matter inferred from tissues of the California Mussel (mytilus californianus)

    NASA Astrophysics Data System (ADS)

    Vokhshoori, N. L.; McCarthy, M. D.

    2011-12-01

    Spatial maps of isotopic variability in a single species, or isoscapes, can characterize the natural variability in carbon (C) and nitrogen (N) isotope ratios across ecosystems on broad spatial scales, trace the signature of a source across a given area, as well as constrain animal migration patterns (Graham et al. 2002). In this study, isoscapes of stable carbon (13C) and nitrogen (15N) isotopes were constructed using intertidal mussels for northeast Pacific coastal waters of California. In this region biogeochemical cycling is primarily controlled by upwelling intensity and large-scale transport of the California Current System (CCS). We hypothesize that sampling specific tissues of filter-feeding organisms can provide an integrated measure of variation in 15N and 13C of the suspended particulate organic matter (POM) pool vs. latitude within the CCS, as well indicate main sources of both organic C and N to littoral food webs. California mussels (mytilus californianus) were collected from 28 sites between Coos Bay, OR and La Jolla, CA in the winter of 2009-2010 and summer of 2011, and adductor tissue was analyzed for δ13C and δ15N. Mussel size classes were chosen to provide ~ 1 yr integrated signal. Spatial trends in δ15N from the winter sampling show a strong linear trend in increasing δ15N values with latitude north to south (δ15N values range from 7 % to 12%) consistent with slowly attenuating northward transport of 15N-depleted nitrate via California Undercurrent (Altabet et al. 1999). The δ13C values have no strong north to south correlation, but exhibit strong location-specific variability. The δ13C values range between -13 % and -18%. We propose the site-specific signature of δ13C indicates relative source of primary productin to POM at a given region (i.e. kelp, phytoplankton, zooplankton). Overall, these results suggest that isoscapes for filter-feeding organisms may offer a more accurate integrated picture of 15N and 13C values of POM than is

  19. Study of stereospecificity of 1H, 13C, 15N and 77Se shielding constants in the configurational isomers of the selenophene-2-carbaldehyde azine by NMR spectroscopy and MP2-GIAO calculations.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Albanov, Alexander I; Levanova, Ekaterina P; Levkovskaya, Galina G

    2011-11-01

    In the (1)H and (13)C NMR spectra of selenophene-2-carbaldehyde azine, the (1)H-5, (13)C-3 and (13)C-5 signals of the selenophene ring are shifted to higher frequencies, whereas those of the (1)H-1, (13)C-1, (13)C-2 and (13)C-4 are shifted to lower frequencies on going from the EE to ZZ isomer or from the E moiety to the Z moiety of EZ isomer. The (15)N chemical shift is significantly larger in the EE isomer relative to the ZZ isomer and in the E moiety relative to the Z moiety of EZ isomer. A very pronounced difference (60-65 mg/g) between the (77)Se resonance positions is revealed in the studied azine isomers, the (77)Se peak being shifted to higher frequencies in the ZZ isomer and in the Z moiety of EZ isomer. The trends in the changes of the measured chemical shifts are reasonably reproduced by the GIAO calculations at the MP2 level of the (1)H, (13)C, (15)N and (77)Se shielding constants in the energy-favorable conformation with the syn orientation of both selenophene rings relative to the C = N groups. The NBO analysis suggests that such an arrangement of the selenophene rings may take place because of a higher energy of some intramolecular interactions. PMID:22002712

  20. Shifts in Ross Sea food web structure as indicated by δ15N and δ13C values of fossil Antarctic seals

    NASA Astrophysics Data System (ADS)

    Leopold, A.; Brault, E.; McMahon, K.

    2013-12-01

    As climate change continues to mount, there is a growing need for understanding its effects on biological-physical interactions of marine ecosystems. Assessing the effects of anthropogenic activities on the coastal marine ecosystem involves understanding the underlying mechanisms driving these changes as well as establishing baselines of the natural system. Preliminary findings have indicated shifts in bulk carbon (C) and nitrogen (N) isotopic values of southern elephant seal (Mirounga leonina) samples, collected in the Dry Valleys of Antarctica in the Ross Sea region, over approximately the last 7,000 years. These shifts could result from 1) seals changing their foraging location and/or diet over this time, 2) climate change-induced shifts in the biogeochemistry at the base of the food web, or 3) some combination of both processes. We explored the patterns of long-term change in Ross Sea food web structure by examining the stable isotope values of three top predators in this system, Weddell seals (Leptonychotes weddellii), leopard seals (Hydrurga leptonyx), and crabeater seals (Lobodon carcinophagus). Fossil seal samples were collected in the Dry Valleys during the austral summer of 2012/13 and then analyzed for bulk C and N isotopes via an elemental analyzer/isotope-ratio mass spectrometer (EA/IRMS). Our initial findings indicate that C isotopic values of fossil seal samples from Weddell, leopard, and crabeater seals were more enriched than isotopic values of modern seals of the same species (e.g., δ13C = -22.79 × 0.92 ‰ and -26.71 × 0.50 ‰ for fossil and modern crabeater seals, respectively). Given the relatively consistent diet of crabeater seals, these findings suggest a shift in baseline food web structure occurred over the last 10,000 years, either through changes in foraging location or local shifts in biogeochemistry. For all species, N isotopic values are widely variable (e.g., 7.28 to 16.0 δ15N ‰ for the Weddell seal), which may be a result of

  1. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    PubMed Central

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  2. Interaction between rhizosphere microorganisms and plant roots: 13C fluxes in the rhizosphere after pulse labeling

    NASA Astrophysics Data System (ADS)

    Yevdokimov, I. V.; Ruser, R.; Buegger, F.; Marx, M.; Munch, J. C.

    2007-07-01

    The input dynamics of labeled C into pools of soil organic matter and CO2 fluxes from soil were studied in a pot experiment with the pulse labeling of oats and corn under a 13CO2 atmosphere, and the contribution of the root and microbial respiration to the emission of CO2 from the soil was determined from the fluxes of labeled C in the microbial biomass and the evolved carbon dioxide. A considerable amount of 13C (up to 96% of the total amount of the label found in the rhizosphere soil) was incorporated into the biomass of the rhizosphere microorganisms. The diurnal fluctuations of the labeled C pools in the microbial biomass, dissolved organic carbon, and CO2 released in the rhizosphere of oats and corn were related to the day/night changes, i.e., to the on and off periods of the photosynthetic activity of the plants. The average contribution of the corn root respiration (70% of the total CO2 emission from the soil surface) was higher than that of the oats roots (44%), which was related to the lower incorporation of rhizodeposit carbon into the microbial biomass in the soil under the corn plants than in the soil under the oats plants.

  3. Temporal variations of C, N, δ13C, and δ15N in organic matter collected by a sediment trap at Cuenca Alfonso, Bahía de La Paz, SW Gulf of California

    NASA Astrophysics Data System (ADS)

    Aguiñiga, Sergio; Sanchez, Alberto; Silverberg, Norman

    2010-09-01

    To monitor the composition and the vertical flux of particulate matter from the sea surface, a sediment trap was moored in Cuenca Alfonso, Bahía de La Paz, a zone of high productivity in the southwestern Gulf of California. Carbonate-free samples from 2002 to 2005 were analyzed for C org, N, δ13C, and δ15N. The results show seasonal and interannual variability, with the δ13C and δ15N values larger in spring and summer than in fall and winter. The C:N ratio and δ13C increased by 1.5 units from 2002 to 2003-2005, suggesting a change in the supply of organic matter and-or the use or preferential degradation of N org. There was no interannual variation in δ15N. The occasional high δ15N values suggest that physical mechanisms, such as the shoaling and advection into the bay of 15N-rich subsurface equatorial water, occur over short time periods. The latter is presumed to be related to the periodic development of a significant cyclonic gyre in the southern Gulf.

  4. Influence of N-H...O and O-H...O hydrogen bonds on the (17)O, (15)N and (13)C chemical shielding tensors in crystalline acetaminophen: a density functional theory study.

    PubMed

    Esrafili, Mehdi D; Behzadi, Hadi; Hadipour, Nasser L

    2007-06-01

    A computational investigation was carried out to characterize the (17)O, (15)N and (13)C chemical shielding tensors in crystalline acetaminophen. We found that N-H...O and O-H...O hydrogen bonds around the acetaminophen molecule in the crystal lattice have different influences on the calculated (17)O, (15)N and (13)C chemical shielding eigenvalues and their orientations in the molecular frame of axes. The calculations were performed with the B3LYP method and 6-311++G(d, p) and 6-311+G(d) standard basis sets using the Gaussian 98 suite of programs. Calculated chemical shielding tensors were used to evaluate the (17)O, (15)N, and (13)C NMR chemical shift tensors in crystalline acetaminophen, which are in reasonable agreement with available experimental data. The difference between the calculated NMR parameters of the monomer and molecular clusters shows how much hydrogen-bonding interactions affect the chemical shielding tensors of each nucleus. The computed (17)O chemical shielding tensor on O(1), which is involved in two intermolecular hydrogen bonds, shows remarkable sensitivity toward the choice of the cluster model, whereas the (17)O chemical shielding tensor on O(2) involved in one N-H...O hydrogen bond, shows smaller improvement toward the hydrogen-bonding interactions. Also, a reasonably good agreement between the experimentally obtained solid-state (15)N and (13)C NMR chemical shifts and B3LYP/6-311++G(d, p) calculations is achievable only in molecular cluster model where a complete hydrogen-bonding network is considered. Moreover, at the B3LYP/6-311++G(d, p) level of theory, the calculated (17)O, (15)N and (13)C chemical shielding tensor orientations are able to reproduce the experimental values to a reasonably good degree of accuracy.

  5. Comparison of vertebral δ13C and δ15N records with organism-based isoscapes to identify fish migration, site fidelity and food-web preferences of fishes in the eastern Gulf of Mexico, USA

    NASA Astrophysics Data System (ADS)

    Radabaugh, K. R.; Wallace, A. A.; Huelster, S. A.; Hollander, D. J.; Peebles, E. B.

    2011-12-01

    Geographic variation in stable isotopic composition of dissolved and particulate nitrogen and carbon enables the use of stable isotopes as endogenous markers to track the origin and migration of motile marine species. Variation in river discharge, the light environment, and biological activity result in δ13C and δ15N spatial heterogeneity within coastal marine food webs. SEAMAP (Southeast Area Monitoring and Assessment Program) groundfish surveys at more than 130 locations were used to acquire samples from >1,600 samples of fish muscle and primary producers for bulk δ13C and δ15N analysis, allowing the creation of isoscapes for the West Florida Shelf (eastern Gulf of Mexico, USA). The δ15N isoscapes exhibited strong latitudinal and longitudinal isotopic gradients for all fish species examined, with high interannual and seasonal stability. δ15N was 3-4 % higher in the northwest region of the study compared to the southeast for both Syacium papillosum (dusky flounder) and Synodus foetens (inshore lizardfish). Low individual variability in δ15N values revealed strong site fidelities for these trawl-caught fishes. δ13C isoscapes exhibited depth gradients with greater seasonal and interannual variability. This study assesses the utility of combining isotopic analyses of fish vertebrae with organism-based isoscapes to investigate the migration routes of individual fishes. Unlike muscle isotopes that provide an integrated perspective of recent spatial and temporal environmental variation (at a scale dependent on muscle turnover rates), analysis of δ13C and δ15N along the growth radii of fish vertebrae enables chronological reconstruction of individual histories. When corrected for trophic level and metabolic fractionation, comparison of isotopic life history to the established isoscapes may enable reconstruction of migration routes and changing food-web positions of commercial and recreational fisheries species.

  6. Sparse (13)C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins.

    PubMed

    Liu, Jing; Liu, Chang; Fan, Ying; Munro, Rachel A; Ladizhansky, Vladimir; Brown, Leonid S; Wang, Shenlin

    2016-05-01

    We demonstrate a novel sparse (13)C labelling approach for methylotrophic yeast P. pastoris expression system, towards solid-state NMR studies of eukaryotic membrane proteins. The labelling scheme was achieved by co-utilizing natural abundance methanol and specifically (13)C labelled glycerol as carbon sources in the expression medium. This strategy improves the spectral resolution by 1.5 fold, displays site-specific labelling patterns, and has advantages for collecting long-range distance restraints for structure determination of large eukaryotic membrane proteins by solid-state NMR.

  7. 1H-13C/1H-15N Heteronuclear Dipolar Recoupling by R-Symmetry Sequences Under Fast Magic Angle Spinning for Dynamics Analysis of Biological and Organic Solids

    PubMed Central

    Hou, Guangjin; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2011-01-01

    Fast magic angle spinning (MAS) NMR spectroscopy is becoming increasingly important in structural and dynamics studies of biological systems and inorganic materials. Superior spectral resolution due to the efficient averaging of the dipolar couplings can be attained at MAS frequencies of 40 kHz and higher with appropriate decoupling techniques, while proton detection gives rise to significant sensitivity gains, therefore making fast MAS conditions advantageous across the board compared with the conventional slow- and moderate-MAS approaches. At the same time, many of the dipolar recoupling approaches that currently constitute the basis for structural and dynamics studies of solid materials and that are designed for MAS frequencies of 20 kHz and below, fail above 30 kHz. In this report, we present an approach for 1H-13C/1H-15N heteronuclear dipolar recoupling under fast MAS conditions using R-type symmetry sequences, which is suitable even for fully protonated systems. A series of rotor-synchronized R-type symmetry pulse schemes are explored for the determination of structure and dynamics in biological and organic systems. The investigations of the performance of the various RNnv-symmetry sequences at the MAS frequency of 40 kHz experimentally and by numerical simulations on [U-13C,15N]-alanine and [U-13C,15N]-N-acetyl-valine, revealed excellent performance for sequences with high symmetry number ratio (N/2n > 2.5). Further applications of this approach are presented for two proteins, sparsely 13C/uniformly 15N enriched CAP-Gly domain of dynactin and U-13C,15N-Tyr enriched C-terminal domain of HIV-1 CA protein. 2D and 3D R1632-based DIPSHIFT experiments carried out at the MAS frequency of 40 kHz, yielded site-specific 1H-13C/1H-15N heteronuclear dipolar coupling constants for CAP-Gly and CTD CA, reporting on the dynamic behavior of these proteins on time scales of nano- to microseconds. The R-symmetry based dipolar recoupling under fast MAS is expected to find

  8. Monitoring CO[subscript 2] Fixation Using GC-MS Detection of a [superscript 13]C-Label

    ERIC Educational Resources Information Center

    Hammond, Daniel G.; Bridgham, April; Reichert, Kara; Magers, Martin

    2010-01-01

    Much of our understanding of metabolic pathways has resulted from the use of chemical and isotopic labels. In this experiment, a heavy isotope of carbon, [superscript 13]C, is used to label the product of the well-known RuBisCO enzymatic reaction. This is a key reaction in photosynthesis that converts inorganic carbon to organic carbon; a process…

  9. Diet-tissue discrimination factors (Δ(13) C and Δ(15) N) and turnover rate in somatic tissues of a neotropical detritivorous fish on C3 and C4 diets.

    PubMed

    Sacramento, P A; Manetta, G I; Benedito, E

    2016-07-01

    In this study, diet-tissue discrimination factors and turnover rates were determined from the somatic tissues of a detritivorous fish Prochilodus lineatus. The carbon (Δ(13) C) and nitrogen (Δ(15) N) diet-tissue discrimination factors varied for all feed rations with a range of Δ(13) C values between -1·9 and 3·6‰ and Δ(15) N between 3·3 and 5·7‰. Carbon turnover rate in the blood was 23·1 days for the C3 ration and 34·7 days for the C4 ration, in the liver was 9·9 days under the C3 ration and nitrogen turnover rate was the same (23·1 days) in the liver for both C4 and C3 -C4 rations, and 13·9 days in the muscle for C3 -C4 ration.

  10. Changing gull diet in a changing world: a 150-year stable isotope (δ13C, δ15N) record from feathers collected in the Pacific Northwest of North America.

    PubMed

    Blight, Louise K; Hobson, Keith A; Kyser, T Kurt; Arcese, Peter

    2015-04-01

    The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long-term human impacts. We used stable isotope (δ(13)C, δ(15)N) analysis of feathers from glaucous-winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long-term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ(13)C and δ(15)N declined since 1860 in both subadult and adult gulls (δ(13)C, ~ 2-6‰; δ(15)N, ~4-5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ(13)C and δ(15)N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage-based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long-term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional

  11. Explosive H-Burning and Neutron Capture Isotopic Signatures in 13C- and 15N-Rich Presolar SiC Grains

    NASA Astrophysics Data System (ADS)

    Nittler, L. R.; Liu, N.; Alexander, C. M. O'D.; Wang, J.

    2016-08-01

    15N-rich SiC AB grains have correlated 26Al/27Al and N-isotopic ratios and evidence for neutron capture (50Ti and 32S excesses), indicating combined effects of explosive H burning and neutron capture. The origin(s) of these grains remains elusive.

  12. HNCA-TOCSY-CANH experiments with alternate 13C-12C labeling: a set of 3D experiment with unique supra-sequential information for mainchain resonance assignment

    PubMed Central

    Takeuchi, Koh; Gal, Maayan; Takahashi, Hideo; Shimada, Ichio

    2011-01-01

    Described here is a set of three-dimensional (3D) NMR experiments that rely on CACA-TOCSY magnetization transfer via the weak 3JCαCα coupling. These pulse sequences, which resemble recently described 13C detected CACA-TOCSY (Takeuchi et al. 2010) experiments, are recorded in 1H2O, and use 1H excitation and detection. These experiments require alternate 13C-12C labeling together with perdeuteration, which allows utilizing the small 3JCαCα scalar coupling that is otherwise masked by the stronger 1JCC couplings in uniformly 13C labeled samples. These new experiments provide a unique assignment ladder-mark that yields bidirectional supra-sequential information and can readily straddle proline residues. Unlike the conventional HNCA experiment, which contains only sequential information to the 13Cα of the preceding residue, the 3D hnCA-TOCSY-caNH experiment can yield sequential correlations to alpha carbons in positions i−1, i + 1 and i−2. Furthermore, the 3D hNca-TOCSY-caNH and Hnca-TOC-SY-caNH experiments, which share the same magnetization pathway but use a different chemical shift encoding, directly couple the 15N-1H spin pair of residue i to adjacent amide protons and nitrogens at positions i−2, i−1, i + 1 and i + 2, respectively. These new experimental features make protein backbone assignments more robust by reducing the degeneracy problem associated with the conventional 3D NMR experiments. PMID:21110064

  13. Combination of the (87)Sr/(86)Sr ratio and light stable isotopic values (δ(13)C, δ(15)N and δD) for identifying the geographical origin of winter wheat in China.

    PubMed

    Liu, Hongyan; Wei, Yimin; Lu, Hai; Wei, Shuai; Jiang, Tao; Zhang, Yingquan; Guo, Boli

    2016-12-01

    This study aims to investigate whether isotopic signatures can be used to develop reliable fingerprints for discriminating the geographical origin of Chinese winter wheat, and to evaluate the discrimination effects of δ(13)C, δ(15)N and δD, alone or with (87)Sr/(86)Sr. In this study, the values of δ(13)C, δ(15)N and δD, and the (87)Sr/(86)Sr ratios of wheat and provenance soils from three regions were determined. Significant differences were found in all parameters of wheat and (87)Sr/(86)Sr in soil extract (reflecting the bioavailable fraction of soil) among different regions. A significantly positive correlation was observed between the (87)Sr/(86)Sr ratios of wheat and soil extracts. An overall correct classification rate of 77.8% was obtained for discriminating wheat from three regions based on light stable isotopes (δ(13)C, δ(15)N, and δD). The correct classification rate of 98.1% could be obtained with the combination of the (87)Sr/(86)Sr ratio and the light stable isotopic values.

  14. Influence of different organic fertilizers on quality parameters and the delta(15)N, delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of orange fruit (Citrus sinensis L. Osbeck).

    PubMed

    Rapisarda, Paolo; Camin, Federica; Fabroni, Simona; Perini, Matteo; Torrisi, Biagio; Intrigliolo, Francesco

    2010-03-24

    To investigate the influence of different types of fertilizers on quality parameters, N-containing compounds, and the delta(15)N, delta(13)C, delta(2)H, delta (34)S, and delta(18)O values of citrus fruit, a study was performed on the orange fruit cv. 'Valencia late' (Citrus sinensis L. Osbeck), which was harvested in four plots (three organic and one conventional) located on the same farm. The results demonstrated that different types of organic fertilizers containing the same amount of nitrogen did not effect important changes in orange fruit quality parameters. The levels of total N and N-containing compounds such as synephrine in fruit juice were not statistically different among the different treatments. The delta(15)N values of orange fruit grown under fertilizer derived from animal origin as well as from vegetable compost were statistically higher than those grown with mineral fertilizer. Therefore, delta(15)N values can be used as an indicator of citrus fertilization management (organic or conventional), because even when applied organic fertilizers are of different origins, the natural abundance of (15)N in organic citrus fruit remains higher than in conventional ones. These treatments also did not effect differences in the delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of fruit.

  15. Using Position-Specific 13C and 14C Labeling and 13C-PLFA Analysis to Assess Microbial Transformations of Free Versus Sorbed Alanine

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Herschbach, J.; Bore, E. K.; Kuzyakov, Y.; Dippold, M. A.

    2015-12-01

    Sorption of charged or partially charged low molecular weight organic substances (LMWOS) to soil mineral surfaces delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil sciences, to compare the transformation mechanisms of sorbed and non-sorbed alanine in soil. Alanine as an amino acid links C- and N-cycles in soil and therefore is a model substance for the pool of LMWOS. To assess transformations of sorbed alanine, we added position-specific and uniformly 13C and 14C labeled alanine tracer to soil that had previously been sterilized by γ-radiation. The labeled soil was added to non-sterilized soil from the same site and incubated. Soil labeled with the same tracers without previous sorption was prepared and incubated as well. We captured the respired CO2 and determined its 14C-activity at increasing time intervals. The incorporation of 14C into microbial biomass was determined by chloroform fumigation extraction (CFE), and utilization of individual C positions by distinct microbial groups was evaluated by 13C-phospholipid fatty acid analysis (PLFA). A dual peak in the respired CO2 revealed two sorption mechanisms. To compare the fate of individual C atoms independent of their concentration and pool size in soil, we applied the divergence index (DI). The DI reveals the convergent or divergent behavior of C from individual molecule positions during microbial utilization. Alanine C-1 position was mainly oxidized to CO2, while its C-2 and C-3 were preferentially incorporated in microbial biomass and PLFA. This indicates that sorption by the COOH group does not protect this group from preferential oxidation. Microbial metabolism was determinative for the preferential oxidation of individual molecule positions. The use of position-specific labeling revealed mechanisms and kinetics of microbial utilization of sorbed and non

  16. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS.

    PubMed

    Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin

    2015-07-01

    To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low (15)N/(14)N ratios indicating an incomplete derivatization; in contrast, too high (15)N/(14)N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate.

  17. Understanding the dynamics of δ 13C and δ 15N in soft tissues of the bivalve Crassostrea gigas facing environmental fluctuations in the context of Dynamic Energy Budgets (DEB)

    NASA Astrophysics Data System (ADS)

    Emmery, A.; Lefebvre, S.; Alunno-Bruscia, M.; Kooijman, S. A. L. M.

    2011-11-01

    We studied the dynamics of stable isotopes δ 13C and δ 15N of an opportunistic suspension feeder the Pacific oyster ( Crassostrea gigas) to better understand the factors that influence the trophic enrichment (trophic-shift, Δ) between primary producers and consumers. Most of the previous studies on this topic do not quantify mass fluxes or isotopic discrimination phenomena in the organism, which are two pillars in isotope ecology. We used a Dynamic Energy Budget (DEB) approach ( Kooijman, 2010) to quantify i) the fluxes of elements and isotopes in C. gigas soft tissues and ii) the impact of the scaled feeding level, the organism mass and the isotopic ratio of food on the "trophic-shift" Δ, and isotope turnover in tissues. Calibration and parametrization modeling were based on data from the literature. We showed that a five-fold increase in scaled feeding level leads to a decrease of the trophic-shift value of 35% for carbon and 43% for nitrogen. This can be explained by the molecule selection for the anabolic and/or catabolic way. When f increases due to the reserve dynamic formulation in the standard DEB model, the half-life of the isotopic ratio tδ1/2 in tissues also decreases from 13.1 to 7.9 d for δ 13C and from 22.1 to 10.3 d for δ 15N. Organism mass also affects the trophic-shift value: an increase of the individual initial mass from 0.025 g to 0.6 g leads to an enrichment of 22% for δ 13C and 21% for δ 15N. For a large individual, these patterns show that a high structural volume has to be maintained. Another consequence of the mass effect is an increase of the half-life for δ 13C from 6.6 to 12.0 d, and an increase of the half life for δ 15N from 8.3 to 19.4 d. In a dynamic environment, the difference in the isotopic ratios between the individual tissues and the food (δ 13C W-δ 13C X) exhibits a range of variation of 2.02‰ for carbon and 3.03‰ for nitrogen. These results highlight the potential errors in estimating the contributions of the

  18. Follow the Carbon: Laboratory Studies of 13C-Labeled Early Earth Haze Analogs

    NASA Astrophysics Data System (ADS)

    Hicks, R. K.; Day, D. A.; Mojzsis, S. J.; Jimenez, J. L.; Tolbert, M. A.

    2013-12-01

    While the Sun was still young and faint before the rise of molecular oxygen 2.4 Ga, early Earth might have been kept warm by an atmosphere containing the greenhouse gases methane and carbon dioxide in abundances greater than what is found on Earth today. It has been suggested that an atmosphere containing approximately 1000 ppmv methane and carbon dioxide could provided the needed greenhouse warming for liquid water to exist at the surface. Laboratory and modeling studies suggest that an atmosphere containing methane and carbon dioxide could lead to the formation of significant amounts of organic haze due to photochemical reactions initiated by Lyman-α (121.6 nm) excitation. Chemical mechanisms proposed to explain the chemistry rely on methane as the source of carbon in these hazes and treat carbon dioxide as a source of oxygen only. In the present work, we use isotopically labelled precursor gases to examine the source of carbon in photochemical haze formed in a CH4/CO2/N2 atmosphere. We generate haze analogs in the laboratory by far-UV irradiation of analog atmospheres containing permutations of 1,000 ppmv unlabeled and 13C-labeled methane and carbon. Products in the particle phase were analyzed by both unit mass resolution and high-resolution (m/Δm=5,000) aerosol mass spectrometry. Results indicate that carbon from carbon dioxide accounts for 20% (×5%) of the total carbon contained in the hazes. These results have implications for the geochemical interpretations of inclusions found in Archaean rocks on Earth, and for the astrobiological potential of other planetary atmospheres.

  19. Testing the use of bulk organic δ13C, δ15N, and Corg:Ntot ratios to estimate subsidence during the 1964 great Alaska earthquake

    USGS Publications Warehouse

    Bender, Adrian M; Witter, Robert C.; Rogers, Matthew

    2015-01-01

    During the Mw 9.2 1964 great Alaska earthquake, Turnagain Arm near Girdwood, Alaska subsided 1.7 ± 0.1 m based on pre- and postearthquake leveling. The coseismic subsidence in 1964 caused equivalent sudden relative sea-level (RSL) rise that is stratigraphically preserved as mud-over-peat contacts where intertidal silt buried peaty marsh surfaces. Changes in intertidal microfossil assemblages across these contacts have been used to estimate subsidence in 1964 by applying quantitative microfossil transfer functions to reconstruct corresponding RSL rise. Here, we review the use of organic stable C and N isotope values and Corg:Ntot ratios as alternative proxies for reconstructing coseismic RSL changes, and report independent estimates of subsidence in 1964 by using δ13C values from intertidal sediment to assess RSL change caused by the earthquake. We observe that surface sediment δ13C values systematically decrease by ∼4‰ over the ∼2.5 m increase in elevation along three 60- to 100-m-long transects extending from intertidal mud flat to upland environments. We use a straightforward linear regression to quantify the relationship between modern sediment δ13C values and elevation (n = 84, R2 = 0.56). The linear regression provides a slope–intercept equation used to reconstruct the paleoelevation of the site before and after the earthquake based on δ13C values in sandy silt above and herbaceous peat below the 1964 contact. The regression standard error (average = ±0.59‰) reflects the modern isotopic variability at sites of similar surface elevation, and is equivalent to an uncertainty of ±0.4 m elevation with respect to Mean Higher High Water. To reduce potential errors in paleoelevation and subsidence estimates, we analyzed multiple sediment δ13C values in nine cores on a shore-perpendicular transect at Bird Point. Our method estimates 1.3 ± 0.4 m of coseismic RSL rise across the 1964 contact by taking the arithmetic mean of the

  20. Paramagnetic 13C and 15N NMR analyses of the push and pull effects in cytochrome c peroxidase and Coprinus cinereus peroxidase variants: functional roles of highly conserved amino acids around heme.

    PubMed

    Nonaka, Daisuke; Wariishi, Hiroyuki; Welinder, Karen G; Fujii, Hiroshi

    2010-01-12

    Paramagnetic (13)C and (15)N nuclear magnetic resonance (NMR) spectroscopy of heme-bound cyanide ((13)C(15)N) was applied to 11 cytochrome c peroxidase (CcP) and Coprinus cinereus peroxidase (CIP) mutants to investigate contributions to the push and pull effects of conserved amino acids around heme. The (13)C and (15)N NMR data for the distal His and Arg mutants indicated that distal His is the key amino acid residue creating the strong pull effect and that distal Arg assists. The mutation of distal Trp of CcP to Phe, the amino acid at this position in CIP, changed the push and pull effects so they resembled those of CIP, whereas the mutation of distal Phe of CIP to Trp changed this mutant to become CcP-like. The (13)C NMR shifts for the proximal Asp mutants clearly showed that the proximal Asp-His hydrogen bonding strengthens the push effect. However, even in the absence of a hydrogen bond, the push effect of proximal His in peroxidase is significantly stronger than in globins. Comparison of these NMR data with the compound I formation rate constants and crystal structures of these mutants showed that (1) the base catalysis of the distal His is more critical for rapid compound I formation than its acid catalysis, (2) the primary function of the distal Arg is to maintain the distal heme pocket in favor of rapid compound I formation via hydrogen bonding, and (3) the push effect is the major contributor to the differential rates of compound I formation in wild-type peroxidases.

  1. Depth-specific and spatiotemporal variation of δ13C and δ15N in Charophytes of Lake Constance: implications for food web studies.

    PubMed

    Matuszak, Anja; Voigt, Christian C; Storch, Ilse; Bauer, Hans-Günther; Quillfeldt, Petra

    2011-07-30

    Macrophytes are at the base of many lake food webs providing essential food resources for animals at higher trophic level, such as invertebrates, fish and waterbirds. However, data regarding the spatiotemporal variation in isotopic composition of macrophytes are generally missing. We measured the carbon and nitrogen stable isotope ratios of Charophytes at Lake Constance, where they constitute a major food source for waterbirds. Our data reveal seasonal and site-specific differences as well as depth-specific variations in isotopic carbon values within the littoral zone. Charophytes were enriched in (13)C at sites of higher productivity: the δ(13)C values were high in summer, at shallow and at relatively nutrient-rich sites, and comparatively low in winter, and in deeper and nutrient-poorer sites. In contrast, no temporal or spatial trend was found to explain the variability in the isotopic nitrogen values. These results imply that the seasonal timing of food intake (relative to turnover rates of consumers tissue) and the potential depth of foraging need to be taken into account when calculating the relative contribution of energy sources to diets of consumers such as waterbirds.

  2. Determination of sup 13 C labeling pattern of citric acid cycle intermediates by gas chromatography-mass spectrometry

    SciTech Connect

    Di Donato, L.; Montgomery, J.A.; Des Rosiers, C.; David, F.; Garneau, M.; Brunengraber, H. )

    1990-02-26

    Investigations of the regulation of the citric acid cycle require determination of labeling patterns of cycle intermediates. These were assayed to date, using infusion of: (i) ({sup 14}C)tracer followed by chemical degradation of intermediates and (ii) ({sup 13}C)tracer followed by NMR analysis of intermediates. The authors developed a strategy to analyze by GC-MS the ({sup 13}C) labeling pattern of {mu}mole samples of citrate (CIT), isocitrate (ICIT), 2-ketoglutarate (2-KG), glutamate (GLU) and glutamine (GLN). These are enzymatically or chemically converted to 2-KG, ICIT, 4-aminobutyrate (GABA) and 2-hydroxyglutarate (2-OHG). GC-MS analyses of TMS or TBDMS derivatives of these compounds yield the enrichment of each carbon. The authors confirmed the identity of each fragment using the spectra of (1-{sup 13}C), (5-{sup 13}C), (2,3,3,4,4-{sup 2}H{sub 5})glutamate and (1-{sup 13}C), (1,4-{sup 13}C)GABA.

  3. Automated Protein Turnover Calculations from 15N Partial Metabolic Labeling LC/MS Shotgun Proteomics Data

    PubMed Central

    Lyon, David; Castillejo, Maria Angeles; Staudinger, Christiana; Weckwerth, Wolfram; Wienkoop, Stefanie; Egelhofer, Volker

    2014-01-01

    Protein turnover is a well-controlled process in which polypeptides are constantly being degraded and subsequently replaced with newly synthesized copies. Extraction of composite spectral envelopes from complex LC/MS shotgun proteomics data can be a challenging task, due to the inherent complexity of biological samples. With partial metabolic labeling experiments this complexity increases as a result of the emergence of additional isotopic peaks. Automated spectral extraction and subsequent protein turnover calculations enable the analysis of gigabytes of data within minutes, a prerequisite for systems biology high throughput studies. Here we present a fully automated method for protein turnover calculations from shotgun proteomics data. The approach enables the analysis of complex shotgun LC/MS 15N partial metabolic labeling experiments. Spectral envelopes of 1419 peptides can be extracted within an hour. The method quantifies turnover by calculating the Relative Isotope Abundance (RIA), which is defined as the ratio between the intensity sum of all heavy (15N) to the intensity sum of all light (14N) and heavy peaks. To facilitate this process, we have developed a computer program based on our method, which is freely available to download at http://promex.pph.univie.ac.at/protover. PMID:24736476

  4. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    SciTech Connect

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W.

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  5. A stable isotope (δ13C and δ15N) perspective on human diet on Rapa Nui (Easter Island) ca. AD 1400-1900.

    PubMed

    Commendador, Amy S; Dudgeon, John V; Finney, Bruce P; Fuller, Benjamin T; Esh, Kelley S

    2013-10-01

    Ecological and environmental evidence suggests that Rapa Nui was among the most marginally habitable islands in Eastern Polynesia, with only a fraction of the biotic diversity found on archipelagos to the west, and capable of sustaining many fewer cultigens traditionally transported by Polynesian colonizers. However, archaeological evidence for human dietary adaptations under such restrictions is limited. Little is known about the particulars of the subsistence base and dietary changes on Rapa Nui that may be associated with a hypothesized late prehistoric decline in the quality and diversity of food sources. To better understand prehistoric Rapa Nui diet we examined stable carbon and nitrogen isotope compositions of human teeth along with archaeological faunal material thought to comprise the Rapa Nui food web. Our results indicate that contrary to previous zooarchaeological studies diet was predominantly terrestrial throughout the entire sequence of occupation, with reliance on rats, chickens and C3 plants. While a few individuals may have had access to higher trophic level marine resources, this is evident only later in time (generally post-AD 1600). A decline in (15)N through time was observed, and may be attributed to declines in available terrestrial proteins; however, presently we cannot rule out the effect of changing soil and plant baseline δ(15)N. Our results also suggest differential access to higher trophic level marine resources among contemporaneous populations, but more research is required to clarify this observation.

  6. The 2D {31P} Spin-Echo-Difference Constant-Time [13C, 1H]-HMQC Experiment for Simultaneous Determination of 3JH3‧P and 3JC4‧P in 13C-Labeled Nucleic Acids and Their Protein Complexes

    NASA Astrophysics Data System (ADS)

    Szyperski, Thomas; Fernández, César; Ono, Akira; Wüthrich, Kurt; Kainosho, Masatsune

    1999-10-01

    A two-dimensional {31P} spin-echo-difference constant-time [13C, 1H]-HMQC experiment (2D {31P}-sedct-[13C, 1H]-HMQC) is introduced for measurements of 3JC4‧P and 3JH3‧P scalar couplings in large 13C-labeled nucleic acids and in DNA-protein complexes. This experiment makes use of the fact that 1H-13C multiple-quantum coherences in macromolecules relax more slowly than the corresponding 13C single-quantum coherences. 3JC4‧P and 3JH3‧P are related via Karplus-type functions with the phosphodiester torsion angles β and ɛ, respectively, and their experimental assessment therefore contributes to further improved quality of NMR solution structures. Data are presented for a uniformly 13C, 15N-labeled 14-base-pair DNA duplex, both free in solution and in a 17-kDa protein-DNA complex.

  7. Enzymatic 13C Labeling and Multidimensional NMR Analysis of Miltiradiene Synthesized by Bifunctional Diterpene Cyclase in Selaginella moellendorffii*

    PubMed Central

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-01-01

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-13C6]mevalonate, all carbons were labeled with 13C stable isotope (>99%). The fully 13C-labeled product was subjected to 13C-13C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one-dimensional and

  8. 1H, 13C, 195Pt and 15N NMR structural correlations in Pd(II) and Pt(II) chloride complexes with various alkyl and aryl derivatives of 2,2'-bipyridine and 1,10-phenanthroline.

    PubMed

    Pawlak, Tomasz; Pazderski, Leszek; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2011-02-01

    (1)H, (13)C, (195)Pt and (15)N NMR studies of platinide(II) (M = Pd, Pt) chloride complexes with such alkyl and aryl derivatives of 2,2'-bipyridine and 1,10-phenanthroline as LL = 6,6'-dimethyl-bpy, 5,5'-dimethyl-bpy, 4,4'-di-tert-butyl-bpy, 2,9-dimethyl-phen, 2,9-dimethyl-4,7-diphenyl-phen, 3,4,7,8-tetramethyl-phen, having the general [M(LL)Cl(2)] formula were performed and the respective chemical shifts (δ(1H), δ(13C), δ(195Pt), δ(15N)) reported. (1)H high-frequency coordination shifts (Δ(coord)(1H) = δ(complex)(1H)-δ(ligand)(1H)) mostly pronounced for nitrogen-adjacent protons and methyl groups in the nearest adjacency of nitrogen, as well as (15)N low-frequency coordination shifts (Δ(coord)(15H) = δ(complex)(15H)-δ(ligand)(15H)) were discussed in relation to the molecular structures.

  9. Assessing microbial utilization of free versus sorbed Alanine by using position-specific 13C labeling and 13C-PLFA analysis

    NASA Astrophysics Data System (ADS)

    Herschbach, Jennifer; Apostel, Carolin; Spielvogel, Sandra; Kuzyakov, Yakov; Dippold, Michaela

    2016-04-01

    Microbial utilization is a key transformation process of soil organic matter (SOM). Sorption of low molecular weight organic substances (LMWOS) to soil mineral surfaces blocks or delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil science, combined with 13C-phospholipid fatty acid (PLFA) analysis, to assess microbial utilization of sorbed and non-sorbed Alanine in soil. Alanine has various functional groups enabling different sorption mechanisms via its positive charge (e.g. to clay minerals by cation exchange), as well as via its negative charge (e.g. to iron oxides by ligand exchange). To assess changes in the transformation pathways caused by sorption, we added uniformly and position-specifically 13C and 14C labeled Alanine to the Ap of a loamy Luvisol in a short-term (10 days) incubation experiment. To allow for sorption of the tracer solution to an aliquot of this soil, microbial activity was minimized in this subsample by sterilizing the soil by γ-radiation. After shaking, the remaining solutions were filtered and the non-sorbed Alanine was removed with Millipore water and then added to non-sterilized soil. For the free Alanine treatment, solutions with Alanine of similar amount and isotopic composition were prepared, added to the soil and incubated as well. The respired CO2 was trapped in NaOH and its 14C-activity was determined at increasing times intervals. Microbial utilization of Alanine's individual C positions was evaluated in distinct microbial groups classified by 13C-PLFA analysis. Sorption to soil minerals delayed respiration to CO2 and reduced initial respiration rate by 80%. Irrespective of sorption, the highest amount was respired from the carboxylic position (C-1), whereas the amino-bound (C-2) and the methylic position (C-3) were preferentially incorporated into PLFA of microorganisms due to the

  10. [COMPARATIVE EVALUATION OF THE EFFECTIVENESS OF THE USE OF 13C-LABELED MIXED TRIGLYCERIDE AND 13C-STARCH BREATH TESTS IN PATIENTS WITH CHRONIC PANCREATITIS AFTER CHOLECYSTECTOMY].

    PubMed

    Sirchak, Ye S

    2015-01-01

    The results of a comprehensive study of 96 patients after cholecystectomy are provided. The higher sensitivity and informativeness of the 13C-labeled mixed triglyceride breath .test compared with 13C-starch breath test for determining functional pancreatic insufficiency in patients after cholecystectomy in early stages of its formation was set. PMID:27491156

  11. Phosphorus-31, sup 15 N, and sup 13 C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    SciTech Connect

    Castellino, S.; Leo, G.C.; Sammons, R.D.; Sikorski, J.A. )

    1989-05-02

    The herbicidal dead-end ternary complex (E{sup S3P}{sub Glyph}) of glyphosate (N-(phosphonomethyl)glycine) with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by {sup 31}P, {sup 15}N, and {sup 13}C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts ({delta}) for each of the three nuclei. By {sup 31}P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The {sup 13}C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The {sup 15}N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the {sup 31}P {delta} and the C-P-O bond angle, and the {sup 13}C and {sup 15}N {delta} values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield {sup 31}P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P {sup 31}P {delta} vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the E{sup S3P} binary complex, while the E{sup S3P}{sub Glyph} complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle.

  12. New insights into the structure and chemistry of Titan's tholins via 13C and 15N solid state nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Derenne, S.; Coelho, C.; Anquetil, C.; Szopa, C.; Quirico, E.; Bonhomme, C.

    2012-09-01

    Titan, the largest moon of Saturn, is characterized by a dense atmosphere, mainly composed of N2 (ca. 97 %) and CH4 (ca. 2 %). In the upper atmosphere, methane and nitrogen molecules undergo dissociation under the influence of solar UV radiation and electron impacts, followed by recombination reactions leading to a large variety of organic molecules. Some of these compounds form a thick, orange-coloured haze composed of solid organic aerosols that subsequently fall to the surface or remain in suspension in the atmosphere. To gain insight into the chemical composition and structural nature of these complex organic compounds, analogous materials, termed Titan's tholins, are produced in the laboratory, in particular using plasma discharge in gaseous N2 - CH4 mixtures with similar proportions as in Titan's atmosphere. Titan's tholins have been analysed using a wide variety of techniques which provided a wealth of information about potential functional groups and structural building blocks present within the tholin samples. Taken together, the results converge on a structure based on a CxHyNz chemistry that can contain a variety of C-C, C-N, N-H etc single or multiple bonds. It is now necessary to build on that information to refine the chemical and structural models for the Titan's tholins. Here we used solid state NMR techniques to investigate the carbon and nitrogen bonding environments in a 13C- and 15Nenriched sample.

  13. NMR study of non-structural proteins--part I: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Mayaro virus (MAYV).

    PubMed

    Melekis, Efstathios; Tsika, Aikaterini C; Lichière, Julie; Chasapis, Christos T; Margiolaki, Irene; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-04-01

    Macro domains are ADP-ribose-binding modules present in all eukaryotic organisms, bacteria and archaea. They are also found in non-structural proteins of several positive strand RNA viruses such as alphaviruses. Here, we report the high yield expression and preliminary structural analysis through solution NMR spectroscopy of the macro domain from New World Mayaro Alphavirus. The recombinant protein was well-folded and in a monomeric state. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure determined by TALOS+.

  14. (1)H, (13)C, and (15)N backbone and side-chain chemical shift assignments for the 36 proline-containing, full length 29 kDa human chimera-type galectin-3.

    PubMed

    Ippel, Hans; Miller, Michelle C; Berbís, Manuel Alvaro; Suylen, Dennis; André, Sabine; Hackeng, Tilman M; Cañada, F Javier; Weber, Christian; Gabius, Hans-Joachim; Jiménez-Barbero, Jesús; Mayo, Kevin H

    2015-04-01

    Galectin-3, an adhesion/growth regulatory lectin, has a unique trimodular design consisting of the canonical carbohydrate recognition domain, a collagen-like tandem-repeat section, and an N-terminal peptide with two sites for Ser phosphorylation. Structural characterization of the full length protein with its non-lectin part (115 of 250 residues total) will help understand the multi functionality of this potent cellular effector. Here, we report (1)H, (13)C, and (15)N chemical shift assignments as determined by heteronuclear NMR spectroscopy .

  15. sup 14,15 N, sup 13 C, sup 57 Fe, and sup 1,2 H Q-band ENDOR study of Fe-S proteins with clusters that have endogenous sulfur ligands

    SciTech Connect

    Houseman, A.L.P.; Chaoliang Fan; Werst, M.M.; Hoffman, B.M. ); Byungha Oh; Markley, J.L. ); Kennedy, M.C.; Beinert, H. )

    1992-02-25

    The benefits of performing ENDOR experiments at higher microwave frequency are demonstrated in a Q-band (35 GHz) ENDOR investigation of a number of proteins with (nFe-mS) clusters, n = 2,3,4. Each protein displays several resonances in the frequency range of 0-20 MHz. In all instances, features are seen near {nu} {approx} 13 and 8 MHz that can be assigned, respectively, to distant ENDOR from {sup 13}C in natural-abundance (1.1%) and from {sup 14}N. In addition, a number of proteins show local {sup 13}C ENDOR signals with resolved hyperfine interactions; these are assigned to the {beta} carbons of cysteines bound to the cluster. Quadrupole coupling constants are derived for both local and distant {sup 14}N signals. The interpretation of the data is supported by studies on {sup 15}N- and {sup 13}C-enriched ferredoxin (Fd) from Anabaena 7120, where the {sup 15}N signals can be clearly correlated with the corresponding {sup 14}N signals and where the {sup 13}C signals are strongly enhanced. Thus, the observation of {sup 14}N {Delta}m{sub I} = {plus minus} 2 signals at Q-band provides a new technique for examining weak interactions with a cluster. Six proteins show an additional pattern near {nu} {approx} 18 MHz that arises from {sup 57}Fe in natural abundance (2.2%) with A({sup 57}Fe) {approx} 36 MHz, which opens the possibility of studying proteins for which enrichment is impractical. Q-band ENDOR studies also have been carried out on four {sup 2}H-exchanged Fe-S proteins, and ENDOR detects exchangeable protons in each. The importance of these findings for the interpretation of X- and Q-band ENDOR at low radiofrequencies is discussed.

  16. A spectral correlation function for efficient sequential NMR assignments of uniformly (15)N-labeled proteins.

    PubMed

    Bartels, C; Wüthrich, K

    1994-11-01

    A new computer-based approach is described for efficient sequence-specific assignment of uniformly (15)N-labeled proteins. For this purpose three-dimensional (15)N-correlated [(1)H, (1)H]-NOESY spectra are divided up into two-dimensional (1)H-(1)H strips which extend over the entire spectral width along one dimension and have a width of ca. 100 Hz, centered about the amide proton chemical shifts along the other dimension. A spectral correlation function enables sorting of these strips according to proximity of the corresponding residues in the amino acid sequence. Thereby, starting from a given strip in the spectrum, the probability of its corresponding to the C-terminal neighboring residue is calculated for all other strips from the similarity of their peak patterns with a pattern predicted for the sequentially adjoining residue, as manifested in the scalar product of the vectors representing the predicted and measured peak patterns. Tests with five different proteins containing both α-helices and β-sheets, and ranging in size from 58 to 165 amino acid residues show that the discrimination achieved between the sequentially neighboring residue and all other residues compares well with that obtained with an unguided interactive search of pairs of sequentially neighboring strips, with important savings in the time needed for complete analysis of 3D (15)N-correlated [(1)H, (1)H]-NOESY spectra. The integration of this routine into the program package XEASY ensures that remaining ambiguities can be resolved by visual inspection of the strips, combined with reference to the amino acid sequence and information on spin-system types obtained from additional NMR spectra.

  17. The effects of wildfire on mercury and stable isotopes (δ(15)N, δ(13)C) in water and biota of small boreal, acidic lakes in southern Norway.

    PubMed

    Moreno, Clara E; Fjeld, Eirik; Lydersen, Espen

    2016-03-01

    Effects of wildfire on main water chemistry and mercury (Hg) in water and biota were studied during the first 4 post-fire years. After severe water chemical conditions during hydrological events a few months following the wildfire, the major water chemical parameters were close to pre-fire conditions 4 years after the fire. Concentrations of total Hg and methyl Hg in the surface water 4 years after the fire ranged between 1.17-2.63 ng L(-1) and 0.053-0.188 ng L(-1), respectively. Both variables were positive and strongly correlated with total organic carbon (TOC), TOC-related variables (color, UV absorbance), total phosphorous, and total iron. In addition, MeHg was positively correlated with total nitrogen and chlorophyll-a. The concurrence of increased concentrations of nutrients and chlorophyll-a in the lakes, the more enriched δ(15)N-signatures and higher Hg levels in fish 2 years after the fire, might be a result of the wildfire. However, natural factors as year-to-year variations in thermocline depth and suboxic status in the lakes make it difficult to draw any strong conclusions about wildfire effects on Hg in the biota from our investigated lakes.

  18. Use of 13C-Labeled Substrates to Determine Relative Methane Production Rates in Hypersaline Microbial Communities

    NASA Astrophysics Data System (ADS)

    Kelley, C. A.; Bebout, B.; Chanton, J.

    2015-12-01

    Rates and pathways of methane production were determined from photosynthetic soft microbial mats and gypsum-encrusted endoevaporites collected in hypersaline environments from California, Mexico and Chile, as well as an organic-rich mud from a pond in the El Tatio volcanic fields, Chile. Samples (mud, homogenized soft mats and endoevaporites) were incubated anaerobically with deoxygenated site water, and the increase in methane concentration through time in the headspaces of the incubation vials was used to determine methane production rates. To ascertain the substrates used by the methanogens, 13C-labeled methylamines, methanol, dimethylsulfide, acetate or bicarbonate were added to the incubations (one substrate per vial) and the stable isotopic composition of the resulting methane was measured. The vials amended with 13C-labeled methylamines produced the most 13C-enriched methane, generally followed by the 13C-labeled methanol-amended vials. The stable isotope data and the methane production rates were used to determine first order rate constants for each of the substrates at each of the sites. Estimates of individual substrate use revealed that the methylamines produced 55 to 92% of the methane generated, while methanol was responsible for another 8 to 40%.

  19. The Fate of Oral Glucosamine Traced by 13C Labeling in the Dog

    PubMed Central

    Dodge, George R.; Regatte, Ravinder R.; Noyszewski, Elizabeth A.; Hall, Jeffery O.; Sharma, Akella V.; Callaway, D. Allen; Reddy, Ravinder

    2011-01-01

    Objective: It has remained ambiguous as to whether oral dosing of glucosamine (GlcN) would make its way to the joint and affect changes in the cartilage, particularly the integrity of cartilage and chondrocyte function. The objective of this study was to trace the fate of orally dosed GlcN and determine definitively if GlcN was incorporated into cartilage proteoglycans. Design: Two dogs were treated with 13C-GlcN-HCl by oral dosing (500 mg/dog/d for 2 weeks and 250 mg/dog/d for 3 weeks). Cartilage was harvested from the tibial plateau and femoral condyles along with tissue specimens from the liver, spleen, heart, kidney, skin, skeletal muscle, lung, and costal cartilage. Percentages of 13C and 13C-GlcN present in each tissue sample were determined by inductively coupled plasma mass spectroscopy (ICP-MS) and nuclear magnetic resonance spectroscopy, respectively. Results: In the case of dog 1 (2-week treatment), there was an increase of 2.3% of 13C present in the articular cartilage compared to the control and an increase of 1.6% of 13C in dog 2 compared to control. As to be expected, the highest percentage of 13C in the other tissues tested was found in the liver, and the remaining tissues had percentages of 13C less than that of articular cartilage. Conclusion: The results are definitive and for the first time provide conclusive evidence that orally given GlcN can make its way through the digestive tract and be used by chondrocytes in joint cartilage, thereby potentially having an effect on the available GlcN for proteoglycan biosynthesis. PMID:26069586

  20. Production and NMR signal optimization of hyperpolarized 13C-labeled amino acids

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Ferguson, Sarah; Kiswandhi, Andhika; Lumata, Lloyd

    Amino acids are targeted nutrients for consumption by cancers to sustain their rapid growth and proliferation. 13C-enriched amino acids are important metabolic tracers for cancer diagnostics using nuclear magnetic resonance (NMR) spectroscopy. Despite this diagnostic potential, 13C NMR of amino acids however is hampered by the inherently low NMR sensitivity of the 13C nuclei. In this work, we have employed a physics technique known as dynamic nuclear polarization (DNP) to enhance the NMR signals of 13C-enriched amino acids. DNP works by transferring the high polarization of electrons to the nuclear spins via microwave irradiation at low temperature and high magnetic field. Using a fast dissolution method in which the frozen polarized samples are dissolved rapidly with superheated water, injectable solutions of 13C-amino acids with highly enhanced NMR signals (by at least 5,000-fold) were produced at room temperature. Factors that affect the NMR signal enhancement levels such as the choice of free radical polarizing agents and sample preparation will be discussed along with the thermal mixing physics model of DNP. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  1. Multi-isotope labelling (13C, 18O, 2H) for studying organic matter cycling within plant-soil systems

    NASA Astrophysics Data System (ADS)

    Studer, M. S.; Abiven, S.; Schmidt, M. W. I.; Siegwolf, R. T. W.

    2012-04-01

    Carbon cycling has become of major interest for the understanding and mitigation of global climatic change. Terrestrial ecosystems have a large carbon sequestration potential, but many processes and fluxes of organic matter (OM) cycling within the plant-soil system are not yet well understood [1]. The dynamics of OM cycling within the plant soil-system are determined by environmental parameters, as well as chemical quality of OM input. A well-known technique to study OM dynamics is to label OM inputs with stable isotopes (e.g 13C). Changes in OM quality in the plant and in the soil can be assessed by compound specific isotopic analysis [2]. These techniques give a precise insight of the OM composition, but are laborious and expensive. Here we suggest a new multi-isotope labelling technique using stable 13C in combination with stable 18O and 2H isotopes, which provides information on OM quality by simple bulk material analysis. The method is based on the creation of an isotopic van Krevelen diagram, which is used to describe different compound groups by plotting the atomic ratios of O/C vs. H/C [3]. We could show that new assimilates can be labelled with 13C, 18O and 2H by adding the stable isotopes (continuously) in the gaseous phase (CO2 and water vapour) to the plants atmosphere. The label has been traced within the bulk material of different compartments of the plant-soil system (e.g. leaves, stems, roots, bulk soil). Our first results showed that after 2, 8 and 14 days of labelling the 18O/13C(new) ratio was notably different in leaf, stem and root tissue (0.0024, 0.0011 and 0.0007, respectively), suggesting a change in OM quality towards more C-rich compounds. d2H analysis will follow and an isotopic van Krevelen diagram will be produced (18O/13C(new) vs. 2H/13C(new)) to describe the changes in OM quality. The new multi-isotope labelling approach represent a powerful tool to address open questions in plant and soil research such as the allocation of organic

  2. Defining fish community structure in Lake Winnipeg using stable isotopes (δ(13)C, δ(15)N, δ(34)S): implications for monitoring ecological responses and trophodynamics of mercury & other trace elements.

    PubMed

    Ofukany, Amy F A; Wassenaar, Leonard I; Bond, Alexander L; Hobson, Keith A

    2014-11-01

    The ecological integrity of freshwater lakes is influenced by atmospheric and riverine deposition of contaminants, shoreline development, eutrophication, and the introduction of non-native species. Changes to the trophic structure of Lake Winnipeg, Canada, and consequently, the concentrations of contaminants and trace elements measured in tissues of native fishes, are likely attributed to agricultural runoff from the 977,800 km(2) watershed and the arrival of non-native zooplankters and fishes. We measured δ(13)C, δ(15)N, and δ(34)S along with concentrations of 15 trace elements in 17 native fishes from the north and south basins of Lake Winnipeg in 2009 and 2010. After adjusting for differences in isotopic baseline values between the two basins, fishes in the south basin had consistently higher δ(13)C and δ(34)S, and lower δ(15)N. We found little evidence of biomagnification of trace elements at the community level, but walleye (Sander vitreus) and freshwater drum (Aplodinotus grunniens) had higher mercury and selenium concentrations with increased trophic position, coincident with increased piscivory. There was evidence of growth dilution of cobalt, copper, manganese, molybdenum, thallium, and vanadium, and bioaccumulation of mercury, which could be explained by increases in algal (and consequently, lake and fish) productivity. We conclude that the north and south basins of Lake Winnipeg represent very different communities with different trophic structures and trace element concentrations.

  3. Fate of xylem-transported 11C- and 13C-labeled CO2 in leaves of poplar.

    PubMed

    Bloemen, Jasper; Bauweraerts, Ingvar; De Vos, Filip; Vanhove, Christian; Vandenberghe, Stefaan; Boeckx, Pascal; Steppe, Kathy

    2015-04-01

    In recent studies, assimilation of xylem-transported CO2 has gained considerable attention as a means of recycling respired CO2 in trees. However, we still lack a clear and detailed picture on the magnitude of xylem-transported CO2 assimilation, in particular within leaf tissues. To this end, detached poplar leaves (Populus × canadensis Moench 'Robusta') were allowed to take up a dissolved (13)CO2 label serving as a proxy of xylem-transported CO2 entering the leaf from the branch. The uptake rate of the (13)C was manipulated by altering the vapor pressure deficit (VPD) (0.84, 1.29 and 1.83 kPa). Highest tissue enrichments were observed under the highest VPD. Among tissues, highest enrichment was observed in the petiole and the veins, regardless of the VPD treatment. Analysis of non-labeled leaves showed that some (13)C diffused from the labeled leaves and was fixed in the mesophyll of the non-labeled leaves. However, (13)C leaf tissue enrichment analysis with elemental analysis coupled to isotope ratio mass spectrometry was limited in spatial resolution at the leaf tissue level. Therefore, (11)C-based CO2 labeling combined with positron autoradiography was used and showed a more detailed spatial distribution within a single tissue, in particular in secondary veins. Therefore, in addition to (13)C, (11) C-based autoradiography can be used to study the fate of xylem-transported CO2 at leaf level, allowing the acquisition of data at a yet unprecedented resolution.

  4. 13C labelling reveals different contributions of photoassimilates from infructescences for fruiting in two temperate forest tree species.

    PubMed

    Hoch, G; Keel, S G

    2006-09-01

    The pathways of currently fixed carbon in fruit bearing branchlets were investigated in two temperate forest tree species (CARPINUS BETULUS and FAGUS SYLVATICA), which differ in texture of their vegetative infructescence tissues (leaf-like in CARPINUS vs. woody in FAGUS). During late spring, (13)C pulse-labelling was conducted on girdled, defoliated, girdled plus defoliated and untreated fruiting branchlets of mature trees IN SITU, to assess changes in C relations in response to the introduced C source-sink imbalances. At harvest in early August, 75 - 100 % of the recovered (13)C label was bound to infructescences (either fruits or vegetative infructescence tissue), revealing them as the prime C sinks for current photoassimilates. Leaves on girdled branchlets were not stronger labelled than on ungirdled ones in both species, indicating no upregulation of the leaves' photosynthetic capacity in response to the prevention of phloemic transport, which was also supported by measurements of light saturated photosynthesis. In contrast, (13)C labels tended to be higher after complete defoliation in the vegetative infructescence tissues of CARPINUS, suggesting enhanced net photosynthesis of green infructescence parts as compensation for the loss of regular leaves. The total labelling-derived (13)C content of whole infructescences was very similar between foliated and defoliated CARPINUS branchlets. Cupulae of FAGUS, on the other hand, remained almost unlabelled on defoliated branchlets, indicating the photosynthetic inactivity of this woody infructescence tissue. Consequently, CARPINUS still produced relatively high fruit masses on girdled plus defoliated branchlets, while in FAGUS fruit development ceased almost completely at this most severe treatment. Our results highlight that green vegetative infructescence tissue assimilates substantial amounts of C and can partly substitute regular leaves as C sources for successful fruit development. PMID:16883486

  5. Late Holocene Plankton Domain Shifts in the North Pacific Subtropical Gyre Revealed by Amino Acid Specific δ13C and δ15N Records from Proteinaceous Deep-Sea Corals

    NASA Astrophysics Data System (ADS)

    Sherwood, O.; McMahon, K.; Guilderson, T. P.; Mccarthy, M. D.

    2014-12-01

    Recent observations from station ALOHA have framed a new paradigm about the dynamic nature of subtropical ocean gyres. These vast regions are now known to vary physically and biologically, over a range of timescales, with important implications for the export of carbon to the deep ocean. In the largest of these gyres, the North Pacific subtropical gyre (NPSG), primary production has increased in recent decades despite a reduction in nutrient supply to surface waters. This is thought to be the result of a shift in plankton community structure from mostly eukaryotes to mostly dinitrogen-fixing prokaryotes. It remains uncertain, however, whether the recent plankton community domain shift can be linked to cyclical climate variability or a long-term global warming trend. To establish historical trends, we analyzed nitrogen (δ15N) and carbon (δ13C) isotopic records preserved in the skeletons of extraordinarily long-lived, proteinaceous deep-sea corals, which feed on, and therefore serve as a proxy for, exported productivity. Specimens of Hawaiian gold coral (Kulamanamana haumeaae) were collected from the Hawaiian archipelago and sampled across the skeletal growth rings to generate high-resolution (5 yr), millennial-length records of "bulk" δ15N and δ13C. After a millennium of relatively minor fluctuation, δ15N decreased by up to 2 per mil between 1850 and the present. Analysis of amino-acid-specific δ15N on a subset of the samples, combined with isotopic mass balance between nitrate and nitrogen fixation, implied a 17 to 27 % increase in nitrogen fixation as the underlying cause for the observed trends. This interpretation is supported by analysis of the δ13C of essential amino acids, which serve as isotopic fingerprints of primary producer origin. Together, these independent lines of evidence describe a domain shift from a dominantly eukaryotic to dinitrogen-fixing prokaryotic plankton community. This shift has been ongoing since the end of the Little Ice Age

  6. Carbon Transfer from the Host to Tuber melanosporum Mycorrhizas and Ascocarps Followed Using a 13C Pulse-Labeling Technique

    PubMed Central

    Le Tacon, François; Zeller, Bernd; Plain, Caroline; Hossann, Christian; Bréchet, Claude; Robin, Christophe

    2013-01-01

    Truffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy) or from soil organic matter (saprotrophy). The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum) production and situated in the west part of the Vosges, France, was labeled with 13CO2. The transfer of 13C from the leaves to the fine roots and T. melanosporum mycorrhizas was very slow compared with the results found in the literature for herbaceous plants or other tree species. The fine roots primarily acted as a carbon conduit; they accumulated little 13C and transferred it slowly to the mycorrhizas. The mycorrhizas first formed a carbon sink and accumulated 13C prior to ascocarp development. Then, the mycorrhizas transferred 13C to the ascocarps to provide constitutive carbon (1.7 mg of 13C per day). The ascocarps accumulated host carbon until reaching complete maturity, 200 days after the first labeling and 150 days after the second labeling event. This role of the Tuber ascocarps as a carbon sink occurred several months after the end of carbon assimilation by the host and at low temperature. This finding suggests that carbon allocated to the ascocarps during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost. Almost all of the constitutive carbon allocated to the truffles (1% of the total carbon assimilated by the tree during the growing season) came from the host. PMID:23741356

  7. Cosine Modulated HSQC: A Rapid Determination of 3JHNHα Scalar Couplings in 15N-labeled Proteins

    NASA Astrophysics Data System (ADS)

    Petit, Audrey; Vincent, Sébastien J. F.; Zwahlen, Catherine

    2002-06-01

    A two-dimensional HSQC-based NMR method, 15N-COSMO-HSQC, is presented for the rapid determination of homonuclear 3JHNHα couplings in 15N-labeled proteins in solution. Scalar couplings are extracted by comparing the intensity of two separate datasets recorded with and without decoupling of the 3JHNHα during a preparation period. The scalar couplings are introduced through a cosine modulation of the peak intensities. The experiment relies on a BIRD sandwich to selectively invert all amide protons H N and is very simple to implement. 3JHNHα couplings were determined using both the 15N-COSMO-HSQC and quantitative- J on 15N-labeled chemokine RANTES. The two experiments show well-correlated values.

  8. Stable carbon ((12/13)C) and nitrogen ((14/15)N) isotopes as a tool for identifying the sources of cyanide in wastes and contaminated soils--a method development.

    PubMed

    Weihmann, Jenny; Mansfeldt, Tim; Schulte, Ulrike

    2007-01-23

    The occurrence of iron-cyanide complexes in the environment is of concern, since they are potentially hazardous. In order to determine the source of iron-cyanide complexes in contaminated soils and wastes, we developed a method based on the stable isotope ratios (13)C/(12)C and (15)N/(14)N of the complexed cyanide-ion (CN(-)). The method was tested on three pure chemicals and two industrials wastes: blast-furnace sludge (BFS) and gas-purifier waste (GPW). The iron-cyanide complexes were converted into the solid cupric ferrocyanide, Cu(2)[Fe(CN)(6)].7H(2)O, followed by combustion and determination of the isotope-ratios by continuous flow isotope ratio mass spectrometry. Cupric ferrocyanide was obtained from the materials by (i) an alkaline extraction with 1M NaOH and (ii) a distillate digestion. The [Fe(CN)(6)](4-) of the alkaline extraction was precipitated after adding Cu(2+). The CN(-) of the distillate digestion was at first complexed with Fe(2+) under inert conditions and then precipitated after adding Cu(2+). The delta(13)C-values obtained by the two methods differed slightly up to 1-3 per thousand for standards and BFS. The difference was larger for alkaline-extracted GPW (4-7 per thousand), since non-cyanide C was co-extracted and co-precipitated. Therefore the distillate digestion technique is recommended when determining the C isotope ratios in samples rich in organic carbon. Since the delta(13)C-values of BFS are in the range of -30 to -24 per thousand and of -17 to -5 per thousand for GPW, carbon seems to be a suitable tracer for identifying the source of cyanide in both wastes. However, the delta(15)N-values overlapped for BFS and GPW, making nitrogen unsuitable as a tracer. PMID:17386516

  9. Use of delta(13)C and delta(15)N, and carbon to nitrogen ratios to evaluate the impact of sewage-derived particulate organic matter on the benthic communities of the Southern California Bight.

    PubMed

    Ramírez-Alvarez, Nancy; Macías-Zamora, José Vinicio; Burke, Roger A; Rodríguez-Villanueva, Lúz Verónica

    2007-11-01

    We measured stable isotope ratios (delta(13)C and delta(15)N) of particulate organic matter (POM) sources and benthic organic matter compartments as well as sediment C to N ratios from the coastal area of the southern end of the Southern California Bight (SCB). We used the isotopic values to evaluate the relative importance of the major POM sources to the sediment and two benthic macroinvertebrates. Application of a simple model to sediment delta(13)C values suggested that sewage-derived POM (SDPOM) supplies an average of 48% of the organic C to study area sediments. Application of a similar model to Spiophanes duplex delta(13)C values suggested that SDPOM from wastewater treatment plants discharging into the SCB could supply up to 57% of the C assimilated by this important benthic macroinvertebrate in areas as far away as 26 km from SDPOM inputs. The stable isotope data for Amphiodia urtica were more difficult to interpret because of the complex feeding habits of this organism.

  10. Sequence-specific {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments for intestinal fatty-acid-binding protein complexed with palmitate (15.4 kDA)

    SciTech Connect

    Hodsdon, M.E.; Toner, J.J.; Cistola, D.P.

    1994-12-01

    Intestinal fatty-acid-binding protein (I-FABP) belongs to a family of soluble, cytoplasmic proteins that are thought to function in the intracellular transport and trafficking of polar lipids. Individual members of this protein family have distinct specificities and affinities for fatty acids, cholesterol, bile salts, and retinoids. We are comparing several retinol- and fatty-acid-binding proteins from intestine in order to define the factors that control molecular recognition in this family of proteins. We have established sequential resonance assignments for uniformly {sup 13}C/{sup 15}N-enriched I-FABP complexed with perdeuterated palmitate at pH7.2 and 37{degrees}C. The assignment strategy was similar to that introduced for calmodulin. We employed seven three-dimensional NMR experiments to establish scalar couplings between backbone and sidechain atoms. Backbone atoms were correlated using triple-resonance HNCO, HNCA, TOCSY-HMQC, HCACO, and HCA(CO)N experiments. Sidechain atoms were correlated using CC-TOCSY, HCCH-TOCSY, and TOCSY-HMQC. The correlations of peaks between three-dimensional spectra were established in a computer-assisted manner using NMR COMPASS (Molecular Simulations, Inc.) Using this approach, {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments have been established for 120 of the 131 residues of I-FABP. For 18 residues, amide {sup 1}H and {sup 15}N resonances were unobservable, apparently because of the rapid exchange of amide protons with bulk water at pH 7.2. The missing amide protons correspond to distinct amino acid patterns in the protein sequence, which will be discussed. During the assignment process, several sources of ambiguity in spin correlations were observed. To overcome this ambiguity, the additional inter-residue correlations often observed in the HNCA experiment were used as cross-checks for the sequential backbone assignments.

  11. The biosynthetic pathway of curcuminoid in turmeric (Curcuma longa) as revealed by 13C-labeled precursors.

    PubMed

    Kita, Tomoko; Imai, Shinsuke; Sawada, Hiroshi; Kumagai, Hidehiko; Seto, Haruo

    2008-07-01

    In order to investigate the biosynthesis of curcuminoid in rhizomes of turmeric (Curcuma longa), we established an in vitro culture system of turmeric plants for feeding (13)C-labeled precursors. Analyses of labeled desmethoxycurcumin (DMC), an unsymmetrical curcuminoid, by (13)C-NMR, revealed that one molecule of acetic acid or malonic acid and two molecules of phenylalanine or phenylpropanoids, but not tyrosine, were incorporated into DMC. The incorporation efficiencies of the same precursors into DMC and curcumin were similar, and were in the order malonic acid > acetic acid, and cinnamic acid > p-coumaric acid > ferulic acid. These results suggest the possibility that the pathway to curcuminoids utilized two cinnamoyl CoAs and one malonyl CoA, and that hydroxy- and methoxy-functional groups on the aromatic rings were introduced after the formation of the curcuminoid skeleton.

  12. 1H, 15N, and 13C backbone chemical shift assignments, secondary structure, and magnesium-binding characteristics of the Bacillus subtilis response regulator, Spo0F, determined by heteronuclear high-resolution NMR.

    PubMed Central

    Feher, V. A.; Zapf, J. W.; Hoch, J. A.; Dahlquist, F. W.; Whiteley, J. M.; Cavanagh, J.

    1995-01-01

    Spo0F, sporulation stage 0 F protein, a 124-residue protein responsible, in part, for regulating the transition of Bacillus subtilis from a vegetative state to a dormant endospore, has been studied by high-resolution NMR. The 1H, 15N, and 13C chemical shift assignments for the backbone residues have been determined from analyses of 3D spectra, 15N TOCSY-HSQC, 15N NOESY-HSQC, HNCA, and HN(CO)CA. Assignments for many sidechain proton resonances are also reported. The secondary structure, inferred from short- and medium-range NOEs, 3JHN alpha coupling constants, and hydrogen exchange patterns, define a topology consistent with a doubly wound (alpha/beta)5 fold. Interestingly, comparison of the secondary structure of Spo0F to the structure of the Escherichia coli response regulator, chemotaxis Y protein (CheY) (Volz K, Matsumura P, 1991, J Biol Chem 266:15511-15519; Bruix M et al., 1993, Eur J Biochem 215:573-585), show differences in the relative length of secondary structure elements that map onto a single face of the tertiary structure of CheY. This surface may define a region of binding specificity for response regulators. Magnesium titration of Spo0F, followed by amide chemical shift changes, gives an equilibrium dissociation constant of 20 +/- 5 mM. Amide resonances most perturbed by magnesium binding are near the putative site of phosphorylation, Asp 54. PMID:8528078

  13. Vibrational studies of {sup 13}C- and {sup 34}S-labelled bis(ethylenedithio)tetrathiafulvalene (ET) donor molecule

    SciTech Connect

    Ferraro, J.R.; Kini, A.M.; Williams, J.M.; Stout, P.

    1994-06-01

    FT-IR and FT-Raman studies of {sup 13}C- and {sup 34}S-labelled bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF or ET) electron-donor molecules were made and the results presented herein. Assignments for fundamental vibrations in ET were verified. Spectral data confirms that ET has no center-of-symmetry, and that the data can be reconciled by a D-type point group with only slight interactions occurring between the 4 molecules per unit cell.

  14. Survival of free-living Acholeplasma in aerated pig manure slurry revealed by 13C-labeled bacterial biomass probing

    PubMed Central

    Hanajima, Dai; Aoyagi, Tomo; Hori, Tomoyuki

    2015-01-01

    Many studies have been performed on microbial community succession and/or predominant taxa during the composting process; however, the ecophysiological roles of microorganisms are not well understood because microbial community structures are highly diverse and dynamic. Bacteria are the most important contributors to the organic-waste decomposition process, while decayed bacterial cells can serve as readily digested substrates for other microbial populations. In this study, we investigated the active bacterial species responsible for the assimilation of dead bacterial cells and their components in aerated pig manure slurry by using 13C-labeled bacterial biomass probing. After 3 days of forced aeration, 13C-labeled and unlabeled dead Escherichia coli cell suspensions were added to the slurry. The suspensions contained 13C-labeled and unlabeled bacterial cell components, possibly including the cell wall and membrane, as well as intracellular materials. RNA extracted from each slurry sample 2 h after addition of E. coli suspension was density-resolved by isopycnic centrifugation and analyzed by terminal restriction fragment length polymorphism, followed by cloning and sequencing of bacterial 16S rRNA genes. In the heavy isotopically labeled RNA fraction, the predominant 13C-assimilating population was identified as belonging to the genus Acholeplasma, which was not detected in control heavy RNA. Acholeplasma spp. have limited biosynthetic capabilities and possess a wide variety of transporters, resulting in their metabolic dependence on external carbon and energy sources. The prevalence of Acholeplasma spp. was further confirmed in aerated pig manure slurry from four different pig farms by pyrosequencing of 16S rRNA genes; their relative abundance was ∼4.4%. Free-living Acholeplasma spp. had a competitive advantage for utilizing dead bacterial cells and their components more rapidly relative to other microbial populations, thus allowing the survival and prevalence

  15. Regioselective Syntheses of [13C]4-Labelled Sodium 1-Carboxy-2-(2-ethylhexyloxycarbonyl)ethanesulfonate and Sodium 2-Carboxy-1-(2-ethylhexyloxycarbonyl)ethanesulfonate from [13C]4-Maleic Anhydride

    PubMed Central

    Barsamian, Adam L.; Perkins, Matt J.; Field, Jennifer A.; Blakemore, Paul R.

    2014-01-01

    The entitled monohydrolysis products, also known as α- and β-ethylhexyl sulfosuccinate ('EHSS'), of the surfactant diisooctyl sulfosuccinate ('DOSS') were synthesized in stable isotope labelled form from [13C]4-maleic anhydride. Sodium [13C]4-1-carboxy-2-(2-ethylhexyloxycarbonyl)ethanesulfonate (α-EHSS) was prepared by the method of Larpent by reaction of 2-ethylhexan-1-ol with [13C]4-maleic anhydride followed by regioselective conjugate addition of sodium bisulfite to the resulting monoester (38% overall yield). The regiochemical outcome of bisulfite addition was confirmed by a combination of 13C/13C (INADEQUATE) and 1H/13C (HMBC) NMR spectral correlation experiments. Sodium [13C]4-2-carboxy-1-(2-ethylhexyloxycarbonyl)ethanesulfonate (β-EHSS) was prepared in four steps by reaction of 4-methoxybenzyl alcohol (PMBOH) with [13C]4-maleic anhydride, regioselective sodium bisulfite addition, DCC mediated esterification with 2-ethylhexan-1-ol, and PMB ester deprotection with trifluoroacetic acid (13% overall yield). The regiochemical outcome of the second synthesis was confirmed by a combination of 1JCC scalar coupling constant analysis and 1H/13C (HMBC) NMR spectral correlation. The materials prepared are required as internal standards for the LC-MS/MS trace analysis of the degradation products of DOSS, the anionic surfactant found in Corexit, the oil dispersant used during emergency response efforts connected to the Deepwater Horizon oil spill of April 2010. PMID:24700711

  16. Vitamin K absorption and kinetics in human subjects after consumption of 13C-labelled phylloquinone from kale.

    PubMed

    Novotny, Janet A; Kurilich, Anne C; Britz, Steven J; Baer, David J; Clevidence, Beverly A

    2010-09-01

    The absorption and plasma disappearance of vitamin K were investigated by uniformly labelling phylloquinone in kale with carbon-13, and by feeding the kale to study subjects. Seven healthy volunteers ingested a single 400 g serving of kale with 30 g vegetable oil. The kale provided 156 nmol of phylloquinone. Serial plasma samples were collected and analysed for the appearance of 13C-phylloquinone by HPLC-MS. Six of the subjects showed significant amounts of labelled phylloquinone in plasma, though one subject's plasma was not consistently enriched above the detection limit, and this subject's baseline plasma phylloquinone level was the lowest in the group. After ingestion of the labelled kale, plasma 13C-phylloquinone concentration increased rapidly to a peak between 6 and 10 h, and then rapidly decreased. Average peak plasma concentration for the six subjects with detectable 13C-phylloquinone was 2.1 nmol/l. Plasma concentration-time data were analysed by compartmental modelling. Modelling results demonstrated a mean (n 6) bioavailability of phylloquinone from kale to be 4.7%. Plasma and tissue half-times for phylloquinone were found to be 8.8 and 215 h, respectively.

  17. Shoot δ(15)N and δ (13)C values of non-host Brassica rapa change when exposed to ±Glomus etunicatum inoculum and three levels of phosphorus and nitrogen.

    PubMed

    Fonseca, H M; Berbara, R L; Daft, M J

    2001-08-01

    Glasshouse experiments were conducted to study the response of non-host Brassica rapa and host Sorghum bicolor to inoculation with the arbuscular mycorrhizal fungus (AMF) Glomus etunicatum when given different levels of N (0.9 mmol kg(-1) sand, 2.7 mmol kg(-1) sand, 8.1 mmol kg(-1) sand) and P (3.6 µmol kg(-1) sand, 10.7 µmol kg(-1) sand, 32.0 µmol kg(-1) sand) fertiliser. On both plant species, the presence of G. etunicatum inoculum (+AMF) was associated with significant changes of shoot δ(15)N values, with +AMF plants having larger average δ(15)N values than uninoculated plants (-AMF). These values are the largest average differences in shoot δ(15)N yet recorded for AMF and nutrient effects. B. rapa shoot δ(15)N average differences ranged from 1.67‰ to 2.70‰, while for S. bicolor they range between 2.07‰ and 4.40‰. For shoot δ(13)C only the non-host B. rapa responded to ±AMF and added N. Although the harvested dry weight biomass (-35.2% B. rapa; +39.8% S. bicolor) of both plant species responded to AMF inoculation, no direct relationship was observed between isotopic discrimination and growth inhibition for the non-host B. rapa. In this paper we discuss some implications regarding AMF inocula on the basis of our findings and current literature.

  18. Utilization of low molecular weight organics by soil microorganisms: combination of 13C-labelling with PLFA analysis

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Microbial metabolisation is the main transformation pathway of low molecular weight organic substances (LMWOS), but detailed knowledge concerning the fate of LMWOS in soils is strongly limited. Considering that various LMWOS classes enter biochemical cycles at different steps, we hypothesise that the percentage of their LMWOS-Carbon (C) used for microbial biomass (MB) production and consequently medium-term stabilisation in soil is different. We traced the three main groups of LMWOS: amino acids, sugars and carboxylic acids, by uniformly labelled 13C-alanine, -glutamate, -glucose, -ribose, -acetate and -palmitate. Incorporation of 13C from these LMWOS into MB (fumigation-extraction method) and into phospholipid fatty acids (PLFAs) (Bligh-Dyer extraction, purification and GC-C-IRMS measurement) was investigated under field conditions 3 d and 10 d after LMWOS application. The activity of microbial utilization of LMWOS for cell membrane construction was estimated by replacement of PLFA-C with 13C. Decomposition of LMWOS-C comprised 20-65% of the total label, whereas incorporation of 13C into MB amounted to 20-50% of initially applied 13C on day three and was reduced to 5-30% on day 10. Incorporation of 13C-labelled LMWOS into MB followed the trend sugars > carboxylic acids > amino acids. Differences in microbial utilisation between LMWOS were observed mainly at day 10. Thus, instead of initial rapid uptake, further metabolism within microbial cells accounts for the individual fate of C from different LMWOS in soils. Incorporation of 13C from each LMWOS into each PLFA occurred, which reflects the ubiquitous ability of all functional microbial groups for LMWOS utilization. The preferential incorporation of palmitate can be attributed to its role as a direct precursor for many fatty acids (FAs) and PLFA formation. Higher incorporation of alanine and glucose compared to glutamate, ribose and acetate reflect the preferential use of glycolysis-derived substances in the FAs

  19. 13C and 15N CP/MAS, 1H-15N SCT CP/MAS and FTIR spectroscopy as tools for qualitative detection of the presence of zwitterionic and non-ionic forms of ansa-macrolide 3-formylrifamycin SV and its derivatives in solid state.

    PubMed

    Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan

    2014-01-01

    (13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution. PMID:24347399

  20. 13C and 15N CP/MAS, 1H-15N SCT CP/MAS and FTIR spectroscopy as tools for qualitative detection of the presence of zwitterionic and non-ionic forms of ansa-macrolide 3-formylrifamycin SV and its derivatives in solid state.

    PubMed

    Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan

    2014-01-01

    (13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution.

  1. Sub-cellular localisation of a 15N-labelled peptide vector using NanoSIMS imaging

    NASA Astrophysics Data System (ADS)

    Römer, Winfried; Wu, Ting-Di; Duchambon, Patricia; Amessou, Mohamed; Carrez, Danièle; Johannes, Ludger; Guerquin-Kern, Jean-Luc

    2006-07-01

    Dynamic SIMS imaging is proposed to map sub-cellular distributions of isotopically labelled, exogenous compounds. NanoSIMS imaging allows the characterisation of the intracellular transport pathways of exogenous molecules, including peptide vectors employed in innovative therapies, using stable isotopes as molecular markers to detect the compound of interest. Shiga toxin B-subunit (STxB) was chosen as a representative peptide vector. The recombinant protein ( 15N-STxB) was synthesised in Escherichia coli using 15NH 4Cl as sole nitrogen source resulting in 15N enrichment in the molecule. Using the NanoSIMS 50 ion microprobe (Cameca), different ion species ( 12C 14N -, 12C 15N -, 31P -) originating from the same sputtered micro volume were simultaneously detected. High mass resolving power enabled the discrimination of 12C 15N - from its polyatomic isobars of mass 27. We imaged the membrane binding and internalisation of 15N-STxB in HeLa cells at spatial resolutions of less than 100 nm. Thus, the use of rare stable isotopes like 15N with dynamic SIMS imaging permits sub-cellular detection of isotopically labelled, exogenous molecules and imaging of their transport pathways at high mass and spatial resolution. Application of stable isotopes as markers can replace the large and chemically complex tags used for fluorescence microscopy, without altering the chemical and physical properties of the molecule.

  2. NMR study of non-structural proteins--part II: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Venezuelan equine encephalitis virus (VEEV).

    PubMed

    Makrynitsa, Garyfallia I; Ntonti, Dioni; Marousis, Konstantinos D; Tsika, Aikaterini C; Lichière, Julie; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-10-01

    Macro domains consist of 130-190 amino acid residues and appear to be highly conserved in all kingdoms of life. Intense research on this field has shown that macro domains bind ADP-ribose and other similar molecules, but their exact function still remains intangible. Macro domains are highly conserved in the Alphavirus genus and the Venezuelan equine encephalitis virus (VEEV) is a member of this genus that causes fatal encephalitis to equines and humans. In this study we report the high yield recombinant expression and preliminary solution NMR study of the macro domain of VEEV. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure predicted by TALOS+. The protein shows a unique mixed α/β-fold.

  3. (1)H, (13)C, (15)N backbone and side chain NMR resonance assignments for E73 from Sulfolobus spindle-shaped virus ragged hills, a hyperthermophilic crenarchaeal virus from Yellowstone National Park.

    PubMed

    Schlenker, Casey; Menon, Smita; Lawrence, C Martin; Copié, Valérie

    2009-12-01

    Crenarchaeal viruses are commonly found in hyperthermal acidic environments such as those of Yellowstone National Park. These remarkable viruses not only exhibit unusual morphologies, but also display extreme genetic diversity. However, little is known about crenarchaeal viral life cycles, virus-host interactions, and their adaptation to hyperthermophilic environments. In an effort to better understand the functions of crenarchaeal viruses and the proteins encoded by their genomes, we have undertaken detailed structural and functional studies of gene products encoded in the open reading frames of Sulfolobus spindle-shaped virus ragged hills. Herein, we report ((15)N, (13)C, (1)H) resonance assignments of backbone and side chain atoms of a 19.1 kDa homodimeric E73 protein of SSVRH.

  4. (1)H, (13)C, (15)N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme-nitric oxide/oxygen binding (H-NOX) domain.

    PubMed

    Alexandropoulos, Ioannis I; Argyriou, Aikaterini I; Marousis, Kostas D; Topouzis, Stavros; Papapetropoulos, Andreas; Spyroulias, Georgios A

    2016-10-01

    The H-NOX (Heme-nitric oxide/oxygen binding) domain is conserved across eukaryotes and bacteria. In human soluble guanylyl cyclase (sGC) the H-NOX domain functions as a sensor for the gaseous signaling agent nitric oxide (NO). sGC contains the heme-binding H-NOX domain at its N-terminus, which regulates the catalytic site contained within the C-terminal end of the enzyme catalyzing the conversion of GTP (guanosine 5'-triphosphate) to GMP (guanylyl monophosphate). Here, we present the backbone and side-chain assignments of the (1)H, (13)C and (15)N resonances of the 183-residue H-NOX domain from Nostoc sp. through solution NMR.

  5. Life history of the individuals buried in the St. Benedict Cemetery (Prague, 15th-18th centuries): insights from (14)C dating and stable isotope (δ(13)C, δ(15)N, δ(18)O) analysis.

    PubMed

    Salesse, Kevin; Dufour, Élise; Castex, Dominique; Velemínský, Petr; Santos, Frédéric; Kuchařová, Hedvika; Jun, Libor; Brůžek, Jaroslav

    2013-06-01

    Funerary practices and bioarchaeological (sex and age) data suggest that a mortality crisis linked to an epidemic episode occurred during the fifth phase of the St. Benedict cemetery in Prague (Czech Republic). To identify this mass mortality episode, we reconstructed individual life histories (dietary and mobility factors), assessed the population's biological homogeneity, and proposed a new chronology through stable isotope analysis (δ(13)C, δ(18)O and δ(15)N) and direct radiocarbon dating. Stable isotope analysis was conducted on the bone and tooth enamel (collagen and carbonate) of 19 individuals from three multiple graves (MG) and 12 individuals from individual graves (IG). The δ(15)N values of collagen and the difference between the δ(13)C values of collagen and bone carbonate could indicate that the IG individuals had a richer protein diet than the MG individuals or different food resources. The human bone and enamel carbonate and δ(18)O values suggest that the majority of individuals from MG and all individuals from IG spent most of their lives outside of the Bohemian region. Variations in δ(18)O values also indicate that all individuals experienced residential mobility during their lives. The stable isotope results, biological (age and sex) data and eight (14)C dates clearly differentiate the MG and IG groups. The present work provides evidence for the reuse of the St. Benedict cemetery to bury soldiers despite the funeral protest ban (1635 AD). The Siege of Prague (1742 AD) by French-Bavarian-Saxon armies is identified as the cause of the St. Benedict mass mortality event.

  6. Linking Isotopes and Panmixia: High Within-Colony Variation in Feather δ2H, δ13C, and δ15N across the Range of the American White Pelican.

    PubMed

    Reudink, Matthew W; Kyle, Christopher J; McKellar, Ann E; Somers, Christopher M; Reudink, Robyn L F; Kyser, T Kurt; Franks, Samantha E; Nocera, Joseph J

    2016-01-01

    Complete panmixia across the entire range of a species is a relatively rare phenomenon; however, this pattern may be found in species that have limited philopatry and frequent dispersal. American white pelicans (Pelecanus erythrorhyncos) provide a unique opportunity to examine the role of long-distance dispersal in facilitating gene flow in a species recently reported as panmictic across its broad breeding range. This species is also undergoing a range expansion, with new colonies arising hundreds of kilometers outside previous range boundaries. In this study, we use a multiple stable isotope (δ2H, δ13C, δ15N) approach to examine feather isotopic structuring at 19 pelican colonies across North America, with the goal of establishing an isotopic basemap that could be used for assigning individuals at newly established breeding sites to source colonies. Within-colony isotopic variation was extremely high, exceeding 100‰ in δ2H within some colonies (with relatively high variation also observed for δ13C and δ15N). The high degree of within-site variation greatly limited the utility of assignment-based approaches (42% cross-validation success rate; range: 0-90% success). Furthermore, clustering algorithms identified four likely isotopic clusters; however, those clusters were generally unrelated to geographic location. Taken together, the high degree of within-site isotopic variation and lack of geographically-defined isotopic clusters preclude the establishment of an isotopic basemap for American white pelicans, but may indicate that a high incidence of long-distance dispersal is facilitating gene flow, leading to genetic panmixia.

  7. Linking Isotopes and Panmixia: High Within-Colony Variation in Feather δ2H, δ13C, and δ15N across the Range of the American White Pelican

    PubMed Central

    Reudink, Matthew W.; Kyle, Christopher J.; McKellar, Ann E.; Somers, Christopher M.; Reudink, Robyn L. F.; Kyser, T. Kurt; Franks, Samantha E.; Nocera, Joseph J.

    2016-01-01

    Complete panmixia across the entire range of a species is a relatively rare phenomenon; however, this pattern may be found in species that have limited philopatry and frequent dispersal. American white pelicans (Pelecanus erythrorhyncos) provide a unique opportunity to examine the role of long-distance dispersal in facilitating gene flow in a species recently reported as panmictic across its broad breeding range. This species is also undergoing a range expansion, with new colonies arising hundreds of kilometers outside previous range boundaries. In this study, we use a multiple stable isotope (δ2H, δ13C, δ15N) approach to examine feather isotopic structuring at 19 pelican colonies across North America, with the goal of establishing an isotopic basemap that could be used for assigning individuals at newly established breeding sites to source colonies. Within-colony isotopic variation was extremely high, exceeding 100‰ in δ2H within some colonies (with relatively high variation also observed for δ13C and δ15N). The high degree of within-site variation greatly limited the utility of assignment-based approaches (42% cross-validation success rate; range: 0–90% success). Furthermore, clustering algorithms identified four likely isotopic clusters; however, those clusters were generally unrelated to geographic location. Taken together, the high degree of within-site isotopic variation and lack of geographically-defined isotopic clusters preclude the establishment of an isotopic basemap for American white pelicans, but may indicate that a high incidence of long-distance dispersal is facilitating gene flow, leading to genetic panmixia. PMID:26974163

  8. Life history of the individuals buried in the St. Benedict Cemetery (Prague, 15th-18th centuries): insights from (14)C dating and stable isotope (δ(13)C, δ(15)N, δ(18)O) analysis.

    PubMed

    Salesse, Kevin; Dufour, Élise; Castex, Dominique; Velemínský, Petr; Santos, Frédéric; Kuchařová, Hedvika; Jun, Libor; Brůžek, Jaroslav

    2013-06-01

    Funerary practices and bioarchaeological (sex and age) data suggest that a mortality crisis linked to an epidemic episode occurred during the fifth phase of the St. Benedict cemetery in Prague (Czech Republic). To identify this mass mortality episode, we reconstructed individual life histories (dietary and mobility factors), assessed the population's biological homogeneity, and proposed a new chronology through stable isotope analysis (δ(13)C, δ(18)O and δ(15)N) and direct radiocarbon dating. Stable isotope analysis was conducted on the bone and tooth enamel (collagen and carbonate) of 19 individuals from three multiple graves (MG) and 12 individuals from individual graves (IG). The δ(15)N values of collagen and the difference between the δ(13)C values of collagen and bone carbonate could indicate that the IG individuals had a richer protein diet than the MG individuals or different food resources. The human bone and enamel carbonate and δ(18)O values suggest that the majority of individuals from MG and all individuals from IG spent most of their lives outside of the Bohemian region. Variations in δ(18)O values also indicate that all individuals experienced residential mobility during their lives. The stable isotope results, biological (age and sex) data and eight (14)C dates clearly differentiate the MG and IG groups. The present work provides evidence for the reuse of the St. Benedict cemetery to bury soldiers despite the funeral protest ban (1635 AD). The Siege of Prague (1742 AD) by French-Bavarian-Saxon armies is identified as the cause of the St. Benedict mass mortality event. PMID:23588853

  9. 13C labelled cholesteryl octanoate breath test for assessing pancreatic exocrine insufficiency

    PubMed Central

    Ventrucci, M; Cipolla, A; Ubalducci, G; Roda, A; Roda, E

    1998-01-01

    Background—A non-invasive test for assessment of fat digestion has been developed based on the intraluminal hydrolysis of cholesteryl-[1-13C]octanoate by pancreatic esterase. 
Aims—To determine the diagnostic performance of this breath test in the assessment of exocrine pancreatic function. 
Methods—The test was performed in 20 healthy controls, 22 patients with chronic pancreatic disease (CPD), four with biliopancreatic diversion (BPD), and 32 with non-pancreatic digestive diseases (NPD); results were compared with those of other tubeless tests (faecal chymotrypsin and fluorescein dilaurate test). 
Results—Hourly recoveries of 13CO2 were significantly lower in CPD when compared with healthy controls or NPD. In patients with CPD with mild to moderate insufficiency, the curve of 13CO2 recovery was similar to that of healthy controls, while in those with severe insufficiency it was flat. In three patients with CPD with severe steatorrhoea, a repeat test after pancreatic enzyme supplementation showed a significant rise in 13CO2 recovery. The four BPD patients had low and delayed 13CO2 recovery. Only eight of the 32 patients with NPD had abnormal breath test results. There was a significant correlation between the results of the breath test and those of faecal chymotrypsin, the fluorescein dilaurate test, and faecal fat measurements. For the diagnosis of pancreatic disease using the three hour cumulative 13CO2 recovery test, the sensitivity was 68.2% and specificity 75.0%; values were similar to those of the other two tubeless pancreatic function tests. In seven healthy controls, nine patients with CPD, and nine with NPD a second breath test was performed using Na-[1-13C]octanoate and a pancreatic function index was calculated as the ratio of 13C recovery obtained in the two tests: at three hours this index was abnormal in eight patients with CPD and in three with NPD. 
Conclusion—The cholesteryl-[1-13C]octanoate breath test can be useful for the

  10. Novel labeling technique illustrates transfer of 15N2 from Sphagnum moss to vascular plants via diazotrophic nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Thorp, N. R.; Vile, M. A.; Wieder, R.

    2013-12-01

    We used 15N2 gas to trace nitrogen (N) from biological N2-fixation to vascular plant uptake in an Alberta bog in order to determine if neighboring bog plants acquire recently fixed N from diazotrophs associating with Sphagnum mosses. Recent evidence indicates high rates of N2-fixation in Sphagnum mosses of Alberta bogs (Vile et al. 2013). Our previous work has shown that mosses can assimilate fixed N from associated diazotrophs as evidenced by the high N content of mosses despite minimal inputs from atmospheric deposition, retranslocation, and N mineralization. Therefore, the potential exists for vascular plants to obtain N from ';leaky' tissues of live mosses, however, this phenomenon has not been tested previously. Here we document the potential for relatively rapid transfer to vascular plants of N fixed by Sphagnum moss-associated diazotrophs. We utilized the novel approach of incubating mosses in 15N2 to allow the process of diazotrophic N2-fixation to mechanistically provide the 15N label, which is subsequently transferred to Sphagnum mosses. The potential for vascular bog natives to tap this N was assessed by planting the vascular plants in the labeled moss. Sphagnum mosses (upper 3 cm of live plants) were incubated in the presence of 98 atom % 15N2 gas for 48 hours. Two vascular plants common to Alberta bogs; Picea mariana and Vaccinium oxycoccus were then placed in the labeled mosses, where the mosses served as the substrate. Tissue samples from these plants were collected at three time points during the incubation; prior to 15N2 exposure (to determine natural abundance 15N), and at one and two months after 15N2 exposure. Roots and leaves were separated and run separately on a mass spectrometer to determine 15N concentrations. Sphagnum moss capitula obtained N from N2-fixation (δ15N of -2.43 × 0.40, 122.76 × 23.78, 224.92 × 68.37, 143.74 × 54.38 prior to, immediately after, and at 1 and 2 months after exposure to 15N2, respectively). Nitrogen was

  11. N,N-Di- n-octyl- N,N-dimethyl and N,N-di- n-nonyl- N,N-dimethyl ammonium cholates: 13C and 15N CPMAS NMR, powder X-ray diffraction and thermoanalytical characterization

    NASA Astrophysics Data System (ADS)

    Kolehmainen, Erkki; Lahtinen, Manu; Valkonen, Arto; Behera, Babita; Kauppinen, Reijo

    2009-07-01

    N,N-Di- n-octyl- N,N-dimethyl cholate ( 1) and N,N-di- n-nonyl- N,N-dimethyl ammonium cholate ( 2) have been prepared by crystallization from equimolar mixtures of sodium cholate and quaternary N,N-di- n-alkyl- N,N-dimethyl ( n-octyl or n-nonyl) ammonium bromides. The formed crystalline materials have been structurally characterized by 13C and 15N cross polarization magic angle spinning (CPMAS) NMR, powder X-ray diffraction (PXRD) and thermoanalytical (TGA/DTA and DSC) methods and compared with each other. Powder X-ray diffraction patterns of 1 and 2 reveal clear similarities. Combined with the thermoanalytical data of these structures an existence of two hydrated polymorphs (most probably mono- and dihydrates) can be proposed. This presumption is further supported by 13C CPMAS NMR showing clearly double resonances for the carboxylic and majority of other carbons in these quaternary ammonium cholates. Owing to the endogenous character of cholate anion these ionic structures possess great potential in many pharmaceutical applications such as controlled drug delivery.

  12. Combining position-specific 13C labeling with compound-specific isotope analysis: first steps towards soil fluxomics

    NASA Astrophysics Data System (ADS)

    Dippold, Michaela; Kuzyakov, Yakov

    2015-04-01

    Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino

  13. Reliable Identification of Cross-Linked Products in Protein Interaction Studies by 13C-Labeled p-Benzoylphenylalanine

    NASA Astrophysics Data System (ADS)

    Pettelkau, Jens; Ihling, Christian H.; Frohberg, Petra; van Werven, Lars; Jahn, Olaf; Sinz, Andrea

    2014-09-01

    We describe the use of the 13C-labeled artificial amino acid p-benzoyl-L-phenylalanine (Bpa) to improve the reliability of cross-linked product identification. Our strategy is exemplified for two protein-peptide complexes. These studies indicate that in many cases the identification of a cross-link without additional stable isotope labeling would result in an ambiguous assignment of cross-linked products. The use of a 13C-labeled photoreactive amino acid is considered to be preferred over the use of deuterated cross-linkers as retention time shifts in reversed phase chromatography can be ruled out. The observation of characteristic fragment ions additionally increases the reliability of cross-linked product assignment. Bpa possesses a broad reactivity towards different amino acids and the derived distance information allows mapping of spatially close amino acids and thus provides more solid structural information of proteins and protein complexes compared to the longer deuterated amine-reactive cross-linkers, which are commonly used for protein 3D-structure analysis and protein-protein interaction studies.

  14. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    PubMed

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency.

  15. Biosynthesis of pyrroloquinoline quinone. 1. Identification of biosynthetic precursors using /sup 13/C labeling and NMR spectroscopy

    SciTech Connect

    Houck, D.R.; Hanners, J.L.; Unkefer, C.J.

    1988-09-28

    The biosynthesis of pyrroloquinoline quinone (PQQ) in the methylotropic bacterium methylobacterium AM1 has been investigated using /sup 13/C-labelling of the products and NMR spectroscopy. The data indicated that the quinoline portion of PQQ is formed by a novel condensation of N-1, C-2, -3, and -4 of glutamate with a symmetrical six-carbon ring derived from the shikimate pathway. It is postulated that tyrosine is the shikimate-derived percursor, since pyrrole could be formed by the internal cyclization of the amino acid backbone. 18 references, 2 figures, 2 tables.

  16. Fast pyrolysis of 13C-labeled cellobioses: gaining insights into the mechanisms of fast pyrolysis of carbohydrates.

    PubMed

    Degenstein, John C; Murria, Priya; Easton, Mckay; Sheng, Huaming; Hurt, Matt; Dow, Alex R; Gao, Jinshan; Nash, John J; Agrawal, Rakesh; Delgass, W Nicholas; Ribeiro, Fabio H; Kenttämaa, Hilkka I

    2015-02-01

    A fast-pyrolysis probe/tandem mass spectrometer combination was utilized to determine the initial fast-pyrolysis products for four different selectively (13)C-labeled cellobiose molecules. Several products are shown to result entirely from fragmentation of the reducing end of cellobiose, leaving the nonreducing end intact in these products. These findings are in disagreement with mechanisms proposed previously. Quantum chemical calculations were used to identify feasible low-energy pathways for several products. These results provide insights into the mechanisms of fast pyrolysis of cellulose.

  17. Belowground carbon allocation in a temperate beech forest: new insight into carbon residence time using whole tree 13C labelling

    NASA Astrophysics Data System (ADS)

    Epron, D.; Ngao, J.; Plain, C.; Longdoz, B.; Granier, A.

    2011-12-01

    Belowground carbon allocation is an important component of forest carbon budget, affecting tree growth (competition between aboveground and belowground carbon sinks), acquisition of belowground resources (nutrients and water) that are often limiting forest ecosystems and soil carbon sequestration. Total belowground carbon flow can be estimated using a mass-balance approach as cumulative soil CO2 efflux minus the carbon input from aboveground litter plus the changes in the C stored in roots, in the forest floor, and in the soil, and further compared to gross annual production. While this approach is useful for understanding the whole ecosystem carbon budget, uncertainties remain about the contribution of the different belowground pools of carbon to ecosystem respiration and carbon sequestration. New insights into transfer rate and residence time of carbon in belowground compartments can be gained from in situ whole-crown 13C labelling experiments. We combined both approaches in a young temperate beech forest in north-eastern France where ecosystem carbon fluxes are recorded since a decade. Carbon allocated belowground represented less than 40% of gross primary production in this young beech forest. Autotrophic respiration assessed by comparing soil CO2 efflux measured on normal and on root exclusion plots, accounted for 60% of the total belowground carbon flow. This indicated a rather short mean residence time of carbon allocated belowground in the soil compartments. The recovery of 13C in soil CO2 efflux after pulse-labelling entire crowns of tree with 13CO2 at several occasions during the growing season was observed a few couple of hours after the labelling. That indicates a rapid transfer of 13C belowground with a maximum occurring within 2 to 4 days after labelling. Label was recovered at the same time in the respiration and in the biomass of both fine roots and soil microbes. Allocation of recently assimilated carbon to soil microbial respiration was greater in

  18. Nitrogen mineralization from selected /sup 15/N-labelled crop residues and humus as affected by inorganic nitrogen

    SciTech Connect

    Santos, J.A.

    1987-01-01

    The use of cover crops or crop residues as a source of N to succeeding crops has become a matter of increasing importance for economic and environmental reason. Greenhouse and field studies were conducted to determine the N contribution of four /sup 15/N labelled crop residues, rye (Secale cereale L.), wheat (Triticum aestivum L.), crimson clover (Trifolium encarnatum L.), and hairy vetch (Vicia sativa L.), to successive crops and to evaluate the effect of different organic (ON) and inorganic N (IN) combinations on mineralization of the above residues. Total /sup 15/N recovery from the residues ranged from 51% to 85% and 4% to 74% for the greenhouse and field studies, respectively.

  19. An automated growth enclosure for metabolic labeling of Arabidopsis thaliana with 13C-carbon dioxide - an in vivo labeling system for proteomics and metabolomics research

    PubMed Central

    2011-01-01

    Background Labeling whole Arabidopsis (Arabidopsis thaliana) plants to high enrichment with 13C for proteomics and metabolomics applications would facilitate experimental approaches not possible by conventional methods. Such a system would use the plant's native capacity for carbon fixation to ubiquitously incorporate 13C from 13CO2 gas. Because of the high cost of 13CO2 it is critical that the design conserve the labeled gas. Results A fully enclosed automated plant growth enclosure has been designed and assembled where the system simultaneously monitors humidity, temperature, pressure and 13CO2 concentration with continuous adjustment of humidity, pressure and 13CO2 levels controlled by a computer running LabView software. The enclosure is mounted on a movable cart for mobility among growth environments. Arabidopsis was grown in the enclosure for up to 8 weeks and obtained on average >95 atom% enrichment for small metabolites, such as amino acids and >91 atom% for large metabolites, including proteins and peptides. Conclusion The capability of this labeling system for isotope dilution experiments was demonstrated by evaluation of amino acid turnover using GC-MS as well as protein turnover using LC-MS/MS. Because this 'open source' Arabidopsis 13C-labeling growth environment was built using readily available materials and software, it can be adapted easily to accommodate many different experimental designs. PMID:21310072

  20. Comparison of five soil organic matter decomposition models using data from a 14C and 15N labeling field experiment

    NASA Astrophysics Data System (ADS)

    Pansu, Marc; Bottner, Pierre; Sarmiento, Lina; Metselaar, Klaas

    2004-12-01

    Five alternatives of the previously published MOMOS model (MOMOS-2 to -6) are tested to predict the dynamics of carbon (C) and nitrogen (N) in soil during the decomposition of plant necromass. 14C and 15N labeled wheat straw was incubated over 2 years in fallow soils of the high Andean Paramo of Venezuela. The following data were collected: soil moisture, total 14C and 15N and microbial biomass (MB)-14C and -15N, daily rainfall, air temperature and total radiation. Daily soil moisture was predicted using the SAHEL model. MOMOS-2 to -4 (type 1 models) use kinetic constants and flow partitioning parameters. MOMOS-2 can be simplified to MOMOS-3 and further to MOMOS-4, with no significant changes in the prediction accuracy and robustness for total-14C and -15N as well as for MB-14C and -15N. MOMOS-5 (type 2 models) uses only kinetic constants: three MB-inputs (from labile and stable plant material and from humified compounds) and two MB-outputs (mortality and respiration constants). MOMOS-5 did not significantly change the total-14C and -15N predictions but markedly improved the predictive quality and robustness of MB-14C and -15N predictions (with a dynamic different from the predictions by other models). Thus MOMOS-5 is proposed as an accurate and ecologically consistent description of decomposition processes. MOMOS-6 extends MOMOS-5 by including a stable humus compartment for long-term simulations of soil native C and N. The improvement of the predictions is not significant for this 2-year experiment, but MOMOS-6 enables prediction of a sequestration in the stable humus compartment of 2% of the initially added 14C and 5.4% of the added 15N.

  1. Carbon Metabolism of Soil microorganisms at Low Temperatures: Position-Specific 13C Labeled Glucose Reveals the Story

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Bore, E. K.; Halicki, S.; Kuzyakov, Y.; Dippold, M.

    2015-12-01

    Metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze soil metabolism at low temperature, isotopomeres of position-specifically 13C labeled glucose were applied at three temperature levels; +5, -5 -20 oC. In additon, one sterilization treatment with sodium azide at +5 oC was also performed. Soils were incubated for 1, 3 and 10 days while soil samples at -20 oC were additionally sampled after 30 days. The 13C from individual molecule position in respired CO2 was quantifed. Incorporation of 13C in bulk soil, extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of different microbial communities classified by 13C phospholipid fatty acid analysis (PLFA) was carried out. Our 13CO2 data showed a dominance of C-1 respiration at +5 °C for treatments with and without sodium azide, but total respiration for sodium azide inhibited treatments increased by 14%. In contrast, at -5 and -20 oC metabolic behavior showed intermingling of preferential respiration of the glucose C-4 and C-1 positions. Therefore, at +5 °C, pentose phosphate pathway activity is a dominant metabolic pathway used by microorganisms to metabolize glucose. The respiration increase due to NaN3 inhibition was attributed to endoenzymes released from dead organisms that are stabilized at the soil matrix and have access to suitable substrate and co-factors to permit their funtions. Our PLFA analysis showed that incorporation of glucose 13C was higher in Gram negative bacteria than other microbial groups as they are most competitive for LMWOS. Only a limited amount of microbial groups maintained their glucose utilizing activity at -5 and -20 °C and they strongly shifted towards a metabolization of glucose via both glycolysis and pentose phosphate pathways indicating both growth and cellular maintenance. This study revealed a remarkable microbial acitivity

  2. Homonuclear dipolar recoupling techniques for structure determination in uniformly 13C-labeled proteins.

    PubMed

    Ladizhansky, Vladimir

    2009-11-01

    In solid-state NMR magic angle spinning is often used to remove line broadening associated with anisotropic interactions, such as chemical shift anisotropy and dipolar couplings. Dipolar recoupling refers to sequences of pulses designed to reintroduce dipolar interactions that are otherwise averaged by magic angle spinning. One of the key applications of homonuclear (and heteronuclear) dipolar recoupling is for the purpose of protein structure determination. Recoupling experiments, originally designed for applications in spin-pair labeled samples, have been revised in recent years for applications in samples with extensive or uniform incorporation of isotopic labels. In these samples multiple internuclear distances can in principle be probed simultaneously, but the dipolar truncation effects (i.e. attenuation of the effects of weak couplings by strong ones) circumvent such measurements. In this article we review some of the recent developments in homonuclear recoupling methods that allow overcoming this problem.

  3. Analysis of 13C labeling enrichment in microbial culture applying metabolic tracer experiments using gas chromatography-combustion-isotope ratio mass spectrometry.

    PubMed

    Heinzle, Elmar; Yuan, Yongbo; Kumar, Sathish; Wittmann, Christoph; Gehre, Matthias; Richnow, Hans-Herrmann; Wehrung, Patrick; Adam, Pierre; Albrecht, Pierre

    2008-09-15

    The applicability of gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) for the quantification of 13C enrichment of proteinogenic amino acids in metabolic tracer experiments was evaluated. Measurement of the 13C enrichment of proteinogenic amino acids from cell hydrolyzates of Corynebacterium glutamicum growing on different mixtures containing between 0.5 and 10% [1-13C]glucose shows the significance of kinetic isotope effects in metabolic flux studies at low degree of labeling. We developed a method to calculate the 13C enrichment. The approach to correct for these effects in metabolic flux studies using delta13C measurement by GC-C-IRMS uses two parallel experiments applying substrate with natural abundance and 13C-enriched tracer substrate, respectively. The fractional enrichment obtained in natural substrate is subtracted from that of the enriched one. Tracer studies with C. glutamicum resulted in a statistically identical relative fractional enrichment of 13C in proteinogenic amino acids over the whole range of applied concentrations of [1-13C]glucose. The current findings indicate a great potential of GC-C-IRMS for labeling quantification in 13C metabolic flux analysis with low labeling degree of tracer substrate directly in larger scale bioreactors.

  4. 13C-1H dipolar-driven 13C-13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids

    NASA Astrophysics Data System (ADS)

    Takegoshi, K.; Nakamura, Shinji; Terao, Takehiko

    2003-02-01

    the spinning speed. Further, we showed that the efficiency of the second-order DARR recoupling is not significantly less than that of the first-order DARR. Among the 13C-1H recoupling methods examined, CW irradiation at the n=1 rotary-resonance condition is superior for DARR because it gives a larger 13C-1H dipolar broadening, leading to broadband recoupling. We showed that a broadband-recoupling experiment with the first and the second-order DARR by CW irradiation at the n=1 rotary-resonance condition is applicable to signal assignment as well as structural determination of a multiply/uniformly 13C labeled molecule as demonstrated by two-dimensional 13C-13C DARR polarization-transfer experiments of uniformly 13C, 15N-labeled glycylisoleucine.

  5. {sup 13}C-enrichment at carbons 8 and 2 of uric acid after {sup 13}C-labeled folate dose in man

    SciTech Connect

    Baggott, Joseph E.; Gorman, Gregory S.; Morgan, Sarah L.; Tamura, Tsunenobu . E-mail: tamurat@uab.edu

    2007-09-21

    To evaluate folate-dependent carbon incorporation into the purine ring, we measured {sup 13}C-enrichment independently at C{sub 2} and C{sub 8} of urinary uric acid (the final catabolite of purines) in a healthy male after an independent oral dose of [6RS]-5-[{sup 13}C]-formyltetrahydrofolate ([6RS]-5-H{sup 13}CO-H{sub 4}folate) or 10-H{sup 13}CO-7,8-dihydrofolate (10-H{sup 13}CO-H{sub 2}folate). The C{sub 2} position was {sup 13}C-enriched more than C{sub 8} after [6RS]-5-H{sup 13}CO-H{sub 4}folate, and C{sub 2} was exclusively enriched after 10-H{sup 13}CO-H{sub 2}folate. The enrichment of C{sub 2} was greater from [6RS]-5-H{sup 13}CO-H{sub 4}folate than 10-H{sup 13}CO-H{sub 2}folate using equimolar bioactive doses. Our data suggest that formyl C of [6RS]-10-H{sup 13}CO-H{sub 4}folate was not equally utilized by glycinamide ribotide transformylase (enriches C{sub 8}) and aminoimidazolecarboxamide ribotide (AICAR) transformylase (enriches C{sub 2}), and the formyl C of 10-H{sup 13}CO-H{sub 2}folate was exclusively used by AICAR transformylase. 10-HCO-H{sub 2}folate may function in vivo as the predominant substrate for AICAR transformylase in humans.

  6. (1)H, (13)C, and (15)N resonance assignments and secondary structure information for Methylobacterium extorquens PqqD and the complex of PqqD with PqqA.

    PubMed

    Evans, Robert L; Latham, John A; Klinman, Judith P; Wilmot, Carrie M; Xia, Youlin

    2016-10-01

    The ribosomally synthesized and post-translationally modified peptide (RiPP), pyrroloquinoline quinone (PQQ), is a dehydrogenase cofactor synthesized by, but not exclusively used by, certain prokaryotes. RiPPs represent a rapidly expanding and diverse class of natural products-many of which have therapeutic potential-and the biosynthetic pathways for these are gaining attention. Five gene products from the pqq operon (PqqA, PqqB, PqqC, PqqD, and PqqE) are essential for PQQ biosynthesis. The substrate is the peptide PqqA, which is presented to the radical SAM enzyme PqqE by the small protein PqqD. PqqA is unstructured in solution, and only binds to PqqE when in complex with PqqD. PqqD is a member of a growing family of RiPP chaperone proteins (or domains in most cases) that present their associated peptide substrates to the initial RiPP biosynthesis enzymes. An X-ray crystal structure exists for dimeric Xanthomonas campestris PqqD (PDB ID: 3G2B), but PqqD is now known to act as a monomer under physiological conditions. In this study, the PqqD truncation from naturally fused Methylobacterium extorquens (Mex) PqqCD was overexpressed in Escherichia coli and MexPqqA was chemically synthesized. Solution NMR (1)H-,(15)N-HSQC chemical shift studies have identified the PqqD residues involved in binding PqqA, and (1)H, (13)C, and (15)N peak assignments for PqqD alone and for PqqD bound to PqqA are reported herein. PMID:27638737

  7. (1)H, (13)C, and (15)N resonance assignments and secondary structure information for Methylobacterium extorquens PqqD and the complex of PqqD with PqqA.

    PubMed

    Evans, Robert L; Latham, John A; Klinman, Judith P; Wilmot, Carrie M; Xia, Youlin

    2016-10-01

    The ribosomally synthesized and post-translationally modified peptide (RiPP), pyrroloquinoline quinone (PQQ), is a dehydrogenase cofactor synthesized by, but not exclusively used by, certain prokaryotes. RiPPs represent a rapidly expanding and diverse class of natural products-many of which have therapeutic potential-and the biosynthetic pathways for these are gaining attention. Five gene products from the pqq operon (PqqA, PqqB, PqqC, PqqD, and PqqE) are essential for PQQ biosynthesis. The substrate is the peptide PqqA, which is presented to the radical SAM enzyme PqqE by the small protein PqqD. PqqA is unstructured in solution, and only binds to PqqE when in complex with PqqD. PqqD is a member of a growing family of RiPP chaperone proteins (or domains in most cases) that present their associated peptide substrates to the initial RiPP biosynthesis enzymes. An X-ray crystal structure exists for dimeric Xanthomonas campestris PqqD (PDB ID: 3G2B), but PqqD is now known to act as a monomer under physiological conditions. In this study, the PqqD truncation from naturally fused Methylobacterium extorquens (Mex) PqqCD was overexpressed in Escherichia coli and MexPqqA was chemically synthesized. Solution NMR (1)H-,(15)N-HSQC chemical shift studies have identified the PqqD residues involved in binding PqqA, and (1)H, (13)C, and (15)N peak assignments for PqqD alone and for PqqD bound to PqqA are reported herein.

  8. Exploring the nitrogen ingestion of aphids--a new method using electrical penetration graph and (15)N labelling.

    PubMed

    Kuhlmann, Franziska; Opitz, Sebastian E W; Inselsbacher, Erich; Ganeteg, Ulrika; Näsholm, Torgny; Ninkovic, Velemir

    2013-01-01

    Studying plant-aphid interactions is challenging as aphid feeding is a complex process hidden in the plant tissue. Here we propose a combination of two well established methods to study nutrient acquisition by aphids focusing on the uptake of isotopically labelled nitrogen ((15)N). We combined the Electrical Penetration Graph (EPG) technique that allows detailed recording of aphid feeding behaviour and stable isotope ratio mass spectrometry (IRMS) to precisely measure the uptake of nitrogen. Bird cherry-oat aphids Rhopalosiphum padi L. (Hemiptera, Aphididae) fed for 24 h on barley plants (Hordeum vulgare L., cultivar Lina, Poaceae) that were cultivated with a (15)N enriched nutrient solution. The time aphids fed in the phloem was strongly positive correlated with their (15)N uptake. All other single behavioural phases were not correlated with (15)N enrichment in the aphids, which corroborates their classification as non-feeding EPG phases. In addition, phloem-feeding and (15)N enrichment of aphids was divided into two groups. One group spent only short time in the phloem phase and was unsuccessful in nitrogen acquisition, while the other group displayed longer phloem-feeding phases and was successful in nitrogen acquisition. This suggests that several factors such as the right feeding site, time span of feeding and individual conditions play a role for the aphids to acquire nutrients successfully. The power of this combination of methods for studying plant-aphid interactions is discussed.

  9. Assimilation of xylem-transported 13C-labelled CO2 in leaves and branches of sycamore (Platanus occidentalis L.).

    PubMed

    McGuire, M A; Marshall, J D; Teskey, R O

    2009-01-01

    Previous reports have shown that CO(2) dissolved in xylem sap in tree stems can move upward in the transpiration stream. To determine the fate of this dissolved CO(2), the internal transport of respired CO(2) at high concentration from the bole of the tree was simulated by allowing detached young branches of sycamore (Platanus occidentalis L.) to transpire water enriched with a known quantity of (13)CO(2) in sunlight. Simultaneously, leaf net photosynthesis and CO(2) efflux from woody tissue were measured. Branch and leaf tissues were subsequently analysed for (13)C content to determine the quantity of transported (13)CO(2) label that was fixed. Treatment branches assimilated an average of 35% (SE=2.4) of the (13)CO(2) label taken up in the treatment water. The majority was fixed in the woody tissue of the branches, with smaller amounts fixed in the leaves and petioles. Overall, the fixation of internally transported (13)CO(2) label by woody tissues averaged 6% of the assimilation of CO(2) from the atmosphere by the leaves. Woody tissue assimilation rates calculated from measurements of (13)C differed from rates calculated from measurements of CO(2) efflux in the lower branch but not in the upper branch. The results of this study showed unequivocally that CO(2) transported in xylem sap can be fixed in photosynthetic cells in the leaves and branches of sycamore trees and provided evidence that recycling of xylem-transported CO(2) may be an important means by which trees reduce the carbon cost of respiration.

  10. 13C-labeled oligosaccharides in breastfed infants' urine: individual-, structure- and time-dependent differences in the excretion.

    PubMed

    Dotz, Viktoria; Rudloff, Silvia; Blank, Dennis; Lochnit, Günter; Geyer, Rudolf; Kunz, Clemens

    2014-02-01

    Human milk oligosaccharides (HMOs) have been paid much attention due to their beneficial effects observed in vitro, e.g., prebiotic, anti-infective and anti-inflammatory properties. However, in vivo investigations with regard to HMO metabolism and functions are rare. The few data available indicate that HMOs are absorbed to a low extent and excreted via urine without noteworthy modifications, whereas the major proportion reaches infant's colon undigested. Via intrinsic (13)C-labeling of HMOs during their biosynthesis in the mammary gland of 10 lactating women, we were able to follow the fate of (13)C-labeled oligosaccharides (OSs) from their secretion in milk to the excretion in the urine of their breastfed infants. To a certain extent, we could therefore discriminate between original HMOs and non-labeled OSs derived from degradation of HMOs or endogenous glycoconjugates. By means of our novel, rapid, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based approach, we found a homogeneous time pattern of isotopomer enrichment in milk among all subjects and between single OS species. In contrast, the time curves from infants' urine varied strongly between individuals and OS species, though the overall MALDI-TOF MS profile resembled those of the mothers' milk. Our data suggest that neutral HMOs might be processed and/or utilized differentially after or upon absorption from the gut, as deduced from their structure-dependent variation in the extent of tracer enrichment and in the retention times in infant's organism. This sheds new light on the role of HMOs within infant's body, beyond the intestine and its microbiota alone.

  11. Multi-Isotope Secondary Ion Mass Spectrometry Combining Heavy Water 2H with 15N Labeling As Complementary Tracers for Metabolic Heterogeneity at the Single-Cell Level

    NASA Astrophysics Data System (ADS)

    Kopf, S.; McGlynn, S.; Cowley, E.; Green, A.; Newman, D. K.; Orphan, V. J.

    2014-12-01

    measurements of 2H/1H, 13C/12C and 15N/14N and apply it to study of microbial metabolic heterogeneity and nitrogen metabolism in a continuous culture case study. Our data provide insight into both the diversity of microbial activity rates, as well as patterns of ammonium utilization at the single cell level.

  12. (1)H, (13)C, and (15)N backbone resonance assignments of the full-length 40 kDa S. acidocaldarius Y-family DNA polymerase, dinB homolog.

    PubMed

    Moro, Sean L; Cocco, Melanie J

    2015-10-01

    The dinB homolog (Dbh) is a member of the Y-family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Lesioned bases block the progression of high-fidelity polymerases and cause detrimental replication fork stalling; Y-family polymerases can bypass these lesions. The active site of the translesion synthesis polymerase is more open than that of a replicative polymerase; consequently Dbh polymerizes with low fidelity. Bypass polymerases also have low processivity. Short extension past the lesion allows the high-fidelity polymerase to switch back onto the site of replication. Dbh and the other Y-family polymerases have been used as structural models to investigate the mechanisms of DNA polymerization and lesion bypass. Many high-resolution crystal structures of Y-family polymerases have been reported. NMR dynamics studies can complement these structures by providing a measure of protein motions. Here we report the (15)N, (1)H, and (13)C backbone resonance assignments at two temperatures (35 and 50 °C) for Sulfolobus acidocaldarius Dbh polymerase. Backbone resonance assignments have been obtained for 86 % of the residues. The polymerase active site is assigned as well as the majority of residues in each of the four domains. PMID:26154586

  13. Notes on the origin of copromacrinite based on nitrogen functionalities and δ13C and δ15N determined on samples from the Peach Orchard coal bed, southern Magoffin County, Kentucky

    USGS Publications Warehouse

    Valentim, Bruno; Algarra, Manuel; Guedes, Alexandra; Ruppert, Leslie F.; Hower, James C.

    2016-01-01

    The study of Peach Orchard coal samples using reflected-light microscopy, isotopic composition, and nitrogen-forms analyses revealed that the macrinite-rich sample contains macrinite with coprolitic features (e.g. oxidation rind, mix of undigested palynomorphs, frequent and randomly located funginite, agglutination pulp of semifusinite reflectance, internal lack of bedding fabric, and suggestion of structures resulting from intestines and stomach walls), more pyrrolic-N (~ 16%), and lower δ13C (~ 2‰ VPDB) and δ15N (~ 4‰ Air) values than the vitrinite and semifusinite + fusinite rich samples. These findings suggest that the maceral macrinite has multiple origins based on petrography and measurable chemical differences between the macrinite, vitrinite, and semifusinite + fusinite fractions within the coal. Assuming that copromacrinite observed is an excretion then the anomalies observed may result from the symbiotic relations between the macrofauna (e.g. cockroaches) and microbiota during the digestive processes, and the nitrogen balance mechanisms inside macrofauna body.

  14. Tracking atmospheric sulphur pollution from the study of Racomitrium lanuginosum mosses in Iceland: A multi-isotope approach (δ34S, 206Pb/204Pb, δ13C and δ15N)

    NASA Astrophysics Data System (ADS)

    Proust, E.; Widory, D.; Gautason, B.; Rogers, K.; Morrison, J.

    2010-12-01

    Among terrestrial plants, the applicability of mosses as monitoring organisms of atmospheric pollutants is a world-wide accepted technique due to their special biological and morphologic characteristics as nonvascular plants. They are commonly regarded as the best bioindicators of air quality because they can accumulate sulphur (S) and other elements to a far greater level than is necessary for their physiological needs. This study aims at using different isotope systematics δ34S, 206Pb/204Pb, δ13C and δ15N) to help understand the origin of S in the atmophsere of Reykjavik and its vicinity, and especially the potential contribution of surrounding geothermal plants. The selected Icelandic woolly fringe moss (Racomitrium lanuginosum (Hedw.) Brid.) is extremely common in lava fields and gravely and stony areas. Samples were taken in four distinct sampling sites around the city of Reykjavik: Bláfjöll area (south-eastern suburb of the city), and close to three power plants: Hellisheioarvirkjun (northern suburb of the city), Svartsengi (south-western suburb of the city) and Nesjavellir (north-eastern suburb of the city). Results show that, whatever the sampling context is, S is controlled by a binary mixing, between i) a high δ34S (around 16‰) end-member, characteristic of mosses from Hellisheioarvirkjun, and ii) a low δ34S (around -2‰) end-member, characteristic of mosses from Nesjavellir. The multi-isotope approach, confirms this binary relation and helps to constrain the different end-members involved.

  15. Quantitative analysis of 15N labeled positional isomers of glutamine and citrulline via electrospray ionization tandem mass spectrometry of their dansyl derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enteral metabolism of glutamine and citrulline are intertwined because, while glutamine is one of the main fuel sources for the enterocyte, citrulline is one of its products. It has been shown that the administration of 15N labeled glutamine results in the incorporation of the 15N label into cit...

  16. Physiological responses of a young Picea Sitchensis stand to long-term nitrogen and sulphur deposition: a lesson from d13C, d18O and d15N in tree rings

    NASA Astrophysics Data System (ADS)

    Guerrieri, Rossella; Mencuccini, Maurizio; Borghetti, Marco; Levy, Peter; Perks, Mike; Saurer, Matthias; Sheppard, Lucy; Sutton, Mark

    2010-05-01

    deposition on tree physiological traits were investigated in a young Picea Sitchensis (Bong.) Carr. plantation on an acid peat soil (Deepsyke forest, Scotland, UK). The Deepsyke experiment is unique in providing the opportunity to evaluate the long-term effects of frequent aerial N and S spraying onto a forest canopy for a period of 5 to 8 years. The adopted approach was based on the measurements of stable carbon (d13C), oxygen (d18O) and nitrogen (d15N) isotope composition in tree rings. We used d13C for assessing changes in WUEi, while the degree of photosynthetic and stomatal responses to the different treatments were investigated using a conceptual model, combining variations of d13C and d18O. The differences between canopy vs. soil N applications were evaluated as magnitude of changes in WUEi and underlying mechanisms involved. Furthermore, physiological responses were also assessed in relation to leaf nutrient status. Finally, changes in tree internal N cycle in relation to canopy nitrogen uptake and the relative contribution to variation of WUEi were detected by d15N in tree rings.

  17. Investigations of enzymatic alterations of 2,4-dichlorophenol using {sup 13}C-nuclear magnetic resonance in combination with site-specific {sup 13}C-labeling: Understanding the environmental fate of this pollutant

    SciTech Connect

    Nanny, M.A.; Bortiatynski, J.M.; Tien, M.; Hatcher, P.G.

    1996-11-01

    The biodegradation of {sup 13}C-labeled 2,4-dichlorophenol (DCP labeled at the C-2 and C-6 positions), in the presence and absence of natural organic matter (NOM), by the white-rot fungus Phanerochaete chrysosporium, was examined using {sup 13}C-nuclear magnetic resonance (NMR). Using this method permitted the chemistry occurring at or near the labeled site to be followed. The formation of alkyl ethers and alkene ethers was observed. No aromatic by-products were detected, indicating that aromatic compounds are quickly degraded. Examining the reaction with time shows the exponential removal of 2,4-DCP and the consequential formation of labeled by-products, whose concentration reaches a maximum just before all 2,4-DCP is consumed. After this, the by-products degrade exponentially. The presence of NOM causes 2,4-DCP to be removed from the aqueous phase more quickly than in its absence and also causes the by-products to reach their maximum concentration much earlier. Degradation of the by-products occurs at a much greater rate in the presence of NOM. One hypothesis for this behavior is that the NOM interacts with 2,4-DCP and its by-products, allowing them to be incorporated into the fungal biomass. {sup 13}C-nuclear magnetic resonance spectra of the fungal biomass after NaOH extraction show the presence of alkanes and a small amount of 2,4-DCP.

  18. Delayed labelling of brain glutamate after an intra-arterial [13C]glucose bolus: evidence for aerobic metabolism of guinea pig brain glycogen store.

    PubMed

    Griffin, J L; Rae, C; Radda, G K; Matthews, P M

    1999-07-01

    Glycogen in glial cells is the largest store of glucose equivalents in the brain. Here we describe evidence that brain glycogen contributes to aerobic energy metabolism of the guinea pig brain in vivo. Five min after an intra-arterial bolus injection of d-[U-14C]glucose, 28+/-11% of the radioactivity in brain tissue was associated with the glycogen fraction, indicating that a significant proportion of labelled glucose taken up by the brain is converted to glycogen shortly after bolus infusion. Incorporation of 13C-label into lactate generated by brains made ischaemic after d-[1-13C]glucose injection confirms that these glucose equivalents can be mobilised for anaerobic glucose metabolism. Aerobic metabolism was monitored by following the time course of 13C-incorporation into glutamate in guinea pig cortex and cerebellum in vivo. After an intra-arterial bolus injection of d-[1-13C]glucose, glutamate labelling reached a maximum 40-60 min after injection, suggesting that a slowly metabolised pool of labelled glucose equivalents was present. As the concentration of 13C-labelled glucose in blood was shown to decrease below detectable levels within 5 min of bolus injection, this late phase of glutamate labelling must occur with mobilisation of a brain storage pool of labelled glucose equivalents. We interpret this as evidence that glucose equivalents in glycogen may contribute to energy metabolism in the aerobic guinea pig brain.

  19. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    PubMed

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency. PMID:26982183

  20. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies

    PubMed Central

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency. PMID:26982183

  1. 13C-TRIPLY Labeled Ethyl Cyanide Submillimeterwave Study with Lille's Fast Scan Dds-Based Spectrometer

    NASA Astrophysics Data System (ADS)

    Pienkina, A.; Motiyenko, R. A.; Margulès, L.; Müller, Holger S. P.; Guillemin, J.-C.

    2016-06-01

    This study of the 13C-triply labeled species of ethyl cyanide (CH_3CH_2CN) follows our recent work on the three 13C-doubly-labeled that allowed their detection in the line survey recently obtained with ALMA (EMoCA). The detection of isotopologues could improve the knowledge of the astrochemistry. The other goal is to clean the surveys from the lines of known molecules in order to detect new ones, this is especially important for the abundant complex organic molecules like ethyl cyanide. As in the case of the doubly substitued species, no spectroscopic studies exist up to now for 13CH_313CH_213CN, the first predictions were thus obtained from scaled ab initio calculations. The spectra were recorded and analyzed up to 1 THz. More than 5500 lines were fitted with quantum numbers J and K_a up to 95 and 25 respectively. The spectra were obtained with the new version of the Lille's solid state spectrometers. This new version used Direct Digital Synthesizer in order to speed up acquisition time. We constructed a spectrometer covering a decade, from 150 to 1500 GHz, it scans the full range in 24 hours with high sensitivity and accuracy. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under ANR-13-BS05-0008-02 IMOLABS Margules, L.; et al. 2015, 69th International Symposium on Molecular Spectroscopy, RI06 Belloche, A.; et al. 2014, Science, 345, 1584

  2. Glycation Isotopic Labeling with 13C-Reducing Sugars for Quantitative Analysis of Glycated Proteins in Human Plasma*

    PubMed Central

    Priego-Capote, Feliciano; Scherl, Alexander; Müller, Markus; Waridel, Patrice; Lisacek, Frédérique; Sanchez, Jean-Charles

    2010-01-01

    Non-enzymatic glycation of proteins is a post-translational modification produced by a reaction between reducing sugars and amino groups located in lysine and arginine residues or in the N-terminal position. This modification plays a relevant role in medicine and food industry. In the clinical field, this undesired role is directly linked to blood glucose concentration and therefore to pathological conditions derived from hyperglycemia (>11 mm glucose) such as diabetes mellitus or renal failure. An approach for qualitative and quantitative analysis of glycated proteins is here proposed to achieve the three information levels for their complete characterization. These are: 1) identification of glycated proteins, 2) elucidation of sugar attachment sites, and 3) quantitative analysis to compare glycemic states. Qualitative analysis was carried out by tandem mass spectrometry after endoproteinase Glu-C digestion and boronate affinity chromatography for isolation of glycated peptides. For this purpose, two MS operational modes were used: higher energy collisional dissociation-MS2 and CID-MS3 by neutral loss scan monitoring of two selective neutral losses (162.05 and 84.04 Da for the glucose cleavage and an intermediate rearrangement of the glucose moiety). On the other hand, quantitative analysis was based on labeling of proteins with [13C6]glucose incubation to evaluate the native glycated proteins labeled with [12C6]glucose. As glycation is chemoselective, it is exclusively occurring in potential targets for in vivo modifications. This approach, named glycation isotopic labeling, enabled differentiation of glycated peptides labeled with both isotopic forms resulting from enzymatic digestion by mass spectrometry (6-Da mass shift/glycation site). The strategy was then applied to a reference plasma sample, revealing the detection of 50 glycated proteins and 161 sugar attachment positions with identification of preferential glycation sites for each protein. A predictive

  3. Synthesis of aromatic (13)C/(2)H-α-ketoacid precursors to be used in selective phenylalanine and tyrosine protein labelling.

    PubMed

    Lichtenecker, R J

    2014-10-14

    Recent progress in protein NMR spectroscopy revealed aromatic residues to be valuable information sources for performing structure and motion analysis of high molecular weight proteins. However, the applied NMR experiments require tailored isotope labelling patterns in order to regulate spin-relaxation pathways and optimize magnetization transfer. We introduced a methodology to use α-ketoacids as metabolic amino acid precursors in cell-based overexpression of phenylalanine and/or tyrosine labelled proteins in a recent publication, which we have now developed further by providing synthetic routes to access the corresponding side-chain labelled precursors. The target compounds allow for selective introduction of (13)C-(1)H spin systems in a highly deuterated chemical environment and feature alternating (12)C-(13)C-(12)C ring-patterns. The resulting isotope distribution is especially suited to render straightforward (13)C spin relaxation experiments possible, which provide insight into the dynamic properties of the corresponding labelled proteins.

  4. Study of conformations and hydrogen bonds in the configurational isomers of pyrrole-2-carbaldehyde oxime by 1H, 13C and 15N NMR spectroscopy combined with MP2 and DFT calculations and NBO analysis.

    PubMed

    Afonin, Andrei V; Ushakov, Igor A; Pavlov, Dmitry V; Ivanov, Andrei V; Mikhaleva, Al'bina I

    2010-09-01

    The (1)H, (13)C and (15)N NMR studies have shown that the E and Z isomers of pyrrole-2-carbaldehyde oxime adopt preferable conformation with the syn orientation of the oxime group with respect to the pyrrole ring. The syn conformation of E and Z isomers of pyrrole-2-carbaldehyde oxime is stabilized by the N-H...N and N-H...O intramolecular hydrogen bonds, respectively. The N-H...N hydrogen bond in the E isomer causes the high-frequency shift of the bridge proton signal by about 1 ppm and increase the (1)J(N, H) coupling by approximately 3 Hz. The bridge proton shows further deshielding and higher increase of the (1)J(N, H) coupling constant due to the strengthening of the N-H...O hydrogen bond in the Z isomer. The MP2 calculations indicate that the syn conformation of E and Z isomers is by approximately 3.5 kcal/mol energetically less favorable than the anti conformation. The calculations of (1)H shielding and (1)J(N, H) coupling in the syn and anti conformations allow the contribution to these constants from the N-H...N and N-H...O hydrogen bondings to be estimated. The NBO analysis suggests that the N-H...N hydrogen bond in the E isomer is a pure electrostatic interaction while the charge transfer from the oxygen lone pair to the antibonding orbital of the N-H bond through the N-H...O hydrogen bond occurs in the Z isomer. PMID:20623827

  5. (1)H(N), (13)C, and (15)N resonance assignments of the CDTb-interacting domain (CDTaBID) from the Clostridium difficile binary toxin catalytic component (CDTa, residues 1-221).

    PubMed

    Roth, Braden M; Varney, Kristen M; Rustandi, Richard R; Weber, David J

    2016-10-01

    Once considered a relatively harmless bacterium, Clostridium difficile has become a major concern for healthcare facilities, now the most commonly reported hospital-acquired pathogen. C. difficile infection (CDI) is usually contracted when the normal gut microbiome is compromised by antibiotic therapy, allowing the opportunistic pathogen to grow and produce its toxins. The severity of infection ranges from watery diarrhea and abdominal cramping to pseudomembranous colitis, sepsis, or death. The past decade has seen a marked increase in the frequency and severity of CDI among industrialized nations owing directly to the emergence of a highly virulent C. difficile strain, NAP1. Along with the large Clostridial toxins expressed by non-epidemic strains, C. difficile NAP1 produces a binary toxin, C. difficile transferase (CDT). As the name suggests, CDT is a two-component toxin comprised of an ADP-ribosyltransferase (ART) component (CDTa) and a cell-binding/translocation component (CDTb) that function to destabilize the host cytoskeleton by covalent modification of actin monomers. Central to the mechanism of binary toxin-induced pathogenicity is the formation of CDTa/CDTb complexes at the cell surface. From the perspective of CDTa, this interaction is mediated by the N-terminal domain (residues 1-215) and is spatially and functionally independent of ART activity, which is located in the C-terminal domain (residues 216-420). Here we report the (1)H(N), (13)C, and (15)N backbone resonance assignments of a 221 amino acid, ~26 kDa N-terminal CDTb-interacting domain (CDTaBID) construct by heteronuclear NMR spectroscopy. These NMR assignments represent the first component coordination domain for a family of Clostridium or Bacillus species harboring ART activity. Our assignments lay the foundation for detailed solution state characterization of structure-function relationships, toxin complex formation, and NMR-based drug discovery efforts.

  6. Trophic ecology of European sardine Sardina pilchardus and European anchovy Engraulis encrasicolus in the Bay of Biscay (north-east Atlantic) inferred from δ13C and δ15N values of fish and identified mesozooplanktonic organisms

    NASA Astrophysics Data System (ADS)

    Chouvelon, T.; Chappuis, A.; Bustamante, P.; Lefebvre, S.; Mornet, F.; Guillou, G.; Violamer, L.; Dupuy, C.

    2014-01-01

    European sardine (Sardina pilchardus) and European anchovy (Engraulis encrasicolus) are two species of economical and ecological significance in the Bay of Biscay (north-east Atlantic). However, the trophic ecology of both species is still poorly known in the area, and more generally, few studies have considered the potential trophic overlap between sardines and anchovies worldwide. This study aims to highlight the trophic links between the mesozooplankton and adults of these two pelagic fish in the Bay of Biscay, through carbon and nitrogen stable isotope analysis (SIA). Mesozooplankton and individuals of sardines and anchovies were collected during one season (spring 2010), over spatially contrasted stations within the study area. First, the potential effect of preservation (ethanol vs. freezing) and of delipidation (by cyclohexane) on mesozooplankton δ13C and δ15N values was assessed. Results demonstrated the necessity to correct for the preservation effect and for lipid contents in mesozooplankton for further analyses of sardines' and anchovies' diet through SIA. Next, this study highlighted the interest of working on identified mesozooplanktonic organisms instead of undetermined assemblages when unravelling food sources of planktivorous fish using stable isotopes. The inter-specific variability of isotope values within a planktonic assemblage was effectively high, probably depending on the various feeding behaviours that can occur among mesozooplankton species. Intra-specific variability was also significant and related to the spatial variations of baseline signatures in the area. To investigate the foraging areas and potential diet overlap of S. pilchardus and E. encrasicolus, mixing models (SIAR) were applied. Both fish species appeared to feed mainly in the neritic waters of the Bay of Biscay in spring and to select mainly small- to medium-sized copepods (e.g. Acartia sp., Temora sp.). However, E. encrasicolus showed a greater trophic plasticity by

  7. Sediment features, macrozoobenthic assemblages and trophic relationships (delta13C and delta15N analysis) following a dystrophic event with anoxia and sulphide development in the Santa Giusta lagoon (western Sardinia, Italy).

    PubMed

    Magni, P; Rajagopal, S; van der Velde, G; Fenzi, G; Kassenberg, J; Vizzini, S; Mazzola, A; Giordani, G

    2008-01-01

    Macrozoobenthic assemblages and stable carbon (delta(13)C) and nitrogen (delta(15)N) isotope values of various primary producers (macroalgae and angiosperms) and consumers (macroinvertebrate filter/suspension feeders, deposit feeders, detritivores/omnivores and carnivores and fishes) were studied in the Santa Giusta lagoon (Sardinia, Italy) before (spring) and after (autumn) a dystrophic event which occurred in the summer of 2004. A few days after the dystrophy, the physico-chemical characteristics of sediments and macrozoobenthic assemblages were also investigated. In the latter occasion, high total organic carbon (3.9%) and organic matter (15.9%) contents of surface sediments went together with peaks in acid-volatile sulphide concentrations. Certain immediate effects were quite extreme, such as the drastic reduction in macrozoobenthos and the massive fish kill in August 2004. Among the macrozoobenthos, there were few individuals of chironomid larvae and Capitella cf. capitata left. However, by October, chironomid larvae were numerous, indicating a lack of predators (e.g. fish) and competitors. In addition, some bivalve species and polychaetes which were absent, or present in small numbers before the event, became relatively numerous. The results are discussed based on a knowledge of the sulphide tolerance of these species. Stable isotope analysis clearly showed that the basal level of the food web for most consumers consisted mainly of macroalgae and sedimentary organic matter, and that the values before and after the dystrophic event were not significantly different from one another. This indicates that the relations among different trophic levels were quickly restored following the dystrophic event.

  8. Non-homogeneity of isotopic labelling in 15N gas flux studies: theory, some observations and possible lessons

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Deppe, Marianna; Eschenbach, Wolfram; Gattinger, Andreas; Giesemann, Anette; Krause, Hans-Martin; Lewicka-Szczebak, Dominika

    2015-04-01

    Quantifying dinitrogen (N2) and nitrous oxide (N2O) fluxes from different soil N pools and processes can be accomplished using the 15N tracer technique but this is subject to four different sources of bias (i. - iv.). This approach includes 15N labelling of selected N pools in soil and subsequent isotope analysis of all relevant N pools as well as of gas samples from enclosures, i.e. mixtures of soil-derived and atmospheric N2 and N2O. Depending on the processes of interest, there may be 15N labelling of one or several N pools, were several labelling treatment are needed in the latter case (e.g. Müller et al., 2004). Measuring pool-derived N2 or N2O has been shown to include two calculation problems, (i.) arising from multiple pools (e.g. Arah, 1992) and (ii.) dealing with the non-random distribution of N2 and N2O mole masses (Hauck et al., 1958). Non-randomness can be solved if m/z 28, 29 and 30 are correctly analysed and the 15N enrichment of one (to distinguish two pools, i.e. soil and atmosphere) or two pools (in case of three pools) is known (Spott & Stange, 2008). Moreover (iii.), NO3- pools generating N2 and N2O via denitrification can be identical or different, e.g. if N2O evolved from higher enriched NO3- in deeper soil was more reduced to N2 compared to N2O evolved from N2O from shallow soil with lower enrichment, or vice versa. Apportioning N2O fluxes to NH4+ (nitrification and/or nitrifier denitrification) and NO3- (denitrification) is often conducted by NO3-labeling, measuring δ15N of emitted N2O and applying mixing equations were the measured 15N enrichment of NH4+and NO3-pool is used. However, this assumes that the average 15N enrichment of NH4+and NO3-in the soil is identical to the enrichment in the active soil domain producing N2 and/or N2O. Violation of this precondition must lead to bias in source apportionment (iv.), but to our knowledge this has not been investigated until now. Here we present conceptual models and model calculations

  9. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using (13)C-labeled glucose.

    PubMed

    Christiansen, Torben; Christensen, Bjarke; Nielsen, Jens

    2002-04-01

    Using (13)C-labeled glucose fed to the facultative alkalophilic Bacillus clausii producing the alkaline serine protease Savinase, the intracellular fluxes were quantified in continuous cultivation and in batch cultivation on a minimal medium. The flux through the pentose phosphate pathway was found to increase with increasing specific growth rate but at a much lower level than previously reported for Bacillus subtilis. Two futile cycles in the pyruvate metabolism were included in the metabolic network. A substantial flux in the futile cycle involving malic enzyme was estimated, whereas only a very small or zero flux through PEP carboxykinase was estimated, indicating that the latter enzyme was not active during growth on glucose. The uptake of the amino acids in a semirich medium containing 15 of the 20 amino acids normally present in proteins was estimated using fully labeled glucose in batch cultivations. It was found that leucine, isoleucine, and phenylalanine were taken up from the medium and not synthesized de novo from glucose. In contrast, serine and threonine were completely synthesized from other metabolites and not taken up from the medium. Valine, proline, and lysine were partly taken up from the medium and partly synthesized from glucose. The metabolic network analysis was extended to include analysis of growth on the semirich medium containing amino acids, and the metabolic flux distribution on this medium was estimated and compared with growth on minimal medium. PMID:12009795

  10. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    PubMed

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments. PMID:27074782

  11. A 13C labelling study on carbon fluxes in Arctic plankton communities under elevated CO2 levels

    NASA Astrophysics Data System (ADS)

    de Kluijver, A.; Soetaert, K.; Czerny, J.; Schulz, K. G.; Boxhammer, T.; Riebesell, U.; Middelburg, J. J.

    2013-03-01

    The effect of CO2 on carbon fluxes (production, consumption, and export) in Arctic plankton communities was investigated during the 2010 EPOCA (European project on Ocean Acidification) mesocosm study off Ny Ålesund, Svalbard. 13C labelled bicarbonate was added to nine mesocosms with a range in pCO2 (185 to 1420 μatm) to follow the transfer of carbon from dissolved inorganic carbon (DIC) into phytoplankton, bacterial and zooplankton consumers, and export. A nutrient-phytoplankton-zooplankton-detritus model amended with 13C dynamics was constructed and fitted to the data to quantify uptake rates and carbon fluxes in the plankton community. The plankton community structure was characteristic for a post-bloom situation and retention food web and showed high bacterial production (∼31% of primary production), high abundance of mixotrophic phytoplankton, low mesozooplankton grazing (∼6% of primary production) and low export (∼7% of primary production). Zooplankton grazing and export of detritus were sensitive to CO2: grazing decreased and export increased with increasing pCO2. Nutrient addition halfway through the experiment increased the export, but not the production rates. Although mixotrophs showed initially higher production rates with increasing CO2, the overall production of POC (particulate organic carbon) after nutrient addition decreased with increasing CO2. Interestingly, and contrary to the low nutrient situation, much more material settled down in the sediment traps at low CO2. The observed CO2 related effects potentially alter future organic carbon flows and export, with possible consequences for the efficiency of the biological pump.

  12. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    PubMed

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments.

  13. Application of 13C isotope labeling using liquid chromatography mass spectrometry (LC-MS) to determining phosphate-containing metabolic incorporation

    PubMed Central

    Bhowmik, Salil Kumar; Putluri, Vasanta; Kommagani, Ramakrishna; Konde, Sai Aparna; Lydon, John P.; Sreekumar, Arun; Putluri, Nagireddy

    2016-01-01

    Here, we describe an approach wherein negative electrospray ionization mass spectrometry has used to understand the relative flux through phosphate containing metabolic intermediates associated with central carbon metabolism after administering cells with 13C-labeled substrates. The method was applied to examine the 13C incorporation through glycolysis in T47D breast cancer cells and showed reduction of glycolytic relative flux upon treatment with 2-Deoxyglucose. PMID:24338880

  14. Sequential backbone assignment of uniformly 13C-labeled RNAs by a two-dimensional P(CC)H-TOCSY triple resonance NMR experiment.

    PubMed

    Wijmenga, S S; Heus, H A; Leeuw, H A; Hoppe, H; van der Graaf, M; Hilbers, C W

    1995-01-01

    A new 1H-13C-31P triple resonance experiment is described which allows unambiguous sequential backbone assignment in 13C-labeled oligonucleotides via through-bond coherence transfer from 31P via 13C to 1H. The approach employs INEPT to transfer coherence from 31P to 13C and homonuclear TOCSY to transfer the 13C coherence through the ribose ring, followed by 13C to 1H J-cross-polarisation. The efficiencies of the various possible transfer pathways are discussed. The most efficient route involves transfer of 31Pi coherence via C4'i and C4'i-1, because of the relatively large JPC4' couplings involved. Via the homonuclear and heteronuclear mixing periods, the C4'i and C4'i-1 coherences are subsequently transferred to, amongst others, H1'i and H1'i-1, respectively, leading to a 2D 1H-31P spectrum which allows a sequential assignment in the 31P-1H1' region of the spectrum, i.e. in the region where the proton resonances overlap least. The experiment is demonstrated on a 13C-labeled RNA hairpin with the sequence 5'(GGGC-CAAA-GCCU)3'.

  15. A method for (13)C-labeling of metabolic carbohydrates within French bean leaves (Phaseolus vulgaris L.) for decomposition studies in soils.

    PubMed

    Girardin, Cyril; Rasse, Daniel P; Biron, Philippe; Ghashghaie, Jaleh; Chenu, Claire

    2009-06-01

    The molecular composition of plant residues is suspected to largely govern the fate of their constitutive carbon (C) in soils. Labile compounds, such as metabolic carbohydrates, are affected differently from recalcitrant and structural compounds by soil-C stabilisation mechanisms. Producing (13)C-enriched plant residues with specifically labeled fractions would help us to investigate the fate in soils of the constitutive C of these compounds. The objective of the present research was to test (13)C pulse chase labeling as a method for specifically enriching the metabolic carbohydrate components of plant residues, i.e. soluble sugars and starch. Bean plants were exposed to a (13)CO(2)-enriched atmosphere for 0.5, 1, 2, 3 and 21 h. The major soluble sugars were then determined on water-soluble extracts, and starch on HCl-hydrolysable extracts. The results show a quick differential labeling between water-soluble and water-insoluble compounds. For both groups, (13)C-labeling increased linearly with time. The difference in delta(13)C signature between water-soluble and insoluble fractions was 7 per thousand after 0.5 h and 70 per thousand after 21 h. However, this clear isotopic contrast masked a substantial labeling variability within each fraction. By contrast, metabolic carbohydrates on the one hand (i.e. soluble sugars + starch) and other fractions (essentially cell wall components) on the other hand displayed quite homogeneous signatures within fractions, and a significant difference in labeling between fractions: delta(13)C = 414 +/- 3.7 per thousand and 56 +/- 5.5 per thousand, respectively. Thus, the technique generates labeled plant residues displaying contrasting (13)C-isotopic signatures between metabolic carbohydrates and other compounds, with homogenous signatures within each group. Metabolic carbohydrates being labile compounds, our findings suggest that the technique is particularly appropriate for investigating the effect of compound lability on the long

  16. Mapping membrane protein backbone dynamics: a comparison of site-directed spin labeling with NMR 15N-relaxation measurements.

    PubMed

    Lo, Ryan H; Kroncke, Brett M; Solomon, Tsega L; Columbus, Linda

    2014-10-01

    The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the sensitivity to backbone motions. To determine whether membrane protein backbone dynamics could be mapped with SDSL, a nitroxide was introduced at 55 independent sites in a model polytopic membrane protein, TM0026. Electron paramagnetic resonance spectral parameters were compared with NMR (15)N-relaxation data. Sequential scans revealed backbone dynamics with the same trends observed for the R1 relaxation rate, suggesting that nitroxide dynamics remain coupled to the backbone on membrane proteins.

  17. Measuring and modeling C flux rates through the central metabolic pathways in microbial communities using position-specific 13C-labeled tracers

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; van Groenigen, K.; Hagerty, S.; Salpas, E.; Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.

    2012-12-01

    The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We use position-specific 13C-labeled metabolic tracers, combined with models of microbial metabolic organization, to analyze the response of microbial community energy production, biosynthesis, and C use efficiency (CUE) in soils, decomposing litter, and aquatic communities. The method consists of adding position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through the various metabolic pathways. A simplified metabolic model consisting of 23 reactions is solved using results of the metabolic tracer experiments and assumptions of microbial precursor demand. This new method enables direct estimation of fundamental aspects of microbial energy production, CUE, and soil organic matter formation in relatively undisturbed microbial communities. We will present results showing the range of metabolic patterns observed in these communities and discuss results from testing metabolic models.

  18. Does the time of the sampling matter in 13C pulse labeling and chasing experiments? A case study on beech seedlings

    NASA Astrophysics Data System (ADS)

    Gavrichkova, Olga; Thoms, Ronny; Muhr, Jan; Karlowsky, Stefan; Keitel, Claudia; Kayler, Zachary; Calfapietra, Carlo; Gessler, Arthur; Brugnoli, Enrico; Gleixner, Gerd

    2016-04-01

    13C pulse labeling and chasing is a valuable and very popular tool for determination of the fate and turnover rates of C in plant-soil systems. Continuous isoflux measurements became an accessible reality allowing to cover completely the diurnal variation in label assimilation and respiration fluxes. Label turnover in multiple pools, especially of those located belowground, is more often assessed instead by isolated day-time samplings. By increasing the sampling frequency of belowground compartments we aimed to catch the short-term diurnal variations in label allocation and to link these processes with label dynamics in the aboveground biomass. For these purposes we labeled 3-m height soil-grown European beech seedlings with 13C enriched CO2 and traced the flow of 13C within belowground plant-soil continuum. Continuous soil isoflux measurements were accompanied by a 3-h-frequency sampling of root and soil material during the first 48 h, followed by a daily sampling in the successive 5 days. The amount of label found in microbial biomass depended partially on the amount of roots in the sample. Microbial biomass C (MBC) and microbial respiration showed very strong correlation, suggesting the possibility to use one as a proxy of the other. MBC enrichment showed a clear diurnal pattern with night-time and early morning peaks. These peaks were similar in shape and shifted by one sampling when compared to root sugars enrichment. Soil respiration showed instead a single bell-shape peak in 13C, likely due to a sequence of peaks of root and microbial origin. 13C flow into soil microbial functional groups was assessed less frequently through phospholipid fatty acid analyses (PLFA). The microorganisms were separated into two distinct groups by the time of the appearance of the label in the single PLFAs. The first group was characterized by a fast appearance of the label and higher enrichment and was composed of Gram negative bacteria and saprotrophic fungi likely living in

  19. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Helmus, Jonathan J.; Nadaud, Philippe S.; Höfer, Nicole; Jaroniec, Christopher P.

    2008-02-01

    We describe three- and four-dimensional semiconstant-time transferred echo double resonance (SCT-TEDOR) magic-angle spinning solid-state nuclear magnetic resonance (NMR) experiments for the simultaneous measurement of multiple long-range N15-Cmethyl13 dipolar couplings in uniformly C13, N15-enriched peptides and proteins with high resolution and sensitivity. The methods take advantage of C13 spin topologies characteristic of the side-chain methyl groups in amino acids alanine, isoleucine, leucine, methionine, threonine, and valine to encode up to three distinct frequencies (N15-Cmethyl13 dipolar coupling, N15 chemical shift, and Cmethyl13 chemical shift) within a single SCT evolution period of initial duration ˜1/JCC1 (where JCC1≈35Hz, is the one-bond Cmethyl13-C13 J-coupling) while concurrently suppressing the modulation of NMR coherences due to C13-C13 and N15-C13 J-couplings and transverse relaxation. The SCT-TEDOR schemes offer several important advantages over previous methods of this type. First, significant (approximately twofold to threefold) gains in experimental sensitivity can be realized for weak N15-Cmethyl13 dipolar couplings (corresponding to structurally interesting, ˜3.5Å or longer, distances) and typical Cmethyl13 transverse relaxation rates. Second, the entire SCT evolution period can be used for Cmethyl13 and/or N15 frequency encoding, leading to increased spectral resolution with minimal additional coherence decay. Third, the experiments are inherently "methyl selective," which results in simplified NMR spectra and obviates the use of frequency-selective pulses or other spectral filtering techniques. Finally, the N15-C13 cross-peak buildup trajectories are purely dipolar in nature (i.e., not influenced by J-couplings or relaxation), which enables the straightforward extraction of N15-Cmethyl13 distances using an analytical model. The SCT-TEDOR experiments are demonstrated on a uniformly C13, N15-labeled peptide, N-acetyl-valine, and a 56

  20. Bioconversion of (13)C-labeled microalgal phytosterols to cholesterol by the Northern Bay scallop, Argopecten irradians irradians.

    PubMed

    Giner, José-Luis; Zhao, Hui; Dixon, Mark S; Wikfors, Gary H

    2016-02-01

    Bivalve mollusks lack de novo cholesterol biosynthesis capabilities and therefore rely upon dietary sources of sterols for rapid growth. Microalgae that constitute the main source of nutrition for suspension-feeding bivalves contain a diverse array of phytosterols, in most cases lacking cholesterol. Rapid growth of bivalves on microalgal diets with no cholesterol implies that some phytosterols can satisfy the dietary requirement for cholesterol through metabolic conversion to cholesterol, but such metabolic pathways have not been rigorously demonstrated. In the present study, stable isotope-labeled phytosterols were used to supplement a unialgal diet of Rhodomonas sp. and their biological transformation to cholesterol within scallop tissues was determined using (13)C-NMR spectroscopy. Scallops efficiently dealkylated ∆(5) C29 (24-ethyl) sterols to cholesterol, and the only C28 sterol that was dealkylated efficiently possessed the 24(28)-double bond. Non-metabolized dietary phytosterols accumulated in the soft tissues. Observed formation of ∆(5,7) sterols (provitamin D) from ∆(5) sterols may represent initiation of steroid hormone (possibly ecdysone) biosynthesis. These findings provide a key component necessary for formulation of nutritionally complete microalgal diets for hatchery production of seed for molluscan aquaculture.

  1. Effective Estimation of Dynamic Metabolic Fluxes Using 13C Labeling and Piecewise Affine Approximation: From Theory to Practical Applicability

    PubMed Central

    Schumacher, Robin; Wahl, S. Aljoscha

    2015-01-01

    The design of microbial production processes relies on rational choices for metabolic engineering of the production host and the process conditions. These require a systematic and quantitative understanding of cellular regulation. Therefore, a novel method for dynamic flux identification using quantitative metabolomics and 13C labeling to identify piecewise-affine (PWA) flux functions has been described recently. Obtaining flux estimates nevertheless still required frequent manual reinitalization to obtain a good reproduction of the experimental data and, moreover, did not optimize on all observables simultaneously (metabolites and isotopomer concentrations). In our contribution we focus on measures to achieve faster and robust dynamic flux estimation which leads to a high dimensional parameter estimation problem. Specifically, we address the following challenges within the PWA problem formulation: (1) Fast selection of sufficient domains for the PWA flux functions, (2) Control of over-fitting in the concentration space using shape-prescriptive modeling and (3) robust and efficient implementation of the parameter estimation using the hybrid implicit filtering algorithm. With the improvements we significantly speed up the convergence by efficiently exploiting that the optimization problem is partly linear. This allows application to larger-scale metabolic networks and demonstrates that the proposed approach is not purely theoretical, but also applicable in practice. PMID:26690237

  2. Determination of nonylphenol ethoxylates and octylphenol ethoxylates in environmental samples using 13C-labeled surrogate compounds.

    PubMed

    Yoshida, Yasuko; Ito, Azusa; Murakami, Masashi; Murakami, Takayuki; Fujimoto, Hideharu; Takeda, Kikuo; Suzuki, Shigeru; Hori, Masahiro

    2007-10-01

    Alkylphenol polyethoxylates (APEOs) have been widely used as nonionic surfactants in a variety of industrial and commercial products. Typical compounds are nonylphenol polyethoxylates (NPEOs) and octylphenol polyethoxylates (OPEOs), which serve as precursors to nonylphenol (NP) and octylphenol (OP), respectively. NP and 4-t-OP are known to have endocrine disrupting effects on fish (medaka, Oryzias latipes), so it is important to know the concentrations of APEOs in the environment. Because the analytical characteristics of these compounds depend on the length of the ethoxy chain, it is necessary to use appropriate compounds as internal standards or surrogates. We synthesized two 13C-labeled surrogate compounds and used these compounds as internal standards to determine NPEOs and OPEOs by high-performance liquid chromatography (LC)-mass spectrometry. Method detection limits were 0.015 microg/L for NP (2)EO to 0.037 microg/L for NP(12)EO, and 0.011 microg/L for OP(3,6)EO to 0.024 microg/L for OP (4)EO. NPEO concentrations in water from a sewage treatment plant were less than 0.05-0.52 microg/L for final effluent and 1.2-15 microg/L for influent. OPEO concentrations were less than 0.05-0.15 microg/L for the final effluent and less than 0.05-1.1 microg/L for influent. PMID:17972761

  3. Millipedes and earthworms increase the decomposition rate of 15N-labelled winter rape litter in an arable field.

    PubMed

    Martens, H; Alphei, J; Schaefer, M; Scheu, S

    2001-01-01

    Effects of millipedes and earthworms on the decomposition of 15N-labelled litter of winter oilseed rape were investigated in a microcosm field experiment over a period of 264 days on an oat field near Göttingen managed by integrated farming. A total of 32 microcosms were filled with defaunated soil. 15N-labelled rape litter was placed either on top of the soil or buried into the soil simulating mulching and ploughing, respectively. To the microcosms nine adult individuals of Blaniulus guttulatus (Diplopoda) and two of Aporrectodea caliginosa (Lumbricidae) were added separately or in combination. In general, the presence of the animals accelerated the decomposition rate of the litter material. The effects were most pronounced in the presence of Aporrectodea caliginosa. The total amount of nitrate, ammonium and the amount of 35N leached from the microcosms was increased in the presence of earthworms or of both earthworms and millipedes. Both species proved to be important members of the detritus food web of the agricultural system studied.

  4. Production, Purification, and Characterization of 15N-Labeled DNA Repair Proteins as Internal Standards for Mass Spectrometric Measurements

    PubMed Central

    Jaruga, Pawel; Nelson, Bryant C.; Lowenthal, Mark S.; Jemth, Ann-Sofie; Loseva, Olga; Coskun, Erdem; Helleday, Thomas

    2016-01-01

    Oxidatively induced DNA damage is caused in living organisms by a variety of damaging agents, resulting in the formation of a multiplicity of lesions, which are mutagenic and cytotoxic. Unless repaired by DNA repair mechanisms before DNA replication, DNA lesions can lead to genomic instability, which is one of the hallmarks of cancer. Oxidatively induced DNA damage is mainly repaired by base excision repair pathway with the involvement of a plethora of proteins. Cancer tissues develop greater DNA repair capacity than normal tissues by overexpressing DNA repair proteins. Increased DNA repair in tumors that removes DNA lesions generated by therapeutic agents before they became toxic is a major mechanism in the development of therapy resistance. Evidence suggests that DNA repair capacity may be a predictive biomarker of patient response. Thus, knowledge of DNA–protein expressions in disease-free and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. Our laboratory has developed methodologies that use mass spectrometry with isotope dilution for the measurement of expression of DNA repair proteins in human tissues and cultured cells. For this purpose, full-length 15N-labeled analogs of a number of human DNA repair proteins have been produced and purified to be used as internal standards for positive identification and accurate quantification. This chapter describes in detail the protocols of this work. The use of 15N-labeled proteins as internal standards for the measurement of several DNA repair proteins in vivo is also presented. PMID:26791985

  5. Lack of 13C-label incorporation suggests low turnover rates of thaumarchaeal intact polar tetraether lipids in sediments from the Iceland Shelf

    NASA Astrophysics Data System (ADS)

    Lengger, S. K.; Lipsewers, Y. A.; de Haas, H.; Sinninghe Damsté, J. S.; Schouten, S.

    2013-08-01

    Thaumarchaeota are amongst the most abundant microorganisms in aquatic environments, however, their metabolism in marine sediments is still debated. Labeling studies in marine sediments have previously been undertaken, but focused on complex organic carbon substrates which Thaumarchaeota have not yet been shown to take up. In this study, we investigated the activity of Thaumarchaeota in sediments by supplying different 13C-labeled substrates which have previously been shown to be incorporated into archaeal cells in water incubations and/or enrichment cultures. We determined the incorporation of 13C-label from bicarbonate, pyruvate, glucose and amino acids into thaumarchaeal intact polar lipid-glycerol dibiphytanyl glycerol tetraethers (IPL-GDGTs) during 4-6 day incubations of marine sediment cores from three different sites on the Iceland Shelf. Thaumarchaeal intact polar lipids were detected at all stations and concentrations remained constant or decreased slightly upon incubation. No 13C incorporation in any IPL-GDGT was observed at stations 2 (clay-rich sediment) and 3 (organic-rich sediment). In bacterial/eukaryotic IPL-derived fatty acids at station 3, contrastingly, a large uptake of 13C label (up to +80‰) was found. 13C was also respired during the experiment as shown by a substantial increase in the 13C content of the dissolved inorganic carbon. In IPL-GDGTs recovered from the sandy sediments at station 1, however, some enrichment in 13C (1-4‰) was detected after incubation with bicarbonate and pyruvate. The low incorporation rates suggest a low activity of Thaumarchaeota in marine sediments and/or a low turnover rate of thaumarchaeal IPL-GDGTs due to their low degradation rates. Cell numbers and activity of sedimentary Thaumarchaeota based on IPL-GDGT measurements may thus have previously been overestimated.

  6. Lack of 13C-label incorporation suggests low turnover rates of thaumarchaeal intact polar tetraether lipids in sediments from the Iceland shelf

    NASA Astrophysics Data System (ADS)

    Lengger, S. K.; Lipsewers, Y. A.; de Haas, H.; Sinninghe Damsté, J. S.; Schouten, S.

    2014-01-01

    Thaumarchaeota are amongst the most abundant microorganisms in aquatic environments, however, their metabolism in marine sediments is still debated. Labeling studies in marine sediments have previously been undertaken, but focused on complex organic carbon substrates which Thaumarchaeota have not yet been shown to take up. In this study, we investigated the activity of Thaumarchaeota in sediments by supplying different 13C-labeled substrates which have previously been shown to be incorporated into archaeal cells in water incubations and/or enrichment cultures. We determined the incorporation of 13C-label from bicarbonate, pyruvate, glucose and amino acids into thaumarchaeal intact polar lipid-glycerol dibiphytanyl glycerol tetraethers (IPL-GDGTs) during 4-6 day incubations of marine sediment cores from three sites on the Iceland shelf. Thaumarchaeal intact polar lipids, in particular crenarchaeol, were detected at all stations and concentrations remained constant or decreased slightly upon incubation. No 13C incorporation in any IPL-GDGT was observed at stations 2 (clay-rich sediment) and 3 (organic-rich sediment). In bacterial/eukaryotic IPL-derived fatty acids at station 3, contrastingly, a large uptake of 13C label (up to + 80‰ ) was found. 13C was also respired during the experiment as shown by a substantial increase in the 13C content of the dissolved inorganic carbon. In IPL-GDGTs recovered from the sandy sediments at station 1, however, some enrichment in δ13C (1-4‰ ) was detected after incubation with bicarbonate and pyruvate. The low incorporation rates suggest a low activity of Thaumarchaeota in marine sediments and/or a low turnover rate of thaumarchaeal IPL-GDGTs due to their low degradation rates. Cell numbers and activity of sedimentary Thaumarchaeota based on IPL-GDGT measurements may thus have previously been overestimated.

  7. Turnover of organic carbon and nitrogen in soil assessed from δ13C and δ15N changes under pasture and cropping practices and estimates of greenhouse gas emissions.

    PubMed

    Dalal, Ram C; Thornton, Craig M; Cowie, Bruce A

    2013-11-01

    The continuing clearance of native vegetation for pasture, and especially cropping, is a concern due to declines in soil organic C (SOC) and N, deteriorating soil health, and adverse environment impact such as increased emissions of major greenhouse gases (CO2, N2O and CH4). There is a need to quantify the rates of SOC and N budget changes, and the impact on greenhouse gas emissions from land use change in semi-arid subtropical regions where such data are scarce, so as to assist in developing appropriate management practices. We quantified the turnover rate of SOC from changes in δ(13)C following the conversion of C3 native vegetation to C4 perennial pasture and mixed C3/C4 cereal cropping (wheat/sorghum), as well as δ(15)N changes following the conversion of legume native vegetation to non-legume systems over 23 years. Perennial pasture (Cenchrus ciliaris cv. Biloela) maintained SOC but lost total N by more than 20% in the top 0-0.3m depth of soil, resulting in reduced animal productivity from the grazed pasture. Annual cropping depleted both SOC and total soil N by 34% and 38%, respectively, and resulted in decreasing cereal crop yields. Most of these losses of SOC and total N occurred from the >250 μm fraction of soil. Moreover, this fraction had almost a magnitude higher turnover rates than the 250-53 μm and <53 μm fractions. Loss of SOC during the cropping period contributed two-orders of magnitude more CO2-e to the atmosphere than the pasture system. Even then, the pasture system is not considered as a benchmark of agricultural sustainability because of its decreasing productivity in this semi-arid subtropical environment. Introduction of legumes (for N2 fixation) into perennial pastures may arrest the productivity decline of this system. Restoration of SOC in the cropped system will require land use change to perennial ecosystems such as legume-grass pastures or native vegetation.

  8. Identification of the magnesium-histidine stretching vibration of the bacteriochlorophyll cofactors in photosynthetic reaction centers via {sup 15}N-labeling of the histidines

    SciTech Connect

    Czarnecki, K.; Bocian, D.F.; Chynwat, V.; Erickson, J.P.; Frank, H.A.

    1997-03-12

    In this communication, we report low-frequency, near-infrared-exciation RR spectra of bacterial RCs in which the histidine residues of the protein are selectively labeled with {sup 15}N. For practical reasons, the studies were conducted by comparing the vibrational signatures of RCs in which {sup 15}N was universally incorporated (all cofactors and all protein residues) (designated all-{sup 15}N RCs) with those in which [{sup 14}N]histidine was introduced as a reverse label (disignated {sup 14}N-His RCs) into the all {sup 15}N-labeled RCs. The studies of the histidine-labeled RCs reveal that the vibrational characteristics of the BChl core are far more complicated than originally anticipated. These results have clear implications for the photoexcitation dynamics of the BChls in RCs and may also have significant consequences for the dynamics of exogenous ligand binding to heme-based oxygen carriers. 12 refs., 2 figs.

  9. Determination of Multimodal Isotopic Distributions: The Case of a (15)N Labeled Protein Produced into Hairy Roots.

    PubMed

    Trouillard, Romain; Hubert-Roux, Marie; Tognetti, Vincent; Guilhaudis, Laure; Plasson, Carole; Menu-Bouaouiche, Laurence; Coquet, Laurent; Guerineau, François; Hardouin, Julie; Ele Ekouna, Jean-Pierre; Cosette, Pascal; Lerouge, Patrice; Boitel-Conti, Michèle; Afonso, Carlos; Ségalas-Milazzo, Isabelle

    2015-06-16

    Isotopic labeling is widely used in various fields like proteomics, metabolomics, fluxomics, as well as in NMR structural studies, but it requires an efficient determination of the isotopic enrichment. Mass spectrometry is the method of choice for such analysis. However, when complex expression systems like hairy roots are used for production, multiple populations of labeled proteins may be obtained. If the isotopic incorporation determination is actually well-known for unimodal distributions, the multimodal distributions have scarcely been investigated. Actually, only a few approaches allow the determination of the different labeled population proportions from multimodal distributions. Furthermore, they cannot be used when the number of the populations and their respective isotope ratios are unknown. The present study implements a new strategy to measure the (15)N labeled populations inside a multimodal distribution knowing only the peptide sequence and peak intensities from mass spectrometry analyses. Noteworthy, it could be applied to other elements, like carbon and hydrogen, and extended to a larger range of biomolecules.

  10. Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle

    PubMed Central

    Thakur, Chandar S.; Sama, Jacob N.; Jackson, Melantha E.; Chen, Bin

    2010-01-01

    Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on 13C-2-glycerol and 13C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR spectroscopy. For DL323 E. coli grown in 13C-2-glycerol without labeled formate, all the ribose carbon atoms are labeled except the C3′ and C5′ carbon positions. Consequently the C1′, C2′ and C4′ positions remain singlet. In addition, only the pyrimidine base C6 atoms are substantially labeled to ~96% whereas the C2 and C8 atoms of purine are labeled to ~5%. Supplementing the growth media with 13C-formate increases th