Science.gov

Sample records for 13c cpmas nmr

  1. Increasing 13C CP-MAS NMR resolution using single crystals: application to model octaethyl porphyrins.

    PubMed

    Dugar, Sneha; Fu, Riqiang; Dalal, Naresh S

    2012-08-02

    Octaethyl porphyrin (OEP) and its Ni and Zn derivatives are considered as model compounds in biochemical, photophysical, and fossil fuel chemistry. They have thus been investigated by high-resolution solid-state (13)C NMR using powders, but peak assignment has been difficult because of large line widths. Arguing that a significant cause of broadening might be the anisotropic bulk magnetic susceptibility, we utilized single crystals in our (13)C cross-polarization magic angle spinning (CP-MAS) measurements and observed a nearly 2-fold line narrowing. This enhanced resolution enabled us to assign chemical shifts to each carbon for all the three compounds. The new assignments are now in agreement with X-ray structural data and allowed us to probe the motional dynamics of the methyl and methylene carbons of the OEP side chains. It is apparent that the use of single crystals in (13)C CP-MAS measurements has a significantly wider impact than previously thought.

  2. Characterization of bright tobaccos by multivariate analysis of 13C CPMAS NMR spectra.

    PubMed

    Wooten, Jan B; Kalengamaliro, Newton E; Axelson, David E

    2009-05-01

    Univariate and multivariate statistics were applied to characterize cured bright tobacco samples on the basis of their 13C CPMAS NMR spectra and leaf constituent analysis. NMR spectra were obtained for 55 samples selected from a set of 134 samples of graded bright tobacco leaves from crop year 1999. Historical leaf constituent analyses were available for total alkaloids, reducing sugars, total nitrogen, and insoluble ash. In addition, we applied HPLC to quantify the two abundant plant polyphenols, chlorogenic acid, and rutin. Principal component analysis (PCA) and partial least squares (PLS) of the NMR spectra revealed systematic relationships between groups of samples related to these substances and afforded predictive quantitative models for the analyzed constituents. Analysis of the PLS significant variables showed that leaf polysaccharides, alkaloids, and minerals are major determinants influencing the grading of cured bright tobacco leaves.

  3. Thermal maturity of type II kerogen from the New Albany Shale assessed by 13C CP/MAS NMR.

    PubMed

    Werner-Zwanziger, Ulrike; Lis, Grzegorz; Mastalerz, Maria; Schimmelmann, Arndt

    2005-01-01

    Thermal maturity of oil and gas source rocks is typically quantified in terms of vitrinite reflectance, which is based on optical properties of terrestrial woody remains. This study evaluates 13C CP/MAS NMR parameters in kerogen (i.e., the insoluble fraction of organic matter in sediments and sedimentary rocks) as proxies for thermal maturity in marine-derived source rocks where terrestrially derived vitrinite is often absent or sparse. In a suite of samples from the New Albany Shale (Middle Devonian to the Early Mississippian, Illinois Basin) the abundance of aromatic carbon in kerogen determined by 13C CP/MAS NMR correlates linearly well with vitrinite reflectance.

  4. 13C CPMAS NMR studies and DFT calculations of triterpene xylosides isolated from Actaea racemosa

    NASA Astrophysics Data System (ADS)

    Jamróz, Marta K.; Paradowska, Katarzyna; Gliński, Jan A.; Wawer, Iwona

    2011-05-01

    13C CPMAS NMR spectra of four triterpene glycosides: cimigenol xyloside ( 1), 26-deoxyactein ( 2), cimicifugoside H-1 ( 3) and 24-acethylhydroshengmanol xyloside ( 4) were recorded and analyzed to characterize their solid-state structure. Experimental data were supported by theoretical calculations of NMR shielding constants with the GIAO/6-31G**-su1 approach. A number of methods for the conformational search and a number of functionals for the DFT calculations were applied to ( 1). The best method was proven to be MMFF or MMFFAQ for the conformational search and the PBE1PBE functional for the DFT calculations. Extra calculations simulating C16 dbnd O⋯HOH hydrogen bond yield the isotropic shielding closer to the experimental solid-state value. For all the compounds CP kinetics parameters were calculated using either the I-S or the I-I*-S model. The analysis of CP kinetics data for methyl groups revealed differences in the T2 time constant for two methyl groups (C29 and C30) linked at C4.

  5. Cigarette Butt Decomposition and Associated Chemical Changes Assessed by 13C CPMAS NMR

    PubMed Central

    Bonanomi, Giuliano; Incerti, Guido; Cesarano, Gaspare; Gaglione, Salvatore A.; Lanzotti, Virginia

    2015-01-01

    Cigarette butts (CBs) are the most common type of litter on earth, with an estimated 4.5 trillion discarded annually. Apart from being unsightly, CBs pose a serious threat to living organisms and ecosystem health when discarded in the environment because they are toxic to microbes, insects, fish and mammals. In spite of the CB toxic hazard, no studies have addressed the effects of environmental conditions on CB decomposition rate. In this study we investigate the interactive effects of substrate fertility and N transfer dynamics on CB decomposition rate and carbon quality changes. We carried out an experiment using smoked CBs and wood sticks, used as a slow decomposing standard organic substrate, incubated in both laboratory and field conditions for two years. CB carbon quality changes during decomposition was assessed by 13C CPMAS NMR. Our experiment confirmed the low degradation rate of CBs which, on average, lost only 37.8% of their initial mass after two years of decomposition. Although a net N transfer occurred from soil to CBs, contrary to our hypothesis, mass loss in the medium-term (two years) was unaffected by N availability in the surrounding substrate. The opposite held for wood sticks, in agreement with the model that N-rich substrates promote the decomposition of other N-poor natural organic materials with a high C/N ratio. As regards CB chemical quality, after two years of decomposition 13C NMR spectroscopy highlighted very small changes in C quality that are likely to reflect a limited microbial attack. PMID:25625643

  6. Cigarette butt decomposition and associated chemical changes assessed by 13C CPMAS NMR.

    PubMed

    Bonanomi, Giuliano; Incerti, Guido; Cesarano, Gaspare; Gaglione, Salvatore A; Lanzotti, Virginia

    2015-01-01

    Cigarette butts (CBs) are the most common type of litter on earth, with an estimated 4.5 trillion discarded annually. Apart from being unsightly, CBs pose a serious threat to living organisms and ecosystem health when discarded in the environment because they are toxic to microbes, insects, fish and mammals. In spite of the CB toxic hazard, no studies have addressed the effects of environmental conditions on CB decomposition rate. In this study we investigate the interactive effects of substrate fertility and N transfer dynamics on CB decomposition rate and carbon quality changes. We carried out an experiment using smoked CBs and wood sticks, used as a slow decomposing standard organic substrate, incubated in both laboratory and field conditions for two years. CB carbon quality changes during decomposition was assessed by 13C CPMAS NMR. Our experiment confirmed the low degradation rate of CBs which, on average, lost only 37.8% of their initial mass after two years of decomposition. Although a net N transfer occurred from soil to CBs, contrary to our hypothesis, mass loss in the medium-term (two years) was unaffected by N availability in the surrounding substrate. The opposite held for wood sticks, in agreement with the model that N-rich substrates promote the decomposition of other N-poor natural organic materials with a high C/N ratio. As regards CB chemical quality, after two years of decomposition 13C NMR spectroscopy highlighted very small changes in C quality that are likely to reflect a limited microbial attack.

  7. 13C CP/MAS NMR studies of vitamin E model compounds.

    PubMed

    Witkowski, Stanislaw; Paradowska, Katarzyna; Wawer, Iwona

    2004-10-01

    13C cross-polarization magic angle spinning (CP/MAS) NMR data for 2,2,5,7,8-pentamethylchroman-6-ol (2), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox c) (3) and its acetate (4), 2-methoxy-2,2,5,7,8-pentamethylchroman-6-ol (5), 2-hydroxy-2,2,5,7,8-pentamethylchroman-6-ol (6) and 2,2,5,7,8-pentamethylchroman (7) are reported. A deshielding of 7.7 ppm for the carboxylic carbon was observed in solid Trolox due to formation of intermolecular hydrogen bonds within cyclic dimers. Such crystal packing permits effective cross-polarization and fast relaxation (short T1rho(H)). The impact of the proton concentration on the CP dynamics is reflected by the longer T(CP) and T1rhoH for Trolox-d2 (deuterated at mobile proton sites). The calculated GIAO RHF shielding constants are sensitive to intramolecular effects: rotation around the C-6-O bond (changes of sigma up to 8 ppm) and conformation at C-2.

  8. The use of 13C labeling to enhance the sensitivity of 13C solid-state CPMAS NMR to study polymorphism in low dose solid formulations.

    PubMed

    Booy, Kees-Jan; Wiegerinck, Peter; Vader, Jan; Kaspersen, Frans; Lambregts, Dorette; Vromans, Herman; Kellenbach, Edwin

    2005-02-01

    (13)C labeling was used to enhance the sensitivity of (13)C solid-state NMR to study the effect of tabletting on the polymorphism of a steroidal drug. The steroidal drug Org OD 14 was (13)C labeled and formulated into tablets containing only 0.5-2.5% active ingredient. The tablets were subsequently studied by solid-state (13)C CPMAS NMR. The crystalline form present in tablets could readily be analyzed in tablets. No change in crystalline form was observed as a result of formulation or in subsequent stability studies. Solid-state NMR in combination with (13)C labeling can, in suitable cases, be used as a strategy to study the effect of formulation on the polymorphism of low dose drugs.

  9. Thermal maturity of type II kerogen from the New Albany Shale assessed by13C CP/MAS NMR

    USGS Publications Warehouse

    Werner-Zwanziger, U.; Lis, G.; Mastalerz, Maria; Schimmelmann, A.

    2005-01-01

    Thermal maturity of oil and gas source rocks is typically quantified in terms of vitrinite reflectance, which is based on optical properties of terrestrial woody remains. This study evaluates 13C CP/MAS NMR parameters in kerogen (i.e., the insoluble fraction of organic matter in sediments and sedimentary rocks) as proxies for thermal maturity in marine-derived source rocks where terrestrially derived vitrinite is often absent or sparse. In a suite of samples from the New Albany Shale (Middle Devonian to the Early Mississippian, Illinois Basin) the abundance of aromatic carbon in kerogen determined by 13C CP/MAS NMR correlates linearly well with vitrinite reflectance. ?? 2004 Elsevier Inc. All rights reserved.

  10. Variable Temperature 13C and 29Si CPMAS NMR Studies of Poly(Di-n-Hexylsilane).

    DTIC Science & Technology

    1986-07-17

    below the thermochromic transition temperature of ca. 307K. The low temperature form is J ’... characterized by a silicon resonance at ca. -20.8ppm... thermochromic UV shift recently observed is due to a transformation of the polymer backbone from an - -_ ordered trans conformation to a highly...13q and 9Si CPMAS NMR spectroscopy. It has been found that the silane backbone exists in djfferent conformations above and below the thermochromic

  11. Molecular structure of actein: 13C CPMAS NMR, IR, X-ray diffraction studies and theoretical DFT-GIAO calculations

    NASA Astrophysics Data System (ADS)

    Jamróz, Marta K.; Bąk, Joanna; Gliński, Jan A.; Koczorowska, Agnieszka; Wawer, Iwona

    2009-09-01

    Actein is a prominent triterpene glycoside occurring in Actaea racemosa. The triterpene glycosides are believed to be responsible for the estrogenic activity of an extract prepared from this herb. We determined in the crystal structure of actein by X-ray crystallography to be monoclinic P2(1) chiral space group. Refining the disorder, we determined 70% and 30% of contributions of ( S)- and ( R)-actein, respectively. The IR and Raman spectra suggest that actein forms at least four different types of hydrogen bonds. The 13C NMR spectra of actein were recorded both in solution and solid state. The 13C CPMAS spectrum of actein displays multiplet signals, in agreement with the crystallographic data. The NMR shielding constants were calculated for actein using GIAO approach and a variety of basis sets: 6-31G**, 6-311G**, 6-31+G**, cc-pVDZ, cc-pVDZ-su1 and 6-31G**-su1, as well as IGLO approach combined with the IGLO II basis set. The best results (RMSD of 1.6 ppm and maximum error of 3.4 ppm) were obtained with the 6-31G**-su1 basis set. The calculations of the shielding constants are helpful in the interpretation of the 13C CPMAS NMR spectra of actein and actein's analogues.

  12. Structural characteristics for phase transitions of [N(CH3)4]2CuCl4 by (13)C CP/MAS NMR and (14)N NMR.

    PubMed

    Hee Kim, Nam; Lim, Ae Ran

    2015-09-01

    Structure geometry changes in [N(CH3)4]2CuCl4 near the phase transition temperature were studied by (13)C CP/MAS NMR and (14)N NMR spectrum. We distinguished the two chemically inequivalent N(1)(CH3)4 and N(2)(CH3)4 groups by (13)C CP/MAS NMR and (14)N NMR spectrum. The abrupt changes in chemical shifts and the split of the NMR signals near the phase transition temperatures for (13)C and (14)N are explained by a structural phase transition, implying that the structural geometry depends on the temperature. The mechanism behind this phase transition is based on ferroelasticity, and is also mainly related to the (14)N ions in N(CH3)4 ions. Furthermore, both phases III and IV exhibit ferroelastic properties with identical orientational domains. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Evolution of organic matter during composting of different organic wastes assessed by CPMAS {sup 13}C NMR spectroscopy

    SciTech Connect

    Caricasole, P.; Provenzano, M.R.; Senesi, N.

    2011-03-15

    In this paper, the evolution of organic matter (OM) during composting of different mixtures of various organic wastes was assessed by means of chemical analyses and CPMAS {sup 13}C NMR spectroscopy measured during composting. The trends of temperatures and C/N ratios supported the correct evolution of the processes. The CPMAS {sup 13}C NMR spectra of all composting substrates indicated a reduction in carbohydrates and an increase in aromatic, phenolic, carboxylic and carbonylic C which suggested a preference by microorganisms for easily degradable C molecules. The presence of hardly degradable pine needles in one of the substrates accounted for the lowest increase in alkyl C and the lowest reduction in carbohydrates and carboxyl C as opposite to another substrate characterized by the presence of a highly degradable material such as spent yeast from beer production, which showed the highest increase of the alkyl C/O-alkyl C ratio. The highest increase of COOH deriving by the oxidative degradation of cellulose was shown by a substrate composed by about 50% of plant residues. The smallest increases in alkyl C/O-alkyl C ratio and in polysaccharides were associated to the degradation of proteins and lipids which are major components of sewage sludge. Results obtained were related to the different composition of fresh organic substrates and provided evidence of different OM evolution patterns as a function of the initial substrate composition.

  14. Evolution of organic matter during composting of different organic wastes assessed by CPMAS 13C NMR spectroscopy.

    PubMed

    Caricasole, P; Provenzano, M R; Hatcher, P G; Senesi, N

    2011-03-01

    In this paper, the evolution of organic matter (OM) during composting of different mixtures of various organic wastes was assessed by means of chemical analyses and CPMAS (13)C NMR spectroscopy measured during composting. The trends of temperatures and C/N ratios supported the correct evolution of the processes. The CPMAS (13)C NMR spectra of all composting substrates indicated a reduction in carbohydrates and an increase in aromatic, phenolic, carboxylic and carbonylic C which suggested a preference by microorganisms for easily degradable C molecules. The presence of hardly degradable pine needles in one of the substrates accounted for the lowest increase in alkyl C and the lowest reduction in carbohydrates and carboxyl C as opposite to another substrate characterized by the presence of a highly degradable material such as spent yeast from beer production, which showed the highest increase of the alkyl C/O-alkyl C ratio. The highest increase of COOH deriving by the oxidative degradation of cellulose was shown by a substrate composed by about 50% of plant residues. The smallest increases in alkyl C/O-alkyl C ratio and in polysaccharides were associated to the degradation of proteins and lipids which are major components of sewage sludge. Results obtained were related to the different composition of fresh organic substrates and provided evidence of different OM evolution patterns as a function of the initial substrate composition.

  15. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    SciTech Connect

    Cozar, O.; Filip, C.; Tripon, C.; Cioica, N.; Coţa, C.; Nagy, E. M.

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  16. The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids

    USGS Publications Warehouse

    Hatcher, P.G.; Wilson, M.A.

    1991-01-01

    Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.

  17. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    PubMed

    Paradowska, Katarzyna; Wolniak, Michał; Pisklak, Maciej; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm.

  18. Quantitation of crystalline and amorphous forms of anhydrous neotame using 13C CPMAS NMR spectroscopy.

    PubMed

    Offerdahl, Thomas J; Salsbury, Jonathon S; Dong, Zedong; Grant, David J W; Schroeder, Stephen A; Prakash, Indra; Gorman, Eric M; Barich, Dewey H; Munson, Eric J

    2005-12-01

    Although most drugs are formulated in the crystalline state, amorphous or other crystalline forms are often generated during the formulation process. The presence of other forms can dramatically affect the physical and chemical stability of the drug. The identification and quantitation of different forms of a drug is a significant analytical challenge, especially in a formulated product. The ability of solid-state 13C NMR spectroscopy with cross polarization (CP) and magic-angle spinning (MAS) to quantify the amounts of three of the multiple crystalline and amorphous forms of the artificial sweetener neotame is described. It was possible to quantify, in a mixture of two anhydrous polymorphic forms of neotame, the amount of each polymorph within 1-2%. In mixtures of amorphous and crystalline forms of neotame, the amorphous content could be determined within 5%. It was found that the crystalline standards that were used to prepare the mixtures were not pure crystalline forms, but rather a mixture of crystalline and amorphous forms. The effect of amorphous content in the crystalline standards on the overall quantitation of the two crystalline polymorphic forms is discussed. The importance of differences in relaxation parameters and CP efficiencies on quantifying mixtures of different forms using solid-state NMR spectroscopy is also addressed. (c) 2005 Wiley-Liss, Inc.

  19. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    PubMed Central

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio

    2015-01-01

    Summary The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  20. Polydisperse methyl β-cyclodextrin-epichlorohydrin polymers: variable contact time (13)C CP-MAS solid-state NMR characterization.

    PubMed

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio; Mele, Andrea

    2015-01-01

    The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state (13)C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices.

  1. Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing

    USGS Publications Warehouse

    Kogel-Knabner, I.; Hatcher, P.G.

    1989-01-01

    Samples obtained from forest soils at different stages of decomposition were treated sequentially with chloroform/methanol (extraction of lipids), sulfuric acid (hydrolysis), and sodium chlorite (delignification) to enrich them in refractory alkyl carbon. As revealed by NMR spectroscopy, this treatment yielded residues with high contents of alkyl carbon. In the NMR spectra of residues obtained from litter samples, resonances for carbohydrates are also present, indicating that these carbohydrates are tightly bound to the alkyl carbon structures. During decomposition in the soils this resistant carbohydrate fraction is lost almost completely. In the litter samples the alkyl carbon shows a dipolar dephasing behavior indicative of two structural components, a rigid and a more mobile component. As depth and decomposition increase, only the rigid component is observed. This fact could be due to selective degradation of the mobile component or to changes in molecular mobility during decomposition, e.g., because of an increase in cross linking or contact with the mineral matter of the soil.

  2. Modelling decomposition, intermolecular protection and physical aggregation based on organic matter quality assessed by 13C-CPMAS-NMR

    NASA Astrophysics Data System (ADS)

    Incerti, Guido; Bonanomi, Giuliano; Sarker, Tushar Chandra; Giannino, Francesco; Cartenì, Fabrizio; Peressotti, Alessandro; Spaccini, Riccardo; Piccolo, Alessandro; Mazzoleni, Stefano

    2017-04-01

    Modelling organic matter decomposition is fundamental to predict biogeochemical cycling in terrestrial ecosystems. Current models use C/N or Lignin/N ratios to describe susceptibility to decomposition, or implement separate C pools decaying with different rates, disregarding biomolecular transformations and interactions and their effect on decomposition dynamics. We present a new process-based model of decomposition that includes a description of biomolecular dynamics obtained by 13C-CPMAS NMR spectroscopy. Baseline decay rates for relevant molecular classes and intermolecular protection were calibrated by best fitting of experimental data from leaves of 20 plant species decomposing for 180 days in controlled optimal conditions. The model was validated against field data from leaves of 32 plant species decomposing for 1-year at four sites in Mediterranean ecosystems. Our innovative approach accurately predicted decomposition of a wide range of litters across different climates. Simulations correctly reproduced mass loss data and variations of selected molecular classes both in controlled conditions and in the field, across different plant molecular compositions and environmental conditions. Prediction accuracy emerged from the species-specific partitioning of molecular types and from the representation of intermolecular interactions. The ongoing model implementation and calibration are oriented at representing organic matter dynamics in soil, including processes of interaction between mineral and organic soil fractions as a function of soil texture, physical aggregation of soil organic particles, and physical protection of soil organic matter as a function of aggregate size and abundance. Prospectively, our model shall satisfactorily reproduce C sequestration as resulting from experimental data of soil amended with a range of organic materials with different biomolecular quality, ranging from biochar to crop residues. Further application is also planned based on

  3. Interaction between a recombinant prion protein and organo-mineral complexes as evidenced by CPMAS 13C-NMR

    NASA Astrophysics Data System (ADS)

    Russo, F.; Scotti, R.; Gianfreda, L.; Conte, P.; Rao, M. A.

    2009-04-01

    Prion proteins (PrP) are the main responsible for Transmissible Spongiform Encephalopathies (TSE). The TSE etiological agent is a misfolded form of the normal cellular prion protein. The amyloidal aggregates accumulated in the brain of infected animals and mainly composed of PrPSc exhibit resistance to protease attack and many conventional inactivating procedures. The prion protein diseases cause an environmental issue because the environment and in particular the soil compartment can be contaminated and then become a potential reservoir and diffuser of TSEs infectivity as a consequence of (i) accidental dispersion from storage plants of meat and bone meal, (ii) incorporation of contaminated material in fertilizers, (iii) possible natural contamination of pasture soils by grazing herds, and (v) burial of carcasses. The environmental problem can be even more relevant because very low amounts of PrPSc are able to propagate the disease. Several studies evidenced that infectious prion protein remains active in soils for years. Contaminated soils result, thus, a possible critical route of TSE transmission in wild animals. Soil can also protect prion protein toward degradation processes due to the presence of humic substances and inorganic components such as clays. Mineral and organic colloids and the more common association between clay minerals and humic substances can contribute to the adsorption/entrapment of molecules and macromolecules. The polymerization of organic monomeric humic precursors occurring in soil in the presence of oxidative enzymes or manganese and iron oxides, is considered one of the most important processes contributing to the formation of humic substances. The process is very fast and produces a population of polymeric products of different molecular structures, sizes, shapes and complexity. Other molecules and possibly biomacromolecules such as proteins may be involved. The aim of the present work was to study by CPMAS 13C-NMR the interactions

  4. Soil organic degradation: bridging the gap between Rock-Eval pyrolysis and chemical characterization (CPMAS 13C NMR)

    NASA Astrophysics Data System (ADS)

    Albrecht, Remy; Sebag, David; Verrecchia, Eric

    2013-04-01

    Being a source of mineral nutrients, organic matter contributes to soil chemical fertility and acts on soil physical fertility through its role in soil structure. Soil organic matter (SOM) is a key component of soils. Despite the paramount importance of SOM, information on its chemistry and behaviour in soils is incomplete. Numerous methods are used to characterize and monitor OM dynamics in soils using different approaches (Kogel-Knabner, 2000). Two of the main approaches are evaluated and compared in this study. Rock-Eval pyrolysis (RE pyrolysis) provides a description of a SOM's general evolution using its thermal resistance. The second tool (13C CPMAS NMR) aims to give precise and accurate chemical information on OM characterization. The RE pyrolysis technique was designed for petroleum exploration (Lafargue et al., 1998) and because of its simplicity, it has been applied to a variety of other materials such as soils or Recent sediments (Disnar et al., 2000; Sebag, 2006). Recently, RE pyrolysis became a conventional tool to study OM dynamics in soils. In RE pyrolysis, a peak deconvolution is applied to the pyrolysis signal in order to get four main components related to major classes of organic constituents. These components differ in origin and resistance to pyrolysis: labile biological constituents (F1), resistant biological constituents (F2), immature non-biotic constituents (F3) and a mature refractory fraction (F4) (Sebag, 2006; Coppard, 2006). Main advantages of the technique are its repeatability, and rapidity to provide an overview of OM properties and stocks. However, do the four major classes used in the literature reflect a pertinent chemical counterpart? To answer this question, we used 13C Nuclear Magnetic Resonance Spectroscopy in the solid state (13C CPMAS NMR) to collect direct information on structural and conformational characteristics of OM. NMR resonances were assigned to chemical structures according to five dominant forms: alkyl C, O

  5. 13C-CPMAS and 1H-NMR study of the inclusion complexes of beta-cyclodextrin with carvacrol, thymol, and eugenol prepared in supercritical carbon dioxide.

    PubMed

    Locci, Emanuela; Lai, Simona; Piras, Alessandra; Marongiu, Bruno; Lai, Adolfo

    2004-09-01

    Beta-cyclodextrin (beta-CD) inclusion complexes with carvacrol (1), thymol (2), and eugenol (3) (components of essential oils of vegetable origin) were prepared by the supercritical CO2 technique, and their structural characterization was achieved by means of 1H-NMR in aqueous solution and 13C-CPMAS NMR in the solid state. Evidence of the formation of the inclusion complexes for all the examined systems was obtained by 1H-NMR in solution, while 2D-ROESY-NMR experiments were used to investigate the geometry of inclusion. In addition, the dynamics of these inclusion complexes in the kHz timescale was investigated by analysis of the 1H and 13C spin-lattice relaxation times in the rotating frame.

  6. Imazalil-cyclomaltoheptaose (beta-cyclodextrin) inclusion complex: preparation by supercritical carbon dioxide and 13C CPMAS and 1H NMR characterization.

    PubMed

    Lai, Simona; Locci, Emanuela; Piras, Alessandra; Porcedda, Silvia; Lai, Adolfo; Marongiu, Bruno

    2003-10-10

    An inclusion complex between imazalil (IMZ), a selected fungicide, and cyclomaltoheptaose (beta-cyclodextrin, betaCD) was obtained using supercritical fluid carbon dioxide. The best preparation conditions were determined, and the inclusion complex was investigated by means of 1H NMR spectroscopy in aqueous solution and 13C CPMAS NMR spectroscopy in the solid state. Information on the geometry of the betaCD/IMZ complex was obtained from ROESY spectroscopy, while the dynamics of the inclusion complex in the kilohertz range was obtained from the proton spin-lattice relaxation times in the rotating frame, T(1rho) (1H).

  7. Glycerin-Induced Conformational Changes in Bombyx mori Silk Fibroin Film Monitored by (13)C CP/MAS NMR and ¹H DQMAS NMR.

    PubMed

    Asakura, Tetsuo; Endo, Masanori; Hirayama, Misaki; Arai, Hiroki; Aoki, Akihiro; Tasei, Yugo

    2016-09-09

    In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, (13)C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The ¹H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using ¹H-¹H distance constraints obtained from the ¹H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra.

  8. Glycerin-Induced Conformational Changes in Bombyx mori Silk Fibroin Film Monitored by 13C CP/MAS NMR and 1H DQMAS NMR

    PubMed Central

    Asakura, Tetsuo; Endo, Masanori; Hirayama, Misaki; Arai, Hiroki; Aoki, Akihiro; Tasei, Yugo

    2016-01-01

    In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, 13C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The 1H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using 1H–1H distance constraints obtained from the 1H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra. PMID:27618034

  9. Unilateral NMR, 13C CPMAS NMR spectroscopy and micro-analytical techniques for studying the materials and state of conservation of an ancient Egyptian wooden sarcophagus.

    PubMed

    Proietti, Noemi; Presciutti, Federica; Di Tullio, Valeria; Doherty, Brenda; Marinelli, Anna Maria; Provinciali, Barbara; Macchioni, Nicola; Capitani, Donatella; Miliani, Costanza

    2011-03-01

    A multi-technique approach was employed to study a decorated Egyptian wooden sarcophagus (XXV-XXVI dynasty, Third Intermediate Period), belonging to the Museo del Vicino Oriente of the Sapienza University of Rome. Portable non-invasive unilateral NMR was applied to evaluate the conservation state of the sarcophagus. Moreover, using unilateral NMR, a non-invasive analytical protocol was established to detect the presence of organic substances on the surface and/or embedded in the wooden matrix. This protocol allowed for an educated sampling campaign aimed at further investigating the state of degradation of the wood and the presence of organic substances by (13)C cross polarization magic angle spinning (CPMAS) NMR spectroscopy. The composition of the painted layer was analysed by optical microscopy (OM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Raman and surface enhanced (resonance) Raman spectroscopy (SERS/SERRS), infrared and GC-MS techniques, evidencing original components such as clay minerals, Egyptian green, indigo, natural gums, and also highlighting restoration pigments and alteration compounds. The identification of the wood, of great value for the reconstruction of the history of the artwork, was achieved by means of optical microscopy.

  10. Solid state structure by X-ray and 13C CP/MAS NMR of new 5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarins

    NASA Astrophysics Data System (ADS)

    Ostrowska, Kinga; Maciejewska, Dorota; Dobrzycki, Łukasz; Socha, Pawel

    2016-05-01

    5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (1) and 6-acetyl-5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (2), structurally related, were synthesized using both conventional and microwave-assisted approach. An impact of acetyl groups on the molecular structure of coumarin derivatives has been examined. Crystals of 2 were investigated using single crystal and powder X-ray diffraction techniques. Compound 2 crystallizes forming two polymorphs (denoted as 2_1 and 2_2), both belonging to P21/c space group. Both polymorphs are comparably stable and can be formed simultaneously during crystallization process. The solid state structure was also analysed using the fully resolved 13C CP/MAS NMR. The double signals with the intensity ratio of about 1:1 which were observed in the 13C CP/MAS NMR spectrum of compound 1 must arise due to the presence of two conformers of 1. In contrast, NMR spectrum recorded for powder mixture of two polymorphs of compound 2 displays no signal splitting. This is related to structural similarities of molecules in both polymorphs.

  11. Humic acids as proxies for assessing different Mediterranean forest soils signatures using solid-state CPMAS 13C NMR spectroscopy.

    PubMed

    Duarte, Regina M B O; Fernández-Getino, Ana P; Duarte, Armando C

    2013-06-01

    Humic acids (HAs) of four representative forest soils profiles from Central Spain (two with different vegetation - pine and oak - but same parent material - granitie, and two with same vegetation - holm oak - but different parent material - granite and limestone) were investigated by solid-state cross polarization with magic angle spinning (13)C nuclear magnetic resonance (NMR) spectroscopy. The objectives included the investigation of the impact of different forest properties on HA composition, assessing how the structural characteristics of the HA vary with soil depth, and evaluating the role of HA as surrogates for mapping the different forest soils signatures using structural data derived from (13)C NMR spectroscopy. On average, alkyl C is the dominant C constituent (38-48% of the total NMR peak area) in all HA samples, followed by aromatic (12-22%) and O-alkyl C (12-19%), and finally carboxyl C (7.0-10%). The NMR data also indicated that HA composition is likely to be differently affected by the soil physico-chemical properties and type of forest vegetation. The structural characteristics of the HA from soil under oak did not differ broadly downward in the profile, whereas soil HA under pine forest exhibits a somewhat higher recalcitrant nature as a consequence of a higher degree of decomposition. The soil HA from holm oak forests differed from the other two forest soils, exhibiting a progressive decomposition of the alkyl C structures with increasing depth, while the carbohydrate-like indicator (O-alkyl C) is apparently being protected from mineralization in the horizons below the ground level. Overall, these differences in soil HA NMR signatures are an important diagnostic tool for understanding the role of different soil environmental factors on the structural composition of HA from Mediterranean forest soils. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Adducts of rhodium(II) tetraacetate with some nitrogenous organic ligands: application of natural abundance 15N and 13C CPMAS NMR spectroscopy.

    PubMed

    Jaźwiński, Jarosław; Kamieński, Bohdan

    2007-10-01

    Adducts of rhodium(II) tetraacetate with some nitrogenous organic ligands: 1-azabicyclo[2,2,2]octane 1, 1,2-diazabicyclo[2,2,2]octane 2, pyrazine 3, pyrimidine 4, [1,3,5]triazine 5 and 1,3,5,7-tetraazatricyclo[3,3,1,1(3,7)]decane 6 have been investigated by means of natural abundance (13)C and (15)N CPMAS nuclear magnetic resonance (NMR) spectroscopy. 1-Azabicyclo[2,2,2]octane 1 having one nitrogen atom in the molecule produces either the 1:1 or 1:2-adduct depending on the reagent molar ratio; some features of its (13)C CPMAS NMR spectra suggest the dimeric structure of the 1:1-adduct. Multifunctional ligands having more than one nitrogen atom in a molecule yield the adducts insoluble in common organic solvents. Elemental analysis and NMR experiments have revealed that 1,2-diazabicyclo[2,2,2]octane, pyrazine, pyrimidine and [1,3,5]triazine produced adducts in the form of 1:1 polymeric chains. 1,3,5,7-tetraazatricyclo[3,3,1,1(3,7)]decane yields the adduct containing ligand and metal salt in the molar ratio of 3:4. The (15)N chemical shift change caused by the Rh-N bond formation (Deltadelta parameter) varies from ca. -9 ppm for aliphatic ligands to ca. -40 ppm for heteroaromatic species. The NMR findings have been supported by theoretical calculation (density functional calculation (DFT), LanLD2Z//B3LYB level) of molecular geometry, energy and chemical shieldings.

  13. A study of structure and dynamics of poly(aspartic acid) sodium/poly(vinyl alcohol) blends by 13C CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Wang, P.; Ando, I.

    1999-09-01

    Solid state 13C CP/MAS NMR measurements have been carried out on poly(aspartic acid) sodium (PAANa)/poly(vinyl alcohol) (PVA) blends over a wide range of temperatures. From these experimental results, it is found that the main-chain conformations of PAANa in PAANa/PVA blends take the α-helix form over a wide range of blend ratios, and, in contrast, the conformation and dynamics of the side chains of PAANa are strongly influenced by the formation of an intermolecular hydrogen bond between the carboxyl group of the side chains and the hydroxyl group of PVA. The behavior of the proton spin-lattice relaxation times in the rotating frame ( T1 ρ(H)) and the laboratory frame ( T1(H)) indicates that when the blend ratio of PAANa and PVA is 1:1, they are miscible.

  14. Oligomeric complexes of some heteroaromatic ligands and aromatic diamines with rhodium and molybdenum tetracarboxylates: 13C and 15N CPMAS NMR and density functional theory studies.

    PubMed

    Leniak, Arkadiusz; Kamieński, Bohdan; Jaźwiński, Jarosław

    2015-05-01

    Seven new oligomeric complexes of 4,4'-bipyridine; 3,3'-bipyridine; benzene-1,4-diamine; benzene-1,3-diamine; benzene-1,2-diamine; and benzidine with rhodium tetraacetate, as well as 4,4'-bipyridine with molybdenum tetraacetate, have been obtained and investigated by elemental analysis and solid-state nuclear magnetic resonance spectroscopy, (13)C and (15)N CPMAS NMR. The known complexes of pyrazine with rhodium tetrabenzoate, benzoquinone with rhodium tetrapivalate, 4,4'-bipyridine with molybdenum tetrakistrifluoroacetate and the 1 : 1 complex of 2,2'-bipyridine with rhodium tetraacetate exhibiting axial-equatorial ligation mode have been obtained as well for comparison purposes. Elemental analysis revealed 1 : 1 complex stoichiometry of all complexes. The (15)N CPMAS NMR spectra of all new complexes consist of one narrow signal, indicating regular uniform structures. Benzidine forms a heterogeneous material, probably containing linear oligomers and products of further reactions. The complexes were characterized by the parameter complexation shift Δδ (Δδ = δcomplex  - δligand). This parameter ranged from around -40 to -90 ppm in the case of heteroaromatic ligands, from around -12 to -22 ppm for diamines and from -16 to -31 ppm for the complexes of molybdenum tetracarboxylates with 4,4'-bipyridine. The experimental results have been supported by a density functional theory computation of (15)N NMR chemical shifts and complexation shifts at the non-relativistic Becke, three-parameter, Perdew-Wang 91/[6-311++G(2d,p), Stuttgart] and GGA-PBE/QZ4P levels of theory and at the relativistic scalar and spin-orbit zeroth order regular approximation/GGA-PBE/QZ4P level of theory. Nucleus-independent chemical shifts have been calculated for the selected compounds. Copyright © 2015 John Wiley & Sons, Ltd.

  15. The nature of soil organic matter affects sorption of pesticides. 1. Relationships with carbon chemistry as determined by 13C CPMAS NMR spectroscopy.

    PubMed

    Ahmad, R; Kookana, R S; Alston, A M; Skjemstad, J O

    2001-03-01

    The structural composition of soil organic matter (SOM) was determined in twenty-seven soils with different vegetation from several ecological zones of Australia and Pakistan using solid-state CPMAS 13C NMR. The SOM was characterized using carbon types derived from the NMR spectra. Relationships were determined between Koc (sorption per unit organic C) of carbaryl(1-naphthylmethylcarbamate) and phosalone (S-6-chloro-2,3-dihydro-2-oxobenzoxazol-3-ylmethyl O,O-diethyl phosphorodithioate) and the nature of organic matter in the soils. Substantial variations were revealed in the structural composition of organic matter in the soils studied. The variations in Koc values of the pesticides observed for the soils could be explained only when variations in the aromatic components of SOM were taken into consideration. The highly significant positive correlations of aromaticity of SOM and Koc values of carbaryl and phosalone revealed that the aromatic component of SOM is a good predictor of a soil's ability to bind such nonionic pesticides.

  16. Analysis of mercerization process based on the intensity change of deconvoluted resonances of (13)C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions.

    PubMed

    Miura, Kento; Nakano, Takato

    2015-08-01

    The area intensity change of C1, C4, and C6 in spectrum obtained by (13)C CP/MAS NMR and the mutual relationship between their changes were examined for cellulose samples treated with various concentrations of aqueous NaOH solutions under non-cooling and cooling conditions. The area intensity of C1-up and C6-down changed cooperatively with that of C4-down which corresponds to the crystallinity of samples: "-up" and "-down" are the up- and down- field component in a splitting peak of NMR spectrum, respectively. The intensity change of C1-up starts to decrease with decreasing in that of C4-down after that of C6-down is almost complete. These changes were more clearly observed for samples treated under cooling condition. It can be suggested that their characteristic change relates closely to the change in conformation of cellulose chains by induced decrystallization and the subsequent crystallization of cellulose II, and presumed that their changes at microscopic level relate to the macroscopic morphological changes such as contraction along the length of cellulose chains and recovery along the length. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. 13C and 15N—Chemical Shift Anisotropy of Ampicillin and Penicillin-V Studied by 2D-PASS and CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Antzutkin, Oleg N.; Lee, Young K.; Levitt, Malcolm H.

    1998-11-01

    The principal values of the chemical shift tensors of all13C and15N sites in two antibiotics, ampicillin and penicillin-V, were determined by 2-dimensionalphaseadjustedspinningsideband (2D-PASS) and conventional CP/MAS experiments. The13C and15N chemical shift anisotropies (CSA), and their confidence limits, were evaluated using a Mathematica program. The CSA values suggest a revised assignment of the 2-methyl13C sites in the case of ampicillin. We speculate on a relationship between the chemical shift principal values of many of the13C and15N sites and the β-lactam ring conformation.

  18. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    The humified SOM or humic substances (HS) composed of humic acid (HA), fulvic acid (FA) and humin (HM) represent the most microbially recalcitrant and stable reservoir of organic carbon in soil (Piccolo et al., 2004). OM applications can influence the amount and structural characteristics of HS(Dou et al., 2008). During the past few decades, there has been much research on HS, but their chemical structure is still not fully understood (Dong, 2006).CP-MAS-13C-NMR spectroscopy was considered as an effective method to study structures of HS without dissolving problem compared with liquid 13C-NMR (Conte et al., 1997; Dou et al., 2008). It can directly measure the carbon framework and reflect the nature of HS transformation after OM application (Spaccini et al., 2000). For that reason, this method was applied in this study. The objective of this paper was to clarify the effect of long term OM application on the changes of structural characteristics in HAs, which provided new information for improving soil fertility by OM application. The experiment was carried out on a brown soil (Paleudalf in USDA Soil Taxonomy) at Shenyang Agricultural University, Liaoning province, China (N41°48'-E123°25'). The experiment included 3 treatments: zero-treatment (CKbr), and two pig manure (PM) treatments (O1 and O2) at the rates of 0.9 t ha-1 and 1.8 t ha-1 of organic carbon, respectively. The samples of the HA fraction were extracted, separated and purified according to the method described by Dou et al. (1991). Elemental composition, Differential thermal analysis (DTA), -lgK value, FT-IR and CP-MAS- 13C-NMR of HAs were performed. Effects on the contents of orgaic carbon and its composition. The contents of TOC were from 8.77 g kg-1 to 12.25 g kg-1. The relative contents in TOC for WSS, HA, and FA were 6.87%, 14.2% and 19.8%. Comparing the CKbr, the contents of WSS, HA and FA for O1 and O2 increased, but relative contents of WSS and FA decreased. The content of the HA increased after

  19. Application of (13)C ramp CPMAS NMR with phase-adjusted spinning sidebands (PASS) for the quantitative estimation of carbon functional groups in natural organic matter.

    PubMed

    Ikeya, Kosuke; Watanabe, Akira

    2016-01-01

    The composition of carbon (C) functional groups in natural organic matter (NOM), such as dissolved organic matter, soil organic matter, and humic substances, is frequently estimated using solid-state (13)C NMR techniques. A problem associated with quantitative analysis using general cross polarization/magic angle spinning (CPMAS) spectra is the appearance of spinning side bands (SSBs) split from the original center peaks of sp (2) hybridized C species (i.e., aromatic and carbonyl C). Ramp CP/phase-adjusted side band suppressing (PASS) is a pulse sequence that integrates SSBs separately and quantitatively recovers them into their inherent center peaks. In the present study, the applicability of ramp CP/PASS to NOM analysis was compared with direct polarization (DPMAS), another quantitative method but one that requires a long operation time, and/or a ramp CP/total suppression side band (ramp CP/TOSS) technique, a popular but non-quantitative method for deleting SSBs. The test materials were six soil humic acid samples with various known degrees of aromaticity and two fulvic acids. There were no significant differences in the relative abundance of alkyl C, O-alkyl C, and aromatic C between the ramp CP/PASS and DPMAS methods, while the signal intensities corresponding to aromatic C in the ramp CP/TOSS spectra were consistently less than the values obtained in the ramp CP/PASS spectra. These results indicate that ramp CP/PASS can be used to accurately estimate the C composition of NOM samples.

  20. Structure in solid state of 3,3‧-diindolylmethane derivatives, potent cytotoxic agents against human tumor cells, followed X-ray diffraction and 13C CP/MAS NMR analyses

    NASA Astrophysics Data System (ADS)

    Maciejewska, Dorota; Wolska, Irena; Niemyjska, Maria; Żero, Paweł

    2005-10-01

    The 5,5'-disubstituted-3,3'-diindolylmethanes 1, 2 have been prepared and their structure was analyzed by X-ray and NMR techniques. The X-ray diffraction studies revealed interesting C-H⋯ π intermolecular interactions which may play role in characterization of their biological features. In 1H and 13C NMR spectra in solution and in 13C CPMAS NMR spectra in solid state only a single pattern of signals was observed. Both compounds reduce the growth of MCF7 (breast), NCI-H460 (lung), and SF-268 (NCS) cells dramatically.

  1. Microscopic structural analysis of fractured silk fibers from Bombyx mori and Samia cynthia ricini using 13C CP/MAS NMR with a 1mm microcoil MAS NMR probehead.

    PubMed

    Yamauchi, Kazuo; Yamasaki, Shizuo; Takahashi, Rui; Asakura, Tetsuo

    2010-07-01

    Conformational changes have been studied in silk fibers from the domestic silkworm Bombyx mori and a wild silkworm Samia cynthia ricini as a result of fractured by stretching. About 300 samples consisting of only the fractured regions of [1-13C]Ala or [1-13C]Gly labeled silk fibers were collected and observed by 13C CP/MAS NMR spectra. The total amount of these fractured fibers is only about 1mg and therefore we used a home-built 1mm microcoil MAS NMR probehead. A very small increase in the fraction of random coil was noted for the alanine regions of both silk fibroins and for the glycine region of B. mori silk fibroin. However, there is no difference in the spectra before and after fractured for the glycine region of S. c. ricini silk fibroin. Thus, the influence of fracture occurs exclusively at the Ala region for S. c. ricini. The relationship between sequence, fracture and structure is discussed.

  2. The concentration of polysaccharides and proteins in EPS of Pseudomonas putida and Aureobasidum pullulans as revealed by 13C CPMAS NMR spectroscopy.

    PubMed

    Metzger, Ulrich; Lankes, Ulrich; Fischpera, Kai; Frimmel, Fritz H

    2009-11-01

    Extracellular polymeric substances were extracted from the bacterial strain Pseudomonas putida and the fungal species Aureobasidium pullulans using three different methods (formaldehyde-NaOH, ethylenediaminetetraacetic acid (EDTA) and cation-exchange-resin). The composition of the extracellular polymeric substances (EPS) was analysed by biochemical and high-resolution solid state 13C nuclear magnetic resonance (NMR) spectroscopic methods. The EPS yield was strongly dependent on the extraction method, with the formaldehyde-NaOH method showing the best extraction efficiency. The NMR method revealed that when using the EDTA extraction method, about 40% of the EDTA accumulated in the EPS and that was responsible for the apparent high extraction yields. EPS protein content determined by the NMR method was up to 30% higher than the protein content determined using the biochemical (Lowry) method for P. putida and for A. pullulans. The average protein carbon content determined by the NMR method was approximately 70% of the total carbon content. NMR results could be supported by elemental analysis, which showed a high nitrogen content (approximately 10%) in the EPS. The carbohydrate carbon content detected with both methods in the cell aggregates and the EPS was approximately 20% in each. In this study, quantitative 13C cross-polarisation magic angle spinning NMR spectroscopy was conducted on unlabeled cell strains, and EPS and could be used to quantify protein and carbohydrate of different samples.

  3. Drug release from cast films of ethylene vinyl acetate (EVA) copolymer: Stability of drugs by 1H NMR and solid state 13C CP/MAS NMR.

    PubMed

    Kalachandra, S; Lin, D M; Stejskal, E O; Prakki, A; Offenbacher, S

    2005-07-01

    The study utilizes an oral biocompatible material based on ethylene vinyl acetate copolymer (EVA) designed to release drugs in vitro at therapeutic levels over several days. We examined the drug stability during film casting process using proton and solid state NMR techniques. The drug-loaded EVA films were prepared from the dry sheet obtained by solvent (dichloromethane) evaporation of polymer casting solutions. Drugs tested include chlorhexidine diacetate (CDA), doxycycline hydrochloride (DOH), tetracycline hydrochloride (TTH) and nystatin (NST). Drug release from the films was examined for at least 14 days in 10 ml ddH2O (NST in water/ethanol (4:1)) which was replaced daily. Changes in optical density were followed spectraphotometrically. Effect of temperature on rate measurements was studied and the energies of activation (E*) were calculated using Arrhenius plots. Effect of EVA copolymer composition on CDA release rate was also investigated. The enhanced rates with temperature increase may be attributed to the formation of channels with increased geometry in the polymer. The highest E* observed for CDA compared to DOH and TTH may be related to their average molecular weights. Spectral analyses for CDA and NST revealed that the chemical and physical structures of the drugs remained unaffected during the film casting process.

  4. Experimental (X-ray, (13)C CP/MAS NMR, IR, RS, INS, THz) and Solid-State DFT Study on (1:1) Co-Crystal of Bromanilic Acid and 2,6-Dimethylpyrazine.

    PubMed

    Łuczyńska, Katarzyna; Drużbicki, Kacper; Lyczko, Krzysztof; Dobrowolski, Jan Cz

    2015-06-04

    A combined structural, vibrational spectroscopy, and solid-state DFT study of the hydrogen-bonded complex of bromanilic acid with 2,6-dimethylpyrazine is reported. The crystallographic structure was determined by means of low-temperature single-crystal X-ray diffraction, which reveals the molecular units in their native protonation states, forming one-dimensional infinite nets of moderate-strength O···H-N hydrogen bonds. The nature of the crystallographic forces, stabilizing the studied structure, has been drawn by employing the noncovalent interactions analysis. It was found that, in addition to the hydrogen bonding, the intermolecular forces are dominated by stacking interactions and C-H···O contacts. The thermal and calorimetric analysis was employed to probe stability of the crystal phase. The structural analysis was further supported by a computationally assisted (13)C CP/MAS NMR study, providing a complete assignment of the recorded resonances. The vibrational dynamics was explored by combining the optical (IR, Raman, TDs-THz) and inelastic neutron scattering (INS) spectroscopy techniques with the state-of-the-art solid-state density functional theory (DFT) computations. Despite the quasi-harmonic approximation assumed throughout the study, an excellent agreement between the theoretical and experimental data was achieved over the entire spectral range, allowing for a deep and possibly thorough understanding of the vibrational characteristics of the system. Particularly, the significant influence of the long-range dipole coupling on the IR spectrum has been revealed. On the basis of a wealth of information gathered, the recent implementation of a dispersion-corrected linear-response scheme has been extensively examined.

  5. (13)C NMR Metabolomics: INADEQUATE Network Analysis.

    PubMed

    Clendinen, Chaevien S; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S

    2015-06-02

    The many advantages of (13)C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, (13)C NMR offers a straightforward measurement of these compounds. Two-dimensional (13)C-(13)C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semiautomated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE data sets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures.

  6. 13C NMR of tunnelling methyl groups

    NASA Astrophysics Data System (ADS)

    Detken, A.

    The dipolar interactions between the protons and the central 13C nucleus of a 13CH3 group are used to study rotational tunnelling and incoherent dynamics of such groups in molecular solids. Single-crystal 13C NMR spectra are derived for arbitrary values of the tunnel frequency upsilon t. Similarities to ESR and 2H NMR are pointed out. The method is applied to three different materials. In the hydroquinone/acetonitrile clathrate, the unique features in the 13C NMR spectra which arise from tunnelling with a tunnel frequency that is much larger than the dipolar coupling between the methyl protons and the 13C nucleus are demonstrated, and the effects of incoherent dynamics are studied. The broadening of the 13C resonances is related to the width of the quasi-elastic line in neutron scattering. Selective magnetization transfer experiments for studying slow incoherent dynamics are proposed. For the strongly hindered methyl groups of L-alanine, an upper limit for upsilon is derived from the 13C NMR spectrum. In aspirinTM (acetylsalicylic acid), incoherent reorientations dominate the spectra down to the lowest temperatures studied; their rate apparently increases with decreasing temperature below 25K.

  7. Characterization of the coal biosolubilization process using gel permeation chromatography and CPMAS NMR

    SciTech Connect

    Linehan, J.C.; Bean, R.M.; Franz, J.A.; Campbell, J.A.

    1990-05-01

    Leonardite, an oxidized lignite, and Illinois {number sign}6 coal were treated with Trametes versicolor and Penicillium sp., respectively, and separately with aqueous base to yield soluble and insoluble products. The products and starting materials were analyzed by gel permeation chromatography (GPC), using both aqueous and organic eluents, and by high-field, high-speed-pinning (>10.0 kHz) {sup 13}C cross polarization/magic angle spinning (CPMAS) nuclear magnetic resonance spectroscopy (NMR). The weight average molecular weights (M{sub w}) of the fungal-and base-solubilized products determined by GPC using acidic tetrahydrofuran (THF) eluent were found to be consistently lower than the M{sub w} determined using basic aqueous eluents. The M{sub w} of the leonardite product was measured to be 1800 and 6100 daltons using the THF and aqueous eluents, respectively. The aqueous eluent (phosphate buffered at pH 11.5) was found to be superior to the THF eluent in its solubilizing power, with 10% more material analyzed with the basic eluent. The solubility of the biotreated products in aqueous base was greater than either the starting coal or the chemically solubilized product. The Trametes-solubilized leonardite was found to contain a higher percentage of aliphatic carbon than the raw lignite; the Penicillium- solubilized Illinois {number sign}6 contained more aromatic carbon than before fungal treatment as determined by {sup 13}C CPMAS NMR. Pre-oxidation of Illinois {number sign}6 decreases the relative amount of aliphatic carbon. The high-field, high-speed-spinning CPMAS NMR technique was quantitatively evaluated using Argonne premium coals,International Humic Society Standards, and model compounds at various temperatures. 7 refs., 4 figs., 3 tabs.

  8. Solid state (13)C NMR analysis of human gallstones from cancer and benign gall bladder diseases.

    PubMed

    Jayalakshmi, K; Sonkar, Kanchan; Behari, Anu; Kapoor, V K; Sinha, Neeraj

    2009-09-01

    Natural abundance (13)C cross polarized (CP) magic angle spinning (MAS) nuclear magnetic resonance (NMR) analysis of human gall bladder stones collected from patients suffering from malignant and benign gall bladder disease was carried out which revealed different polymorphs of cholesterol in these stones. All gall bladder stones in present study had cholesterol as their main constituent. (13)C CP-MAS NMR analysis revealed three forms of cholesterol molecules in these stones, which are anhydrous form, monohydrate crystalline with amorphous form and monohydrate crystalline form. Our study revealed that stones collected from patients associated with chronic cholecystitis (CC) disease have mostly different polymorph of cholesterol than stones collected from patients associated with gall bladder cancer (GBC). Such study will be helpful in understanding the mechanism of formation of gallstones which are associated with different gall bladder diseases. This is the first study by solid state NMR revealing different crystal polymorphism of cholesterol in human gallstones, extending the applicability of (13)C CP-MAS NMR technique for the routine study of gallstones.

  9. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Treesearch

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  10. Characterization of covalent protein conjugates using solid-state sup 13 C NMR spectroscopy

    SciTech Connect

    Garbow, J.R.; Fujiwara, Hideji; Sharp, C.R.; Logusch, E.W. )

    1991-07-23

    Cross-polarization magic-angle spinning (CPMAS) {sup 13}C NMR spectroscopy has been used to characterize covalent conjugates of alachlor, an {alpha}-chloroacetamide hapten, with glutathione (GSH) and bovine serum albumin (BSA). The solid-state NMR method demonstrates definitively the covalent nature of these conjugates and can also be used to characterize the sites of hapten attachment to proteins. Three different sites of alachlor binding are observed in the BSA system. Accurate quantitation of the amount of hapten covalently bound to GSH and BSA is reported. The solid-state {sup 13}C NMR technique can easily be generalized to study other small molecule/protein conjugates and can be used to assist the development and refinement of synthetic methods needed for the successful formation of such protein alkylation products.

  11. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  12. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    NASA Astrophysics Data System (ADS)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  13. Functional groups identified by solid state 13C NMR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  14. Development of LC-13C NMR

    NASA Technical Reports Server (NTRS)

    Dorn, H. C.; Wang, J. S.; Glass, T. E.

    1986-01-01

    This study involves the development of C-13 nuclear resonance as an on-line detector for liquid chromatography (LC-C-13 NMR) for the chemical characterization of aviation fuels. The initial focus of this study was the development of a high sensitivity flow C-13 NMR probe. Since C-13 NMR sensitivity is of paramount concern, considerable effort during the first year was directed at new NMR probe designs. In particular, various toroid coil designs were examined. In addition, corresponding shim coils for correcting the main magnetic field (B sub 0) homogeneity were examined. Based on these initial probe design studies, an LC-C-13 NMR probe was built and flow C-13 NMR data was obtained for a limited number of samples.

  15. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy

    PubMed Central

    Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano

    2016-01-01

    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR. PMID:27022916

  16. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    PubMed

    Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano

    2016-01-01

    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.

  17. Determination of [{sup 13}C]pyrene sequestration in sediment microcosms using flash pyrolysis--GC--MS and {sup 13}C NMR

    SciTech Connect

    Guthrie, E.A.; Bortiatynski, J.M.; Hardy, K.S.; Kovach, E.M.; Van Heemst, J.D.H.; Hatcher, P.G.; Richman, J.E.

    1999-01-01

    In this study, the use of a {sup 13}C-labeled pollutant probe, [{sup 13}C]pyrene, and the application of flash pyrolysis--GC--MS and CPMAS {sup 13}C NMR provided analytical capabilities to study pyrene interactions with soluble and insoluble compartments of sedimentary organic matter (S{sub D}OM) during whole sediments incubations in aerated microcosms. Surface sediments were collected from a site of previous hydrocarbon contamination in New Orleans, LA. Over a period of 60 days, humic acid and humin fractions of S{sub D}OM accumulated increasing amounts of pyrene that were resistant to exhaustive extraction with organic solvents. The sequestered pyrene was evident in CPMAS {sup 13}C NMR spectra of humin fractions. The amount of sequestered pyrene in humic materials was quantified by flash pyrolysis--GC--MS, a technique that destroys the three-dimensional structure of macromolecular S{sub D}OM. Noncovalent binding of pyrene to humic materials in S{sub D}OM was greater in sediments incubated with biological activity than biocide-treated sediments. The combined analytical approaches demonstrate that the sequestered pyrene, or bound residue, is noncovalently associated with S{sub D}OM and has not undergone structural alteration. Implications of these data are discussed in reference to S{sub D}OM diagenesis and long-term availability of bound pollutant residues in sediments.

  18. Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR.

    PubMed

    Fritzsching, Keith J; Kim, Jihyun; Holland, Gregory P

    2013-08-01

    The interaction between cholesterol (Chol) and phospholipids in bilayers was investigated for the ternary model lipid rafts, DOPC/eSM/Chol and DOPC/DPPC/Chol, with differential scanning calorimetry (DSC) and (13)C cross polarization magic angle spinning (CP-MAS) solid-state NMR. The enthalpy and transition temperature (Tm) of the Lα liquid crystalline phase transition from DSC was used to probe the thermodynamics of the different lipids in the two systems as a function of Chol content. The main chain (13)C (CH2)n resonance is resolved in the (13)C CP-MAS NMR spectra for the unsaturated (DOPC) and saturated (eSM or DPPC) chain lipid in the ternary lipid raft mixtures. The (13)C chemical shift of this resonance can be used to detect differences in chain ordering and overall interactions with Chol for the different lipid constituents in the ternary systems. The combination of DSC and (13)C CP-MAS NMR results indicate that there is a preferential interaction between SM and Chol below Tm for the DOPC/eSM/Chol system when the Chol content is ≤20mol%. In contrast, no preferential interaction between Chol and DPPC is observed in the DOPC/DPPC/Chol system above or below Tm. Finally, (13)C CP-MAS NMR resolves two Chol environments in the DOPC/eSM/Chol system below Tm at Chol contents >20mol% while, a single Chol environment is observed for DOPC/DPPC/Chol at all compositions.

  19. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  20. 13C NMR Metabolomics: Applications at Natural Abundance

    PubMed Central

    2015-01-01

    13C NMR has many advantages for a metabolomics study, including a large spectral dispersion, narrow singlets at natural abundance, and a direct measure of the backbone structures of metabolites. However, it has not had widespread use because of its relatively low sensitivity compounded by low natural abundance. Here we demonstrate the utility of high-quality 13C NMR spectra obtained using a custom 13C-optimized probe on metabolomic mixtures. A workflow was developed to use statistical correlations between replicate 1D 13C and 1H spectra, leading to composite spin systems that can be used to search publicly available databases for compound identification. This was developed using synthetic mixtures and then applied to two biological samples, Drosophila melanogaster extracts and mouse serum. Using the synthetic mixtures we were able to obtain useful 13C–13C statistical correlations from metabolites with as little as 60 nmol of material. The lower limit of 13C NMR detection under our experimental conditions is approximately 40 nmol, slightly lower than the requirement for statistical analysis. The 13C and 1H data together led to 15 matches in the database compared to just 7 using 1H alone, and the 13C correlated peak lists had far fewer false positives than the 1H generated lists. In addition, the 13C 1D data provided improved metabolite identification and separation of biologically distinct groups using multivariate statistical analysis in the D. melanogaster extracts and mouse serum. PMID:25140385

  1. Quantitative 13C NMR characterization of fast pyrolysis oils

    DOE PAGES

    Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.

    2016-10-20

    Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.

  2. Study of molecular interactions with 13C DNP-NMR

    NASA Astrophysics Data System (ADS)

    Lerche, Mathilde H.; Meier, Sebastian; Jensen, Pernille R.; Baumann, Herbert; Petersen, Bent O.; Karlsson, Magnus; Duus, Jens Ø.; Ardenkjær-Larsen, Jan H.

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct 13C NMR ligand binding studies at natural isotopic abundance of 13C gets feasible in this way. Resultant screens are easy to interpret and can be performed at 13C concentrations below μM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands.

  3. 13C and 15N CP/MAS, 1H-15N SCT CP/MAS and FTIR spectroscopy as tools for qualitative detection of the presence of zwitterionic and non-ionic forms of ansa-macrolide 3-formylrifamycin SV and its derivatives in solid state.

    PubMed

    Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan

    2014-01-01

    (13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Surface dynamics of bacteriorhodopsin as revealed by (13)C NMR studies on [(13)C]Ala-labeled proteins: detection of millisecond or microsecond motions in interhelical loops and C-terminal alpha-helix.

    PubMed

    Yamaguchi, S; Tuzi, S; Yonebayashi, K; Naito, A; Needleman, R; Lanyi, J K; Saitô, H

    2001-03-01

    We have recorded (13)C NMR spectra of [2-(13)C]-, [1-(13)C]-, [3-(13)C],- and [1,2,3-(13)C(3)]Ala-labeled bacteriorhodopsin (bR), and its mutants, A196G, A160G, and A103C, by means of cross polarization-magic angle spinning (CP-MAS) and dipolar decoupled-magic angle spinning (DD-MAS) techniques, to reveal the conformation and dynamics of bR, with emphasis on the loop and C-terminus structures. The (13)C NMR signals of the loop (C-D, E-F, and F-G) regions were almost completely suppressed from [2-(13)C]-, [1-(13)C]Ala-, and [1-(13)C]Gly-labeled bR, due to the presence of conformational fluctuation with correlation times of 10(-4) s that interfered with the peak-narrowing by magic angle spinning. The observation of such suppressed peaks for specific residues provides a unique means of detecting intermediate frequency motions on the time scale of ms or micros in the surface loops of membrane proteins. Instead, the three well-resolved (13)C CP-MAS NMR signals of [2-(13)C]Ala-bR, at 50.38, 49.90, and 47.96 ppm, were ascribed to the C-terminal alpha-helix previously proposed from the data for [3-(13)C]Ala-bR: the former two peaks were assigned to Ala 232 and 238, in view of the results of successive proteolysis experiments, while the highest-field peak was ascribed to Ala 235 prior to Pro 236. Even such (13)C NMR signals were substantially broadened when (13)C NMR spectra of fully labeled [1,2,3-(13)C]Ala-bR were recorded, because the broadening and splitting of peaks due to the accelerated transverse relaxation rate caused by the increased number of relaxation pathways through a number of (13)C-(13)C homo-nuclear dipolar interactions and scalar J couplings, respectively, are dominant among (13)C-labeled nuclei. In addition, approximate correlation times for local conformational fluctuations of different domains, including the C-terminal tail, C-terminal alpha-helix, loops, and transmembrane alpha-helices, were estimated by measurement of the spin-lattice relaxation

  5. An improved 13C-tracer method for the study of lignin structure and reactions : differential 13C-NMR

    Treesearch

    Noritsugu Terashima; Dmitry Evtuguin; Carlos Pascoal Neto; Jim Parkas; Magnus Paulsson; Ulla Westermark; Sally Ralph; John Ralph

    2003-01-01

    The technique of selective 13C-enrichment of specific carbons in lignin combined with 13C-NMR differential spectrometry between spectra of 13C-enriched and unenriched lignins (Ä13C-NMR) provides definitive information on the structure of the lignin macromolecule. Improvements were made on, (1) specific 13C-enrichment of almost all carbons involved in inter-unit bonds...

  6. Application of 13C-labeling and 13C-13C COSY NMR experiments in the structure determination of a microbial natural product.

    PubMed

    Kwon, Yun; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2014-08-01

    The elucidation of the structures of complex natural products bearing many quaternary carbons remains challenging, even in this advanced spectroscopic era. (13)C-(13)C COSY NMR spectroscopy shows direct couplings between (13)C and (13)C, which comprise the backbone of a natural product. Thus, this type of experiment is particularly useful for natural products bearing consecutive quaternary carbons. However, the low sensitivity of (13)C-based NMR experiments, due to the low natural abundance of the (13)C nucleus, is problematic when applying these techniques. Our efforts in the (13)C labeling of a microbial natural product, cyclopiazonic acid (1), by feeding (13)C-labeled glucose to the fungal culture, enabled us to acquire (13)C-(13)C COSY NMR spectra on a milligram scale that clearly show the carbon backbone of the compound. This is the first application of (13)C-(13)C COSY NMR experiments for a natural product. The results suggest that (13)C-(13)C COSY NMR spectroscopy can be routinely used for the structure determination of microbial natural products by (13)C-enrichment of a compound with (13)C-glucose.

  7. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  8. Solid-state 13C NMR and molecular modeling studies of acetyl aleuritolic acid obtained from Croton cajucara Benth

    NASA Astrophysics Data System (ADS)

    da Silva San Gil, Rosane Aguiar; Albuquerque, Magaly Girão; de Alencastro, Ricardo Bicca; da Cunha Pinto, Angelo; do Espírito Santo Gomes, Fabiano; de Castro Dantas, Tereza Neuma; Maciel, Maria Aparecida Medeiros

    2008-08-01

    Solid-state 13C nuclear magnetic resonance ( 13C NMR) with magic-angle spinning (MAS) and with cross-polarization and magic-angle spinning (CP/MAS) spectra, and differential scanning calorimetry (DSC) techniques were used to obtain structural data from a sample of acetyl aleuritolic acid (AAA) extracted from the stem bark of Croton cajucara Benth. (Euphorbiaceae) and recrystallized from acetone. Since solid-state 13C NMR results suggested the presence of more than one molecule in the unitary cell for the AAA, DSC analysis and molecular modeling calculations were used to access this possibility. The absence of phase transition peaks in the DSC spectra and the dimeric models of AAA simulated using the semi-empirical PM3 method are in agreement with that proposal.

  9. ^13C Solid NMR Study of Devulcanization and Revulcanization of SBR Ne

    NASA Astrophysics Data System (ADS)

    Massey, J.; Levin, V.; Isayev, A.; von Meerwall, E.

    1996-03-01

    As part of a larger effort in support of recycling of rubber-based composites, we have used ^13C CP-MAS NMR spectroscopy and relaxation to study molecular and segmental mobilities in styrene-butadiene random copolymers before and after sulfur crosslinking, after subsequent devulcanization using a thermal ultrasound technique, and following revulcanization. Tracking the cis-trans ratio indicates that overall network crosslink density increases during each of these steps, including devulcanization, which produces mesoscale network aggregates and substantial amounts of sol. This observation is confirmed by the transverse (T_2) relaxation times, which show that molecular/segmental mobilities monotonically decrease in the same sequence. Analysis of these effects requires the invocation of alterations in sulfur crosslinking, i.e. density, distribution, and functionality, including extensive cyclization. Measurements of the glass transition temperatures in melt, network, sol , and revulcanizate are in accord with this picture.

  10. Study of molecular interactions with 13C DNP-NMR.

    PubMed

    Lerche, Mathilde H; Meier, Sebastian; Jensen, Pernille R; Baumann, Herbert; Petersen, Bent O; Karlsson, Magnus; Duus, Jens Ø; Ardenkjaer-Larsen, Jan H

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct (13)C NMR ligand binding studies at natural isotopic abundance of (13)C gets feasible in this way. Resultant screens are easy to interpret and can be performed at (13)C concentrations below muM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  11. 13C MAS NMR studies of the effects of hydration on the cell walls of potatoes and Chinese water chestnuts.

    PubMed

    Tang, H; Belton, P S; Ng, A; Ryden, P

    1999-02-01

    13C NMR with magic angle spinning (MAS) has been employed to investigate the cell walls of potatoes and Chinese water chestnuts over a range of hydration levels. Both single-pulse excitation (SPEMAS) and cross-polarization (CPMAS) experiments were carried out. Hydration led to a substantial increase in signal intensities of galactan and galacturonan in the SPEMAS spectra and a decrease in line width, implying mobilization in the backbone and side chains of pectin. In CPMAS spectra of both samples, noncellulose components showed signal loss as hydration increased. However, the signals of some galacturonan in the 3(1) helix configuration remained in the spectra even when the water content was as high as 110%. Cellulose was unaffected. It is concluded that the pectic polysaccharides experience a distribution of molecular conformations and mobility, whereas cellulose remained as typical rigid solid.

  12. 13C NMR of Nephila clavipes major ampullate silk gland.

    PubMed

    Hijirida, D H; Do, K G; Michal, C; Wong, S; Zax, D; Jelinski, L W

    1996-12-01

    The major ampullate glands of the spider Nephila clavipes contain approximately 0.2 microliter each of a highly concentrated (approximately 50%) solution of silk fibroin. Therefore, the reservoir of silk in these glands presents an ideal opportunity to observe prefolded conformations of a protein in its native state. To this end, the structure and conformation of major ampullate gland silk fibroin within the glands of the spider N. clavipes were examined by 13C NMR spectroscopy. These results were compared to those from silk protein first drawn from the spinneret and then denatured. The 13C NMR chemical shifts, along with infrared and circular dichroism data, suggest that the silk fibroin in the glands exists in dynamically averaged helical conformations. Furthermore, there is no evidence of proline residues in U-(13)C-D-glucose-labeled silk. This transient prefolded "molten fibril" state may correspond to the silk I form found in Bombyx mori silk. There is no evidence of the final beta-sheet structure in the ampullate gland silk fibroin before final silk processing. However, the conformation of silk in the glands appears to be in a highly metastable state, as plasticization with water produces the beta-sheet structure. Therefore, the ducts connecting the ampullate glands to the spinnerets play a larger role in silk processing than previously thought.

  13. 13C Metabolomics: NMR and IROA for Unknown Identification

    PubMed Central

    Clendinen, Chaevien S.; Stupp, Gregory S.; Wang, Bing; Garrett, Timothy J.; Edison, Arthur S.

    2016-01-01

    Abstract: Background Isotopic Ratio Outlier Analysis (IROA) is an untargeted metabolomics method that uses stable isotopic labeling and LC-HRMS for identification and relative quantification of metabolites in a biological sample under varying experimental conditions. Objective We demonstrate a method using high-sensitivity 13C NMR to identify an unknown metabolite isolated from fractionated material from an IROA LC-HRMS experiment. Methods IROA samples from the nematode Caenorhabditis elegans were fractionated using LC-HRMS using 5 repeated injections and collecting 30 sec fractions. These were concentrated and analyzed by 13C NMR. Results We isotopically labeled samples of C. elegans and collected 2 adjacent LC fractions. By HRMS, one contained at least 2 known metabolites, phenylalanine and inosine, and the other contained tryptophan and an unknown feature with a monoisotopic mass of m/z 380.0742 [M+H]+. With NMR, we were able to easily verify the known compounds, and we then identified the spin system networks responsible for the unknown resonances. After searching the BMRB database and comparing the molecular formula from LC-HRMS, we determined that the fragments were a modified anthranilate and a glucose modified by a phosphate. We then performed quantum chemical NMR chemical shift calculations to determine the most likely isomer, which was 3’-O-phospho-β-D-glucopyranosyl-anthranilate. This compound had previously been found in the same organism, validating our approach. Conclusion We were able to dereplicate previously known metabolites and identify a metabolite that was not in databases by matching resonances to NMR databases and using chemical shift calculations to determine the correct isomer. This approach is efficient and can be used to identify unknown compounds of interest using the same material used for IROA. PMID:28090435

  14. Rotational dynamics in a crystalline molecular gyroscope by variable-temperature 13C NMR, 2H NMR, X-ray diffraction, and force field calculations.

    PubMed

    Khuong, Tinh-Alfredo V; Dang, Hung; Jarowski, Peter D; Maverick, Emily F; Garcia-Garibay, Miguel A

    2007-01-31

    A combination of solid-state 13C CPMAS NMR, 2H NMR, X-ray-determined anisotropic displacement parameters (ADPs), and molecular mechanics calculations were used to analyze the rotational dynamics of 1,4-bis[3,3,3-tris(m-methoxyphenyl)propynyl]benzene (3A), a structure that emulates a gyroscope with a p-phenylene group acting as a rotator and two m-methoxy-substituted trityl groups acting as a stator. The line shape analysis of VT 13C CPMAS and broad-band 2H NMR data were in remarkable agreement with each other, with rotational barriers of 11.3 and 11.5 kcal/mol, respectively. The barriers obtained by analysis of ADPs obtained by single-crystal X-ray diffraction at 100 and 200 K, assuming a sinusoidal potential, were 10.3 and 10.1 kcal, respectively. A similar analysis of an X-ray structure solved from data acquired at 300 K suggested a barrier of only 8.0 kcal/mol. Finally, a rotational potential calculated with a finite cluster model using molecular mechanics revealed a symmetric but nonsinusoidal potential that accounts relatively well for the X-ray-derived values and the NMR experimental results. It is speculated that the discrepancy between the barriers derived from low and high-temperature X-ray data may be due to an increase in anharmonicity, or to disorder, at the higher temperature values.

  15. Determination of the (13)C/(12)C Carbon Isotope Ratio in Carbonates and Bicarbonates by (13)C NMR Spectroscopy.

    PubMed

    Pironti, Concetta; Cucciniello, Raffaele; Camin, Federica; Tonon, Agostino; Motta, Oriana; Proto, Antonio

    2017-10-09

    This paper is the first study focused on the innovative application of (13)C NMR (nuclear magnetic resonance) spectroscopy to determine the bulk (13)C/(12)C carbon isotope ratio, at natural abundance, in inorganic carbonates and bicarbonates. In the past, (13)C NMR spectroscopy (irm-(13)C NMR) was mainly used to measure isotope ratio monitoring with the potential of conducting (13)C position-specific isotope analysis of organic molecules with high precision. The reliability of the newly developed methodology for the determination of stable carbon isotope ratio was evaluated in comparison with the method chosen in the past for these measurements, i.e., isotope ratio mass spectrometry (IRMS), with very encouraging results. We determined the (13)C/(12)C ratio of carbonates and bicarbonates (∼50-100 mg) with a precision on the order of 1‰ in the presence of a relaxation agent, such as Cr(acac)3, and CH3(13)COONa as an internal standard. The method was first applied to soluble inorganic carbonates and bicarbonates and then extended to insoluble carbonates by converting them to Na2CO3, following a simple procedure and without observing isotopic fractionation. Here, we demonstrate that (13)C NMR spectroscopy can also be successfully adopted to characterize the (13)C/(12)C isotope ratio in inorganic carbonates and bicarbonates with applications in different fields, such as cultural heritage and geological studies.

  16. Variability of cork from Portuguese Quercus suber studied by solid-state (13)C-NMR and FTIR spectroscopies.

    PubMed

    Lopes, M H; Barros, A S; Pascoal Neto, C; Rutledge, D; Delgadillo, I; Gil, A M

    2001-01-01

    A new approach is presented for the study of the variability of Portuguese reproduction cork using solid-state (13)C-NMR spectroscopy and photoacoustic (PAS) FTIR (FTIR-PAS) spectroscopy combined with chemometrics. Cork samples were collected from 12 different geographical sites, and their (13)C-cross-polarization with magic angle spinning (CP/MAS) and FTIR spectra were registered. A large spectral variability among the cork samples was detected by principal component analysis and found to relate to the suberin and carbohydrate contents. This variability was independent of the sample geographical origin but significantly dependent on the cork quality, thus enabling the distinction of cork samples according to the latter property. The suberin content of the cork samples was predicted using multivariate regression models based on the (13)C-NMR and FTIR spectra of the samples as reported previously. Finally, the relationship between the variability of the (13)C-CP/MAS spectra with that of the FTIR-PAS spectra was studied by outer product analysis. This type of multivariate analysis enabled a clear correlation to be established between the peaks assigned to suberin and carbohydrate in the FTIR spectrum and those appearing in the (13)C-CP/MAS spectra.

  17. Accurate measurements of 13C-13C distances in uniformly 13C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Khaneja, Navin; Nielsen, Niels Chr.

    2014-09-01

    Application of sets of 13C-13C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important 13C-13C distances in uniformly 13C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl (13C') and aliphatic (13Caliphatic) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly 13C,15N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of 13C'-13Caliphatic distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform 13C,15N-labeling on the FGAIL fragment.

  18. Crystal Structures and Vibrational and Solid-State (CPMAS) NMR Spectroscopy of Some Bis(triphenylphosphine)silver(I) Sulfate, Selenate and Phosphate Systems.

    SciTech Connect

    Bowmaker, Graham A.; Hanna, John V.; Rickard, Clifton E.; Lipton, Andrew S.

    2001-01-01

    The complexes [Ag2(PPh3)4EO4].2H2O(E=S, Se) (1,2), [Ag(PPh3)2HEO4].H2O (E=S, Se)(3,4) and [Ag9PPh3)2H2PO4].2EtOH (5) have been prepared and studied by X-ray crystallography and by infrared and solid-state 13C and 31 P cross-polarization, magic-angle-spinning (CPMAS) NMR spectroscopy.

  19. 13C NMR chemical shifts of the triclinic and monoclinic crystal forms of valinomycin.

    PubMed

    Kameda, Tsunenori; McGeorge, Gary; Orendt, Anita M; Grant, David M

    2004-07-01

    Two different crystalline polymorphs of valinomycin, the triclinic and monoclinic forms, have been studied by high resolution, solid state (13)C CP-MAS NMR spectroscopy. Although the two polymorphs of the crystal are remarkably similar, there are distinct differences in the isotropic chemical shifts between the two spectra. For the triclinic form, the carbon chemical shift tensor components for the alpha carbons adjacent to oxygen in the lactic acid and hydroxyisovaleric acid residues and the ester carbonyls of the valine residue were obtained using the FIREMAT experiment. From the measured components, it was found that the behavior of the isotropic chemical shift, delta(iso), for valine residue ester carbonyl carbons is predominately influenced by the intermediate component, delta(22). Additionally it was found that the smallest shift component, delta(33), for the L -lactic acid ( L -Lac) and D -alpha-hydroxyisovaleric acid ( D -Hyi) C(alpha)-O carbon was significantly displaced depending upon the nature of individual amino acid residues, and it is the delta(33) component that governs the behavior of delta(iso) in these alpha carbons.

  20. An in Vivo 13C NMR Analysis of the Anaerobic Yeast Metabolism of 1-13C-Glucose

    NASA Astrophysics Data System (ADS)

    Giles, Brent J.; Matsche, Zenziwe; Egeland, Ryan D.; Reed, Ryan A.; Morioka, Scott S.; Taber, Richard L.

    1999-11-01

    A biochemistry laboratory experiment that studies the dynamics of the anaerobic yeast metabolism of 1-13C-D-glucose via NMR is described. Fleischmann's Active Dry yeast, under anaerobic conditions, produces primarily 2-13C-ethanol and some 1-13C-glycerol as end products. An experiment is described in which the yeast is subjected to osmotic shock from an increasing sodium chloride concentration. Under these conditions, the yeast increases the ratio of glycerol to ethanol. The experiment can be accomplished in a single laboratory period.

  1. Structure of uniaxially aligned 13C labeled silk fibroin fibers with solid state 13C-NMR

    NASA Astrophysics Data System (ADS)

    Demura, Makoto; Yamazaki, Yasunobu; Asakura, Tetsuo; Ogawa, Katsuaki

    1998-01-01

    Carbon-13 isotopic labeling of B. mori silk fibroin was achieved biosynthetically with [1- 13C] glycine in order to determine the carbonyl bond orientation angle of glycine sites with the silk fibroin. Angular dependence of 13C solid state NMR spectra of uniaxially oriented silk fibroin fiber block sample due to the carbonyl 13C chemical shift anisotropy was simulated according to the chemical shift transformation with Euler angles, αF and βF, from principal axis system (PAS) to fiber axis system (FAS). The another Euler angles, αDCO and βDCO, for transformation from PAS to the molecular symmetry axis were determined from the [1- 13C] glycine sequence model compounds for the silk fibroin. By the combination of these Euler angles, the carbonyl bond orientation angle with respect to FAS of the [1- 13C] glycine sites of the silk fibroin was determined to be 90 ± 5°. This value is in agreement with the X-ray diffraction and our previous solid state NMR data of B. mori silk fibroin fiber (a typical β-pleated sheet) within experimental error.

  2. NMR structure analysis of uniformly 13C-labeled carbohydrates.

    PubMed

    Fontana, Carolina; Kovacs, Helena; Widmalm, Göran

    2014-06-01

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.

  3. 13C isotope effects on 1H chemical shifts: NMR spectral analysis of 13C-labelled D-glucose and some 13C-labelled amino acids.

    PubMed

    Tiainen, Mika; Maaheimo, Hannu; Soininen, Pasi; Laatikainen, Reino

    2010-02-01

    The one- and two-bond (13)C isotope shifts, typically -1.5 to -2.5 ppb and -0.7 ppb respectively, in non-cyclic aliphatic systems and up to -4.4 ppb and -1.0 ppb in glucose cause effects that need to be taken into account in the adaptive NMR spectral library-based quantification of the isotopomer mixtures. In this work, NMR spectral analyses of some (13)C-labelled amino acids, D-glucose and other small compounds were performed in order to obtain rules for prediction of the (13)C isotope effects on (1)H chemical shifts. It is proposed that using the additivity rules, the isotope effects can be predicted with a sufficient accuracy for amino acid isotopomer applications. For glucose the effects were found strongly non-additive. The complete spectral analysis of fully (13)C-labelled D-glucose made it also possible to assign the exocyclic proton signals of the glucose. Copyright 2009 John Wiley & Sons, Ltd.

  4. sup 13 C NMR investigation of crosslinking in organic aerogels

    SciTech Connect

    Ward, R. L.; Pekala, R. W.

    1989-09-15

    Organic aerogels are a special type of low density foam produced from the supercritical drying of resorcinol-formaldehyde (RF) gels. These aerogels have continuous porosity, ultrafine cell/pore sizes (<1000 {angstrom}), and a microstructure composed of interconnected colloidal-like particles with diameters ranging from 30-175 {angstrom}. The particle size, surface area, density, and mechanical properties of the aerogels are largely determined by the catalysts concentration used in the sol-gel polymerization. In order to gain some insight into the crosslinks between RF particles, aerogels were labeled with C-13 formaldehyde at various times in the polymerization. CPMAS and IRCP techniques were used to correlate the relaxation behavior of the C-13 enriched aerogels with their different microstructures. 9 refs., 1 fig., 2 tabs.

  5. 13C NMR and isotopic (δ13C) investigations on modern vegetation samples: a tool to understand the soil organic matter degradation dynamics and preferences

    NASA Astrophysics Data System (ADS)

    Rakshit, Subhadeep; Sanyal, Prasanta; Vardhan Gaur, Harsh

    2015-04-01

    Soil organic carbon, one of the largest reservoirs of carbon, is a heterogeneous mixture of organic compounds with dominant contribution derived from decomposition of plants in various stages. Although general ideas about the processes and mechanisms of soil organic matter (SOM) degradation have been developed, a very few study has linked the SOM with its parent material. In this study we aim to generate reference data set of functional groups from modern vegetation samples (C3 and C4plants) to better understand the degradation dynamics and preferences. The carbon functional groups from modern vegetation samples (eight C3 and nine C4 plants collected from Mohanpur, Nadia, West Bengal, India) were examined by solid state 13C CPMAS NMR spectroscopy. Additionally, isotopic investigations (δ13C) has also been carried out on the modern vegetation samples to understand the relationship of bulk isotopic values to the concentration of functional groups. The major functional groups (alkyl C, O-alkyl C, aromatic C, carbonyl C and aldehyde/ketone) of modern vegetation samples form 16%, 65%, 5%, 14% and 1% respectively in C3 plants. Considerable differences has been observed for C4 plants with average values of alkyl C, O-alkyl C, aromatic C, carbonyl C and aldehyde/ketone are 8%, 83%, 3%, 5% and 1% respectively. The concentration of functional groups from the modern vegetational samples can be considered as reference scale to compare with the 13C NMR data derived from the different soil horizons to understand the SOM degradation dynamics. The δ13CV PDB values of modern vegetation samples plotted against the individual concentration of functional groups shows significant correlation in C4 plants, whereas a lack in correlation has been observed for C3 plants. We assume this difference in relationship of δ13CV PDB values with functional groups of C3 and C4plants can be due to the differences in photosynthesis pathways, the fractionation of CO2 and accumulation of the products

  6. Investigation of the Use of Solid State Cp/mas NMR for Characterization of Thermoplastic Polyamides and Unique Thermally Curable Polyamides Containing the Cyclobutene Moiety.

    NASA Astrophysics Data System (ADS)

    Powell, Douglas Graham

    1990-08-01

    A series of model diamides was synthesized from mono- and disubstituted amines with the diacid chloride of cyclobutene-1,2-dicarboxylic acid. Relative rates of thermolysis (by DSC) were dependent on the number and type of substituents. Thermolysis products were Diels-Alder dimers and spontaneously formed polymers. Thermal imidization of cycloadducts was possible in some cases with concomitant oxidation to N, N^'-disubstituted aromatic bisimides. Polyamides were prepared from cyclobutene-1,2 -dicarboxylic acid using low temperature condensation reaction conditions. The unusual solubility characteristics of the diacid as well as the instability of the diacid chloride severely limited formation of high molecular weight polymers. Secondary monomers were synthesized in order to take advantage of the more predictable reactivity of the aromatic carboxyl group. Secondary monomers were polymerized with diamine comonomers using low temperature condensation methods. Solid state ^{13}C CP/MAS NMR confirmed the polymer structure. The thermalized product was found to be insoluble, although swellable, in polar aprotic solvents. Solid state ^{13 }C NMR spectra of the thermal products confirmed crosslinking by intermolecular Diels-Alder cycloaddition. Several important aliphatic polyamides were characterized using high resolution techniques with an emphasis on the ^{15}N nucleus. Chemical shifts from ^{15}N CP/MAS were found to correlate with the alpha and gamma crystal forms found in aliphatic polyamides. This chemical shift difference is rationalized as a conformationally dependent interaction of the amide nitrogen with its substituents. Evidence is presented from molecular orbital calculations which support this theory. Nylon 6 and nylon 11 were synthesized with 20% and 99% ^{15}N enrichment, respectively. ^{15}N CP/MAS of the enriched nylon 6 showed the amorphous region of the polymer for the first time. ^{15 }N relaxation times (T_1, T_1_rho) confirmed the assignment of the

  7. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    PubMed Central

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline’s favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional 1H, 13C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds. PMID:28194934

  8. Continuous Flow (1)H and (13)C NMR Spectroscopy in Microfluidic Stripline NMR Chips.

    PubMed

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M; Janssen, Johannes W G; van Bentum, P Jan M; Gardeniers, Han J G E; Kentgens, Arno P M

    2017-02-21

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional (1)H, (13)C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds.

  9. Natural abundance 13C-NMR spectroscopy for the quantitative determination of fecal fat.

    PubMed

    Kunz, P; Künnecke, B; Kunz, I; Lengsfeld, H; von Kienlin, M

    2003-10-01

    To evaluate 13C-NMR spectroscopy as a method for fat quantitation in human feces without time consuming or unpleasant preparation steps. Stool samples of seven healthy subjects were collected for 18 days before and during oral intake of the inhibitor of gastrointestinal lipases Orlistat. Fecal lipid content was determined first using 13C-NMR, then by conventional gravimetry after homogenization and Bligh & Dyer lipid extraction. The correlation between gravimetry and 13C-NMR was excellent (R2 = 0.91). In repeated measurements, the mean percentage error was 2.8%. On average, 13C-NMR yielded 1.27 g less fat than gravimetry. Orlistat efficacy for fat excretion assessed by 13C-NMR and by gravimetry was 34.3% and 33.9%, respectively. With a total measurement time of three minutes, 13C-NMR spectroscopy of unprocessed whole stool provides an accurate alternative to gravimetry for assessing total fecal fat excretion. 13C-NMR is superior with regard to practicability and speed.

  10. 3D 13C- 13C- 13C correlation NMR for de novo distance determination of solid proteins and application to a human α-defensin

    NASA Astrophysics Data System (ADS)

    Li, Shenhui; Zhang, Yuan; Hong, Mei

    2010-02-01

    The de novo structure of an antimicrobial protein, human α-defensin 1 (HNP-1), is determined by combining a 3D 13C- 13C- 13C (CCC) magic-angle spinning (MAS) correlation experiment with standard resonance assignment experiments. Using a short spin diffusion mixing time to assign intra-residue cross peaks and a long mixing time to detect inter-residue correlation peaks, we show that the 3D CCC experiment not only reduces the ambiguity of resonance assignment, but more importantly yields two orders of magnitude more long-range distances without recourse to existing crystal structures. Most of these distance constraints could not be obtained in a de novo fashion from 2D correlation spectra due to significant resonance overlap. Combining the distance constraints from the 3D CCC experiment and the chemical-shift-derived torsion angles, we obtained a de novo high-resolution NMR structure of HNP-1, with a heavy-atom RMSD of 3.4 Å from the crystal structure of the analogous HNP-3. The average energy of the minimum-energy ensemble is less than of 40 kcal/mol. Thus, the 3D CCC experiment provides a reliable means of restraining the three-dimensional structure of insoluble proteins with unknown conformations.

  11. 3D (13)C-(13)C-(13)C correlation NMR for de novo distance determination of solid proteins and application to a human alpha-defensin.

    PubMed

    Li, Shenhui; Zhang, Yuan; Hong, Mei

    2010-02-01

    The de novo structure of an antimicrobial protein, human alpha-defensin 1 (HNP-1), is determined by combining a 3D (13)C-(13)C-(13)C (CCC) magic-angle spinning (MAS) correlation experiment with standard resonance assignment experiments. Using a short spin diffusion mixing time to assign intra-residue cross peaks and a long mixing time to detect inter-residue correlation peaks, we show that the 3D CCC experiment not only reduces the ambiguity of resonance assignment, but more importantly yields two orders of magnitude more long-range distances without recourse to existing crystal structures. Most of these distance constraints could not be obtained in a de novo fashion from 2D correlation spectra due to significant resonance overlap. Combining the distance constraints from the 3D CCC experiment and the chemical-shift-derived torsion angles, we obtained a de novo high-resolution NMR structure of HNP-1, with a heavy-atom RMSD of 3.4A from the crystal structure of the analogous HNP-3. The average energy of the minimum-energy ensemble is less than of 40kcal/mol. Thus, the 3D CCC experiment provides a reliable means of restraining the three-dimensional structure of insoluble proteins with unknown conformations. Copyright 2009 Elsevier Inc. All rights reserved.

  12. 13C nuclear magnetic resonance data of lanosterol derivatives—Profiling the steric topology of the steroid skeleton via substituent effects on its 13C NMR

    NASA Astrophysics Data System (ADS)

    Dias, Jerry Ray; Gao, Hongwu

    2009-12-01

    The 13C NMR spectra of over 24 tetracyclic triterpenoid derivatives have been structurally analyzed. The 13C NMR chemical shifts allow one to probe the steric topology of the rigid steroid skeleton and inductive effects of its substituents. Use of deuterium labeling in chemical shift assignment and B-ring aromatic terpenoids are also featured.

  13. Propionate metabolism in the rat heart by 13C n.m.r. spectroscopy.

    PubMed Central

    Sherry, A D; Malloy, C R; Roby, R E; Rajagopal, A; Jeffrey, F M

    1988-01-01

    High-resolution 13C n.m.r. spectroscopy has been used to examine propionate metabolism in the perfused rat heart. A number of tricarboxylic acid (TCA) cycle intermediates are observable by 13C n.m.r. in hearts perfused with mixtures of pyruvate and propionate. When the enriched 13C-labelled nucleus originates with pyruvate, the resonances of the intermediates appear as multiplets due to formation of multiply-enriched 13C-labelled isotopomers, whereas when the 13C-labelled nucleus originates with propionate, these same intermediates appear as singlets in the 13C spectrum since entry of propionate into the TCA cycle occurs via succinyl-CoA. An analysis of the isotopomer populations in hearts perfused with [3-13C]pyruvate plus unlabelled propionate indicates that about 27% of the total pyruvate pool available to the heart is derived directly from unlabelled propionate. This was substantiated by perfusing a heart for 2 h with [3-13C]propionate as the only available exogenous substrate. Under these conditions, all of the propionate consumed by the heart, as measured by conventional chemical analysis, ultimately entered the oxidative pathway as [2-13C] or [3-13C]pyruvate. This is consistent with entry of propionate into the TCA cycle intermediate pools as succinyl-CoA and concomitant disposal of malate to pyruvate via the malic enzyme. 13C resonances arising from enriched methylmalonate and propionylcarnitine are also detected in hearts perfused with [3-13C] or [1-13C]propionate which suggests that 13C n.m.r. may be useful as a non-invasive probe in vivo of metabolic abnormalities involving the propionate pathway, such as methylmalonic aciduria or propionic acidaemia. PMID:3178775

  14. 1H, 15N and 13C NMR Assignments of Mouse Methionine Sulfoxide Reductase B2

    PubMed Central

    Breivik, Åshild S.; Aachmann, Finn L.; Sal, Lena S.; Kim, Hwa-Young; Del Conte, Rebecca; Gladyshev, Vadim N.; Dikiy, Alexander

    2011-01-01

    A recombinant mouse methionine-r-sulfoxide reductase 2 (MsrB2ΔS) isotopically labeled with 15N and 15N/13C was generated. We report here the 1H, 15N and 13C NMR assignments of the reduced form of this protein. PMID:19636904

  15. Derivatives of pyrazinecarboxylic acid: 1H, 13C and 15N NMR spectroscopic investigations.

    PubMed

    Holzer, Wolfgang; Eller, Gernot A; Datterl, Barbara; Habicht, Daniela

    2009-07-01

    NMR spectroscopic studies are undertaken with derivatives of 2-pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts ((1)H, (13)C, (15)N) and coupling constants ((1)H,(1)H; (13)C,(1)H; (15)N,(1)H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of (13)C,(1)H spin coupling constants is accomplished by 2D (delta,J) long-range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3-hydroxy-2-pyrazinecarboxylic acid are discussed.

  16. 13C CP MAS NMR and GIAO-CHF/DFT calculations of flavonoids: Morin, kaempferol, tricin, genistein, formononetin and 3,7-dihydroxyflavone

    NASA Astrophysics Data System (ADS)

    Zielińska, Agnieszka; Paradowska, Katarzyna; Jakowski, Jacek; Wawer, Iwona

    2008-02-01

    13C CP MAS NMR spectra of the flavonoids: morin, kaempferol, 3,7-dihydroxyflavone, tricin and isoflavones: genistein and formononetin were recorded to characterize solid-state conformations. Intramolecular hydrogen bonds forming five-, six- and seven-membered rings are present in the two morin molecules in the crystals - their 13C resonances have been assigned with the aid of the calculated shielding constants. Linear relationships between the calculated shielding constants σDFT (ppm) and chemical shifts ( δCPMAS, ppm) were obtained for all studied compounds. Higher correlation coefficients suggest that the conformation with "clockwise" orientation of both OH groups is more probable in the solid 3,7-dihydroxyflavone, whereas in the solid formononetin the OH and OCH 3 substituents are directed "anticlockwise". The barrier to the rotation of phenyl ring B decreases in the order: morin (2'-OH, 3-OH) > kaempferol (3-OH) > tricin.

  17. Vortex dynamics in Rb3C60 observed by 87Rb and 13C NMR

    NASA Astrophysics Data System (ADS)

    Zimmer, G.; Mehring, M.; Rachdi, F.; Fischer, J. E.

    1996-08-01

    The vortex dynamics in Rb3C60 is investigated by 87Rb and 13C NMR. It is shown that spin-spin relaxation as well as two-dimensional exchange experiments allow an estimation of the time scale of vortex fluctuations. The effective pinning potential is deduced from the temperature dependence of the NMR parameters.

  18. Hydration dependence of backbone and side chain polylysine dynamics: a 13C solid-state NMR and IR spectroscopy study.

    PubMed

    Krushelnitsky, Alexey; Faizullin, Dzhigangir; Reichert, Detlef

    2004-01-01

    The molecular dynamics of solid poly-L-lysine has been studied by the following natural abundance (13)C-NMR relaxation methods: measurements of the relaxation times T(1) at two resonance frequencies, off-resonance T(1rho) at two spin-lock frequencies, and proton-decoupled T(1rho). Experiments were performed at different temperatures and hydration levels (up to 17% H(2)O by weight). The natural abundance (13)C-CPMAS spectrum of polylysine provides spectral resolution of all types of backbone and side chain carbons and thus, dynamic parameters could be determined separately for each of them. At the same time, the conformational properties of polylysine were investigated by Fourier transform infrared spectroscopy. The data obtained from the different NMR experiments were simultaneously analyzed using the correlation function formalism and model-free approach. The results indicate that in dry polylysine both backbone and side chains take part in two low amplitude motions with correlation times of the order of 10(-4) s and 10(-9) s. Upon hydration, the dynamic parameters of the backbone remain almost constant except for the amplitude of the slower process that increases moderately. The side chain dynamics reveals a much stronger hydration response: the amplitudes of both slow and fast motions increase significantly and the correlation time of the slow motion shortens by about five orders of magnitude, and at hydration levels of more than 10% H(2)O fast and slow side chain motions are experimentally indistinguishable. These changes in the molecular dynamics cannot be ascribed to any hydration-dependent conformational transitions of polylysine because IR spectra reveal almost no hydration dependence in either backbone or side chain absorption domains. The physical nature of the fast and slow motions, their correlation time distributions, and hydration dependence of microdynamic parameters are discussed. Copyright 2003 Wiley Periodicals, Inc. Biopolymers 73: 1-15, 2004

  19. Quantitation of crystalline material within a liquid vehicle using 1H/19F CP/MAS NMR.

    PubMed

    Farrer, Brian T; Peresypkin, Andrey; Wenslow, Robert M

    2007-02-01

    A method to detect and quantify a small amount crystalline material within a liquid solution of solubilized material is described. 19F CP-MAS ssNMR was investigated as a technique to detect low levels (0.2 mg/g) of crystalline sodium (2R)-7-{3-[2-chloro-4-(2,2,2-trifluoroethoxy)phenoxy]propoxy}-2-methyl-3,4-dihydro-2H-chromane-2-carboxylate (I) within a solid mixture (with microcrystalline cellulose) and a slurry with a liquid vehicle (capric and caprylic acid triglycerides). The results demonstrate that the area of the 19F CP/MAS signal obtained in 25 min at 25 degrees C is linearly dependent (R2=0.997) on the mass of I within the ssNMR rotor. Slopes of CP-MAS peak area versus mass of I in the rotor were nearly identical for the solid mixture and slurry suspension. Signal-to-noise ratio for the low potency slurry suggest detection and quantitation of 0.1 mg of crystalline I in the rotor, corresponding to 2 mg/g of crystalline material within the slurry suspension.

  20. Production and NMR signal optimization of hyperpolarized 13C-labeled amino acids

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Ferguson, Sarah; Kiswandhi, Andhika; Lumata, Lloyd

    Amino acids are targeted nutrients for consumption by cancers to sustain their rapid growth and proliferation. 13C-enriched amino acids are important metabolic tracers for cancer diagnostics using nuclear magnetic resonance (NMR) spectroscopy. Despite this diagnostic potential, 13C NMR of amino acids however is hampered by the inherently low NMR sensitivity of the 13C nuclei. In this work, we have employed a physics technique known as dynamic nuclear polarization (DNP) to enhance the NMR signals of 13C-enriched amino acids. DNP works by transferring the high polarization of electrons to the nuclear spins via microwave irradiation at low temperature and high magnetic field. Using a fast dissolution method in which the frozen polarized samples are dissolved rapidly with superheated water, injectable solutions of 13C-amino acids with highly enhanced NMR signals (by at least 5,000-fold) were produced at room temperature. Factors that affect the NMR signal enhancement levels such as the choice of free radical polarizing agents and sample preparation will be discussed along with the thermal mixing physics model of DNP. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  1. A Simple Approach to Analyzing Protein Side-Chain Dynamics from 13C NMR Relaxation Data

    NASA Astrophysics Data System (ADS)

    Daragan, Vladimir A.; Mayo, Kevin H.

    1998-02-01

    A simple approach to deriving motional dynamics information of protein and peptide side chains by using13C NMR relaxation data is presented. By using linear approximation of internal rotational correlation functions, simple equations for relating side-chain conformation, bond rotational amplitudes, and rotational correlation coefficients with different NMR relaxation parameters have been obtained. Auto- and cross-correlation spectral densities are considered, and it is shown that proton-coupled13C NMR relaxation measurements allow detailed motional information to be obtained.

  2. 1H-NMR and 13C-NMR lipid profiles of human renal tissues.

    PubMed

    Tugnoli, V; Bottura, G; Fini, G; Reggiani, A; Tinti, A; Trinchero, A; Tosi, M R

    2003-01-01

    Lipids from human renal tissues are studied by means of (1)H- and (13)C-NMR spectroscopy. The total lipid fractions obtained from healthy kidneys, malignant renal cell carcinomas, and benign oncocytomas are characterized and analyzed to elucidate the main differences between the functional and neoplastic tissues. In all cases the lipid components are well identified. The healthy kidney is characterized by high amounts of triglycerides and the presence of cholesterol in its free form. On the contrary, renal cell carcinomas contain high amounts of cholesterol that are almost completely esterified as oleate, suggesting an intracellular localization of the cholesteryl esters synthesis. Cholesteryl esters are considered markers of renal cell carcinomas, thus supporting recent theories that these compounds play a leading role in cell proliferation. Oncocytomas are particularly rich in phosphatidylcholine and, analogous to the healthy kidney, are completely lacking in cholesteryl esters. Healthy kidneys and oncocytomas appear to have other similarities if compared with renal cell carcinomas: a very high fatty acyl/cholesterol ratio, the presence of dolichols, and a higher grade of unsaturation. The (13)C data suggest a new method for the direct evaluation of the saturated/unsaturated fatty acyl ratio.

  3. 1H and 13C NMR assignments for two new angular furanocoumarin glycosides from Peucedanum praeruptorum.

    PubMed

    Chang, Haitao; Okada, Yoshihito; Okuyama, Toru; Tu, Pengfei

    2007-07-01

    Two novel angular-type furanocoumarin glycosides, peucedanoside A (1) and peucedanoside B (2), along with a known compound apterin (3), were isolated from the roots of Peucedanum praeruptorum Dunn. Their chemical structures were determined by MS, NMR spectroscopy and chemical analysis. Complete assignments of the 1H and 13C NMR spectroscopic data were achieved by 1D and 2D NMR experiments including DEPT, HSQC, HMBC and ROESY.

  4. Coal liquefaction process streams characterization and evaluation: [sup 13]C-NMR analysis of CONSOL THF-soluble residual materials from the Wilsonville coal liquefaction process

    SciTech Connect

    Solum, M.S.; Pugmire, R.J. )

    1992-11-01

    This study demonstrated the feasibility of using CP/MAS [sup 13]C-NMR spectroscopy for the chemical structural examination of distillation resid materials derived from direct coal liquefaction. A set of twelve carbon skeletal-structure parameters and eight molecular structural descriptors were derived from the NMR data. The technique was used previously to determine these parameters for coal and char, and in the construction of a coal pyrolysis model. The method was applied successfully to the tetrahydrofuran (THF)-soluble portion of eleven 850[degrees]F[sup +] distillation resids and one 850[degrees]F[sup +] distillation resid which contained ash and insoluble organic material (IOM). The results of this study demonstrate that this analytical method can provide data for construction of a model of direct coal liquefaction. Its further development and use is justified based on these results.

  5. Coal liquefaction process streams characterization and evaluation: {sup 13}C-NMR analysis of CONSOL THF-soluble residual materials from the Wilsonville coal liquefaction process

    SciTech Connect

    Solum, M.S.; Pugmire, R.J.

    1992-11-01

    This study demonstrated the feasibility of using CP/MAS {sup 13}C-NMR spectroscopy for the chemical structural examination of distillation resid materials derived from direct coal liquefaction. A set of twelve carbon skeletal-structure parameters and eight molecular structural descriptors were derived from the NMR data. The technique was used previously to determine these parameters for coal and char, and in the construction of a coal pyrolysis model. The method was applied successfully to the tetrahydrofuran (THF)-soluble portion of eleven 850{degrees}F{sup +} distillation resids and one 850{degrees}F{sup +} distillation resid which contained ash and insoluble organic material (IOM). The results of this study demonstrate that this analytical method can provide data for construction of a model of direct coal liquefaction. Its further development and use is justified based on these results.

  6. Luminescence dynamics and {sup 13}C NMR characteristics of dinuclear complexes exhibiting coupled lanthanide(III) cation pairs

    SciTech Connect

    Matthews, K.D.; Bailey-Folkes, S.A.; Kahwa, I.A.

    1992-08-20

    Luminescence and cross-polarization magic angle spinning (CP-MAS) {sup 13}C NMR properties of lanthanide dinuclear macrocyclic complexes of a compartmental Schiff base chelate (1) derived from the condensation of 2,6-diformyl-p-cresol and 3,6-dioxa-1,8-octanediamine are reported. The Schiff base chromophore in 1 is a strong light absorber and an efficient sensitizer for intense Tb{sup 3+}({sup 5}D{sub 4}) and Eu{sup 3+}({sup 5}D{sub 0})(T < 110 K ) emission which does not exhibit self-quenching effects. Emission from Tb{sup 3+} is sensitized by the ligand singlet state; in striking contrast, Eu{sup 3+} emission is sensitized by the triplet state and reveals an unusual nonradiative quenching process at T > 110 K with a thermal barrier of {approx} 2300 cm{sup {minus}1}. Weak emission is observed from Dy{sup 3+}({sup 4}F{sub 9/2}), Sm{sup 3+}({sup 4}G{sub 5/2}), and Pr{sup 3+}({sup 1}D{sub 2}) diluted in Gd{sup 3+} (i.e., from Gd{sup 3+}-Ln{sup 3+} heteropairs, Ln = Pr, Sm, Dy). Intramolecular metal-metal (Ln-Ln = 4 {Angstrom}) interactions account for the greatly quenched emission from Sm{sup 3+}-Sm{sup 3+} and Dy{sup 3+}-Dy{sup 3+} homopairs compared to Gd{sup 3+}-Ln heteropairs (Ln = Sm, Dy). Gd{sup 3+}-Ln{sup 3+} emission lifetimes at 77 K are 1610 (Tb{sup 3+}), 890 (Eu{sup 3+}), 14 (Dy{sup 3+}) and {approx} 13 {mu}s (Sm{sup 3+}). Nonradiative relaxation processes at 77 K in dilute Ln{sup 3+}:Gd{sub 2}1(NO{sub 3}){sub 4}{center_dot}H{sub 2}O, being temperature independent for Sm{sup 3+} and Eu{sup 3+} but temperature dependent for Tb{sup 3+}, follow the energy gap law with {alpha} {approx} - 10{sup {minus}3} cm and B {approx} 2 x 10{sup 8} s{sup {minus}1}. CP-MAS data show paramagnetic broadening of {sup 13}C resonances which increases with the magnetic moment of Ln{sup 3+}. Surprisingly, no significant shifts in resonance positions corresponding to the changing nature of paramagnetic Ln{sup 3+} ions are observed. 43 refs., 8 figs., 2 tabs.

  7. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  8. Characterization of uniformly and atom-specifically 13C-labeled heparin and heparan sulfate polysaccharide precursors using 13C NMR spectroscopy and ESI mass spectrometry

    PubMed Central

    Nguyen, Thao K. N.; Tran, Vy M.; Victor, Xylophone V.; Skalicky, Jack J.; Kuberan, Balagurunathan

    2010-01-01

    The biological actions of heparin and heparan sulfate, two structurally related glycosaminoglycans, depend on the organization of the complex heparanome. Due to the structural complexity of the heparanome, the sequence of variably sulfonated uronic acid and glucosamine residues is usually characterized by the analysis of smaller oligosaccharide and disaccharide fragments. Even characterization of smaller heparin/heparan sulfate oligosaccharide or disaccharide fragments using simple 1D 1H NMR spectroscopy is often complicated by the extensive signal overlap. 13C NMR signals, on the other hand, overlap less and therefore, 13C NMR spectroscopy can greatly facilitate the structural elucidation of the complex heparanome and provide finer insights into the structural basis for biological functions. This is the first report of the preparation of anomeric carbon-specific 13C-labeled heparin/heparan sulfate precursors from the Escherichia coli K5 strain. Uniformly 13C- and 15N-labeled precursors were also produced and characterized by 13C NMR spectroscopy. Mass spectrometric analysis of enzymatically fragmented disaccharides revealed that anomeric carbon-specific labeling efforts resulted in a minor loss/scrambling of 13C in the precursor backbone, whereas uniform labeling efforts resulted in greater than 95% 13C isotope enrichment in the precursor backbone. These labeled precursors provided high-resolution NMR signals with great sensitivity and set the stage for studying the heparanome–proteome interactions. PMID:20832774

  9. Detection of human muscle glycogen by natural abundance /sup 13/C NMR

    SciTech Connect

    Avison, M.J.; Rothman, D.L.; Nadel, E.; Shulman, R.G.

    1988-03-01

    Natural abundance /sup 13/C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated /sup 1/H decoupling was used to obtain decoupled natural abundance /sup 13/C NMR spectra of the C-1 position of muscle glycogen.

  10. Magnetic susceptibility effects on 13C MAS NMR spectra of carbon materials and graphite.

    PubMed

    Freita, J C; Emmerich, F G; Cernicchiaro, G R; Sampaio, L C; Bonagamba, T J

    2001-01-01

    13C high-resolution solid-state nuclear magnetic resonance (NMR) was employed to study carbon materials prepared through the thermal decomposition of four different organic precursors (rice hulls, endocarp of babassu coconut, peat, and PVC). For heat treatment temperatures (HTTs) above about 600 C, all materials presented 13C NMR spectra composed of a unique resonance line associated with carbon atoms in aromatic planes. With increasing HTT a continuous broadening of this resonance and a diamagnetic shift in its central frequency were verified for all samples. The evolution of the magnitude and anisotropy of the magnetic susceptibility of the heat-treated carbon samples with HTT explains well these findings. It is shown that these results are better understood when a comparison is made with the features of the 13C NMR spectrum of polycrystalline graphite, for which the magnetic susceptibility effect is also present and is much more pronounced.

  11. Chiral Recognition by Dissolution DNP NMR Spectroscopy of (13)C-Labeled dl-Methionine.

    PubMed

    Monteagudo, Eva; Virgili, Albert; Parella, Teodor; Pérez-Trujillo, Míriam

    2017-05-02

    A method based on d-DNP NMR spectroscopy to study chiral recognition is described for the first time. The enantiodifferentiation of a racemic metabolite in a millimolar aqueous solution using a chiral solvating agent was performed. Hyperpolarized (13)C-labeled dl-methionine enantiomers were differently observed with a single-scan (13)C NMR experiment, while the chiral auxiliary at thermal equilibrium remained unobserved. The method developed entails a step forward in the chiral recognition of small molecules by NMR spectroscopy, opening new possibilities in situations where the sensitivity is limited, for example, when a low concentration of analyte is available or when the measurement of an insensitive nucleus, like (13)C, is required. The advantages and current limitations of the method, as well as future perspectives, are discussed.

  12. A 13C-NMR study of exopolysaccharide synthesis in Rhizobium meliloti Su47 strain

    NASA Astrophysics Data System (ADS)

    Tavernier, P.; Portais, J.-C.; Besson, I.; Courtois, J.; Courtois, B.; Barbotin, J.-N.

    1998-02-01

    Metabolic pathways implied in the synthesis of succinoglycan produced by the Su47 strain of R. meliloti were evaluated by 13C-NMR spectroscopy after incubation with [1{-}13C] or [2{-}13C] glucose. The biosynthesis of this polymer by R. meliloti from glucose occurred by a direct polymerisation of the introduced glucose and by the pentose phosphate pathway. Les voies métaboliques impliquées dans la synthèse du succinoglycane produit par la souche Su47 de R. meliloti ont été évaluées par la spectroscopie de RMN du carbone 13 après incubation des cellules avec du [1{-}13C] ou [2{-}13C] glucose. La biosynthèse de ce polymère à partir du glucose se produit par polymérisation directe du glucose et par la voie des pentoses phosphate.

  13. Cyclohexanecarbonitriles: Assigning Configurations at Quaternary Centers From 13C NMR CN Chemical Shifts.1

    PubMed Central

    Wei, Guoqing

    2009-01-01

    13C NMR chemical shifts of the nitrile carbon in cyclohexanecarbonitriles directly correlate with the configuration of the quaternary, nitrile-bearing stereocenter. Comparing 13C NMR chemical shifts for over 200 cyclohexanecarbonitriles reveals that equatorially oriented nitriles resonate 3.3 ppm downfield, on average, from their axial counterparts. Pairs of axial/equatorial diastereomers varying only at the nitrile-bearing carbon consistently exhibit downfield shifts of δ 0.4–7.2 for the equatorial nitrile carbon, even in angularly substituted decalins and hydrindanes. PMID:19348434

  14. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  15. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    PubMed Central

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ,ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1–40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1–40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16–21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1–40 fibrils in 4 hr or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples. PMID:23562665

  16. Isotopic 13C NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: site-specific 13C content of aspirin and paracetamol.

    PubMed

    Silvestre, Virginie; Mboula, Vanessa Maroga; Jouitteau, Catherine; Akoka, Serge; Robins, Richard J; Remaud, Gérald S

    2009-10-15

    Isotope profiling is a well-established technique to obtain information about the chemical history of a given compound. However, the current methodology using IRMS can only determine the global (13)C content, leading to the loss of much valuable data. The development of quantitative isotopic (13)C NMR spectrometry at natural abundance enables the measurement of the (13)C content of each carbon within a molecule, thus giving simultaneous access to a number of isotopic parameters. When it is applied to active pharmaceutical ingredients, each manufactured batch can be characterized better than by IRMS. Here, quantitative isotopic (13)C NMR is shown to be a very promising and effective tool for assessing the counterfeiting of medicines, as exemplified by an analysis of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) samples collected from pharmacies in different countries. It is proposed as an essential complement to (2)H NMR and IRMS.

  17. Measuring Level Alignment at the Metal–Molecule Interface by In Situ Electrochemical 13C NMR

    SciTech Connect

    Li, Ying; Zelakiewicz, Brian S.; Allison, Thomas C.; Tong, Yu ye J.

    2015-03-16

    A new technique to measure energy-level alignment at a metal–molecule interface between the Fermi level of the metal and the frontier orbitals of the molecule is proposed and experimentally demonstrated. The method, which combines the electrochemistry of organo-ligand-stabilized Au nanoparticles with 13C NMR spectroscopy (i.e. in situ electrochemical NMR), enables measuring both occupied and unoccupied states.

  18. Quantification of amounts and (13)C content of metabolites in brain tissue using high- resolution magic angle spinning (13)C NMR spectroscopy.

    PubMed

    Risa, Oystein; Melø, Torun Margareta; Sonnewald, Ursula

    2009-04-01

    Metabolic pathway mapping using (13)C NMR spectroscopy has been used extensively to study interactions between neurons and glia in the brain. Established extraction procedures of brain tissue are time consuming and may result in degradation of labile substances. We examined the potential of mapping (13)C-enriched compounds in intact brain tissue using high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. Sprague-Dawley rats received an intraperitoneal injection of [1,6-(13)C]glucose, and 15 min later the animals were subjected to microwave fixation of the brain. Quantification of concentration and (13)C labelling of metabolites in intact rat thalamus were carried out based on exogenous ethylene glycol concentrations measured from (1)H NMR spectra using an ERETIC (Electronic REference To access In vivo Concentrations) signal. The results from intact tissue were compared with those from perchloric acid-extracted brain tissue. Amounts of (13)C labelling at different positions (C2, C3 and C4) in glutamate, glutamine, gamma-aminobutyric acid and aspartate measured in either intact tissue or perchloric acid extracts were not significantly different. Proton NMR spectra were used for quantification of six different amino acids plus lactate, inositol, N-acetylaspartate, creatine and phosphocreatine. Again, results were very similar when comparing the methods. To our knowledge, this is the first time quantitative (13)C NMR spectroscopy measurements have been carried out on intact brain tissue ex vivo using the HR-MAS technique. The results show that HR-MAS (13)C NMR spectroscopy in combination with (1)H NMR spectroscopy and the ERETIC method is useful for metabolic studies of intact brain tissue ex vivo.

  19. A predictive tool for assessing (13)C NMR chemical shifts of flavonoids.

    PubMed

    Burns, Darcy C; Ellis, David A; March, Raymond E

    2007-10-01

    Herein are presented the (1)H and (13)C NMR data for seven monohydroxyflavones (3-, 5-, 6-, 7-, 2'-, 3'-, and 4'-hydroxyflavone), five dihydroxyflavones (3,2'-, 3,3'-, 3,4'-, 3,6-, 2',3'-dihydroxyflavone), a trihydroxyflavone (apigenin; 5,7,4'-trihydroxyflavone), a tetrahydroxyflavone (luteolin; 5,7,3',4'-tetrahydroxyflavone), and three glycosylated hydroxyflavones (orientin; luteolin-6C-beta-D-glucoside, homoorientin; luteolin-8C-beta-D-glucoside, vitexin; apigenin-8C-beta-D-glucoside). When these NMR spectra are compared, it is possible to assess the impact of flavone modification and to elucidate detailed structural and electronic information for these flavonoids. A simple predictive tool for assigning flavonoid (13)C chemical shifts, which is based on the cumulative differences between the monohydroxyflavones and flavone (13)C chemical shifts, is demonstrated. The tool can be used to accurately predict (13)C flavonoid chemical shifts and it is expected to be useful for rapid assessment of flavonoid (13)C NMR spectra and for assigning substitution patterns in newly isolated flavonoids.

  20. 13C NMR studies of carboxylate inhibitor binding to cobalt(II) carboxypeptidase A.

    PubMed

    Bertini, I; Monnanni, R; Pellacani, G C; Sola, M; Vallee, B L; Auld, D S

    1988-01-01

    Both 13C NMR and electronic absorption spectral studies on cobalt(II) carboxypeptidase A in the presence of acetate and phenylacetate provide evidence for two binding sites for each of these agents. The transverse relaxation rate T2-1 for the 13C-enriched carboxyl groups of the inhibitors is significantly increased when bound to the paramagnetic cobalt carboxypeptidase as compared to the diamagnetic zinc enzyme. The acetate concentration dependence of T2p-1 shows two inflections indicative of sequential binding of two inhibitor molecules. The cobalt-13C distances, calculated by means of the Solomon equation, indicate that the second acetate molecule binds directly to the metal ion while the first acetate molecule binds to a protein group at a distance 0.5-0.8 nm for the metal ion, consistent with it binding to one or more of the arginyl residues (Arg-145, Arg-127, or Arg-71). In the case of phenylacetate, perturbation of the cobalt electronic absorption spectrum shows that binding occurs stepwise. 13C NMR distance measurements indicate that one of the two phenylacetates is bound to the metal in the EI2 complex. These binding sites may correspond to those identified previously by kinetic means (one of which is competitive, the other noncompetitive) with peptide binding. The studies further indicate that it should be possible to map the protein interactions of the carbonyl groups of both substrate and noncompetitive inhibitors during catalysis by means of 13C NMR studies with suitably labeled substrates and inhibitors.

  1. Multi-dimensional 1H- 13C HETCOR and FSLG-HETCOR NMR study of sphingomyelin bilayers containing cholesterol in the gel and liquid crystalline states

    NASA Astrophysics Data System (ADS)

    Holland, Gregory P.; Alam, Todd M.

    2006-08-01

    13C cross polarization magic angle spinning (CP-MAS) and 1H MAS NMR spectra were collected on egg sphingomyelin (SM) bilayers containing cholesterol above and below the liquid crystalline phase transition temperature ( Tm). Two-dimensional (2D) dipolar heteronuclear correlation (HETCOR) spectra were obtained on SM bilayers in the liquid crystalline ( Lα) state for the first time and display improved resolution and chemical shift dispersion compared to the individual 1H and 13C spectra and significantly aid in spectral assignment. In the gel ( Lβ) state, the 1H dimension suffers from line broadening due to the 1H- 1H homonuclear dipolar coupling that is not completely averaged by the combination of lipid mobility and MAS. This line broadening is significantly suppressed by implementing frequency switched Lee-Goldburg (FSLG) homonuclear 1H decoupling during the evolution period. In the liquid crystalline ( Lα) phase, no improvement in line width is observed when FSLG is employed. All of the observed resonances are assignable to cholesterol and SM environments. This study demonstrates the ability to obtain 2D heteronuclear correlation experiments in the gel state for biomembranes, expands on previous SM assignments, and presents a comprehensive 1H/ 13C NMR assignment of SM bilayers containing cholesterol. Comparisons are made to a previous report on cholesterol chemical shifts in dimyristoylphosphatidylcholine (DMPC) bilayers. A number of similarities and some differences are observed and discussed.

  2. Unambiguous 13C NMR assignment of acnistins and absolute configuration of acnistin A.

    PubMed

    Gutiérrez Luis, J; Echeverri, F; Quiñones, W; González, A G; Torres, F; Cardona, G; Archbold, R; Rojas, M; Perales, A

    1994-05-01

    Carbon and proton atoms were fully assigned in this new type of withanolide by HMQC and HMBC experiments. The absolute configuration of acnistin A was determined by X-ray diffraction. Proton and 13C NMR measurements are particularly useful in identifying members of this group of natural products.

  3. Quantitative identification of metastable magnesium carbonate minerals by solid-state 13C NMR spectroscopy.

    PubMed

    Moore, Jeremy K; Surface, J Andrew; Brenner, Allison; Wang, Louis S; Skemer, Philip; Conradi, Mark S; Hayes, Sophia E

    2015-01-06

    In the conversion of CO2 to mineral carbonates for the permanent geosequestration of CO2, there are multiple magnesium carbonate phases that are potential reaction products. Solid-state (13)C NMR is demonstrated as an effective tool for distinguishing magnesium carbonate phases and quantitatively characterizing magnesium carbonate mixtures. Several of these mineral phases include magnesite, hydromagnesite, dypingite, and nesquehonite, which differ in composition by the number of waters of hydration or the number of crystallographic hydroxyl groups. These carbonates often form in mixtures with nearly overlapping (13)C NMR resonances which makes their identification and analysis difficult. In this study, these phases have been investigated with solid-state (13)C NMR spectroscopy, including both static and magic-angle spinning (MAS) experiments. Static spectra yield chemical shift anisotropy (CSA) lineshapes that are indicative of the site-symmetry variations of the carbon environments. MAS spectra yield isotropic chemical shifts for each crystallographically inequivalent carbon and spin-lattice relaxation times, T1, yield characteristic information that assist in species discrimination. These detailed parameters, and the combination of static and MAS analyses, can aid investigations of mixed carbonates by (13)C NMR.

  4. Following Glycolysis Using 13C NMR: An Experiment Adaptable to Different Undergraduate Levels

    NASA Astrophysics Data System (ADS)

    Mega, T. L.; Carlson, C. B.; Cleary, D. A.

    1997-12-01

    This paper describes a laboratory exercise where the glycolysis of [1-13C] glucose under anaerobic conditions was followed using 13C NMR spectroscopy. The exercise is described in terms of its suitability for a variety of different undergraduate levels, although the emphasis in this paper is on its use in a n advanced chemistry laboratory course. The kinetics of the loss of glucose and the production of ethanol were investigated and found not to fit simple first or second order kinetics. In addition, the relative reaction rates of the two anomeric forms of glucose were analyzed, and it was determined that the a anomeric form reacted faster than the β anomeric form. Using proton-coupled 13C NMR, some of the metabolites were identified including ethanol (major) and glycerol (minor). Reaction and spectroscopic details are included.

  5. Conformational studies by 1H and 13C NMR of lisinopril

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yohko; Ishi, Tomoko

    1993-10-01

    Lisinopril, N-N-[( s-1-carboxy-3-phenylpropyl]- L-lysyl- L-proline) (MK-521), is an inhibitor of angiotensin-converting enzyme and a new drug for the treatment of hypertension. 1H and 13C NMR studies have shown that the s-cis equilibrium about the amide bond is strongly dependent on the configuration of the chiral centres. Vicinal coupling constants of stereochemical significance were obtained in deuterated solvent using NMR techniques. Comparison with values calculated for lisinopril using potential energy calculations and NMR show that lisinopril exists in preferred optimum conformation in solution.

  6. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  7. Efficient low-power heteronuclear decoupling in 13C high-resolution solid-state NMR under fast magic angle spinning.

    PubMed

    Kotecha, Mrignayani; Wickramasinghe, Nalinda P; Ishii, Yoshitaka

    2007-12-01

    The use of a low-power two-pulse phase modulation (TPPM) sequence is proposed for efficient (1)H radio frequency (rf) decoupling in high-resolution (13)C solid-state NMR (SSNMR) under fast MAS conditions. Decoupling efficiency for different low-power decoupling sequences such as continuous-wave (cw), TPPM, XiX, and π-pulse (PIPS) train decoupling has been investigated at a spinning speed of 40 kHz for (13)C CPMAS spectra of uniformly (13)C- and (15)N-labeled L-alanine. It was found that the TPPM decoupling sequence, which was originally designed for high-power decoupling, provides the best decoupling efficiency at low power among all the low-power decoupling sequences examined here. Optimum performance of the low-power TPPM sequence was found to be obtained at a decoupling field intensity (ω(1)) of ~ω(R)/4 with a pulse flip angle of ~π and a phase alternation between ± [Symbol: see text]([Symbol: see text] = 20° ), where ω(R)/2π is the spinning speed. The sensitivity obtained for (13) CO(2)(-), (13)CH, and (13)CH(3) in L-alanine under low-power TPPM at ω(1)/2π of 10 kHz was only 5-15% less than that under high-power TPPM at ω(1) /2π of 200 kHz, despite the fact that only 0.25% of the rf power was required in low-power TPPM. Analysis of the (13)CH(2) signals for uniformly (13) C- and (15) N-labeled L-isoleucine under various low-power decoupling sequences also confirmed superior performance of the low-power TPPM sequence, although the intensity obtained by low-power TPPM was 61% of that obtained by high-power TPPM. (13)C CPMAS spectra of (13)C-labeled ubiquitin micro crystals obtained by low-power TPPM demonstrates that the low-power TPPM sequence is a practical option that provides excellent resolution and sensitivity in (13)C SSNMR for hydrated proteins. Copyright © 2007 John Wiley & Sons, Ltd.

  8. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  9. Computer-assisted structural analysis of regular glycopolymers on the basis of 13C NMR data.

    PubMed

    Toukach, F V; Shashkov, A S

    2001-09-28

    A computer-assisted approach to the prediction of the primary structures of regular glycopolymers is described. The analysis is based on comparing the calculated 13C NMR spectra of all the possible structures of the repeating unit (for the given monomeric composition) to an experimental 13C NMR spectrum. The spectra generation is based on the spectral database containing information on the 13C chemical shifts of monomers, di- and trimeric fragments. If the required data are missing from this database, the special database for average glycosylation effects is used. The analysis reveals those structures with the calculated 13C NMR spectrum most close to observed. The structures of repeating units of any topology containing up to six residues linked by glycosidic, amidic or phospho-diester bridges can be predicted. Unambiguous selection of the proper structure from the output list of possible structures may require additional experimental data. Testing the created program and databases on bacterial polysaccharides and their derivatives containing up to three non-sugar residues (alditols, amino acids, phosphate groups etc.) per repeating unit revealed the good convergence of prediction with independently obtained structural data.

  10. Profiling human gut bacterial metabolism and its kinetics using [U-13C]glucose and NMR.

    PubMed

    de Graaf, Albert A; Maathuis, Annet; de Waard, Pieter; Deutz, Nicolaas E P; Dijkema, Cor; de Vos, Willem M; Venema, Koen

    2010-01-01

    This study introduces a stable-isotope metabolic approach employing [U-(13)C]glucose that, as a novelty, allows selective profiling of the human intestinal microbial metabolic products of carbohydrate food components, as well as the measurement of the kinetics of their formation pathways, in a single experiment. A well-established, validated in vitro model of human intestinal fermentation was inoculated with standardized gastrointestinal microbiota from volunteers. After culture stabilization, [U-(13)C]glucose was added as an isotopically labeled metabolic precursor. System lumen and dialysate samples were taken at regular intervals. Metabolite concentrations and isotopic labeling were determined by NMR, GC, and enzymatic methods. The main microbial metabolites were lactate, acetate, butyrate, formate, ethanol, and glycerol. They together accounted for a (13)C recovery rate as high as 91.2%. Using an NMR chemical shift prediction approach, several minor products that showed (13)C incorporation were identified as organic acids, amino acids, and various alcohols. Using computer modeling of the (12)C contents and (13)C labeling kinetics, the metabolic fluxes in the gut microbial pathways for synthesis of lactate, formate, acetate, and butyrate were determined separately for glucose and unlabeled background substrates. This novel approach enables the study of the modulation of human intestinal function by single nutrients, providing a new rational basis for achieving control of the short-chain fatty acids profile by manipulating substrate and microbiota composition in a purposeful manner.

  11. Synthesis and NMR studies of (13)C-labeled vitamin D metabolites.

    PubMed

    Okamura, William H; Zhu, Gui-Dong; Hill, David K; Thomas, Richard J; Ringe, Kerstin; Borchardt, Daniel B; Norman, Anthony W; Mueller, Leonard J

    2002-03-08

    Isotope-labeled drug molecules may be useful for probing by NMR spectroscopy the conformation of ligand associated with biological hosts such as membranes and proteins. Triple-labeled [7,9,19-(13)C(3)]-vitamin D(3) (56), its 25-hydroxylated and 1 alpha,25-dihydroxylated metabolites (58 and 68, respectively), and other labeled materials have been synthesized via coupling of [9-(13)C]-Grundmann's ketone 39 or its protected 25-hydroxy derivative 43 with labeled A ring enyne fragments 25 or 26. The labeled CD-ring fragment 39 was prepared by a sequence involving Grignard addition of [(13)C]-methylmagnesium iodide to Grundmann's enone 28, oxidative cleavage, functional group modifications leading to seco-iodide 38, and finally a kinetic enolate S(N)2 cycloalkylation. The C-7,19 double labeling of the A-ring enyne was achieved by the Corey-Fuchs/Wittig processes on keto aldehyde 11. By employing these labeled fragments in the Wilson-Mazur route, the C-7,9,19 triple-(13)C-labeled metabolites 56, 58, and 68 as well as other (13)C-labeled metabolites have been prepared. In an initial NMR investigation of one of the labeled metabolites prepared in this study, namely [7,9,19-(13)C(3)]-25-hydroxyvitamin D(3) (58), the three (13)C-labeled carbons of the otherwise water insoluble steroid could be clearly detected by (13)C NMR analysis at 0.1 mM in a mixture of CD(3)OD/D(2)O (60/40) or in aqueous dimethylcyclodextrin solution and at 2 mM in 20 mM sodium dodecyl sulfate (SDS) aqueous micellar solution. In the SDS micellar solution, a double half-filter NOESY experiment revealed that the distance between the H(19Z) and H(7) protons is significantly shorter than that of the corresponding distance calculated from the solid state (X-ray) structure of the free ligand. The NMR data in micelles reveals that 58 exists essentially completely in the alpha-conformer with the 3 beta-hydroxyl equatorially oriented, just as in the solid state. The shortened distance (H(19Z))-H(7)) in micellar

  12. Determination of fructose metabolic pathways in normal and fructose-intolerant children: A sup 13 C NMR study using (U- sup 13 C)fructose

    SciTech Connect

    Gopher, A.; Lapidot, A. ); Vaisman, N. ); Mandel, H. )

    1990-07-01

    An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-(U-{sup 13}C)fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of {sup 13}C NMR spectra of plasma glucose. Significantly lower values ({approx}3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitative determination of the metabolic pathways of fructose conversion to glucose was derived from {sup 13}C NMR measurement of plasma ({sup 13}C)glucose isotopomer populations. The finding of isotopomer populations of three adjacent {sup 13}C atoms at glucose C-4 ({sup 13}C{sub 3}-{sup 13}C{sub 4}-{sup 13}C{sub 5}) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only {approx}50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of ({sup 13}C)glucose formation from a trace amount of (U-{sup 13}C)fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism.

  13. (1) H and (13) C NMR data on natural and synthetic capsaicinoids.

    PubMed

    Gómez-Calvario, Víctor; Garduño-Ramírez, María Luisa; León-Rivera, Ismael; Rios, María Yolanda

    2016-04-01

    Capsaicinoids are the compounds responsible for the pungency of chili peppers. These substances have attracted the attention of many research groups in recent decades because of their antinociceptive, analgesic, anti-inflammatory, and anti-obesity properties, among others. There are nearly 160 capsaicinoids reported in the literature. Approximately 25 of them are natural products, while the rest are synthetic or semi-synthetic products. A large amount of NMR data for the capsaicinoids is dispersed throughout literature. Therefore, there is a need to organize all this NMR data in a systematic and orderly way. This review summarizes the (1) H and (13) C NMR data on 159 natural and synthetic capsaicinoids, with a brief discussion of some typical and relevant aspects of these NMR data. Copyright © 2015 John Wiley & Sons, Ltd.

  14. (1)H-(13)C NMR-Based Profiling of Biotechnological Starch Utilization.

    PubMed

    Sundekilde, Ulrik K; Meier, Sebastian

    2016-10-04

    Starch is used in food- and nonfood applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized (1)H-(13)C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for downstream process output such as ethanol production from starch. Thus, high-resolution (1)H-(13)C NMR spectroscopic profiles of homooligomeric fragment mixtures in conjunction with chemometric methods provide a useful addition to the analytical chemistry toolbox of biotechnological starch utilization.

  15. Genius: a genetic algorithm for automated structure elucidation from 13C NMR spectra.

    PubMed

    Meiler, Jens; Will, Martin

    2002-03-06

    The automated structure elucidation of organic molecules from experimentally obtained properties is extended by an entirely new approach. A genetic algorithm is implemented that uses molecular constitution structures as individuals. With this approach, the structure of organic molecules can be optimized to meet experimental criteria, if in addition a fast and accurate method for the prediction of the used physical or chemical features is available. This is demonstrated using 13C NMR spectrum as readily obtainable information. By means of artificial neural networks a fast and accurate method for calculating the 13C NMR spectrum of the generated structures exists. The method is implemented and tested successfully for organic molecules with up to 18 non-hydrogen atoms.

  16. Conformational evaluation and detailed 1H and 13C NMR assignments of eremophilanolides.

    PubMed

    Burgueño-Tapia, Eleuterio; Hernández, Luis R; Reséndiz-Villalobos, Adriana Y; Joseph-Nathan, Pedro

    2004-10-01

    Extensive application of 1D and 2D NMR methodology, combined with molecular modeling, allowed the complete 1H and 13C NMR assignments of eremophilanolides from Senecio toluccanus. Comparison of the experimental 1H, 1H coupling constant values with those generated employing a generalized Karplus-type relationship, using dihedral angles extracted from MMX and DFT calculations, revealed that the epoxidized eremophilanolides 1 and 2 show conformational rigidity at room temperature, whereas molecules 3-6, containing an isolated double bond, are conformationally mobile.

  17. 13C NMR studies of the molecular dynamics of chlorpromazine in solution

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yohko; Ishii, Tomoko; Kurokawa, Noriko; Aoki, Toshikazu; Ohshima, Shigeru

    1996-02-01

    The optimum structure, which is expected to lead to biological activity, of chlorpromazine hydrochloride salt (compound ( I)) in solution was determined on the basis of NMR data and molecular orbital calculations; compound ( I) favours a bent structure in which the side-chain tilts toward the chlorinated benzene ring. The molecular mobility of compound ( I) in CDCl 3 and D 2O was also examined on the basis of 13C NMR spin-lattice relaxation time ( T1). T1 depends on the magnetic field strength and the solvent. The dependence indicates that the molecular mobility of compound ( I) is larger in D 2O than in CDCl 3

  18. Structural comparison of Gilsonite and Trinidad Lake Asphalt using 13C-NMR technique

    NASA Astrophysics Data System (ADS)

    Nciri, Nader; Cho, Namjun

    2017-04-01

    The recent increased importance of natural asphalt as an alternative binder for sustainable road pavement has dictated that more knowledge should be acquired about its structure and properties. Earlier, Carbon-13 NMR spectroscopy has been applied to very few natural bituminous materials. In this work, two types of raw binders namely Gilsonite and Trinidad Lake asphalt (TLA) have been subjected to an extensive investigation by using 13C-NMR technique. Results have shown that valuable chemical data can be readily withdrawn on aromatic ring structures and ring substituents in natural asphalts derived from different sources. The chemical significance of these findings will be discussed.

  19. (1) H and (13) C NMR characterization of new cycloartane triterpenes from Mangifera indica.

    PubMed

    Escobedo-Martínez, Carolina; Concepción Lozada, M; Hernández-Ortega, Simón; Villarreal, María Luisa; Gnecco, Dino; Enríquez, Raúl G; Reynolds, William

    2012-01-01

    From the stem bark of Mangifera indica, seven cycloartane-type secondary metabolites were isolated. Compound 1 has been isolated for the first time from M. indica, whereas compounds 2 (2a and 2b, as an epimeric mixture), 3, and 4 are new triterpenoid-type cycloartanes. Unambiguous (13) C and (1) H NMR assignments for these compounds and the known compounds mangiferonic acid (compound 5), isomangiferolic acid (compound 6), ambolic acid (compound 7), and friedelin (compound 8) are reported; the latter because full NMR data for these compounds are not available in the literature.

  20. High-resolution 13C NMR investigation in Cs4C60

    NASA Astrophysics Data System (ADS)

    Goze, C.; Rachdi, F.; Mehring, M.

    1996-08-01

    Four inequivalent carbons were identified by using high-resolution magic angle spinning 13C NMR spectroscopy in Cs4C60. The room temperature NMR spectrum consists of four lines at 214 ppm, 189 ppm, 164 ppm, and 159 ppm, which collapse into a single line at 183 ppm when the sample is heated above 350 K. The intensity of the latter is the sum of the four line intensities. The observed behavior is interpreted in terms of a nonuniform charge and spin distribution on the C60 molecules combined with molecular dynamics.

  1. Hyperpolarized 13C NMR observation of lactate kinetics in skeletal muscle

    PubMed Central

    Park, Jae Mo; Josan, Sonal; Mayer, Dirk; Hurd, Ralph E.; Chung, Youngran; Bendahan, David; Spielman, Daniel M.; Jue, Thomas

    2015-01-01

    ABSTRACT The production of glycolytic end products, such as lactate, usually evokes a cellular shift from aerobic to anaerobic ATP generation and O2 insufficiency. In the classical view, muscle lactate must be exported to the liver for clearance. However, lactate also forms under well-oxygenated conditions, and this has led investigators to postulate lactate shuttling from non-oxidative to oxidative muscle fiber, where it can serve as a precursor. Indeed, the intracellular lactate shuttle and the glycogen shunt hypotheses expand the vision to include a dynamic mobilization and utilization of lactate during a muscle contraction cycle. Testing the tenability of these provocative ideas during a rapid contraction cycle has posed a technical challenge. The present study reports the use of hyperpolarized [1-13C]lactate and [2-13C]pyruvate in dynamic nuclear polarization (DNP) NMR experiments to measure the rapid pyruvate and lactate kinetics in rat muscle. With a 3 s temporal resolution, 13C DNP NMR detects both [1-13C]lactate and [2-13C]pyruvate kinetics in muscle. Infusion of dichloroacetate stimulates pyruvate dehydrogenase activity and shifts the kinetics toward oxidative metabolism. Bicarbonate formation from [1-13C]lactate increases sharply and acetyl-l-carnitine, acetoacetate and glutamate levels also rise. Such a quick mobilization of pyruvate and lactate toward oxidative metabolism supports the postulated role of lactate in the glycogen shunt and the intracellular lactate shuttle models. The study thus introduces an innovative DNP approach to measure metabolite transients, which will help delineate the cellular and physiological role of lactate and glycolytic end products. PMID:26347554

  2. Hyperpolarized 13C NMR observation of lactate kinetics in skeletal muscle.

    PubMed

    Park, Jae Mo; Josan, Sonal; Mayer, Dirk; Hurd, Ralph E; Chung, Youngran; Bendahan, David; Spielman, Daniel M; Jue, Thomas

    2015-10-01

    The production of glycolytic end products, such as lactate, usually evokes a cellular shift from aerobic to anaerobic ATP generation and O2 insufficiency. In the classical view, muscle lactate must be exported to the liver for clearance. However, lactate also forms under well-oxygenated conditions, and this has led investigators to postulate lactate shuttling from non-oxidative to oxidative muscle fiber, where it can serve as a precursor. Indeed, the intracellular lactate shuttle and the glycogen shunt hypotheses expand the vision to include a dynamic mobilization and utilization of lactate during a muscle contraction cycle. Testing the tenability of these provocative ideas during a rapid contraction cycle has posed a technical challenge. The present study reports the use of hyperpolarized [1-(13)C]lactate and [2-(13)C]pyruvate in dynamic nuclear polarization (DNP) NMR experiments to measure the rapid pyruvate and lactate kinetics in rat muscle. With a 3 s temporal resolution, (13)C DNP NMR detects both [1-(13)C]lactate and [2-(13)C]pyruvate kinetics in muscle. Infusion of dichloroacetate stimulates pyruvate dehydrogenase activity and shifts the kinetics toward oxidative metabolism. Bicarbonate formation from [1-(13)C]lactate increases sharply and acetyl-l-carnitine, acetoacetate and glutamate levels also rise. Such a quick mobilization of pyruvate and lactate toward oxidative metabolism supports the postulated role of lactate in the glycogen shunt and the intracellular lactate shuttle models. The study thus introduces an innovative DNP approach to measure metabolite transients, which will help delineate the cellular and physiological role of lactate and glycolytic end products. © 2015. Published by The Company of Biologists Ltd.

  3. Degradation of Mustard on Moist Sand, Asphalt, and Limestone Using 13C SSMAS NMR

    DTIC Science & Technology

    2006-12-01

    ASPHALT, AND LIMESTONE USING 13C SSMAS NMR Carol A. S. Brevett Carroll L. Cook Robert G. Nickol SA•C SAIC Abingdon, MD 21009 Kenneth B. Sumpter Monicia R...Cook, Carroll L.; Robert G. Nickol (SAIC);* Sumpter, Kenneth B.; Hall, Monicia R. (ECBC) Se. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING...James Savage, H. Dupont Durst , and Mark Brickhouse for programmatic support. 3 Blank CONTENTS 1. INTRODU CTION

  4. (13)C-NMR Spectral Data of Alkaloids Isolated from Psychotria Species (Rubiaceae).

    PubMed

    Carvalho Junior, Almir Ribeiro de; Vieira, Ivo Jose Curcino; Carvalho, Mario Geraldo de; Braz-Filho, Raimundo; S Lima, Mary Anne; Ferreira, Rafaela Oliveira; José Maria, Edmilson; Oliveira, Daniela Barros de

    2017-01-11

    The genus Psychotria (Rubiaceae) comprises more than 2000 species, mainly found in tropical and subtropical forests. Several studies have been conducted concerning their chemical compositions, showing that this genus is a potential source of alkaloids. At least 70 indole alkaloids have been identified from this genus so far. This review aimed to compile (13)C-NMR data of alkaloids isolated from the genus Psychotria as well as describe the main spectral features of different skeletons.

  5. Using Neural Networks for 13C NMR Chemical Shift Prediction-Comparison with Traditional Methods

    NASA Astrophysics Data System (ADS)

    Meiler, Jens; Maier, Walter; Will, Martin; Meusinger, Reinhard

    2002-08-01

    Interpretation of 13C chemical shifts is essential for structure elucidation of organic molecules by NMR. In this article, we present an improved neural network approach and compare its performance to that of commonly used approaches. Specifically, our recently proposed neural network ( J. Chem. Inf. Comput. Sci. 2000, 40, 1169-1176) is improved by introducing an extended hybrid numerical description of the carbon atom environment, resulting in a standard deviation (std. dev.) of 2.4 ppm for an independent test data set of ˜42,500 carbons. Thus, this neural network allows fast and accurate 13C NMR chemical shift prediction without the necessity of access to molecule or fragment databases. For an unbiased test dataset containing 100 organic structures the accuracy of the improved neural network was compared to that of a prediction method based on the HOSE code ( hierarchically ordered spherical description of environment) using S PECI NFO. The results show the neural network predictions to be of quality (std. dev.=2.7 ppm) comparable to that of the HOSE code prediction (std. dev.=2.6 ppm). Further we compare the neural network predictions to those of a wide variety of other 13C chemical shift prediction tools including incremental methods (C HEMD RAW, S PECT OOL), quantum chemical calculation (G AUSSIAN, C OSMOS), and HOSE code fragment-based prediction (S PECI NFO, ACD/CNMR, P REDICTI T NMR) for the 47 13C-NMR shifts of Taxol, a natural product including many structural features of organic substances. The smallest standard deviations were achieved here with the neural network (1.3 ppm) and S PECI NFO (1.0 ppm).

  6. Quantifying the chemical composition of soil organic carbon with solid-state 13C NMR

    NASA Astrophysics Data System (ADS)

    Baldock, J. A.; Sanderman, J.

    2011-12-01

    The vulnerability of soil organic carbon (SOC) to biological decomposition and mineralisation to CO2 is defined at least partially by its chemical composition. Highly aromatic charcoal-like SOC components are more stable to biological decomposition than other forms of carbon including cellulose. Solid-state 13C NMR has gained wide acceptance as a method capable of defining SOC chemical composition and mathematical fitting processes have been developed to estimate biochemical composition. Obtaining accurate estimates depends on an ability to quantitatively detect all carbon present in a sample. Often little attention has been paid to defining the proportion of organic carbon present in a soil that is observable in solid-state 13C NMR analyses of soil samples. However, if such data is to be used to inform carbon cycling studies, it is critical that quantitative assessments of SOC observability be undertaken. For example, it is now well established that a significant discrimination exists against the detection of the low proton content polyaromatic structures typical of charcoal using cross polarisation 13C NMR analyses. Such discrimination does not exist where direct polarisation analyses are completed. In this study, the chemical composition of SOC as defined by cross polarisation and direct polarisation13C NMR analyses will be compared for Australian soils collected from under a diverse range of agricultural managements and climatic conditions. Results indicate that where significant charcoal C contents exist, it is highly under-represented in the acquired CP spectra. For some soils, a discrimination against alkyl carbon was also evident. The ability to derive correction factors to compensate for such discriminations will be assessed and presented.

  7. 13C NMR investigations of the metallic state of Li intercalated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Goze-Bac, C.; Mehring, M.; Roth, S.; Bernier, P.

    2003-10-01

    13C Nuclear Magnetic Resonance measurements were performed on pristine and lithium intercalated single wall carbon nanotubes (SWNT). We investigated the NMR signatures by means of static and high resolution Magic Angle Spinning experiments. This allows us to measure in detail the modifications of the lineshape with the Li concentration. Our results can be explained in terms of charge transfer and changes of the metallic state with an increasing density of states at the Fermi level compared to the pristine SWNT.

  8. Density functional theory study of (13)C NMR chemical shift of chlorinated compounds.

    PubMed

    Li, Songqing; Zhou, Wenfeng; Gao, Haixiang; Zhou, Zhiqiang

    2012-02-01

    The use of the standard density functional theory (DFT) leads to an overestimation of the paramagnetic contribution and underestimation of the shielding constants, especially for chlorinated carbon nuclei. For that reason, the predictions of chlorinated compounds often yield too high chemical shift values. In this study, the WC04 functional is shown to be capable of reducing the overestimation of the chemical shift of Cl-bonded carbons in standard DFT functionals and to show a good performance in the prediction of (13)C NMR chemical shifts of chlorinated organic compounds. The capability is attributed to the minimization of the contributions that intensively increase the chemical shift in the WC04. Extensive computations and analyses were performed to search for the optimal procedure for WC04. The B3LYP and mPW1PW91 standard functionals were also used to evaluate the performance. Through detailed comparisons between the basis set effects and the solvent effects on the results, the gas-phase GIAO/WC04/6-311+G(2d,p)//B3LYP/6-31+G(d,p) was found to be specifically suitable for the prediction of (13)C NMR chemical shifts of chlorides in both chlorinated and non-chlorinated carbons. Further tests with eight molecules in the probe set sufficiently confirmed that WC04 was undoubtedly effective for accurately predicting (13) C NMR chemical shifts of chlorinated organic compounds.

  9. Calculation of the 13C NMR shieldings of the C0 2 complexes of aluminosilicates

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    1995-04-01

    13C NMR shieldings have been calculated using the random-phase-approximation, localized-orbital local-origins version of ab initio coupled Hartree-Fuck perturbation theory for CO 2 and and for several complexes formed by the reaction of CO 2 with molecular models for aluminosilicate glasses, H 3TOT'H3 3-n, T,T' = Si,Al. Two isomeric forms of the CO 2-aluminosilicate complexes have been considered: (1) "CO 2-like" complexes, in which the CO 2 group is bound through carbon to a bridging oxygen and (2) "CO 3-like" complexes, in which two oxygens of a central CO 3 group form bridging bonds to the two TH 3 groups. The CO 2-like isomer of CO 2-H 3SiOSiH 3 is quite weakly bonded and its 13C isotropic NMR shielding is almost identical to that in free CO 2. As Si is progressively replaced by Al in the - H terminated aluminosilicate model, the CO 2-like isomers show increasing distortion from the free CO 2 geometry and their 13C NMR shieldings decrease uniformly. The calculated 13C shielding value for H 3AlO(CO 2)AlH 3-2 is only about 6 ppm larger than that calculated for point charge stabilized CO 3-2. However, for a geometry of H 3SiO(CO 2) AlH 3-1, in which the bridging oxygen to C bond length has been artificially increased to that found in the - OH terminated cluster (OH) 3SiO(CO 2)Al(OH) 3-1, the calculated 13C shielding is almost identical to that for free CO 2. The CO 3-like isomers of the CO 2-aluminosili-cate complexes show carbonate like geometries and 13C NMR shieldings about 4-9 ppm larger than those of carbonate for all T,T' pairs. For the Si,Si tetrahedral atom pair the CO 2-like isomer is more stable energetically, while for the Si,Al and Al,Al cases the CO 3-like isomer is more stable. Addition of Na + ions to the CO 3-2 or H 3AlO(CO 2)AlH 3-2 complexes reduces the 13C NMR shieldings by about 10 ppm. Complexation with either Na + or CO 2 also reduces the 29Si NMR shieldings of the aluminosilicate models, while the changes in 27Al shielding with Na + or CO 2

  10. Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by 13C cross polarization/magic angle spinning NMR.

    PubMed

    Yang, Mingying; Nakazawa, Yasumoto; Yamauchi, Kazuo; Knight, David; Asakura, Tetsuo

    2005-01-01

    To obtain detailed structural information for spider dragline spidroin (MaSp1), we prepared three versions of the consensus peptide GGLGGQGAGAAAAAAGGAGQGGYGGLGSQGAGR labeled with 13C at six different sites. The 13C CP/MAS NMR spectra were observed after treating the peptides with different reagents known to alter silk protein conformations. The conformation-dependent 13C NMR chemical shifts and peak deconvolution were used to determine the local structure and the fractional compositions of the conformations, respectively. After trifluoroacetic acid (solvent)/diethyl ether (coagulant) treatment, the N-terminal region of poly-Ala (PLA) sequence, Ala8 and Ala10, adopted predominantly the alpha-helix with a substantial amount of beta-sheet. The central region, Ala15, Ala18, and Leu26, and C-terminal region, Ala31, of the peptide were dominated by either 3(1)-helix or alpha-helix. There was no indication of beta-sheet, although peak broadening indicates that the torsion angle distribution is relatively large. After 9 M LiBr/dialysis treatment, three kinds of conformation, beta-sheet, random coil, and 3(1)-helix, appeared, in almost equal amounts of beta-sheet and random coil conformations for Ala8 and Ala10 residues and distorted 3(1)-helix at the central region of the peptide. In contrast, after formic acid/methanol and 8 M urea/acetonitrile treatments, all of the local structure tends to beta-sheet, although small amounts of random coil are also observed. The peak pattern of the Ala Cbeta carbon after 8 M urea/acetonitrile treatment is similar to the corresponding patterns of silk fiber from Bombyx mori and Samia cynthia ricini. We also synthesized a longer 13C-labeled peptide containing two PLA blocks and three Gly-rich blocks. After 8 M urea/acetonitrile treatment, the conformation pattern was closely similar to that of the shorter peptide.

  11. Residue-specific millisecond to microsecond fluctuations in bacteriorhodopsin induced by disrupted or disorganized two-dimensional crystalline lattice, through modified lipid-helix and helix-helix interactions, as revealed by 13C NMR.

    PubMed

    Saitô, Hazime; Tsuchida, Takahiro; Ogawa, Keizi; Arakawa, Tadashi; Yamaguchi, Satoru; Tuzi, Satoru

    2002-09-20

    We have recorded 13C NMR spectra of [3-13C]-, [1-13C]Ala-, and [1-13C]Val-labeled bacteriorhodopsin (bR), W80L and W12L mutants and bacterio-opsin (bO) from retinal-deficient E1001 strain, in order to examine the possibility of their millisecond to microsecond local fluctuations with correlation time in the order of 10(-4) to 10(-5) s, induced or prevented by disruption or assembly of two-dimensional (2D) crystalline lattice, respectively, at ambient temperature. The presence of disrupted or disorganized 2D lattice for W12L, W80L and bO from E1001 strain was readily visualized by increased relative proportions of surrounding lipids per protein, together with their broadened 13C NMR signals of transmembrane alpha-helices and loops in [3-13C]Ala-labeled proteins, with reference to those of wild-type. In contrast, 13C CP-MAS NMR spectra of [1-13C]Ala- and Val-labeled these mutants were almost completely suppressed, owing to the presence of fluctuations with time scale of 10(-4) s interfered with magic angle spinning. In particular, 13C NMR signals of [1-13C]Ala-labeled transmembrane alpha-helices of wild-type were almost completely suppressed at the interface between the surface and inner part (up to 8.7 A deep from the surface) with reference to those of the similarly suppressed peaks by Mn(2+)-induced accelerated spin-spin relaxation rate. Such fluctuation-induced suppression of 13C NMR peaks from the interfacial regions, however, was less significant for [1-13C]Val-labeled proteins, because fluctuation motions in Val residues with bulky side-chains at the C(alpha) moiety were modified to those of longer correlation time (>10(-4) s), if any, by residue-specific manner. To support this view, we found that such suppressed 13C NMR signals of [1-13C]Ala-labeled peaks in the wild-type were recovered for D85N and bO in which correlation times of fluctuations were shifted to the order of 10(-5) s due to modified helix-helix interactions as previously pointed out

  12. Metabolic pathways for ketone body production. /sup 13/C NMR spectroscopy of rat liver in vivo using /sup 13/C-multilabeled fatty acids

    SciTech Connect

    Pahl-Wostl, C.; Seelig, J.

    1986-11-04

    The hormonal regulation of ketogenesis in the liver of living rat has been studied noninvasively with /sup 13/C nuclear magnetic resonance. The spatial selection for the liver was better than 90%, with extrahepatic adipose tissue contribution only a very small amount of signal. The metabolic activities of the liver were investigated by infusion of /sup 13/C-labeled butyrate in the jugular vein of the anesthetized rat. The rate of butyrate infusion was chosen to be close to the maximum oxidative capacity of the rat liver, and the /sup 13/C signal intensities were enhanced by using doubly labeled (1,3-/sup 13/C)butyrate as a substrate. Different /sup 13/C NMR spectra and hence different metabolites were observed depending on the hormonal state of the animal. The /sup 13/C NMR studies demonstrate that even when rate of acetyl-CoA production are high, the disposal of this compound is not identical in fasted and diabetic animals. This supports previous suggestions that the redox state of the mitochondrion represents the most important factor in regulation. For a given metabolic state of the animal, different signal intensities were obtained depending on whether butyrate was labeled at C-1, C-3, or C-1,3. From the ratios of incorporation of /sup 13/C label into the carbons of 3-hydroxybutyrate, it could be estimated that a large fraction of butyrate evaded ..beta..-oxidation to acetyl-CoA but was converted directly to acetoacetyl-CoA. /sup 13/C-labeled glucose could be detected in vivo in the liver of diabetic rats.

  13. Quantitative analysis of deuterium using the isotopic effect on quaternary (13)C NMR chemical shifts.

    PubMed

    Darwish, Tamim A; Yepuri, Nageshwar Rao; Holden, Peter J; James, Michael

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual (1)H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D2O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary (13)C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing (13)C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve (13)C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ((1)H, (2)H) resolves closely separated quaternary (13)C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up.

  14. Microsolvation of methylmercury: structures, energies, bonding and NMR constants ((199)Hg, (13)C and (17)O).

    PubMed

    Flórez, Edison; Maldonado, Alejandro F; Aucar, Gustavo A; David, Jorge; Restrepo, Albeiro

    2016-01-21

    Hartree-Fock (HF) and second order perturbation theory (MP2) calculations within the scalar and full relativistic frames were carried out in order to determine the equilibrium geometries and interaction energies between cationic methylmercury (CH3Hg(+)) and up to three water molecules. A total of nine structures were obtained. Bonding properties were analyzed using the Quantum Theory of Atoms In Molecules (QTAIM). The analyses of the topology of electron densities reveal that all structures exhibit a partially covalent HgO interaction between methylmercury and one water molecule. Consideration of additional water molecules suggests that they solvate the (CH3HgOH2)(+) unit. Nuclear magnetic shielding constants σ((199)Hg), σ((13)C) and σ((17)O), as well as indirect spin-spin coupling constants J((199)Hg-(13)C), J((199)Hg-(17)O) and J((13)C-(17)O), were calculated for each one of the geometries. Thermodynamic stability and the values of NMR constants correlate with the ability of the system to directly coordinate oxygen atoms of water molecules to the mercury atom in methylmercury and with the formation of hydrogen bonds among solvating water molecules. Relativistic effects account for 11% on σ((13)C) and 14% on σ((17)O), which is due to the presence of Hg (heavy atom on light atom, HALA effect), while the relativistic effects on σ((199)Hg) are close to 50% (heavy atom on heavy atom itself, HAHA effect). J-coupling constants are highly influenced by relativity when mercury is involved as in J((199)Hg-(13)C) and J((199)Hg-(17)O). On the other hand, our results show that the values of NMR constants for carbon and oxygen, atoms which are connected through mercury (C-HgO), are highly correlated and are greatly influenced by the presence of water molecules. Water molecules introduce additional electronic effects to the relativistic effects due to the mercury atom.

  15. Molecular motion of micellar solutes: a /sup 13/C NMR relaxation study

    SciTech Connect

    Stark, R.E.; Kasakevich, M.L.; Granger, J.W.

    1982-02-04

    A series of simple NMR relaxation experiments have been performed on nitrobenzene and aniline dissolved in the ionic detergents sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB). Using /sup 13/C relaxation rates at various molecular sites, and comparing data obtained in organic media with those for micellar solutions, the viscosity at the solubilization site was estimated and a detailed picture of motional restrictions imposed by the micellar enviroment was derived. Viscosities of 8 to 17 cp indicate a rather fluid environment for solubilized nitrobenzene; both additives exhibit altered motional preferences in CTAB solutions only. As an aid in interpretation of the NMR data, quasi-elastic light scattering and other physical techniques have been used to evaluate the influence of organic solutes on micellar size and shape. The NMR methods are examined critically in terms of their general usefulness for studies of solubilization in detergent mice

  16. 13C-NMR in Iodine and Potassium Intercalated C60 Solid

    NASA Astrophysics Data System (ADS)

    Maniwa, Yutaka; Shibata, Takayuki; Mizoguchi, Kenji; Kume, Kiyoshi; Kikuchi, Koichi; Ikemoto, Isao; Suzuki, Shinzo; Achiba, Yoji

    1992-07-01

    Iodine intercalated C60, I2.29C60, was studied by 13C NMR above 160 K. A sharp NMR signal and a strong temperature-dependent spin-lattice relaxation time, T1, indicated a presence of C60 molecular rotation much higher than 10 kHz at least down to 160 K. No evidence of metallic characteristics was found in the NMR shift (143± 1 ppm) and the T1 (40± 5 sec at room temperature). In K3C60, metallic behavior, T1T˜constant, was observed at the carbon sites between 20 K and 100 K. Electronic density of states at the Fermi level, N(EF), in I2.29C60 was estimated to be smaller than 0.12 of that in K3C60, assuming a relationship between N(EF) and T1T for normal metals.

  17. Neuroprotective effects of caffeine in MPTP model of Parkinson's disease: A (13)C NMR study.

    PubMed

    Bagga, Puneet; Chugani, Anup N; Patel, Anant B

    2016-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of nigrostriatal dopaminergic neurons with an accompanying neuroinflammation leading to loss of dopamine in the basal ganglia. Caffeine, a well-known A2A receptor antagonist is reported to slow down the neuroinflammation caused by activated microglia and reduce the extracellular glutamate in the brain. In this study, we have evaluated the neuroprotective effect of caffeine in the MPTP model of PD by monitoring the region specific cerebral energy metabolism. Adult C57BL6 mice were treated with caffeine (30 mg/kg, i.p.) 30 min prior to MPTP (25 mg/kg, i.p.) administration for 8 days. The paw grip strength of mice was assessed in order to evaluate the motor function after various treatments. For metabolic studies, mice were infused with [1,6-(13)C2]glucose, and (13)C labeling of amino acids was monitored using ex vivo(1)H-[(13)C]-NMR spectroscopy. The paw grip strength was found to be reduced following the MPTP treatment. The caffeine pretreatment showed significant protection against the reduction of paw grip strength in MPTP treated mice. The levels of GABA and myo-inositol were found to be elevated in the striatum of MPTP treated mice. The (13)C labeling of GluC4, GABAC2 and GlnC4 from [1,6-(13)C2]glucose was decreased in the cerebral cortex, striatum, olfactory bulb, thalamus and cerebellum suggesting impaired glutamatergic and GABAergic neuronal activity and neurotransmission of the MPTP treated mice. Most interestingly, the pretreatment of caffeine maintained the (13)C labeling of amino acids to the control values in cortical, olfactory bulb and cerebellum regions while it partially retained in striatal and thalamic regions in MPTP treated mice. The pretreatment of caffeine provides a partial neuro-protection against severe striatal degeneration in the MPTP model of PD.

  18. Dipolar cross-relaxation modulates signal amplitudes in the 1H NMR spectrum of hyperpolarized [ 13C]formate

    NASA Astrophysics Data System (ADS)

    Merritt, Matthew E.; Harrison, Crystal; Mander, William; Malloy, Craig R.; Dean Sherry, A.

    2007-12-01

    The asymmetry in the doublet of a spin coupled to hyperpolarized 13C has been used previously to measure the initial polarization of 13C. We tested the hypothesis that a single observation of the 1H NMR spectrum of hyperpolarized 13C formate monitors 13C polarization. Depending on the microwave frequency during the polarization process, in-phase or out-of-phase doublets were observed in the 1H NMR spectrum. Even in this simple two-spin system, 13C polarization was not reflected in the relative area of the JCH doublet components due to strong heteronuclear cross-relaxation. The Solomon equations were used to model the proton signal as a function of time after polarization and to estimate 13C polarization from the 1H NMR spectra.

  19. 13C NMR of molecular configurations leading to ferromagnetic exchange in TDAE-C60

    NASA Astrophysics Data System (ADS)

    Blinc, R.; Millia, F.; Apih, T.; Arcon, D.; Jeglic, P.; Mihailovic, D.; Omerzu, A.

    2001-11-01

    The temperature dependence of the 13C NMR spectra of a 40% 13C enriched well annealed TDAE-C60 sample has been measured at a Larmor frequency vL=95.57 MHz in a field of 9 T between 300 K and 7 K. Three transitions are found: the motional transition around 150 K, the ferromagnetic transition which occurs in a field of 9 T at Tc=24 K, and a transition to an inhomogeneous ferromagnetic phase around 9 K. The 13C spectra are dominated by the Fermi contact interaction between the unpaired electron and the 13C nuclei as well as by the electron-nuclear dipolar interactions. The temperature dependence of the observed lineshapes can be understood by a superposition of uniaxial rotations of the C60- ions around their 3-fold axes plus a flipping of the axes of rotation. The flipping starts to freeze out below the motional transition at 150 K whereas uniaxial rotational jumps seem to persist down to the lowest temperature studied. The results are compatible with the C60- orientational disorder proposed by Narymbetov et al. maximizing the ferromagnetic exchange interactions.

  20. Accurate measurements of {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    SciTech Connect

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Nielsen, Niels Chr.; Khaneja, Navin

    2014-09-21

    Application of sets of {sup 13}C-{sup 13}C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ({sup 13}C′) and aliphatic ({sup 13}C{sub aliphatic}) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly {sup 13}C,{sup 15}N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of {sup 13}C′-{sup 13}C{sub aliphatic} distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform {sup 13}C,{sup 15}N-labeling on the FGAIL fragment.

  1. Computer-Aided (13)C NMR Chemical Profiling of Crude Natural Extracts without Fractionation.

    PubMed

    Bakiri, Ali; Hubert, Jane; Reynaud, Romain; Lanthony, Sylvie; Harakat, Dominique; Renault, Jean-Hugues; Nuzillard, Jean-Marc

    2017-05-26

    A computer-aided, (13)C NMR-based dereplication method is presented for the chemical profiling of natural extracts without any fractionation. An algorithm was developed in order to compare the (13)C NMR chemical shifts obtained from a single routine spectrum with a set of predicted NMR data stored in a natural metabolite database. The algorithm evaluates the quality of the matching between experimental and predicted data by calculating a score function and returns the list of metabolites that are most likely to be present in the studied extract. The proof of principle of the method is demonstrated on a crude alkaloid extract obtained from the leaves of Peumus boldus, resulting in the identification of eight alkaloids, including isocorydine, rogersine, boldine, reticuline, coclaurine, laurotetanine, N-methylcoclaurine, and norisocorydine, as well as three monoterpenes, namely, p-cymene, eucalyptol, and α-terpinene. The results were compared to those obtained with other methods, either involving a fractionation step before the chemical profiling process or using mass spectrometry detection in the infusion mode or coupled to gas chromatography.

  2. NMR analyses of the cold cataract. III. /sup 13/C acrylamide studies

    SciTech Connect

    Lerman, S.; Megaw, J.M.; Moran, M.N.

    1985-10-01

    /sup 13/C-enriched acrylamide was employed to further delineate the action of this compound in preventing the cold cataract phenomenon when it is incorporated (in vitro) into young human and rabbit lenses. The extent of acrylamide incorporation, in the dark and with concurrent UV exposure, was monitored by /sup 13/C NMR spectroscopy. These studies provide further evidence that UV exposure causes permanent acrylamide photobinding within the lens. In such lenses, the gamma crystallin fraction of the soluble lens proteins is affected to the greatest extent. It appears to become aggregated and/or combined with the alpha and beta fractions resulting in an apparent loss of most of the gamma monomers. There is also an age-related effect with respect to the amount of acrylamide that can be incorporated into the lens. The decrease in acrylamide incorporation with age directly parallels the age-related decline in gamma crystallin levels.

  3. 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Frye, J. S.

    1987-01-01

    13C NMR spectra have been obtained of the insoluble carbon residues resulting from HF-digestion of three carbonaceous chondrites, Orgueil (C1), Murchison (CM2), and Allende (CV3). Spectra obtained using the cross polarization magic-angle spinning technique show two major features attributable respectively to carbon in aliphatic/olefinic structures. The spectrum obtained from the Allende sample was weak, presumably as a consequence of its low hydrogen content. Single pulse excitation spectra, which do not depend on 1H-13C polarization transfer for signal enhancement were also obtained. These spectra, which may be more representative of the total carbon in the meteorite samples, indicate a greater content of carbon in aromatic/olefinic structures. These results suggest that extensive polycyclic aromatic sheets are important structural features of the insoluble carbon of all three meteorites. The Orgueil and Murchison materials contain additional hydrogenated aromatic/olefinic and aliphatic groups.

  4. Multigap Superconductivity in Y2C3: A 13C-NMR Study

    NASA Astrophysics Data System (ADS)

    Harada, A.; Akutagawa, S.; Miyamichi, Y.; Mukuda, H.; Kitaoka, Y.; Akimitsu, J.

    2007-02-01

    We report on the superconducting properties of Y2C3 with a relatively high transition temperature Tc = 15.7 K investigated by 13C nuclear-magnetic-resonance (NMR) measurements under a magnetic field. The 13C Knight shift has revealed a significant decrease below Tc, suggesting a spin-singlet superconductivity. From an analysis of the temperature dependence of the nuclear spin-lattice relaxation rate 1/T1 in the superconducting state, Y2C3 is demonstrated to be a multigap superconductor that exhibits a large gap 2Δ/kBTc=5 at the main band and a small gap 2Δ/kBTc=2 at other bands. These results have revealed that Y2C3 is a unique multigap s-wave superconductor similar to MgB2.

  5. Intracellular flux analysis in hybridomas using mass balances and in vitro (13)C nmr.

    PubMed

    Zupke, C; Stephanopoulos, G

    1995-02-20

    Intracellular fluxes are important in defining cellular physiology and its changes in response to environmental variations. Stoichiometric balances combined with extra cellular metabolite measurements were applied to the estimation of intracellular fluxes and the study of energy metabolism in the hybridoma cell line ATCC CRL 1606. Redundant measurements allowed the evaluation of the consistency of the stoichiometry, measurements, and pseudo-steady-state assumption leading to refinement of the assumed biochemistry and identification of measurement errors. To validate the flux estimates, two batch experiments were performed with glucose labeled in the 1 position with (13)C. The distribution of (13)C in secreted lactate was measured via nuclear magnetic resonance spectroscopy (NMR) and compared to that predicted from the estimated intracellular fluxes. There was good agreement between the measured and estimated isotope distributions, demonstrating the validity of the flux estimates obtained from stoichiometric balances. (c) 1995 John Wiley & Sons, Inc.

  6. 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Frye, J. S.

    1987-01-01

    13C NMR spectra have been obtained of the insoluble carbon residues resulting from HF-digestion of three carbonaceous chondrites, Orgueil (C1), Murchison (CM2), and Allende (CV3). Spectra obtained using the cross polarization magic-angle spinning technique show two major features attributable respectively to carbon in aliphatic/olefinic structures. The spectrum obtained from the Allende sample was weak, presumably as a consequence of its low hydrogen content. Single pulse excitation spectra, which do not depend on 1H-13C polarization transfer for signal enhancement were also obtained. These spectra, which may be more representative of the total carbon in the meteorite samples, indicate a greater content of carbon in aromatic/olefinic structures. These results suggest that extensive polycyclic aromatic sheets are important structural features of the insoluble carbon of all three meteorites. The Orgueil and Murchison materials contain additional hydrogenated aromatic/olefinic and aliphatic groups.

  7. Complete 1H and 13C NMR assignment of trans,trans-2,3-divinylfuran derivatives.

    PubMed

    Skorić, Irena; Marinić, Zeljko; Molcanov, Kresimir; Kojić-Prodić, Biserka; Sindler-Kulyk, Marija

    2007-08-01

    1H and 13C NMR spectra of trans, trans-2,3-divinylfuran derivatives (1-4) in CDCl3 were fully assigned using one- and two-dimensional NMR techniques. The 1H NMR resonances of ethylenic protons in position 2 with regard to the corresponding protons in position 3 of the furan ring are discussed. Copyright 2007 John Wiley & Sons, Ltd.

  8. Determination of Spin-Lattice Relaxation of Time Using (Super 13)C NMR: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Gasyna, Zbigniew L.; Jurkiewicz, Antoni

    2004-01-01

    An experiment designed for the physical chemistry laboratory where (super 13)C NMR is applied to determine the spin-lattice relaxation time for carbon atoms in n-hexanol is proposed. It is concluded that students learn the principles and concepts of NMR spectroscopy as well as dynamic NMR experiments.

  9. High-resolution solid state sup 13 C NMR of bacteriorhodopsin: Characterization of (4- sup 13 C)asp resonances

    SciTech Connect

    Metz, G.; Siebert, F. Max-Planck-Inst. fuer Biophysik, Frankfurt ); Engelhard, M. )

    1992-01-21

    Solid state {sup 13}C nuclear magnetic resonance measurements of bacteriorhodopsin labeled with (4-{sup 13}C)Asp show that resonances of single amino acids can be resolved. In order to assign and characterize the resonances of specific Asp residues, three different approaches were used. (1) Determination of the chemical shift anisotropy from side-band intensities provides information about the protonation state of Asp residues; (2) relaxation studies and T{sub 1} filtering allow one to discriminate between resonances with different mobility; (3) a comparison of the spectra of light- and dark-adapted bacteriorhodopsin provides evidence for resonances from aspartic acid residues in close neighborhood of the chromophore. In agreement with other investigations, four resonances are assigned to internal residues. Two of them are protonated in the ground state up to pH 10 (Asp{sub 96} and Asp{sub 115}). All other detected resonance, including Asp{sub 85} and Asp{sub 212}, are due to deprotonated aspartic acid. Two lines due to the two internal deprotonated groups change upon dark and light adaptation, whereas the protonated Asp residues are unaffected.

  10. Light-induced yellowing of selectively 13C-enriched dehydrogenation polymers (DHPs). Part 2, NMR assignments and photoyellowing of aromatic ring 1-, 3-, 4-, and 5-13C DHPs

    Treesearch

    Jim Parkas; Magnus Paulsson; Terashima Noritsugu; Ulla Westermark; Sally Ralph

    2004-01-01

    Light-induced yellowing of lignocellulosicmaterials has been studied using 13C-enriched DHP (dehydrogenation polymer), selectively 13C-enriched at positions 1, 3, 4, and 5 in the aromatic ring, and quantitative solution state 13C NMR spectroscopy. The NMR study confirmed the results of previous studies using side-chain labeled DHP, mainly that coniferyl alcohol end...

  11. 1H and 13C NMR study on some substituted azolidine derivatives

    NASA Astrophysics Data System (ADS)

    Cerioni, Giovanni; Cristiani, Franco; Devillanova, Francesco A.; Diaz, Angelo; Verani, Gaetano

    The 1H and 13C NMR spectra carried out on R overlineN·CH 2·CH 2·X·C O (where for R = H, X = NH, NMe, NEt, CH 2, S, O; for R = Me, X = NMe, CH 2; for R = Et, X = NEt) are reported. The comparison of these results with those obtained for the thionic and selonic isologues shows that sulphur and selenium have a greater deshielding effect on the ring than oxygen. The resonance of the carbons not involved in the π system have been correlated with the σ charges calculated by the DEL RE method.

  12. High Resolution Solid State 13C NMR Spectroscopy of Sporopollenins from Different Plant Taxa

    PubMed Central

    Guilford, William J.; Schneider, Diane M.; Labovitz, Jeffrey; Opella, Stanley J.

    1988-01-01

    The extremely chemically resistant component of the cell wall of spores, pollens, and some microorganisms, sporopollenin, is generally accepted to be derived from carotenoids or carotenoid esters. However, we report here that 13C NMR analyses of sporopollenin from several sources shows that this widely held view is incorrect, with one possible exception. Sporopollenin is not a unique substance but rather a series of related biopolymers derived from largely saturated precursors such as fatty acids. The biopolymers contain widely varying amounts of oxygen in the form of ether, hydroxyl, carboxylic acid, ester, and ketone groups. PMID:16665854

  13. 13C NMR spectral characterization of epimeric rotenone and some related tetrahydrobenzopyranofurobenzopyranones

    USGS Publications Warehouse

    Abidi, S.L.; Abidi, M.S.

    1983-01-01

    The 13C nuclear magnetic resonance (nmr) spectra of epimers of rotenone and four 12a-hydroxy-analogues were examined to determine the stereochemical effect of the B/C ring fusion involving the 6a- and 12a-carbon centers. Chemical shift differences between the epimeric carbon resonances of cis- and trans-6a,12a-compounds were notably larger than those of diastereoisomers derived from the same B/C ring junction stereochemistry. Results of the spectral analysis have been useful for the quantification of mixtures of epimers and for the measurement of rates of epimerization and oxygenation.

  14. The binding of metal ions and angiotensin converting enzyme (ACE) inhibitor by 13C NMR

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yohko; Sakamoto, Yuko; Ishii, Tomoko; Ohmoto, Taichi

    1991-06-01

    Enalaprilat (MK-422, 1- [ N- [1 (S)-carboxy-3-phenylpropyl]- L-alanyl]- L-proline (1)) and Lisinopril (MK521, N- N- [ (s)-l-carboxy-3- phenylpropyl]- L-lysyl- L-proline, (2)) exhibit the capacity to act as a chelate, unidentate or bridge towards metal ions in aqueous solution, as determined by 13C NMR. By adding metal ions, in the series of Zn 2+, Ni 2+, Pb 2+, Pd 2+ and Cd 2+, the active site of the ACE inhibitor was well defined. MK-521 was more influenced by nuclei that were distant from the active site than MK-422.

  15. Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd

    Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  16. 1H, 13C and 15N NMR assignments of phenazopyridine derivatives.

    PubMed

    Burgueño-Tapia, Eleuterio; Mora-Pérez, Yolanda; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2005-03-01

    Phenazopyridine hydrochloride (1), a drug in clinical use for many decades, and some derivatives were studied by one- and two-dimensional (1)H, (13)C and (15)N NMR methodology. The assignments, combined with DFT calculations, reveal that the preferred protonation site of the drug is the pyridine ring nitrogen atom. The chemoselective acetylation of phenazopyridine (2) and its influence on the polarization of the azo nitrogen atoms were evidenced by the (15)N NMR spectra. Molecular calculations of the phenazopyridines 2-4 show that the pyridine and phenyl groups are oriented in an antiperiplanar conformation with intramolecular hydrogen bonding between the N-b atom and the C-2 amino group preserving the E-azo stereochemistry.

  17. Experimental and calculated 1H, 13C, 15N NMR spectra of famotidine

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Czarniecki, K.; Proniewicz, L. M.

    2001-05-01

    Famotidine, 3-[[[2-[(aminoiminomethyl)amino]-4-thiazolyl]methyl]thio]- N-(aminosulfonyl), is a histamine H 2-receptor blocker that has been used mainly for the treatment of peptic ulcers and the Zollinger-Ellison syndrome. Its NMR spectra in different solvents were reported earlier; however, detailed interpretation has not been done thus far. In this work, experimental 1H, 13C and 15N NMR spectra of famotidine dissolved in DMSO-d 6 are shown. The assignment of observed chemical shifts is based on quantum chemical calculation at the Hartree-Fock/6-31G ∗ level. The geometry optimization of the famotidine molecule with two internal hydrogen bonds, i.e. [N(3)-H(23)⋯N(9) and N(3)⋯H(34)-N(20)], is done by using the B3LYP method with the 6-31G ∗ basis set.

  18. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    PubMed

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-05

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. /sup 13/C NMR studies of the molecular flexibility of antidepressants

    SciTech Connect

    Munro, S.L.; Andrews, P.R.; Craik, D.J.; Gale, D.J.

    1986-02-01

    The solution dynamics of a series of clinically potent antidepressants have been investigated by measuring /sup 13/C NMR relaxation parameters. Correlation times and internal motional rates were calculated from spin-lattice relaxation times and nuclear Overhauser effects for the protonated carbons in mianserin, imipramine-like antidepressants, and amitriptyline-like antidepressants. These data were interpreted in terms of overall molecular tumbling, internal rotations, and inherent flexibility of these structures. Of particular interest was the conformational variability of the tricyclic nucleus of the tricyclic antidepressants, where the data indicated a fivefold difference in mobility of the dimethylene bridge of imipramine-like antidepressants relative to amitriptyline-like compounds. The implications of such a difference in internal motions is discussed in relation to previous NMR studies and to the reported differences in pharmacological activity of these antidepressants.

  20. Solid-state NMR characterization of cross-linking in EPDM/PP blends from 1H-13C polarization transfer dynamics.

    PubMed

    Aluas, Mihaela; Filip, Claudiu

    2005-05-01

    A novel approach for solid-state NMR characterization of cross-linking in polymer blends from the analysis of (1)H-(13)C polarization transfer dynamics is introduced. It extends the model of residual dipolar couplings under permanent cross-linking, typically used to describe (1)H transverse relaxation techniques, by considering a more realistic distribution of the order parameter along a polymer chain in rubbers. Based on a systematic numerical analysis, the extended model was shown to accurately reproduce all the characteristic features of the cross-polarization curves measured on such materials. This is particularly important for investigating blends of great technological potential, like thermoplastic elastomers, where (13)C high-resolution techniques, such as CP-MAS, are indispensable to selectively investigate structural and dynamical properties of the desired component. The validity of the new approach was demonstrated using the example of the CP build-up curves measured on a well resolved EPDM resonance line in a series of EPDM/PP blends.

  1. Partial 13C isotopic enrichment of nucleoside monophosphates: useful reporters for NMR structural studies.

    PubMed

    Kishore, Anita I; Mayer, Michael R; Prestegard, James H

    2005-10-27

    Analysis of the 13C isotopic labeling patterns of nucleoside monophosphates (NMPs) extracted from Escherichia coli grown in a mixture of C-1 and C-2 glucose is presented. By comparing our results to previous observations on amino acids grown in similar media, we have been able to rationalize the labeling pattern based on the well-known biochemistry of nucleotide biosynthesis. Except for a few notable absences of label (C4 in purines and C3' in ribose) and one highly enriched site (C1' in ribose), most carbons are randomly enriched at a low level (an average of 13%). These sparsely labeled NMPs give less complex NMR spectra than their fully isotopically labeled analogs due to the elimination of most 13C-13C scalar couplings. The spectral simplicity is particularly advantageous when working in ordered systems, as illustrated with guanosine diphosphate (GDP) bound to ADP ribosylation factor 1 (ARF1) aligned in a liquid crystalline medium. In this system, the absence of scalar couplings and additional long-range dipolar couplings significantly enhances signal to noise and resolution.

  2. 13C and 31P NMR for the diagnosis of muscular phosphorylase-kinase deficiency

    NASA Astrophysics Data System (ADS)

    Jehenson, P.; Duboc, D.; Laforet, P.; Eymard, B.; Lombès, A.; Fardeau, M.; Brunet, P.; Syrota, A.

    1998-02-01

    To further develop and specify the range of medical applications of in vivo NMR spectroscopy for the study of myopathies, it is ncessary to study the largest number of well characterized cases. We here report on the 31P and 13C NMR study of a purely muscular form of phosphorylase-kinase (PK) deficiency. Abnormalities were observed that agree with and increase our pathophysiological knowledge, in particular on the activation of phosphorylase and PK. Also, the abnormalities are different from those found in other clinically similar metabolic myopathies and could be used for the differential diagnosis. Afin de continuer à développer et préciser les applications médicales de la spectroscopie RMN in vivo, il faut étudier le plus grand nombre possible de cas bien caractérisés. Nous avons étudié ici une forme purement musculaire de déficit en phosphorylase-kinase (PK) par RMN du phosphore 31 et du carbone 13. Les altérations observées sont en accord avec et augmentent nos connaissances physiopathologiques, par exemple concernant l'activation de la phosphorylase et PK. Par ailleurs, la combinaison d'altérations observées en 31P et 13C est différente de celle retrouvée dans d'autres myopathies métaboliques cliniquement semblables et pourrait être utilisée pour le diagnostic différentiel.

  3. The molecular structure and vibrational, 1H and 13C NMR spectra of lidocaine hydrochloride monohydrate

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2016-01-01

    The structure, vibrational and NMR spectra of the local anesthetic drug lidocaine hydrochloride monohydrate salt were investigated by B3LYP/6-311G∗∗ calculations. The lidocaine·HCl·H2O salt is predicted to have the gauche structure as the predominant form at ambient temperature with NCCN and CNCC torsional angles of 110° and -123° as compared to 10° and -64°, respectively in the base lidocaine. The repulsive interaction between the two N-H bonds destabilized the gauche structure of lidocaine·HCl·H2O salt. The analysis of the observed vibrational spectra is consistent with the presence of the lidocaine salt in only one gauche conformation at room temperature. The 1H and 13C NMR spectra of lidocaine·HCl·H2O were interpreted by experimental and DFT calculated chemical shifts of the lidocaine salt. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine·HCl·H2O is 2.32 and 8.21 ppm, respectively.

  4. The molecular structure and vibrational, (1)H and (13)C NMR spectra of lidocaine hydrochloride monohydrate.

    PubMed

    Badawi, Hassan M; Förner, Wolfgang; Ali, Shaikh A

    2016-01-05

    The structure, vibrational and NMR spectra of the local anesthetic drug lidocaine hydrochloride monohydrate salt were investigated by B3LYP/6-311G(∗∗) calculations. The lidocaine·HCl·H2O salt is predicted to have the gauche structure as the predominant form at ambient temperature with NCCN and CNCC torsional angles of 110° and -123° as compared to 10° and -64°, respectively in the base lidocaine. The repulsive interaction between the two N-H bonds destabilized the gauche structure of lidocaine·HCl·H2O salt. The analysis of the observed vibrational spectra is consistent with the presence of the lidocaine salt in only one gauche conformation at room temperature. The (1)H and (13)C NMR spectra of lidocaine·HCl·H2O were interpreted by experimental and DFT calculated chemical shifts of the lidocaine salt. The RMSD between experimental and theoretical (1)H and (13)C chemical shifts for lidocaine·HCl·H2O is 2.32 and 8.21ppm, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Characterisation of pitch fractions by quantitative solid state {sup 13}C NMR

    SciTech Connect

    Andresen, J.M.; Dennison, P.R.; Maroto-Valer, M.M.

    1994-12-31

    Thermal and other pretreatments of pitch fractions are being widely investigated as a means to increase the extent of mesophase formation in relation to the production of high performance carbons. The structural changes that occur can be assessed using carbon skeletal parameters but, although solid state {sup 13}C NMR has been used for this purpose, the quantitative reliability of the technique has still to be established for pitch fractions. It was demonstrated previously that, as for coals, cross-polarisation (CP) can vastly underestimate quaternary aromatic carbon concentrations. A combination of a low magnetic field strength to avoid problems with spinning sidebands and the simple Bloch decay or single pulse excitation (SPE) technique is now generally recognised as offering the most satisfactory approach for obtaining quantitative {sup 13}C NMR results for coals and related materials. In this study, single pulse excitation (SPE) and associated relaxation measurements have been conducted at low field on coal-derived pitches and their toluene-insoluble (TI) fractions, together with a biomass-derived pitch and the results compared with those from CP.

  6. Purity analysis of hydrogen cyanide, cyanogen chloride and phosgene by quantitative (13)C NMR spectroscopy.

    PubMed

    Henderson, Terry J; Cullinan, David B

    2007-11-01

    Hydrogen cyanide, cyanogen chloride and phosgene are produced in tremendously large quantities today by the chemical industry. The compounds are also particularly attractive to foreign states and terrorists seeking an inexpensive mass-destruction capability. Along with contemporary warfare agents, therefore, the US Army evaluates protective equipment used by warfighters and domestic emergency responders against the compounds, and requires their certification at > or = 95 carbon atom % before use. We have investigated the (13)C spin-lattice relaxation behavior of the compounds to develop a quantitative NMR method for characterizing chemical lots supplied to the Army. Behavior was assessed at 75 and 126 MHz for temperatures between 5 and 15 degrees C to hold the compounds in their liquid states, dramatically improving detection sensitivity. T(1) values for cyanogen chloride and phosgene were somewhat comparable, ranging between 20 and 31 s. Hydrogen cyanide values were significantly shorter at 10-18 s, most likely because of a (1)H--(13)C dipolar contribution to relaxation not possible for the other compounds. The T(1) measurements were used to derive relaxation delays for collecting the quantitative (13)C data sets. At 126 MHz, only a single data acquisition with a cryogenic probehead gave a signal-to-noise ratio exceeding that necessary for certifying the compounds at > or = 95 carbon atom % and 99% confidence. Data acquired at 75 MHz with a conventional probehead, however, required > or = 5 acquisitions to reach this certifying signal-to-noise ratio for phosgene, and >/= 12 acquisitions were required for the other compounds under these same conditions. In terms of accuracy and execution time, the NMR method rivals typical chromatographic methods.

  7. High-resolution detection of 13C multiplets from the conscious mouse brain by ex vivo NMR spectroscopy

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Jeffrey, F. Mark; Malloy, Craig R.; Pascual, Juan M.

    2011-01-01

    Glucose readily supplies the brain with the majority of carbon needed to sustain neurotransmitter production and utilization., The rate of brain glucose metabolism can be computed using 13C nuclear magnetic resonance (NMR) spectroscopy by detecting changes in 13C contents of products generated by cerebral metabolism. As previously observed, scalar coupling between adjacent 13C carbons (multiplets) can provide additional information to 13C contents for the computation of metabolic rates. Most NMR studies have been conducted in large animals (often under anesthesia) because the mass of the target organ is a limiting factor for NMR. Yet, despite the challengingly small size of the mouse brain, NMR studies are highly desirable because the mouse constitutes a common animal model for human neurological disorders. We have developed a method for the ex vivo resolution of NMR multiplets arising from the brain of an awake mouse after the infusion of [1,6-13C2]glucose. NMR spectra obtained by this method display favorable signal-to-noise ratios. With this protocol, the 13C multiplets of glutamate, glutamine, GABA and aspartate achieved steady state after 150 min. The method enables the accurate resolution of multiplets over time in the awake mouse brain. We anticipate that this method can be broadly applicable to compute brain fluxes in normal and transgenic mouse models of neurological disorders. PMID:21946227

  8. 13C NMR study of halogen bonding of haloarenes: measurements of solvent effects and theoretical analysis.

    PubMed

    Glaser, Rainer; Chen, Naijun; Wu, Hong; Knotts, Nathan; Kaupp, Martin

    2004-04-07

    Solvent effects on the NMR spectra of symmetrical (X = F (1), X = Cl (2), X = Br (3), X = I (4), X = NO2 (5), X = CN (6)) and unsymmetrical (X = I, Y = MeO (7), Y = PhO (8)) para-disubstituted acetophenone azines X-C6H4-CMe=N-N=CMe-C6H4-Y and of models X-C6H4-CMe=N-Z (X = I, Z = H (9), Z = NH2 (10)), 4-iodoacetophenone (11), and iodobenzene (12) were measured in CDCl(3), DMSO, THF, pyridine, and benzene to address one intramolecular and one intermolecular issue. Solvent effects on the (13)C NMR spectra are generally small, and this finding firmly establishes that the azine bridge indeed functions as a "conjugation stopper," an important design concept in our polar materials research. Since intermolecular halogen bonding of haloarenes do occur in polar organic crystalline materials, the NMR solution data pose the question as to whether the absence of solvent shifts indicates the absence of strong halogen bonding in solution. This question was studied by the theoretical analysis of the DMSO complexes of iodoarenes 4, 9-12, and of iodoacetylene. DFT and MP2 computations show iodine bonding, and characteristic structural and electronic features are described. The nonrelativistic complexation shifts and the change in the spin-orbit induced heavy atom effect of iodine compensate each other, and iodine bonding thus has no apparent effect on Ci in the iodoarenes. For iodides, complexation by DMSO occurs and may or may not manifest itself in the NMR spectra. The absence of complexation shifts in the NMR spectra of halides does not exclude the occurrence of halogen bonding in solution.

  9. 1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy

    USGS Publications Warehouse

    Abidi, S.L.; Adams, B.R.

    1987-01-01

    Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.

  10. (13)C NMR-based metabolomics for the classification of green coffee beans according to variety and origin.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Koda, Masanori; Hu, Fangyu; Kato, Rieko; Miyakawa, Takuya; Tanokura, Masaru

    2012-10-10

    (13)C NMR-based metabolomics was demonstrated as a useful tool for distinguishing the species and origins of green coffee bean samples of arabica and robusta from six different geographic regions. By the application of information on (13)C signal assignment, significantly different levels of 14 metabolites of green coffee beans were identified in the classifications, including sucrose, caffeine, chlorogenic acids, choline, amino acids, organic acids, and trigonelline, as captured by multivariate analytical models. These studies demonstrate that the species and geographical origin can be quickly discriminated by evaluating the major metabolites of green coffee beans quantitatively using (13)C NMR-based metabolite profiling.

  11. Local and Global Dynamics of Polyolefin Melts Measured by 13C NMR

    NASA Astrophysics Data System (ADS)

    Qiu, Xh; Ediger, M. D.

    2000-03-01

    Although theoretically NMR relaxation measurements provide an excellent way to characterize the segmental dynamics of polymer melts, the interpretation of such experiments has been ambiguous because usually more than one distribution of relaxation times can describe the experimental results. Utilizing a variable field NMR and a high temperature probe, we measured ^13C T_1, NOE, and T_1ρ of polyethylene melts and atactic polypropylene melts over a wide range of magnetic field(20 to 500 MHz) and temperature(up to 260 ^oC). This unusually wide range enabled us to discriminate among commonly used models for segmental dynamics; the modified KWW distribution function provides much better fit than the DLM and the modified log \\chi ^2 models. Based on the unambiguous characterization of the segmental motions of polymer melts, we determined the relationship between conformational transitions and the fundamental motions for flow. Our analysis also discovered that global motions must be included to accurately describe the relaxation data. In certain favorable cases, the global motions can be well characterized by NMR relaxation measurements; the results are consistent with viscoelastic experiments and computer simulations.

  12. A Critical Evaluation of the Quality of Published (13)C NMR Data in Natural Product Chemistry.

    PubMed

    Robien, Wolfgang

    2017-01-01

    Nuclear Magnetic Resonance spectroscopy contributes very efficiently to the structure elucidation process in organic chemistry. Carbon-13 NMR spectroscopy allows direct insight into the skeleton of organic compounds and therefore plays a central role in the structural assignment of natural products. Despite this important contribution, there is no established and well-accepted workflow protocol utilized during the first steps of interpreting spectroscopic data and converting them into structural fragments and then combining them, by considering the given spectroscopic constraints, into a final proposal of structure. The so-called "combinatorial explosion" in the process of structure generation allows in many cases the generation of reasonable alternatives, which are usually ignored during manual interpretation of the measured data leading ultimately to a large number of structural revisions. Furthermore, even when the determined structure is correct, problems may exist such as assignment errors, ignoring chemical shift values, or assigning lines of impurities to the compound under consideration. An extremely large heterogeneity in the presentation of carbon NMR data can be observed, but, as a result of the efficiency and precision of spectrum prediction, the published data can be analyzed in substantial detail.This contribution presents a comprehensive analysis of frequently occurring errors with respect to (13)C NMR spectroscopic data and proposes a straightforward protocol to eliminate a high percentage of the most obvious errors. The procedure discussed can be integrated readily into the processes of submission and peer-reviewing of manuscripts.

  13. Spectroscopic characterization of the 1-substituted 3,3-diphenyl-4-(2'-hydroxyphenyl)azetidin-2-ones: Application of 13C NMR, 1H- 13C COSY NMR and mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Girija S.; Pheko, Tshepo

    2008-08-01

    The article deals with spectroscopic characterization of azetidin-2-ones. The presence of substituents like hydroxyl, fluoro, methoxy and benzhydryl, etc., on the azetidin-2-one ring significantly affects the IR absorption and 13C NMR frequencies of the carbonyl group present in these compounds. The presence of an ester carbonyl group or too many methine protons in the molecule has been observed to limit the scope of IR and 1H NMR spectroscopy in unambiguous assignment of the structure. The application of 13C NMR, 2D NMR ( 1H- 13C COSY) and mass spectroscopy in characterization of complex azetidin-2-ones is discussed. An application of the latter two techniques is described in deciding unequivocally between an azetidin-2-one ring and chroman-2-one ring structure for the product obtained by treatment of the 1-substituted 3,3-diphenyl-4-[2'-( O-diphenylacyl)hydroxyphenyl]-2-azetidinones with ethanolic sodium hydroxide at room temperature.

  14. Probing RNA dynamics via longitudinal exchange and CPMG relaxation dispersion NMR spectroscopy using a sensitive 13C-methyl label.

    PubMed

    Kloiber, Karin; Spitzer, Romana; Tollinger, Martin; Konrat, Robert; Kreutz, Christoph

    2011-05-01

    The refolding kinetics of bistable RNA sequences were studied in unperturbed equilibrium via (13)C exchange NMR spectroscopy. For this purpose a straightforward labeling technique was elaborated using a 2'-(13)C-methoxy uridine modification, which was prepared by a two-step synthesis and introduced into RNA using standard protocols. Using (13)C longitudinal exchange NMR spectroscopy the refolding kinetics of a 20 nt bistable RNA were characterized at temperatures between 298 and 310K, yielding the enthalpy and entropy differences between the conformers at equilibrium and the activation energy of the refolding process. The kinetics of a more stable 32 nt bistable RNA could be analyzed by the same approach at elevated temperatures, i.e. at 314 and 316 K. Finally, the dynamics of a multi-stable RNA able to fold into two hairpin- and a pseudo-knotted conformation was studied by (13)C relaxation dispersion NMR spectroscopy.

  15. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples.

  16. Interactions of calcium nitrate with pyranosides in water: A 13C NMR study

    NASA Astrophysics Data System (ADS)

    Zhuo, Kelei; Wang, Yaping; Zhao, Yang; Liu, Qian; Wang, Jianji

    2008-11-01

    The 13C NMR spectra of methyl α- and β- D-galactopyranosides, and methyl α- and β- D-glucopyranosides were recorded and show that the Δ( δC-4) values for methyl α- and β- D-galactopyranosides increase most rapidly, whereas those for methyl α- and β- D-glucopyranosides vary hardly with increasing molality of calcium nitrate. It can be concluded that ax-OH-4 interacts more strongly with Ca 2+ than eq-OH-4 group, namely, the Ca 2+ ion interaction with ax-OH-4 leads to a stronger deshielding of the C-4 atom. Compared with other C atoms, the chemical shifts of both C-1 and C-5 atoms in these two types of glycosides decrease relatively rapidly as molality of calcium nitrate increases, indicating that the nitrate ion attractions for these glycosides cause a relatively strong enhancing shielding effect of C-1 and C-5 atoms.

  17. Complete assignments of 1H and 13C NMR data for seven arylnaphthalide lignans from Justicia procumbens.

    PubMed

    Yang, Meihua; Wu, Jun; Cheng, Fan; Zhou, Yuan

    2006-07-01

    Three new arylnaphthalide lignans named 6'-hydroxy justicidin A (1), 6'-hydroxy justicidin B (2) and 6'-hydroxy justicidin C (3) have been isolated from the whole plant of Justicia procumbens, together with four known ones, neojusticin A (4), chinensinaphthol methyl ester (5), isodiphyllin (6) and taiwanin C (7). The complete assignments of 1H and 13C NMR chemical shifts for the new lignans and the 13C NMR chemical shifts for the known lignans were obtained for the first time by means of 2D NMR techniques, including HSQC and HMBC. Copyright (c) 2006 John Wiley & Sons, Ltd.

  18. Acetate and bicarbonate assimilation and metabolite formation in Chlamydomonas reinhardtii: a 13C-NMR study.

    PubMed

    Singh, Himanshu; Shukla, Manish R; Chary, Kandala V R; Rao, Basuthkar J

    2014-01-01

    Cellular metabolite analyses by (13)C-NMR showed that C. reinhardtii cells assimilate acetate at a faster rate in heterotrophy than in mixotrophy. While heterotrophic cells produced bicarbonate and CO2aq, mixotrophy cells produced bicarbonate alone as predominant metabolite. Experiments with singly (13)C-labelled acetate ((13)CH(3)-COOH or CH(3)-(13)COOH) supported that both the (13)C nuclei give rise to bicarbonate and CO2(aq). The observed metabolite(s) upon further incubation led to the production of starch and triacylglycerol (TAG) in mixotrophy, whereas in heterotrophy the TAG production was minimal with substantial accumulation of glycerol and starch. Prolonged incubation up to eight days, without the addition of fresh acetate, led to an increased TAG production at the expense of bicarbonate, akin to that of nitrogen-starvation. However, such TAG production was substantially high in mixotrophy as compared to that in heterotrophy. Addition of mitochondrial un-coupler blocked the formation of bicarbonate and CO2(aq) in heterotrophic cells, even though acetate uptake ensued. Addition of PSII-inhibitor to mixotrophic cells resulted in partial conversion of bicarbonate into CO2(aq), which were found to be in equilibrium. In an independent experiment, we have monitored assimilation of bicarbonate via photoautotrophy and found that the cells indeed produce starch and TAG at a much faster rate as compared to that in mixotrophy and heterotrophy. Further, we noticed that the accumulation of starch is relatively more as compared to TAG. Based on these observations, we suggest that acetate assimilation in C. reinhardtii does not directly lead to TAG formation but via bicarbonate/CO2(aq) pathways. Photoautotrophic mode is found to be the best growth condition for the production of starch and TAG and starch in C. reinhardtii.

  19. Acetate and Bicarbonate Assimilation and Metabolite Formation in Chlamydomonas reinhardtii: A 13C-NMR Study

    PubMed Central

    Singh, Himanshu; Shukla, Manish R.; Chary, Kandala V. R.; Rao, Basuthkar J.

    2014-01-01

    Cellular metabolite analyses by 13C-NMR showed that C. reinhardtii cells assimilate acetate at a faster rate in heterotrophy than in mixotrophy. While heterotrophic cells produced bicarbonate and CO2aq, mixotrophy cells produced bicarbonate alone as predominant metabolite. Experiments with singly 13C-labelled acetate (13CH3-COOH or CH3-13COOH) supported that both the 13C nuclei give rise to bicarbonate and CO2aq. The observed metabolite(s) upon further incubation led to the production of starch and triacylglycerol (TAG) in mixotrophy, whereas in heterotrophy the TAG production was minimal with substantial accumulation of glycerol and starch. Prolonged incubation up to eight days, without the addition of fresh acetate, led to an increased TAG production at the expense of bicarbonate, akin to that of nitrogen-starvation. However, such TAG production was substantially high in mixotrophy as compared to that in heterotrophy. Addition of mitochondrial un-coupler blocked the formation of bicarbonate and CO2aq in heterotrophic cells, even though acetate uptake ensued. Addition of PSII-inhibitor to mixotrophic cells resulted in partial conversion of bicarbonate into CO2aq, which were found to be in equilibrium. In an independent experiment, we have monitored assimilation of bicarbonate via photoautotrophy and found that the cells indeed produce starch and TAG at a much faster rate as compared to that in mixotrophy and heterotrophy. Further, we noticed that the accumulation of starch is relatively more as compared to TAG. Based on these observations, we suggest that acetate assimilation in C. reinhardtii does not directly lead to TAG formation but via bicarbonate/CO2aq pathways. Photoautotrophic mode is found to be the best growth condition for the production of starch and TAG and starch in C. reinhardtii. PMID:25207648

  20. 13C-NMR relation study of heparin-disaccharide interactions with tripeptides GRG and GKG.

    PubMed Central

    Mikhailov, D; Mayo, K H; Pervin, A; Linhardt, R J

    1996-01-01

    Heparin is a polydisperse sulphated copolymer consisting mostly of 1-->4 linked glucosamine and uronic acid residues, i.e. 2-deoxy-2-sulphamido-D-glucopyranose 6-sulphate and L-idopyranosyluronic acid 2-sulphate. 13C NMR has been used to study the interactions of heparinase-derived and purified heparin disaccharide with N- and C-terminally-blocked tripeptides GRG and GKG. Titration of the disaccharide with peptide indicates that GRG binds the disaccharide more strongly than does GKG, with interactions in either case being stronger at uronate ring positions. In the presence of GRG, a carboxylate pKa depression suggests electrostatic interactions between the arginine guanidinium group and the uronate carboxylate group. 13C relaxation data have been acquired for all disaccharide and peptide carbons in the presence and absence of GRG and GKG. 13C relaxation rates for the disaccharide are significantly faster in the presence of peptide, especially with GRG. Analysis of these relaxation data has been done in terms of molecular diffusion constants, D [symbol: see text] and D parallel, and an angle alpha between D parallel and a molecular frame defined by the moment of inertia tensor calculated for an internally rigid disaccharide. Disaccharide conformational space in these calculations has been sampled for both uronate half-chair forms (2H1 and 1H2) and over a range of glycosidic bond angles defined by motional order parameters and inter-residue nuclear Overhauser effects (+/- 30 degree from the average). In the absence of peptide, the ratio D [symbol: see text] /D parallel falls between 0.4 and 0.7; therefore molecular diffusion occurs preferentially about D parallel, which runs through both disaccharide rings. In the presence of peptide, D [symbol: see text] /D parallel is decreased, indicating that GRG is oriented along D parallel and proximal to the uronic acid ring. A model for this is shown. PMID:8615813

  1. Mapping cerebral glutamate 13C turnover and oxygen consumption by in vivo NMR.

    PubMed

    Hyder, Fahmeed; Brown, Peter; Nixon, Terennce W; Behar, Kevin L

    2003-01-01

    Regional rates of 13C incorporation from glucose to glutamate were detected in anesthetized rat brain in vivo at 7T with high temporal and spatial resolution using NMR method ICED PEPSI (in vivo carbon edited detection with proton echo planar spectroscopic imaging). Time courses of regional glutamate 13C turnover were fitted by a metabolic model to obtain regional tri-carboxylic acid (TCA) cycle flux and cerebral metabolic rate of oxygen consumption (CMRO2) in each voxel (8 microL) of rat cortex. CMRO2 maps obtained for rats under either alpha-chloralose or morphine anesthesia revealed average cortical values of 1.5 +/- 0.2 (n = 3) and 3.2 +/- 0.3 (n = 4) mumol/g/min, respectively. These values of CMRO2 are in good agreement with previous cortical measurements with coarser spatial resolution. The heterogeneity within each map, which depicted predominantly gray and white matter differences, was significantly greater under morphine (higher cortical activity) than under-alpha-chloralose (lower cortical activity) anesthesia. The regional variations in the basal awake state, which are expected to be even greater, should be considered to avoid partial-volume artifacts in functional activation studies of awake subjects.

  2. Partial 13C isotopic enrichment of nucleoside monophosphates: useful reporters for NMR structural studies

    PubMed Central

    Kishore, Anita I.; Mayer, Michael R.; Prestegard, James H.

    2005-01-01

    Analysis of the 13C isotopic labeling patterns of nucleoside monophosphates (NMPs) extracted from Escherichia coli grown in a mixture of C-1 and C-2 glucose is presented. By comparing our results to previous observations on amino acids grown in similar media, we have been able to rationalize the labeling pattern based on the well-known biochemistry of nucleotide biosynthesis. Except for a few notable absences of label (C4 in purines and C3′ in ribose) and one highly enriched site (C1′ in ribose), most carbons are randomly enriched at a low level (an average of 13%). These sparsely labeled NMPs give less complex NMR spectra than their fully isotopically labeled analogs due to the elimination of most 13C–13C scalar couplings. The spectral simplicity is particularly advantageous when working in ordered systems, as illustrated with guanosine diphosphate (GDP) bound to ADP ribosylation factor 1 (ARF1) aligned in a liquid crystalline medium. In this system, the absence of scalar couplings and additional long-range dipolar couplings significantly enhances signal to noise and resolution. PMID:16254075

  3. Simultaneous steady-state and dynamic 13C NMR can differentiate alternative routes of pyruvate metabolism in living cancer cells.

    PubMed

    Yang, Chendong; Harrison, Crystal; Jin, Eunsook S; Chuang, David T; Sherry, A Dean; Malloy, Craig R; Merritt, Matthew E; DeBerardinis, Ralph J

    2014-02-28

    Metabolic reprogramming facilitates cancer cell growth, so quantitative metabolic flux measurements could produce useful biomarkers. However, current methods to analyze flux in vivo provide either a steady-state overview of relative activities (infusion of (13)C and analysis of extracted metabolites) or a dynamic view of a few reactions (hyperpolarized (13)C spectroscopy). Moreover, although hyperpolarization has successfully quantified pyruvate-lactate exchanges, its ability to assess mitochondrial pyruvate metabolism is unproven in cancer. Here, we combined (13)C hyperpolarization and isotopomer analysis to quantify multiple fates of pyruvate simultaneously. Two cancer cell lines with divergent pyruvate metabolism were incubated with thermally polarized [3-(13)C]pyruvate for several hours, then briefly exposed to hyperpolarized [1-(13)C]pyruvate during acquisition of NMR spectra using selective excitation to maximize detection of H[(13)C]O3(-) and [1-(13)C]lactate. Metabolites were then extracted and subjected to isotopomer analysis to determine relative rates of pathways involving [3-(13)C]pyruvate. Quantitation of hyperpolarized H[(13)C]O3(-) provided a single definitive metabolic rate, which was then used to convert relative rates derived from isotopomer analysis into quantitative fluxes. This revealed that H[(13)C]O3(-) appearance reflects activity of pyruvate dehydrogenase rather than pyruvate carboxylation followed by subsequent decarboxylation reactions. Glucose substantially altered [1-(13)C]pyruvate metabolism, enhancing exchanges with [1-(13)C]lactate and suppressing H[(13)C]O3(-) formation. Furthermore, inhibiting Akt, an oncogenic kinase that stimulates glycolysis, reversed these effects, indicating that metabolism of pyruvate by both LDH and pyruvate dehydrogenase is subject to the acute effects of oncogenic signaling on glycolysis. The data suggest that combining (13)C isotopomer analyses and dynamic hyperpolarized (13)C spectroscopy may enable

  4. Characterization of the Interfacial Regions of Heterogeneous Blends of Immiscible Polymers by Dynamic Nuclear Polarization (13)C NMR

    DTIC Science & Technology

    1990-10-31

    a stable free radical, we can generate a dynamic nuclear polarization ( DNP ) enhanced 13C NMR signal from chains of the undoped component which are...within 100 A of the interface. DNP - enhanced NMR relaxation experiments performed on polycarbonate/free-radical-doped- polystyrene blends show that...perform DNP -selected, NMR relaxation experiments on a variety of polycarbonate-polystyrene blends with known thermal histories and solvent exposure. The

  5. Quantitative 13C NMR of whole and fractionated Iowa Mollisols for assessment of organic matter composition

    NASA Astrophysics Data System (ADS)

    Fang, Xiaowen; Chua, Teresita; Schmidt-Rohr, Klaus; Thompson, Michael L.

    2010-01-01

    Both the concentrations and the stocks of soil organic carbon vary across the landscape. Do the amounts of recalcitrant components of soil organic matter (SOM) vary with landscape position? To address this question, we studied four Mollisols in central Iowa, two developed in till and two developed in loess. Two of the soils were well drained and two were poorly drained. We collected surface-horizon samples and studied organic matter in the particulate organic matter (POM) fraction, the clay fractions, and the whole, unfractionated samples. We treated the soil samples with 5 M HF at ambient temperature or at 60 °C for 30 min to concentrate the SOM. To assess the composition of the SOM, we used solid-state nuclear magnetic resonance (NMR) spectroscopy, in particular, quantitative 13C DP/MAS (direct-polarization/magic-angle spinning), with and without recoupled dipolar dephasing. Spin counting by correlation of the integral NMR intensity with the C concentration by elemental analysis showed that NMR was ⩾85% quantitative for the majority of the samples studied. For untreated whole-soil samples with <2.5 wt.% C, which is considerably less than in most previous quantitative NMR analyses of SOM, useful spectra that reflected ⩾65% of all C were obtained. The NMR analyses allowed us to conclude (1) that the HF treatment (with or without heat) had low impact on the organic C composition in the samples, except for protonating carboxylate anions to carboxylic acids, (2) that most organic C was observable by NMR even in untreated soil materials, (3) that esters were likely to compose only a minor fraction of SOM in these Mollisols, and (4) that the aromatic components of SOM were enriched to ˜53% in the poorly drained soils, compared with ˜48% in the well drained soils; in plant tissue and particulate organic matter (POM) the aromaticities were ˜18% and ˜32%, respectively. Nonpolar, nonprotonated aromatic C, interpreted as a proxy for charcoal C, dominated the

  6. Complete 1H and 13C NMR assignments of six saponins from Sapindus trifoliatus.

    PubMed

    Grover, Rajesh K; Roy, Abhijeet D; Roy, Raja; Joshi, S K; Srivastava, Vandita; Arora, Sudershan K

    2005-12-01

    Complete 1H and 13C spectral assignments are reported for six saponins from the pericarp of Sapindus trifoliatus (Hindi name: Reetha) collected from Madhya Pradesh and Maharashtra, India, using only 1D and 2D NMR methods. The structures of the compounds were elucidated as hederagenin 3-O-(3-O-acetyl-beta-D-xylopyranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-ara-binopyranoside, hederagenin 3-O-(4-O-acetyl-beta-D-xylop-yranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-arabinop-yranoside, hederagenin 3-O-(3,4-O-diacetyl-beta-D-xylopy-ranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-arabinopy-ranoside, hederagenin 3-O-(3,4-O-diacetyl-alpha-L-arabinop-yranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-arabinop-yranoside, hederagenin 3-O-(beta-D-xylopyranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-arabinopyranoside and he-deragenin 3-O-(alpha-L-arabinopyranosyl)-(1-3)-alpha-L-rhamno-pyranosyl-(1-2)-alpha-L-arabinopyranoside. It is concluded that saponins of this complexity approach the limit of structural complexity, which can be solved by NMR alone, precisely and quickly.

  7. Identification and quantitative determination of lignans in Cedrus atlantica resins using 13C NMR spectroscopy.

    PubMed

    Nam, Anne-Marie; Paoli, Mathieu; Castola, Vincent; Casanova, Joseph; Bighelli, Ange

    2011-03-01

    Identification and quantitative determination of individual components of resin collected on the trunk of 28 Cedrus atlantica trees, grown in Corsica, has been carried out using 13C NMR spectroscopy. Eight resin acids bearing either the pimarane or abietane skeleton, two monoterpene hydrocarbons and four oxygenated neutral diterpenes have been identified, as well as three lignans, scarcely found in resins. Three groups could be distinguished within the 28 resin samples. The nine samples of Group I had their composition dominated by diterpene acids (33.7-45.8%), with abietic acid (6.2-18.7%) and isopimaric acid (5.1-12.6%) being the major components. The four samples of Group II contained resin acids (main components) and lignans in moderate amounts (up to 10.3%). Conversely, lignans (38.8-63.8%) were by far the major components of the 15 samples of Group III. Depending on the sample, the major component was pinoresinol (18.1-38.9%), lariciresinol (17.2-33.7%) or lariciresinol 9'-acetate (16.9-29.1%). Finally, due to the high biological interest in lignans, a rapid procedure, based on 1H NMR spectroscopy, was developed for quantification of lignans in resins of C. atlantica.

  8. Effect of glyphosate on plant cell metabolism. 31P and 13C NMR studies.

    PubMed

    Gout, E; Bligny, R; Genix, P; Tissut, M; Douce, R

    1992-01-01

    The effect of glyphosate (N-phosphonomethyl glycine; the active ingredient of Roundup herbicide) on plant cells metabolism was analysed by 31P and 13C NMR using suspension-cultured sycamore (Acer pseudoplatanus L) cells. Cells were compressed in the NMR tube and perfused with an original arrangement enabling a tight control of the circulating nutrient medium. Addition of 1 mM glyphosate to the nutrient medium triggered the accumulation of shikimate (20-30 mumol g-1 cell wet weight within 50 h) and shikimate 3-phosphate (1-1.5 mumol g-1 cell wet weight within 50 h). From in vivo spectra it was demonstrated that these two compounds were accumulated in the cytoplasm where their concentrations reached potentially lethal levels. On the other hand, glyphosate present in the cytoplasmic compartment was extensively metabolized to yield aminomethylphosphonic acid which also accumulated in the cytoplasm. Finally, the results presented in this paper indicate that although the cell growth was stopped by glyphosate the cell respiration rates and the level of energy metabolism intermediates remained unchanged.

  9. Probing site-specific 13C/15N-isotope enrichment of spider silk with liquid-state NMR spectroscopy.

    PubMed

    Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P

    2013-05-01

    Solid-state nuclear magnetic resonance (NMR) has been extensively used to elucidate spider silk protein structure and dynamics. In many of these studies, site-specific isotope enrichment is critical for designing particular NMR methods for silk structure determination. The commonly used isotope analysis techniques, isotope-ratio mass spectroscopy and liquid/gas chromatography-mass spectroscopy, are typically not capable of providing the site-specific isotope information for many systems because an appropriate sample derivatization method is not available. In contrast, NMR does not require any sample derivatization or separation prior to analysis. In this article, conventional liquid-state (1)H NMR was implemented to evaluate incorporation of (13)C/(15)N-labeled amino acids in hydrolyzed spider dragline silk. To determine site-specific (13)C and (15)N isotope enrichments, an analysis method was developed to fit the (1)H-(13)C and (1)H-(15)N J-splitting (J CH and J NH) (1)H NMR peak patterns of hydrolyzed silk fiber. This is demonstrated for Nephila clavipes spiders, where [U-(13)C3,(15)N]-Ala and [1-(13)C,(15)N]-Gly were dissolved in their water supplies. Overall, contents for Ala and Gly isotopomers are extracted for these silk samples. The current methodology can be applied to many fields where site-specific tracking of isotopes is of interest.

  10. Insight into Understanding Dielectric Behavior of a Zn-MOF Using Variable-Temperature Crystal Structures, Electrical Conductance, and Solid-State (13)C NMR Spectra.

    PubMed

    Tong, Yuan-Bo; Liu, Shao-Xian; Zou, Yang; Xue, Chen; Duan, Hai-Bao; Liu, Jian-Lan; Ren, Xiao-Ming

    2016-11-21

    A Zn-based metal-organic framework (MOF)/porous coordination polymer (PCP), (EMIM)[Zn(SIP)] (1) (SIP(3-) = 5-sulfoisophthalate, EMIM(+) = 1-ethyl-3-methylimidazolium), was synthesized using the ionothermal reaction. The Zn(2+) ion adopts distorted square pyramid coordination geometry with five oxygen atoms from three carboxylates and one sulfo group. One of two carboxylates in SIP(3-) serves as a μ2-bridge ligand to link two Zn(2+) ions and form the dinuclear SBU, and such SBUs are connected by SIP(3-) ligands to build the three-dimensional framework with rutile (rtl) topology. The cations from the ion-liquid fill the channels. This MOF/PCP shows two-step dielectric anomalies together with two-step dielectric relaxations; the variable-temperature single-crystal structure analyses disclosed the dielectric anomaly occurring at ca. 280 K is caused by an isostructural phase transition. Another dielectric anomaly is related to the dynamic disorder of the cations in the channels. Electric modulus, conductance, and variable-temperature solid-state (13)C CP/MAS NMR spectra analyses revealed that two-step dielectric relaxations result from the dynamic motion of the cations as well as the direct-current conduction and electrode effect, respectively.

  11. 13C-NMR Assessment of the Pattern of Organic Matter Transformation during Domestic Wastewater Treatment by Autothermal Aerobic Digestion (ATAD)

    PubMed Central

    Piterina, Anna V.; Barlett, John; Pembroke, J. Tony

    2009-01-01

    The pattern of biodegradation and the chemical changes occurring in the macromolecular fraction of domestic sludge during autothermal thermophilic aerobic digestion (ATAD) was monitored and characterised via solid-state 13C-NMR CP-MAS. Major indexes such as aromaticity, hydrophobicity and alkyl/O-alkyl ratios calculated for the ATAD processed biosolids were compared by means of these values to corresponding indexes reported for sludges of different origin such as manures, soil organic matter and certain types of compost. Given that this is the first time that these techniques have been applied to ATAD sludge, the data indicates that long-chain aliphatics are easily utilized by the microbial populations as substrates for metabolic activities at all stages of aerobic digestion and serve as a key substrate for the temperature increase, which in turn results in sludge sterilization. The ATAD biosolids following treatment had a prevalence of O-alkyl domains, a low aromaticity index (10.4%) and an alkyl/O-alkyl ratio of 0.48 while the hydrophobicity index of the sludge decreased from 1.12 to 0.62 during the treatment. These results have important implications for the evolution of new ATAD modalities particularly in relation to dewatering and the future use of ATAD processed biosolids as a fertilizer, particularly with respect to hydrological impacts on the soil behaviour. PMID:19742161

  12. Structural determination of Zn and Cd-DTPA complexes: MS, infrared, (13)C NMR and theoretical investigation.

    PubMed

    Silva, Vanézia L; Carvalho, Ruy; Freitas, Matheus P; Tormena, Cláudio F; Melo, Walclée C

    2007-12-31

    The joint application of MS, infrared and (13)C NMR techniques for the determination of metal-DTPA structures (metal=Zn and Cd; DTPA=diethylenetriaminepentacetic acid) is reported. Mass spectrometry allowed determining the 1:1 stoichiometry of the complexes, while infrared analysis suggested that both nitrogen and carboxyl groups are sites for complexation. The (13)C NMR spectrum for the cadmium-containing complex evidenced the existence of free and complexed carboxyl groups, due to a straight singlet at 179.0 ppm (free carboxylic (13)C) and to two broad singlets or a broad doublet at 178.3 ppm (complexed carboxylic (13)C, (2)J(Cd-C(=O))=45.2 Hz). A similar interpretation might be given for the zinc derivative and, with the aid of DFT calculations, structures for both complexes were then proposed.

  13. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.

    PubMed

    del Rosal, I; Maron, L; Poteau, R; Jolibois, F

    2008-08-14

    Transition metal hydrides are of great interest in chemistry because of their reactivity and their potential use as catalysts for hydrogenation. Among other available techniques, structural properties in transition metal (TM) complexes are often probed by NMR spectroscopy. In this paper we will show that it is possible to establish a viable methodological strategy in the context of density functional theory, that allows the determination of 1H NMR chemical shifts of hydride ligands attached to transition metal atoms in mononuclear systems and clusters with good accuracy with respect to experiment. 13C chemical shifts have also been considered in some cases. We have studied mononuclear ruthenium complexes such as Ru(L)(H)(dppm)2 with L = H or Cl, cationic complex [Ru(H)(H2O)(dppm)2]+ and Ru(H)2(dppm)(PPh3)2, in which hydride ligands are characterized by a negative 1H NMR chemical shift. For these complexes all calculations are in relatively good agreement compared to experimental data with errors not exceeding 20% except for the hydrogen atom in Ru(H)2(dppm)(PPh3)2. For this last complex, the relative error increases to 30%, probably owing to the necessity to take into account dynamical effects of phenyl groups. Carbonyl ligands are often encountered in coordination chemistry. Specific issues arise when calculating 1H or 13C NMR chemical shifts in TM carbonyl complexes. Indeed, while errors of 10 to 20% with respect to experiment are often considered good in the framework of density functional theory, this difference in the case of mononuclear carbonyl complexes culminates to 80%: results obtained with all-electron calculations are overall in very satisfactory agreement with experiment, the error in this case does not exceed 11% contrary to effective core potentials (ECPs) calculations which yield errors always larger than 20%. We conclude that for carbonyl groups the use of ECPs is not recommended, although their use could save time for very large systems, for

  14. High resolution13C NMR studies of one- and two-dimensional polymerized C60 under high pressure

    NASA Astrophysics Data System (ADS)

    Rachdi, F.; Goze, C.; Hajji, L.; Nún˜Ez-Regueiro, M.; Marques, L.; Hodeau, J.-L.; Mehring, M.

    1997-11-01

    We report on13C NMR measurements of orthorhombic one-dimensional and rhombohedral two-dimensional polymers of C60 obtained under high pressure. The obtained13C MAS NMR spectrum of the orthorhombic polymer shows two resonances at 146 ppm and 73.5 ppm, and the one of the rhombohedral polymer presents six isotropic lines at 149.1, 147.9, 145.2, 139.6, 134.8 and 73.5 ppm. The static distortion of the C60 molecules induced by the transformation under pressure must be at the origin of the observed inequivalent carbons in both systems. The13C NMR lineshape simulation of the obtained spectra are compatible with the suggested polymeric structures where the C60 molecules are connected by [2 + 2] cycloadditions.

  15. Characterization of a Mixture of CO2 Adsorption Products in Hyperbranched Aminosilica Adsorbents by (13)C Solid-State NMR.

    PubMed

    Moore, Jeremy K; Sakwa-Novak, Miles A; Chaikittisilp, Watcharop; Mehta, Anil K; Conradi, Mark S; Jones, Christopher W; Hayes, Sophia E

    2015-11-17

    Hyperbranched amine polymers (HAS) grown from the mesoporous silica SBA-15 (hereafter "SBA-15-HAS") exhibit large capacities for CO2 adsorption. We have used static in situ and magic-angle spinning (MAS) ex situ (13)C nuclear magnetic resonance (NMR) to examine the adsorption of CO2 by SBA-15-HAS. (13)C NMR distinguishes the signal of gas-phase (13)CO2 from that of the chemisorbed species. HAS polymers possess primary, secondary, and tertiary amines, leading to multiple chemisorption reaction outcomes, including carbamate (RnNCOO(-)), carbamic acid (RnNCOOH), and bicarbonate (HCO3(-)) moieties. Carbamates and bicarbonate fall within a small (13)C chemical shift range (162-166 ppm), and a mixture was observed including carbamic acid and carbamate, the former disappearing upon evacuation of the sample. By examining the (13)C-(14)N dipolar coupling through low-field (B0 = 3 T) (13)C{(1)H} cross-polarization MAS NMR, carbamate is confirmed through splitting of the (13)C resonance. A third species that is either bicarbonate or a second carbamate is evident from bimodal T2 decay times of the ∼163 ppm peak, indicating the presence of two species comprising that single resonance. The mixture of products suggests that (1) the presence of amines and water leads to bicarbonate being present and/or (2) the multiple types of amine sites in HAS permit formation of chemically distinct carbamates.

  16. Conditions for 13C NMR Detection of 2-Hydroxyglutarate in Tissue Extracts from IDH-Mutated Gliomas

    PubMed Central

    Pichumani, Kumar; Mashimo, Tomoyuki; Baek, Hyeon-Man; Ratnakar, James; Mickey, Bruce; DeBerardinis, Ralph J.; Maher, Elizabeth A.; Bachoo, Robert M.; Malloy, Craig R.; Kovacs, Zoltan

    2015-01-01

    13C NMR spectroscopy of extracts from patient tumor samples provides rich information about metabolism. However, in IDH-mutant gliomas 13C labeling is obscured in glutamate and glutamine by the oncometabolite, 2-hydroxyglutaric acid (2HG), prompting development of a simple method to resolve the metabolites. J-coupled multiplets in 2HG were similar to glutamate and glutamine and could be clearly resolved at pH 6. A cryogenically-cooled 13C probe but not J-resolved heteronuclear single quantum coherence spectroscopy significantly improved detection of 2HG. These methods enable the monitoring of 13C-13C spin-spin couplings in 2HG expressing IDH mutant gliomas. PMID:25908561

  17. Sparse (13)C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins.

    PubMed

    Liu, Jing; Liu, Chang; Fan, Ying; Munro, Rachel A; Ladizhansky, Vladimir; Brown, Leonid S; Wang, Shenlin

    2016-05-01

    We demonstrate a novel sparse (13)C labelling approach for methylotrophic yeast P. pastoris expression system, towards solid-state NMR studies of eukaryotic membrane proteins. The labelling scheme was achieved by co-utilizing natural abundance methanol and specifically (13)C labelled glycerol as carbon sources in the expression medium. This strategy improves the spectral resolution by 1.5 fold, displays site-specific labelling patterns, and has advantages for collecting long-range distance restraints for structure determination of large eukaryotic membrane proteins by solid-state NMR.

  18. Characterization of Acetate and Pyruvate Metabolism in Suspension Cultures of Zea mays by 13C NMR Spectroscopy

    PubMed Central

    Ashworth, Dennis J.; Lee, Rino Y.; Adams, Douglas O.

    1987-01-01

    Carbon-13 nuclear magnetic resonance (NMR) spectroscopy has been applied to the direct observation of acetate and pyruvate metabolism in suspension cultures of Zea mays (var Black Mexican Sweet). Growth of the corn cells in the presence of 2 millimolar [2-13C]acetate resulted in a rapid uptake of the substrate from the medium and initial labeling (0-4 hours) of primarily the intracellular glutamate and malate pools. Further metabolism of these intermediates resulted in labeling of glutamine, aspartate, and alanine. With [1-13C]acetate as the substrate very little incorporation into intermediary metabolites was observed in the 13C NMR spectra due to loss of the label as 13CO2. Uptake of [3-13C]pyruvate by the cells was considerably slower than with [2-13C]acetate; however, the labelling patterns were similar with the exception of increased [3-13C] alanine generation with pyruvate as the substrate. Growth of the cells for up to 96 hours with 2 millimolar [3-13C]pyruvate ultimately resulted in labeling of valine, leucine, isoleucine, threonine, and the polyamine putrescine. PMID:16665721

  19. Random isotopolog libraries for protein perturbation studies. 13C NMR studies on lumazine protein of Photobacterium leiognathi.

    PubMed

    Illarionov, Boris; Lee, Chan Yong; Bacher, Adelbert; Fischer, Markus; Eisenreich, Wolfgang

    2005-11-25

    [graph: see text] Lumazine proteins of luminescent bacteria are paralogs of riboflavin synthase which are devoid of catalytic activity but bind the riboflavin synthase substrate, 6,7-dimethyl-8-ribityllumazine, with high affinity and are believed to serve as optical transponders for bioluminescence emission. Lumazine protein of Photobacterium leiognathi was expressed in a recombinant Escherichia coli host and was reconstituted with mixtures (random libraries) of 13C-labeled isotopologs of 6,7-dimethyl-8-ribityllumazine or riboflavin that had been prepared by biotransformation of [U-(13)C6]-, [1-(13)C1]-, [2-(13)C1]-, and [3-(13)C1]glucose. 13C NMR analysis of the protein/ligand complexes afforded the assignments of the 13C NMR chemical shifts for all carbon atoms of the protein-bound ligands by isotopolog abundance editing. The carbon atoms of the ribityl groups of both ligands studied were shifted up to 6 ppm upon binding to the protein. Chemical shift modulation of the side chain and chromophore carbon atoms due to protein/ligand interaction is discussed on the basis of the sequence similarity between lumazine protein and riboflavin synthase.

  20. Dynamic nuclear polarization-enhanced 1H–13C double resonance NMR in static samples below 20 K

    PubMed Central

    Potapov, Alexey; Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We demonstrate the feasibility of one-dimensional and two-dimensional 1H–13C double resonance NMR experiments with dynamic nuclear polarization (DNP) at 9.4 T and temperatures below 20 K, including both 1H–13C cross-polarization and 1H decoupling, and discuss the effects of polarizing agent type, polarizing agent concentration, temperature, and solvent deuteration. We describe a two-channel low-temperature DNP/NMR probe, capable of carrying the radio-frequency power load required for 1H–13C cross-polarization and high-power proton decoupling. Experiments at 8 K and 16 K reveal a significant T2 relaxation of 13C, induced by electron spin flips. Carr–Purcell experiments and numerical simulations of Carr–Purcell dephasing curves allow us to determine the effective correlation time of electron flips under our experimental conditions. The dependence of the DNP signal enhancement on electron spin concentration shows a maximum near 80 mM. Although no significant difference in the absolute DNP enhancements for triradical (DOTOPA-TEMPO) and biradical (TOTAPOL) dopants was found, the triradical produced greater DNP build-up rates, which are advantageous for DNP experiments. Additionally the feasibility of structural measurements on 13C-labeled biomolecules was demonstrated with a two-dimensional 13C–13C exchange spectrum of selectively 13C-labeled β-amyloid fibrils. PMID:22743540

  1. Density Functional Studies of the 13C NMR Chemical Shifts in Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Zurek, Eva; Autschbach, Jochen

    2007-12-01

    Density functional theory has been used to compute the electronic structure and 13C NMR chemical shifts of finite (9,0) single-walled carbon nanotubes (SWNTs) capped with fullerene hemispheres and with hydrogen atoms. The chemical shifts and HOMO-LUMO gaps were found to be dependent upon the mode of capping. The shifts of semiconducting and metallic tubes were estimated as being around 130 ppm and 141 ppm, respectively. Periodic boundary calculations on infinite zigzag (n,0) SWNTs with 7⩽n⩽17 were performed. These entities can be characterized by a family index, λ = mod(n,3), and the chemical shifts can be fitted well by a function inversely proportional to the diameter of the tube and proportional to a constant which depends on the nanotube family. Direct comparison of the molecular and periodic approaches can be made if benzene is used as the internal reference. Such a comparison indicates that capping may have a strong effect on the computed properties. Calculations on infinite zigzag (7⩽n⩽10) amine functionalized SWNTs have been performed. The functional group may react with a C-C bond which is parallel or diagonal to the tube axis and both sites have been considered. The shifts of the carbons directly attached to the group are sensitive to the bond which has been functionalized and may therefore be used to discriminate between the two products. Functionalization induces a significant line broadening of the NMR signals but it does not dramatically change the average shift of the unfunctionalized SWNT carbons.

  2. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    NASA Astrophysics Data System (ADS)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons

  3. (13)C-NMR-Based Metabolomic Profiling of Typical Asian Soy Sauces.

    PubMed

    Kamal, Ghulam Mustafa; Yuan, Bin; Hussain, Abdullah Ijaz; Wang, Jie; Jiang, Bin; Zhang, Xu; Liu, Maili

    2016-09-02

    It has been a strong consumer interest to choose high quality food products with clear information about their origin and composition. In the present study, a total of 22 Asian soy sauce samples have been analyzed in terms of (13)C-NMR spectroscopy. Spectral data were analyzed by multivariate statistical methods in order to find out the important metabolites causing the discrimination among typical soy sauces from different Asian regions. It was found that significantly higher concentrations of glutamate in Chinese red cooking (CR) soy sauce may be the result of the manual addition of monosodium glutamate (MSG) in the final soy sauce product. Whereas lower concentrations of amino acids, like leucine, isoleucine and valine, observed in CR indicate the different fermentation period used in production of CR soy sauce, on the other hand, the concentration of some fermentation cycle metabolites, such as acetate and sucrose, can be divided into two groups. The concentrations of these fermentation cycle metabolites were lower in CR and Singapore Kikkoman (SK), whereas much higher in Japanese shoyu (JS) and Taiwan (China) light (TL), which depict the influence of climatic conditions. Therefore, the results of our study directly indicate the influences of traditional ways of fermentation, climatic conditions and the selection of raw materials and can be helpful for consumers to choose their desired soy sauce products, as well as for researchers in further authentication studies about soy sauce.

  4. The truncated driven NOE and (13)C NMR sensitivity enhancement in magnetically-aligned bicelles.

    PubMed

    Macdonald, Peter M; Soong, Ronald

    2007-09-01

    The truncated driven nuclear Overhauser effect (NOE) sequence is examined as a means of sensitivity enhancement in (13)C NMR spectroscopy of magnetically-aligned bicelles consisting of 4.5:1 mixtures of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) plus DHPC (1,2-dihexanoyl-sn-glycero-3-phosphocholine), with 1 mole% DMPE-PEG 2000 (1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(polyethylene glycol)-2000). Steady-state NOE enhancements were observed at all carbon segments except the lipid carbonyls, but full NOE enhancements were obtained only for the most mobile carbon segments, specifically the choline quaternary methyls and terminal acyl chain methyls of both DMPC and DHPC, as well as the ethylene oxide segments of the PEG head group of DMPE-PEG 2000. Other carbon segments exhibited NOE enhancements that scaled with mobility as determined by transient NOE measurements combined with spin-lattice relaxation measurements. We conclude that the truncated driven NOE provides sensitivity enhancement complimentary to that yielded by cross-polarization techniques and for mobile membrane-associated species may be preferred for its robustness and ease of setup.

  5. The truncated driven NOE and 13C NMR sensitivity enhancement in magnetically-aligned bicelles

    NASA Astrophysics Data System (ADS)

    Macdonald, Peter M.; Soong, Ronald

    2007-09-01

    The truncated driven nuclear Overhauser effect (NOE) sequence is examined as a means of sensitivity enhancement in 13C NMR spectroscopy of magnetically-aligned bicelles consisting of 4.5:1 mixtures of DMPC (1,2-dimyristoyl- sn-glycero-3-phosphocholine) plus DHPC (1,2-dihexanoyl- sn-glycero-3-phosphocholine), with 1 mole% DMPE-PEG 2000 (1,2-dimyristoyl- sn-glycero-3-phosphoethanolamine- N-methoxy(polyethylene glycol)-2000). Steady-state NOE enhancements were observed at all carbon segments except the lipid carbonyls, but full NOE enhancements were obtained only for the most mobile carbon segments, specifically the choline quaternary methyls and terminal acyl chain methyls of both DMPC and DHPC, as well as the ethylene oxide segments of the PEG head group of DMPE-PEG 2000. Other carbon segments exhibited NOE enhancements that scaled with mobility as determined by transient NOE measurements combined with spin-lattice relaxation measurements. We conclude that the truncated driven NOE provides sensitivity enhancement complimentary to that yielded by cross-polarization techniques and for mobile membrane-associated species may be preferred for its robustness and ease of setup.

  6. A (13)C solid-state NMR investigation of four cocrystals of caffeine and theophylline.

    PubMed

    Vigilante, Nicolas J; Mehta, Manish A

    2017-03-01

    We report an analysis of the (13)C solid-state NMR chemical shift data in a series of four cocrystals involving two active pharmaceutical ingredient (API) mimics (caffeine and theophylline) and two diacid coformers (malonic acid and glutaric acid). Within this controlled set, we make comparisons of the isotropic chemical shifts and the principal values of the chemical shift tensor. The dispersion at 14.1 T (600 MHz (1)H) shows crystallographic splittings in some of the resonances in the magic angle spinning spectra. By comparing the isotropic chemical shifts of individual C atoms across the four cocrystals, we are able to identify pronounced effects on the local electronic structure at some sites. We perform a similar analysis of the principal values of the chemical shift tensors for the anisotropic C atoms (most of the ring C atoms for the API mimics and the carbonyl C atoms of the diacid coformers) and link them to differences in the known crystal structures. We discuss the future prospects for extending this type of study to incorporate the full chemical shift tensor, including its orientation in the crystal frame of reference.

  7. Characterization of Stratum Corneum Molecular Dynamics by Natural-Abundance 13C Solid-State NMR

    PubMed Central

    Bouwstra, Joke A.; Sparr, Emma; Topgaard, Daniel

    2013-01-01

    Despite the enormous potential for pharmaceutical applications, there is still a lack of understanding of the molecular details that can contribute to increased permeability of the stratum corneum (SC). To investigate the influence of hydration and heating on the SC, we record the natural-abundance 13C signal of SC using polarization transfer solid-state NMR methods. Resonance lines from all major SC components are assigned. Comparison of the signal intensities obtained with the INEPT and CP pulse sequences gives information on the molecular dynamics of SC components. The majority of the lipids are rigid at 32°C, and those lipids co-exist with a small pool of mobile lipids. The ratio between mobile and rigid lipids increases with hydration. An abrupt change of keratin filament dynamics occurs at RH = 80–85%, from completely rigid to a structure with rigid backbone and mobile protruding terminals. Heating has a strong effect on the lipid mobility, but only a weak influence on the keratin filaments. The results provide novel molecular insight into how the SC constituents are affected by hydration and heating, and improve the understanding of enhanced SC permeability, which is associated with elevated temperatures and SC hydration. PMID:23626744

  8. Solvent and free-radical effects on the /sup 13/C NMR spectra of hydrocarbons

    SciTech Connect

    Abboud, J.M.; Auhmani, A.; Bitar, H.; El Mouhtadi, M.; Martin, J.; Rico, M.

    1987-03-04

    The proton-decoupled /sup 13/C NMR spectra of benzene, naphthalene, azulene, acenaphthylene, fluoranthene, phenanthrene, and 6,6-pentamethylenefulvene have been obtained in dilute solutions in cyclohexane, triethylamine, di-n-butyl ether, diisopropyl ether, diethyl carbon, tetrahydrofuran, butyronitrile, ..gamma..-butyrolactone, propylene carbonate, dimethyl sulfoxide, benzene, toluene, fluorobenzene, anisole, acetophenone, benzonitrile, and nitrobenzene. It has been found that (1) the chemical shifts (relative to an external reference) of both alternant and nonalternant hydrocarbons are sensitive to solvent dipolarity-polarizability effects. (2) In the case of select solvents (aliphatic, monofunctional compound with one single dominant bond moment) there is a generally good correlation between the solvent-induced chemical shifts (SICS) and the ..pi..* scale of solent dipolarity-polarizability. (3) Aromatic solvent induced shifts (ASIS) and specific interactions are significant in aromatic solvents, although dipolarity-polarizability contributions are still very important. (4) With very few exceptions, SICS (relative to cyclohexane solvent) are downfield, and the results are not in favor of the simple reaction field model. (5) For aromatic hydrocarbons, there is a clear proportionality between the SICS and the paramagnetic shifts induced by the stable free-radical 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO). (6) There is no simple relationship between the SICS and the calculated electronic charge distribution of the solute molecules.

  9. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  10. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  11. NMR studies of bent DNA using {sup 13}C-enriched samples

    SciTech Connect

    Zimmer, D.P.; Crothers, D.M.

    1994-12-01

    Bending of the DNA double helix can be brought about by introducing runs of adenines (A-tracts) in phase with the helical repeat of the DNA. The requirements for bending of DNA by A-tracts are that the length of the A-tract be greater than 3 base pairs and that the A-tracts must be in phase with the helical repeat (every 10 or 11 bp). Other factors, such as the number of adenines in the run, flanking sequences, and whether the A-tracts are phased with respect to the 5{prime}A or the 3{prime}A, have effects upon the degree of bending as assayed by electrophoretic mobility on native polyacrylamide gels. There are a number of models for bending A-tract DNA. The junction-bending model postulates that the structure of A-tracts is similar to the fiber diffraction structure of poly A, in which there is a significant degree of base pair tilt with respect to the helix axis. In this model, bending occurs at the junction between the A-tract and the B-form helix to allow favorable stacking interactions to occur. The bend of the helix could arise as a result of some other perturbation of B-form DNA by A-tracts, such as propeller twist; bending also could be due to a combination of factors. Our goal is to find the structural features of A-tracts responsible for bending of the helix by performing NMR on oligonucleotides containing A-tracts to obtain higher resolution structural data. One of the problems encountered in NMR structure determination of nucleic acids and other macromolecules is the assignment of resonances to nuclei. This procedure can be greatly facilitated through the use of {sup 13}C-enriched nucleic acid samples. We are developing a technique for the enzymatic synthesis of labeled DNA for NMR. The technique we are developing is similar to RNA labeling techniques already in use. The technique involves growth of methylotrophic bacteria on {sup 13}CH{sub 3}OH.

  12. Complete assignments of 1H and 13C NMR data for three new arylnaphthalene lignan from Justicia procumbens.

    PubMed

    Liu, Guorui; Wu, Jun; Si, Jianyong; Wang, Junmei; Yang, Meihua

    2008-03-01

    Three new arylnaphthalene lignans, named neojusticin C (1), procumbenoside C (2) and procumbenoside D (3), have been isolated from the whole plant of Justicia procumbens, together with three known ones, justicidinoside B (4), justicidinoside C (5), and diphyllin-1-O-beta-D-apiofuranoside (6). The complete assignments of 1H and 13C NMR data for three new lignans were first obtained by means of 2D NMR techniques, including HSQC and HMBC. Copyright (c) 2008 John Wiley & Sons, Ltd.

  13. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide.

    PubMed

    Cai, Weiwei; Piner, Richard D; Stadermann, Frank J; Park, Sungjin; Shaibat, Medhat A; Ishii, Yoshitaka; Yang, Dongxing; Velamakanni, Aruna; An, Sung Jin; Stoller, Meryl; An, Jinho; Chen, Dongmin; Ruoff, Rodney S

    2008-09-26

    The detailed chemical structure of graphite oxide (GO), a layered material prepared from graphite almost 150 years ago and a precursor to chemically modified graphenes, has not been previously resolved because of the pseudo-random chemical functionalization of each layer, as well as variations in exact composition. Carbon-13 (13C) solid-state nuclear magnetic resonance (SSNMR) spectra of GO for natural abundance 13C have poor signal-to-noise ratios. Approximately 100% 13C-labeled graphite was made and converted to 13C-labeled GO, and 13C SSNMR was used to reveal details of the chemical bonding network, including the chemical groups and their connections. Carbon-13-labeled graphite can be used to prepare chemically modified graphenes for 13C SSNMR analysis with enhanced sensitivity and for fundamental studies of 13C-labeled graphite and graphene.

  14. Complete assignment of the (1)H and (13)C NMR spectra of cis and trans isonucleoside derivatives of purine with a tetrahydropyran ring.

    PubMed

    Besada, Pedro; Costas, Tamara; Terán, Carmen

    2010-06-01

    (1)H and (13)C NMR chemical shifts of cis and trans isonucleoside analogues of purine in which the furanose moiety is substituted by a tetrahydropyran ring were completely assigned using one- and two-dimensional NMR experiments that include NOE, DEPT, COSY and HSQC. The significant (1)H and (13)C NMR signals differentiating between the cis and trans stereoisomers were compared.

  15. 1H, 13C and 15N NMR assignments of a calcium-binding protein from Entamoeba histolytica.

    PubMed

    Verma, Deepshikha; Bhattacharya, Alok; Chary, Kandala V R

    2016-04-01

    We report almost complete sequence specific (1)H, (13)C and (15)N NMR assignments of a 150-residue long calmodulin-like calcium-binding protein from Entamoeba histolytica (EhCaBP6), as a prelude to its structural and functional characterization.

  16. 1H and 13C NMR characterization and secondary structure of the K2 polysaccharide of Klebsiella pneumoniae strain 52145.

    PubMed

    Corsaro, Maria Michela; De Castro, Cristina; Naldi, Teresa; Parrilli, Michelangelo; Tomás, Juan M; Regué, Miguel

    2005-09-26

    The complete (1)H and (13)C NMR characterization of the tetrasaccharide repeating unit from the K2 polysaccharide of Klebsiella pneumoniae strain 52145 is reported. [chemical structure] In addition a model for its secondary structure was suggested on the basis of dynamic and molecular calculations.

  17. The role of solid state 13 C NMR spectroscopy in studies of the nature of native celluloses

    Treesearch

    R.H. Atalla; D.L. VanderHart

    1999-01-01

    Published spectroscopic observations pertaining to the crystal structure of native celluloses are reviewed for the purpose of defining our current level of understanding about crystalline polymorphism in these materials. Emphasis is placed on observations from solid state 13 C nuclear magnetic resonance (NMR), which first led to the postulate that most native,...

  18. 1H and 13C-NMR studies on phenol-formaldehyde prepolymers for tannin-based adhesives

    Treesearch

    Gerald W. McGraw; Lawerence L. Lanucci; Seiji Ohara; Richard W. Hemingway

    1989-01-01

    The number average structure and the molecular weight distribution of phenol-formaldehyde prepolymers for use in synthesis of tannin-based adhesive resins were determined with 1H and 13C-NMR spectroscopy and gel permeation chromatography of acetylated resins. These methods were used to determine differences in phenol-...

  19. 1H and 13C NMR signal assignments of a novel Baeyer-Villiger originated diterpene lactone.

    PubMed

    Vieira, Henriete S; Takahashi, Jacqueline A; Gunatilaka, A A Leslie; Boaventura, Maria Amélia D

    2006-02-01

    A highly rearranged novel dilactone was the single product isolated from Baeyer-Villiger oxidation of a norketone prepared from grandiflorenic acid, a natural kaurane diterpene. The complete 1H and 13C NMR assignment is presented for this novel compound that showed discrete in vitro antibacterial activity.

  20. Enzymatic (13)C labeling and multidimensional NMR analysis of miltiradiene synthesized by bifunctional diterpene cyclase in Selaginella moellendorffii.

    PubMed

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-12-16

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-(13)C(6)]mevalonate, all carbons were labeled with (13)C stable isotope (>99%). The fully (13)C-labeled product was subjected to (13)C-(13)C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one

  1. Using magnetic coupling to implement 1H, 19F, 13C experiments in routine high resolution NMR probes

    NASA Astrophysics Data System (ADS)

    Bowyer, Paul; Finnigan, Jim; Marsden, Brian; Taber, Bob; Zens, Albert

    2015-12-01

    We report in this paper the design of 1H, 19F, 13C circuitry using magnetic coupling which can do on demand experiments where one of the three nuclei is observed and the other two are decoupled. The implementation of this circuitry in routine NMR probes is compared with capacitive coupling methods where it was found that by using magnetic coupling the performance of the routine NMR probe was not impacted by the addition of this circuitry. It is surmised that using this type of circuitry would be highly desirable for those chemists doing routine 19F NMR.

  2. Characterization of cerebral glutamine uptake from blood in the mouse brain: implications for metabolic modeling of 13C NMR data

    PubMed Central

    Bagga, Puneet; Behar, Kevin L; Mason, Graeme F; De Feyter, Henk M; Rothman, Douglas L; Patel, Anant B

    2014-01-01

    13C Nuclear Magnetic Resonance (NMR) studies of rodent and human brain using [1-13C]/[1,6-13C2]glucose as labeled substrate have consistently found a lower enrichment (∼25% to 30%) of glutamine-C4 compared with glutamate-C4 at isotopic steady state. The source of this isotope dilution has not been established experimentally but may potentially arise either from blood/brain exchange of glutamine or from metabolism of unlabeled substrates in astrocytes, where glutamine synthesis occurs. In this study, the contribution of the former was evaluated ex vivo using 1H-[13C]-NMR spectroscopy together with intravenous infusion of [U-13C5]glutamine for 3, 15, 30, and 60 minutes in mice. 13C labeling of brain glutamine was found to be saturated at plasma glutamine levels >1.0 mmol/L. Fitting a blood–astrocyte–neuron metabolic model to the 13C enrichment time courses of glutamate and glutamine yielded the value of glutamine influx, VGln(in), 0.036±0.002 μmol/g per minute for plasma glutamine of 1.8 mmol/L. For physiologic plasma glutamine level (∼0.6 mmol/L), VGln(in) would be ∼0.010 μmol/g per minute, which corresponds to ∼6% of the glutamine synthesis rate and rises to ∼11% for saturating blood glutamine concentrations. Thus, glutamine influx from blood contributes at most ∼20% to the dilution of astroglial glutamine-C4 consistently seen in metabolic studies using [1-13C]glucose. PMID:25074745

  3. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.

    PubMed

    Lewis, Ian A; Schommer, Seth C; Hodis, Brendan; Robb, Kate A; Tonelli, Marco; Westler, William M; Sussman, Michael R; Markley, John L

    2007-12-15

    One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained.

  4. Quantitative and qualitative 1H, 13C, and 15N NMR spectroscopic investigation of the urea-formaldehyde resin synthesis.

    PubMed

    Steinhof, Oliver; Kibrik, Éléonore J; Scherr, Günter; Hasse, Hans

    2014-04-01

    Urea-formaldehyde resins are bulk products of the chemical industry. Their synthesis involves a complex reaction network. The present work contributes to its elucidation by presenting results from detailed NMR spectroscopic studies with different methods. Besides (1)H NMR and (13)C NMR, (15)N NMR spectroscopy is also applied. (15)N-enriched urea was used for the investigations. A detailed NMR signal assignment and a model of the reaction network of the hydroxymethylation step of the synthesis are presented. Because of its higher spectral dispersion and the fact that all key reactions directly involve the nitrogen centers, (15)N NMR provides a much larger amount of detail than do (1)H and (13)C NMR spectroscopy. Symmetric and asymmetric dimethylol urea can be clearly distinguished and separated from monomethylol urea, trimethylol urea, and methylene-bridged urea. The existence of hemiformals of methylol urea is confirmed. 1,3,5-Oxadiazinan-4-on (uron) and its derivatives were not found in the reaction mixtures investigated here but were prepared via alternative routes. The molar ratios of formaldehyde to urea were 1, 2, and 4, the pH values 7.5 and 8.5, and the reaction temperature 60 °C.

  5. Diffusion and conformation of peptide-functionalized polyphenylene dendrimers studied by fluorescence correlation and 13C NMR spectroscopy.

    PubMed

    Koynov, K; Mihov, G; Mondeshki, M; Moon, C; Spiess, H W; Müllen, K; Butt, H-J; Floudas, G

    2007-05-01

    We report on the combined use of fluorescence correlation spectroscopy (FCS) and 1H and 13C NMR spectroscopy to detect the size and type of peptide secondary structures in a series of poly-Z-L-lysine functionalized polyphenylene dendrimers bearing the fluorescent perylenediimide core in solution. In dilute solution, the size of the molecule as detected from FCS and 1H NMR diffusion measurements matches nicely. We show that FCS is a sensitive probe of the core size as well as of the change in the peptide secondary structure. However, FCS is less sensitive to functionality. A change in the peptide secondary conformation from beta-sheets to alpha-helices detected by 13C NMR spectroscopy gives rise to a steep increase in the hydrodynamic radii for number of residues n > or = 16. Nevertheless, helices are objects of low persistence.

  6. Bonding in hard and elastic amorphous carbon nitride films investigated using 15N, 13C, and 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Hoatson, G. L.; Holloway, B. C.; Vold, R. L.; Reilly, A. C.

    2003-11-01

    The nitrogen bonding in hard and elastic amorphous carbon nitride (a-CNx) films is examined with 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. Films were deposited by dc magnetron sputtering, in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests revealed an elastic recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. The NMR results show that nitrogen bonding in this material is consistent with sp2 hybridized nitrogen incorporated in an aromatic carbon environment. The data also indicate that the a-CNx prepared for this study has very low hydrogen content and is hydrophilic. Specifically, analysis of 15N and 13C cross polarization magic angle spinning and 1H NMR experiments suggests that water preferentially protonates nitrogen sites.

  7. Origin of the conformational modulation of the 13C NMR chemical shift of methoxy groups in aromatic natural compounds.

    PubMed

    Toušek, Jaromír; Straka, Michal; Sklenář, Vladimír; Marek, Radek

    2013-01-24

    The interpretation of nuclear magnetic resonance (NMR) parameters is essential to understanding experimental observations at the molecular and supramolecular levels and to designing new and more efficient molecular probes. In many aromatic natural compounds, unusual (13)C NMR chemical shifts have been reported for out-of-plane methoxy groups bonded to the aromatic ring (~62 ppm as compared to the typical value of ~56 ppm for an aromatic methoxy group). Here, we analyzed this phenomenon for a series of aromatic natural compounds using Density Functional Theory (DFT) calculations. First, we checked the methodology used to optimize the structure and calculate the NMR chemical shifts in aromatic compounds. The conformational effects of the methoxy group on the (13)C NMR chemical shift then were interpreted by the Natural Bond Orbital (NBO) and Natural Chemical Shift (NCS) approaches, and by excitation analysis of the chemical shifts, breaking down the total nuclear shielding tensor into the contributions from the different occupied orbitals and their magnetic interactions with virtual orbitals. We discovered that the atypical (13)C NMR chemical shifts observed are not directly related to a different conjugation of the lone pair of electrons of the methoxy oxygen with the aromatic ring, as has been suggested. Our analysis indicates that rotation of the methoxy group induces changes in the virtual molecular orbital space, which, in turn, correlate with the predominant part of the contribution of the paramagnetic deshielding connected with the magnetic interactions of the BD(CMet-H)→BD*(CMet-OMet) orbitals, resulting in the experimentally observed deshielding of the (13)C NMR resonance of the out-of-plane methoxy group.

  8. Area per lipid and cholesterol interactions in membranes from separated local-field (13)C NMR spectroscopy.

    PubMed

    Leftin, Avigdor; Molugu, Trivikram R; Job, Constantin; Beyer, Klaus; Brown, Michael F

    2014-11-18

    Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state (13)C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved (13)C-(1)H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the (13)C-(1)H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state (13)C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive.

  9. Probing RNA dynamics via longitudinal exchange and CPMG relaxation dispersion NMR spectroscopy using a sensitive 13C-methyl label

    PubMed Central

    Kloiber, Karin; Spitzer, Romana; Tollinger, Martin; Konrat, Robert; Kreutz, Christoph

    2011-01-01

    The refolding kinetics of bistable RNA sequences were studied in unperturbed equilibrium via 13C exchange NMR spectroscopy. For this purpose a straightforward labeling technique was elaborated using a 2′-13C-methoxy uridine modification, which was prepared by a two-step synthesis and introduced into RNA using standard protocols. Using 13C longitudinal exchange NMR spectroscopy the refolding kinetics of a 20 nt bistable RNA were characterized at temperatures between 298 and 310 K, yielding the enthalpy and entropy differences between the conformers at equilibrium and the activation energy of the refolding process. The kinetics of a more stable 32 nt bistable RNA could be analyzed by the same approach at elevated temperatures, i.e. at 314 and 316 K. Finally, the dynamics of a multi-stable RNA able to fold into two hairpin- and a pseudo-knotted conformation was studied by 13C relaxation dispersion NMR spectroscopy. PMID:21252295

  10. /sup 13/C NMR studies of porphobilinogen synthase: observation of intermediates bound to a 280,000-dalton protein

    SciTech Connect

    Jaffe, E.K.; Markham, G.D.

    1987-07-14

    /sup 13/C NMR has been used to observe the equilibrium complex of (4-/sup 13/C)-5-aminolevulinate ((4-/sup 13/C)ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. (4-/sup 13/C)ALA (chemical shift = 205.9 ppm) forms (3,5-/sup 13/C)PBG (chemical shifts = 121.0 and 123.0 ppm). PBG prepared from a mixture of (4-/sup 13/C)ALA and (/sup 15/N)ALA was used to assign the 121.0 and 123.0 ppm resonances to C/sub 5/ and C/sub 3/, respectively. For the enzyme-bound equilibrium complex formed from holoenzyme and (4-/sup 13/C)ALA, two peaks of equal area with chemical shifts of 121.5 and 127.2 ppm are observed (line widths approx. 50 Hz), indicating that the predominant species is probably a distorted form of PBG. When excess free PBG is present, it is in slow exchange with bound PBG, indicating an exchange rate of < 10 s/sup -1/, which is consistent with the turnover rate of the enzyme. For the complex formed from (4-/sup 13/C)ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation, the predominant species is a Schiff base adduct (chemical shift = 166.5 ppm, line width approx. 50 Hz). Free ALA is in slow exchange with the Schiff base. Activation of the MMTS-modified enzyme-Schiff base complex with /sup 113/Cd and 2-mercaptoethanol results in the loss of the Schiff base signal and the appearance of bound PBG with the same chemical shifts as for the bound equilibrium complex with Zn(II) enzyme. Neither splitting nor broadening from /sup 113/Cd-/sup 13/C coupling was observed.

  11. Near-silence of isothiocyanate carbon in (13)C NMR spectra: a case study of allyl isothiocyanate.

    PubMed

    Glaser, Rainer; Hillebrand, Roman; Wycoff, Wei; Camasta, Cory; Gates, Kent S

    2015-05-01

    (1)H and (13)C NMR spectra of allyl isothiocyanate (AITC) were measured, and the exchange dynamics were studied to explain the near-silence of the ITC carbon in (13)C NMR spectra. The dihedral angles α = ∠(C1-C2-C3-N4) and β = ∠(C2-C3-N4-C5) describe the conformational dynamics (conformation change), and the bond angles γ = ∠(C3-N4-C5) and ε = ∠(N4-C5-S6) dominate the molecular dynamics (conformer flexibility). The conformation space of AITC contains three minima, Cs-M1 and enantiomers M2 and M2'; the exchange between conformers is very fast, and conformational effects on (13)C chemical shifts are small (νM1 - νM2 < 3 ppm). Isotropic chemical shifts, ICS(γ), were determined for sp, sp(x), and sp(2) N-hybridization, and the γ dependencies of δ(N4) and δ(C5) are very large (10-33 ppm). Atom-centered density matrix propagation trajectories show that every conformer can access a large region of the potential energy surface AITC(γ,ε,...) with 120° < γ < 180° and 155° < ε < 180°. Because the extreme broadening of the (13)C NMR signal of the ITC carbon is caused by the structural flexibility of every conformer of AITC, the analysis provides a general explanation for the near-silence of the ITC carbon in (13)C NMR spectra of organic isothiocyanates.

  12. Kinetic study of littorine rearrangement in Datura innoxia hairy roots by (13)C NMR spectroscopy.

    PubMed

    Lanoue, Arnaud; Boitel-Conti, Michèle; Portais, Jean-Charles; Laberche, Jean-Claude; Barbotin, Jean-Noël; Christen, Philippe; Sangwan-Norreel, Brigitte

    2002-08-01

    The kinetics of tropane alkaloid biosynthesis, particularly the isomerization of littorine into hyoscyamine, were studied by analyzing the kinetics of carbon-13 ((13)C) in metabolites of Datura innoxia hairy root cultures fed with labeled tropoyl moiety precursors. Both littorine and hyoscyamine were the major alkaloids accumulated, while scopolamine was never detected. Feeding root cultures with (RS)-phenyl[1,3-(13)C(2)]lactic acid led to (13)C spin-spin coupling detected on C-1' and C-2' of the hyoscyamine skeleton, which validated the intramolecular rearrangement of littorine into hyoscyamine. Label from phenyl[1-(13)C]alanine or (RS)-phenyl[1,3-(13)C(2)]lactic acid was incorporated at higher levels in littorine than in hyoscyamine. Initially, the apparent hyoscyamine biosynthesized rate (v(app)()hyo = 0.9 micromol (13)C.flask(-1).d(-1)) was lower than littorine formation (v(app)()litto = 1.8 micromol (13)C.flask(-1).d(-1)), suggesting that the isomerization reaction could be rate limiting. The results obtained for the kinetics of littorine biosynthesis were in agreement with the role of this compound as a direct precursor of hyoscyamine biosynthesis.

  13. Stabilization of polar soils organic matter: insights from 13-C NMR and ESR spectroscopy

    NASA Astrophysics Data System (ADS)

    Abakumov, Evgeny

    2017-04-01

    Polar soils play a key role in the global carbon balance, as they contain maximum stocks of soil organic matter (SOM) within the whole pedosphere. Low temperature and severe conditions provides the accumulation of large amounts of organic matter in permafrost soils over thousands of years. The quality and composition of organic matter of polar soils is underestimated. In order to better understand the implication of permafrost SOM to greenhouse gas emissions, an accurate knowledge of its spatial distribution, both in terms of quantity and quality (i.e. biodegradability, chemical composition and humification degree) is needed. The chemical composition of SOM determines its decomposability and, therefore, it determines the rate at which carbon may be transferred from soils to the atmosphere under warming conditions. Biodegradability of SOM has been related to humification degree, as more advanced stages in the humification process imply a depletion of the labile molecules, as well as an increase in the bulk aromaticity, which provides a higher stability of the SOM. Soils from Antarctic and different sectors of Arctic biome were investigated by 13-C NMR and electron spin resonance spectroscopy. It was shown, that the characteristic feature of polar soils humic acids is the dominance of aliphatic compounds on the aromatic one. This is related to the humification precursors component composition, namely to dominance of the remnants of lower plants, especially in Antarctic and low period of biological activity, which regulates the humification rate. Humic acids of Antarctic and various Arctic soils show the portion of aromatic components not more than 30 %. ESR spectroscopy shown that the concentration of free radicals is proportional to the humic acids stabilization degree. Less humified organic materials show the highest portion of free radical content, while the most developed soils and buried organic layers show decreased contents of free radicals. The database on

  14. Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR

    PubMed Central

    Merritt, Matthew E.; Harrison, Crystal; Storey, Charles; Jeffrey, F. Mark; Sherry, A. Dean; Malloy, Craig R.

    2007-01-01

    13C NMR is a powerful tool for monitoring metabolic fluxes in vivo. The recent availability of automated dynamic nuclear polarization equipment for hyperpolarizing 13C nuclei now offers the potential to measure metabolic fluxes through select enzyme-catalyzed steps with substantially improved sensitivity. Here, we investigated the metabolism of hyperpolarized [1-13C1]pyruvate in a widely used model for physiology and pharmacology, the perfused rat heart. Dissolved 13CO2, the immediate product of the first step of the reaction catalyzed by pyruvate dehydrogenase, was observed with a temporal resolution of ≈1 s along with H13CO3−, the hydrated form of 13CO2 generated catalytically by carbonic anhydrase. In hearts presented with the medium-chain fatty acid octanoate in addition to hyperpolarized [1-13C1]pyruvate, production of 13CO2 and H13CO3− was suppressed by ≈90%, whereas the signal from [1-13C1]lactate was enhanced. In separate experiments, it was shown that O2 consumption and tricarboxylic acid (TCA) cycle flux were unchanged in the presence of added octanoate. Thus, the rate of appearance of 13CO2 and H13CO3− from [1-13C1]pyruvate does not reflect production of CO2 in the TCA cycle but rather reflects flux through pyruvate dehydrogenase exclusively. PMID:18056642

  15. Regio-selective detection of dynamic structure of transmembrane alpha-helices as revealed from (13)C NMR spectra of [3-13C]Ala-labeled bacteriorhodopsin in the presence of Mn2+ ion.

    PubMed

    Tuzi, S; Hasegawa, J; Kawaminami, R; Naito, A; Saitô, H

    2001-07-01

    13C Nuclear magnetic resonance (NMR) spectra of [3-(13)C]Ala-labeled bacteriorhodopsin (bR) were edited to give rise to regio-selective signals from hydrophobic transmembrane alpha-helices by using NMR relaxation reagent, Mn(2+) ion. As a result of selective suppression of (13)C NMR signals from the surfaces in the presence of Mn(2+) ions, several (13)C NMR signals of Ala residues in the transmembrane alpha-helices were identified on the basis of site-directed mutagenesis without overlaps from (13)C NMR signals of residues located near the bilayer surfaces. The upper bound of the interatomic distances between (13)C nucleus in bR and Mn(2+) ions bound to the hydrophilic surface to cause suppressed peaks by the presence of Mn(2+) ion was estimated as 8.7 A to result in the signal broadening to 100 Hz and consistent with the data based on experimental finding. The Ala C(beta) (13)C NMR peaks corresponding to Ala-51, Ala-53, Ala-81, Ala-84, and Ala-215 located around the extracellular half of the proton channel and Ala-184 located at the kink in the helix F were successfully identified on the basis of (13)C NMR spectra of bR in the presence of Mn(2+) ion and site-directed replacement of Ala by Gly or Val. Utilizing these peaks as probes to observe local structure in the transmembrane alpha-helices, dynamic conformation of the extracellular half of bR at ambient temperature was examined, and the local structures of Ala-215 and 184 were compared with those elucidated at low temperature. Conformational changes in the transmembrane alpha-helices induced in D85N and E204Q and its long-range transmission from the proton release site to the site around the Schiff base in E204Q were also examined.

  16. Comparison of Kinetic Models for Analysis of Pyruvate-to-Lactate Exchange by Hyperpolarized 13C NMR

    PubMed Central

    Harrison, Crystal; Yang, Chendong; Jindal, Ashish; DeBerardinis, Ralph J.; Hooshyar, M.A.; Merritt, Matthew; Sherry, A. Dean; Malloy, Craig R.

    2012-01-01

    The activity of specific enzyme-catalyzed reactions may be detected in vivo by 13C NMR of hyperpolarized (HP) substrates. The signal from HP substrates and products, acquired over time, have been fit to a number of different mathematical models to determine fluxes, but these models have not been critically compared. In this study, two-pool and three-pool first-order models were constructed to measure flux through lactate dehydrogenase in isolated glioblastoma cells by NMR detection of lactate and pyruvate following addition of hyperpolarized [1-13C]pyruvate. Mass spectrometry (MS) was used to independently monitor 13C enrichment in intra- and extracellular lactate. Six models were evaluated using time dependent pyruvate C2 and lactate C1 HP NMR data acquired by use of selective excitation pulses plus 13C enrichment data from intracellular and extracellular lactate measured by MS. A three-pool bi-directional model provided the most accurate description of pyruvate metabolism in these cells. With computed values for the T1 of pyruvate and lactate as well as the effect of pulsing, the initial flux through lactate dehydrogenase (LDH) was well-determined by both the two-pool bidirectional and unidirectional models when only HP data was available. The three-pool model was necessary to fit the combined data from both MS and HP, but the simpler two-pool exchange model was sufficient to determine the 13C lactate concentration when the lactate appearance was measured only by HP. PMID:22451442

  17. Triterpenes in the hexane extract of leaves of Olea europaea L.: analysis using 13C-NMR spectroscopy.

    PubMed

    Duquesnoy, Emilie; Castola, Vincent; Casanova, Joseph

    2007-01-01

    Two neutral triterpenes and a triterpene acid were identified and quantified directly, in the absence of any purification steps, in a precipitate obtained during the industrial extraction of the leaves of Olea europaea L. using 13C-NMR spectroscopy (spectrometer operating at 4.7 T equipped with a 10 mm probe). The method was optimised in order to reduce the duration of analysis with a routine NMR spectrometer. Together with long-chain linear compounds, erythrodiol, uvaol and oleanolic acid accounted for 27.3, 18.3 and 12.5% of the precipitate, respectively.

  18. Solubilization and localization of weakly polar lipids in unsonicated egg phosphatidylcholine: A sup 13 C MAS NMR study

    SciTech Connect

    Hamilton, J.A. ); Fujito, D.T.; Hammer, C.F. )

    1991-03-19

    The weakly polar lipids cholesteryl ester, triacylglycerol, and diacylglycerol incorporate to a limited extent into the lamellar structure of small unilamellar vesicles. The localization of the carbonyl group(s) at the aqueous interface was detected by ({sup 13}C)carbonyl chemical shift changes relative to the neat unhydrated lipid. This study uses {sup 13}C NMR to investigate the interactions of thes lipids with unsonicated (multilamellar) phosphatidylcholine, a model system for cellular membranes and surfaces of emulsion particles with low curvature. Magic angle spinning reduced the broad lines of the unsonicated dispersions to narrow lines comparable to those from sonicated dispersions. ({sup 13}C)Carbonyl chemical shifts revealed incorporation of the three lipids into the lamellar structure of the unsonicated phospholipids and a partial hydration of the carbonyl groups similar to that observed in small vesicles. Other properties of interfacial weakly polar lipids in multilayers were similar to those in small unilamellar bilayers. There is thus a general tendency of weakly polar lipids to incorparate at least to a small extent into the lamellar structure of phospholipids and take on interfacial properties that are distinct from their bulk-phase properties. This pool of surface-located lipid is likely to be directly involved in enzymatyic transformations and protein-mediated transport. The {sup 13}C magic angle spinning NMR method may be generally useful for determining the orientation of molecules in model membranes.

  19. High-field 13C NMR spectroscopy of tissue in Vivo. A double-resonance surface-coil probe

    NASA Astrophysics Data System (ADS)

    Reo, Nicholas V.; Ewy, Coleen S.; Siegfried, Barry A.; Ackerman, Joseph J. H.

    A double-resonance surface-coil NMR probe is described for performance of high-field (8.5 T) proton decoupled carbon-13 experiments with tissue in vivo. The probe may be accommodated in standard, 89 mm i.d. clear bore, commercial spectrometers and is suitable for studies utilizing small laboratory animals such as mice, hamsters, and rats. A coaxial coil design is employed (10 mm diameter 13C coil, 20 mm diameter 1H coil) which provides ca. 40 dB attenuation between the 13C observe and 1H decouple channels. The inherent efficiency of the surface-coil configuration provides a sensitivity comparable to a commercial probe of the same nominal dimension (10 mm Helmholtz coil) and assures adequate decoupling in conductive samples with ca. 3-5 W power. In the absence of 13C isotopic enrichment, NMR spectra of rat leg, liver, and brain in vivo provide signalto-noise sufficient for 10 min time resolution. Administration of 100 mg of 90% 13C-labeled glucose into a peripheral vein of a ca. 300 g rat resulted in a liver glucose resonance which could be monitored with good signal-to-noise and 3 min time resolution.

  20. 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides

    PubMed Central

    Richter, Christian; Kovacs, Helena; Buck, Janina; Wacker, Anna; Fürtig, Boris; Bermel, Wolfgang

    2010-01-01

    We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C4′ nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C1′,H1′ ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs. Electronic supplementary material The online version of this article (doi:10.1007/s10858-010-9429-5) contains supplementary material, which is available to authorized users. PMID:20544375

  1. NMR crystallography to probe the breathing effect of the MIL-53(Al) metal-organic framework using solid-state NMR measurements of (13)C-(27)Al distances.

    PubMed

    Giovine, Raynald; Volkringer, Christophe; Trébosc, Julien; Amoureux, Jean Paul; Loiseau, Thierry; Lafon, Olivier; Pourpoint, Frédérique

    2017-03-01

    The metal-organic framework MIL-53(Al) (aluminium terephthalate) exhibits a structural transition between two porous structures with large pore (lp) or narrow pore (np) configurations. This transition, called the breathing effect, is observed upon changes in temperature or external pressure, as well as with the adsorption of guest molecules, such as H2O, within the pores. We show here how these different pore openings can be detected by observing the dephasing of (13)C magnetization under (13)C-(27)Al dipolar couplings using Rotational-Echo Saturation-Pulse Double-Resonance (RESPDOR) solid-state NMR experiments with Simultaneous Frequency and Amplitude Modulation (SFAM) recoupling. These double-resonance NMR experiments between (13)C and (27)Al nuclei, which have close Larmor frequencies, are feasible thanks to the use of a frequency splitter. The experimental SFAM-RESPDOR signal fractions agree well with those simulated from the MIL-53(Al)-lp and -np crystal structures obtained from powder X-ray diffraction analysis. Hence, these (13)C-(27)Al solid-state NMR experiments validate these structures and confirm their rigidity. A similar agreement is reported for the framework ligands in the as-synthesized (as) MIL-53(Al), in which the pores contain free ligands. Furthermore, in this case, (13)C-{(27)Al} SFAM-RESPDOR experiments allow an estimation of the average distance between the free ligands and the (27)Al nuclei of the framework.

  2. Complete 1H and 13C NMR assignments and Z/E-stereoconfiguration determination of isomers of 1,4-diketone derivatives.

    PubMed

    Xu, Guohua; Yin, Guodong; Guo, Wenbo; Wu, Anxin; Cui, Yanfang

    2008-01-01

    Complete 1H and 13C NMR assignments and Z/E-stereoconfiguration determination for a series of new isomers of 1,4-diketone derivatives obtained via self-sorting tandem reaction were accomplished by means of one- and two-dimentional NMR experiments including 1H, 13C, gCOSY, gHSQC, gHMBC, and NOESY.

  3. Retrobiosynthetic NMR studies with 13C-labeled glucose. Formation of gallic acid in plants and fungi.

    PubMed

    Werner, I; Bacher, A; Eisenreich, W

    1997-10-10

    The biosynthesis of gallic acid was studied in cultures of the fungus Phycomyces blakesleeanus and in leaves of the tree Rhus typhina. Fungal cultures were grown with [1-13C]glucose or with a mixture of unlabeled glucose and [U-13C6]glucose. Young leaves of R. typhina were kept in an incubation chamber and were supplied with a solution containing a mixture of unlabeled glucose and [U-13C6]glucose via the leaf stem. Isotope distributions in isolated gallic acid and aromatic amino acids were analyzed by one-dimensional 1H and 13C NMR spectroscopy. A quantitative analysis of the complex isotopomer composition of metabolites was obtained by deconvolution of the 13C13C coupling multiplets using numerical simulation methods. This approach required the accurate analysis of heavy isotope chemical shift effects in a variety of different isotopomers and the analysis of long range 13C13C coupling constants. The resulting isotopomer patterns were interpreted using a retrobiosynthetic approach based on a comparison between the isotopomer patterns of gallic acid and tyrosine. The data show that both in the fungus and in the plant all carbon atoms of gallic acid are biosynthetically equivalent to carbon atoms of shikimate. Notably, the carboxylic group of gallic acid is derived from the carboxylic group of an early intermediate of the shikimate pathway and not from the side chain of phenylalanine or tyrosine. It follows that the committed precursor of gallic acid is an intermediate of the shikimate pathway prior to prephenate or arogenate, most probably 5-dehydroshikimate. A formation of gallic acid via phenylalanine, the lignin precursor, caffeic acid, or 3,4, 5-trihydroxycinnamic acid can be ruled out as major pathways in the fungus and in young leaves of R. typhina. The incorporation of uniformly 13C-labeled glucose followed by quantitative NMR analysis of isotopomer patterns is suggested as a general method for biosynthetic studies. As shown by the plant experiment, this

  4. Determination of 13C/12C Isotope Ratio in Alcohols of Different Origin by 1н Nuclei NMR-Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dzhimak, S. S.; Basov, A. A.; Buzko, V. Yu.; Kopytov, G. F.; Kashaev, D. V.; Shashkov, D. I.; Shlapakov, M. S.; Baryshev, M. G.

    2017-02-01

    A new express method of indirect assessment of 13C/12C isotope ratio on 1H nuclei is developed to verify the authenticity of ethanol origin in alcohol-water-based fluids and assess the facts of various alcoholic beverages falsification. It is established that in water-based alcohol-containing systems, side satellites for the signals of ethanol methyl and methylene protons in the NMR spectra on 1H nuclei, correspond to the protons associated with 13C nuclei. There is a direct correlation between the intensities of the signals of ethanol methyl and methylene protons' 1H- NMR and their side satellites, therefore, the data obtained can be used to assess 13C/12C isotope ratio in water-based alcohol-containing systems. The analysis of integrated intensities of main and satellite signals of methyl and methylene protons of ethanol obtained by NMR on 1H nuclei makes it possible to differentiate between ethanol of synthetic and natural origin. Furthermore, the method proposed made it possible to differentiate between wheat and corn ethanol.

  5. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure.

    PubMed

    Engtrakul, Chaiwat; Irurzun, Veronica M; Gjersing, Erica L; Holt, Josh M; Larsen, Brian A; Resasco, Daniel E; Blackburn, Jeffrey L

    2012-03-14

    The atomic specificity afforded by nuclear magnetic resonance (NMR) spectroscopy could enable detailed mechanistic information about single-walled carbon nanotube (SWCNT) functionalization as well as the noncovalent molecular interactions that dictate ground-state charge transfer and separation by electronic structure and diameter. However, to date, the polydispersity present in as-synthesized SWCNT populations has obscured the dependence of the SWCNT (13)C chemical shift on intrinsic parameters such as diameter and electronic structure, meaning that no information is gleaned for specific SWCNTs with unique chiral indices. In this article, we utilize a combination of (13)C labeling and density gradient ultracentrifugation (DGU) to produce an array of (13)C-labeled SWCNT populations with varying diameter, electronic structure, and chiral angle. We find that the SWCNT isotropic (13)C chemical shift decreases systematically with increasing diameter for semiconducting SWCNTs, in agreement with recent theoretical predictions that have heretofore gone unaddressed. Furthermore, we find that the (13)C chemical shifts for small diameter metallic and semiconducting SWCNTs differ significantly, and that the full-width of the isotropic peak for metallic SWCNTs is much larger than that of semiconducting nanotubes, irrespective of diameter.

  6. Experimental 25Mg and 13C NMR and Computational Modeling Studies of Amorphous Mg-Ca Carbonates

    NASA Astrophysics Data System (ADS)

    Singer, J. W.; Yazaydin, A. O.; Kirkpatrick, R. J.; Saharay, M.; Bowers, G. M.

    2012-12-01

    Nuclear magnetic resonance (NMR) spectroscopy of synthetic Mg-Ca amorphous carbonates (AMC-ACC) provides direct, element specific structural information about these complicated phases. The 13C, 25Mg, and 43Ca resonances are typically broad and span the chemical shift ranges of all the crystalline polymorphs in the Ca-Mg-CO3-H2O system. In a fashion similar to our previous analysis of 43Ca NMR results for ACC,1 here we integrate new experimental 13C and 25Mg spectra obtained at 20T for samples with Mg/(Ca+Mg) ratios from x=0 to x=1 with quantum chemical calculations of the NMR parameters of the crystalline phases using CASTEP calculations, simulations of the spectra using the SIMPSON software, and classical molecular dynamics calculations. XRD and 13C NMR results are in general agreement with the one-phase/two-phase model of ACC-AMC derived from thermochemical work by others.2 13C-NMR spectra of amorphous materials having intermediate compositions can not be completely fit by mechanical mixing of ACC and AMC end members—requiring a degree of Ca/Mg solid solution. Amorphous samples in two-phase region crystallize to assemblages of dolomite-like (x~0.5) and hydromagnesite-like (x~1) defective structures, but we also observe aragonite co-nucleation in the presence of excess water, indicative of a more complex evolution. While 43Ca NMR of X-ray amorphous materials shows featureless, symmetric, Gaussian line shapes, the large quadrupole moment of 25Mg gives rise to superposition of several quadrupolar line shapes representing different local structural environments. Singularities of static Mg spectra are best explained by local environments similar to nequehonite, hydromagnesite, and landsfordite. The spectra can not exclude minor contributions from anhydrous phases dolomite, huntite, and magnesite. Additional sites having very large quadrupolar coupling and/or site asymmetry are not explained by any known reference phases. CITATIONS (1) Singer, J. W.; Yazaydin, A. O

  7. Compositional differences among Chinese soy sauce types studied by (13)C NMR spectroscopy coupled with multivariate statistical analysis.

    PubMed

    Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili

    2016-09-01

    Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. GFT projection NMR for efficient (1)H/ (13)C sugar spin system identification in nucleic acids.

    PubMed

    Atreya, Hanudatta S; Sathyamoorthy, Bharathwaj; Jaipuria, Garima; Beaumont, Victor; Varani, Gabriele; Szyperski, Thomas

    2012-12-01

    A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify (1)H/(13)C sugar spin systems in (13)C labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of (13)C-(1)H groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1'- and 3'-CH signal dispersion for complete spin system identification including 5'-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3'-untranslated region of the pre-mRNA of human U1A protein.

  9. 1H and 13C NMR chemical shift assignments of spiro-cycloalkylidenehomo- and methanofullerenes by the DFT-GIAO method.

    PubMed

    Khalilov, L M; Tulyabaev, A R; Yanybin, V M; Tuktarov, A R

    2011-06-01

    The (1)H and (13)C NMR chemical shifts of spiro-cycloalkylidene[60]fullerenes were assigned using experimental NMR data and the Density Functional Theory (DFT)-Gauge Independence Of Atomic Orbitals method (GAIO) calculation method in the Perdew Burke Ernzerhof (PBE)/3z approach. The calculated values of the (13)C NMR chemical shifts adequately reproduce the experimental values at this quantum chemistry approach. Similar assignments will be helpful for (13)C NMR spectral analysis of homo- and methano[60]fullerene derivatives for structure elucidation and to determine the influence of fullerene frames on substituents and the influence of substituents on fullerene cores.

  10. Solid-state (13)C CP MAS NMR spectroscopy of mushrooms gives directly the ratio between proteins and polysaccharides.

    PubMed

    Pizzoferrato, L; Manzi, P; Bertocchi, F; Fanelli, C; Rotilio, G; Paci, M

    2000-11-01

    The solid-state (13)C CP MAS NMR technique has the potential of monitoring the chemical composition in the solid state of an intact food sample. This property has been utilized to study mushrooms of different species (Pleurotus ostreatus, Pleurotus eryngii, Pleurotus pulmunarius, and Lentinula edodes), already characterized by chemical analyses for protein and dietary fiber components. Solid-state (13)C CP MAS NMR spectroscopy reveals a large difference in the ratio between the glucidic and the proteic resonances probably depending on the mushroom species. An accurate inspection by model compounds and suitable mixtures of proteins and saccharides gives a methodology to interpret these experimental data. A good correlation (R(2) = 0.93; R(2) = 0.81) has been obtained by comparing the NMR data with the results of the chemical analyses. The results suggest the possibility to perform a taxonomic study and/or a nutritional study on the basis of the ratio between protein and polysaccharide levels determined by NMR or chemical methodologies.

  11. Methionine bound to Pd/γ-Al2O3 catalysts studied by solid-state (13)C NMR.

    PubMed

    Johnson, Robert L; Schwartz, Thomas J; Dumesic, James A; Schmidt-Rohr, Klaus

    2015-11-01

    The chemisorption and breakdown of methionine (Met) adsorbed on Pd/γ-Al2O3 catalysts were investigated by solid-state NMR. (13)C-enriched Met (ca. 0.4mg) impregnated onto γ-Al2O3 or Pd/γ-Al2O3 gives NMR spectra with characteristic features of binding to γ-Al2O3, to Pd nanoparticles, and oxidative or reductive breakdown of Met. The SCH3 groups of Met showed characteristic changes in chemical shift on γ-Al2O3 (13ppm) vs. Pd (19ppm), providing strong evidence for preferential binding to Pd, while the NC carbon generates a small resonance at 96ppm assigned to a distinct nonprotonated species bound to O or Pd. Additionally, NMR shows that the SCH3 groups of Met are mobile on γ-Al2O3 but immobilized by binding to Pd particles; on small Pd particles (ca. 4nm), the NCH groups undergo large-amplitude motions. In a reducing environment, Met breaks down by C-S bond cleavage followed by formation of C2-C4 organic acids. The SCH3 signal shifts to 22ppm, which is likely the signature of the principal species responsible for strong catalyst inhibition. These experiments demonstrate that solid-state magic-angle spinning NMR of (13)C-enriched Met can be a sensitive probe to investigate catalyst surfaces and characterize catalyst inhibition both before reaction and postmortem.

  12. Use of {sup 13}C NMR to assess the biodegradation of 1-{sup 13}C-labeled acenaphthene in the presence of creosote polynuclear hydrocarbons (PAHs) and naphthalene by mixed bacterial cultures

    SciTech Connect

    Selifonov, S.A.; Bortiatynski, J.M.; Nanny, M.A.; Hatcher, P.G.

    1996-10-01

    1-{sup 13}C-acenaphthene mixed with creosote PAH`s or naphthalene was incubated with bacterial strains known to degrade naphthalene, phenanthrene and acenaphthene. After incubation, the reaction mixtures were extracted with organic solvent, and the biodegradation products were identified by {sup 13}C NMR. An accumulation of intermediate degradation products was identified and attributed to the non-specific action of naphthalene catabolic pathways of the mixed bacterial cultures. An acenaphthene degrading strain, Pseudomonas sp. strain A2279 was added to the nixed bacterial cultures to minimize the formation of the observed dead-end products. The {sup 13}C NMR spectra obtained from the experiments in which strain A2279 was present clearly showed the complete biodegradation of 1-{sup 13}C-acenaphthene without the accumulation of {sup 13}C-labeled products. This set of experiments clearly demonstrates the utility of {sup 13}C NMR as an effective tool for the assessment of the biodegradation of PAH`s such as 1-{sup 13}C-acenaphthene by various microbial strains.

  13. Conformational analysis of MBBA fluorinated analogues by 1H and 13C - NMR

    NASA Astrophysics Data System (ADS)

    Pivovarova, N. S.; Boldeskul, I. E.; Shelyagenko, S. V.; Fialkov, Yu. A.

    1988-05-01

    1H- 13C -chemical shifts correlation analysis for MBBA and a series of its fluorinated analogues have been carried out. The azomethine proton chemical shift is shown to be sensitive to the aniline ring torsion angle and can be used for its approximate estimation.

  14. Area per Lipid and Cholesterol Interactions in Membranes from Separated Local-Field 13C NMR Spectroscopy

    PubMed Central

    Leftin, Avigdor; Molugu, Trivikram R.; Job, Constantin; Beyer, Klaus; Brown, Michael F.

    2014-01-01

    Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state 13C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved 13C-1H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the 13C-1H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state 13C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive. PMID:25418296

  15. Synthesis and incorporation of 13C-labeled DNA building blocks to probe structural dynamics of DNA by NMR

    PubMed Central

    Nußbaumer, Felix; Juen, Michael Andreas; Gasser, Catherina; Kremser, Johannes; Müller, Thomas; Tollinger, Martin

    2017-01-01

    Abstract We report the synthesis of atom-specifically 13C-modified building blocks that can be incorporated into DNA via solid phase synthesis to facilitate investigations on structural and dynamic features via NMR spectroscopy. In detail, 6-13C-modified pyrimidine and 8-13C purine DNA phosphoramidites were synthesized and incorporated into a polypurine tract DNA/RNA hybrid duplex to showcase the facile resonance assignment using site-specific labeling. We also addressed micro- to millisecond dynamics in the mini-cTAR DNA. This DNA is involved in the HIV replication cycle and our data points toward an exchange process in the lower stem of the hairpin that is up-regulated in the presence of the HIV-1 nucleocapsid protein 7. As another example, we picked a G-quadruplex that was earlier shown to exist in two folds. Using site-specific 8-13C-2′deoxyguanosine labeling we were able to verify the slow exchange between the two forms on the chemical shift time scale. In a real-time NMR experiment the re-equilibration of the fold distribution after a T-jump could be monitored yielding a rate of 0.012 min−1. Finally, we used 13C-ZZ-exchange spectroscopy to characterize the kinetics between two stacked X-conformers of a Holliday junction mimic. At 25°C, the refolding process was found to occur at a forward rate constant of 3.1 s−1 and with a backward rate constant of 10.6 s−1.

  16. Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2H and 13C NMR

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Chizuwa, M.; Umiyama, T.; Kumagai, Y.; Miyatou, T.; Ohashi, R.; Ida, T.; Tansho, M.; Shimizu, T.

    2015-04-01

    The local structure and molecular motion of the imidazolium hydrogen malonate crystal were investigated using solid-state 2H and 13C NMR. The imidazolium ion undergoes isotropic rotation, which is correlated with a defect in the crystal, as observed by 2H NMR broadline spectra above 263 K. A 180∘ flip of the imidazolium ion in the regular site was observed from 2H NMR quadrupole Carr-Purcell-Meiboom-Gill (QCPMG) spectra. The Grotthuss mechanism was accompanied by a 180∘ flip of the imidazolium ion in regular sites. Moreover, the proton transfer associated with the imidazolium ion of the defective crystal is important for proton conductivity of the imidazolium hydrogen malonate crystal.

  17. Comparison of celery (Apium graveolens L.) collenchyma and parenchyma cell wall polysaccharides enabled by solid-state (13)C NMR.

    PubMed

    Zujovic, Zoran; Chen, Da; Melton, Laurence D

    2016-02-01

    Collenchyma cells with their thickened walls are one of specific mechanical support tissues for plants, while parenchyma cells are thin walled and serve multiple functions. The parenchyma tissue is what you enjoy eating, while collenchyma, because of its fibrous nature, is not so attractive. Celery is a useful model for comparing the cell walls (CWs) of the two cell types such as collenchyma and parenchyma. However, to date, the structural characteristics of collenchyma and parenchyma cell walls from the same plant have not been compared. Monosaccharide composition suggested the collenchyma cell walls contained less pectin but more hemicellulose in comparison to parenchyma. High-resolution solid-state NMR spectra of highly mobile pectins revealed that the arabinan signals were more evident in the collenchyma spectrum, while galactan showed a much stronger resonance in the parenchyma spectrum. In addition, methyl esterified and non-esterified galacturonic acid signals were observed in parenchyma CWs, but only the latter one appeared in the collenchyma. The ratio of cellulose surface/interior obtained from CP/MAS spectra for collenchyma suggested the cellulose microfibrils were ~2.4 nm, while in the parenchyma, these were somewhat larger. X-ray diffraction indicated the size of the cellulose microfibrils were the same for both types of CWs.

  18. A (13)C NMR analysis of the effects of electron radiation on graphite/polyetherimide composites

    NASA Technical Reports Server (NTRS)

    Ferguson, Milton W.

    1989-01-01

    Initial investigations have been made into the use of high resolution nuclear magnetic resonance (NMR) for the characterization of radiation effects in graphite and Kevlar fibers, polymers, and the fiber/matrix interface in graphite/polyetherimide composites. Sample preparation techniques were refined. Essential equipment has been procured. A new NMR probe was constructed to increase the proton signal-to-noise ratio. Problem areas have been identified and plans developed to resolve them.

  19. Hydrocarbon type analysis of jet fuels by /sup 1/H and /sup 13/C NMR

    SciTech Connect

    Netzel, D.A.; Hunter, P.M.

    1981-05-01

    This report describes the application of NMR spectroscopy to the chemical characterization without prior chromatographic separation of jet fuels and various fuel blends containing varying amounts of paraffinic and aromatic constituents. Equations are derived by which the total percent paraffins and aromatics as well as percent monoaromatics and diaromatics can be calculated. Computer programs for the various calculations are included. The results obtained by NMR are compared to those obtained by MS.

  20. Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: A {sup 13}C-NMR study

    SciTech Connect

    Renault, Sophie; Faiz, Hassan; Gadet, Rudy; Ferrier, Bernard; Martin, Guy; Baverel, Gabriel; Conjard-Duplany, Agnes

    2010-01-01

    As part of a study on uranium nephrotoxicity, we investigated the effect of uranyl nitrate in isolated human and mouse kidney cortex tubules metabolizing the physiological substrate lactate. In the millimolar range, uranyl nitrate reduced lactate removal and gluconeogenesis and the cellular ATP level in a dose-dependent fashion. After incubation in phosphate-free Krebs-Henseleit medium with 5 mM L-[1-{sup 13}C]-, or L-[2-{sup 13}C]-, or L-[3-{sup 13}C]lactate, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. In the presence of 3 mM uranyl nitrate, glucose production and the intracellular ATP content were significantly reduced in both human and mouse tubules. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism revealed an inhibition of fluxes through lactate dehydrogenase and the gluconeogenic enzymes in the presence of 3 mM uranyl nitrate; in human and mouse tubules, fluxes were lowered by 20% and 14% (lactate dehydrogenase), 27% and 32% (pyruvate carboxylase), 35% and 36% (phosphoenolpyruvate carboxykinase), and 39% and 45% (glucose-6-phosphatase), respectively. These results indicate that natural uranium is an inhibitor of renal lactate gluconeogenesis in both humans and mice.

  1. 15N and 13C NMR Determination of Allantoin Metabolism in Developing Soybean Cotyledons 1

    PubMed Central

    Coker, George T.; Schaefer, Jacob

    1985-01-01

    The metabolism of allantoin by immature cotyledons of soybean (Glycine max L. cv Elf) grown in culture was investigated using solid state 13C and 15N nuclear magnetic resonance. All of the nitrogens of allantoin were incorporated into protein in a manner similar to that of each other and to the amide nitrogen of glutamine. The C-2 of allantoin was not incorporated into cellular material; presumably it was lost as CO2. About 50% of the C-5 of allantoin was incorporated into cellular material as a methylene carbon; the other 50% was presumably also lost as CO2. The 13C-15N bonds of [5-13C;1-15N] and [2-13C;1,3-15N]allantoin were broken prior to the incorporation of the nitrogens into protein. These data are consistent with allantoin's degradation to two molecules of urea and one two-carbon fragment. Cotyledons grown on allantoin as a source of nitrogen accumulated 21% of the nitrogen of cotyledons grown on glutamine. Only 50% of the nitrogen of the degraded allantoin was incorporated into the cotyledon as organic nitrogen; the other 50% was recovered as NH4+ in the media in which the cotyledons had been grown. The latter results suggests that the lower accumulation of nitrogen by cotyledons grown on allantoin was in part due to failure to assimilate NH4+ produced from allantoin. The seed coats had a higher activity of glutamine synthetase and a higher rate of allantoin degradation than cotyledons indicating that seed coats play an important role in the assimilation and degradation of allantoin. PMID:16663995

  2. Modeling of brain metabolism and pyruvate compartmentation using 13C NMR in vivo: caution required

    PubMed Central

    Jeffrey, F Mark; Marin-Valencia, Isaac; Good, Levi B; Shestov, Alexander A; Henry, Pierre-Gilles; Pascual, Juan M; Malloy, Craig R

    2013-01-01

    Two variants of a widely used two-compartment model were prepared for fitting the time course of [1,6-13C2]glucose metabolism in rat brain. Features common to most models were included, but in one model the enrichment of the substrates entering the glia and neuronal citric acid cycles was allowed to differ. Furthermore, the models included the capacity to analyze multiplets arising from 13C spin-spin coupling, known to improve parameter estimates in heart. Data analyzed were from a literature report providing time courses of [1,6-13C2]glucose metabolism. Four analyses were used, two comparing the effect of different pyruvate enrichment in glia and neurons, and two for determining the effect of multiplets present in the data. When fit independently, the enrichment in glial pyruvate was less than in neurons. In the absence of multiplets, fit quality and parameter values were typical of those in the literature, whereas the multiplet curves were not modeled well. This prompted the use of robust statistical analysis (the Kolmogorov–Smirnov test of goodness of fit) to determine whether individual curves were modeled appropriately. At least 50% of the curves in each experiment were considered poorly fit. It was concluded that the model does not include all metabolic features required to analyze the data. PMID:23652627

  3. Application of DRIFTS, (13)C NMR, and py-MBMS to Characterize the Effects of Soil Science Oxidation Assays on Soil Organic Matter Composition in a Mollic Xerofluvent.

    PubMed

    Margenot, Andrew J; Calderón, Francisco J; Magrini, Kimberly A; Evans, Robert J

    2017-01-01

    Chemical oxidations are routinely employed in soil science to study soil organic matter (SOM), and their interpretation could be improved by characterizing oxidation effects on SOM composition with spectroscopy. We investigated the effects of routinely employed oxidants on SOM composition in a Mollic Xerofluvent representative of intensively managed agricultural soils in the California Central Valley. Soil samples were subjected to oxidation by potassium permanganate (KMnO4), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2). Additionally, non-oxidized and oxidized soils were treated with hydrofluoric acid (HF) to evaluate reduction of the mineral component to improve spectroscopy of oxidation effects. Oxidized non-HF and HF-treated soils were characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), (13)C cross polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, and pyrolysis molecular beam mass spectrometry (py-MBMS), and for particle size distribution (PSD) using laser diffractometry (LD). Across the range of soil organic carbon (OC) removed by oxidations (14-72%), aliphatic C-H stretch at 3000-2800 cm(-1) (DRIFTS) decreased with OC removal, and this trend was enhanced by HF treatment due to significant demineralization in this soil (70%). Analysis by NMR spectroscopy was feasible only after HF treatment, and did not reveal trends between OC removal and C functional groups. Pyrolysis-MBMS did not detect differences among oxidations, even after HF treatment of soils. Hydrofluoric acid entailed OC loss (13-39%), and for H2O2 oxidized soils increased C:N and substantially decreased mean particle size. This study demonstrates the feasibility of using HF to improve characterizations of SOM composition following oxidations as practiced in soil science, in particular for DRIFTS. Since OC removal by oxidants, mineral removal by HF, and the interaction of oxidants and HF observed for this soil

  4. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  5. 13C and 15N spectral editing inside histidine imidazole ring through solid-state NMR spectroscopy.

    PubMed

    Li, Shenhui; Zhou, Lei; Su, Yongchao; Han, Bin; Deng, Feng

    2013-01-01

    Histidine usually exists in three different forms (including biprotonated species, neutral τ and π tautomers) at physiological pH in biological systems. The different protonation and tautomerization states of histidine can be characteristically determined by (13)C and (15)N chemical shifts of imidazole ring. In this work, solid-state NMR techniques were developed for spectral editing of (13)C and (15)N sites in histidine imidazole ring, which provides a benchmark to distinguish the existing forms of histidine. The selections of (13)Cγ, (13)Cδ2, (15)Nδ1, and (15)Nε2 sites were successfully achieved based on one-bond homo- and hetero-nuclear dipole interactions. Moreover, it was demonstrated that (1)H, (13)C, and (15) chemical shifts were roughly linearly correlated with the corresponding atomic charge in histidine imidazole ring by theoretical calculations. Accordingly, the (1)H, (13)C and (15)N chemical shifts variation in different protonation and tautomerization states could be ascribed to the atomic charge change due to proton transfer in biological process.

  6. Solid-State Selective 13C Excitation and Spin Diffusion NMR to Resolve Spatial Dimensions in Plant Cell Walls

    SciTech Connect

    Foston, M.; Katahira, R.; Gjersing, E.; Davis, M. F.; Ragauskas, A. J.

    2012-02-15

    The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a {sup 13}C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. {sup 13}C spin diffusion time constants (T{sub SD}) were extracted using a two-site spin diffusion theory developed for {sup 13}C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated {sup 13}C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances {approx}0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.

  7. The identification of vicinally substituted cyclohexane isomers in their mixtures by 1H and 13C NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Laihia, Katri; Kolehmainen, Erkki; Nevalainen, Tapio; Kauppinen, Reijo; Vasilieva, Tamara T.; Terentiev, Alexander B.

    2000-02-01

    The radical addition reactions of organobromine compounds, XBr (X=CH 2COOMe, PhCH 2, CHBr 2 and CCl 3) with cyclohexene afforded mixtures of cis/ trans isomer pairs of 1-X-2-Br-cyclohexanes. In addition to benzyl benzoyloxy derivatives are formed also, when benzoyl peroxide is used as an initiator. Owing to the great difficulties in separating these cis/ trans isomer pairs, they are identified directly in their mixtures by NMR spectroscopy. In addition to one-dimensional (1D) 1H, proton decoupled 13C and DEPT-135, also two-dimensional (2D) 13C- 13C INADEQUATE as well as 1H- 13C HMQC experiments have been used in assigning the signals of each compound in their mixtures. The identification of each isomer was based on comparison of experimental 3JH,H coupling constants with theoretical ones based on the well-known Karplus type relationship. The more stable conformation for each isomer was estimated using the semiempirical AM1 molecular orbital method. The calculations support the isomer pair elucidations.

  8. Differentiation of histidine tautomeric states using 15N selectively filtered 13C solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-08-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C, 15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture.

  9. 29Si{1H} CP-MAS NMR comparison and ATR-FTIR spectroscopic analysis of the diatoms Chaetoceros muelleri and Thalassiosira pseudonana grown at different salinities.

    PubMed

    La Vars, Sian M; Johnston, Martin R; Hayles, John; Gascooke, Jason R; Brown, Melissa H; Leterme, Sophie C; Ellis, Amanda V

    2013-04-01

    Diatoms are key indicators of marine environmental health. To further understand how diatoms respond to varying degrees of salinity, either due to climate change or brine waste discharge into marine environments, two different diatom species were studied. Thalassiosira pseudonana and Chaetoceros muelleri were cultured at three different salinities namely, 26 practical salinity units (PSU or parts per thousand), 36 PSU (standard salinity for culturing of seawater species) and 46 PSU. Changes in silica and organic content within the cultured diatoms were analysed using solid-state (29)Si{(1)H} cross-polarization-magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopies coupled with analysis of variance. (29)Si CP-MAS NMR showed that qualitatively the Q4:Q3 area ratios of C. muelleri, grown away from standard salinities, increased in response to the formation of more condensed (2 ≡SiOH → ≡Si-O-Si≡ + H2O) and/or an increase in closely associated organic matter to the Q4 component of the diatoms. This was not observed for T. pseudonana. However, both species showed the appearance of a new peak centered at 1575-1580 cm(-1) in the ATR-FTIR spectra, designated as the C═N band of nitrogenous purine-type compounds. Further, the C. muelleri species was shown to produce more extracellular polymeric substances at non-standard salinities. On this basis, results suggest that there is a strong relationship between diatom composition and salinity and that C. muelleri is more sensitive to its environment than T. pseudonana.

  10. Observation by sup 13 C NMR of the EPSP synthase tetrahedral intermediate bound to the enzyme active site

    SciTech Connect

    Anderson, K.S.; Sammons, R.D.; Leo, G.C.; Sikorski, J.A. ); Benesi, A.J.; Johnson, K.A. )

    1990-02-13

    Direct observation of the tetrahedral intermediate in the EPSP synthase reaction pathway was provided by {sup 13}C NMR by examining the species bound to the enzyme active site under internal equilibrium conditions and using (2-{sup 13}C)PEP as a spectroscopic probe. The tetrahedral center of the intermediate bound to the enzyme gave a unique signal appearing at 104 ppm. Separate signals were observed for free EPSP and EPSP bound to the enzyme in a ternary complex with phosphate. These peak assignments account for the quantitation of the species bound to the enzyme and liberated upon quenching with either triethylamine or base. A comparison of quenching with acid, base, or triethylamine was conducted. After long times of incubation during the NMR measurement, a signal at 107 ppm appeared. The compound giving rise to this resonance was isolated and identified as an EPSP ketal. The rate of formation of the EPSP ketal was very slow establishing that it is a side product of the normal enzymatic reaction. To look for additional signals that might arise from a covalent adduct which has been postulated to arise from reaction of enzyme with PEP, and NMR experiment was performed with an analogue of S3P lacking the 4- and 5-hydroxyl groups. All of these results reaffirm identification of the tetrahedral species as the only observable intermediate in the EPSP synthase reaction.

  11. Nanostructural effects on polymer and water dynamics in cellulose biocomposites: (2)h and (13)c NMR relaxometry.

    PubMed

    Terenzi, Camilla; Prakobna, Kasinee; Berglund, Lars A; Furó, István

    2015-05-11

    Improved moisture stability is desired in cellulose biocomposites. In order to clarify nanostructural effects, a new approach is presented where water and polymer matrix mobilities are characterized separately. Nanocomposites from cellulose nanofibers (CNF) in the xyloglucan (XG) biopolymer matrix are investigated at different hydration states. Films of XG, CNF, and CNF/XG composites are subjected to detailed (2)H and (13)C NMR relaxation studies. Since the (2)H NMR signal arises from heavy water and the (13)C signal from the polysaccharides, molecular water and polymer dynamics is for the first time investigated separately. In the neat components, (2)H transverse relaxation (T2) data are consistent with water clustering at the CNF fibril surfaces, but bulk spread of moisture in XG. The new method results in a description of water interaction with the nanoscale phases. At low hydration, water molecules at the CNF/XG interface exhibit higher water mobility than in neat CNF or XG, due to locally high water concentration. At the same time, CNF-associated interphase segments of XG show slower NMR-dynamics than that in neat XG.

  12. 13C and 23Na NMR studies of Na2C60 and Na6C60 fullerides

    NASA Astrophysics Data System (ADS)

    Rachdi, F.; Hajji, L.; Galtier, M.; Yildirim, T.; Fischer, J. E.; Goze, C.; Mehring, M.

    1997-10-01

    We report on 13C and 23Na NMR measurements on Na2C60 and Na6C60 compounds. The room-temperature 13C NMR spectra of Na2C60 and Na6C60 samples present a narrow isotropic line at 172 and 176 ppm, respectively. The Na6C60 resonance is shifted 20 ppm more down field than the resonances of A6C60 compounds with heavier alkalis, indicating a partial charge transfer to the threefold degenerate t1u level which is totally filled in the latter compounds. The 23Na NMR spectrum of A2C60 shows one line at 73 ppm and the one of A6C60 presents two lines at 73 and 147 ppm. The intensity ratio of the latter lines is about 2:1. According to previously reported x-ray data we attribute the line at 147 ppm to the Na tetramers in the octahedral sites and the line at 73 ppm to the Na cations in the tetrahedral ones which are singly occupied.

  13. Selective {sup 2}H and {sup 13}C labeling in NMR analysis of solution protein structure and dynamics

    SciTech Connect

    LeMaster, D.M.

    1994-12-01

    Preparation of samples bearing combined isotope enrichment patterns has played a central role in the recent advances in NMR analysis of proteins in solution. In particular, uniform {sup 13}C, {sup 15}N enrichment has made it possible to apply heteronuclear multidimensional correlation experiments for the mainchain assignments of proteins larger than 30 KDa. In contrast, selective labeling approaches can offer advantages in terms of the directedness of the information provided, such as chirality and residue type assignments, as well as through enhancements in resolution and sensitivity that result from editing the spectral complexity, the relaxation pathways and the scalar coupling networks. In addition, the combination of selective {sup 13}C and {sup 2}H enrichment can greatly facilitate the determination of heteronuclear relaxation behavior.

  14. (1)H and (13)C NMR chemical shifts of methacrylate molecules associated with DMPC and/or DPPC liposomes.

    PubMed

    Fujisawa, Seiichiro; Ishihara, Mariko; Kadoma, Yoshinori

    2005-01-01

    In the light of recent developments, changes in (1)H and (13)C NMR chemical shifts of methacrylate molecule associated with DMPC (L-alpha dimyristoylphosphatidylcholine) or DPPC (L-alpha-dipalmitoylphosphatidylcholine) liposomes as a model for mimic native lipid bilayers were studied at 30, 37, and 52 degrees C. The chemical shifts of 3Ha, 3C, and 4C resonances in methacrylates (see Fig. 2) were greatly shifted higher field, suggesting the methacrylate molecule-lipid bilayer interaction. Comparison of the findings with methyl methacrylate (MMA), ethylene dimethacrylate (EDMA), and triethyleneglycol dimethacrylate (TEGDMA) revealed that the interaction of dimethacrylates (EDMA, TEGDMA) was greater than monomethacrylate, MMA. Their interaction with DMPC liposomes was also judged by a differential scanning calorimetry (DSC), indicating that the interaction was characterized by decreasing the enthalpy, entropy, and transition co-operativity. The evidence of the upfield NMR-shifts for methacrylate molecules was also judged by the descriptors such as the reactivity (HOMO-LUMO energy) and the electrostatic function (partial charges) between methacrylate molecules and DPPC, calculated by a PM 3 semiempirical MO method. The upfield NMR shifts were considerably well interpreted from the descriptors. NMR screening technique in methacrylates to phospholipid targets would be highly valuable in biomaterial developments. Figure 2 Changes in (1)H and (13)C NMR chemical shifts of methacrylate molecule associated with DMPC or DPPC liposomes. DMPC liposomes/MMA (1:1, molar ratio) and DMPC/TEGDMA (1:1) liposomes were measured at 30 degrees C. In DPPC liposome system, the rippled gel phase was measured at 30 degrees C, whereas the liquid crystalline phase for MMA and for both EDMA and TEGDMA were measured at 52 degrees C and 37 degrees C, respectively.

  15. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.

    PubMed

    Lamley, Jonathan M; Lougher, Matthew J; Sass, Hans Juergen; Rogowski, Marco; Grzesiek, Stephan; Lewandowski, Józef R

    2015-09-14

    Typically, protein dynamics involve a complex hierarchy of motions occurring on different time scales between conformations separated by a range of different energy barriers. NMR relaxation can in principle provide a site-specific picture of both the time scales and amplitudes of these motions, but independent relaxation rates sensitive to fluctuations in different time scale ranges are required to obtain a faithful representation of the underlying dynamic complexity. This is especially pertinent for relaxation measurements in the solid state, which report on dynamics in a broader window of time scales by more than 3 orders of magnitudes compared to solution NMR relaxation. To aid in unraveling the intricacies of biomolecular dynamics we introduce (13)C spin-lattice relaxation in the rotating frame (R1ρ) as a probe of backbone nanosecond-microsecond motions in proteins in the solid state. We present measurements of (13)C'R1ρ rates in fully protonated crystalline protein GB1 at 600 and 850 MHz (1)H Larmor frequencies and compare them to (13)C'R1, (15)N R1 and R1ρ measured under the same conditions. The addition of carbon relaxation data to the model free analysis of nitrogen relaxation data leads to greatly improved characterization of time scales of protein backbone motions, minimizing the occurrence of fitting artifacts that may be present when (15)N data is used alone. We also discuss how internal motions characterized by different time scales contribute to (15)N and (13)C relaxation rates in the solid state and solution state, leading to fundamental differences between them, as well as phenomena such as underestimation of picosecond-range motions in the solid state and nanosecond-range motions in solution.

  16. Spectral density mapping at multiple magnetic fields suitable for (13)C NMR relaxation studies.

    PubMed

    Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš

    2016-05-01

    Standard spectral density mapping protocols, well suited for the analysis of (15)N relaxation rates, introduce significant systematic errors when applied to (13)C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and (13)C frequencies can be obtained from data acquired at three magnetic fields for uniformly (13)C-labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies

    NASA Astrophysics Data System (ADS)

    Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš

    2016-05-01

    Standard spectral density mapping protocols, well suited for the analysis of 15N relaxation rates, introduce significant systematic errors when applied to 13C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and 13C frequencies can be obtained from data acquired at three magnetic fields for uniformly 13C -labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.

  18. Asymmetry of (13)C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy.

    PubMed

    Thakur, Chandar S; Dayie, T Kwaku

    2011-12-01

    Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of (13)C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using E. coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-(13)C]-pyruvate affords ribonucleotides with site specific labeling at C5' (~95%) and C1' (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-(13)C]-glycerol for which the ribose ring is labeled in all but the C4' carbon position, leading to multiplet splitting of the C1', C2' and C3' carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides.

  19. Deuterium isotope effects in 13C NMR spectra of trans-azobenzene

    NASA Astrophysics Data System (ADS)

    Vikić-Topić, Draz̆en; Novak, Predrag; Smrec̆ki, Vilko; Meić, Zlatko

    1997-06-01

    Deuterium isotope effects on 13C chemical shifts have been determined in a series of deuteriated trans-azobenzene isotopomers. The longest effect observed is the one over ten bonds ( 10Δ) in 4- 2H-isotopomer at C-4' atom amounting to 3.3 ppb. The magnitude and the extent of isotope effects in trans-azobenzene are related to those observed in isoelectronic and conformationally similar trans-stilbene. The sign alternation pattern of the long-range isotope effects in trans-azobenzene parallels that in isoelectronic trans-stilbene, cis-stilbene and trans-N-benzylideneaniline.

  20. Ursodeoxycholic acid treatment of hepatic steatosis: a (13)C NMR metabolic study.

    PubMed

    Nunes, Patrícia M; Jones, John G; Rolo, Anabela P; Palmeira, Carlos M M; Carvalho, Rui A

    2011-11-01

    Ursodeoxycholic acid (UDCA) is commonly used for the treatment of hepatobiliary disorders. In this study, we tested whether a 4-week treatment with this bile acid (12-15 mg/kg/day) could improve hepatic fatty acid oxidation in obese Zucker rats - a model for nonalcoholic fatty liver disease and steatosis. After 24 h of fasting, livers were perfused with physiological concentrations of [U-(13) C]nonesterified fatty acids and [3-(13) C]lactate/[3-(13) C]pyruvate. Steatosis was associated with abundant intracellular glucose, lactate, alanine and methionine, and low concentrations of choline and betaine. Steatotic livers also showed the highest output of glucose and lactate. Glucose and glycolytic products were mostly unlabeled, indicating active glycogenolysis and glycolysis after 24 h of fasting. UDCA treatment resulted in a general amelioration of liver metabolic abnormalities with a decrease in intracellular glucose and lactate, as well as their output. Hepatic betaine and methionine were also normalized after UDCA treatment, suggesting the amelioration of anti-oxidative defenses. Choline levels were not affected by the bile acid, which may indicate a deficient synthesis of very-low-density lipoproteins. The percentage contribution of [U-(13) C]nonesterified fatty acids to acetyl-coenzyme A entering the tricarboxylic acid (TCA) cycle was significantly lower in livers from Zucker obese rats relative to control rats: 23.1 ± 4.9% versus 44.1 ± 2.7% (p < 0.01). UDCA treatment did not alter significantly fatty acid oxidation in control rats, but improved significantly oxidation in Zucker obese rats to 46.0 ± 6.1% (p > 0.05), comparable with control group values. The TCA cycle activity subsequent to fatty acid oxidation was reduced in steatotic livers and improved when UDCA was administered (0.24 ± 0.04 versus 0.37 ± 0.05, p = 0.05). We further suggest that the mechanism of action of UDCA is either related to the activity of the

  1. Use of solid-state 13C NMR in structural studies of humic acids and humin from Holocene sediments

    USGS Publications Warehouse

    Hatcher, P.G.; VanderHart, D.L.; Earl, W.L.

    1980-01-01

    13C NMR spectra of solid humic substances in Holocene sediments have been obtained using cross polarization with magic-angle sample spinning techniques. The results demonstrate that this technique holds great promise for structural characterizations of complex macromolecular substances such as humin and humic acids. Quantifiable distinctions can be made between structural features of aquatic and terrestrial humic substances. The aliphatic carbons of the humic substances are dominant components suggestive of input from lipid-like materials. An interesting resemblance is also noted between terrestrial humic acid and humin spectra. ?? 1980.

  2. Biosynthesis of pyrroloquinoline quinone. 1. Identification of biosynthetic precursors using /sup 13/C labeling and NMR spectroscopy

    SciTech Connect

    Houck, D.R.; Hanners, J.L.; Unkefer, C.J.

    1988-09-28

    The biosynthesis of pyrroloquinoline quinone (PQQ) in the methylotropic bacterium methylobacterium AM1 has been investigated using /sup 13/C-labelling of the products and NMR spectroscopy. The data indicated that the quinoline portion of PQQ is formed by a novel condensation of N-1, C-2, -3, and -4 of glutamate with a symmetrical six-carbon ring derived from the shikimate pathway. It is postulated that tyrosine is the shikimate-derived percursor, since pyrrole could be formed by the internal cyclization of the amino acid backbone. 18 references, 2 figures, 2 tables.

  3. Identification and quantitative determination of carbohydrates in ethanolic extracts of two conifers using 13C NMR spectroscopy.

    PubMed

    Duquesnoy, Emilie; Castola, Vincent; Casanova, Joseph

    2008-04-07

    We developed a method for the direct identification and quantification of carbohydrates in raw vegetable extracts using (13)C NMR spectroscopy without any preliminary step of precipitation or reduction of the components. This method has been validated (accuracy, precision and response linearity) using pure compounds and artificial mixtures before being applied to authentic ethanolic extracts of pine needles, pine wood and pine cones and fir twigs. We determined that carbohydrates represented from 15% to 35% of the crude extracts in which pinitol was the principal constituent accompanied by arabinitol, mannitol, glucose and fructose.

  4. Correlation analysis of the /sup 13/C NMR spectra of some para-substituted benzaldehyde oximes and their anions

    SciTech Connect

    Rutkovskii, G.V.; Zmeikov, V.P.

    1987-06-20

    For the case of the /sup 13/C NMR spectra of a series of para-substituted benzaldehyde oximes and their anions it was shown that to describe the chemical shifts of all the carbon atoms of the benzene ring and the exocyclic CH group it is necessary to use three-parameter equations with the parameters F and R (which characterize the inductive and resonance effects respectively of the substituents), and Q (which corresponds to the paramagnetic interaction between the substituents and the carbon atoms).

  5. /sup 13/C NMR spectroscopy in the analysis of conjugate metabolites in the bile of fish exposed to petroleum

    SciTech Connect

    Hellou, J.; Banoub, J.H.; Payne, J.F.

    1986-01-01

    The first natural abundance /sup 13/C NMR investigation of a complex mixture of conjugate metabolites obtained from the gall bladder bile of fish exposed to hydrocarbons is presented. Cunners were exposed to water accommodated No. 2 fuel oil containing about 68% saturates and 22% aromatics. Spectral analysis indicated that the hydrocarbon derivatives were present predominantly as ..beta..-glucuronides, with the oxygen at carbon-1 of glucuronic acid preferentially attached to an aliphatic carbon. The conjugate metabolites were enriched in aromatic-type carbons when compared to the fuel oil or the aromatic fraction of oil.

  6. (1)H, (13)C NMR and X-ray crystallographic studies of highly polyhalogenated derivatives of costunolide lactone.

    PubMed

    Corona, D; Díaz, E; Nava, J L; Guzmán, A; Barrios, H; Fuentes, A; Hernandez-Plata, S A; Allard, J; Jankowski, C K

    2005-11-01

    The costunolide lactone, a sesquiterpene compound isolated from Zaluzania triiloba species, reacted with several dihalocarbene sources produced by trihaloform-NaOH under successive phase transfer reactions yielding mono-, bis- and tris-dihalocyclopropane adducts. The structures, as well as the configurational assignments of the different derivatives, were established by (1)H and (13)C NMR spectroscopy and assisted by X-ray crystallographic and molecular modelling studies. The specific shielding of protons in the neighbourhood of different halogens on the cyclopropane moieties was correlated to the pseudocontact interactions.

  7. 1H NMR, 13C NMR and mass spectral studies of some Schiff bases derived from 3-amino-1,2,4-triazole.

    PubMed

    Issa, Y M; Hassib, H B; Abdelaal, H E

    2009-11-01

    Heterocyclic Schiff bases derived from 3-amino-1,2,4-triazole and different substituted aromatic aldehydes are prepared and subjected to (1)H NMR, (13)C NMR and mass spectral analyses. (1)H NMR spectra in DMSO exhibit a sharp singlet within the 9.35-8.90ppm region which corresponds to the azomethine proton. The position of this signal is largely dependent on the nature of the substituents on the benzal moiety. It is observed that the shape, position and the integration value of the signal of the aromatic proton of the triazole ring ((5)C) are clearly affected by the rate of exchange, relaxation time, concentration of solution as well as the solvent used. (13)C NMR is taken as substantial support for the results reached from (1)H NMR studies. The mass spectral results are taken as a tool to confirm the structure of the investigated compounds. The base peak (100%), mostly the M-1 peak, indicates the facile loss of hydrogen radical. The fragmentation pattern of the unsubstituted Schiff base is taken as the general scheme. Differences in the other schemes result from the effect of the electronegativity of the substituents attached to the aromatic ring.

  8. Size- and site-dependent reconstruction in CdSe QDs evidenced by 77Se{1H} CP-MAS NMR spectroscopy.

    PubMed

    Lovingood, Derek D; Achey, Randall; Paravastu, Anant K; Strouse, Geoffrey F

    2010-03-17

    Evidence of size-dependent reconstruction in quantum dots leading to changes in bonding is observed through analysis of the (77)Se{(1)H} cross-polarization magic angle spinning and (77)Se spin-echo solid-state NMR for Cd(77)Se quantum dots. The CP-MAS and spin-echo data indicate discrete surface and core (77)Se sites exist with the QD, in which the surface is comprised of numerous reconstructed lattice planes. Due to the nearly 100% enrichment level for (77)Se, efficient spin coupling is observed between the surface (77)Se and sublayer (77)Se sites due to spin diffusion in the Cd(77)Se quantum dots. The observed chemical shift for the discrete (77)Se sites can be correlated to the effective mass approximation via the Ramsey expression, indicating a 1/r(2) size dependence for the change in chemical shift with size, while a plot of chemical shift versus the inverse band gap is linear. The correlation of NMR shift for the discrete sites allows a valence bond theory interpretation of the size-dependent changes in bonding character within the reconstructed QD. The NMR results provide a structural model for the QDs in which global reconstruction occurs below 4 nm in diameter, while an apparent self-limiting reconstruction process occurs above 4 nm.

  9. Aqueous-phase quantitative NMR determination of amino acid enantiomer ratio by 13C-NMR using chiral neodymium shift reagent.

    PubMed

    Florini, Nicola; Faglioni, Francesco; Zucchi, Claudia; Caglioti, Luciano; Pályi, Gyula

    2010-05-01

    A neodymium-(S)-PDTA (PDTA = N,N,N',N'-tetrakis[(hydroxycarbonyl)methyl]-1,2-diaminopropane) complex was found exceptionally useful in the quantitative determination of enantiomer ratios of water-soluble natural amino acids by (13)C-NMR. The method is demonstrated on mixtures of L- and D-enantiomers of various amino acids. The interactions of the chiral shift reagent with the amino acid molecules were rationalized by molecular orbital calculations.

  10. Experimental (FT-IR, FT-Raman, 1H, 13C NMR) and theoretical study of alkali metal syringates

    NASA Astrophysics Data System (ADS)

    Świsłocka, Renata

    2013-07-01

    In this work the influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid) was studied. This paper presents spectroscopic vibrations (FT-IR, FT-Raman) and NMR (1H and 13C) study of the series of alkali metal syringates from lithium to cesium syringates. Characteristic shifts of band wavenumbers and changes in band intensities along the metal series were observed. Optimized geometrical structures of the studied compounds were calculated by the B3LYP method using the 6-311++G∗∗ basis set. Aromaticity indices, atomic charges, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and NMR spectra were obtained. The calculated parameters were compared to experimental characteristics of studied compounds.

  11. Evidence of antiferromagnetic fluctuation in the unconventional superconductor λ -(BETS)2GaCl4 by 13C NMR

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Kawamoto, A.

    2017-09-01

    We performed 13C NMR measurements on the unconventional organic superconductor λ -(BETS) 2GaCl4 to clarify its electronic properties in the paramagnetic state. We found that the spin-lattice relaxation rate divided by temperature 1 /T1T shows Curie-like enhancement above 55 K that arises from an antiferromagnetic fluctuation. In addition, we found additional enhancement of 1 /T1T below 10 K, where the Knight shift decreases and the linewidth of NMR spectra is broadened. The result could be understood by the magnetic fluctuation induced by the nesting of the Fermi surface. We discovered that λ -(BETS) 2GaCl4 salt inherently exhibits the two different types of magnetic fluctuations.

  12. 13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines

    NASA Technical Reports Server (NTRS)

    Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.

    1983-01-01

    The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.

  13. 13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines

    NASA Technical Reports Server (NTRS)

    Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.

    1983-01-01

    The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.

  14. 13C-Methyl isocyanide as an NMR probe for cytochrome P450 active sites

    PubMed Central

    McCullough, Christopher R.; Pullela, Phani Kumar; Im, Sang-Choul; Waskell, Lucy

    2012-01-01

    The cytochromes P450 (CYPs) play a central role in many biologically important oxidation reactions, including the metabolism of drugs and other xenobiotic compounds. Because they are often assayed as both drug targets and anti-targets, any tools that provide: (a) confirmation of active site binding and (b) structural data, would be of great utility, especially if data could be obtained in reasonably high throughput. To this end, we have developed an analog of the promiscuous heme ligand, cyanide, with a 13CH3-reporter attached. This 13C-methyl isocyanide ligand binds to bacterial (P450cam) and membrane-bound mammalian (CYP2B4) CYPs. It can be used in a rapid 1D experiment to identify binders, and provides a qualitative measure of structural changes in the active site. PMID:19199046

  15. Benzenium ion chemistry on solid metal halide superacids: in situ {sup 13}C NMR experiments and theoretical calculations

    SciTech Connect

    Xu, T.; Barich, D.H.; Torres, P.D.; Haw, J.F.

    1997-01-15

    The benzenium, toluenium, and ethylbenzenium ions were synthesized on aluminium bromide by coadsorption of the precursors with either HBr or alkyl bromide. Principal components of the {sup 13}C chemical shift tensors for the ring carbons of these species were measured from magic angle spinning spectra. The benzenium ion was static at 77 K but underwent both proton scrambling and anisotropic rotation at 298 K as well as oligomerization at higher loadings. The para form of the toluenium ion was the dominant isomer at 77 K, but a temperature-dependent equilibrium between the para and ortho isomers was observed at 273 K. The energy calculations at MP4(fc,sdq)/ 6-311+G{sup *}//MP2/6-311+G{sup *} with thermal corrections resulted in good agreement between calculated and measured proton affinities for benzene, toluene, and ethylbenzene. For toluenium ion, the energies of the ortho and meta isomers were 1.2 and 5.4 kcal/mol, respectively, above the para isomer, consistent with the temperature-dependent {sup 13}C NMR spectra in the solid state. {sup 13}C chemical shift tensors calculated at the GIAO-MP2/tzp/dz//MP2/ 6-311+G{sup *} and GIAO-MP2/tzp/dz//B3LYP/6-311+G{sup *} levels of theory were in very close agreement with each other and generally in satisfactory agreement with experimental principal components. 64 refs., 8 figs., 4 tabs.

  16. Differential protonation and dynamic structure of doxylamine succinate in solution using 1H and 13C NMR.

    PubMed

    Somashekar, B S; Nagana Gowda, G A; Ramesha, A R; Khetrapal, C L

    2004-07-01

    A protonation and dynamic structural study of doxylamine succinate, a 1:1 salt of succinic acid with dimethyl-[2-(1-phenyl-1-pyridin-2-yl-ethoxy)ethyl]amine, in solution using one- and two-dimensional 1H and 13C NMR experiments at variable temperature and concentration is presented. The two acidic protons of the salt doxylamine succinate are in 'intermediate' exchange at room temperature, as evidenced by the appearance of a broad signal. This signal evolves into two distinct signals below about -30 degrees C. A two-dimensional 1H-1H double quantum filtered correlation experiment carried out at -55 degrees C shows protonation of one of the acidic protons to the dimethylamine nitrogen. A two-dimensional rotating frame 1H-1H NOE experiment at the same temperature reveals that the other proton remains with the succinate moiety. Comparison of the 1H and 13C chemical shifts and the 13C T1 relaxation times of the salt with those of the free base further substantiate the findings.

  17. Ab Initio Calculations of Possible γ-Gauche Effects in the 13C-NMR for Methine and Carbonyl Carbons in Precise Polyethylene Acrylic Acid Copolymers

    SciTech Connect

    Alam, Todd

    2013-07-29

    The impacts of local polymer chain conformations on the methine and carbonyl 13C-NMR chemical shifts for polyethylene acrylic acid p(E-AA) copolymers were predicted using ab initio methods. Using small molecular cluster models, the magnitude and sign of the γ-gauche torsional angle effect, along with the impact of local tetrahedral structure distortions near the carbonyl group, on the 13C-NMR chemical shifts were determined. These 13C-NMR chemical shift variations were compared to the experimental trends observed for precise p(E-AA) copolymers as a function acid group spacing and degree of zinc-neutralization in the corresponding p(E-AA) ionomers. These ab initio calculations address the future ability of 13C-NMR chemical shift variations to provide information about the local chain conformations in p(E-AA) copolymer materials.

  18. Investigations on computed 13C NMR one-dimensional non-refocused INEPT experiments for structural determinations in O-methylated glycosides

    NASA Astrophysics Data System (ADS)

    Pouységu, Laurent; Nobert, Philippe; Deffieux, Denis; De Jéso, Bernard; Lartigue, Jean-Claude; Pétraud, Michel; Ratier, Max

    1999-10-01

    A new one-dimensional 13C NMR approach for the determination of methoxyl substituents configuration in O-methylated glycosides is presented. Assignments are based on structural investigations by non-refocused INEPT experiments associated with numerical methods.

  19. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin pKa values.

    PubMed

    Gómez-Zaleta, Berenice; Ramírez-Silva, María Teresa; Gutiérrez, Atilano; González-Vergara, Enrique; Güizado-Rodríguez, Marisol; Rojas-Hernández, Alberto

    2006-07-01

    The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the pK(a) values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The pK(a) values determined with this procedure were as follows: H(4)(MGF)=H(3)(MGF)(-)+H(+), pKa1 (6-H)=6.52+/-0.06; H(3)(MGF)(-)=H(2)(MGF)(2-)+H(+), pKa2 (3-H)=7.97+/-0.06; H(2)(MGF)(2-)=H(MGF)(3-)+H(+), pKa3 (7-H)=9.44+/-0.04; H(MGF)(3-)=(MGF)(4-)+H(+), pKa4 (1-H)=12.10+/-0.01; where it has been considered mangiferin C(19)H(18)O(11) as H(4)(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional (1)H,(13)C, 2D correlated (1)H/(13)C performed by (g)-HSQC and (g)-HMBC methods; are also presented. pK(a) values determination of H(4)(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.

  20. Biosynthesis, molecular structure, and domain architecture of potato suberin: a (13)C NMR study using isotopically labeled precursors.

    PubMed

    Yan, B; Stark, R E

    2000-08-01

    Although suberin in potato wound periderm is known to be a polyester containing long-chain fatty acids and phenolics embedded within the cell wall, many aspects of its molecular structure and polymer-polymer connectivities remain elusive. The present work combines biosynthetic incorporation of site-specifically (13)C-enriched acetates and phenylalanines with one- and two-dimensional solid-state (13)C NMR spectroscopic methods to monitor the developing suberin polymer. Exogenous acetate is found to be incorporated preferentially at the carboxyl end of the aliphatic carbon chains, suggesting addition during the later elongation steps of fatty acid synthesis. Carboxyl-labeled phenylalanine precursors provide evidence for the concurrent development of phenolic esters and of monolignols typical of lignin. Experiments with ring-labeled phenylalanine precursors demonstrate a predominance of sinapyl and guaiacyl structures among suberin's phenolic moieties. Finally, the analysis of spin-exchange (solid-state NOESY) NMR experiments in ring-labeled suberin indicates distances of no more than 0.5 nm between pairs of phenolic and oxymethine carbons, which are attributed to the aromatic-aliphatic polyester and the cell wall polysaccharide matrix, respectively. These results offer direct and detailed molecular information regarding the insoluble intermediates of suberin biosynthesis, indicate probable covalent linkages between moieties of its polyester and polysaccharide domains, and yield a clearer overall picture of this agriculturally important protective material.

  1. 1H, 13C NMR and DFT Study of Hydrogen Bonding in Imidazolium-based Ionic Liquids.

    PubMed

    Balevičius, Vytautas; Gdaniec, Zofia; Džiaugys, Lukas; Kuliešius, Feliksas; Maršalka, Arūnas

    2011-09-01

    The ionic liquid 1-decyl-3-methyl-imidazolium bromide [C10mim][Br], the neat material, and also dissolved (~0.01 mole fraction) in various dielectric media (acetonitrile, benzene, chloroform, dichloromethane, methanol, 2-butanol and H2O) was studied using 1H and 13C NMR spectroscopy. The most important interaction in this compound is considered to be the Br-...H-C2+ hydrogen bond, which is formed between the anions and cations. The obtained results show that dielectric medium influence mostly the behavior of the Br-...H-C2+ bridge proton. The changes observed in 1H and 13C NMR spectra of [C10mim][Br] with increasing solvents polarity and temperature can be explained applying the model of the lengthening of the H2...Br- bond with the accompanying thickening of the solvation shell of bromine anion and C2-H bond contraction. The short-range order effects related to the configuration of neighboring dipoles of solvent molecules are more important for the solvation ability of small anions than the bulk solvent field effect. However, the solvents, molecules of which tend to associate via hydrogen bonding, can significantly affect the dynamics of anions.

  2. Regression formulas for density functional theory calculated 1H and 13C NMR chemical shifts in toluene-d8.

    PubMed

    Konstantinov, Ivan A; Broadbelt, Linda J

    2011-11-10

    This study aimed at investigating the performance of a series of basis sets, density functional theory (DFT) functionals, and the IEF-PCM solvation model in the accurate calculation of (1)H and (13)C NMR chemical shifts in toluene-d(8). We demonstrated that, on a test set of 37 organic species with various functional moieties, linear scaling significantly improved the calculated shifts and was necessary to obtain more accurate results. Inclusion of a solvation model produced larger deviations from the experimental data as compared to the gas-phase calculations. Moreover, we did not find any evidence that very large basis sets were necessary to reproduce the experimental NMR data. Ultimately, we recommend the use of the BMK functional. For the (1)H shifts the use of the 6-311G(d) basis set gave linearly scaled mean unsigned (MU) and root-mean-square (rms) errors of 0.15 ppm and 0.21 ppm, respectively. For the calculation of the (13)C chemical shifts the 6-31G(d) basis set produced MUE of 1.82 ppm and RMSE of 3.29 ppm.

  3. Experimental and theoretical study of substituent effect on 13C NMR chemical shifts of 5-arylidene-2,4-thiazolidinediones

    NASA Astrophysics Data System (ADS)

    Rančić, Milica P.; Trišović, Nemanja P.; Milčić, Miloš K.; Ajaj, Ismail A.; Marinković, Aleksandar D.

    2013-10-01

    The electronic structure of 5-arylidene-2,4-thiazolidinediones has been studied by using experimental and theoretical methodology. The theoretical calculations of the investigated 5-arylidene-2,4-thiazolidinediones have been performed by the use of quantum chemical methods. The calculated 13C NMR chemical shifts and NBO atomic charges provide an insight into the influence of such a structure on the transmission of electronic substituent effects. Linear free energy relationships (LFERs) have been further applied to their 13C NMR chemical shifts. The correlation analyses for the substituent-induced chemical shifts (SCS) have been performed with σ using SSP (single substituent parameter), field (σF) and resonance (σR) parameters using DSP (dual substituent parameter), as well as the Yukawa-Tsuno model. The presented correlations account satisfactorily for the polar and resonance substituent effects operative at Cβ, and C7 carbons, while reverse substituent effect was found for Cα. The comparison of correlation results for the investigated molecules with those obtained for seven structurally related styrene series has indicated that specific cross-interaction of phenyl substituent and groups attached at Cβ carbon causes increased sensitivity of SCS Cβ to the resonance effect with increasing of electron-accepting capabilities of the group present at Cβ.

  4. The retrogradation properties of glutinous rice and buckwheat starches as observed with FT-IR, 13C NMR and DSC.

    PubMed

    Lian, Xijun; Wang, Changjun; Zhang, Kunsheng; Li, Lin

    2014-03-01

    The experiment was conducted to study the retrogradation properties of glutinous rice and buckwheat starch with wavelengths of maximum absorbance, FT-IR, (13)C NMR, and DSC. The results show that the starches in retrograded glutinous rice starch and glutinous rice amylopectin could not form double helix. The IR results show that protein inhabits in glutinous rice and maize starches in a different way and appearance of C-H symmetric stretching vibration at 2852 cm(-1) in starch might be appearance of protein. Retrogradation untied the protein in glutinous amylopectin. Enthalpies of sweet potato and maize granules are higher than those of their retrograded starches. The (13)C NMR results show that retrogradation of those two starches leads to presence of β-anomers and retrogradation might decompose lipids in glutinous rice amylopectin into small molecules. Glutinous rice starch was more inclined to retrogradation than buckwheat starch. The DSC results show that the second peak temperatures for retrograded glutinous rice and buckwheat starches should be assigned to protein. The SEM results show that an obvious layer structure exists in retrograded glutinous rice amylopectin.

  5. Characterization of Chemical Weapons Convention Schedule 3 Compounds by Quantitative 13C NMR Spectroscopy

    DTIC Science & Technology

    2007-11-01

    Stokes-Einstein equation for a rigid isotropic rotor: r = 3 7 3 kT In the equation, q is viscosity (0.224 mPa s at 5 ’C), extrapolated from the reported... viscosities for hydrogen cyanide at 0 and 25 oC,31 r is the radius of the hydrogen cyanide molecule, calculated from its 1.064 x 10-8 cm C-H distance...Lammers, G.; Janssen, L.P.B.; Beenackers, A.A.C.M. Quantitative Analysis of Chemically Modified Starches by ’H-NMR Spectroscopy. Starch /Staerke 1995; 47

  6. Bonded Cumomer Analysis of Human Melanoma Metabolism Monitored by 13C NMR Spectroscopy of Perfused Tumor Cells*

    PubMed Central

    Shestov, Alexander A.; Mancuso, Anthony; Lee, Seung-Cheol; Guo, Lili; Nelson, David S.; Roman, Jeffrey C.; Henry, Pierre-Gilles; Leeper, Dennis B.; Blair, Ian A.; Glickson, Jerry D.

    2016-01-01

    A network model for the determination of tumor metabolic fluxes from 13C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-13C2]glucose under normoxic conditions at 37 °C and monitored by 13C NMR spectroscopy. Excellent agreement between model-predicted and experimentally measured values of the rates of oxygen and glucose consumption, lactate production, and glutamate pool size validated the model. ATP production by glycolytic and oxidative metabolism were compared under hyperglycemic normoxic conditions; 51% of the energy came from oxidative phosphorylation and 49% came from glycolysis. Even though the rate of glutamine uptake was ∼50% of the tricarboxylic acid cycle flux, the rate of ATP production from glutamine was essentially zero (no glutaminolysis). De novo fatty acid production was ∼6% of the tricarboxylic acid cycle flux. The oxidative pentose phosphate pathway flux was 3.6% of glycolysis, and three non-oxidative pentose phosphate pathway exchange fluxes were calculated. Mass spectrometry was then used to compare fluxes through various pathways under hyperglycemic (26 mm) and euglycemic (5 mm) conditions. Under euglycemic conditions glutamine uptake doubled, but ATP production from glutamine did not significantly change. A new parameter measuring the Warburg effect (the ratio of lactate production flux to pyruvate influx through the mitochondrial pyruvate carrier) was calculated to be 21, close to upper limit of oxidative metabolism. PMID:26703469

  7. Chemical composition of Ivorian Artabotrys insignis leaf oil. Combined analysis including (13)C NMR, to quantify germacrene A and β-elemene.

    PubMed

    Gooré, Stéphane G; Ouattara, Zana A; Yapi, Thierry A; Békro, Yves-Alain; Tomi, Pierre; Paoli, Mathieu; Tomi, Félix

    2017-02-20

    The chemical composition of leaf essential oil from Artabotrys insignis Engler & Diels collected from Cote d'Ivoire was determined by GC(FID), GC-MS and (13)C NMR. The main compounds were β-elemene (66.8%) and germacrene A (17.1%). The true content of germacrene A/β-elemene was obtained by combining GC(FID) and (13)C NMR data.

  8. Intermolecular Interactions in Crystalline Theobromine as Reflected in Electron Deformation Density and (13)C NMR Chemical Shift Tensors.

    PubMed

    Bouzková, Kateřina; Babinský, Martin; Novosadová, Lucie; Marek, Radek

    2013-06-11

    An understanding of the role of intermolecular interactions in crystal formation is essential to control the generation of diverse crystalline forms which is an important concern for pharmaceutical industry. Very recently, we reported a new approach to interpret the relationships between intermolecular hydrogen bonding, redistribution of electron density in the system, and NMR chemical shifts (Babinský et al. J. Phys. Chem. A, 2013, 117, 497). Here, we employ this approach to characterize a full set of crystal interactions in a sample of anhydrous theobromine as reflected in (13)C NMR chemical shift tensors (CSTs). The important intermolecular contacts are identified by comparing the DFT-calculated NMR CSTs for an isolated theobromine molecule and for clusters composed of several molecules as selected from the available X-ray diffraction data. Furthermore, electron deformation density (EDD) and shielding deformation density (SDD) in the proximity of the nuclei involved in the proposed interactions are calculated and visualized. In addition to the recently reported observations for hydrogen bonding, we focus here particularly on the stacking interactions. Although the principal relations between the EDD and CST for hydrogen bonding (HB) and stacking interactions are similar, the real-space consequences are rather different. Whereas the C-H···X hydrogen bonding influences predominantly and significantly the in-plane principal component of the (13)C CST perpendicular to the HB path and the C═O···H hydrogen bonding modulates both in-plane components of the carbonyl (13)C CST, the stacking modulates the out-of-plane electron density resulting in weak deshielding (2-8 ppm) of both in-plane principal components of the CST and weak shielding (∼ 5 ppm) of the out-of-plane component. The hydrogen-bonding and stacking interactions may add to or subtract from one another to produce total values observed experimentally. On the example of theobromine, we demonstrate

  9. Conformational behaviour of poly(aspartic acid) and its sodium salt in the solid state as studied by high-resolution solid-state 13C-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Pixin; Matsukawa, Shingo; Kameda, Tsunenori; Kurosu, Hiromichi; Ando, Isao

    1997-12-01

    High-resolution 13C CP/MAS NMR spectra of poly(aspartic acid) (PAA) and its sodium salt (PAANa) obtained with various neutralization numbers, n (=[COONa]/[COOH+COONa], where [ x] is the molar concentration of x), have been measured over a wide range of temperatures, in order to elucidate the conformation and its stability in the solid state. From these experimental results it was found that, at room temperature (25°C), the main chain of PAA takes a mixture of right-handed α ( αR)-helix, ω-helix and β-sheet forms and, with an increase in temperature from 25°C to 180°C, changes from αR-helix form and ω-helix form to β-sheet forms. On the other hand, the main chain of PAANa takes the right-handed αR-helix form in the temperature range from 25°C to 210°C. With a decrease in the neutralization number, PAANa changes to PAA and the NMR spectra are correspondingly changed.

  10. 13C MAS NMR studies of crystalline cholesterol and lipid mixtures modeling atherosclerotic plaques.

    PubMed Central

    Guo, W; Hamilton, J A

    1996-01-01

    Cholesterol and cholesteryl esters are the predominant lipids of atherosclerotic plaques. To provide fundamental data for the quantitative study of plaque lipids in situ, crystalline cholesterol (CHOL) and CHOL/cholesteryl ester (CE) mixtures with other lipids were studied by solid-state nuclear magnetic resonance with magic-angle-sample spinning. Highly distinctive spectra for three different crystalline structures of CHOL were obtained. When CHOL crystals were mixed with isotropic CE oil, solubilized CHOL (approximately 13 mol % CHOL) was detected by characteristic resonances such as C5, C6, and C3; the excess crystalline CHOL (either anhydrous or monohydrate) remained in its original crystalline structure, without being affected by the coexisting CE. By use of 13C-enriched CHOL, the solubility of CHOL in the CE liquid-crystalline phase (approximately 8 mol %) was measured. When phosphatidylcholine was hydrated in presence of CHOL and CE, magic-angle-sampling nuclear magnetic resonance revealed liquid-crystalline CHOL/phosphatidylcholine multilayers with approximately an equal molar ratio of CHOL/phosphatidylcholine. Excess CHOL existed in the monohydrate crystalline form, and CE in separate oil or crystalline phases, depending on the temperature. The magic-angle-sampling nuclear magnetic resonance protocol for identifying different lipid phases was applied to intact (ex vivo) atherosclerotic plaques of cholesterol-fed rabbits. Liquid, liquid-crystalline, and solid phases of CE were characterized. Images FIGURE 2 PMID:8913623

  11. 13C NMR Relaxation Study of Segmental Motion of Poly(l-histidine) in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Uchino, Shinichi; Hiraoki, Toshifumi; Tsutsumi, Akihiro

    2004-05-01

    To study the segmental motion of poly (l-histidine) (PLH) in aqueous solution, the 13C spin-lattice relaxation time (T1) was measured at six resonance frequencies (ωC/2π) ranging from 15 to 100 MHz at temperatures from 10 to 80°C. For backbone Cα, plots of log(T1/ωC) against log(ωC) gave the well-superposed master curve, showing that the time-temperature reduction rule is realized. The shift factor obeyed the Arrhenius-type temperature dependence with the activation energy of 25.0 kJmol-1. Using this activation energy for the temperature dependence of the correlation time, the master curve was well reproduced by the Dejean-Lauprêtre-Monnerie (DLM) model. One of the parameters relating to the segmental motion was τ0/τ1=15, where τ0 and τ1 are the correlation times for the isolated single and correlated pair conformational transitions, respectively. It was found that the spectral density function J(ωC) has the exponent to the correlation time τ1 as ωCJ(ωC)˜(ωCτ1)0.71 in the region of ωCτ1≪ 1.

  12. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    PubMed

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments.

  13. Positional Enrichment by Proton Analysis (PEPA): A One-Dimensional (1) H-NMR Approach for (13) C Stable Isotope Tracer Studies in Metabolomics.

    PubMed

    Vinaixa, Maria; Rodríguez, Miguel A; Aivio, Suvi; Capellades, Jordi; Gómez, Josep; Canyellas, Nicolau; Stracker, Travis H; Yanes, Oscar

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of (13) C-satellite peaks using 1D-(1) H-NMR spectra. In comparison with (13) C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of (13) C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of (1) H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts.

  14. Plant Resources, (13)C-NMR Spectral Characteristic and Pharmacological Activities of Dammarane-Type Triterpenoids.

    PubMed

    Ruan, Jingya; Zheng, Chang; Qu, Lu; Liu, Yanxia; Han, Lifeng; Yu, Haiyang; Zhang, Yi; Wang, Tao

    2016-08-12

    Dammarane-type triterpenoids (DTT) widely distribute in various medicinal plants. They have generated a great amount of interest in the field of new drug research and development. Generally, DTT are the main bioactive ingredients abundant in Araliaceae plants, such as Panax ginseng, P. japonicas, P. notoginseng, and P. quinquefolium. Aside from Araliaceae, DTT also distribute in other families, including Betulaceae, Cucurbitaceae, Meliaceae, Rhamnaceae, and Scrophulariaceae. Until now, about 136 species belonging to 46 families have been reported to contain DTT. In this article, the genus classifications of plant sources of the botanicals that contain DTT are reviewed, with particular focus on the NMR spectral features and pharmacological activities based on literature reports, which may be benefit for the development of new drugs or food additives.

  15. Recent applications of /sup 13/C NMR spectroscopy to biological systems

    SciTech Connect

    Matwiyoff, N.A.

    1981-01-01

    Carbon-13 nuclear magnetic resonance (NMR) spectroscopy, in conjunction with carbon-13 labelling, is a powerful new analytical technique for the study of metabolic pathways and structural components in intact organelles, cells, and tissues. The technique can provide, rapidly and non-destructively, unique information about: the architecture and dynamics of structural components; the nature of the intracellular environment; and metabolic pathways and relative fluxes of individual carbon atoms. With the aid of results recently obtained by us and those reported by a number of other laboratories, the problems and potentialities of the technique will be reviewed with emphasis on: the viscosities of intracellular fluids; the structure and dynamics of the components of membranes; and the primary and secondary metabolic pathways of carbon in microorganisms, plants, and mammalian cells in culture.

  16. 31P-dephased, 13C-detected REDOR for NMR crystallography at natural isotopic abundance

    NASA Astrophysics Data System (ADS)

    Greenwood, Alexander I.; Clay, Mary C.; Rienstra, Chad M.

    2017-05-01

    Typically, the process of NMR-based structure determination relies on accurately measuring a large number of internuclear distances to serve as restraints for simulated annealing calculations. In solids, the rotational-echo double-resonance (REDOR) experiment is a widely used approach to determine heteronuclear dipolar couplings corresponding to distances usually in the range of 1.5-8 Å. A challenge in the interpretation of REDOR data is the degeneracy of symmetric subunits in an oligomer or equivalent molecules in a crystal lattice, which produce REDOR trajectories that depend explicitly on two or more distances instead of one. This degeneracy cannot be overcome by either spin dilution (for molecules containing 31P, 19F and other highly abundant nuclei) or selective pulses (in the case where there is chemical shift degeneracy). For small, crystalline molecules, such as phosphoserine, we demonstrate that as many as five inter-molecular distances must be considered to model 31P-dephased REDOR data accurately. We report excellent agreement between simulation and experiment once lattice couplings, 31P chemical shift anisotropy, and radio-frequency field inhomogeneity are all taken into account. We also discuss the systematic inaccuracies that may result from approximations that consider only the initial slope of the REDOR trajectory and/or that utilize a two- or three-spin system. Furthermore, we demonstrate the applicability of 31P-dephased REDOR for validation or refinement of candidate crystal structures and show that this approach is especially informative for NMR crystallography of 31P-containing molecules.

  17. Using solid 13C NMR coupled with solution 31P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China

    USDA-ARS?s Scientific Manuscript database

    Aquatic plants are involved in the storage and release capacity for organic matter and nutrients. In this study, solid 13C and solution 31P nuclear magnetic resonance (NMR) spectroscopy were used to characterize the biomass samples of six aquatic plants. Solid 13C NMR spectroscopy revealed the domin...

  18. On the acid dissociation constants of bilirubin and biliverdin. pKa values from 13C NMR spectroscopy.

    PubMed

    Lightner, D A; Holmes, D L; McDonagh, A F

    1996-02-02

    Biliverdin and bilirubin are naturally-occurring tetrapyrrolic bile pigments containing two propionic acid side chains. These side chains, and their propensity for ionization, are critical in the biological disposition of the pigments. Surprisingly, accurate dissociation constants for the propionic acid groups of biliverdin are unknown, and a wide range of values, extending over some 4 orders of magnitude, has been suggested for the Ka values of the propionic acid groups of bilirubin in aqueous solutions. Recently, pKa values of 6.7-9.3 have been reported for bilirubin--values much greater than the value of approximately 5 typical of propionic acid groups. These curiously high values, currently being used to explain the biological transport and metabolism of bilirubin and related compounds, have been attributed to intramolecular hydrogen bonding. We have determined the pKa values of 99% 13C-enriched (13CO2H) [8(3),12(3)-13C2]mesobilirubin-XIII, alpha, the corresponding biliverdin, and several monopropionic model compounds by 13C NMR spectroscopy. This technique allows direct observation and quantitative measurement of the carboxylic acid and carboxylate anion carbon signals. Analysis of the variation of carboxyl 13C NMR chemical shift with pH gave rubin pKa values of 4.2 and 4.9 and verdin pKa values of 3.9 and 5.3 in aqueous buffers containing only a very small quantity (0.086 mol fraction) of dimethyl sulfoxide. When extrapolated to water, the pKa values are essentially unchanged. The data provide the first experimentally-determined pKa values for a biliverdin. They indicate that intramolecular hydrogen bonding has little effect on the acid dissociation of bilirubin and suggest that the equilibrium acidity of the bilirubin carboxylic acid groups is not abnormally high but similar to the thermodynamic acidity found in other carboxylic acids, as originally suggested by Overbeek et al. (Overbeek, J. T. G., Vink, C. L. J., and Deenstra, H. (1955) Recl. Trav. Chim

  19. (13)C and (15)N NMR characterization of amine reactivity and solvent effects in CO2 capture.

    PubMed

    Perinu, Cristina; Arstad, Bjørnar; Bouzga, Aud M; Jens, Klaus-J

    2014-08-28

    Factors influencing the reactivity of selected amine absorbents for carbon dioxide (CO2) capture, in terms of the tendency to form amine carbamate, have been studied. Four linear primary alkanolamines at varying chain lengths (MEA, 3A1P, 4A1B , and 5A1P ), two primary amines with different substituents in the β-position to the nitrogen (1A2P and ISOB), a secondary alkanolamine (DEA), and a sterically hindered primary amine (AMP) were investigated. The relationship between the (15)N NMR data of aqueous amines and their ability to form carbamate, as determined at equilibrium by quantitative (13)C NMR experiments, was analyzed, taking into account structural-chemical properties. For all the amines, the (15)N chemical shifts fairly reflected the observed reactivity for carbamate formation. In addition to being a useful tool for the investigation of amine reactivity, (15)N NMR data clearly provided evidence of the importance of solvent effects for the understanding of chemical dynamics in CO2 capture by aqueous amine absorbents.

  20. Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectroscopy.

    PubMed

    Bonanomi, Giuliano; Incerti, Guido; Barile, Elisa; Capodilupo, Manuela; Antignani, Vincenzo; Mingo, Antonio; Lanzotti, Virginia; Scala, Felice; Mazzoleni, Stefano

    2011-09-01

    Litter decomposition provides nutrients that sustain ecosystem productivity, but litter may also hamper root proliferation. The objectives of this work were to assess the inhibitory effect of litter decomposition on seedling growth and root proliferation; to study the role of nutrient immobilization and phytotoxicity; and to characterize decomposing litter by (13)C NMR spectroscopy. A litter-bag experiment was carried out for 180 d with 16 litter types. Litter inhibitory effects were assessed by two bioassays: seed germination and root proliferation bioassays. Activated carbon (C) and nutrient solutions were used to evaluate the effects of phytotoxic factors and nutrient immobilization. An inhibitory effect was found for all species in the early phase of decomposition, followed by a decrease over time. The addition of activated C to litter removed this inhibition. No evidence of nutrient immobilization was found in the analysis of nitrogen dynamics. NMR revealed consistent chemical changes during decomposition, with a decrease in O-alkyl and an increase in alkyl and methoxyl C. Significant correlations were found among inhibitory effects, the litter decay rate and indices derived from NMR. The results show that it is possible to predict litter inhibitory effects across a range of litter types on the basis of their chemical composition. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  1. Unlocking the molecular structure of fungal melanin using 13C biosynthetic labeling and solid-state NMR.

    PubMed

    Tian, Shiying; Garcia-Rivera, Javier; Yan, Bin; Casadevall, Arturo; Stark, Ruth E

    2003-07-15

    Melanins are enigmatic pigments found in all biological kingdoms that are associated with a variety of functions, including microbial virulence. Despite being ubiquitous in nature, melanin pigments have long resisted atomic-level structural examination because of their insolubility and amorphous organization. Cryptococcus neoformans is a human pathogenic fungus that melanizes only when provided with exogenous substrate, thus offering a unique system for exploring questions related to melanin structure at the molecular level. We have exploited the requirement for exogenous substrate in melanin synthesis as well as the capabilities of high-resolution solid-state nuclear magnetic resonance (NMR) to establish the predominantly aliphatic composition of l-dopa melanin and to introduce (13)C labels that permit the identification of proximal carbons in the developing biopolymer. By swelling solid melanin samples in organic solvents and using two-dimensional heteronuclear NMR in conjunction with magic-angle spinning, we have identified chemical bonding patterns typical of alkane, alkene, alcohol, ketone, ester, and indole functional groups. These findings demonstrate the feasibility of a novel approach to determining the structure of melanin using metabolic labeling and NMR spectroscopy.

  2. Molecular composition of recycled organic wastes, as determined by solid-state {sup 13}C NMR and elemental analyses

    SciTech Connect

    Eldridge, S.M.; Chen, C.R.; Xu, Z.H.; Nelson, P.N.; Boyd, S.E.; Meszaros, I.; Chan, K.Y.

    2013-11-15

    Highlights: • Model estimated the molecular C components well for most RO wastes. • Molecular nature of organic matter in RO wastes varied widely. • Molecular composition by NMR modelling preferable to extraction techniques. • Some model shortcomings in estimating molecular composition of biochars. • Waste molecular composition important for carbon/nutrient outcomes in soil. - Abstract: Using solid state {sup 13}C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes.

  3. Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens

    2012-06-20

    The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. 1H and 13C NMR signal assignment of cucurbitacin derivatives from Citrullus colocynthis (L.) Schrader and Ecballium elaterium L. (Cucurbitaceae).

    PubMed

    Seger, Christoph; Sturm, Sonja; Mair, Maria-Elisabeth; Ellmerer, Ernst P; Stuppner, Hermann

    2005-06-01

    2D NMR-derived 1H and 13C NMR signal assignments of six structurally closely related cucurbitacin derivatives are presented. The investigated 2-O-beta-D-glucopyranosylcucurbitacins I, J, K, and L were obtained from Citrullus colocynthis (L.) Schrader whereas the aglyca cucurbitacin E and I were isolated from Ecballium elaterium L.

  5. Complete 1H and 13C NMR spectral assignment of cis- and trans- 3-(2-[2-(4-methylphenyl)ethenyl]phenyl])sydnones.

    PubMed

    Butković, Kristina; Marinić, Zeljko; Sindler-Kulyk, Marija

    2004-12-01

    1H and 13C NMR spectra of cis- and trans-3-(2-[2-(4-methylphenyl)ethenyl]phenyl])sydnones, the first stilbene-substituted mezoionic oxadiazolium rings, were fully assigned combining the information in various solvents, such as deuterated benzene, acetone and chloroform, using 2D NMR techniques. Copyright 2004 John Wiley & Sons, Ltd.

  6. NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations.

    PubMed

    Casabianca, Leah B; Shaibat, Medhat A; Cai, Weiwei W; Park, Sungjin; Piner, Richard; Ruoff, Rodney S; Ishii, Yoshitaka

    2010-04-28

    Chemically modified graphenes and other graphite-based materials have attracted growing interest for their unique potential as lightweight electronic and structural nanomaterials. It is an important challenge to construct structural models of noncrystalline graphite-based materials on the basis of NMR or other spectroscopic data. To address this challenge, a solid-state NMR (SSNMR)-based structural modeling approach is presented on graphite oxide (GO), which is a prominent precursor and interesting benchmark system of modified graphene. An experimental 2D (13)C double-quantum/single-quantum correlation SSNMR spectrum of (13)C-labeled GO was compared with spectra simulated for different structural models using ab initio geometry optimization and chemical shift calculations. The results show that the spectral features of the GO sample are best reproduced by a geometry-optimized structural model that is based on the Lerf-Klinowski model (Lerf, A. et al. Phys. Chem. B 1998, 102, 4477); this model is composed of interconnected sp(2), 1,2-epoxide, and COH carbons. This study also convincingly excludes the possibility of other previously proposed models, including the highly oxidized structures involving 1,3-epoxide carbons (Szabo, I. et al. Chem. Mater. 2006, 18, 2740). (13)C chemical shift anisotropy (CSA) patterns measured by a 2D (13)C CSA/isotropic shift correlation SSNMR were well reproduced by the chemical shift tensor obtained by the ab initio calculation for the former model. The approach presented here is likely to be applicable to other chemically modified graphenes and graphite-based systems.

  7. Solid state 13C NMR and FT-IR spectroscopy of the cocoon silk of two common spiders

    NASA Astrophysics Data System (ADS)

    Bramanti, Emilia; Catalano, Donata; Forte, Claudia; Giovanneschi, Mario; Masetti, Massimo; Veracini, Carlo Alberto

    2005-11-01

    The structure of the silk from cocoons of two common spiders, Araneus diadematus (family Araneidae) and Achaearanea tepidariorum (family Theridiidae) was investigated by means of 13C solid state NMR and FT-IR spectroscopies. The combined use of these two techniques allowed us to highlight differences in the two samples. The cocoon silk of Achaearanea tepidariorum is essentially constituted by helical and β-sheet structures, whereas that of Araneus diadematus shows a more complex structure, containing also β-strands and β-turns. Moreover, the former silk is essentially crystalline while the latter contains more mobile domains. The structural differences of the two cocoon silks are ascribed to the different habitat of the two species.

  8. Probing Medin Monomer Structure and its Amyloid Nucleation Using 13C-Direct Detection NMR in Combination with Structural Bioinformatics

    PubMed Central

    Davies, Hannah A.; Rigden, Daniel J.; Phelan, Marie M.; Madine, Jillian

    2017-01-01

    Aortic medial amyloid is the most prevalent amyloid found to date, but remarkably little is known about it. It is characterised by aberrant deposition of a 5.4 kDa protein called medin within the medial layer of large arteries. Here we employ a combined approach of ab initio protein modelling and 13C-direct detection NMR to generate a model for soluble monomeric medin comprising a stable core of three β-strands and shorter more labile strands at the termini. Molecular dynamics simulations suggested that detachment of the short, C-terminal β-strand from the soluble fold exposes key amyloidogenic regions as a potential site of nucleation enabling dimerisation and subsequent fibril formation. This mechanism resembles models proposed for several other amyloidogenic proteins suggesting that despite variations in sequence and protomer structure these proteins may share a common pathway for amyloid nucleation and subsequent protofibril and fibril formation. PMID:28327552

  9. Conformational evaluation and detailed 1H and 13C NMR assignments of flavoxate, a urinary tract antispasmodic agent.

    PubMed

    Pérez-Hernández, Nury; Morales-Ríos, Martha S; Cerda-García-Rojas, Carlos M; Joseph-Nathan, Pedro

    2006-05-03

    1H and 13C NMR chemical shift assignments for the urinary tract antispasmodic flavoxate (1) and flavoxate hydrochloride (2) were obtained from one- and two-dimensional measurements. A Monte Carlo random search using molecular mechanics, followed by geometry optimization of each minimum energy structure employing DFT calculations at the B3LYP/6-31G* level, and a Boltzmann analysis of the total energies, provided accurate molecular models which describe the conformational behavior of flavoxate (1). The electron density surfaces for the global minimum and the second minimum conformers 1a and 1b of this L-type Ca2+ channel inhibitor were calculated. The presence of both conformers in solution was demonstrated in full agreement with 2D NOESY data and NOE difference spectroscopy.

  10. Brominated Compounds from Marine Sponges of the Genus Aplysina and a Compilation of Their 13C NMR Spectral Data

    PubMed Central

    Lira, Narlize Silva; Montes, Ricardo Carneiro; Tavares, Josean Fechine; da Silva, Marcelo Sobral; da Cunha, Emidio V. L.; de Athayde-Filho, Petronio Filgueiras; Rodrigues, Luis Cezar; da Silva Dias, Celidarque; Barbosa-Filho, Jose Maria

    2011-01-01

    Aplysina is the best representative genus of the family Aplysinidae. Halogenated substances are its main class of metabolites. These substances contribute greatly to the chemotaxonomy and characterization of the sponges belonging to this genus. Due to their pharmacological activities, these alkaloids are of special interest. The chemistry of halogenated substances and of the alkaloids has long been extensively studied in terrestrial organisms, while the number of marine organisms studied has just started to increase in the last decades. This review describes 101 halogenated substances from 14 species of Aplysina from different parts of the world. These substances can be divided into the following classes: bromotyramines (A), cavernicolins (B), hydroverongiaquinols (C), bromotyrosineketals (D), bromotyrosine lactone derivatives (E), oxazolidones (F), spiroisoxazolines (G), verongiabenzenoids (H), verongiaquinols (I), and dibromocyclohexadienes (J). A compilation of their 13C NMR data is also part of the review. For this purpose 138 references were consulted. PMID:22163189

  11. Investigation of gamma-irradiated vegetable seeds with high-resolution solid-state 13C NMR.

    PubMed

    Bardet, Michel; Maron, Sébastien; Foray, Marie Françoise; Berger, Maurice; Guillermo, Armel

    2004-04-01

    13C solid-state NMR was used to investigate the effects of gamma radiation on vegetable seeds, Pisum sativum and Latuca sativa, at absorbed doses that inhibit their germination. By combining single-pulse excitation and cross-polarization experiments under magic angle spinning, both liquid and solid domains of seeds can be characterized. We showed that the liquid domains, mostly made of triacylglycerols (TAG), of vegetable seeds are not sensitive to radiation. The main structural changes have been observed in the embryonic axes of seeds when the seeds are water-imbibed before irradiation. These results rule out a starting hypothesis concerning the potential role of TAG contained in oil bodies as a potential source of aldehydes that could further react with DNA moiety.

  12. Quantification of taxanes in a leaf and twig extract from Taxus baccata L. using 13C NMR spectroscopy.

    PubMed

    Paoli, Mathieu; Bighelli, Ange; Castola, Vincent; Tomi, Félix; Casanova, Joseph

    2013-11-01

    In the course of our ongoing work on the chemical characterization of Taxus baccata L. growing wild in Corsica, we have developed and validated a method for direct quantification of taxane derivatives by (13)C NMR using 10-deacetylbaccatin III as reference compound and 1,6-hexanediol as internal standard. We have observed good accuracy (relative errors between 0.3% and 3.5%), linearity (R(2) = 0.999) and precision (reproducibility 8.5 mg ± 1.1%) of the measurements. The experimental procedure was applied to the quantification of six identified taxanes in a fraction of chromatography of a methanol extract of T. baccata leaves. This method can be applied to other compounds bearing the taxane skeleton.

  13. Enantiomeric differentiation of oxygenated p-menthane derivatives by 13C NMR using Yb(hfc)3.

    PubMed

    Lanfranchi, Don Antoine; Blanc, Marie-Cécile; Vellutini, Muriel; Bradesi, Pascale; Casanova, Joseph; Tomi, Félix

    2008-12-01

    The (13)C NMR behaviour of 21 p-menthanic terpene bearing an oxygenated function (alcohol, ketone, acetate) was examined in the presence of a chiral lanthanide shift reagent (Yb(hfc)(3)). For each monocyclic compound, we measured the lanthanide-induced shift (LIS) on the signals of the carbons and the splitting of signals allowing the enantiomeric differentiation. Some general features were found about their LIS behaviour: experimental data establishing distinct patterns for carvomenthone-like compounds and menthone-like compounds. The enantiomeric splitting was observed for the majority of signals in the spectrum of each compound. In the case of alcohols and acetates, the influence of the relative stereochemistry (cis vs trans) of isopropyl(ene) and the binding function was discussed.

  14. 13C direct detected COCO-TOCSY: A tool for sequence specific assignment and structure determination in protonless NMR experiments

    NASA Astrophysics Data System (ADS)

    Balayssac, Stéphane; Jiménez, Beatriz; Piccioli, Mario

    2006-10-01

    A novel experiment is proposed to provide inter-residue sequential correlations among carbonyl spins in 13C detected, protonless NMR experiments. The COCO-TOCSY experiment connects, in proteins, two carbonyls separated from each other by three, four or even five bonds. The quantitative analysis provides structural information on backbone dihedral angles ϕ as well as on the side chain dihedral angles of Asx and Glx residues. This is the first dihedral angle constraint that can be obtained via a protonless approach. About 75% of backbone carbonyls in Calbindin D 9K, a 75 aminoacid dicalcium protein, could be sequentially connected via a COCO-TOCSY spectrum. 49 3J values were measured and related to backbone ϕ angles. Structural information can be extended to the side chain orientation of aminoacids containing carbonyl groups. Additionally, long range homonuclear coupling constants, 4JCC and 5JCC, could be measured. This constitutes an unprecedented case for proteins of medium and small size.

  15. Beta-alanine-hydrochloride (2:1) crystal: structure, 13C NMR and vibrational properties, protonation character.

    PubMed

    Godzisz, D; Ilczyszyn, M; Ciunik, Z

    2003-01-15

    The crystal structure of beta-alanine-hydrochloride (2:1) complex (2A-HCl) has been determined by X-ray diffraction method at 298 and 100 K as monoclinic, space group C2/c, Z=4. The crystal comprises chloride anions and protonated beta-alanine dimers: two beta-alanine zwitterions are joined by strong, symmetric (Ci) hydrogen bond with the O...O distance of 2.473 A at room temperature. Powder FT-IR and FT-Raman as well as solid state 13C NMR spectra provide insights into the solid structure of this complex, character of its hydrogen bonds and the beta-alanine protonation.

  16. Beta-alanine-oxalic acid (1:1) hemihydrate crystal: structure, 13C NMR and vibrational properties, protonation character.

    PubMed

    Godzisz, D; Ilczyszyn, M; Ilczyszyn, M M

    2003-03-01

    The crystal structure of beta-alanine-oxalic acid (1:1) hemihydrate complex has been reinvestigated by X-ray diffraction method at 293 K. Formation of monoclinic crystal system belonging to C2/c space group and consisting of semi-oxalate chains, diprotonated beta-alanine dimers and water molecules bonded to both these units is confirmed. New results are obtained for distances in the carboxylic groups and hydrogen bonds. These structural observations are used for protonation degree monitoring on the carboxylic oxygen atoms. They are in accordance with our vibrational study. The 13C NMR spectra provide insights into the solid structure of this complex, character of its hydrogen bonds and the beta-alanine protonation.

  17. Interactions of D-cellobiose with selected chloride salts: A 13C NMR and FT-IR study

    NASA Astrophysics Data System (ADS)

    Amarasekara, Ananda S.; Wiredu, Bernard

    2016-04-01

    The interactions of cellulose model compound D-cellobiose with chloride salts of Zn2 +, Ca2 +, Li+, Sn2 +, La3 +, Mg2 +, K+ and NH4+ were evaluated by measuring the 13C NMR chemical shift changes (Δδ) of the disaccharide due to the addition of salts in D2O. The KCl and NH4Cl showed similar Δδ changes due to interactions only with the Cl- anion. Whereas other chloride salts showed interactions with both cation and anion. Among these salts the total interactions are in the order: Zn2 + > Sn2 + > Li+ > Ca2 + ~ La3 + > Mg2 +. The FT-IR spectra of D-cellobiose-chloride salt 1:2 mixtures also indicate that KCl and NH4Cl interacts similarly with D-cellobiose in the solid state.

  18. Temperature dependence of the folding and unfolding kinetics of the GCN4 leucine zipper via 13C(alpha)-NMR.

    PubMed Central

    Holtzer, M E; Bretthorst, G L; d'Avignon, D A; Angeletti, R H; Mints, L; Holtzer, A

    2001-01-01

    Studies by one-dimensional NMR are reported on the interconversion of folded and unfolded forms of the GCN4 leucine zipper in neutral saline buffer. The peptide bears 99% 13C(alpha) labels at three sites: V9, L12, and G31. Time-domain 13C(alpha)-NMR spectra are interpreted by global Bayesian lineshape analysis to extract the rate constants for both unfolding and folding as functions of temperature in the range 47-71 degrees C. The data are well fit by the assumption that the same rate constants apply at each labeled site, confirming that only two conformational states need be considered. Results show that 1) both processes require a free energy of activation; 2) unfolding is kinetically enthalpy-opposed and entropy-driven, while folding is the opposite; and 3) the transition state dimer ensemble averages approximately 40% helical. The activation parameters for unfolding, derived from NMR data at the elevated temperatures where both conformations are populated, lead to estimates of the rate constant at low temperatures (5-15 degrees C) that agree with extant values determined by stopped-flow CD via dilution from denaturing media. However, the corresponding estimated values for the folding rate constant are larger by two to three orders of magnitude than those obtained by stopped flow. We propose that this apparent disagreement is caused by the necessity, in the stopped-flow experiment, for initiation of new helices as the highly denaturant-unfolded molecule adjusts to the newly created benign solvent conditions. This must reduce the success rate of collisions in producing the folded molecule. In the NMR determinations, however, the unfolded chains always have a small, but essential, helix content that makes such initiation unnecessary. Support for this hypothesis is adduced from recent extant experiments on the helix-coil transition in single-chain helical peptides and from demonstration that the folding rate constants for coiled coils, as obtained by stopped flow

  19. Easy characterization of the radio-frequency field of 13C NMR coils with aluminium-27 NMR

    NASA Astrophysics Data System (ADS)

    Jehenson, P.

    1998-02-01

    Determining the Radio-Frequency field distribution of Nuclear Magnetic Resonance (NMR) coils is difficult and time-consuming for the low sensitivity carbon 13. We show that this can conveniently be done using Aluminium-27 NMR (much larger signal/noise ratio and shorter acquisition time for both spectra and images, same measured field distribution, much cheaper samples/phantoms). La détermination de la distribution du champ radio-fréquence de sondes de Résonance Magnétique Nucléaire (RMN) est difficile et prend du temps dans le cas du carbone 13 qui a une faible sensibilité et est utilisé, par exemple, dans les études in vivo. Nous montrons ici que cela peut être fait plus simplement et rapidement en utilisant la RMN de l'Aluminium 27 (bien meilleur rapport signal/bruit et temps d'acquisition plus court pour les spectres et les images, même distribution de champ mesurée, échantillons/fantômes beaucoup moins chers.

  20. Electronic states and molecular dynamics of single-component molecular conductors [M (tmdt) 2] (M =Ni , Pt) studied by 13C and 1H NMR

    NASA Astrophysics Data System (ADS)

    Takagi, Rina; Miyagawa, Kazuya; Yoshimura, Masahide; Gangi, Hiro; Kanoda, Kazushi; Zhou, Biao; Idobata, Yuki; Kobayashi, Akiko

    2016-01-01

    The molecular conductors [M(tmdt) 2] (M =Ni , Pt) consisting of single molecular species are investigated with 13C NMR and 1H NMR. The temperature dependences of the 13C NMR shift and relaxation rate provide microscopic evidence for the metallic nature with appreciable electron correlations. Both compounds exhibit an anomalous frequency-dependent enhancement in the 1H nuclear spin-lattice relaxation rate in a wide temperature range. These observations signify the presence of extraordinary molecular motions with low energy excitations.

  1. Effect of chronic hypoglycaemia on glucose concentration and glycogen content in rat brain: a localized 13C NMR study

    PubMed Central

    Lei, Hongxia; Gruetter, Rolf

    2006-01-01

    While chronic hypoglycaemia has been reported to increase unidirectional glucose transport across the blood-brain barrier (BBB) and to increase GLUT1 expression at the endothelium, the effect on steady-state brain d-glucose and brain glycogen content is currently unknown. Brain glucose and glycogen concentrations were directly measured in vivo using localized 13C magnetic resonance spectroscopy (MRS) following 12-14 days of hypoglycaemia. Brain glucose content was significantly increased by 48%, which is consistent with an increase in the maximal glucose transport rate, Tmax, by 58% compared with the sham-treated animals. The localized 13C NMR measurements of brain glucose were directly validated by comparison with biochemically determined brain glucose content after rapid focused microwave fixation (1.4 s at 4 kW). Both in vivo MRS and biochemical measurements implied that brain glycogen content was not affected by chronic hypoglycaemia, consistent with brain glucose being a major factor controlling brain glycogen content. We conclude that the increased glucose transporter expression in chronic hypoglycaemia leads to increased brain glucose content at a given level of glycaemia. Such increased brain glucose concentrations can result in a lowered glycaemic threshold of counter-regulation observed in chronic hypoglycaemia. PMID:16987249

  2. Inverse nonionic microemulsion studied by means of 1H, 13C, and PGSTE NMR during silica nanoparticle synthesis.

    PubMed

    Asaro, Fioretta; Benedetti, Alvise; Savko, Nina; Pellizer, Giorgio

    2009-03-03

    The soluble species present in the reaction mixture that leads to silica nanoparticle production through the base catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) and the successive condensation were investigated in situ, under the actual synthesis conditions, by means of 1H, 13C, and 29Si NMR spectroscopy. The two former nuclei, owing to higher sensitivity and their presence both in the reacting species and in the constituents of the W/O microemulsion (cyclohexane-igepal-CA-520-concentrated ammonia solution) afforded insight into the inverse microemulsion and allowed us to assess the kinetic rate of the hydrolysis step. It was verified that the microemulsion microstructure is maintained during the reaction. The characterization of the final nanoparticles was carried out by means of transmission electron microscopy (TEM). Special attention was paid to the reaction medium, and an extended assignment of the 1H and 13C resonances of the surfactant headgroup is reported together with the discussion of the changes they undergo due to the environmental modifications induced by transition from cyclohexane solution to W/O microemulsion and further to NH3 containing W/O microemulsion. The self-diffusion coefficient measurements revealed that NH3 exchanges among the inverse micelles diffusing through cyclohexane and confirmed that the preferred localization for ethanol, a byproduct of the reaction, is the bulk oil.

  3. Magnesium silicate dissolution investigated by Si-29 MAS, H-1-Si-29 CPMAS, Mg-25 QCPMG NMR.

    SciTech Connect

    Davis, M C; Wesolowski, David J

    2009-09-01

    Olivine-(Mg,Fe){sub 2}SiO{sub 4}-has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of the divalent cation with respect to silicon during weathering under acidic conditions, which has been correlated to the formation of a silicon-rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. The pure magnesium end member of the olivine series (forsterite-Mg{sub 2}SiO{sub 4}) was chosen for detailed investigations in this study because paramagnetic iron hinders NMR investigations by providing an extra mode of relaxation for neighboring nuclei, causing lineshapes to become significantly broadened and unobservable in the NMR spectrum. For reacting forsterite, spectroscopic interrogations using nuclear magnetic resonance (NMR) can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced NMR techniques ({sup 29}Si MAS, {sup 1}H-{sup 29}Si CP MAS, {sup 25}Mg QCPMG, and {sup 1}H-{sup 25}Mg CP QCPMG NMR) to probe leached layer formation and secondary phase precipitation during the dissolution of forsterite at 150 C.

  4. Solid state 13C NMR of unlabeled phosphatidylcholine bilayers: spectral assignments and measurement of carbon-phosphorus dipolar couplings and 13C chemical shift anisotropies.

    PubMed Central

    Sanders, C R

    1993-01-01

    The direct measurement of 13C chemical shift anisotropies (CSA) and 31P-13C dipolar splitting in random dispersions of unlabeled L alpha-phase phosphatidylcholine (PC) has traditionally been difficult because of extreme spectral boradening due to anisotropy. In this study, mixtures of dimyristoyl phosphatidylcholine (DMPC) with three different detergents known to promote the magnetic orientation of DMPC were employed to eliminate the powder-pattern nature of signals without totally averaging out spectral anisotropy. The detergents utilized were CHAPSO, Triton X-100, and dihexanoylphosphatidylcholine (DHPC). Using such mixtures, many of the individual 13C resonances from DMPC were resolved and a number of 13C-31P dipolar couplings were evident. In addition, differing line widths were observed for the components of some dipolar doublets, suggestive of dipolar/chemical shift anisotropy (CSA) relaxation interference effects. Oriented sample resonance assignments were made by varying the CHAPSO or DHPC to DMPC ratio to systematically scale overall bilayer order towards the isotropic limit. In this manner, peaks could be identified based upon extrapolation to their isotropic positions, for which assignments have previously been made (Lee, C.W.B., and R.G. Griffin. 1989. Biophys. J. 55:355-358; Forbes, J., J. Bowers, X. Shan, L. Moran, E. Oldfield, and M.A. Moscarello. 1988. J. Chem. Soc., Faraday, Trans. 1 84:3821-3849). It was observed that the plots of CSA or dipolar coupling versus overall bilayer order obtained from DHPC and CHAPSO titrations were linear. Estimates of the intrinsic dipolar couplings and chemical shift anisotropies for pure DMPC bilayers were made by extrapolating shifts and couplings from the detergent titrations to zero detergent. Both detergent titrations led to similar "intrinsic" CSAs and dipolar couplings. Results extracted from an oriented Triton-DMPC mixture also led to similar estimates for the detergent-free DMPC shifts and couplings. The

  5. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.

    PubMed

    Huff, Laura A; Tavassol, Hadi; Esbenshade, Jennifer L; Xing, Wenting; Chiang, Yet-Ming; Gewirth, Andrew A

    2016-01-13

    Solid-state (7)Li and (13)C MAS NMR spectra of cycled graphitic Li-ion anodes demonstrate SEI compound formation upon lithiation that is followed by changes in the SEI upon delithiation. Solid-state (13)C DPMAS NMR shows changes in peaks associated with organic solvent compounds (ethylene carbonate and dimethyl carbonate, EC/DMC) upon electrochemical cycling due to the formation of and subsequent changes in the SEI compounds. Solid-state (13)C NMR spin-lattice (T1) relaxation time measurements of lithiated Li-ion anodes and reference poly(ethylene oxide) (PEO) powders, along with MALDI-TOF mass spectrometry results, indicate that large-molecular-weight polymers are formed in the SEI layers of the discharged anodes. MALDI-TOF MS and NMR spectroscopy results additionally indicate that delithiated anodes exhibit a larger number of SEI products than is found in lithiated anodes.

  6. Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H[13C]NMR.

    PubMed Central

    Hyder, F; Chase, J R; Behar, K L; Mason, G F; Siddeek, M; Rothman, D L; Shulman, R G

    1996-01-01

    NMR spectroscopy was used to test recent proposals that the additional energy required for brain activation is provided through nonoxidative glycolysis. Using localized NMR spectroscopic methods, the rate of C4-glutamate isotopic turnover from infused [1-(13)C]glucose was measured in the somatosensory cortex of rat brain both at rest and during forepaw stimulation. Analysis of the glutamate turnover data using a mathematical model of cerebral glucose metabolism showed that the tricarboxylic acid cycle flux [(V(TCA)] increased from 0.49 +/- 0.03 at rest to 1.48 +/- 0.82 micromol/g/min during stimulation (P < 0.01). The minimum fraction of C4-glutamate derived from C1-glucose was approximately 75%, and this fraction was found in both the resting and stimulated rats. Hence, the percentage increase in oxidative cerebral metabolic rate of glucose use (CMRglc) equals the percentage increases in V(TCA) and cerebral metabolic rate of oxygen consumption (CMRO2). Comparison with previous work for the same rat model, which measured total CMRglc [Ueki, M., Linn, F. & Hossman, K. A. (1988) J. Cereb. Blood Flow Metab. 8, 486-4941, indicates that oxidative CMRglc supplies the majority of energy during sustained brain activation. Images Fig. 2 PMID:8755523

  7. Acetylation of raw cotton for oil spill cleanup application: an FTIR and 13C MAS NMR spectroscopic investigation.

    PubMed

    Adebajo, Moses O; Frost, Ray L

    2004-08-01

    Fourier transform infrared (FTIR) and 13C MAS NMR spectroscopy have been used to investigate the acetylation of raw cotton samples with acetic anhydride without solvents in the presence of different amounts of 4-dimethylaminopyridine (DMAP) catalyst. This is a continuation of our previous investigation of acetylation of commercial cotton in an effort to develop hydrophobic, biodegradable, cellulosic sorbent materials for cleaning up oil spills. The FTIR data have again provided a clear evidence for successful acetylation. The NMR results further confirm the successful acetylation. The extent of acetylation was quantitatively determined using the weight percent gain (WPG) due to acetylation and by calculating the ratio R between the intensity of the acetyl C=O stretching band at 1740-1745 cm(-1) and the intensity of C-O stretching vibration of the cellulose backbone at about 1020-1040 cm(-1). The FTIR technique was found to be highly sensitive and reliable for the determination of the extent of acetylation. The level of acetylation of the raw cotton samples was found to be much higher than that of cotton fabrics and the previously studied commercial cotton. The variation of the R and WPG with reaction time, amount of DMAP catalyst and different samples of raw cotton is discussed.

  8. Acetylation of raw cotton for oil spill cleanup application: an FTIR and 13C MAS NMR spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Adebajo, Moses O.; Frost, Ray L.

    2004-08-01

    Fourier transform infrared (FTIR) and 13C MAS NMR spectroscopy have been used to investigate the acetylation of raw cotton samples with acetic anhydride without solvents in the presence of different amounts of 4-dimethylaminopyridine (DMAP) catalyst. This is a continuation of our previous investigation of acetylation of commercial cotton in an effort to develop hydrophobic, biodegradable, cellulosic sorbent materials for cleaning up oil spills. The FTIR data have again provided a clear evidence for successful acetylation. The NMR results further confirm the successful acetylation. The extent of acetylation was quantitatively determined using the weight percent gain (WPG) due to acetylation and by calculating the ratio R between the intensity of the acetyl CO stretching band at 1740-1745 cm -1 and the intensity of CO stretching vibration of the cellulose backbone at about 1020-1040 cm -1. The FTIR technique was found to be highly sensitive and reliable for the determination of the extent of acetylation. The level of acetylation of the raw cotton samples was found to be much higher than that of cotton fabrics and the previously studied commercial cotton. The variation of the R and WPG with reaction time, amount of DMAP catalyst and different samples of raw cotton is discussed.

  9. Direct Observation of Cell Wall Structure in Living Plant Tissues by Solid-State 13C NMR Spectroscopy

    PubMed Central

    Jarvis, Michael C.; Apperley, David C.

    1990-01-01

    Solid-state 13C nuclear magnetic resonance (NMR) spectra of the following intact plant tissues were recorded by the crosspolarization magic-angle spinning technique: celery (Apium graveolens L.) collenchyma; carob bean (Ceratonia siliqua L.), fenugreek (Trigonella foenum-graecum L.), and nasturtium (Tropaeolum majus L.) endosperm; and lupin (Lupinus polyphyllus Lindl.) seed cotyledons. All these tissues had thickened cell walls which allowed them to withstand the centrifugal forces of magic angle spinning and which, except in the case of lupin seeds, dominated the NMR spectra. The celery collenchyma cell walls gave spectra typical of dicot primary cell walls. The carob bean and fenugreek seed spectra were dominated by resonances from galactomannans, which showed little sign of crystalline order. Resonances from β(1,4′)-d galactan were visible in the lupin seed spectrum, but there was much interference from protein. The nasturtium seed spectrum was largely derived from a xyloglucan, in which the conformation of the glucan core chain appeared to be intermediate between the solution form and solid forms of cellulose. PMID:16667266

  10. Tautomeric ratio and prototropic equilibrium constants of tenoxicam, a 1H and 13C NMR theoretical and experimental study.

    PubMed

    Franco-Pérez, Marco; Moya-Hernández, Rosario; Rojas-Hernández, Alberto; Gutiérrez, Atilano; Gómez-Balderas, Rodolfo

    2011-11-24

    The determination of the micro-equilibrium prototropic constants is often a tough task when the tautomeric ratio favors one of the species or when the chemical exchange is not slow enough to allow the quantitative detection of the tautomeric species. There are just few experimental methods available to reveal the constants of the tautomeric micro-equilibriums; its applicability depends on the nature of the tautomeric system. A combination of experimental and quantum chemistry calculated (1)H and (13)C NMR chemical shifts is presented here to estimate the population of the species participating in the tautomeric equilibriums of the tenoxicam, an important anti-inflammatory drug. A multivariate fitting of a fraction-mol-weighted contribution model, for the NMR chemical shifts of the species in solution, was used to find the populations of the tautomers of tenoxicam. To consider and evaluate the effect of the solvent polarity on the tautomers' populations, experimental determinations were carried out in DMSO-d(6), in an equimolar DMSO-H(2)O mixture of deuterated solvents and in D(2)O. Additionally, by employing HYPNMR, it has been possible to refine the acid-base macroscopic constants of tenoxicam.

  11. A novel approach to the rapid assignment of (13)C NMR spectra of major components of vegetable oils such as avocado, mango kernel and macadamia nut oils.

    PubMed

    Retief, Liezel; McKenzie, Jean M; Koch, Klaus R

    2009-09-01

    Assignment of (13)C nuclear magnetic resonance (NMR) spectra of major fatty acid components of South African produced vegetable oils was attempted using a method in which the vegetable oil was spiked with a standard triacylglycerol. This proved to be inadequate and therefore a new rapid and potentially generic graphical linear correlation method is proposed for assignment of the (13)C NMR spectra of major fatty acid components of apricot kernel, avocado pear, grapeseed, macadamia nut, mango kernel and marula vegetable oils. In this graphical correlation method, chemical shifts of fatty acids present in a known standard triacylglycerol is plotted against the corresponding chemical shifts of fatty acids present in the vegetable oils. This new approach (under carefully defined conditions and concentrations) was found especially useful for spectrally crowded regions where significant peak overlap occurs and was validated with the well-known (13)C NMR spectrum of olive oil which has been extensively reported in the literature. In this way, a full assignment of the (13)C{1H} NMR spectra of the vegetable oils, as well as tripalmitolein was readily achieved and the resonances belonging to the palmitoleic acid component of the triacylglycerols in the case of macadamia nut and avocado pear oil resonances were also assigned for the first time in the (13)C NMR spectra of these oils. Copyright (c) 2009 John Wiley & Sons, Ltd.

  12. Mechanistic studies on the phytylation and methylation steps in bacteriochlorophyll a biosynthesis: an application of the /sup 18/O-induced isotope effect in /sup 13/C NMR

    SciTech Connect

    Emery, V.C.; Akhtar, M.

    1987-02-24

    The high-resolution /sup 13/C NMR spectrum of bacteriochlorophyll a biosynthesized from (1-/sup 13/C,1,1,4-/sup 18/O/sub 3/)-5-aminolevulinic acid by growing cells of Rhodopseudomonas sphaeroides has shown both the C-17/sup 3/ and C-13/sup 3/ resonances consist of three additional components upfield shifted from the -/sup 16/O- /sup 13/C double bond /sup 16/O resonance. By comparison with the /sup 13/C NMR spectrum obtained for phytyl acetate containing /sup 13/C and /sup 18/O selectively in the ester linkage, these components have been identified as the bridge (-/sup 18/O- /sup 13/C double bond /sup 16/O), non bridge (-/sup 16/O-/sup 13/C double bond /sup 18/O), and dual-labeled (-/sup 18/O-/sup 13/C double bond /sup 18/O) isotopomers, These results have been interpreted to suggest that both the ester bonds of bacteriochlorophyll a are produced by a carboxy-alklyl transfer process.

  13. 1H and 13C MAS NMR analysis for the role of chemically inequivalent a-N(CH3)4 and b-N(CH3)4 ions in [N(CH3)4]2CuCl4

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2014-01-01

    The spin-lattice relaxation times in the laboratory frame, T1, and in the rotating frame, T1ρ, for 1H and 13C in [N(CH3)4]2CuCl4 were measured by static NMR and magic angle spinning (MAS) NMR as functions of temperature. The intensities of the 1H and 13C signals changed near phase transition temperatures TC1 and TC3, which indicated that N(CH3)4 plays an important role in these phase transitions. It was thus apparent that the T1 and T1ρ for 1H are governed by the same molecular motions. Two inequivalent ions, a-N(CH3)4 and b-N(CH3)4, were identified by 13C cross-polarization (CP)/MAS NMR. From these results, the behaviors of these two chemically inequivalent N(CH3)4 groups in the paraelastic and ferroelastic phases are discussed.

  14. Synthesis of D-[U-{sup 13}C]Glucal, D-[U-{sup 13}C] Galactal, and L-[U-{sup 13}C]Fucose for NMR structure studies of oligosaccharides

    SciTech Connect

    Wu, R.; Unkefer, C.J.; Silks, L.A. III

    1996-12-31

    The role of carbohydrates is well recognized in a variety of important biological phenomena such as cell surface recognition. Recent advances in carbohydrate chemistry, including the development of solid phase synthesis methods, have helped to provide significant quantities of material by offering general protocols for synthesis of well-defined, pure material. However, the study of the solution structure of oligosaccharides by nuclear magnetic resonance techniques have been hampered by the lack of enriched {sup 13}C material. In an effort to help alleviate this situation, we have been interested in the construction of the title compounds from a single economical carbon source, D-[U-{sup 13}C]glucose. Details of the syntheses will be provided.

  15. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose

    PubMed Central

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  16. Structure and Metabolic-Flow Analysis of Molecular Complexity in a (13) C-Labeled Tree by 2D and 3D NMR.

    PubMed

    Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Kikuchi, Jun

    2016-05-10

    Improved signal identification for biological small molecules (BSMs) in a mixture was demonstrated by using multidimensional NMR on samples from (13) C-enriched Rhododendron japonicum (59.5 atom%) cultivated in air containing (13) C-labeled carbon dioxide for 14 weeks. The resonance assignment of 386 carbon atoms and 380 hydrogen atoms in the mixture was achieved. 42 BSMs, including eight that were unlisted in the spectral databases, were identified. Comparisons between the experimental values and the (13) C chemical shift values calculated by density functional theory supported the identifications of unlisted BSMs. Tracing the (13) C/(12) C ratio by multidimensional NMR spectra revealed faster and slower turnover ratios of BSMs involved in central metabolism and those categorized as secondary metabolites, respectively. The identification of BSMs and subsequent flow analysis provided insight into the metabolic systems of the plant.

  17. Photo-CIDNP 13C magic angle spinning NMR on bacterial reaction centres: exploring the electronic structure of the special pair and its surroundings.

    PubMed

    Matysik, J; Schulten, E; Alia; Gast, P; Raap, J; Lugtenburg, J; Hoff, A J; de Groot, H J

    2001-08-01

    Photochemically induced dynamic nuclear polarisation (photo-CIDNP) in intact bacterial reaction centres has been observed by 13C-solid state NMR under continuous illumination with white light. Strong intensity enhancement of 13C NMR signals of the aromatic rings allows probing the electronic ground state of the two BChl cofactors of the special pair at the molecular scale with atomic selectivity. Differences between the two BChl cofactors are discussed. Several aliphatic 13C atoms of cofactors, as well as 13C atoms of the imidazole ring of histidine residue(s), show nuclear-spin polarisation to the same extent as the aromatic nuclei of the cofactors. Mechanisms and applications of polarisation transfer are discussed.

  18. The combined use of quantum chemical calculations and CP/MAS NMR spectroscopy to investigate soil bound residues of labeled xenobiotics

    NASA Astrophysics Data System (ADS)

    Lewandowski, Hans; Philipp, Herbert; Meier, Robert J.; Narres, Hans-Dieter; Berns, Anne E.

    2010-05-01

    Application of solid state Nuclear Magnetic Resonance (NMR) spectroscopy to 13C- and 15N-labeled compounds is a powerful tool to study the interactions of xenobiotics with soil and its components. The type of interaction with soil components, like organic matter or the mineral phase, influences binding and release of a xenobiotic and its metabolites in soil. As such interactions to the soil matrix cause shifts in the initial positions of the NMR signals of the investigated labeled compound, NMR can be used to elucidate the binding type of bound residues. Density functional theory (DFT) calculations are excellent suited to support such NMR studies of xenobiotics. In a first step, DFT calculations were used to support the interpretation of the spectra of labeled xenobiotics, their metabolites and reaction products synthesized through reaction with model substances (representing specific functionalities of humic substances). In a second step, they allow to evaluate the influence of possible bonds on the initial chemical shift (e.g. towards higher or lower field). This can be especially helpful in the case of bonds like van-der-Waals interactions, for which it is difficult to prepare defined model substances. CP/MAS-NMR spectroscopy and DFT calculations were applied to study the interactions of several labeled xenobiotics and soil organic matter.

  19. 13C NMR analysis of 3,6-dihydro-2H-pyrans: assignment of remote stereochemistry using axial shielding effects.

    PubMed

    Bartlett, Mark J; Northcote, Peter T; Lein, Matthias; Harvey, Joanne E

    2014-06-20

    The rational analysis of (13)C NMR axial shielding effects has enabled the assignment of remote relative stereochemistry in 3,6-oxygen-substituted 3,6-dihydro-2H-pyrans. Comparison of the (13)C NMR shifts of equivalent centers in cis- and trans-substituted 3,6-dihydro-2H-pyrans allows the relative configuration at the C3 and C6 positions to be defined in diastereoisomeric mixtures. Density functional calculations were used to validate this method and assess the conformational bias present in the ring system. Ultimately, the coupling of computational chemistry with this (13)C NMR-based method provided a reliable and convenient method for stereochemical assignment of a single diastereomer. This approach provides a facile and complementary alternative to the practices previously employed for determining the relative configuration in 3,6-dihydro-2H-pyrans.

  20. Characterization of pyrogenic organic matter by 2-dimenstional HETeronucleus CORelation solid-state 13C NMR (HETCOR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2016-04-01

    technique was used for monitoring the chemical changes occurring during charring of biomass derived from model compounds, fire-affected and unaffected NOM. The 2D 13C HETCOR NMR spectrum of the fire- unaffected soils revealed that most of the carboxyl C occurs as ester or amide. Aside from cross peaks typically seen in spectra of NOM, the spectrum of the respective fire-affected counterpart shows additional signals assignable to PyOM.

  1. Methyl [13C]glucopyranosiduronic acids: effect of COOH ionization and exocyclic structure on NMR spin-couplings.

    PubMed

    Zhang, Wenhui; Hu, Xiaosong; Carmichael, Ian; Serianni, Anthony S

    2012-11-02

    Methyl α- and β-D-glucopyranuronides singly labeled with (13)C at C1-C6 were prepared from the corresponding (13)C-labeled methyl D-glucopyranosides, and multiple NMR J-couplings (J(HH), J(CH), and J(CC)) were measured in their protonated and ionized forms in aqueous ((2)H(2)O) solution. Solvated density functional theory (DFT) calculations of J-couplings in structurally related model compounds were performed to determine how well the calculated J-couplings matched the experimental values in saccharides bearing an ionizable substituent. Intraring J(HH) values in both uronide anomers, including (3)J(H4,H5), are unaffected by solution pD, and COOH ionization exerts little effect on J(CH) and J(CC) except for (1)J(C1,H1), (1)J(C4,H4), (1)J(C5,H5), (1)J(C5,C6), and (2)J(C3,C5), where changes of up to 5 Hz were observed. Some of these changes are associated with changes in bond lengths upon ionization; in general, better agreement between theory and experiment was observed for couplings less sensitive to exocyclic C-O bond conformation. Titration of (1)H and (13)C chemical shifts, and some J-couplings, yielded a COOH pK(a) of 3.0 ± 0.1 in both anomers. DFT calculations suggest that substituents proximal to the exocyclic COOH group (i.e., the C4-O4 bond) influence the activation barrier to C5-C6 bond rotation due to transient intramolecular H-bonding. A comparison of J-couplings in the glucopyranuronides to corresponding J-couplings in the glucopyranosides showed that more pervasive changes occur upon conversion from a COOH to a CH(2)OH substituent at C6 than from COOH ionization within the uronides. Twelve J-couplings are affected, with the largest being (1)J(C5,C6) (∼18 Hz larger in the uronides), followed by (2)J(C6,H5) (∼2.5 Hz more negative in the uronides).

  2. Dynamic pictures of membrane proteins in two-dimensional crystal, lipid bilayer and detergent as revealed by site-directed solid-state 13C NMR.

    PubMed

    Saitô, Hazime

    2004-11-01

    We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.

  3. Low-power broadband homonuclear dipolar recoupling without decoupling: Double-quantum 13C NMR correlations at very fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Teymoori, Gholamhasan; Pahari, Bholanath; Stevensson, Baltzar; Edén, Mattias

    2012-09-01

    We report novel symmetry-based radio-frequency (rf) pulse sequences for efficient excitation of double-quantum (2Q) coherences under very fast (>60 kHz) magic-angle spinning (MAS) conditions. The recursively generated pulse-scheme series, R22p1R22p-1(p=1,2,3,…), offers broadband 13C-13C recoupling in organic solids at a very low rf power. No proton decoupling is required. A high-order average Hamiltonian theory analysis reveals a progressively enhanced resonance-offset compensation for increasing p, as verified both by numerical simulations and 2Q filtration NMR experiments on 13C2-glycine, [2,3-13C2]alanine, and [U-13C]tyrosine at 14.1 T and 66 kHz MAS, where the pulse schemes with p⩾3 compare favorably to current state-of-the-art recoupling options.

  4. Linking phosphorus sequestration to carbon humification in wetland soils by 31P and 13C NMR spectroscopy.

    PubMed

    Hamdan, Rasha; El-Rifai, Hasan M; Cheesman, Alexander W; Turner, Benjamin L; Reddy, K Ramesh; Cooper, William T

    2012-05-01

    Phosphorus sequestration in wetland soils is a prerequisite for long-term maintenance of water quality in downstream aquatic systems, but can be compromised if phosphorus is released following changes in nutrient status or hydrological regimen. The association of phosphorus with relatively refractory natural organic matter (e.g., humic substances) might protect soil phosphorus from such changes. Here we used hydrofluoric acid (HF) pretreatment to remove phosphorus associated with metals or anionic sorption sites, allowing us to isolate a pool of phosphorus associated with the soil organic fraction. Solution (31)P and solid state (13)C NMR spectra for wetland soils were acquired before and after hydrofluoric acid pretreatment to assess quantitatively and qualitatively the changes in phosphorus and carbon functional groups. Organic phosphorus was largely unaffected by HF treatment in soils dominated by refractory alkyl and aromatic carbon groups, indicating association of organic phosphorus with stable, humified soil organic matter. Conversely, a considerable decrease in organic phosphorus following HF pretreatment was detected in soils where O-alkyl groups represented the major fraction of the soil carbon. These correlations suggest that HF treatment can be used as a method to distinguish phosphorus fractions that are bound to the inorganic soil components from those fractions that are stabilized by incorporation into soil organic matter. © 2012 American Chemical Society

  5. 13C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1

    PubMed Central

    Abraham, Sherwin J.; Cheng, Ricky C.; Chew, Thomas A.; Khantwal, Chandra M.; Liu, Corey W.; Gong, Shimei; Nakamoto, Robert K.; Maduke, Merritt

    2015-01-01

    CLC transporters catalyze the exchange of Cl- for H+ across cellular membranes. To do so, they must couple Cl- and H+ binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways. Therefore, our understanding of whether and how global protein dynamics contribute to the exchange mechanism has been severely limited. To overcome the limitations of crystallography, we used solution-state 13C-methyl NMR with labels on methionine, lysine, and engineered cysteine residues to investigate substrate (H+) dependent conformational change outside the restraints of crystallization. We show that methyl labels in several regions report H+-dependent spectral changes. We identify one of these regions as Helix R, a helix that extends from the center of the protein, where it forms the part of the inner gate to the Cl--permeation pathway, to the extracellular solution. The H+-dependent spectral change does not occur when a label is positioned just beyond Helix R, on the unstructured C-terminus of the protein. Together, the results suggest that H+ binding is mechanistically coupled to closing of the intracellular access-pathway for Cl-. PMID:25631353

  6. Structure and equilibria of Ca 2+-complexes of glucose and sorbitol from multinuclear ( 1H, 13C and 43Ca) NMR measurements supplemented with molecular modelling calculations

    NASA Astrophysics Data System (ADS)

    Pallagi, A.; Dudás, Cs.; Csendes, Z.; Forgó, P.; Pálinkó, I.; Sipos, P.

    2011-05-01

    Ca 2+-complexation of D-glucose and D-sorbitol have been investigated with the aid of multinuclear ( 1H, 13C and 43Ca) NMR spectroscopy and ab initio quantum chemical calculations. Formation constants of the forming 1:1 complexes have been estimated from one-dimensional 13C NMR spectra obtained at constant ionic strength (1 M NaCl). Binding sites were identified from 2D 1H- 43Ca NMR spectra. 2D NMR measurements and ab initio calculations indicated that Ca 2+ ions were bound in a tridentate manner via the glycosidic OH, the ethereal oxygen in the ring and the OH on the terminal carbon for the α- and β-anomers of glucose and for sorbitol simultaneous binding of four hydroxide moieties (C1, C2, C4 and C6) was suggested.

  7. Effects of insulin on perfused liver from streptozotocin-diabetic and untreated rats: /sup 13/C NMR assay of pyruvate kinase flux

    SciTech Connect

    Cohen, S.M.

    1987-01-27

    The effects of insulin in vitro on perfused liver from streptozotocin-diabetic rats and their untreated littermates during gluconeogenesis from either (3-/sup 13/C)alanine + ethanol or (2-/sup 13/C)pyruvate + NH/sub 4/Cl + ethanol were studied by /sup 13/C NMR. A /sup 13/C NMR determination of the rate of pyruvate kinase flux under steady-state conditions of active gluconeogenesis was developed; this assay includes a check on the reuse of recycled pyruvate. The preparations studied provided gradations of pyruvate kinase flux within the confines of the assay's requirement of active gluconeogenesis. By this determination, the rate of pyruvate kinase flux was 0.74 +/- 0.04 of the gluconeogenic rate in liver from 24-h-fasted controls; in liver from 12-h fasted controls, relative pyruvate kinase flux increased to 1.0 +/- 0.2. In diabetic liver, this flux was undetectable by the authors NMR method. Insulin's hepatic influence in vitro was greatest in the streptozotocin model of type 1 diabetes: upon treatment of diabetic liver with 7 nM insulin in vitro, a partial reversal of many of the differences noted between diabetic and control liver was demonstrated by /sup 13/C NMR. A major effect of insulin in vitro upon diabetic liver was the induction of a large increase in the rate of pyruvate kinase flux, bringing relative and absolute fluxes up to the levels measured in 24-h-fasted controls. By way of comparison, the effects of ischemia on diabetic liver were studied by /sup 13/C NMR to test whether changes in allosteric effectors under these conditions could also increase pyruvate kinase flux. A large increase in this activity was demonstrated in ischemic diabetic liver.

  8. Heteronuclear three-dimensional NMR spectroscopy. Natural abundance sup 13 C chemical shift editing of sup 1 H- sup 1 H COSY spectra

    SciTech Connect

    Fesik, S.W.; Gampe, R.T. Jr.; Zuiderweg, E.R.P. )

    1989-01-18

    It has been demonstrated that heteronuclear 3D NMR spectroscopy can be effectively applied to small molecules with {sup 13}C at natural abundance. A 78mM solution of the aminoglycoside, kanamycin A was used for this experiment. The heteronuclear 3D NMR spectroscopy is shown to be a useful method for resolving spectral overlap in all frequency domains. 10 refs., 2 figs.

  9. Ab initio study of {sup 13}C NMR chemical shifts for the chromophores of rhodopsin and bacteriorhodopsin. 2. Comprehensive analysis of the {sup 13}C chemical shifts of protonated all-trans-retinylidene Schiff base

    SciTech Connect

    Sakurai, Minoru; Wada, Mitsuhito; Inoue, Yoshio; Tamura, Yusuke; Watanabe, Yoichi

    1996-02-01

    Theoretical analysis was performed for the {sup 13}C chemical shifts of the retinal chromophore in bacteriorhodopsin (bR) by means of ab initio NMR shielding calculation, based on the localized orbital/ local origin method. In order to comprehensively investigate the correlation between the {sup 13}C chemical shieldings of the unsaturated carbons and physicochemical perturbations relating to the spectral tuning of bacteriorhodopsin, the following three factors are taken into account in the present calculation: (1) change in strength of the hydrogen bonding between protonated retinylidene Schiff base and its counterion, (2) conformational changes about single bonds of the conjugated chain, and (3) electrostatic interactions between the Schiff base and electric dipoles. On the basis of these calculations, we successfully find a molecular model for which the shielding calculation almost completely reproduces the observed chemical shift data for the chromophore of bR. 47 refs., 13 figs.

  10. Complete (1)H and (13)C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper.

    PubMed

    Roslund, Mattias U; Säwén, Elin; Landström, Jens; Rönnols, Jerk; Jonsson, K Hanna M; Lundborg, Magnus; Svensson, Mona V; Widmalm, Göran

    2011-08-16

    The computer program casper uses (1)H and (13)C NMR chemical shift data of mono- to trisaccharides for the prediction of chemical shifts of oligo- and polysaccharides. In order to improve the quality of these predictions the (1)H and (13)C, as well as (31)P when applicable, NMR chemical shifts of 30 mono-, di-, and trisaccharides were assigned. The reducing sugars gave two distinct sets of NMR resonances due to the α- and β-anomeric forms. In total 35 (1)H and (13)C NMR chemical shift data sets were obtained from the oligosaccharides. One- and two-dimensional NMR experiments were used for the chemical shift assignments and special techniques were employed in some cases such as 2D (1)H,(13)C-HSQC Hadamard Transform methodology which was acquired approximately 45 times faster than a regular t(1) incremented (1)H,(13)C-HSQC experiment and a 1D (1)H,(1)H-CSSF-TOCSY experiment which was able to distinguish spin-systems in which the target protons were only 3.3Hz apart. The (1)H NMR chemical shifts were subsequently refined using total line-shape analysis with the PERCH NMR software. The acquired NMR data were then utilized in the casper program (http://www.casper.organ.su.se/casper/) for NMR chemical shift predictions of the O-antigen polysaccharides from Klebsiella O5, Shigella flexneri serotype X, and Salmonella arizonae O62. The data were compared to experimental data of the polysaccharides from the two former strains and the lipopolysaccharide of the latter strain showing excellent agreement between predicted and experimental (1)H and (13)C NMR chemical shifts.

  11. Effect of Oxygen Concentration on Viability and Metabolism in a Fluidized-Bed Bioartificial Liver Using 31P and 13C NMR Spectroscopy

    PubMed Central

    Jeffries, Rex E.; Gamcsik, Michael P.; Keshari, Kayvan R.; Pediaditakis, Peter; Tikunov, Andrey P.; Young, Gregory B.; Lee, Haakil; Watkins, Paul B.

    2013-01-01

    Many oxygen mass-transfer modeling studies have been performed for various bioartificial liver (BAL) encapsulation types; yet, to our knowledge, there is no experimental study that directly and noninvasively measures viability and metabolism as a function of time and oxygen concentration. We report the effect of oxygen concentration on viability and metabolism in a fluidized-bed NMR-compatible BAL using in vivo 31P and 13C NMR spectroscopy, respectively, by monitoring nucleotide triphosphate (NTP) and 13C-labeled nutrient metabolites, respectively. Fluidized-bed bioreactors eliminate the potential channeling that occurs with packed-bed bioreactors and serve as an ideal experimental model for homogeneous oxygen distribution. Hepatocytes were electrostatically encapsulated in alginate (avg. diameter, 500 μm; 3.5×107 cells/mL) and perfused at 3 mL/min in a 9-cm (inner diameter) cylindrical glass NMR tube. Four oxygen treatments were tested and validated by an in-line oxygen electrode: (1) 95:5 oxygen:carbon dioxide (carbogen), (2) 75:20:5 nitrogen:oxygen:carbon dioxide, (3) 60:35:5 nitrogen:oxygen:carbon dioxide, and (4) 45:50:5 nitrogen:oxygen:carbon dioxide. With 20% oxygen, β-NTP steadily decreased until it was no longer detected at 11 h. The 35%, 50%, and 95% oxygen treatments resulted in steady β-NTP levels throughout the 28-h experimental period. For the 50% and 95% oxygen treatment, a 13C NMR time course (∼5 h) revealed 2-13C-glycine and 2-13C-glucose to be incorporated into [2-13C-glycyl]glutathione (GSH) and 2-13C-lactate, respectively, with 95% having a lower rate of lactate formation. 31P and 13C NMR spectroscopy is a noninvasive method for determining viability and metabolic rates. Modifying tissue-engineered devices to be NMR compatible is a relatively easy and inexpensive process depending on the bioreactor shape. PMID:22835003

  12. 1H-13C HSQC NMR spectroscopy for estimating procyanidin/prodelphinidin and cis/trans flavan-3-ol ratios of condensed tannin samples: correlation with thiolysis

    USDA-ARS?s Scientific Manuscript database

    Studies with a diverse array of 22 condensed tannin (CT) fractions from 9 plant species demonstrated that procyanidin/prodelphinidin (PC/PD) and cis/trans flavan-3-ol ratios can be appraised by 1H-13C HSQC NMR. The method was developed from fractions containing 44 to ~100% CT, PC/PD ratios ranging f...

  13. Estimation of procyanidin/prodelphinidin and cis/trans flavanol ratios of condensed tannin fractions by 1H-13C HSQC NMR spectroscopy: Correlation with thiolysis

    USDA-ARS?s Scientific Manuscript database

    Integration of cross-peak contours of H/C-2’,6’ signals from prodelphinidin (PD) and of H/C-6’ signals from procyanidin (PC) units in 1H-13C HSQC nuclear magnetic resonance (NMR) spectra of condensed tannins yielded nuclei-adjusted PC/PD estimates that were highly correlated with PC/PD ratios obtain...

  14. Isolation and 1H/13C-NMR Studies on 19,20-Dihydrocondylocarpine: An Alkaloid from the Leaves of Ervatamia coronaria and Alstonia scholaris.

    PubMed

    Atta-ur-Rahman; Alvi, K A; Muzaffar, A

    1986-08-01

    Studies on the alkaloidal constituents of the leaves of Ervatamia coronaria Stapf and Alstonia scholaris have resulted in the isolation of (20 S)-19,20-dihydrocondylocarpine which has not been previously reported from these plants. The stereochemistry at C-20 was established with the help of n. O. e. difference measurements. (13)C-NMR assignments have been made by polarisation transfer techniques.

  15. A Discovery-Based Hydrochlorination of Carvone Utilizing a Guided-Inquiry Approach to Determine the Product Structure from [superscript 13]C NMR Spectra

    ERIC Educational Resources Information Center

    Pelter, Michael W.; Walker, Natalie M.

    2012-01-01

    This experiment describes a discovery-based method for the regio- and stereoselective hydrochlorination of carvone, appropriate for a 3-h second-semester organic chemistry laboratory. The product is identified through interpretation of the [superscript 13]C NMR and DEPT spectra are obtained on an Anasazi EFT-60 at 15 MHz as neat samples. A…

  16. A Discovery-Based Hydrochlorination of Carvone Utilizing a Guided-Inquiry Approach to Determine the Product Structure from [superscript 13]C NMR Spectra

    ERIC Educational Resources Information Center

    Pelter, Michael W.; Walker, Natalie M.

    2012-01-01

    This experiment describes a discovery-based method for the regio- and stereoselective hydrochlorination of carvone, appropriate for a 3-h second-semester organic chemistry laboratory. The product is identified through interpretation of the [superscript 13]C NMR and DEPT spectra are obtained on an Anasazi EFT-60 at 15 MHz as neat samples. A…

  17. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  18. Characterization of organic matter in sediment cores of the Todos os Santos Bay, Bahia, Brazil, by elemental analysis and 13C NMR.

    PubMed

    Costa, A B; Novotny, E H; Bloise, A C; de Azevedo, E R; Bonagamba, T J; Zucchi, M R; Santos, V L C S; Azevedo, A E G

    2011-08-01

    The impact of human activity on the sediments of Todos os Santos Bay in Brazil was evaluated by elemental analysis and 13C Nuclear Magnetic Resonance (13C NMR). This article reports a study of six sediment cores collected at different depths and regions of Todos os Santos Bay. The elemental profiles of cores collected on the eastern side of Frades Island suggest an abrupt change in the sedimentation regime. Autoregressive Integrated Moving Average (ARIMA) analysis corroborates this result. The range of depths of the cores corresponds to about 50 years ago, coinciding with the implantation of major onshore industrial projects in the region. Principal Component Analysis of the 13C NMR spectra clearly differentiates sediment samples closer to the Subaé estuary, which have high contents of terrestrial organic matter, from those closer to a local oil refinery. The results presented in this article illustrate several important aspects of environmental impact of human activity on this bay.

  19. A study of the molecular conformations and the vibrational, 1H and 13C NMR spectra of the anticancer drug tamoxifen and triphenylethylene

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Khan, Ibrahim

    2016-08-01

    The structural stability and the vibrational spectra of the anticancer drug tamoxifen and triphenylethylene were investigated by the DFT B3LYP/6-311G (d,p) calculations. Tamoxifen and triphenylethylene were predicted to exist predominantly as non-planar structures. The vibrational frequencies and the 1H and 13C NMR chemical shifts of the low energy structures of tamoxifen and triphenylethylene were computed at the DFT B3LYP level of theory. Complete vibrational assignments were provided by combined theoretical and experimental data of tamoxifen and triphenylethylene. The 1H and 13C NMR spectra of both molecules were interpreted by experimental and DFT calculated chemical shifts of the two molecules. The RMSD between experimental and theoretical 1H and 13C chemical shifts for tamoxifen is 0.29 and 4.72 ppm, whereas for triphenylethylene, it is 0.16 and 2.70 ppm, respectively.

  20. Aqueous dissociation constants of bile pigments and sparingly soluble carboxylic acids by 13C NMR in aqueous dimethyl sulfoxide: effects of hydrogen bonding.

    PubMed

    Trull, F R; Boiadjiev, S; Lightner, D A; McDonagh, A F

    1997-06-01

    pKas for the acid dissociation of the carboxyl groups of bilirubin in water have been reported recently to be 8.1-8.4, or higher. These high values were attributed to intramolecular hydrogen bonding. They have led to suggestions that monoanions of bilirubin predominate at physiologic pH and are the species transported most readily into hepatocytes by carriers. Such high aqueous pKas are inconsistent with recent 13C nuclear magnetic resonance (NMR) measurements on mesobilirubin XIII alpha, done on aqueous solutions containing dimethyl sulfoxide. To investigate whether the presence of dimethyl sulfoxide leads to unreliable values when using 13C NMR spectroscopy to determine pKas of carboxylic acids that can undergo intramolecular hydrogen bonding, we measured the pKas of 13C-labeled fumaric, maleic, and phthalic acids in solutions containing up to 27 vol% dimethyl sulfoxide. In addition, we used 13C NMR to estimate the pKas of 2,2'-methylenebis[5-carbomethoxy-4-methylpyrrole-3-[1-13C] propanoic acid], a model for the two central rings of bilirubin. Our results show that 13C NMR of aqueous dimethyl sulfoxide solutions can be used with confidence to measure pKas of intramolecularly hydrogen-bonded carboxylic acids. They support our previous estimates for the pKas of bilirubin and confirm that intramolecular hydrogen bonding has little effect on the acidity of bilirubins in water. Together with previous studies and chemical arguments they strongly suggest that reported aqueous pKas of > 8, or even > 6, for the carboxyl groups of bilirubin are incorrect and that arguments used to rationalize them are questionable.

  1. Characterization of the wound-induced material in Citrus paradisi fruit peel by carbon-13 CP-MAS solid state NMR spectroscopy.

    PubMed

    Lai, Simona; Lai, Adolfo; Stange, Richard R; McCollum, T Greg; Schirra, Mario

    2003-05-01

    Grapefruit, Citrus paradisi, were injured, inoculated with Penicillium digitatum and incubated under conditions favourable for the accumulation of defence related material. Histochemical examination revealed that tissues adjacent to inoculated injuries contained phloroglucinol-HCl (PG-HCl) reactive material. Solvent washed cell wall preparations of intact and injured-inoculated peel were further purified using a mixture of cell wall degrading enzymes. Samples from injured inoculated tissue contained PG-HCl reactive globular material in addition to the fragments of xylem and cuticle found in controls. The principal chemical moieties of the material that accumulates in grapefruit injuries during wound-healing were studied by solid state 13C cross-polarization magic angle spinning NMR. A complete assignment of the NMR signals was made. From the analysis evidence was found that cellulose and hemicellulose are the biopolymers present in the intact peel samples, in addition, relevant quantities of cutin were found in the residues of enzyme digest. The NMR difference spectrum intact- wounded peels showed resonances which were attributed to all major functional groups of the aromatic-aliphatic suberin polyester of new material produced by the wounds. Information on the latter polyester was obtained by analyzing the T(1)rho (1H) relaxation.

  2. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene: Characterization of Products by 13C and 15N NMR

    USGS Publications Warehouse

    Thorn, K.A.; Thorne, P.G.; Cox, L.G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp 3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp 2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  3. Computational identification of a phospholipidosis toxicophore using (13)C and (15)N NMR-distance based fingerprints.

    PubMed

    Slavov, Svetoslav H; Wilkes, Jon G; Buzatu, Dan A; Kruhlak, Naomi L; Willard, James M; Hanig, Joseph P; Beger, Richard D

    2014-12-01

    Modified 3D-SDAR fingerprints combining (13)C and (15)N NMR chemical shifts augmented with inter-atomic distances were used to model the potential of chemicals to induce phospholipidosis (PLD). A curated dataset of 328 compounds (some of which were cationic amphiphilic drugs) was used to generate 3D-QSDAR models based on tessellations of the 3D-SDAR space with grids of different density. Composite PLS models averaging the aggregated predictions from 100 fully randomized individual models were generated. On each of the 100 runs, the activities of an external blind test set comprised of 294 proprietary chemicals were predicted and averaged to provide composite estimates of their PLD-inducing potentials (PLD+ if PLD is observed, otherwise PLD-). The best performing 3D-QSDAR model utilized a grid with a density of 8ppm×8ppm in the C-C region, 8ppm×20ppm in the C-N region and 20ppm×20ppm in the N-N region. The classification predictive performance parameters of this model evaluated on the basis of the external test set were as follows: accuracy=0.70, sensitivity=0.73 and specificity=0.66. A projection of the most frequently occurring bins on the standard coordinate space suggested a toxicophore composed of an aromatic ring with a centroid 3.5-7.5Å distant from an amino-group. The presence of a second aromatic ring separated by a 4-5Å spacer from the first ring and at a distance of between 5.5Å and 7Å from the amino-group was also associated with a PLD+ effect. These models provide comparable predictive performance to previously reported models for PLD with the added benefit of being based entirely on non-confidential, publicly available training data and with good predictive performance when tested in a rigorous, external validation exercise.

  4. 13C-detected NMR experiments for measuring chemical shifts and coupling constants in nucleic acid bases.

    PubMed

    Fiala, Radovan; Sklenár, Vladimír

    2007-10-01

    The paper presents a set of two-dimensional experiments that utilize direct (13)C detection to provide proton-carbon, carbon-carbon and carbon-nitrogen correlations in the bases of nucleic acids. The set includes a (13)C-detected proton-carbon correlation experiment for the measurement of (13)C-(13)C couplings, the CaCb experiment for correlating two quaternary carbons, the HCaCb experiment for the (13)C-(13)C correlations in cases where one of the carbons has a proton attached, the HCC-TOCSY experiment for correlating a proton with a network of coupled carbons, and a (13)C-detected (13)C-(15)N correlation experiment for detecting the nitrogen nuclei that cannot be detected via protons. The IPAP procedure is used for extracting the carbon-carbon couplings and/or carbon decoupling in the direct dimension, while the S(3)E procedure is preferred in the indirect dimension of the carbon-nitrogen experiment to obtain the value of the coupling constant. The experiments supply accurate values of (13)C and (15)N chemical shifts and carbon-carbon and carbon-nitrogen coupling constants. These values can help to reveal structural features of nucleic acids either directly or via induced changes when the sample is dissolved in oriented media.

  5. Properties of sesame oil by detailed 1H and 13C NMR assignments before and after ozonation and their correlation with iodine value, peroxide value, and viscosity measurements.

    PubMed

    Sega, Alessandro; Zanardi, Iacopo; Chiasserini, Luisa; Gabbrielli, Alessandro; Bocci, Velio; Travagli, Valter

    2010-02-01

    Gaseous ozone chemically reacts with unsaturated triglyceride substrates leading to ozonated derivatives with a wide potential applications, ranging from the petrochemical to the pharmaceutical industry. To date, an ultimate understanding of the ozone reactivity during sesame oil ozonation process as well as detailed (1)H and (13)C NMR assignments are lacking. A practical advantage of NMR is that a single NMR sample measurement can explain many issues, while similar analysis by traditional methods may require several independent and time-consuming measurements. Moreover, significant relationships among NMR spectra and both conventional chemical analysis and viscosity measurements have been found. Eventually, NMR could play an important role for quality attributes of ozonated oil derivatives.

  6. Solid-state (13)C NMR and synchrotron SAXS/WAXS studies of uniaxially-oriented polyethylene.

    PubMed

    Afeworki, Mobae; Brant, Pat; Lustiger, Arnold; Norman, Alexander

    2015-11-01

    We report solid-state (13)C NMR and synchrotron wide-and small-angle X-ray scattering experiments (WAXS, SAXS) on metallocene linear low density polyethylene films (e.g., Exceed™ 1018 mLLDPE; nominally 1MI, 0.918 density ethylene-hexene metallocene copolymer) as a function of uniaxial draw ratio, λ. Combined, these experiments provide an unambiguous, quantitative molecular view of the orientation of both the crystalline and amorphous phases in the samples as a function of draw. Together with previously reported differential scanning calorimetry (DSC), gas transport measurements, transmission electron microscopy (TEM), optical birefringence, small angle X-ray scattering (SAXS) as well as other characterization techniques, this study of the state of orientation in both phases provides insight concerning the development of unusually high barrier properties of the most oriented samples (λ=10). In this work, static (non-spinning) solid-state NMR measurements indicate that in the drawn Exceed(TM) films both the crystalline and amorphous regions are highly oriented. In particular, chemical shift data show the amorphous phase is comprised increasingly of so-called "taut tie chains" (or tie chains under any state of tautness) in the mLLDPE with increasing draw ratio - the resonance lines associated with the amorphous phase shift to where the crystalline peaks are observed. In the sample with highest total draw (λ=10), virtually all of the chains in the non-crystalline region have responded and aligned in the machine (draw) direction. Both monoclinic and orthorhombic crystalline peaks are observed in high-resolution, solid-state magic-angle spinning (MAS) NMR measurements of the oriented PE films. The orientation is comparable to that obtained for ultra-high molecular weight HDPE fibers described as "ultra-oriented" in the literature. Furthermore, the presence of a monoclinic peak in cold-drawn samples suggests that there is an appreciable internal stress associated

  7. NMR 13C-isotopic enrichment experiments to study carbon-partitioning into organic solutes in the red alga Grateloupia doryphora.

    PubMed

    Simon-Colin, Christelle; Kervarec, Nelly; Pichon, Roger; Deslandes, Eric

    2004-01-01

    The red alga Grateloupia doryphora Montagne (Howe) (Cryptonemiales, Halymeniaceae) was used as a model to investigate the effects of changes in seawater salinity on the intracellular low-molecular-weight organic compounds. Carbon-partitioning into major organic solutes was followed by 13C nuclear magnetic resonance (NMR) spectroscopy on living algae incubated in NaH13CO3-enriched seawater, and by high resolution 1H and 13C NMR experiments performed on 13C-enriched algal extracts. NMR and high performance liquid chromatography (HPLC) analyses both demonstrated that floridoside level was the most affected by changes in salinity: it rose under the hypersaline treatment and decreased under hyposaline one. Moreover, at low salinity, the high labeling of floridoside (45.3% 13C-enrichment for C1) together with its low concentrations both provided evidence of great increase in the de novo biosynthesis and turnover rate. Our experiments also demonstrated a high incorporation of photosynthetic carbon into amino acids, especially glutamate, under hypoosmotic conditions. On the other hand, isethionic acid and N-methyl-methionine sulfoxide were only partly labeled, which indicates they do not directly derive from carbon photoassimilation. In algae exposed to high salinity, elevated concentrations of floridoside coupled to a low labeling (9.4%) were observed. These results suggest that hyperosmotic conditions stimulated floridoside biosynthesis from endogen storage products rather than from carbon assimilation through photosynthesis.

  8. In Situ 13C NMR at Elevated-Pressures and -Temperatures Investigating the Conversion of CO2 to Magnesium and Calcium Carbonate Minerals

    NASA Astrophysics Data System (ADS)

    Surface, J. A.; Conradi, M. S.; Skemer, P. A.; Hayes, S. E.

    2013-12-01

    We have constructed specialized NMR hardware to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies of unmixed heterogeneous mixtures of solids, liquids, gases, and supercritical fluids. Specifically, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine efficacy of carbonate formation in various geological reservoirs. Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals. When CO2 reacts with the calcium or magnesium in a mineral or rock sample, the 13C chemical shift, linewidth, lineshape, and relaxation times change dramatically. This change can be monitored in situ and provide instantaneous and continuous characterization that maps the chemistry that is taking place. For example, on the pathway to MgCO3 formation, there are a number of phases of Mg(OH)x(H2O)y(CO3)z that are apparent via NMR spectroscopy. We will demonstrate that NMR can be used for quantitative characterization of multiple metastable mineral phases in pure forms and in mixtures. Results are confirmed via powder XRD and Raman spectroscopy of aquo- hydro- carbonato- magnesium species and calcium carbonate species. We also have monitored the 13C spectroscopy to analyze the phase of CO2 (liquid, supercritical, or gas) and its conversion into other forms, such as bicarbonate and carbonate species, providing a "window" into the in situ pH of the reacting system. Reference: 'In Situ

  9. A 1H, 13C and 15N NMR study in solution and in the solid state of six N-substituted pyrazoles and indazoles.

    PubMed

    Claramunt, Rosa M; Santa María, M Dolores; Sanz, Dionisia; Alkorta, Ibon; Elguero, José

    2006-05-01

    Three N-substituted pyrazoles and three N-substituted indazoles [1-(4-nitrophenyl)-3,5-dimethylpyrazole (1), 1-(2,4-dinitrophenyl)-3,5-dimethylpyrazole (2), 1-tosyl-pyrazole (3), 1-p-chlorobenzoylindazole (4), 1-tosylinda-zole (5) and 2-(2-hydroxy-2-phenylethyl)-indazole (6)] have been studied by NMR spectroscopy in solution (1H, 13C, 15N) and in the solid state (13C, 15N). The chemical shifts have been compared with GIAO/DFT calculated absolute shieldings. Some discrepancies have been analyzed.

  10. 13C and 15N NMR studies of iron-bound cyanides of heme proteins and related model complexes: sensitive probe for detecting hydrogen-bonding interactions at the proximal and distal sides.

    PubMed

    Fujii, Hiroshi; Yoshida, Tadashi

    2006-08-21

    Studies of the 13C and 15N NMR paramagnetic shifts of the iron-bound cyanides in the ferric cyanide forms of various heme proteins containing the proximal histidine and related model complexes are reported. The paramagnetic shifts of the 13C and 15N NMR signals of the iron-bound cyanide are not significantly affected by the substitution of the porphyrin side chains. On the other hand, the paramagnetic shifts of both the 13C and 15N NMR signals decrease with an increase in the donor effect of the proximal ligand, and the 13C NMR signal is more sensitive to a modification of the donor effect of the proximal ligand than the 15N NMR signal. With the tilt of the iron-imidazole bond, the paramagnetic shift of the 13C NMR signal increases, whereas that of the 15N NMR signal decreases. The hydrogen-bonding interaction of the iron-bound cyanide with a solvent decreases the paramagnetic shift of both 13C and 15N NMR signals, and the effect is more pronounced for the 15N NMR signal. Data on the 13C and 15N NMR signals of iron-bound cyanide for various heme proteins are also reported and analyzed in detail. Substantial differences in the 13C and 15N NMR shifts for the heme proteins can be explained on the basis of the results for the model complexes and structures around the heme in the heme proteins. The findings herein show that the paramagnetic shift of the 13C NMR signal of the iron-bound cyanide is a good probe to estimate the donor effect of the proximal imidazole and that the ratio of 15N/13C NMR shifts allows the hydrogen-bonding interaction on the distal side to be estimated.

  11. In Situ Solid-State (13)C NMR Observation of Pore Mouth Catalysis in Etherification of β-Citronellene with Ethanol on Zeolite Beta.

    PubMed

    Radhakrishnan, Sambhu; Goossens, Pieter-Jan; Magusin, Pieter C M M; Sree, Sreeprasanth Pulinthanathu; Detavernier, Christophe; Breynaert, Eric; Martineau, Charlotte; Taulelle, Francis; Martens, Johan A

    2016-03-02

    The reaction mechanism of etherification of β-citronellene with ethanol in liquid phase over acid zeolite beta is revealed by in situ solid-state (13)C NMR spectroscopy. Comparison of (13)C Hahn-echo and (1)H-(13)C cross-polarization NMR characteristics is used to discriminate between molecules freely moving in liquid phase outside the zeolite and molecules adsorbed inside zeolite pores and in pore mouths. In the absence of ethanol, β-citronellene molecules enter zeolite pores and react to isomers. In the presence of ethanol, the concentration of β-citronellene inside zeolite pores is very low because of preferential adsorption of ethanol. The etherification reaction proceeds by adsorption of β-citronellene molecule from the external liquid phase in a pore opening where it reacts with ethanol from inside the pore. By competitive adsorption, ethanol prevents the undesired side reaction of β-citronellene isomerization inside zeolite pores. β-citronellene etherification on zeolite beta is suppressed by bulky base molecules (2,4,6-collidine and 2,6-ditertiarybutylpyridine) that do not enter the zeolite pores confirming the involvement of easily accessible acid sites in pore openings. The use of in situ solid-state NMR to probe the transition from intracrystalline catalysis to pore mouth catalysis depending on reaction conditions is demonstrated for the first time. The study further highlights the potential of this NMR approach for investigations of adsorption of multicomponent mixtures in general.

  12. The 'Nuts and Bolts' of 13C NMR Spectroscopy at Elevated-Pressures and -Temperatures for Monitoring In Situ CO2 Conversion to Metal Carbonates

    NASA Astrophysics Data System (ADS)

    Moore, J. K.; Surface, J. A.; Skemer, P. A.; Conradi, M. S.; Hayes, S. E.

    2013-12-01

    We will present details of newly-constructed specialized NMR designed to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies on unmixed slurries of minerals in the presence of CO2 or other gases. This static probe is capable of achieving 300 bar, 300C conditions, and it is designed to spectroscopically examine 13C signals in mixtures of solids, liquids, gases, and supercritical fluids. Ultimately, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. We will give details of the hardware setup, and we will show a variety of static in situ NMR, as well as ex situ 'magic-angle spinning' NMR to show the analyses that are possible of minerals in pure form and in mixtures. In addition, specific NMR pulse sequences, techniques, and modeling will be described in detail. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine conditions that affect the efficacy of carbonate formation in various targeted geological reservoirs (i.e., peroditite, or others). Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals, including metastable intermediates (such as hydromagnesite, or dypingite in the case of magnesium carbonate species, or vaterite in the case of calcium carbonate species). Such species are distinguishable from a combination of the 13C isotropic chemical shift, the static 13C lineshape, and changes in spin-lattice (T1) relaxation times. We will demonstrate that NMR can be used for quantitative

  13. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state (13)C NMR and solution (31)P NMR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Meng, Wei; He, Zhongqi; Feng, Weiying; Zhang, Chen; Giesy, John P

    2016-02-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state (13)C NMR and solution (31)P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes.

  14. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state 13C NMR and solution 31P NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    LIU, S. S.; Zhu, Y.; Meng, W.; Wu, F.

    2016-12-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state 13C NMR and solution 31P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes.

  15. Positional Enrichment by Proton Analysis (PEPA): A One‐Dimensional 1H‐NMR Approach for 13C Stable Isotope Tracer Studies in Metabolomics

    PubMed Central

    Rodríguez, Miguel A.; Aivio, Suvi; Capellades, Jordi; Gómez, Josep; Canyellas, Nicolau; Stracker, Travis H.

    2017-01-01

    Abstract A novel metabolomics approach for NMR‐based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of 13C‐satellite peaks using 1D‐1H‐NMR spectra. In comparison with 13C‐NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of 13C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high‐throughput of 1H‐NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D‐NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. PMID:28220994

  16. Geometries and tautomerism of OHN hydrogen bonds in aprotic solution probed by H/D isotope effects on (13)C NMR chemical shifts.

    PubMed

    Tolstoy, Peter M; Guo, Jing; Koeppe, Benjamin; Golubev, Nikolai S; Denisov, Gleb S; Smirnov, Sergei N; Limbach, Hans-Heinrich

    2010-10-14

    The (1)H and (13)C NMR spectra of 17 OHN hydrogen-bonded complexes formed by CH(3)(13)COOH(D) with 14 substituted pyridines, 2 amines, and N-methylimidazole have been measured in the temperature region between 110 and 150 K using CDF(3)/CDF(2)Cl mixture as solvent. The slow proton and hydrogen bond exchange regime was reached, and the H/D isotope effects on the (13)C chemical shifts of the carboxyl group were measured. In combination with the analysis of the corresponding (1)H chemical shifts, it was possible to distinguish between OHN hydrogen bonds exhibiting a single proton position and those exhibiting a fast proton tautomerism between molecular and zwitterionic forms. Using H-bond correlations, we relate the H/D isotope effects on the (13)C chemical shifts of the carboxyl group with the OHN hydrogen bond geometries.

  17. Direct observation of cell wall glucans in whole cells of Saccharomyces cerevisiae by magic-angle spinning 13C-NMR.

    PubMed

    Krainer, E; Stark, R E; Naider, F; Alagramam, K; Becker, J M

    1994-12-01

    Intact cells of Saccharomyces cerevisiae were examined as an aqueous paste by 13C-nmr spectroscopy with direct polarization and magic-angle spinning. The spectra obtained were highly resolved, showing numerous resonances in the 60-105 ppm range that were assigned to carbons of a liquid-like domain of the cell wall glucan. Assignments were confirmed by running the spectrum of S. cerevisiae in which the cell wall glucans were labeled with [13C] by feeding the cell [13C]galactose. The spectra indicate that the glucan in the cell wall of intact S. cerevisiae assumes a helical conformation and suggest that strain 17A fed with galactose preferentially incorporates the resulting glucose into beta (1-->3)-linkages.

  18. Solute-solvent interactions of acid-1,4-dioxane mixtures-By dielectric, FTIR, UV-vis and 13C NMR spectrometric methods.

    PubMed

    Arivazhagan, G; Parthipan, G; Thenappan, T

    2009-11-01

    Results of the dielectric studies carried out on the binary mixture of n-butyric and caprylic acids with 1,4-dioxane over the entire composition range and at temperatures 303K, 308K, 313K and 318K, and FTIR, UV-vis and 13C NMR spectral studies are presented in this paper. The excess permittivity and excess free energy were fitted with the Redlich-Kister polynomial. The variation of Kirkwood correlation factors, excess permittivity and excess free energy of mixing with the concentration and temperature has been investigated in view of understanding the ordering of dipoles of solute and solvent molecules. The FTIR, UV-vis and 13C NMR spectral analysis reveals the formation of complex between solute and solvent molecules. The parallel alignment of electric dipoles of the complex predicted by dielectric studies is well supported by UV-vis spectral analysis. The structure of the complex molecule present in the clusters has been deduced.

  19. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    USGS Publications Warehouse

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  20. Chemical composition of the essential oil from Corsican Mentha aquatica--combined analysis by GC(RI), GC-MS and 13C NMR spectroscopy.

    PubMed

    Sutour, Sylvain; Tomi, Félix; Bradesi, Pascale; Casanova, Joseph

    2011-10-01

    The essential oil (EO) of M. aquatica L. growing wild in Corsica was isolated by dry vapor distillation and submitted to combined analysis by column chromatography over silica gel, GC(RI), GC-MS and 13C NMR spectroscopy. The composition was dominated byoxygenated monoterpenes and characterized by the occurrence of menthofuran (50.7%) as the major component. In parallel, seven laboratory-distilled oil samples isolated from individual plants collected in Corsica were analyzed by GC(RI) and 13C NMR spectroscopy. Onlyquantitative differences were observed between the samples. Beside the usual terpenes, various p-menthane lactones (mintlactone, isomintlactone, hydroxymintlactone, menthofurolactone and epimenthofurolactone) have been identified in all the oil samples.

  1. Systematic Comparison of Sets of 13C NMR Spectra That Are Potentially Identical. Confirmation of the Configuration of a Cuticular Hydrocarbon from the Cane Beetle Antitrogus parvulus

    PubMed Central

    2015-01-01

    A systematic process is introduced to compare 13C NMR spectra of two (or more) candidate samples of known structure to a natural product sample of unknown structure. The process is designed for the case where the spectra involved can reasonably be expected to be very similar, perhaps even identical. It is first validated by using published 13C NMR data sets for the natural product 4,6,8,10,16,18-hexamethyldocosane. Then the stereoselective total syntheses of two candidate isomers of the related 4,6,8,10,16-pentamethyldocosane natural product are described, and the process is applied to confidently assign the configuration of the natural product as (4S,6R,8R,10S,16S). This is accomplished even though the chemical shift differences between this isomer and its (16R)-epimer are only ±5–10 ppb (±0.005–0.01 ppm). PMID:25019530

  2. Combined analysis by GC (RI), GC-MS and 13C NMR of the supercritical fluid extract of Abies alba twigs.

    PubMed

    Duquesnoy, Emilie; Marongiu, Bruno; Castola, Vincent; Piras, Alessandra; Porcedda, Silvia; Casanova, Joseph

    2010-12-01

    Two samples (leaves and twigs) of Abies alba Miller from Corsica were extracted using supercritical CO2 and their chemical compositions were compared with those of the essential oils obtained from the same batch of plant material. In total 45 components were identified using combined analysis by GC (RI), GC-MS and 13C NMR. It was observed that the contents of monoterpenes (mainly represented by limonene, alpha-pinene and camphene) were significantly lower in the supercritical fluid extract (SFE) than in the essential oil (EO). Conversely, the proportions of sesquiterpenes were much higher in CO2 extracts than in essential oils (around 30% vs 4%). Cis-abienol, a diterpene alcohol, was identified only in SFE, and the proportions of this constituent (7.5% and 17.3%) were determined using quantitative 13C NMR since it was under estimated using the standard conditions of GC.

  3. Identification of archaeological triterpenic resins by the non-separative techniques FTIR and 13C NMR: the case of Pistacia resin (mastic) in comparison with frankincense.

    PubMed

    Bruni, Silvia; Guglielmi, Vittoria

    2014-01-01

    The use of spectroscopic techniques such as Fourier-transform infrared (FTIR) spectroscopy and carbon 13 nuclear magnetic resonance ((13)C NMR) using the J-mod experiment is proposed as an effective alternative to gas chromatography-mass spectrometry (GC-MS) for the analysis and identification of natural resin samples found in archaeological environments. The spectral features of the most common diterpenic and triterpenic resins and also two gum-resins are reported and discussed for both techniques. The analytical procedure based on the combined use of FTIR and (13)C NMR is then applied to two archaeological samples from the Milano of the Roman age allowing their identification as Pistacia resin, or mastic, as confirmed by the traditional GC-MS method, and also elucidating some effects of aging on such material. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Synthesis and complete assignment of the 1H and 13C NMR spectra of 6-substituted and 2,6-disubstituted pyridazin-3(2H)-ones.

    PubMed

    Besada, Pedro; Costas, Tamara; Vila, Noemi; Chessa, Carla; Terán, Carmen

    2011-07-01

    Several pyridazin-3(2H)-one derivatives were synthesized starting from alkyl furans using oxidation with singlet oxygen to give 4-methoxy or 4-hydroxybutenolides, key intermediates of the synthetic strategy followed. For all pyridazinones reported, a complete assignment of the (1)H and (13)C NMR spectra using one- and two-dimensional NMR spectroscopic methods, which included NOE, DEPT, COSY, HSQC and HMBC experiments, was accomplished. Correlations between the chemical shifts of the heterocyclic ring atoms and substituents at N-2 and C-6 were analyzed.

  5. High resolution 13C NMR investigation of A6C 60 ( A=K, Rb, Cs) and Ba 3C 60

    NASA Astrophysics Data System (ADS)

    Hajji, L.; Rachdi, F.; Goze, C.; Mehring, M.; Fischer, J. E.

    1996-11-01

    We report the result of 13C nuclear magnetic resonance (NMR) measurements on A6C 60 ( A=K, Rb, Cs) and Ba 3C 60. By using high-resolution magic angle spinning, we were able to identify an isotropic line around 156 ppm for all investigated compounds. NMR spectra of the saturated alkali compounds are quite similar. The corresponding isotropic lines show three narrow components consistent with orientationally ordered C 60 molecules leading to three non-equivalent carbon sites in these compounds as reported by x-ray studies. No line splitting was observed for the Ba 3C 60 isotropic line.

  6. Structure and dynamics in the methylated exopyridine anthracene rotaxane: 13C, 1H and 19F solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Bourdon, X.; Leupold, J.; Mehring, M.; Thies, J.; Kidd, T.; Loontjens, T.

    2000-11-01

    We report on the structural and dynamic characterization by solid state NMR of a new rotaxane consisting of a thread molecule enclosed by a macrocycle, which can eventually shuttle or rotate along/around the thread. Different kinds of slow and fast motions are detected in the methylated exopyridine anthracene rotaxane by 1H, 13C and 19F relaxation time versus temperature measurements. Analysis of the proton decoupled and temperature dependent 19F NMR spectra gives some indications of the possible motions of the macrocycle and breaking of the hydrogen bond in the solid-state at temperatures above 360 K.

  7. Supercritical CO2 extract from needles of Pinus nigra ssp. laricio: combined analysis by GC, GC-MS and 13C NMR.

    PubMed

    Duquesnoy, Emilie; Marongiu, Bruno; Castola, Vincent; Piras, Alessandra; Porcedda, Silvia; Casanova, Joseph

    2007-07-20

    The chemical composition of the volatile concentrate prepared by supercritical CO(2) extraction of the needles of Pinus nigra Arnold ssp. laricio Poiret from Corsica was investigated using GC (RI), GC-MS and (13)C NMR spectroscopy. The major component was by far manoyl oxide (63%), a compound of potential interest for the perfumery and pharmaceutical industries. Consequently, the supercritical fluid extract of P. nigra ssp. laricio (yield 1.60%) could be considered as a source of this diterpene.

  8. Computer-assisted analysis of the structure of regular branched polysaccharides containing 2,3-disubstituted rhamnopyranose and mannopyranose residues on the basis of 13C NMR data.

    PubMed

    Lipkind, G M; Shashkov, A S; Nifant'ev, N E; Kochetkov, N K

    1992-12-31

    A computer-assisted approach to the analysis of the structure of branched polysaccharides that contain 2,3-di-O-glycosylated alpha-rhamnopyranose and alpha-mannopyranose residues is based on evaluation of the 13C NMR spectra, using glycosylation effects and their deviations from additivity (delta delta values) at the branch points. This approach, in combination with monosaccharide and methylation analysis data, has been verified on a series of bacterial polysaccharides of known structure.

  9. Solid-state sup 13 C NMR of the retinal chromophore in photointermediates of bacteriorhodopsin: Characterization of two forms of M

    SciTech Connect

    Smith, S.O.; Courtin, J.; van den Berg, E.; Winkel, C.; Lugtenburg, J.; Herzfeld, J.; Griffin, R.G. )

    1989-01-10

    Solid-state {sup 13}C NMR spectra of the M photocycle intermediate of bacteriorhodopsin (bR) have been obtained from purple membrane regenerated with retinal specifically {sup 13}C labeled at positions 5, 12, 13, 14, and 15. The M intermediate was trapped at {minus}40{degree}C and pH = 9.5-10.0 in either 100 mM NaCl (M (NaCl)) or 500 mM guanidine hydrochloride (M (Gdn-HCl)). The {sup 13}C-12 chemical shift at 125.8 ppm in M (NaCl) and 128.1 ppm in M (Gdn-HCl) indicates that the C{sub 13}{double bond}C{sub 14} double bond has a cis configuration, while the {sup 13}C-13 chemical shift at 146.7 ppm in M (NaCl) and 14.57 ppm in M (Gdn-HCl) demonstrates that the Schiff base in unprotonated. The principal values of the chemical shift tensor of the {sup 13}C-5 resonance in both M (NaCl) and M (Gdn-HCl) are consistent with a 6-s-trans structure and a negative protein charge localized near C-5 as was observed in dark adapted bR. The {approximately}5 ppm upfield shift of the {sup 13}C-5 M resonance relative to {sup 13}C-5 bR{sub 568} and bR{sub 548} is attributed to an unprotonated Schiff base in the M chromophore. Of particular interest in this study were the results obtained from {sup 13}C-14 M. In M (NaCl), a dramatic upfield shift was observed for the {sup 13}C-14 resonance relative to unprotonanted Schiff base model compounds. In contrast, in M (Gdn-HCl) the {sup 13}C-14 resonance was observed at 125.7 ppm. The different {sup 13}C-14 chemical shifts in these two M preparations may be explained by different C{double prime}N configurations of the retinal-lysine Schiff base linkage, namely, syn in NaCl and anti in guanidine hydrochloride.

  10. /sup 13/C NMR studies of methylene and methine carbons of substrate bound to a 280,000-dalton protein, porphobilinogen synthase

    SciTech Connect

    Jaffe, E.K.; Markham, G.D.

    1988-06-14

    /sup 13/C NMR has been used to observe the equilibrium complex of (5,5-/sup 2/H,5-/sup 13/C)-5-aminolevulinate ((5,5-/sup 2/H,5-/sup 13/C)ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. (5,5-/sup 2/H,5-/sup 13/C)ALA (chemical shift 46.9 ppm in D/sub 2/O) was prepared from (5-/sup 13/C)ALA through enolization in deuteriated neutral potassium phosphate buffer. In the PBG synthase reaction (5,5-/sup 2/H,5-/sup 13/C)ALA forms (2,11,11-/sup 2/H,2,11-/sup 13/C)PBG (chemical shifts 116.2 ppm for C/sub 2/ and 34.2 ppm for C/sub 11/ in D/sub 2/O). For the complex formed between (5,5-/sup 2/H,5-/sup 13/C)ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation but can form a Schiff base adduct, the chemical shift of 44.2 ppm (line width 92 Hz) identifies and imine structure as the predominant tautomeric form of the Schiff base. By comparison to model compounds, the stereochemistry of the imine has been deduced; however, the protonation state of the imine nitrogen remains unresolved. Reconstitution of the MMTS-modified enzyme-Schiff base complex with Zn(II) and 2-mercaptoethanol results in the holoenzyme-bound equilibrium complex; this complex contains predominantly enzyme-bound PBG, and spectra reveal two peaks from bound PBG and two from free PBG. For bound PBG, C/sub 2/ is -2.8 ppm from the free signal and C/sub 11/ is +2.6 ppm from the free signal; the line widths of the bound signals are 55 and 75 Hz, respectively. To aid in interpretation of these shifts, the /sup 13/C NMR chemical shifts of PBG were investigated as functions of pH and a variety of organic solvents. The observed shifts of bound PBG are not consistent with simple protonation/deprotonation of PBG nor with changes that can be duplicated by solvation by simple organic solvents.

  11. Hydrogen bond geometries and proton tautomerism of homoconjugated anions of carboxylic acids studied via H/D isotope effects on 13C NMR chemical shifts.

    PubMed

    Guo, Jing; Tolstoy, Peter M; Koeppe, Benjamin; Golubev, Nikolai S; Denisov, Gleb S; Smirnov, Sergei N; Limbach, Hans-Heinrich

    2012-11-26

    Ten formally symmetric anionic OHO hydrogen bonded complexes, modeling Asp/Glu amino acid side chain interactions in nonaqueous environment (CDF(3)/CDF(2)Cl solution, 200-110 K) have been studied by (1)H, (2)H, and (13)C NMR spectroscopy, i.e. intermolecularly H-bonded homoconjugated anions of acetic, chloroacetic, dichloroacetic, trifluoroacetic, trimethylacetic, and isobutyric acids, and intramolecularly H-bonded hydrogen succinate, hydrogen rac-dimethylsuccinate, hydrogen maleate, and hydrogen phthalate. In particular, primary H/D isotope effects on the hydrogen bond proton signals as well as secondary H/D isotope effects on the (13)C signals of the carboxylic groups are reported and analyzed. We demonstrate that in most of the studied systems there is a degenerate proton tautomerism between O-H···O(-) and O(-)···H-O structures which is fast in the NMR time scale. The stronger is the proton donating ability of the acid, the shorter and more symmetric are the H-bonds in each tautomer of the homoconjugate. For the maleate and phthalate anions exhibiting intramolecular hydrogen bonds, evidence for symmetric single well potentials is obtained. We propose a correlation between H/D isotope effects on carboxylic carbon chemical shifts and the proton transfer coordinate, q(1) = ½(r(OH) - r(HO)), which allows us to estimate the desired OHO hydrogen bond geometries from the observed (13)C NMR parameters, taking into account the degenerate proton tautomerism.

  12. In vivo, large-scale preparation of uniformly (15)N- and site-specifically (13)C-labeled homogeneous, recombinant RNA for NMR studies.

    PubMed

    Le, My T; Brown, Rachel E; Simon, Anne E; Dayie, T Kwaku

    2015-01-01

    Knowledge of how ribonucleic acid (RNA) structures fold to form intricate, three-dimensional structures has provided fundamental insights into understanding the biological functions of RNA. Nuclear magnetic resonance (NMR) spectroscopy is a particularly useful high-resolution technique to investigate the dynamic structure of RNA. Effective study of RNA by NMR requires enrichment with isotopes of (13)C or (15)N or both. Here, we present a method to produce milligram quantities of uniformly (15)N- and site-specifically (13)C-labeled RNAs using wild-type K12 and mutant tktA Escherichia coli in combination with a tRNA-scaffold approach. The method includes a double selection protocol to obtain an E. coli clone with consistently high expression of the recombinant tRNA-scaffold. We also present protocols for the purification of the tRNA-scaffold from a total cellular RNA extract and the excision of the RNA of interest from the tRNA-scaffold using DNAzymes. Finally, we showcase NMR applications to demonstrate the benefit of using in vivo site-specifically (13)C-labeled RNA. © 2015 Elsevier Inc. All rights reserved.

  13. 13C NMR and XPS characterization of anion adsorbent with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Wang, Zhenqian; Zeng, Qingling; Shen, Chunhua

    2016-12-01

    Despite amino groups modified crop straw has been intensively studied as new and low-cost adsorbent for removal of anionic species from water, there is still a lack of clear characterization for amino groups, especially quaternary ammonium groups in the surface of crop straw. In this study, we used 13C NMR and XPS technologies to characterize adsorbents with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse. 13C NMR spectra clearly showed the presence of quaternary ammonium groups in lignocelluloses structure of modified crop straw. The increase of nitrogen observed in XPS survey spectra also indicated the existence of quaternary ammonium group in the surface of the adsorbents. The curve fitting of high-resolution XPS N1s and C1s spectra were conducted to probe the composition of nitrogen and carbon contained groups, respectively. The results showed the proportion of quaternary ammonium group significantly increased in the prepared adsorbent's surface that was dominated by methyl/methylene, hydroxyl, quaternary ammonium, ether and carbonyl groups. This study proved that 13C NMR and XPS could be successfully utilized for characterization of quaternary ammonium modified crop straw adsorbents.

  14. 1H AND 13C Fourier Transform NMR Characterization of Jet Fuels Derived from Alternated Energy Sources.

    DTIC Science & Technology

    1979-08-30

    Sample # 1 Sample VI/NR-77-01 Modified JP-4 This sample was blended especially for a combution test program, which had as its purpose the definition of...NMR as the detector (LC- HNMR). Non chromatographic applications of flow NMR have previously been reported. Rapid irreversible chemical reactions as... reactions by FT-NMR has also been reported.3 An apparatus for continuous-flow FT-NMR has previously been described by Fyfe et.al.4 The effect of

  15. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A new salen base 5-(phenylazo)-N-(2-amino pyridine) salicyliden Schiff base ligand: synthesis, experimental and density functional studies on its crystal structure, FTIR, 1H NMR and 13C NMR spectra.

    PubMed

    Sheikhshoaie, Iran; Saheb, Vahid

    2010-12-01

    A novel Schiff base ligand 5-(phenylazo)-N-(2-amino pyridine) salicyliden is prepared through the condensation of 5-(phenylazo) salicylaldehyde and 2-amino pyridine in methanol at room temperature. The orange crystalline precipitate is used for X-ray crystallography and measuring Fourier transform (FTIR), 1H NMR and 13C NMR spectra. Density functional theory (DFT) calculations at the B3LYP, MPWB1K and B3PW91 levels of theory is used to optimize the geometry and calculate the FTIR, 1H NMR and 13C NMR spectra of the compound. The vibrational frequencies determined experimentally are compared with those obtained theoretically and a vibrational assignment and analysis of the fundamental modes of the compound is performed. We found that the MPWB1K method predicts low vibrational frequencies better than the commonly used B3LYP method. Although the B3PW91 method overestimates the 1H NMR chemical shifts, the values computed at the B3LYP level of theory are in accordance with experimental 1H NMR spectrum. However, both B3LYP and B3PW91 methods tend to overestimate 13C NMR chemical shifts. In addition, a few quantum descriptors of the molecule are calculated and conformational analysis is performed and the result was compared with crystallographic data.

  17. Elucidating connectivity and metal-binding structures of unlabeled paramagnetic complexes by 13C and 1H solid-state NMR under fast magic angle spinning.

    PubMed

    Wickramasinghe, Nalinda P; Shaibat, Medhat A; Ishii, Yoshitaka

    2007-08-23

    Characterizing paramagnetic complexes in solids is an essential step toward understanding their molecular functions. However, methodologies to characterize chemical and electronic structures of paramagnetic systems at the molecular level have been notably limited, particularly for noncrystalline solids. We present an approach to obtain connectivities of chemical groups and metal-binding structures for unlabeled paramagnetic complexes by 13C and 1H high-resolution solid-state NMR (SSNMR) using very fast magic angle spinning (VFMAS, spinning speed >or=20 kHz). It is experimentally shown for unlabeled Cu(II)(Ala-Thr) that 2D 13C/1H correlation SSNMR under VFMAS provides the connectivity of chemical groups and assignments for the characterization of unlabeled paramagnetic systems in solids. We demonstrate that on the basis of the assignments provided by the VFMAS approach multiple 13C-metal distances can be simultaneously elucidated by a combination of measurements of 13C anisotropic hyperfine shifts and 13C T1 relaxation due to hyperfine interactions for this peptide-Cu(II) complex. It is also shown that an analysis of 1H anisotropic hyperfine shifts allows for the determination of electron-spin states in Fe(III)-chloroprotoporphyin-IX in solid states.

  18. Rapid adaptation of rat brain and liver metabolism to a ketogenic diet: an integrated study using (1)H- and (13)C-NMR spectroscopy.

    PubMed

    Roy, Maggie; Beauvieux, Marie-Christine; Naulin, Jérôme; El Hamrani, Dounia; Gallis, Jean-Louis; Cunnane, Stephen C; Bouzier-Sore, Anne-Karine

    2015-07-01

    The ketogenic diet (KD) is an effective alternative treatment for refractory epilepsy in children, but the mechanisms by which it reduces seizures are poorly understood. To investigate how the KD modifies brain metabolism, we infused control (CT) and 7-day KD rats with either [1-(13)C]glucose (Glc) or [2,4-(13)C2]β-hydroxybutyrate (β-HB). Specific enrichments of amino acids (AAs) measured by (1)H- and (13)C-NMR in total brain perchloric acid extracts were similar between CT and KD rats after [1-(13)C]Glc infusion whereas they were higher in KD rats after [2,4-(13)C2]β-HB infusion. This suggests better metabolic efficiency of ketone body utilization on the KD. The relative rapid metabolic adaptation to the KD included (1) 11%-higher brain γ-amino butyric acid (GABA)/glutamate (Glu) ratio versus CT, (2) liver accumulation of the ketogenic branched-chain AAs (BCAAs) leucine (Leu) and isoleucine (ILeu), which were never detected in CT, and (3) higher brain Leu and ILeu contents. Since Glu and GABA are excitatory and inhibitory neurotransmitters, respectively, higher brain GABA/Glu ratio could contribute to the mechanism by which the KD reduces seizures in epilepsy. Increased BCAA on the KD may also contribute to better seizure control.

  19. Rapid adaptation of rat brain and liver metabolism to a ketogenic diet: an integrated study using 1H- and 13C-NMR spectroscopy

    PubMed Central

    Roy, Maggie; Beauvieux, Marie-Christine; Naulin, Jérôme; El Hamrani, Dounia; Gallis, Jean-Louis; Cunnane, Stephen C; Bouzier-Sore, Anne-Karine

    2015-01-01

    The ketogenic diet (KD) is an effective alternative treatment for refractory epilepsy in children, but the mechanisms by which it reduces seizures are poorly understood. To investigate how the KD modifies brain metabolism, we infused control (CT) and 7-day KD rats with either [1-13C]glucose (Glc) or [2,4-13C2]β-hydroxybutyrate (β-HB). Specific enrichments of amino acids (AAs) measured by 1H- and 13C-NMR in total brain perchloric acid extracts were similar between CT and KD rats after [1-13C]Glc infusion whereas they were higher in KD rats after [2,4-13C2]β-HB infusion. This suggests better metabolic efficiency of ketone body utilization on the KD. The relative rapid metabolic adaptation to the KD included (1) 11%-higher brain γ-amino butyric acid (GABA)/glutamate (Glu) ratio versus CT, (2) liver accumulation of the ketogenic branched-chain AAs (BCAAs) leucine (Leu) and isoleucine (ILeu), which were never detected in CT, and (3) higher brain Leu and ILeu contents. Since Glu and GABA are excitatory and inhibitory neurotransmitters, respectively, higher brain GABA/Glu ratio could contribute to the mechanism by which the KD reduces seizures in epilepsy. Increased BCAA on the KD may also contribute to better seizure control. PMID:25785828

  20. Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation.

    PubMed

    van Winden, Wouter A; van Gulik, Walter M; Schipper, Dick; Verheijen, Peter J T; Krabben, Preben; Vinke, Jacobus L; Heijnen, Joseph J

    2003-07-05

    At present two alternative methods are available for analyzing the fluxes in a metabolic network: (1) combining measurements of net conversion rates with a set of metabolite balances including the cofactor balances, or (2) leaving out the cofactor balances and fitting the resulting free fluxes to measured (13)C-labeling data. In this study these two approaches are applied to the fluxes in the glycolysis and pentose phosphate pathway of Penicillium chrysogenum growing on either ammonia or nitrate as the nitrogen source, which is expected to give different pentose phosphate pathway fluxes. The presented flux analyses are based on extensive sets of 2D [(13)C, (1)H] COSY data. A new concept is applied for simulation of this type of (13)C-labeling data: cumulative bondomer modeling. The outcomes of the (13)C-labeling based flux analysis substantially differ from those of the pure metabolite balancing approach. The fluxes that are determined using (13)C-labeling data are shown to be highly dependent on the chosen metabolic network. Extending the traditional nonoxidative pentose phosphate pathway with additional transketolase and transaldolase reactions, extending the glycolysis with a fructose 6-phosphate aldolase/dihydroxyacetone kinase reaction sequence or adding a phosphoenolpyruvate carboxykinase reaction to the model considerably improves the fit of the measured and the simulated NMR data. The results obtained using the extended version of the nonoxidative pentose phosphate pathway model show that the transketolase and transaldolase reactions need not be assumed reversible to get a good fit of the (13)C-labeling data. Strict statistical testing of the outcomes of (13)C-labeling based flux analysis using realistic measurement errors is demonstrated to be of prime importance for verifying the assumed metabolic model. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 75-92, 2003.

  1. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.

    2010-01-01

    We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.

  2. 13C-NMR spectroscopic evaluation of the citric acid cycle flux in conditions of high aspartate transaminase activity in glucose-perfused rat hearts.

    PubMed

    Tran-Dinh, S; Hoerter, J A; Mateo, P; Gyppaz, F; Herve, M

    1998-12-01

    A new mathematical model, based on the observation of 13C-NMR spectra of two principal metabolites (glutamate and aspartate), was constructed to determine the citric acid cycle flux in the case of high aspartate transaminase activity leading to the formation of large amounts of labeled aspartate and glutamate. In this model, the labeling of glutamate and aspartate carbons by chemical and isotopic exchange with the citric acid cycle are considered to be interdependent. With [U-13C]Glc or [1,2-(13)C]acetate as a substrate, all glutamate and aspartate carbons can be labeled. The isotopic transformations of 32 glutamate isotopomers into 16 aspartate isotopomers or vice versa were studied using matrix operations; the results were compiled in two matrices. We showed how the flux constants of the citric acid cycle and the 13C-enrichment of acetyl-CoA can be deduced from 13C-NMR spectra of glutamate and/or aspartate. The citric acid cycle flux in beating Wistar rat hearts, aerobically perfused with [U-13C]glucose in the absence of insulin, was investigated by 13C-NMR spectroscopy. Surprisingly, aspartate instead of glutamate was found to be the most abundantly-labeled metabolite, indicating that aspartate transaminase (which catalyses the reversible reaction: (glutamate + oxaloacetate <--> 2-oxoglutarate + aspartate) is highly active in the absence of insulin. The amount of aspartate was about two times larger than glutamate. The quantities of glutamate (G0) or aspartate (A0) were approximately the same for all hearts and remained constant during perfusion: G0 = (0.74 +/- 0.03) micromol/g; A0 = (1.49 +/- 0.05) micromol/g. The flux constants, i.e., the fraction of glutamate and aspartate in exchange with the citric acid cycle, were about 1.45 min(-1) and 0.72 min(-1), respectively; the flux of this cycle is about (1.07 +/- 0.02) micromol min(-1) g(-1). Excellent agreement between the computed and experimental data was obtained, showing that: i) in the absence of insulin

  3. (13)C glucose labelling studies using 2D NMR are a useful tool for determining ex vivo whole organ metabolism during hypothermic machine perfusion of kidneys.

    PubMed

    Nath, Jay; Smith, Tom; Hollis, Alex; Ebbs, Sam; Canbilen, Sefa W; Tennant, Daniel A; Ready, Andrew R; Ludwig, Christian

    2016-01-01

    The aim of this study is to determine the feasibility of using nuclear magnetic resonance (NMR) tracer studies ((13)C-enriched glucose) to detect ex vivo de novo metabolism in the perfusion fluid and cortical tissue of porcine kidneys during hypothermic machine perfusion (HMP). Porcine kidneys (n = 6) were subjected to 24 h of HMP using the Organ Recovery Systems LifePort Kidney perfusion device. Glucose, uniformly enriched with the stable isotope (13)C ([U-(13)C] glucose), was incorporated into KPS-1-like perfusion fluid at a concentration of 10 mM. Analysis of perfusate was performed using both 1D (1)H and 2D (1)H,(13)C heteronuclear single quantum coherence (HSQC) NMR spectroscopy. The metabolic activity was then studied by quantifying the proportion of key metabolites containing (13)C in both perfusate and tissue samples. There was significant enrichment of (13)C in a number of central metabolites present in both the perfusate and tissue extracts and was most pronounced for lactate and alanine. The total amount of enriched lactate (per sample) in perfusion fluid increased during HMP (31.1 ± 12.2 nmol at 6 h vs 93.4 ± 25.6 nmol at 24 h p < 0.01). The total amount of enriched alanine increased in a similar fashion (1.73 ± 0.89 nmol at 6 h vs 6.80 ± 2.56 nmol at 24 h p < 0.05). In addition, small amounts of enriched acetate and glutamic acid were evident in some samples. This study conclusively demonstrates that de novo metabolism occurs during HMP and highlights active metabolic pathways in this hypothermic, hypoxic environment. Whilst the majority of the (13)C-enriched glucose is metabolised into glycolytic endpoint metabolites such as lactate, the presence of non-glycolytic pathway derivatives suggests that metabolism during HMP is more complex than previously thought. Isotopic labelled ex vivo organ perfusion studies using 2D NMR are feasible and informative.

  4. Non-destructive and direct determination of the degree of substitution of carboxymethyl cellulose by HR-MAS (13)C NMR spectroscopy.

    PubMed

    Ferro, M; Castiglione, F; Panzeri, W; Dispenza, R; Santini, L; Karlsson, H J; de Wit, P P; Mele, A

    2017-08-01

    We report on the direct assessment of the degree of substitution (DS) of carboxymethyl cellulose (CMC) by High Resolution Magic Angle Spinning (HR-MAS) (13)C NMR spectroscopy. The method is applied to industrial CMCs with low and high viscosity and nominal DS, purified and technical samples, and from cellulose linters or wood. The preparation of a set of purified CMC working standards with accurate DS values for the method validation is also described. The DS values determined via HR-MAS (13)C NMR on the industrial samples are critically compared to the corresponding values achieved through the USP 37 〈281〉 method (ASH method) and the HPLC method, and the advantages and limitations of the HR-MAS NMR method highlighted. Finally, the HR-MAS NMR approach allowed the accurate DS assessment in CMC with low DS, characterized by a non-negligible fraction of non-functionalized cellulose. The proposed "effective DS" accounts for the DS of the solvent-exposed CMC. Copyright © 2017. Published by Elsevier Ltd.

  5. A novel tridentate Schiff base dioxo-molybdenum(VI) complex: Synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra

    NASA Astrophysics Data System (ADS)

    Saheb, Vahid; Sheikhshoaie, Iran; Stoeckli-Evans, Helen

    2012-09-01

    A new dioxo-molybdenum(VI) complex [MoO2(L)(H2O)] has been synthesized, using 5-methoxy 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H2L) and MoO2(acac)2. The yellow crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FTIR), UV-visible, 1H NMR and 13C NMR spectra. Electronic structure calculations at the B3LYP and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the UV-visible, FTIR, 1H NMR and 13C NMR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TDDFT) method is used to calculate the electronic transitions of the complex. All theoretical methods can well reproduce the structure of the compound. The 1H NMR shielding tensors computed at the B3LYP/DGDZVP level of theory is in agreement with experimental 1H NMR spectra. However, the 13C NMR shielding tensors computed at the B3LYP level, employing a combined basis set of DGDZVP for Mo and 6 - 31 + G(2df,p) for other atoms, are in better agreement with experimental 13C NMR spectra. The electronic transitions calculated at the B3LYP/DGDZVP level by using TD-DFT method is in accordance with the observed UV-visible spectrum of the compound.

  6. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy.

    PubMed Central

    Naito, A; Nagao, T; Norisada, K; Mizuno, T; Tuzi, S; Saitô, H

    2000-01-01

    The conformation and dynamics of melittin bound to the dimyristoylphosphatidylcholine (DMPC) bilayer and the magnetic orientation in the lipid bilayer systems were investigated by solid-state (31)P and (13)C NMR spectroscopy. Using (31)P NMR, it was found that melittin-lipid bilayers form magnetically oriented elongated vesicles with the long axis parallel to the magnetic field above the liquid crystalline-gel phase transition temperature (T(m) = 24 degrees C). The conformation, orientation, and dynamics of melittin bound to the membrane were further determined by using this magnetically oriented lipid bilayer system. For this purpose, the (13)C NMR spectra of site-specifically (13)C-labeled melittin bound to the membrane in the static, fast magic angle spinning (MAS) and slow MAS conditions were measured. Subsequently, we analyzed the (13)C chemical shift tensors of carbonyl carbons in the peptide backbone under the conditions where they form an alpha-helix and reorient rapidly about the average helical axis. Finally, it was found that melittin adopts a transmembrane alpha-helix whose average axis is parallel to the bilayer normal. The kink angle between the N- and C-terminal helical rods of melittin in the lipid bilayer is approximately 140 degrees or approximately 160 degrees, which is larger than the value of 120 degrees determined by x-ray diffraction studies. Pore formation was clearly observed below the T(m) in the initial stage of lysis by microscope. This is considered to be caused by the association of melittin molecules in the lipid bilayer. PMID:10777736

  7. Solution behavior and complete sup 1 H and sup 13 C NMR assignments of the coenzyme B sub 12 derivative (5 prime -deoxyadenosyl)cobinamide using modern 2D NMR experiments, including 600-MHz sup 1 H NMR data

    SciTech Connect

    Pagano, T.G.; Yohannes, P.G.; Marzilli, L.G. ); Hay, B.P.; Scott, J.R.; Finke, R.G. )

    1989-02-15

    Two-dimensional (2D) NMR methods have been used to assign completely the {sup 1}H and {sup 13}C NMR spectra of the (5{prime}-deoxyadenosyl)cobinamide cation (AdoCbi{sup +}) in D{sub 2}O. Most of the {sup 1}H spectral assignments were made by using 2D homonuclear shift correlation spectroscopy (COSY), homonuclear Hartmann-Hahn spectroscopy (HOHAHA), absorption-mode (phase sensitive) 2D nuclear Overhauser effect (NOE) spectroscopy, and spin-locked NOE spectroscopy (also called ROESY, for rotating-frame Overhauser enhancement spectroscopy). Most of the protonated carbon resonances were assigned by using {sup 1}H-detected heteronuclear multiple-quantum coherence (HMQC) spectroscopy. The nonprotonated carbon resonances, as well as the remaining unassigned {sup 1}H and {sup 13}C NMR signals, were assigned from long-range {sup 1}H-{sup 13}C connectivities determined from {sup 1}H-detected multiple-bond heteronuclear multiple-quantum coherence spectroscopy (HMBC). Comparison of the {sup 13}C chemical shifts and {sup 1}H NOEs of AdoCbi{sup +} with those of coenzyme B{sup 12} ((5{prime}-deoxyadenosyl)cobalamin) and its benzimidazole-protonated, base-off form indicates that the electronic properties and structure of AdoCbi{sup +} are similar to that of coenzyme B{sup 12} in the protonated, base-off form. The {sup 13}C chemical shifts of most of the carbons of AdoCbi{sup +} do not vary significantly from those of base-off, benzimidazole-protonated coenzyme B{sup 12}, indicating that the electronic environment of the corrin ring is also similar in both compounds. However, significant differences in the chemical shifts of some of the corresponding carbons of the b, d, e, and f corrin side chains in AdoCbi{sup +} and in base-off, benzimidazole-protonated coenzyme B{sub 12} indicate that the positions of these side chains may be different in AdoCbi{sup +} compared to base-off coenzyme B{sup 12}.

  8. NMR studies of the stability, protonation States, and tautomerism of (13)C- AND (15)N-labeled aldimines of the coenzyme pyridoxal 5'-phosphate in water.

    PubMed

    Chan-Huot, Monique; Sharif, Shasad; Tolstoy, Peter M; Toney, Michael D; Limbach, Hans-Heinrich

    2010-12-28

    We have measured the pH-dependent (1)H, (13)C, and (15)N NMR spectra of pyridoxal 5'-phosphate ((13)C(2)-PLP) mixed with equal amounts of either doubly (15)N-labeled diaminopropane, (15)N(α)-labeled l-lysine, or (15)N(ε)-labeled l-lysine as model systems for various intermediates of the transimination reaction in PLP-dependent enzymes. At low pH, only the hydrate and aldehyde forms of PLP and the free protonated diamines are present. Above pH 4, the formation of single- and double-headed aldimines (Schiff bases) with the added diamines is observed, and their (13)C and (15)N NMR parameters have been characterized. For 1:1 mixtures the single-headed aldimines dominate. In a similar way, the NMR parameters of the geminal diamine formed with diaminopropane at high pH are measured. However, no geminal diamine is formed with l-lysine. In contrast to the aldimine formed with the ε-amino group of lysine, the aldimine formed with the α-amino group is unstable at moderately high pH but dominates slightly below pH 10. By analyzing the NMR data, both the mole fractions of the different PLP species and up to 6 different protonation states including their pK(a) values were obtained. Furthermore, the data show that all Schiff bases are subject to a proton tautomerism along the intramolecular OHN hydrogen bond, where the zwitterionic form is favored before deprotonation occurs at high pH. This observation, as well as the observation that around pH 7 the different PLP species are present in comparable amounts, sheds new light on the mechanism of the transimination reaction.

  9. Two-dimensional 1H-13C nuclear magnetic resonance (NMR)-based comprehensive analysis of roasted coffee bean extract.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2011-09-14

    Coffee was characterized by proton and carbon nuclear magnetic resonance (NMR) spectroscopy. To identify the coffee components, a detailed and approximately 90% signal assignment was carried out using various two-dimensional NMR spectra and a spiking method, in which authentic compounds were added to the roasted coffee bean extract (RCBE) sample. A total of 24 coffee components, including 5 polysaccharide units, 3 stereoisomers of chlorogenic acids, and 2 stereoisomers of quinic acids, were identified with the NMR spectra of RCBE. On the basis of the signal assignment, state analyses were further launched for the metal ion-citrate complexes and caffeine-chlorogenate complexes. On the basis of the signal integration, the coffee components were successfully quantified. This NMR methodology yielded detailed information on RCBE using only a single observation and provides a systemic approach for the analysis of other complex mixtures.

  10. /sup 13/C NMR analysis of the effects of electron radiation on graphite/polyetherimide composites. Final report

    SciTech Connect

    Ferguson, M.W.

    1989-03-01

    Initial investigations have been made into the use of high resolution nuclear magnetic resonance (NMR) for the characterization of radiation effects in graphite and Kevlar fibers, polymers, and the fiber/matrix interface in graphite/polyetherimide composites. Sample preparation techniques were refined. Essential equipment has been procured. A new NMR probe was constructed to increase the proton signal-to-noise ratio. Problem areas have been identified and plans developed to resolve them.

  11. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using 13C NMR and Comprehensive GC × GC

    PubMed Central

    2016-01-01

    Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative 13C nuclear magnetic resonance (13C NMR) combined with comprehensive two-dimensional gas chromatography (GC × GC) was used to characterize fast pyrolysis bio-oils originated from pinewood, wheat straw, and rapeseed cake. The combination of both techniques provided new information on the chemical composition of bio-oils for further upgrading. 13C NMR analysis indicated that pinewood-based bio-oil contained mostly methoxy/hydroxyl (≈30%) and carbohydrate (≈27%) carbons; wheat straw bio-oil showed to have high amount of alkyl (≈35%) and aromatic (≈30%) carbons, while rapeseed cake-based bio-oil had great portions of alkyl carbons (≈82%). More than 200 compounds were identified and quantified using GC × GC coupled to a flame ionization detector (FID) and a time of flight mass spectrometer (TOF-MS). Nonaromatics were the most abundant and comprised about 50% of the total mass of compounds identified and quantified via GC × GC. In addition, this analytical approach allowed the quantification of high value-added phenolic compounds, as well as of low molecular weight carboxylic acids and aldehydes, which exacerbate the unstable and corrosive character of the bio-oil. PMID:27668136

  12. The conformational stability, solvation and the assignments of the experimental infrared, Raman, 1H and 13C NMR spectra of the local anesthetic drug lidocaine

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2015-05-01

    The structure, vibrational and 1H and 13C NMR spectra of the local anesthetic drug lidocaine were investigated by the B3LYP/6-311G∗∗ calculations. The molecule was predicted to have the non-planar cis (NCCN ∼ 0°) structures being about 2-6 kcal/mol lower in energy than the corresponding trans (NCCN ∼ 180°) forms. The calculated NCCN (9.6°) and CNCC (-132.2°) torsional angles were in a good qualitative agreement with the reported X-ray angles (3.1 and 13.0°, -102.67 and -77.9°, respectively, for H-bonded dimers). The Gibbs energy of solution of lidocaine in formamide, water, dimethylsulfoxide, acetonitrile, methanol, ethanol and chloroform solutions was estimated at the B3LYP level. The predicted affinity of lidocaine toward the alcohols, acetonitrile and chloroform solutions was in excellent agreement with the reported experimental solubility of the drug in organic solvents. The analysis of the observed vibrational spectra is consistent with the presence of lidocaine in only one conformation at room temperature. The 1H and 13C NMR spectra of lidocaine were interpreted by experimental and DFT calculated chemical shifts of the drug. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine is 0.47 and 8.26 ppm, respectively.

  13. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using (13)C NMR and Comprehensive GC × GC.

    PubMed

    Negahdar, Leila; Gonzalez-Quiroga, Arturo; Otyuskaya, Daria; Toraman, Hilal E; Liu, Li; Jastrzebski, Johann T B H; Van Geem, Kevin M; Marin, Guy B; Thybaut, Joris W; Weckhuysen, Bert M

    2016-09-06

    Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative (13)C nuclear magnetic resonance ((13)C NMR) combined with comprehensive two-dimensional gas chromatography (GC × GC) was used to characterize fast pyrolysis bio-oils originated from pinewood, wheat straw, and rapeseed cake. The combination of both techniques provided new information on the chemical composition of bio-oils for further upgrading. (13)C NMR analysis indicated that pinewood-based bio-oil contained mostly methoxy/hydroxyl (≈30%) and carbohydrate (≈27%) carbons; wheat straw bio-oil showed to have high amount of alkyl (≈35%) and aromatic (≈30%) carbons, while rapeseed cake-based bio-oil had great portions of alkyl carbons (≈82%). More than 200 compounds were identified and quantified using GC × GC coupled to a flame ionization detector (FID) and a time of flight mass spectrometer (TOF-MS). Nonaromatics were the most abundant and comprised about 50% of the total mass of compounds identified and quantified via GC × GC. In addition, this analytical approach allowed the quantification of high value-added phenolic compounds, as well as of low molecular weight carboxylic acids and aldehydes, which exacerbate the unstable and corrosive character of the bio-oil.

  14. High-resolution sup 13 C NMR study of the topography and dynamics of methionine residues in detergent-solubilized bacteriorhodopsin

    SciTech Connect

    Seigneuret, M.; Neumann, J.M.; Levy, D.; Rigaud, J.L. )

    1991-04-23

    The proton transport membrane protein bacteriorhodopsin has been biosynthetically labeled with (methyl-{sup 13}C)methionine and studied by high-resolution {sup 13}C NMR after solubilization in the detergent Triton X-100. The nine methionine residues of bacteriorhodopsin give rise to four well-resolved {sup 13}C resonances, two of which are shifted upfield or downfield due to nearby aromatic residues. Methionine residues located on the hydrophilic surfaces, on the hydrophobic surface, and in the interior of the protein could be discriminated by studying the effects of papain proteolysis, glycerol-induced viscosity increase, and paramagnetic broadening by spin-labels on NMR spectra. Such data were used to evaluate current models of the bacteriorhodopsin transmembrane folding and tertiary structure. T{sub 2} and NOE measurements were performed to study the local dynamics of methionine residues in bacteriorhodopsin. For the detergent-solubilized protein, hydrophilic and hydrophobic external residues undergo a relatively large extent of side chain wobbling motion while most internal residues are less mobile. In the native purple membrane and in reconstituted bacteriorhodopsin liposomes, almost all methionine residues have their wobbling motion severely restricted, indicating a large effect of the membrane environment on the protein internal dynamics.

  15. The conformational stability, solvation and the assignments of the experimental infrared, Raman, (1)H and (13)C NMR spectra of the local anesthetic drug lidocaine.

    PubMed

    Badawi, Hassan M; Förner, Wolfgang; Ali, Shaikh A

    2015-05-05

    The structure, vibrational and (1)H and (13)C NMR spectra of the local anesthetic drug lidocaine were investigated by the B3LYP/6-311G(∗∗) calculations. The molecule was predicted to have the non-planar cis (NCCN∼0°) structures being about 2-6kcal/mol lower in energy than the corresponding trans (NCCN∼180°) forms. The calculated NCCN (9.6°) and CNCC (-132.2°) torsional angles were in a good qualitative agreement with the reported X-ray angles (3.1 and 13.0°, -102.67 and -77.9°, respectively, for H-bonded dimers). The Gibbs energy of solution of lidocaine in formamide, water, dimethylsulfoxide, acetonitrile, methanol, ethanol and chloroform solutions was estimated at the B3LYP level. The predicted affinity of lidocaine toward the alcohols, acetonitrile and chloroform solutions was in excellent agreement with the reported experimental solubility of the drug in organic solvents. The analysis of the observed vibrational spectra is consistent with the presence of lidocaine in only one conformation at room temperature. The (1)H and (13)C NMR spectra of lidocaine were interpreted by experimental and DFT calculated chemical shifts of the drug. The RMSD between experimental and theoretical (1)H and (13)C chemical shifts for lidocaine is 0.47 and 8.26ppm, respectively.

  16. Slow-down of 13C spin diffusion in organic solids by fast MAS: a CODEX NMR Study.

    PubMed

    Reichert, D; Bonagamba, T J; Schmidt-Rohr, K

    2001-07-01

    One- and two-dimensional 13C exchange nuclear magnetic resonance experiments under magic-angle spinning (MAS) can provide detailed information on slow segmental reorientations and chemical exchange in organic solids, including polymers and proteins. However, observations of dynamics on the time scale of seconds or longer are hampered by the competing process of dipolar 13C spin exchange (spin diffusion). In this Communication, we show that fast MAS can significantly slow down the dipolar spin exchange effect for unprotonated carbon sites. The exchange is measured quantitatively using the centerband-only detection of exchange technique, which enables the detection of exchange at any spinning speed, even in the absence of changes of isotropic chemical shifts. For chemically equivalent unprotonated 13C sites, the dipolar spin exchange rate is found to decrease slightly less than proportionally with the sample-rotation frequency, between 8 and 28 kHz. In the same range, the dipolar spin exchange rate for a glassy polymer with an inhomogeneously broadened MAS line decreases by a factor of 10. For methylene groups, no or only a minor slow-down of the exchange rate is found.

  17. IR, VCD, 1H and 13C NMR experimental and theoretical studies of a natural guaianolide: Unambiguous determination of its absolute configuration

    NASA Astrophysics Data System (ADS)

    Bercion, Sylvie; Buffeteau, Thierry; Lespade, Laure; Martin, Marie-Anna Couppe deK.

    2006-06-01

    7,10-Epoxy -1,5-guaia-3, 11-dien-8, 12-olide has been isolated from dried leaves of Hedyosmum arborescens Swartz. The structure, vibrational frequencies, infrared and VCD intensities, NMR 1H and 13C spectra have been calculated by the density functional theory (DFT) method at the B3LYP/6-31+G(d,p) levels for four stereoisomers of this natural guaianolide. This study shows that the comparison of the experimental and calculated 1H and 13C NMR spectra allows the determination of the most favorable diastereoisomers but is not sufficient to access to the absolute configuration of the 7,10-epoxy guaianolide since the two remaining enantiomers possess the same NMR spectra. The absolute configuration of this natural compound can be unambiguously established only by the comparison of the calculated and experimental VCD spectra. Indeed, a very good agreement between experimental and theoretical VCD spectra was obtained in the mid-infrared range for the 7 S, 10 R-epoxy-1 R,5 R-guaia-3,11-dien-8 S,12-olide stereoisomer.

  18. Microscopic structure of heterogeneous lipid-based formulations revealed by 13C high-resolution solid-state and 1H PFG NMR methods.

    PubMed

    Guillermo, Armel; Gerbaud, Guillaume; Bardet, Michel

    2010-03-01

    Lipid-based formulations such as lip glosses that are very alike on the base of their components may have significant differences in their expected macroscopic properties as cosmetics. To differentiate such formulations, high-resolution (13)C NMR was performed under magic angle spinning to investigate the properties at both molecular and microscopic levels. Temperature studies were carried out and no polymorphism in the solid domains could be evidenced after the thermal treatment performed for obtaining the commercial lip glosses. (13)C NMR spectra also showed that some waxes remain partially solubilized in the oils of formulations. The microscopic structure of the wax-oil liquid domains was worked out on the basis of restricted diffusion properties obtained with proton pulsed-field gradient NMR. Changing a single wax component, in two identical formulations, yields significant morphological differences. In the first one the liquid phase appears as a continuum whereas in the second one, the liquid phase is fractionated into micrometric droplets. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. 1H and 13C n.m.r. studies of pseudo-peptide analogues of the C-terminal tetrapeptide of gastrin.

    PubMed

    Aumelas, A; Rodriguez, M; Heitz, A; Castro, B; Martinez, J

    1987-11-01

    1H and 13C n.m.r. study of pseudo-peptide analogues of the C-terminal tetrapeptide of gastrin, obtained by replacing each peptide bond by a "reduced peptide bond", one at a time, e.g. Boc-Trp psi (CH2NH)Leu-Asp-Phe-NH2 2, Boc-Trp-Leu psi (CH2NH) Asp-Phe-NH2 3, Boc-Trp-Leu-Asp psi (CH2NH)Phe-NH2 4, were reported. The CH2NH bond was completely characterized. 1H and 13C spectroscopic data were reported. It appeared from the present work that the modifications produced by the replacement of a peptide bond by a CH2NH bond were localized around the CH2NH.

  20. Effects of post-reactor functionalization on the phase behaviour of an ethylene-1-octene copolymer studied using solid-state high resolution 13C NMR spectroscopy.

    PubMed

    Calucci, Lucia; Cicogna, Francesca; Forte, Claudia

    2013-10-07

    The effects of post-reactor functionalization with naphthoate-TEMPO on the structure and morphology of an ethylene-1-octene copolymer were investigated by means of solid-state NMR techniques and DSC measurements. Selective (13)C MAS experiments allowed the orthorhombic and the monoclinic crystalline phases and two amorphous phases with different degree of mobility to be detected and quantified. (13)C and (1)H relaxation time measurements and spin diffusion experiments gave insight into the polymer dynamics within the different phases, the crystalline domain dimensions, and the rate of chain diffusion between amorphous and crystalline phases. Comparison of the results obtained for the pristine copolymer and the functionalized samples clearly indicated that the functionalization procedure causes redistribution within the crystalline and the amorphous phases with no relevant change in the degree of crystallinity or in the crystalline domain average size, and slows down chain diffusion.

  1. Quantum-chemical analysis of paramagnetic 13C NMR shifts of iron-bound cyanide ions in heme-protein environments

    NASA Astrophysics Data System (ADS)

    Yamaki, Daisuke; Hada, Masahiko

    2012-12-01

    Paramagnetic 13C NMR chemical shifts of iron-bound cyanide ions located in biological environments such as heme-proteins are significantly sensitive to the environments. These chemical shifts are due to negative spin density at 13C induced by the open-shell iron center. In order to examine the environments effects on the electronic states around heme parts, ab initio calculations were performed for model systems of heme-proteins. The proximal residues in proteinparts of cytochrome c, hemoglobin, myoglobin and horseradish peroxidase were included in the model systems with the common active site (cyanide imidazole porphyrinato iron(III)) to take account of the environments effects. The calculated paramagnetic shifts of model systems reproduce the experimental trend of corresponding heme-proteins. It is found that the effects of proximal residues on the electronic states of the heme-parts are significant for these hemeproteins. In this abstract we focused on the calculations and analysis of cytochrome c.

  2. Application of (13)C NMR cross-polarization inversion recovery experiments for the analysis of solid dosage forms.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz

    2016-11-20

    Solid-state nuclear magnetic resonance (ssNMR) is a powerful and unique method for analyzing solid forms of the active pharmaceutical ingredients (APIs) directly in their original formulations. Unfortunately, despite their wide range of application, the ssNMR experiments often suffer from low sensitivity and peaks overlapping between API and excipients. To overcome these limitations, the crosspolarization inversion recovery method was successfully used. The differences in the spin-lattice relaxation time constants for hydrogen atoms T1(H) between API and excipients were employed in order to separate and discriminate their peaks in ssNMR spectra as well as to increase the intensity of API signals in low-dose formulations. The versatility of this method was demonstrated by different examples, including the excipients mixture and commercial solid dosage forms (e.g. granules and tablets). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A combined DFT - NMR study of cyclic 1,2-diones and methyl ethers of their enols: The power and limitations of the method based on theoretical predictions of 13C NMR chemical shifts

    NASA Astrophysics Data System (ADS)

    Kubicki, Dominik; Gryff-Keller, Adam; Szczeciński, Przemysław

    2012-08-01

    A series of cyclic 1,2-diones and methyl ethers of their enols were investigated by a combined 13C NMR/computational DFT method to establish their preferred solution structures. The optimum molecular geometries and magnetic shielding constants of carbon nuclei were calculated with GIAO DFT [PBE1PBE/6-311++G(2d,p) PCM] method for the investigated molecules allowing for enolization and dynamic conformational equilibriums occurring in the solutions. These compounds served simultaneously as model compounds for testing the effectiveness and limitations of the exploited method of investigating molecular structures based on comparison of the theoretically calculated magnetic shielding constants and experimental 13C NMR chemical shifts. Generally, a very good agreement between experimental and theoretical data was obtained for the investigated group of compounds, which proved the applied level of theory and used methodology to be adequate and should ensure a high accuracy of the 13C NMR chemical shift predictions. Some divergences between the experiment and theory could be interpreted as the results of insufficiencies of the molecular modelling and the effects of neglecting vibrational/librational molecular motions. Furthermore, we report herein an observation of an unexpected 1H NMR spectral pattern for 2,3-dimethoxycyclodeca-1,3-diene (diether of cyclodecadione dienol), which was interpreted to be caused by the slow (in NMR time scale) enantiomerization of this molecule which preferentially assumes a chiral conformation.

  4. Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls

    SciTech Connect

    Dick-Perez, Marilu; Wang, Tuo; Salazar, Andre; Zabotina, Olga A.; Hong, Mei

    2012-07-08

    Plant cell wall (CW) polysaccharides are responsible for the mechanical strength and growth of plant cells; however, the high-resolution structure and dynamics of the CW polysaccharides are still poorly understood because of the insoluble nature of these molecules. Here, we use 2D and 3D magic-angle-spinning (MAS) solid-state NMR (SSNMR) to investigate the structural role of pectins in the plant CW. Intact and partially depectinated primary CWs of Arabidopsis thaliana were uniformly labeled with 13C and their NMR spectra were compared. Recent 13C resonance assignment of the major polysaccharides in Arabidopsis thaliana CWs allowed us to determine the effects of depectination on the intermolecular packing and dynamics of the remaining wall polysaccharides. 2D and 3D correlation spectra show the suppression of pectin signals, confirming partial pectin removal by chelating agents and sodium carbonate. Importantly, higher cross peaks are observed in 2D and 3D 13C spectra of the depectinated CW, suggesting higher rigidity and denser packing of the remaining wall polysaccharides compared with the intact CW. 13C spin–lattice relaxation times and 1H rotating-frame spin–lattice relaxation times indicate that the polysaccharides are more rigid on both the nanosecond and microsecond timescales in the depectinated CW. Taken together, these results indicate that pectic polysaccharides are highly dynamic and endow the polysaccharide network of the primary CW with mobility and flexibility, which may be important for pectin functions. This study demonstrates the capability of multidimensional SSNMR to determine the intermolecular interactions and dynamic structures of complex plant materials under near-native conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Backbone dynamics of a model membrane protein: assignment of the carbonyl carbon /sup 13/C NMR resonances in detergent-solubilized M13 coat protein

    SciTech Connect

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    1987-06-16

    The major coat protein of the filamentous bacteriophage M13 is a 50-residue amphiphilic polypeptide which is inserted, as an integral membrane-spanning protein, in the inner membrane of the Escherichia coli host during infection. /sup 13/C was incorporated biosynthetically into a total of 23 of the peptide carbonyls using labeled amino acids (alanine, glycine, lysine, phenylalanine, and proline). The structure and dynamics of carbonyl-labeled M13 coat protein were monitored by /sup 13/C nuclear magnetic resonance (NMR) spectroscopy. Assignment of many resonances was achieved by using protease digestion, pH titration, or labeling of the peptide bond with both /sup 13/C and /sup 15/N. The carbonyl region of the natural-abundance /sup 13/C NMR spectrum of M13 coat protein in sodium dodecyl sulfate solution shows approximately eight backbone carbonyl resonances with line widths much narrower than the rest. Three of these more mobile residues correspond to assigned peaks (glycine-3, lysine-48, and alanine-49) in the individual amino acid spectra, and another almost certainly arises from glutamic acid-2. A ninth residue, alanine-1, also gives rise to a very narrow carbonyl resonance if the pH is well above or below the pK/sub a/ of the terminal amino group. These data suggest that only about four residues at either end of the protein experience large-amplitude spatial fluctuations; the rest of the molecule is essentially rigid on the time scale of the overall rotational tumbling of the protein-detergent complex. The relative exposure of different regions of detergent-bound protein was monitored by limited digestion with proteinase K. Comparable spectra and digestion patterns were obtained when the protein was solubilized in sodium deoxycholate, suggesting that the coat protein binds both amphiphiles in a similar fashion.

  6. Triosephosphate isomerase: 15N and 13C chemical shift assignments and conformational change upon ligand binding by magic-angle spinning solid-state NMR spectroscopy.

    PubMed

    Xu, Yimin; Lorieau, Justin; McDermott, Ann E

    2010-03-19

    Microcrystalline uniformly (13)C,(15)N-enriched yeast triosephosphate isomerase (TIM) is sequentially assigned by high-resolution solid-state NMR (SSNMR). Assignments are based on intraresidue and interresidue correlations, using dipolar polarization transfer methods, and guided by solution NMR assignments of the same protein. We obtained information on most of the active-site residues involved in chemistry, including some that were not reported in a previous solution NMR study, such as the side-chain carbons of His95. Chemical shift differences comparing the microcrystalline environment to the aqueous environment appear to be mainly due to crystal packing interactions. Site-specific perturbations of the enzyme's chemical shifts upon ligand binding are studied by SSNMR for the first time. These changes monitor proteinwide conformational adjustment upon ligand binding, including many of the sites probed by solution NMR and X-ray studies. Changes in Gln119, Ala163, and Gly210 were observed in our SSNMR studies, but were not reported in solution NMR studies (chicken or yeast). These studies identify a number of new sites with particularly clear markers for ligand binding, paving the way for future studies of triosephosphate isomerase dynamics and mechanism.

  7. Protonation of carbon single-walled nanotubes studied using 13C and 1H-13C cross polarization nuclear magnetic resonance and Raman spectroscopies.

    PubMed

    Engtrakul, Chaiwat; Davis, Mark F; Gennett, Thomas; Dillon, Anne C; Jones, Kim M; Heben, Michael J

    2005-12-14

    The reversible protonation of carbon single-walled nanotubes (SWNTs) in sulfuric acid and Nafion was investigated using solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies. Magic-angle spinning (MAS) was used to obtain high-resolution 13C and 1H-13C cross polarization (CP) NMR spectra. The 13C NMR chemical shifts are reported for bulk SWNTs, H2SO4-treated SWNTs, SWNT-Nafion polymer composites, SWNT-AQ55 polymer composites, and SWNTs in contact with water. Protonation occurs without irreversible oxidation of the nanotube substrate via a charge-transfer process. This is the first report of a chemically induced change in a SWNT 13C resonance brought about by a reversible interaction with an acidic proton, providing additional evidence that carbon nanotubes behave as weak bases. Cross polarization was found to be a powerful technique for providing an additional contrast mechanism for studying nanotubes in contact with other chemical species. The CP studies confirmed polarization transfer from nearby protons to nanotube carbon atoms. The CP technique was also applied to investigate water adsorbed on carbon nanotube surfaces. Finally, the degree of bundling of the SWNTs in Nafion films was probed with the 1H-13C CP-MAS technique.

  8. Solid-state sup 13 C and sup 15 N NMR study of the low pH forms of bacteriorhodopsin

    SciTech Connect

    de Groot, H.J.; Smith, S.O.; Courtin, J.; van den Berg, E.; Winkel, C.; Lugtenburg, J.; Griffin, R.G.; Herzfeld, J. )

    1990-07-24

    The visible absorption of bacteriorhodopsin (bR) is highly sensitive to pH, the maximum shifting from 568 nm (pH 7) to approximately 600 nm (pH 2) and back to 565 nm (pH 0) as the pH is decreased further with HCl. Blue membrane is also formed by deionization of neutral purple membrane suspensions. Low-temperature, magic angle spinning 13C and 15N NMR was used to investigate the transitions to the blue and acid purple states. The 15N NMR studies involved (epsilon-15N)lysine bR, allowing a detailed investigation of effects at the Schiff base nitrogen. The 15N resonance shifts approximately 16 ppm upfield in the neutral purple to blue transition and returns to its original value in the blue to acid purple transition. Thus, the 15N shift correlates directly with the color changes, suggesting an important contribution of the Schiff base counterion to the opsin shift. The results indicate weaker hydrogen bonding in the blue form than in the two purple forms and permit a determination of the contribution of the weak hydrogen bonding to the opsin shift at a neutral pH of approximately 2000 cm-1. An explanation of the mechanism of the purple to blue to purple transition is given in terms of the complex counterion model. The 13C NMR experiments were performed on samples specifically 13C labeled at the C-5, C-12, C-13, C-14, or C-15 positions in the retinylidene chromophore. The effects of the purple to blue to purple transitions on the isotropic chemical shifts for the various 13C resonances are relatively small. It appears that bR600 consists of at least four different species. The data confirm the presence of 13-cis- and all-trans-retinal in the blue form, as in neutral purple dark-adapted bR. All spectra of the blue and acid purple bR show substantial inhomogeneous broadening which indicates additional irregular distortions of the protein lattice.

  9. Experimental (FT-IR, FT-Raman, UV-Vis, 1H and 13C NMR) and computational (density functional theory) studies on 3-bromophenylboronic acid

    NASA Astrophysics Data System (ADS)

    Karabacak, M.; Kose, E.; Atac, A.; Sas, E. B.; Asiri, A. M.; Kurt, M.

    2014-11-01

    Structurally, boronic acids are trivalent boron-containing organic compounds that possess one alkyl substituent (i.e., C-Br bond) and two hydroxyl groups to fill the remaining valences on the boron atom. We studied 3-bromophenylboronic acid (3BrPBA); a derivative of boronic acid. This study includes the experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV-Vis) techniques and theoretical (DFT-density functional theory) calculations. The experimental data are recorded, FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-10 cm-1) in the solid phase. 1H and 13C NMR spectra are recorded in DMSO solution. UV-Vis spectrum is recorded in the range of 200-400 nm for each solution (in ethanol and water). The theoretical calculations are computed DFT/B3LYP/6-311++G(d,p) basis set. The optimum geometry is also obtained from inside for possible four conformers using according to position of hydrogen atoms after the scan coordinate of these structures. The fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and parallel quantum solutions (PQS) program. 1H and 13C NMR chemical shifts are racked on by using the gauge-invariant atomic orbital (GIAO) method. The time-dependent density functional theory (TD-DFT) is used to find HOMO and LUMO energies, excitation energies, oscillator strengths. The density of state of the studied molecule is investigated as total and partial density of state (TDOS and PDOS) and overlap population density of state (OPDOS or COOP) diagrams have been presented. Besides, frontier molecular orbitals (FMOs), molecular electrostatic potential surface (MEPs) and thermodynamic properties are performed. At the end of this work, the results are ensured beneficial for the literature contribution.

  10. Prediction of recrystallization behavior of troglitazone/polyvinylpyrrolidone solid dispersion by solid-state NMR.

    PubMed

    Ito, Atsutoshi; Watanabe, Tomoyuki; Yada, Shuichi; Hamaura, Takeshi; Nakagami, Hiroaki; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji

    2010-01-04

    The purpose of this study was to elaborate the relationship between the (13)C CP/MAS NMR spectra and the recrystallization behavior during the storage of troglitazone solid dispersions. The solid dispersions were prepared by either the solvent method or by co-grinding. The recrystallization behavior under storage conditions at 40 degrees C/94% RH was evaluated by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation. Solid dispersions prepared by the solvent method or by prolonged grinding brought about inhibition of the nucleation and the nuclei growth at the same time. No differences in the PXRD profiles were found in the samples prepared by the co-grinding and solvent methods, however, (13)C CP/MAS NMR showed significant differences in the spectra. The correlation coefficients using partial least square regression analysis between the PXRD profiles and the apparent nuclei-growth constant or induction period to nucleation were 0.1305 or 0.6350, respectively. In contrast, those between the (13)C CP/MAS NMR spectra and the constant or the period were 0.9916 or 0.9838, respectively. The (13)C CP/MAS NMR spectra had good correlation with the recrystallization kinetic parameters evaluated by the KJMA equation. Consequently, solid-state NMR was judged to be a useful tool for the prediction of the recrystallization behavior of solid dispersions.

  11. Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle

    PubMed Central

    Thakur, Chandar S.; Sama, Jacob N.; Jackson, Melantha E.; Chen, Bin

    2010-01-01

    Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on 13C-2-glycerol and 13C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR spectroscopy. For DL323 E. coli grown in 13C-2-glycerol without labeled formate, all the ribose carbon atoms are labeled except the C3′ and C5′ carbon positions. Consequently the C1′, C2′ and C4′ positions remain singlet. In addition, only the pyrimidine base C6 atoms are substantially labeled to ~96% whereas the C2 and C8 atoms of purine are labeled to ~5%. Supplementing the growth media with 13C-formate increases the labeling at C8 to ~88%, but not C2. Not unexpectedly, addition of exogenous formate is unnecessary for attaining the high enrichment levels of ~88% for the C2 and C8 purine positions in a 13C-1,3-glycerol based growth. Furthermore, the ribose ring is labeled in all but the C4′ carbon position, such that the C2′ and C3′ positions suffer from multiplet splitting but the C5′ position remains singlet and the C1′ position shows a small amount of residual C1′–C2′ coupling. As expected, all the protonated base atoms, except C6, are labeled to ~90%. In addition, labeling with 13C-1,3-glycerol affords an isolated methylene ribose with high enrichment at the C5′ position (~90%) that makes it particularly attractive for NMR applications involving CH2-TROSY modules without the need for decoupling the C4′ carbon. To simulate the tumbling of large RNA molecules, perdeuterated glycerol was added to a mixture of the four nucleotides, and the methylene TROSY experiment recorded at various temperatures. Even under conditions of slow tumbling, all the expected carbon correlations were observed

  12. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    SciTech Connect

    Cort, John R.; Cho, Herman M.

    2009-10-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  13. Determining hydrogen-bond interactions in spider silk with 1H-13C HETCOR fast MAS solid-state NMR and DFT proton chemical shift calculations.

    PubMed

    Holland, Gregory P; Mou, Qiushi; Yarger, Jeffery L

    2013-07-28

    Two-dimensional (2D) (1)H-(13)C heteronuclear correlation (HETCOR) solid-state NMR spectra collected with fast magic angle spinning (MAS) are used in conjunction with density functional theory (DFT) proton chemical shift calculations to determine the hydrogen-bonding strength for ordered β-sheet and disordered 310-helical structures in spider dragline silk. The hydrogen-bond strength is determined to be identical for both structures in spider silk with a 1.83-1.84 Å NH···OC hydrogen-bond distance.

  14. Composition and chemical variability of the leaf oil from Corsican Juniperus thurifera. Integrated analysis by GC(RI), GC-MS and 13C NMR.

    PubMed

    Ottavioli, Josephine; Casanova, Joseph; Bighelli, Ange

    2010-12-01

    The composition of 16 samples of leaf oil from Corsican Juniperus thurifera was investigated by integrated techniques, GC, GC-MS and 13C NMR. K-means partitioning and PCA analysis of the data allowed the definition of a main group (14 samples) dominated by limonene (mean = 52.2%, SD = 6.4) and alpha-pinene (mean = 7.2%, SD = 3.8). Limonene and beta-elemol (up to 19.7%) were identified as the major components of two atypic samples.

  15. Long-distance effects of site-directed mutations on backbone conformation in bacteriorhodopsin from solid state NMR of [1-13C]Val-labeled proteins.

    PubMed Central

    Tanio, M; Inoue, S; Yokota, K; Seki, T; Tuzi, S; Needleman, R; Lanyi, J K; Naito, A; Saitô, H

    1999-01-01

    We have recorded 13C cross-polarization-magic angle spinning and dipolar decoupled-magic angle spinning NMR spectra of [1-13C]Val-labeled wild-type bacteriorhodopsin (bR), and the V49A, V199A, T46V, T46V/V49A, D96N, and D85N mutants, in order to study conformational changes of the backbone caused by site-directed mutations along the extracellular surface and the cytoplasmic half channel. On the basis of spectral changes in the V49A and V199A mutants, and upon specific cleavage by chymotrypsin, we assigned the three well-resolved 13C signals observed at 172.93, 172.00, and 171. 11 ppm to [1-13C]Val 69, Val 49, and Val 199, respectively. The local conformations of the backbone at these residues are revealed by the conformation-dependent 13C chemical shifts. We find that at the ambient temperature of these measurements Val 69 is not in a beta-sheet, in spite of previous observations by electr