Science.gov

Sample records for 13c cpmas spectra

  1. The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids

    USGS Publications Warehouse

    Hatcher, P.G.; Wilson, M.A.

    1991-01-01

    Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.

  2. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    -13C-NMR spectrum of HA. The CP-MAS- 13C-NMR spectra of the HA were quite similar to each other. These spectra exhibited signals for alkyl (0~50 ppm), O-alkyl (50~110 ppm), aromatic (110~160 ppm) and carbonyl (160~200 ppm) regions. The signals in carbonyl C region concentrated between 172 ppm and 173 ppm, and with a small signal occurred in the region of 190~200 ppm, indicating that there was carbonyl C of carboxylic acid, ester and amide, but a little amount carbonyl C of ketonic compounds. In the region of aromatic C, the most obvious peaks were the absorption at 131~133 ppm and 114~117 ppm. The former was mainly the aromatic C substituted by -COOH or -COOMe and the unsubstituted aromatic meta to carbons bearing an oxygen or nitrogen atom; the latter was mainly the unsubstituted aromatic C ortho and para to carbons bearing an oxygen and nitrogen atom. There was a small peak at 152-154ppm, which was the signal of phenolic OH. The signal at 55~56 ppm was methoxyl C. The signals at 71~73 ppm were due to the -CH(OH)- in carbohydrate. The peak at 102~103 ppm was generally assigned to double oxygen-C in polysaccharide (possibly acetal). The maximum absorption at 30 ppm was the contribution of the polymethylene chain -(CH2)n- in saturated hydrocarbons (Wilson, 1981). After OM application, the contents of alkyl C and O-alkyl C increased and the contents of aromatic C and carbonxyl C except to 1986 decreased. Compared with 1986, the contents of O-alkyl C increased and the contents of alkyl C decreased for the same treatment CKbr and O2. Aromaticity decreased significantly in OM treatments, indicating that the OM decreased the content of aromatic C and was simplified the molecular structure. The relative content of O-alkyl C increased indicating that OM application increased the content of methoxyl C and -CH(OH)- in carbohydrate. Alkyl C was probably derived from compounds of plants with high resistance to degradation, such as cutin and suberin (Baldock et al., 1992; Preston

  3. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    -13C-NMR spectrum of HA. The CP-MAS- 13C-NMR spectra of the HA were quite similar to each other

  4. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    SciTech Connect

    Cozar, O.; Filip, C.; Tripon, C.; Cioica, N.; Coţa, C.; Nagy, E. M.

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  5. Molecular structure of actein: 13C CPMAS NMR, IR, X-ray diffraction studies and theoretical DFT-GIAO calculations

    NASA Astrophysics Data System (ADS)

    Jamróz, Marta K.; Bąk, Joanna; Gliński, Jan A.; Koczorowska, Agnieszka; Wawer, Iwona

    2009-09-01

    Actein is a prominent triterpene glycoside occurring in Actaea racemosa. The triterpene glycosides are believed to be responsible for the estrogenic activity of an extract prepared from this herb. We determined in the crystal structure of actein by X-ray crystallography to be monoclinic P2(1) chiral space group. Refining the disorder, we determined 70% and 30% of contributions of ( S)- and ( R)-actein, respectively. The IR and Raman spectra suggest that actein forms at least four different types of hydrogen bonds. The 13C NMR spectra of actein were recorded both in solution and solid state. The 13C CPMAS spectrum of actein displays multiplet signals, in agreement with the crystallographic data. The NMR shielding constants were calculated for actein using GIAO approach and a variety of basis sets: 6-31G**, 6-311G**, 6-31+G**, cc-pVDZ, cc-pVDZ-su1 and 6-31G**-su1, as well as IGLO approach combined with the IGLO II basis set. The best results (RMSD of 1.6 ppm and maximum error of 3.4 ppm) were obtained with the 6-31G**-su1 basis set. The calculations of the shielding constants are helpful in the interpretation of the 13C CPMAS NMR spectra of actein and actein's analogues.

  6. 13C CPMAS NMR studies and DFT calculations of triterpene xylosides isolated from Actaea racemosa

    NASA Astrophysics Data System (ADS)

    Jamróz, Marta K.; Paradowska, Katarzyna; Gliński, Jan A.; Wawer, Iwona

    2011-05-01

    13C CPMAS NMR spectra of four triterpene glycosides: cimigenol xyloside ( 1), 26-deoxyactein ( 2), cimicifugoside H-1 ( 3) and 24-acethylhydroshengmanol xyloside ( 4) were recorded and analyzed to characterize their solid-state structure. Experimental data were supported by theoretical calculations of NMR shielding constants with the GIAO/6-31G**-su1 approach. A number of methods for the conformational search and a number of functionals for the DFT calculations were applied to ( 1). The best method was proven to be MMFF or MMFFAQ for the conformational search and the PBE1PBE functional for the DFT calculations. Extra calculations simulating C16 dbnd O⋯HOH hydrogen bond yield the isotropic shielding closer to the experimental solid-state value. For all the compounds CP kinetics parameters were calculated using either the I-S or the I-I*-S model. The analysis of CP kinetics data for methyl groups revealed differences in the T2 time constant for two methyl groups (C29 and C30) linked at C4.

  7. Evolution of organic matter during composting of different organic wastes assessed by CPMAS {sup 13}C NMR spectroscopy

    SciTech Connect

    Caricasole, P.; Provenzano, M.R.; Senesi, N.

    2011-03-15

    In this paper, the evolution of organic matter (OM) during composting of different mixtures of various organic wastes was assessed by means of chemical analyses and CPMAS {sup 13}C NMR spectroscopy measured during composting. The trends of temperatures and C/N ratios supported the correct evolution of the processes. The CPMAS {sup 13}C NMR spectra of all composting substrates indicated a reduction in carbohydrates and an increase in aromatic, phenolic, carboxylic and carbonylic C which suggested a preference by microorganisms for easily degradable C molecules. The presence of hardly degradable pine needles in one of the substrates accounted for the lowest increase in alkyl C and the lowest reduction in carbohydrates and carboxyl C as opposite to another substrate characterized by the presence of a highly degradable material such as spent yeast from beer production, which showed the highest increase of the alkyl C/O-alkyl C ratio. The highest increase of COOH deriving by the oxidative degradation of cellulose was shown by a substrate composed by about 50% of plant residues. The smallest increases in alkyl C/O-alkyl C ratio and in polysaccharides were associated to the degradation of proteins and lipids which are major components of sewage sludge. Results obtained were related to the different composition of fresh organic substrates and provided evidence of different OM evolution patterns as a function of the initial substrate composition.

  8. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    PubMed

    Paradowska, Katarzyna; Wolniak, Michał; Pisklak, Maciej; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm. PMID:19019638

  9. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    PubMed Central

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio

    2015-01-01

    Summary The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  10. Polydisperse methyl β-cyclodextrin-epichlorohydrin polymers: variable contact time (13)C CP-MAS solid-state NMR characterization.

    PubMed

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio; Mele, Andrea

    2015-01-01

    The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state (13)C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  11. Cigarette Butt Decomposition and Associated Chemical Changes Assessed by 13C CPMAS NMR

    PubMed Central

    Bonanomi, Giuliano; Incerti, Guido; Cesarano, Gaspare; Gaglione, Salvatore A.; Lanzotti, Virginia

    2015-01-01

    Cigarette butts (CBs) are the most common type of litter on earth, with an estimated 4.5 trillion discarded annually. Apart from being unsightly, CBs pose a serious threat to living organisms and ecosystem health when discarded in the environment because they are toxic to microbes, insects, fish and mammals. In spite of the CB toxic hazard, no studies have addressed the effects of environmental conditions on CB decomposition rate. In this study we investigate the interactive effects of substrate fertility and N transfer dynamics on CB decomposition rate and carbon quality changes. We carried out an experiment using smoked CBs and wood sticks, used as a slow decomposing standard organic substrate, incubated in both laboratory and field conditions for two years. CB carbon quality changes during decomposition was assessed by 13C CPMAS NMR. Our experiment confirmed the low degradation rate of CBs which, on average, lost only 37.8% of their initial mass after two years of decomposition. Although a net N transfer occurred from soil to CBs, contrary to our hypothesis, mass loss in the medium-term (two years) was unaffected by N availability in the surrounding substrate. The opposite held for wood sticks, in agreement with the model that N-rich substrates promote the decomposition of other N-poor natural organic materials with a high C/N ratio. As regards CB chemical quality, after two years of decomposition 13C NMR spectroscopy highlighted very small changes in C quality that are likely to reflect a limited microbial attack. PMID:25625643

  12. Cigarette butt decomposition and associated chemical changes assessed by 13C CPMAS NMR.

    PubMed

    Bonanomi, Giuliano; Incerti, Guido; Cesarano, Gaspare; Gaglione, Salvatore A; Lanzotti, Virginia

    2015-01-01

    Cigarette butts (CBs) are the most common type of litter on earth, with an estimated 4.5 trillion discarded annually. Apart from being unsightly, CBs pose a serious threat to living organisms and ecosystem health when discarded in the environment because they are toxic to microbes, insects, fish and mammals. In spite of the CB toxic hazard, no studies have addressed the effects of environmental conditions on CB decomposition rate. In this study we investigate the interactive effects of substrate fertility and N transfer dynamics on CB decomposition rate and carbon quality changes. We carried out an experiment using smoked CBs and wood sticks, used as a slow decomposing standard organic substrate, incubated in both laboratory and field conditions for two years. CB carbon quality changes during decomposition was assessed by 13C CPMAS NMR. Our experiment confirmed the low degradation rate of CBs which, on average, lost only 37.8% of their initial mass after two years of decomposition. Although a net N transfer occurred from soil to CBs, contrary to our hypothesis, mass loss in the medium-term (two years) was unaffected by N availability in the surrounding substrate. The opposite held for wood sticks, in agreement with the model that N-rich substrates promote the decomposition of other N-poor natural organic materials with a high C/N ratio. As regards CB chemical quality, after two years of decomposition 13C NMR spectroscopy highlighted very small changes in C quality that are likely to reflect a limited microbial attack. PMID:25625643

  13. Thermal maturity of type II kerogen from the New Albany Shale assessed by13C CP/MAS NMR

    USGS Publications Warehouse

    Werner-Zwanziger, U.; Lis, G.; Mastalerz, Maria; Schimmelmann, A.

    2005-01-01

    Thermal maturity of oil and gas source rocks is typically quantified in terms of vitrinite reflectance, which is based on optical properties of terrestrial woody remains. This study evaluates 13C CP/MAS NMR parameters in kerogen (i.e., the insoluble fraction of organic matter in sediments and sedimentary rocks) as proxies for thermal maturity in marine-derived source rocks where terrestrially derived vitrinite is often absent or sparse. In a suite of samples from the New Albany Shale (Middle Devonian to the Early Mississippian, Illinois Basin) the abundance of aromatic carbon in kerogen determined by 13C CP/MAS NMR correlates linearly well with vitrinite reflectance. ?? 2004 Elsevier Inc. All rights reserved.

  14. Interaction between a recombinant prion protein and organo-mineral complexes as evidenced by CPMAS 13C-NMR

    NASA Astrophysics Data System (ADS)

    Russo, F.; Scotti, R.; Gianfreda, L.; Conte, P.; Rao, M. A.

    2009-04-01

    Prion proteins (PrP) are the main responsible for Transmissible Spongiform Encephalopathies (TSE). The TSE etiological agent is a misfolded form of the normal cellular prion protein. The amyloidal aggregates accumulated in the brain of infected animals and mainly composed of PrPSc exhibit resistance to protease attack and many conventional inactivating procedures. The prion protein diseases cause an environmental issue because the environment and in particular the soil compartment can be contaminated and then become a potential reservoir and diffuser of TSEs infectivity as a consequence of (i) accidental dispersion from storage plants of meat and bone meal, (ii) incorporation of contaminated material in fertilizers, (iii) possible natural contamination of pasture soils by grazing herds, and (v) burial of carcasses. The environmental problem can be even more relevant because very low amounts of PrPSc are able to propagate the disease. Several studies evidenced that infectious prion protein remains active in soils for years. Contaminated soils result, thus, a possible critical route of TSE transmission in wild animals. Soil can also protect prion protein toward degradation processes due to the presence of humic substances and inorganic components such as clays. Mineral and organic colloids and the more common association between clay minerals and humic substances can contribute to the adsorption/entrapment of molecules and macromolecules. The polymerization of organic monomeric humic precursors occurring in soil in the presence of oxidative enzymes or manganese and iron oxides, is considered one of the most important processes contributing to the formation of humic substances. The process is very fast and produces a population of polymeric products of different molecular structures, sizes, shapes and complexity. Other molecules and possibly biomacromolecules such as proteins may be involved. The aim of the present work was to study by CPMAS 13C-NMR the interactions

  15. Solid state structure of new 5-[2-(N,N-diethylamino)ethoxy]-4,7-dimethylcoumarins by X-ray and 13C CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Ostrowska, Kinga; Hejchman, Elżbieta; Dobrzycki, Łukasz; Maciejewska, Dorota

    2015-05-01

    5-[2-(N,N-diethylamino)ethoxy]-4,7-dimethylcoumarin (1) and 6-acetyl-5-[2-(N,N-diethylamino)ethoxy]-4,7-dimethylcoumarin (2) were synthesized in a traditional way and microwave-assisted synthesis. Crystals of 2 in form of hydrochloride salt (3) were investigated using single crystal X-ray diffraction technique. In the crystal lattice of 3 there is only one type of strong hydrogen bond present involving protonated amino group and chloride anion. The whole structure is dominated by weak C-H…Cl-, C-H…O contacts. There is also visible aggregation of cations in stacks due to π-π interactions. The solid state structures of 1 and 2 derived from 13C CP/MAS NMR spectra were also proposed.

  16. Advanced CPMAS-13C NMR techniques for molecular characterization of size-separated fractions from a soil humic acid.

    PubMed

    Conte, Pellegrino; Spaccini, Riccardo; Piccolo, Alessandro

    2006-09-01

    A humic acid extracted from a volcanic soil was subjected to preparative high-performance size-exclusion chromatography (HPSEC) to reduce its molecular complexity and eleven different size fractions were obtained. Cross-polarization magic-angle spinning 13C NMR (CPMAS 13C NMR) analysis performed with variable contact-time (VCT) pulse sequences showed that the largest molecular-size fractions contained aromatic, alkyl, and carbohydrate-like components. The carbohydrate-like content and the alkyl chain length seemed to decrease with decreasing molecular size. Progressive reduction of aromatic carbon atoms was also observed with decreasing molecular size of the separated fractions. Mathematical treatment of the results from VCT experiments enabled cross polarization (T (CH)) and proton spin-lattice relaxation (T(1rho)(H)) times to be related to structural differences among the size fractions. The conformational distribution indicated that the eleven size fractions could be allocated to two main groups. The first group, with larger nominal molecular sizes, was characterized by molecular domains with slower local molecular motion. The second group of size fractions, with smaller nominal molecular sizes, was characterized by a larger number of molecular domains with faster local molecular motion. The T (CH) and (T(1rho)(H)) values suggested that either condensed or strongly associated aromatic systems were predominant in the size fractions with the largest apparent molecular dimensions. PMID:16896626

  17. 13C and 15N—Chemical Shift Anisotropy of Ampicillin and Penicillin-V Studied by 2D-PASS and CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Antzutkin, Oleg N.; Lee, Young K.; Levitt, Malcolm H.

    1998-11-01

    The principal values of the chemical shift tensors of all13C and15N sites in two antibiotics, ampicillin and penicillin-V, were determined by 2-dimensionalphaseadjustedspinningsideband (2D-PASS) and conventional CP/MAS experiments. The13C and15N chemical shift anisotropies (CSA), and their confidence limits, were evaluated using a Mathematica program. The CSA values suggest a revised assignment of the 2-methyl13C sites in the case of ampicillin. We speculate on a relationship between the chemical shift principal values of many of the13C and15N sites and the β-lactam ring conformation.

  18. Oligomeric complexes of some heteroaromatic ligands and aromatic diamines with rhodium and molybdenum tetracarboxylates: 13C and 15N CPMAS NMR and density functional theory studies.

    PubMed

    Leniak, Arkadiusz; Kamieński, Bohdan; Jaźwiński, Jarosław

    2015-05-01

    Seven new oligomeric complexes of 4,4'-bipyridine; 3,3'-bipyridine; benzene-1,4-diamine; benzene-1,3-diamine; benzene-1,2-diamine; and benzidine with rhodium tetraacetate, as well as 4,4'-bipyridine with molybdenum tetraacetate, have been obtained and investigated by elemental analysis and solid-state nuclear magnetic resonance spectroscopy, (13)C and (15)N CPMAS NMR. The known complexes of pyrazine with rhodium tetrabenzoate, benzoquinone with rhodium tetrapivalate, 4,4'-bipyridine with molybdenum tetrakistrifluoroacetate and the 1 : 1 complex of 2,2'-bipyridine with rhodium tetraacetate exhibiting axial-equatorial ligation mode have been obtained as well for comparison purposes. Elemental analysis revealed 1 : 1 complex stoichiometry of all complexes. The (15)N CPMAS NMR spectra of all new complexes consist of one narrow signal, indicating regular uniform structures. Benzidine forms a heterogeneous material, probably containing linear oligomers and products of further reactions. The complexes were characterized by the parameter complexation shift Δδ (Δδ = δcomplex  - δligand). This parameter ranged from around -40 to -90 ppm in the case of heteroaromatic ligands, from around -12 to -22 ppm for diamines and from -16 to -31 ppm for the complexes of molybdenum tetracarboxylates with 4,4'-bipyridine. The experimental results have been supported by a density functional theory computation of (15)N NMR chemical shifts and complexation shifts at the non-relativistic Becke, three-parameter, Perdew-Wang 91/[6-311++G(2d,p), Stuttgart] and GGA-PBE/QZ4P levels of theory and at the relativistic scalar and spin-orbit zeroth order regular approximation/GGA-PBE/QZ4P level of theory. Nucleus-independent chemical shifts have been calculated for the selected compounds. PMID:25614975

  19. Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing

    USGS Publications Warehouse

    Kogel-Knabner, I.; Hatcher, P.G.

    1989-01-01

    Samples obtained from forest soils at different stages of decomposition were treated sequentially with chloroform/methanol (extraction of lipids), sulfuric acid (hydrolysis), and sodium chlorite (delignification) to enrich them in refractory alkyl carbon. As revealed by NMR spectroscopy, this treatment yielded residues with high contents of alkyl carbon. In the NMR spectra of residues obtained from litter samples, resonances for carbohydrates are also present, indicating that these carbohydrates are tightly bound to the alkyl carbon structures. During decomposition in the soils this resistant carbohydrate fraction is lost almost completely. In the litter samples the alkyl carbon shows a dipolar dephasing behavior indicative of two structural components, a rigid and a more mobile component. As depth and decomposition increase, only the rigid component is observed. This fact could be due to selective degradation of the mobile component or to changes in molecular mobility during decomposition, e.g., because of an increase in cross linking or contact with the mineral matter of the soil.

  20. Glycerin-Induced Conformational Changes in Bombyx mori Silk Fibroin Film Monitored by (13)C CP/MAS NMR and ¹H DQMAS NMR.

    PubMed

    Asakura, Tetsuo; Endo, Masanori; Hirayama, Misaki; Arai, Hiroki; Aoki, Akihiro; Tasei, Yugo

    2016-01-01

    In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, (13)C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The ¹H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using ¹H-¹H distance constraints obtained from the ¹H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra. PMID:27618034

  1. Application of (13)C ramp CPMAS NMR with phase-adjusted spinning sidebands (PASS) for the quantitative estimation of carbon functional groups in natural organic matter.

    PubMed

    Ikeya, Kosuke; Watanabe, Akira

    2016-01-01

    The composition of carbon (C) functional groups in natural organic matter (NOM), such as dissolved organic matter, soil organic matter, and humic substances, is frequently estimated using solid-state (13)C NMR techniques. A problem associated with quantitative analysis using general cross polarization/magic angle spinning (CPMAS) spectra is the appearance of spinning side bands (SSBs) split from the original center peaks of sp (2) hybridized C species (i.e., aromatic and carbonyl C). Ramp CP/phase-adjusted side band suppressing (PASS) is a pulse sequence that integrates SSBs separately and quantitatively recovers them into their inherent center peaks. In the present study, the applicability of ramp CP/PASS to NOM analysis was compared with direct polarization (DPMAS), another quantitative method but one that requires a long operation time, and/or a ramp CP/total suppression side band (ramp CP/TOSS) technique, a popular but non-quantitative method for deleting SSBs. The test materials were six soil humic acid samples with various known degrees of aromaticity and two fulvic acids. There were no significant differences in the relative abundance of alkyl C, O-alkyl C, and aromatic C between the ramp CP/PASS and DPMAS methods, while the signal intensities corresponding to aromatic C in the ramp CP/TOSS spectra were consistently less than the values obtained in the ramp CP/PASS spectra. These results indicate that ramp CP/PASS can be used to accurately estimate the C composition of NOM samples. PMID:26522329

  2. Land use Effects on Storage, Stability and Structure of Organic Carbon in Soil Density Fractions Revealed by 13C Natural Abundance and CPMAS 13C NMR

    NASA Astrophysics Data System (ADS)

    Flessa, H.; Helfrich, M.; John, B.; Yamashita, T.; Ludwig, B.

    2004-12-01

    The type of land use and soil cultivation are important factors controlling organic carbon storage (SOC) in soils and they can also influence the relative importance, the structure, and the stability of different SOC pools. The objectives of our study were: i) to quantify the SOC stocks in different density fractions (mineral-associated soil organic matter > 2 g cm-3 (Mineral-SOM), free particulate organic matter < 1.6 g cm-3 (free POM), light occluded particulate organic matter < 1.6 g cm-3 (occluded POM<1.6) and dense occluded particulate organic matter 1.6 to 2.0 g cm-3 (occluded POM1.6-2.0)) of silty soils under different land use (spruce forest, grassland, maize, wheat), ii) to determine the structure of these SOC fractions by CPMAS 13C NMR spectroscopy, and iii) to analyse the stability of these SOC fractions in the maize soil on the basis of the stable isotope composition of SOC. The SOC concentration in the A horizon increased in the order wheat (12.7 g kg-1) < maize (13.0 g kg-1) < grassland (24.5 g kg-1) < spruce (40.5 g kg-1). The major part (86-91%) of the SOC was associated with the heavy mineral fraction at the grassland, maize and wheat site. In the A horizon of the spruce soil, the particulate organic matter accounted for 52% of the total SOC content. The chemical structure of the soil organic matter (SOM) was influenced by litter quality, the intensity of litter decomposition and the related production and storage of microbially-derived substances. SOM of the acid forest soil was characterized by large amounts of POM with a high content of spruce litter-derived alkyl C. In the biologically more active grassland and maize soil, litter-derived POM was decomposed more rapidly and SOC stocks were dominated by mineral-associated SOM which contained greater proportions of aryl and carbonyl C. The cultivation of the grassland soil induced enhanced mineralization of POM and in particular of mineral-associated SOM. The faster SOC turnover was associated

  3. Soil organic degradation: bridging the gap between Rock-Eval pyrolysis and chemical characterization (CPMAS 13C NMR)

    NASA Astrophysics Data System (ADS)

    Albrecht, Remy; Sebag, David; Verrecchia, Eric

    2013-04-01

    Being a source of mineral nutrients, organic matter contributes to soil chemical fertility and acts on soil physical fertility through its role in soil structure. Soil organic matter (SOM) is a key component of soils. Despite the paramount importance of SOM, information on its chemistry and behaviour in soils is incomplete. Numerous methods are used to characterize and monitor OM dynamics in soils using different approaches (Kogel-Knabner, 2000). Two of the main approaches are evaluated and compared in this study. Rock-Eval pyrolysis (RE pyrolysis) provides a description of a SOM's general evolution using its thermal resistance. The second tool (13C CPMAS NMR) aims to give precise and accurate chemical information on OM characterization. The RE pyrolysis technique was designed for petroleum exploration (Lafargue et al., 1998) and because of its simplicity, it has been applied to a variety of other materials such as soils or Recent sediments (Disnar et al., 2000; Sebag, 2006). Recently, RE pyrolysis became a conventional tool to study OM dynamics in soils. In RE pyrolysis, a peak deconvolution is applied to the pyrolysis signal in order to get four main components related to major classes of organic constituents. These components differ in origin and resistance to pyrolysis: labile biological constituents (F1), resistant biological constituents (F2), immature non-biotic constituents (F3) and a mature refractory fraction (F4) (Sebag, 2006; Coppard, 2006). Main advantages of the technique are its repeatability, and rapidity to provide an overview of OM properties and stocks. However, do the four major classes used in the literature reflect a pertinent chemical counterpart? To answer this question, we used 13C Nuclear Magnetic Resonance Spectroscopy in the solid state (13C CPMAS NMR) to collect direct information on structural and conformational characteristics of OM. NMR resonances were assigned to chemical structures according to five dominant forms: alkyl C, O

  4. Soil organic degradation: bridging the gap between Rock-Eval pyrolysis and chemical characterization (CPMAS 13C NMR)

    NASA Astrophysics Data System (ADS)

    Albrecht, Remy; Sebag, David; Verrecchia, Eric

    2013-04-01

    Being a source of mineral nutrients, organic matter contributes to soil chemical fertility and acts on soil physical fertility through its role in soil structure. Soil organic matter (SOM) is a key component of soils. Despite the paramount importance of SOM, information on its chemistry and behaviour in soils is incomplete. Numerous methods are used to characterize and monitor OM dynamics in soils using different approaches (Kogel-Knabner, 2000). Two of the main approaches are evaluated and compared in this study. Rock-Eval pyrolysis (RE pyrolysis) provides a description of a SOM's general evolution using its thermal resistance. The second tool (13C CPMAS NMR) aims to give precise and accurate chemical information on OM characterization. The RE pyrolysis technique was designed for petroleum exploration (Lafargue et al., 1998) and because of its simplicity, it has been applied to a variety of other materials such as soils or Recent sediments (Disnar et al., 2000; Sebag, 2006). Recently, RE pyrolysis became a conventional tool to study OM dynamics in soils. In RE pyrolysis, a peak deconvolution is applied to the pyrolysis signal in order to get four main components related to major classes of organic constituents. These components differ in origin and resistance to pyrolysis: labile biological constituents (F1), resistant biological constituents (F2), immature non-biotic constituents (F3) and a mature refractory fraction (F4) (Sebag, 2006; Coppard, 2006). Main advantages of the technique are its repeatability, and rapidity to provide an overview of OM properties and stocks. However, do the four major classes used in the literature reflect a pertinent chemical counterpart? To answer this question, we used 13C Nuclear Magnetic Resonance Spectroscopy in the solid state (13C CPMAS NMR) to collect direct information on structural and conformational characteristics of OM. NMR resonances were assigned to chemical structures according to five dominant forms: alkyl C, O

  5. Optimized Spectral Editing of 13C MAS NMR Spectra of Rigid Solids Using Cross-Polarization Methods

    NASA Astrophysics Data System (ADS)

    Sangill, R.; Rastrupandersen, N.; Bildsoe, H.; Jakobsen, H. J.; Nielsen, N. C.

    Combinations of 13C magic-angle spinning (MAS) NMR experiments employing cross polarization (CP), cross polarization-depolarization (CPD), and cross polarization-depolarization-repolarization are analyzed quantitatively to derive simple and general procedures for optimized spectral editing of 13C CP/MAS NMR spectra of rigid solids by separation of the 13C resonances into CH n subspectra ( n = 0, 1, 2, and 3). Special attention is devoted to a differentiation by CPD/MAS of CH and CH 2 resonances since these groups behave quite similarly during spin lock under Hartmann-Hahn match and are therefore generally difficult to distinguish unambiguously. A general procedure for the design of subexperiments and linear combinations of their spectra to provide optimized signal-to-noise ratios for the edited subspectra is described. The technique is illustrated by a series of edited 13C CP/MAS spectra for a number of rigid solids ranging from simple organic compounds (sucrose and l-menthol) to complex pharmaceutical products (calcipotriol monohydrate and vitamin D 3) and polymers (polypropylene, polyvinyl alcohol, polyvinyl chloride, and polystyrene).

  6. The study of a monocotyledon abscission zone using microscopic, chemical, enzymatic and solid state 13C CP/MAS NMR analyses.

    PubMed

    Henderson, J; Davies, H A; Heyes, S J; Osborne, D J

    2001-01-01

    We have investigated distinguishing features in cells of the abscission zone of a monocotyledon fruit, the oil palm Elaeis guineensis. The cell walls of the abscission zone and the subtending mesocarp and pedicel have been analysed by light and transmission electron microscopy, by chemical methods and by solid state 13C CP/MAS NMR spectroscopy. Results show that these abscission zone cells have specific characteristics which include high levels of unmethylated pectin in the walls and an inducible (x35) polygalacturonase enzyme expression. Together these findings help to explain the localised precision of cell separation events. PMID:11219806

  7. A structural study of pyrazole-1-carboxamides by X-ray crystallography and 13C CPMAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Llamas-Saiz, Antonio L.; Foces-Foces, Concepción; Sobrados, Isabel; Jagerovic, Nadine; Elguero, José

    1999-03-01

    The crystal structures of the first two pyrazole N-substituted primary amides (3-methyl and 4-bromo) were determined. The amide groups from the R 22 (8) hydrogen-bond dimeric pattern in all cases, in accordance with the higher rate found for the formation of this pattern in monosubstituted benzamides (81%) compared with the whole group of primary amide structures (34%). These two compounds and four other N-CONH 2 pyrazoles were studied by solid state NMR (CPMAS technique).

  8. Solid state structure by X-ray and 13C CP/MAS NMR of new 5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarins

    NASA Astrophysics Data System (ADS)

    Ostrowska, Kinga; Maciejewska, Dorota; Dobrzycki, Łukasz; Socha, Pawel

    2016-05-01

    5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (1) and 6-acetyl-5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (2), structurally related, were synthesized using both conventional and microwave-assisted approach. An impact of acetyl groups on the molecular structure of coumarin derivatives has been examined. Crystals of 2 were investigated using single crystal and powder X-ray diffraction techniques. Compound 2 crystallizes forming two polymorphs (denoted as 2_1 and 2_2), both belonging to P21/c space group. Both polymorphs are comparably stable and can be formed simultaneously during crystallization process. The solid state structure was also analysed using the fully resolved 13C CP/MAS NMR. The double signals with the intensity ratio of about 1:1 which were observed in the 13C CP/MAS NMR spectrum of compound 1 must arise due to the presence of two conformers of 1. In contrast, NMR spectrum recorded for powder mixture of two polymorphs of compound 2 displays no signal splitting. This is related to structural similarities of molecules in both polymorphs.

  9. Millimeter and submillimeter wave spectra of 13C methylamine

    NASA Astrophysics Data System (ADS)

    Motiyenko, R. A.; Margulès, L.; Ilyushin, V. V.; Smirnov, I. A.; Alekseev, E. A.; Halfen, D. T.; Ziurys, L. M.

    2016-03-01

    Context. Methylamine (CH3NH2) is a light molecule of astrophysical interest, which has an intensive rotational spectrum that extends in the submillimeter wave range and far beyond, even at temperatures characteristic for the interstellar medium. It is likely for 13C isotopologue of methylamine to be identified in astronomical surveys, but there is no information available for the 13CH3NH2 millimeter and submillimeter wave spectra. Aims: In this context, to provide reliable predictions of 13CH3NH2 spectrum in millimeter and submillimeter wave ranges, we have studied rotational spectra of the 13C methylamine isotopologue in the frequency range from 48 to 945 GHz. Methods: The spectrum of 13C methylamine was recorded using conventional absorption spectrometers. The analysis of the rotational spectrum of 13C methylamine in the ground vibrational state was performed on the basis of the group-theoretical high-barrier tunneling Hamiltonian that was developed for methylamine. The available multiple observations of the parent methylamine species toward Sgr B2(N) at 1, 2, and 3 mm using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory were used to make a search for interstellar 13CH3NH2. Results: In the recorded spectra, we have assigned 2721 rotational transitions that belong to the ground vibrational state of the 13CH3NH2. These measurements were fitted to the Hamiltonian model that uses 75 parameters to achieve an overall weighted rms deviation of 0.73. On the basis of these spectroscopic results, predictions of transition frequencies in the frequency range up to 950 GHz with J ≤ 50 and Ka ≤ 20 are presented. The search for interstellar 13C methylamine in available observational data was not successful and therefore only an upper limit of 6.5 × 1014 cm-2 can be derived for the column density of 13CH3NH2 toward Sgr B2(N), assuming the same source size, temperature, linewidth, and systemic velocity as for parent methylamine isotopic

  10. A study of structure and dynamics of poly(aspartic acid) sodium/poly(vinyl alcohol) blends by 13C CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Wang, P.; Ando, I.

    1999-09-01

    Solid state 13C CP/MAS NMR measurements have been carried out on poly(aspartic acid) sodium (PAANa)/poly(vinyl alcohol) (PVA) blends over a wide range of temperatures. From these experimental results, it is found that the main-chain conformations of PAANa in PAANa/PVA blends take the α-helix form over a wide range of blend ratios, and, in contrast, the conformation and dynamics of the side chains of PAANa are strongly influenced by the formation of an intermolecular hydrogen bond between the carboxyl group of the side chains and the hydroxyl group of PVA. The behavior of the proton spin-lattice relaxation times in the rotating frame ( T1 ρ(H)) and the laboratory frame ( T1(H)) indicates that when the blend ratio of PAANa and PVA is 1:1, they are miscible.

  11. Line shapes in CP/MAS NMR spectra of half-integer quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigenobu; Hayamizu, Kikuko

    1993-02-01

    Cross polarization (CP) from 1H to quadrupolar nuclei with S = 3/2 has been carried out under magic-angle-spinning (MAS) conditions for powder samples of Na 2B 4O 7·10H 2O and H 3BO 3. The line shapes in the CP/MAS NMR spectra are different from those in the spectra measured with the single pulse sequence combined with 1H dipolar decoupling. Furthermore, the line shapes are found to be dependent on the measuring conditions such as the pulse amplitude for the quadrupolar nuclei. The spin-locking experiments demonstrate that line shapes in CP/MAS NMR spectra are largely dependent on the spin-locking efficiency.

  12. Millimeter and submillimeter wave spectra of 13C-glycolaldehydes

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Motiyenko, R. A.; Margulès, L.; Huet, T. R.

    2013-01-01

    Context. Glycolaldehyde (CH2OHCHO) is the simplest sugar and an important intermediate in the path toward forming more complex biologically relevant molecules. Astronomical surveys of interstellar molecules, such as those available with the very sensitive ALMA telescope, require preliminary laboratory investigations of the microwave and submillimeter-wave spectra of molecular species including new isotopologs - to identify these in the interstellar media. Aims: To achieve the detection of the 13C isotopologs of glycolaldehyde in the interstellar medium, their rotational spectra in the millimeter and submillimeter-wave regions were studied. Methods: The spectra of 13CH2OHCHO and CH2OH13CHO were recorded in the 150-945 GHz spectral range in the laboratory using a solid-state submillimeter-wave spectrometer in Lille. The observed line frequencies were measured with an accuracy of 30 kHz up to 700 GHz and of 50 kHz above 700 GHz. We analyzed the spectra with a standard Watson Hamiltonian. Results: About 10 000 new lines were identified for each isotopolog. The spectroscopic parameters were determined for the ground- and the three lowest vibrational states up to 945 and 630 GHz. Previous microwave assignments of 13CH2OHCHO were not confirmed. Conclusions: The provided line-lists and sets of molecular parameters meet the needs for a first astrophysical search of 13C-glycolaldehydes. Full Tables 3 and 4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A96

  13. A Close Look at 13C CPMAS Linewidths in Solids for Rigid, Strongly Coupled Carbons under CW Proton Decoupling

    NASA Astrophysics Data System (ADS)

    VanderHart, D. L.; Campbell, G. C.

    1998-09-01

    Ambient-temperature13C linewidth (LW) and transverse relaxation (TC2) data are presented for the natural-abundance crystalline carbons of linear polyethylene (LPE) under CW proton decoupling conditions and magic angle spinning (MAS). This linewidth behavior typifies that seen for rigid methylene carbons whose attached protons are also strongly coupled to other protons. These data are presented for two LPE samples (unoriented, melt-crystallized and uniaxially oriented, extruded) as a function of several parameters including static field (1.4 T 13C-bonded protons. The difference in sensitivities of LW(ORPI) to νrfor the off-resonance and the on-resonance cases is traced back, respectively, to the

  14. Structures and thermal and hydrothermal stabilities of sulfonated poly(organosiloxanes) by /sup 29/Si and /sup 13/C CP/MAS NMR

    SciTech Connect

    Suzuki, S.; Ono, Y.; Nakata, S.; Asaoka, S.

    1987-03-12

    High-resolution /sup 29/Si and /sup 13/C cross polarization/magic-angle spinning (CP/MAS) NMR spectroscopies have been applied to poly((sulfophenyl)siloxane) and poly((sulfopropyl)siloxane) in order to examine their thermal and hydrothermal stability. The effects of the treatments on the catalytic activity for the alcohol dehydration were also studied. Under nonsteaming conditions, both siloxanes have much higher thermal stability than Amberlyst-15. Thermal stability is in a decreasing order, poly((sulfophenyl)siloxane) (573 K) > poly((sulfopropyl)siloxane) (543 K) > Amberlyst-15 (468 K), while the thermal stability under steaming conditions is in the order of poly((sulfopropyl)siloxane) (543 K) > poly((sulfophenyl)siloxane) = Amberlyst-15 (468 K). The thermal degradation of the poly((sulfophenyl)siloxane) mainly occurs by the rupture of the C-Si bonds between the benzene ring and the siloxane chain. The steam greatly affects the thermal stability of poly((sulfophenyl)siloxane). Thus, under steaming conditions, thermal degradation occurred at much lower temperatures than under nonsteaming conditions. The thermal degradation of the poly((sulfopropyl)siloxane) mainly occurs at the C-C bond in the sulfopropyl groups. Steam does not affect the thermal stability of poly((sulfopropyl)siloxane).

  15. Analysis of mercerization process based on the intensity change of deconvoluted resonances of (13)C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions.

    PubMed

    Miura, Kento; Nakano, Takato

    2015-08-01

    The area intensity change of C1, C4, and C6 in spectrum obtained by (13)C CP/MAS NMR and the mutual relationship between their changes were examined for cellulose samples treated with various concentrations of aqueous NaOH solutions under non-cooling and cooling conditions. The area intensity of C1-up and C6-down changed cooperatively with that of C4-down which corresponds to the crystallinity of samples: "-up" and "-down" are the up- and down- field component in a splitting peak of NMR spectrum, respectively. The intensity change of C1-up starts to decrease with decreasing in that of C4-down after that of C6-down is almost complete. These changes were more clearly observed for samples treated under cooling condition. It can be suggested that their characteristic change relates closely to the change in conformation of cellulose chains by induced decrystallization and the subsequent crystallization of cellulose II, and presumed that their changes at microscopic level relate to the macroscopic morphological changes such as contraction along the length of cellulose chains and recovery along the length. PMID:26042706

  16. The structural properties of the transmembrane segment of the integral membrane protein phospholamban utilizing (13)C CPMAS, (2)H, and REDOR solid-state NMR spectroscopy.

    PubMed

    Karp, Ethan S; Tiburu, Elvis K; Abu-Baker, Shadi; Lorigan, Gary A

    2006-06-01

    Solid-state NMR spectroscopic techniques were used to investigate the secondary structure of the transmembrane peptide phospholamban (TM-PLB), a sarcoplasmic Ca(2+) regulator. (13)C cross-polarization magic angle spinning spectra of (13)C carbonyl-labeled Leu39 of TM-PLB exhibited two peaks in a pure 1-palmitoyl-2-oleoyl-phosphocholine (POPC) bilayer, each due to a different structural conformation of phospholamban as characterized by the corresponding (13)C chemical shift. The addition of a negatively charged phospholipid (1-palmitoyl-2-oleoylphosphatidylglycerol (POPG)) to the POPC bilayer stabilized TM-PLB to an alpha-helical conformation as monitored by an enhancement of the alpha-helical carbonyl (13)C resonance in the corresponding NMR spectrum. (13)C-(15)N REDOR solid-state NMR spectroscopic experiments revealed the distance between the (13)C carbonyl carbon of Leu39 and the (15)N amide nitrogen of Leu42 to be 4.2+/-0.2A indicating an alpha-helical conformation of TM-PLB with a slight deviation from an ideal 3.6 amino acid per turn helix. Finally, the quadrupolar splittings of three (2)H labeled leucines (Leu28, Leu39, and Leu51) incorporated in mechanically aligned DOPE/DOPC bilayers yielded an 11 degrees +/-5 degrees tilt of TM-PLB with respect to the bilayer normal. In addition to elucidating valuable TM-PLB secondary structure information, the solid-state NMR spectroscopic data indicates that the type of phospholipids and the water content play a crucial role in the secondary structure and folding of TM-PLB in a phospholipid bilayer. PMID:16839519

  17. Modification of olefin polymerization catalysts. III. A sup 13 C CP-MAS NMR study of adsorption of silyl ethers on MgCl sub 2 -supported Ziegler-Natta catalysts

    SciTech Connect

    Pakkanen, T.T.; Vaehaesarja, E.; Pakkanen, T.A. ); Iiskola, E.; Sormunen, P. )

    1990-02-01

    A {sup 13}C CP-MAS NMR and elemental analysis study of adsorption and interaction of silyl ethers, RSi(OMe){sub 3} (R = Et, Ph, OMe), as internal and external electron donors with MgCl{sub 2}-supported Ziegler-Natta catalyst has been carried out. A chemical activation of anhydrous MgCl{sub 2} with EtOH and AlEt{sub 3} produces a high-surface-area support stabilized by an organoaluminum compound, AlEt{sub 2}(OEt). In a treatment of the aluminum-modified MgCl{sub 2} support with silyl ether, the aluminum surface complex is retained and silyl ether is almost totally incorporated into the support. {sup 13}C CP-MAS NMR data of the methoxy region indicate that a mobile liquid-like silyl ether species dominates, except in the case of Si(OMe){sub 4}, where a more strongly bound species is also present on the support. TiCl{sub 4} treatment removes the weakly adsorbed silyl ether species, leaving a species which is attributed to an aluminum-bound silyl ether surface complex. No evidence of titanium-bound silyl ether species was found in the solid state or in solution where TiCl{sub 4} undergoes with silyl ethers an exchange reaction forming a yellow solid identified as (TiCl{sub 2}(OMe){sub 2}){sub x}. Activation of the catalyst with AlEt{sub 3} at a high Al:Ti ratio produces a material with a low silyl ether coverage showing a weak methoxy signal in {sup 13}C CP-MAS. The linewidths of the observed signals in {sup 13}C CP-MAS NMR are in the range 5-10 ppm at every stage of preparation of the catalyst, indicating heterogeneity of the coordination sites on the surface of chemically activated MgCl{sub 2}.

  18. Examination of the structure in solid state of amino analogs of 4,4‧-[1,5-pentanediylbis(oxy)]bisbenzonitrile by means of X-ray diffraction, 13C CP/MAS NMR, and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Maciejewska, Dorota; Wolska, Irena; Żabiński, Jerzy

    2008-05-01

    A single crystal of X-ray diffraction structures is presented for 4,4'-[1,5-(3-oxapentanediylbis(amino))]bisbenzonitrile 2 and 4,4'-[1,5-( N-methyl-3-azapentane-diylbis(oxy))]bisbenzonitrile 3. The molecular structures of these derivatives differ especially in conformations of the central linker: in 2 this linker adopts a trans/ gauche conformation, whereas in 3 - a fully extended conformation. The N atoms in various positions of the aliphatic linker change dramatically the molecular packing mode of both bisnitriles. But in both cases the nitrile groups take part in intermolecular hydrogen bonds: a type of N sbnd H···N in 2 and of C sbnd H···N in 3. Various conformations of both molecules were reflected in 13C CP/MAS NMR spectra in solid state as single and double resonance patterns for 2 and 3, respectively. A preliminary anticancer assay against 60 cell lines of 3 reveals strong growth inhibition of leukemia, melanoma, and renal cancer cells.

  19. Study of chemically inequivalent N(CH3)4 ions in [N(CH3)4]2ZnBr4 near the phase transition temperature using 1H MAS NMR, 13C CP/MAS NMR, and 14N NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-02-01

    The temperature dependences of the chemical shifts and intensities of 1H, 13C, and 14N nuclei in tetramethylammonium tetrabromozincate, [N(CH3)4]2ZnBr4, were investigated using single-crystal nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR spectroscopy to elucidate the structural geometry near the phase transition temperature. Based on the analysis of the 13C cross-polarization (CP)/MAS NMR and 14N NMR spectra, the two chemically inequivalent N(1) (CH3)4 and N(2) (CH3)4 ions were distinguished. Furthermore, the 14N NMR spectrum at the phase transition temperature indicated the existence of the ferroelastic characteristics of the N(CH3)4 ions.

  20. Strategy for Enhancement of (13)C-Photo-CIDNP NMR Spectra by Exploiting Fractional (13)C-Labeling of Tryptophan.

    PubMed

    Eisenreich, Wolfgang; Joshi, Monika; Illarionov, Boris; Kacprzak, Sylwia; Lukaschek, Michail; Kothe, Gerd; Budisa, Nediljko; Fischer, Markus; Bacher, Adelbert; Weber, Stefan

    2015-10-29

    The photo-CIDNP effect has proven to be useful to strongly enhance NMR signals of photochemically active proteins simply by irradiation with light. The evolving characteristic patterns of enhanced absorptive and emissive NMR lines can be exploited to elucidate the photochemistry and photophysics of light-driven protein reactions. In particular, by the assignment of (13)C NMR resonances, redox-active amino acids may be identified and thereby electron-transfer pathways unraveled, in favorable cases, even with (13)C at natural abundance. If signal enhancement is weak, uniform (13)C isotope labeling is traditionally applied to increase the signal strength of protein (13)C NMR. However, this typically leads to cross relaxation, which transfers light-induced nuclear-spin polarization to adjacent (13)C nuclei, thereby preventing an unambiguous analysis of the photo-CIDNP effect. In this contribution, two isotope labeling strategies are presented; one leads to specific but ubiquitous (13)C labeling in tryptophan, and the other is based on fractional isotope labeling affording sets of isotopologs with low probability of next-neighbor isotope accumulation within individual tryptophan molecules. Consequently, cross relaxation is largely avoided while the signal enhancement by (13)C enrichment is preserved. This results in significantly simplified polarization patterns that are easier to analyze with respect to the generation of light-generated nuclear-spin polarization. PMID:26244593

  1. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  2. I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

    SciTech Connect

    Ziegeweid, M.A.

    1995-11-29

    NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity'of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting QUantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of {sup 14}N via the quadrupolar interaction. Because {sup 14}N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe {sup 14}N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional {sup 13}C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}({eta}{sup 1}-C{sub 5}H{sub 5}){sub 2}, Zr({eta}{sup 5}-C{sub 5}H{sub 5}){sub 3}({eta}{sup 1}-C

  3. Magnetic susceptibility effects on 13C MAS NMR spectra of carbon materials and graphite.

    PubMed

    Freita, J C; Emmerich, F G; Cernicchiaro, G R; Sampaio, L C; Bonagamba, T J

    2001-01-01

    13C high-resolution solid-state nuclear magnetic resonance (NMR) was employed to study carbon materials prepared through the thermal decomposition of four different organic precursors (rice hulls, endocarp of babassu coconut, peat, and PVC). For heat treatment temperatures (HTTs) above about 600 C, all materials presented 13C NMR spectra composed of a unique resonance line associated with carbon atoms in aromatic planes. With increasing HTT a continuous broadening of this resonance and a diamagnetic shift in its central frequency were verified for all samples. The evolution of the magnitude and anisotropy of the magnetic susceptibility of the heat-treated carbon samples with HTT explains well these findings. It is shown that these results are better understood when a comparison is made with the features of the 13C NMR spectrum of polycrystalline graphite, for which the magnetic susceptibility effect is also present and is much more pronounced. PMID:11529420

  4. Chemical shift changes and line narrowing in 13C NMR spectra of hydrocarbon clathrate hydrates.

    PubMed

    Kida, Masato; Sakagami, Hirotoshi; Takahashi, Nobuo; Nagao, Jiro

    2013-05-23

    The solid-state (13)C NMR spectra of various guest hydrocarbons (methane, ethane, propane, adamantane) in clathrate hydrates were measured to elucidate the local structural environments around hydrocarbon molecules isolated in guest-host frameworks of clathrate hydrates. The results show that, depending on the cage environment, the trends in the (13)C chemical shift and line width change as a function of temperature. Shielding around the carbons of the guest normal alkanes in looser cage environments tends to decrease with increasing temperature, whereas shielding in tighter cage environments tends to increase continuously with increasing temperature. Furthermore, the (13)C NMR line widths suggest, because of the reorientation of the guest alkanes, that the local structures in structure II are more averaged than those in structure I. The differences between structures I and II tend to be very large in the lower temperature range examined in this study. The (13)C NMR spectra of adamantane guest molecules in structure H hydrate show that the local structures around adamantane guests trapped in structure H hydrate cages are averaged at the same level as in the α phase of solid adamantane. PMID:23607335

  5. Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Byg, Inge; Damager, Iben; Diaz, Jerome; Engelsen, Søren B; Ulvskov, Peter

    2011-05-01

    Hydration of rhamnogalacturonan-I (RG-I) derived from potato cell wall was analyzed by (13)C single-pulse (SP) magic-angle-spinning (MAS) and (13)C cross-polarization (CP) MAS nuclear magnetic resonance (NMR) and supported by (2)H SP/MAS NMR experiments. The study shows that the arabinan side chains hydrate more readily than the galactan side chains and suggests that the overall hydration properties can be controlled by modifying the ratio of these side chains. Enzymatic modification of native (NA) RG-I provided samples with reduced content of arabinan (sample DA), galactan (sample DG), or both side chains (sample DB). Results of these samples suggested that hydration properties were determined by the length and character of the side chains. NA and DA exhibited similar hydration characteristics, whereas DG and DB were difficult to hydrate because of the less hydrophilic properties of the rhamnose-galacturonic acid (Rha-GalA) backbone in RG-I. Potential food ingredient uses of RG-I by tailoring of its structure are discussed. PMID:21462966

  6. Characterisation of the 1H and 13C NMR spectra of methylcitric acid

    NASA Astrophysics Data System (ADS)

    Krawczyk, Hanna; Martyniuk, Tomasz

    2007-06-01

    Methylcitric acid (MCA) was synthesised in Reformatsky reaction (2 RS, 3 RS stereoisomers) and in the nucleophilic addition (2 RS, 3 SR stereoisomers). The stereoselectivity of these reactions was analysed. 1H and 13C NMR spectra of diastereoisomers of methylcitric acid were recorded and interpreted. The values of 1H chemical shifts and 1H- 1H coupling constants were analysed. Proton-decoupled high-resolution 13C NMR spectra of MCA diastereoisomers were measured in a series of dilute water solutions of various acidities. These data may provide a basis for unequivocal determination of the presence of MCA in the urine samples of patients' suffering from propionic acidemia, methylmalonic aciduria, or holocarboxylase synthetase deficiency. NMR spectroscopy enables determination of MCA diastereoisomers in body fluids and can be a complementary and useful diagnostic tool.

  7. Automated data processing of { 1H-decoupled} 13C MR spectra acquired from human brain in vivo

    NASA Astrophysics Data System (ADS)

    Shic, Frederick; Ross, Brian

    2003-06-01

    In clinical 13C infusion studies, broadband excitation of 200 ppm of the human brain yields 13C MR spectra with a time resolution of 2-5 min and generates up to 2000 metabolite peaks over 2 h. We describe a fast, automated, observer-independent technique for processing { 1H-decoupled} 13C spectra. Quantified 13C spectroscopic signals, before and after the administration of [1- 13C]glucose and/or [1- 13C]acetate in human subjects are determined. Stepwise improvements of data processing are illustrated by examples of normal and pathological results. Variation in analysis of individual 13C resonances ranged between 2 and 14%. Using this method it is possible to reliably identify subtle metabolic effects of brain disease including Alzheimer's disease and epilepsy.

  8. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  9. Millimeter and submillimeter wave spectra of mono-13C-acetaldehydes

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Ilyushin, V. V.; Guillemin, J. C.

    2015-07-01

    Context. The acetaldehyde molecule is ubiquitous in the interstellar medium of our galaxy, and due to its dense and complex spectrum, large dipole moment, and several low-lying torsional states, acetaldehyde is considered to be a "weed" molecule for radio astronomy observations. Mono-13C acetaldehydes 13CH3CHO and CH313CHO are likely to be identified in astronomical surveys, such as those available with the very sensitive ALMA telescope. Laboratory measurements and analysis of the millimeter and submillimeter-wave spectra are the prerequisites for the successful radioastronomical search for the new interstellar molecular species, as well as for new isotopologs of already detected interstellar molecules. Aims: In this context, to provide reliable predictions of 13CH3CHO and CH313CHO spectra in millimeter and submillimeter wave ranges, we study rotational spectra of these species in the frequency range from 50 to 945 GHz. Methods: The spectra of mono-13C acetaldehydes were recorded using the spectrometer based on Schottky-diode frequencymultiplication chains in the Lille laboratory. The rotational spectra of 13CH3CHO and CH313CHO molecules were analyzed using the Rho axis method. Results: In the recorded spectra we have assigned 6884 for the 13CH3CHO species and 6458 for CH313CHO species new rotational transitions belonging to the ground, first, and second excited torsional states. These measurements were fitted together with previously published data to the Hamiltonian models that use 91 and 87 parameters to achieve overall weighted rms deviations 0.88 for the 13CH3CHO species and 0.95 for CH313CHO. On the basis of the new spectroscopic results, predictions of transition frequencies in the frequency range up to 1 THz with J ≤ 60 and Ka ≤ 20 are presented for both isotopologs. Full Tables 3-6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A46

  10. Experimental (X-ray, (13)C CP/MAS NMR, IR, RS, INS, THz) and Solid-State DFT Study on (1:1) Co-Crystal of Bromanilic Acid and 2,6-Dimethylpyrazine.

    PubMed

    Łuczyńska, Katarzyna; Drużbicki, Kacper; Lyczko, Krzysztof; Dobrowolski, Jan Cz

    2015-06-01

    A combined structural, vibrational spectroscopy, and solid-state DFT study of the hydrogen-bonded complex of bromanilic acid with 2,6-dimethylpyrazine is reported. The crystallographic structure was determined by means of low-temperature single-crystal X-ray diffraction, which reveals the molecular units in their native protonation states, forming one-dimensional infinite nets of moderate-strength O···H-N hydrogen bonds. The nature of the crystallographic forces, stabilizing the studied structure, has been drawn by employing the noncovalent interactions analysis. It was found that, in addition to the hydrogen bonding, the intermolecular forces are dominated by stacking interactions and C-H···O contacts. The thermal and calorimetric analysis was employed to probe stability of the crystal phase. The structural analysis was further supported by a computationally assisted (13)C CP/MAS NMR study, providing a complete assignment of the recorded resonances. The vibrational dynamics was explored by combining the optical (IR, Raman, TDs-THz) and inelastic neutron scattering (INS) spectroscopy techniques with the state-of-the-art solid-state density functional theory (DFT) computations. Despite the quasi-harmonic approximation assumed throughout the study, an excellent agreement between the theoretical and experimental data was achieved over the entire spectral range, allowing for a deep and possibly thorough understanding of the vibrational characteristics of the system. Particularly, the significant influence of the long-range dipole coupling on the IR spectrum has been revealed. On the basis of a wealth of information gathered, the recent implementation of a dispersion-corrected linear-response scheme has been extensively examined. PMID:25961154

  11. Supramolecular self-organisation and conformational isomerism of a binuclear O,O'-dipropyl dithiophosphate gold(I) complex, [Au2{S2P(OC3H7)2}2]: Synthesis, (13)C and (31)P CP/MAS NMR spectroscopy, single-crystal X-ray diffraction study and thermal behaviour.

    PubMed

    Rodina, Tatyana A; Korneeva, Eugenia V; Antzutkin, Oleg N; Ivanov, Alexander V

    2015-10-01

    Crystalline one-dimensional polymeric catena-poly[bis(μ2-O,O'-dipropyldithiophosphato-S,S')digold(I)] (Au-Au) (1) was prepared and studied using (13)C and (31)P CP/MAS NMR spectroscopy and single-crystal X-ray diffraction. To elucidate the structural function of Dtph ligands in crystalline gold(I) O,O'-dipropyl dithiophosphate, the chemical shift anisotropy parameters (δaniso and η) were calculated from spinning sideband manifolds in (31)P MAS NMR spectra. A novel structure of the gold(I) compound comprises two isomeric, non-centrosymmetric binuclear molecules of [Au2{S2P(OC3H7)2}2] (isomers 'A' and 'B'), whose four Dtph groups display structural inequivalence. In each isomeric binuclear molecule of 1, a pair of μ2-bridging dipropyl Dtph ligands almost symmetrically links two neighbouring gold atoms, forming an extensive eight-membered metallocycle [Au2S4P2], while the intramolecular aurophilic Au⋯Au bond additionally stabilises this central cyclic moiety. At the supramolecular level of complex 1, intermolecular aurophilic Au⋯Au bonds yield almost linear infinite polymeric chains (⋯'A'⋯'B'⋯'A'⋯'B'⋯)n. The thermal behaviour of this compound was studied by the simultaneous thermal analysis (STA) technique (a combination of TG and DSC) under an argon atmosphere. PMID:26004097

  12. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    NASA Astrophysics Data System (ADS)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons

  13. Spinning-frequency-dependent linewidths in 1H-decoupled 13C magic-angle spinning NMR spectra

    NASA Astrophysics Data System (ADS)

    Nakai, Toshihito; McDowell, Charles A.

    1994-09-01

    The broadenings observed in 13C MAS NMR spectra, which depend on the sample-spinning speed, were studied, using polycrystalline adamantane. Not only was a monotonic increase of the linewidths with the increase of the spinning frequency observed, but also a novel resonant feature was found. The phenomena were interpreted as originating from rotary-resonance 13C 1H recoupling.

  14. Complete assignment of (1)H and (13)C NMR spectra of standard neo-iota-carrabiose oligosaccharides.

    PubMed

    Jouanneau, Diane; Boulenguer, Patrick; Mazoyer, Jacques; Helbert, William

    2010-02-26

    Standard Eucheuma denticulatum iota-carrageenan was degraded with the Alteromonas fortis iota-carrageenase. The most abundant products, the neo-iota-carratetraose and neo-iota-carrahexaose were purified by permeation gel chromatography, and their corresponding (1)H and (13)C NMR spectra were fully assigned. PMID:20038459

  15. Spectroscopic separation of (13) C NMR spectra of complex isomeric mixtures by the CSSF-TOCSY-INEPT experiment.

    PubMed

    Yang, Lu; Moreno, Aitor; Fieber, Wolfgang; Brauchli, Robert; Sommer, Horst

    2015-04-01

    Isomeric mixtures from synthetic or natural origins can pose fundamental challenges for their chromatographic separation and spectroscopic identification. A novel 1D selective NMR experiment, chemical shift selective filter (CSSF)-TOCSY-INEPT, is presented that allows the extraction of (13) C NMR subspectra of discrete isomers in complex mixtures without physical separation. This is achieved via CSS excitation of proton signals in the (1) H NMR mixture spectrum, propagation of the selectivity by polarization transfer within coupled (1) H spins, and subsequent relaying of the magnetization from (1) H to (13) C by direct INEPT transfer to generate (13) C NMR subspectra. Simple consolidation of the subspectra yields (13) C NMR spectra for individual isomers. Alternatively, CSSF-INEPT with heteronuclear long-range transfer can correlate the isolated networks of coupled spins and therefore facilitate the reconstruction of the (13) C NMR spectra for isomers containing multiple spin systems. A proof-of-principle validation of the CSSF-TOCSY-INEPT experiment is demonstrated on three mixtures with different spectral and structural complexities. The results show that CSSF-TOCSY-INEPT is a versatile, powerful tool for deconvoluting isomeric mixtures within the NMR tube with unprecedented resolution and offers unique, unambiguous spectral information for structure elucidation. PMID:25616134

  16. Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra.

    PubMed

    Bingol, Kerem; Li, Da-Wei; Bruschweiler-Li, Lei; Cabrera, Oscar A; Megraw, Timothy; Zhang, Fengli; Brüschweiler, Rafael

    2015-02-20

    A new metabolomics database and query algorithm for the analysis of (13)C-(1)H HSQC spectra is introduced, which unifies NMR spectroscopic information on 555 metabolites from both the Biological Magnetic Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB). The new database, termed Complex Mixture Analysis by NMR (COLMAR) (13)C-(1)H HSQC database, can be queried via an interactive, easy to use web interface at http://spin.ccic.ohio-state.edu/index.php/hsqc/index . Our new HSQC database separately treats slowly exchanging isomers that belong to the same metabolite, which permits improved query in cases where lowly populated isomers are below the HSQC detection limit. The performance of our new database and query web server compares favorably with the one of existing web servers, especially for spectra of samples of high complexity, including metabolite mixtures from the model organisms Drosophila melanogaster and Escherichia coli. For such samples, our web server has on average a 37% higher accuracy (true positive rate) and a 82% lower false positive rate, which makes it a useful tool for the rapid and accurate identification of metabolites from (13)C-(1)H HSQC spectra at natural abundance. This information can be combined and validated with NMR data from 2D TOCSY-type spectra that provide connectivity information not present in HSQC spectra. PMID:25333826

  17. Toward dynamic isotopomer analysis in the rat brain in vivo: automatic quantitation of 13C NMR spectra using LCModel.

    PubMed

    Henry, Pierre-Gilles; Oz, Gülin; Provencher, Stephen; Gruetter, Rolf

    2003-01-01

    The LCModel method was adapted to analyze localized in vivo (13)C NMR spectra obtained from the rat brain in vivo at 9.4 T. Prior knowledge of chemical-shifts, J-coupling constants and J-evolution was included in the analysis. Up to 50 different isotopomer signals corresponding to 10 metabolites were quantified simultaneously in 400 microl volumes in the rat brain in vivo during infusion of [1,6-(13)C(2)]glucose. The analysis remained accurate even at low signal-to-noise ratio of the order of 3:1. The relative distribution of isotopomers in glutamate, glutamine and aspartate determined in vivo in 22 min was in excellent agreement with that measured in brain extracts. Quantitation of time series of (13)C spectra yielded time courses of total (13)C label incorporation into up to 16 carbon positions, as well as time courses of individual isotopomer signals, with a temporal resolution as low as 5 min (dynamic isotopomer analysis). The possibility of measuring in vivo a wealth of information that was hitherto accessible only in extracts is likely to expand the scope of metabolic studies in the intact brain. PMID:14679502

  18. Cucurbitacins from Cayaponia racemosa: isolation and total assignment of 1H and 13C NMR spectra.

    PubMed

    Chaves, Davina C; Assunção, João Carlos C; Braz-Filho, Raimundo; Lemos, Telma L G; Monte, Francisco J Q

    2007-05-01

    Two new cucurbitane-type triterpenoids, 2beta,3beta,16alpha,20(R),25-pentahydroxy-9-methyl-19-norlanost-5-en-7,22-dione and 2beta,3beta,16alpha,20(R),25-pentahydroxy-9-methyl-19-norlanost-5-en-7,11,22-trione, were isolated from fruits of Cayaponia racemosa. The total (1)H and (13)C chemical shift assignment of these two closely related compounds is described, making use of one- and two-dimensional NMR techniques. PMID:17372957

  19. VizieR Online Data Catalog: Mono-13C acetaldehydes mm/submm wave spectra (Margules+,

    NASA Astrophysics Data System (ADS)

    Margules, L.; Motiyenko, R. A.; Ilyushin, V. V.; Guillemin, J.-C.

    2015-06-01

    This paper is a continuation of a series of studies conducted in PhLAM Lille (France) that are devoted to the investigations of the spectra of different isotopic species of astrophysical molecules. We present a new study of the 13CH3CHO and CH313CHO spectra with measurements and analysis extended up to 945GHz. (6 data files).

  20. Application of unsymmetrical indirect covariance NMR methods to the computation of the (13)C <--> (15)N HSQC-IMPEACH and (13)C <--> (15)N HMBC-IMPEACH correlation spectra.

    PubMed

    Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J

    2007-10-01

    Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. PMID:17729230

  1. Simulation of 13C nuclear magnetic resonance spectra for isodon terpenoid

    NASA Astrophysics Data System (ADS)

    Yang, Guochen; Tong, Jianbo; Liu, Shuling

    2008-11-01

    A quantitative structure spectroscopy relationship (QSSR) model of 13C nuclear magnetic resonance (NMR) of 7000 carbon atoms in 350 isodon terpenoid compounds has been developed using atomic electronegativity distance vector (AEDV) and atomic hybridization state index (AHSI). The prediction correlation coefficient ( R) value of the QSSR model based on multiple linear regression analysis was 0.9542. The stability and prediction capacity of the QSSR model have been tested using the leave-one-out cross-validation and test sets methodology. The correlation coefficients R obtained were 0.9540 and 0.9556, respectively, which showed that the predictive potential of the proposed models has good modeling stability and prediction ability.

  2. VizieR Online Data Catalog: The mm and sub-mm spectra of 13C-glycolaldehydes (Haykal+, 2013)

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Motiyenko, R. A.; Margules, L.; Huet, T. R.

    2012-11-01

    To allow the detection of the 13C-isotopologues of glycolaldeh the interstellar medium, their rotational spectra in the millimeter and submillimeter-wave regions were studied. The spectra of 13CH2OHCHO and CH2OH13CHO were recorded in the 150-945GHz spectral range in the laboratory using a solid-state submillimeter-wave spectrometer in Lille. The observed line frequencies were measured with accuracy, better than 30kHz up to 700GHz and 50kHz above. The analysis was performed using a standard Watson Hamiltonian. Around 10000 new lines were identified for each isotopologue. The spectroscopic parameters were determined for the ground and the three lowest vibrational states, respectively up to 945 and 630GHz. Previous microwave assignments of 13CH2OHCHO were not confirmed. The provided line-lists and sets of molecular parameters meet the needs for a first astrophysical search of 13C-glycolaldehydes. (2 data files).

  3. Tumbling motions of NH2(CH3)2 ions in [NH2(CH3)2]2ZnCl4 studied using 1H MAS NMR and 13C CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Kim, Nam Hee; Choi, Jae Hun; Lim, Ae Ran

    2014-12-01

    The structure and the phase transition temperatures of [NH2(CH3)2]2ZnCl4 were determined using X-ray diffraction and DSC, respectively. The temperature dependence of chemical shifts and the spin-lattice relaxation time T1ρ in the rotating frame were measured for the 1H and 13C nuclei in [NH2(CH3)2]2ZnCl4. From these results, it was observed that the structural change by chemical shifts does not occur with temperature. However, T1ρ for 1H and 13C in [NH2(CH3)2]2ZnCl4 showed a minimum, and it is apparent that both T1ρ values are governed by the same tumbling motions. The activation energies of tumbling motions for 1H and 13C are nearly the same owing to the connection between CH3 and NH2 ions in the [NH2(CH3)2]+ group.

  4. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.

    PubMed

    Lewis, Ian A; Schommer, Seth C; Hodis, Brendan; Robb, Kate A; Tonelli, Marco; Westler, William M; Sussman, Michael R; Markley, John L

    2007-12-15

    One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained. PMID:17985927

  5. A novel approach to the rapid assignment of (13)C NMR spectra of major components of vegetable oils such as avocado, mango kernel and macadamia nut oils.

    PubMed

    Retief, Liezel; McKenzie, Jean M; Koch, Klaus R

    2009-09-01

    Assignment of (13)C nuclear magnetic resonance (NMR) spectra of major fatty acid components of South African produced vegetable oils was attempted using a method in which the vegetable oil was spiked with a standard triacylglycerol. This proved to be inadequate and therefore a new rapid and potentially generic graphical linear correlation method is proposed for assignment of the (13)C NMR spectra of major fatty acid components of apricot kernel, avocado pear, grapeseed, macadamia nut, mango kernel and marula vegetable oils. In this graphical correlation method, chemical shifts of fatty acids present in a known standard triacylglycerol is plotted against the corresponding chemical shifts of fatty acids present in the vegetable oils. This new approach (under carefully defined conditions and concentrations) was found especially useful for spectrally crowded regions where significant peak overlap occurs and was validated with the well-known (13)C NMR spectrum of olive oil which has been extensively reported in the literature. In this way, a full assignment of the (13)C{1H} NMR spectra of the vegetable oils, as well as tripalmitolein was readily achieved and the resonances belonging to the palmitoleic acid component of the triacylglycerols in the case of macadamia nut and avocado pear oil resonances were also assigned for the first time in the (13)C NMR spectra of these oils. PMID:19544589

  6. Hartmann-Hahn 2D-map to optimize the RAMP-CPMAS NMR experiment for pharmaceutical materials.

    PubMed

    Suzuki, Kazuko; Martineau, Charlotte; Fink, Gerhard; Steuernagel, Stefan; Taulelle, Francis

    2012-02-01

    Cross polarization-magic angle spinning (CPMAS) is the most used experiment for solid-state NMR measurements in the pharmaceutical industry, with the well-known variant RAMP-CPMAS its dominant implementation. The experimental work presented in this contribution focuses on the entangled effects of the main parameters of such an experiment. The shape of the RAMP-CP pulse has been considered as well as the contact time duration, and a particular attention also has been devoted to the radio-frequency (RF) field inhomogeneity. (13)C CPMAS NMR spectra have been recorded with a systematic variation of (13)C and (1)H constant radiofrequency field pair values and represented as a Hartmann-Hahn matching two-dimensional map. Such a map yields a rational overview of the intricate optimal conditions necessary to achieve an efficient CP magnetization transfer. The map also highlights the effects of sweeping the RF by the RAMP-CP pulse on the number of Hartmann-Hahn matches crossed and how RF field inhomogeneity helps in increasing the CP efficiency by using a larger fraction of the sample. In the light of the results, strategies for optimal RAMP-CPMAS measurements are suggested, which lead to a much higher efficiency than constant amplitude CP experiment. PMID:22367881

  7. Quantitative (13)C Solid-State NMR Spectra by Multiple-Contact Cross-polarization for Drug Delivery: From Active Principles to Excipients and Drug Carriers.

    PubMed

    Saïdi, Fadila; Taulelle, Francis; Martineau, Charlotte

    2016-08-01

    In this contribution, we present an analysis of the main parameters influencing the efficiency of the (1)H → (13)C multiple-contact cross-polarization nuclear magnetic resonance (NMR) experiment in the context of solid pharmaceutical materials. Using the optimum experimental conditions, quantitative (13)C NMR spectra are then obtained for porous metal-organic frameworks (potential drug carriers) and for components present in drug formulations (active principle ingredient and excipients, amorphous or crystalline). Finally, we show that mixtures of components can also be quantified with this method and, hence, that it represents an ideal tool for quantification of pharmaceutical formulations by (13)C cross-polarization under magic-angle spinning NMR in the industry as it is robust and easy to set up, much faster than direct (13)C polarization and is efficient for samples at natural abundance. PMID:27372550

  8. A study of the molecular conformations and the vibrational, 1H and 13C NMR spectra of the anticancer drug tamoxifen and triphenylethylene

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Khan, Ibrahim

    2016-08-01

    The structural stability and the vibrational spectra of the anticancer drug tamoxifen and triphenylethylene were investigated by the DFT B3LYP/6-311G (d,p) calculations. Tamoxifen and triphenylethylene were predicted to exist predominantly as non-planar structures. The vibrational frequencies and the 1H and 13C NMR chemical shifts of the low energy structures of tamoxifen and triphenylethylene were computed at the DFT B3LYP level of theory. Complete vibrational assignments were provided by combined theoretical and experimental data of tamoxifen and triphenylethylene. The 1H and 13C NMR spectra of both molecules were interpreted by experimental and DFT calculated chemical shifts of the two molecules. The RMSD between experimental and theoretical 1H and 13C chemical shifts for tamoxifen is 0.29 and 4.72 ppm, whereas for triphenylethylene, it is 0.16 and 2.70 ppm, respectively.

  9. A Discovery-Based Hydrochlorination of Carvone Utilizing a Guided-Inquiry Approach to Determine the Product Structure from [superscript 13]C NMR Spectra

    ERIC Educational Resources Information Center

    Pelter, Michael W.; Walker, Natalie M.

    2012-01-01

    This experiment describes a discovery-based method for the regio- and stereoselective hydrochlorination of carvone, appropriate for a 3-h second-semester organic chemistry laboratory. The product is identified through interpretation of the [superscript 13]C NMR and DEPT spectra are obtained on an Anasazi EFT-60 at 15 MHz as neat samples. A…

  10. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  11. Characterisation of the 1H and 13C NMR spectra of N-acetylaspartylglutamate and its detection in urine from patients with Canavan disease.

    PubMed

    Krawczyk, Hanna; Gradowska, Wanda

    2003-03-10

    1H and 13C NMR spectra of N-acetylaspartylglutamate (NAAG) have been recorded and interpreted. The values of the 1H chemical shifts and 1H-(1)H coupling constants at different pH were obtained by iterative computer fitting of 1-D 1H NMR spectra. This provided information on the solution conformation of the investigated molecule. Proton-decoupled high resolution 13C NMR spectra of NAAG have been measured in a series of dilute water solution of various acidity. These data have provided a basis for unequivocal determination of the presence of NAAG in the urine sample of a patient suffering from Canavan disease. NMR spectroscopy provides a possibility of detecting NAAG in body fluids. PMID:12615232

  12. Determination of [{sup 13}C]pyrene sequestration in sediment microcosms using flash pyrolysis--GC--MS and {sup 13}C NMR

    SciTech Connect

    Guthrie, E.A.; Bortiatynski, J.M.; Hardy, K.S.; Kovach, E.M.; Van Heemst, J.D.H.; Hatcher, P.G.; Richman, J.E.

    1999-01-01

    In this study, the use of a {sup 13}C-labeled pollutant probe, [{sup 13}C]pyrene, and the application of flash pyrolysis--GC--MS and CPMAS {sup 13}C NMR provided analytical capabilities to study pyrene interactions with soluble and insoluble compartments of sedimentary organic matter (S{sub D}OM) during whole sediments incubations in aerated microcosms. Surface sediments were collected from a site of previous hydrocarbon contamination in New Orleans, LA. Over a period of 60 days, humic acid and humin fractions of S{sub D}OM accumulated increasing amounts of pyrene that were resistant to exhaustive extraction with organic solvents. The sequestered pyrene was evident in CPMAS {sup 13}C NMR spectra of humin fractions. The amount of sequestered pyrene in humic materials was quantified by flash pyrolysis--GC--MS, a technique that destroys the three-dimensional structure of macromolecular S{sub D}OM. Noncovalent binding of pyrene to humic materials in S{sub D}OM was greater in sediments incubated with biological activity than biocide-treated sediments. The combined analytical approaches demonstrate that the sequestered pyrene, or bound residue, is noncovalently associated with S{sub D}OM and has not undergone structural alteration. Implications of these data are discussed in reference to S{sub D}OM diagenesis and long-term availability of bound pollutant residues in sediments.

  13. Vibrational spectra and structure of RDX and its 13C- and 15N-labeled derivatives: a theoretical and experimental study.

    PubMed

    Infante-Castillo, Ricardo; Pacheco-Londoño, Leonardo; Hernández-Rivera, Samuel P

    2010-07-01

    Unambiguous vibrational band assignments have been made to cyclic nitramine hexahydro-1,3,5-trinitro-s-triazine, commonly known as the alpha-phase of RDX or alpha-RDX, with the use of (13)C and (15)N (on ring) enriched isotopic RDX analogues. Vibrational spectra were collected using Raman and IR spectroscopy in solid state and ab initio normal mode calculations were performed using density functional theory (DFT) and a 6-311G++** basis set. The calculated isotopic frequency shifts, induced by (13)C and (15)N labeling, are in very good accordance with measures ones. The changes in vibrational modes associated with the isotopic substitutions are well modeled by the calculation and previous assignments of the vibrational spectra have been revised, especially where the exact nature of the vibrational modes had been either vague or contradictory. PMID:20381411

  14. Systematic comparison of sets of (13)C NMR spectra that are potentially identical. Confirmation of the configuration of a cuticular hydrocarbon from the cane beetle Antitrogus parvulus.

    PubMed

    Basar, Norazah; Damodaran, Krishnan; Liu, Hao; Morris, Gareth A; Sirat, Hasnah M; Thomas, Eric J; Curran, Dennis P

    2014-08-15

    A systematic process is introduced to compare (13)C NMR spectra of two (or more) candidate samples of known structure to a natural product sample of unknown structure. The process is designed for the case where the spectra involved can reasonably be expected to be very similar, perhaps even identical. It is first validated by using published (13)C NMR data sets for the natural product 4,6,8,10,16,18-hexamethyldocosane. Then the stereoselective total syntheses of two candidate isomers of the related 4,6,8,10,16-pentamethyldocosane natural product are described, and the process is applied to confidently assign the configuration of the natural product as (4S,6R,8R,10S,16S). This is accomplished even though the chemical shift differences between this isomer and its (16R)-epimer are only ±5-10 ppb (±0.005-0.01 ppm). PMID:25019530

  15. Systematic Comparison of Sets of 13C NMR Spectra That Are Potentially Identical. Confirmation of the Configuration of a Cuticular Hydrocarbon from the Cane Beetle Antitrogus parvulus

    PubMed Central

    2015-01-01

    A systematic process is introduced to compare 13C NMR spectra of two (or more) candidate samples of known structure to a natural product sample of unknown structure. The process is designed for the case where the spectra involved can reasonably be expected to be very similar, perhaps even identical. It is first validated by using published 13C NMR data sets for the natural product 4,6,8,10,16,18-hexamethyldocosane. Then the stereoselective total syntheses of two candidate isomers of the related 4,6,8,10,16-pentamethyldocosane natural product are described, and the process is applied to confidently assign the configuration of the natural product as (4S,6R,8R,10S,16S). This is accomplished even though the chemical shift differences between this isomer and its (16R)-epimer are only ±5–10 ppb (±0.005–0.01 ppm). PMID:25019530

  16. 13C MAS NMR studies of the effects of hydration on the cell walls of potatoes and Chinese water chestnuts.

    PubMed

    Tang, H; Belton, P S; Ng, A; Ryden, P

    1999-02-01

    13C NMR with magic angle spinning (MAS) has been employed to investigate the cell walls of potatoes and Chinese water chestnuts over a range of hydration levels. Both single-pulse excitation (SPEMAS) and cross-polarization (CPMAS) experiments were carried out. Hydration led to a substantial increase in signal intensities of galactan and galacturonan in the SPEMAS spectra and a decrease in line width, implying mobilization in the backbone and side chains of pectin. In CPMAS spectra of both samples, noncellulose components showed signal loss as hydration increased. However, the signals of some galacturonan in the 3(1) helix configuration remained in the spectra even when the water content was as high as 110%. Cellulose was unaffected. It is concluded that the pectic polysaccharides experience a distribution of molecular conformations and mobility, whereas cellulose remained as typical rigid solid. PMID:10563925

  17. The conformational stability, solvation and the assignments of the experimental infrared, Raman, 1H and 13C NMR spectra of the local anesthetic drug lidocaine

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2015-05-01

    The structure, vibrational and 1H and 13C NMR spectra of the local anesthetic drug lidocaine were investigated by the B3LYP/6-311G∗∗ calculations. The molecule was predicted to have the non-planar cis (NCCN ∼ 0°) structures being about 2-6 kcal/mol lower in energy than the corresponding trans (NCCN ∼ 180°) forms. The calculated NCCN (9.6°) and CNCC (-132.2°) torsional angles were in a good qualitative agreement with the reported X-ray angles (3.1 and 13.0°, -102.67 and -77.9°, respectively, for H-bonded dimers). The Gibbs energy of solution of lidocaine in formamide, water, dimethylsulfoxide, acetonitrile, methanol, ethanol and chloroform solutions was estimated at the B3LYP level. The predicted affinity of lidocaine toward the alcohols, acetonitrile and chloroform solutions was in excellent agreement with the reported experimental solubility of the drug in organic solvents. The analysis of the observed vibrational spectra is consistent with the presence of lidocaine in only one conformation at room temperature. The 1H and 13C NMR spectra of lidocaine were interpreted by experimental and DFT calculated chemical shifts of the drug. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine is 0.47 and 8.26 ppm, respectively.

  18. A study of the experimental and theoretical infrared, Raman, 1H and 13C NMR spectra of the biochemicals valeric and valproic acids

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2014-10-01

    The structural stability, vibrational, 1H and 13C NMR spectra of valeric and valproic acids were investigated by the B3LYP calculations with the 6-311G** basis set. Valeric acid is predicted to exist predominantly in the planar cis form (80% abundance). Valproic acid is predicted to have an equilibrium mixture of 68% gauche-1 and 32% gauche-2 structures at 298.15 K. The spectral feature of the Osbnd H stretching mode in the infrared spectra of both acids suggests the presence of strong H-bonding in the condensed phase of valeric acid and weak H-bonding in the case of valproic acid. The harmonic and anharmonic vibrational wavenumbers were computed at the B3LYP level of theory and tentative vibrational assignments were provided on the basis of combined theoretical and experimental infrared and Raman data of the molecules. Not all of the calculated anharmonic wavenumbers showed a consistent trend with the observed wavenumbers. The 1H and 13C NMR spectra of both acids were interpreted by experimental and DFT calculated chemical shifts of the two acids. The RMSD between experimental and theoretical 1H and 13C chemical shifts for valeric acid is 1.8 and 3.8 ppm, whereas for valproic acid, it is 1.4 and 4.5 ppm, respectively.

  19. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Freedberg, Darón I.; Keire, David A.

    2015-02-01

    2D NMR 1H-X (X = 15N or 13C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited1H-13C HSQC pulse sequences generate opposite signs between peaks of CH2 and CH/CH3 at a cost of lower signal-to-noise due to the 13C T2 relaxation during an additional 1/1JCH period. Such CHn-editing experiments are useful in assignment of chemical shifts and have been successfully applied to small molecules and small proteins (e.g. ubiquitin) dissolved in deuterated solvents where, generally, peak overlap is minimal. By contrast, for larger biomolecules, peak overlap in 2D HSQC spectra is unavoidable and peaks with opposite phases cancel each other out in the edited spectra. However, there is an increasing need for using NMR to profile biomolecules at natural abundance dissolved in water (e.g., protein therapeutics) where NMR experiments beyond 2D are impractical. Therefore, the existing 2D multiplicity-edited HSQC methods must be improved to acquire data on nuclei other than 13C (i.e.15N), to resolve more peaks, to reduce T2 losses and to accommodate water suppression approaches. To meet these needs, a multiplicity-separated1H-X HSQC (MS-HSQC) experiment was developed and tested on 500 and 700 MHz NMR spectrometers equipped with room temperature probes using RNase A (14 kDa) and retroviral capsid (26 kDa) proteins dissolved in 95% H2O/5% D2O. In this pulse sequence, the 1/1JXH editing-period is incorporated into the semi-constant time (semi-CT) X resonance chemical shift evolution period, which increases sensitivity, and importantly, the sum and the difference of the interleaved 1JXH-active and the 1JXH-inactive HSQC experiments yield two separate spectra for XH2 and XH/XH3. Furthermore we demonstrate improved water suppression using triple xyz-gradients instead of the more widely used z-gradient only water-suppression approach.

  20. Structure of pyridine and quinoline vinyl ethers according to data from /sup 1/H and /sup 13/C NMR spectra and quantum-chemical calculations

    SciTech Connect

    Afonin, A.V.; Voronov, V.K.; Andriankov, M.A.; Danovich, D.K.

    1987-08-10

    A systematic investigation of the structure of the vinyl ethers of heterocyclic compounds has not been undertaken. The present work was devoted to investigation of the stereochemical and electronic structure of the vinyl ethers of pyridine and quinoline. The PMR spectra of the samples were recorded for 5% solutions in deuterochloroform on a Tesla BS-497 spectrometer at 100 MHz. The /sup 13/C NMR spectra were recorded on a Tesla BS-567A spectrometer at 25.1 MHz in deuterochloroform with the samples at concentrations of 30%. The internal standard was HMDS. The vinyl ethers of pyridine and quinoline exist preferentially in the nonplanar S-trans conformation. In the vinyl esters of pyridine and quinoline the p-..pi.. conjugation is concurrent in nature and depends on the position of the vinyloxy group in the heterocycle.

  1. Removal of t1 noise from metabolomic 2D 1H- 13C HSQC NMR spectra by Correlated Trace Denoising

    NASA Astrophysics Data System (ADS)

    Poulding, Simon; Charlton, Adrian J.; Donarski, James; Wilson, Julie C.

    2007-12-01

    The presence of t1 noise artefacts in 2D phase-cycled Heteronuclear Single Quantum Coherence (HSQC) spectra constrains the use of this experiment despite its superior sensitivity. This paper proposes a new processing algorithm, working in the frequency-domain, for reducing t1 noise. The algorithm has been developed for use in contexts, such as metabolomic studies, where existing denoising techniques cannot always be applied. Two test cases are presented that show the algorithm to be effective in improving the SNR of peaks embedded within t1 noise by a factor of more than 2, while retaining the intensity and shape of genuine peaks.

  2. Determination of size and sign of hetero-nuclear coupling constants from 2D 19F-13C correlation spectra

    NASA Astrophysics Data System (ADS)

    Ampt, Kirsten A. M.; Aspers, Ruud L. E. G.; Dvortsak, Peter; van der Werf, Ramon M.; Wijmenga, Sybren S.; Jaeger, Martin

    2012-02-01

    Fluorinated organic compounds have become increasingly important within the polymer and the pharmaceutical industry as well as for clinical applications. For the structural elucidation of such compounds, NMR experiments with fluorine detection are of great value due to the favorable NMR properties of the fluorine nucleus. For the investigation of three fluorinated compounds, triple resonance 2D HSQC and HMBC experiments were adopted to fluorine detection with carbon and/or proton decoupling to yield F-C, F-C{H}, F-C{Cacq} and F-C{H,Cacq} variants. Analysis of E.COSY type cross-peak patterns in the F-C correlation spectra led, apart from the chemical shift assignments, to determination of size and signs of the JCH, JCF, and JHF coupling constants. In addition, the fully coupled F-C HMQC spectrum of steroid 1 was interpreted in terms of E.COSY type patterns. This example shows how coupling constants due to different nuclei can be determined together with their relative signs from a single spectrum. The analysis of cross-peak patterns, as presented here, not only provides relatively straightforward routes to the determination of size and sign of hetero-nuclear J-couplings in fluorinated compounds, it also provides new and easy ways for the determination of residual dipolar couplings and thus for structure elucidation. The examples and results presented in this study may contribute to a better interpretation and understanding of various F-C correlation experiments and thereby stimulate their utilization.

  3. Protonation of carbon single-walled nanotubes studied using 13C and 1H-13C cross polarization nuclear magnetic resonance and Raman spectroscopies.

    PubMed

    Engtrakul, Chaiwat; Davis, Mark F; Gennett, Thomas; Dillon, Anne C; Jones, Kim M; Heben, Michael J

    2005-12-14

    The reversible protonation of carbon single-walled nanotubes (SWNTs) in sulfuric acid and Nafion was investigated using solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies. Magic-angle spinning (MAS) was used to obtain high-resolution 13C and 1H-13C cross polarization (CP) NMR spectra. The 13C NMR chemical shifts are reported for bulk SWNTs, H2SO4-treated SWNTs, SWNT-Nafion polymer composites, SWNT-AQ55 polymer composites, and SWNTs in contact with water. Protonation occurs without irreversible oxidation of the nanotube substrate via a charge-transfer process. This is the first report of a chemically induced change in a SWNT 13C resonance brought about by a reversible interaction with an acidic proton, providing additional evidence that carbon nanotubes behave as weak bases. Cross polarization was found to be a powerful technique for providing an additional contrast mechanism for studying nanotubes in contact with other chemical species. The CP studies confirmed polarization transfer from nearby protons to nanotube carbon atoms. The CP technique was also applied to investigate water adsorbed on carbon nanotube surfaces. Finally, the degree of bundling of the SWNTs in Nafion films was probed with the 1H-13C CP-MAS technique. PMID:16332107

  4. Phase transition in triglycine sulfate crystals by 1H and 13C nuclear magnetic resonance in the rotating frame

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Jeong, Se-Young

    2013-09-01

    The ferroelectric phase transition in triglycine sulfate ((NH2CH2COOH)3·H2SO4, TGS)) crystals, occurring at TC of 322 K, was studied using 1H and 13C CP/MAS NMR. From the spin-lattice relaxation time in the rotating frame, T1ρ, of 1H and 13C, we found that the slopes of the T1ρ versus temperature curve changed near TC. In addition, the change of intensities for the protons and carbons NMR signals in the ferroelectric and the paraelectric phases led to the noticeable changes in the environments of proton and carbon in the carboxyl groups. The carboxyl ordering was the dominant factor driving the phase transition. Our study of the 1H and 13C spectra showed that the ferroelectric phase transition of TGS is of the order-disorder type due to ordering of the carboxyl groups.

  5. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  6. High resolution infrared and Raman spectra of {sup 13}C{sup 12}CD{sub 2}: The CD stretching fundamentals and associated combination and hot bands

    SciTech Connect

    Di Lonardo, G.; Fusina, L. Canè, E.; Tamassia, F.; Martínez, R. Z.; Bermejo, D.

    2015-09-07

    Infrared and Raman spectra of mono {sup 13}C fully deuterated acetylene, {sup 13}C{sup 12}CD{sub 2}, have been recorded and analysed to obtain detailed information on the C—D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm{sup −1} in the region 1800–7800 cm{sup −1}. Sixty new bands involving the ν{sub 1} and ν{sub 3} C—D stretching modes also associated with the ν{sub 4} and ν{sub 5} bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition, the Q branch of the ν{sub 1} fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm{sup −1}. The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ{sub 4} + υ{sub 5} up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling–Dennison interaction between υ{sub 4} = 2 and υ{sub 5} = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm{sup −1}, of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν{sub 2} manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling–Dennison constants can be valuable for understanding energy flows

  7. Quantitative solid-state 13C nuclear magnetic resonance spectrometric analyses of wood xylen: effect of increasing carbohydrate content

    USGS Publications Warehouse

    Bates, A.L.; Hatcher, P.G.

    1992-01-01

    Isolated lignin with a low carbohydrate content was spiked with increasing amounts of alpha-cellulose, and then analysed by solid-state 13C nuclear magnetic resonance (NMR) using cross-polarization with magic angle spinning (CPMAS) and dipolar dephasing methods in order to assess the quantitative reliability of CPMAS measurement of carbohydrate content and to determine how increasingly intense resonances for carbohydrate carbons affect calculations of the degree of lignin's aromatic ring substitution and methoxyl carbon content. Comparisons were made of the carbohydrate content calculated by NMR with carbohydrate concentrations obtained by phenol-sulfuric acid assay and by the calculation from the known amounts of cellulose added. The NMR methods used in this study yield overestimates for carbohydrate carbons due to resonance area overlap from the aliphatic side chain carbons of lignin. When corrections are made for these overlapping resonance areas, the NMR results agree very well with results obtained by other methods. Neither the calculated methoxyl carbon content nor the degree of aromatic ring substitution in lignin, both calculated from dipolar dephasing spectra, change with cellulose content. Likewise, lignin methoxyl content does not correlate with cellulose abundance when measured by integration of CPMAS spectra. ?? 1992.

  8. Crystal structure and theoretical study of IR and 1H and 13C NMR spectra of cordatin, a natural product with antiulcerogenic activity

    NASA Astrophysics Data System (ADS)

    Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Muller, Adolfo H.; Secco, Ricardo De S.; Peris, Gabriel; Llusar, Rosa

    Cordatin is a furan diterpenoid with a clerodane skeleton isolated from Croton palanostigma Klotzsch (Euphorbiaceae). This natural product shows significant antiulcerogenic activity, similar to cimetidine (Tagamet®), a compound used for the treatment of peptic ulcers. The crystal structure of cordatin was obtained by X-ray diffraction and its geometrical parameters were compared with theoretical calculations at the B3LYP theory level. The IR and NMR (1H and 13C chemical shifts and coupling constants) spectra were obtained and compared with the theoretical calculations. The B3LYP theory level, with the 6-31G(d,p) and 6-311G(d,p) basis set, provided IR absorption values close to the experimental data. Moreover, theoretical NMR parameters obtained in both gas phase and chloroform solvent at the B3PW91/DGDZVP, B3LYP/6-311+G(2d,p), and B3PW91/6-311+G(2d,p) levels showed good correlations with the experimental results.

  9. Molecular structure, vibrational and 13C NMR spectra of two ent-kaurenes spirolactone type diterpenoids rabdosinate and rabdosin B: A combined experimental and density functional methods

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Xueliang

    2015-01-01

    The title compounds, rabdosinate and rabdosin B, were isolated from the leaves of Isodon japonica, and characterized by IR-NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge including atomic orbital (GIAO-13C) chemical shift values of the title compounds have been calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set. In addition, obtained results were related to the linear regression of experimental 13C NMR chemical shifts values. The integral equation formalism polarized continuum model (IEFPCM) was used in treating chloroform solvation effects on optimized structural parameters and 13C chemical shifts. Besides, molecular electrostatic potential (MEP), HOMO-LUMO analysis were performed by the B3LYP method.

  10. Molecular structure, vibrational and 13C NMR spectra of two ent-kaurenes spirolactone type diterpenoids rabdosinate and rabdosin B: a combined experimental and density functional methods.

    PubMed

    Wang, Tao; Wang, Xueliang

    2015-01-25

    The title compounds, rabdosinate and rabdosin B, were isolated from the leaves of Isodon japonica, and characterized by IR-NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge including atomic orbital (GIAO-13C) chemical shift values of the title compounds have been calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set. In addition, obtained results were related to the linear regression of experimental 13C NMR chemical shifts values. The integral equation formalism polarized continuum model (IEFPCM) was used in treating chloroform solvation effects on optimized structural parameters and 13C chemical shifts. Besides, molecular electrostatic potential (MEP), HOMO-LUMO analysis were performed by the B3LYP method. PMID:25123947

  11. High-resolution solid-state 13C CP MAS NMR spectra of some β-cyclodextrin inclusion complexes with nitriles

    NASA Astrophysics Data System (ADS)

    Okazaki, M.; McDowell, C. A.

    1983-11-01

    β-cyclodextrin inclusion complexes of 3-aminobenzonitrile, 4-aminobenzonitrile, and adamantane-1-carbonitrile were studied by means of high-resolution solid-state CP MAS 13C NMR spectroscopy. The interactions between the host and guest molecules are discussed.

  12. Sample Optimization and Identification of Signal Patterns of Amino Acid Side Chains in 2D RFDR Spectra of the α-Spectrin SH3 Domain

    NASA Astrophysics Data System (ADS)

    Pauli, Jutta; van Rossum, Barth; Förster, Hans; de Groot, Huub J. M.; Oschkinat, Hartmut

    2000-04-01

    Future structural investigations of proteins by solid-state CPMAS NMR will rely on uniformly labeled protein samples showing spectra with an excellent resolution. NMR samples of the solid α-spectrin SH3 domain were generated in four different ways, and their 13C CPMAS spectra were compared. The spectrum of a [u-13C, 15N]-labeled sample generated by precipitation shows very narrow 13C signals and resolved scalar carbon-carbon couplings. Linewidths of 16-19 Hz were found for the three alanine Cβ signals of a selectively labeled [70% 3-13C]alanine-enriched SH3 sample. The signal pattern of the isoleucine, of all prolines, valines, alanines, and serines, and of three of the four threonines were identified in 2D 13C-13C RFDR spectra of the [u-13C,15N]-labeled SH3 sample. A comparison of the 13C chemical shifts of the found signal patterns with the 13C assignment obtained in solution shows an intriguing match.

  13. One- and two-dimensional exchange J-resolved CP-MAS NMR spectrum of adamantane

    NASA Astrophysics Data System (ADS)

    Takegoshi, K.; McDowell, C. A.

    1986-02-01

    A combined technique of 1D and 2D exchange NMR and J-resolved CP-MAS NMR of dilute spins in solids and its application to study a spin exchange process of abundant spins in solids is described, and demonstrated for powdered adamantane. A high-resolution J-resolved NMR spectrum of a 13C nucleus obtained by applying homonuclear decoupling and magic angle sample spinning is employed to label the spin states of 1H spins bonded to the 13C nucleus. Perspective 2D exchange spectra are employed to map out connectivity between the proton spin states, and the rate constants for the 1H spin exchange involved are determined by 1D exchange NMR techniques. Discussions based on the total energy conservation enable us to conclude that the observed spin exchange processes are to be ascribed mainly to the flip-flop motion of 1H spins; the spin-lattice process is negligible. The rate constant for the flip-flop motion of the proton spins is determined to be (7±2)×103 s-1 at room temperature.

  14. Automated structure verification based on a combination of 1D (1)H NMR and 2D (1)H - (13)C HSQC spectra.

    PubMed

    Golotvin, Sergey S; Vodopianov, Eugene; Pol, Rostislav; Lefebvre, Brent A; Williams, Antony J; Rutkowske, Randy D; Spitzer, Timothy D

    2007-10-01

    A method for structure validation based on the simultaneous analysis of a 1D (1)H NMR and 2D (1)H - (13)C single-bond correlation spectrum such as HSQC or HMQC is presented here. When compared with the validation of a structure by a 1D (1)H NMR spectrum alone, the advantage of including a 2D HSQC spectrum in structure validation is that it adds not only the information of (13)C shifts, but also which proton shifts they are directly coupled to, and an indication of which methylene protons are diastereotopic. The lack of corresponding peaks in the 2D spectrum that appear in the 1D (1)H spectrum, also gives a clear picture of which protons are attached to heteroatoms. For all these benefits, combined NMR verification was expected and found by all metrics to be superior to validation by 1D (1)H NMR alone. Using multiple real-life data sets of chemical structures and the corresponding 1D and 2D data, it was possible to unambiguously identify at least 90% of the correct structures. As part of this test, challenging incorrect structures, mostly regioisomers, were also matched with each spectrum set. For these incorrect structures, the false positive rate was observed as low as 6%. PMID:17694570

  15. /sup 13/C and /sup 1/H NMR spectra and structure of the products from the condensation of 1,3-dicarbonyl compounds with aldehydes

    SciTech Connect

    Emelina, E.E.; Gindin, V.A.; Ershov, B.A.

    1988-05-20

    The structure of the diadducts formed in the reaction of 1,3-dicarbonyl compounds with aldehydes in a ratio of 2:1 under the conditions of the Knoevenagel condensation was studied by /sup 13/C and /sup 1/H NMR spectroscopy. It was shown that acyclic tetracarbonyl compounds are formed in the absence of a catalyst while substituted cyclohexanones are formed in the presence of piperidine. The acyclic tetracarbonyl compounds exist mainly in the tetraketo form in solution, and the presence of the monoenol form was established for dimethyl 2,4-diacetylpentanedioate in CD/sub 2/Cl/sub 2/. The most characteristic signals which distinguish between the cyclic diadducts and the acyclic products are the signals of the C/sup 5/ (delta 72 ppm) and C/sup 6/ (delta 52 ppm) atoms. The presence of a keto-enol equilibrium in 2,4-diacetyl-5-hydroxy-3-(p-methoxyphenyl)-5-methylcyclohexanone was demonstrated by /sup 13/C NMR.

  16. Resolution enhancement in spectra of natural products dissolved in weakly orienting media with the help of 1H homonuclear dipolar decoupling during acquisition: Application to 1H- 13C dipolar couplings measurements

    NASA Astrophysics Data System (ADS)

    Farjon, Jonathan; Bermel, Wolfgang; Griesinger, Christian

    2006-05-01

    In weakly orienting media such as poly-γ-benzyl- L-glutamate (PBLG) a polymer that forms a chiral liquid crystal in organic solvents, the spectral resolution for embedded molecules is usually poor because of numerous 1H, 1H dipolar couplings that generally broaden proton spectra. Therefore 1H, 13C dipolar couplings are difficult or impossible to measure. Here, we incorporate Flip-Flop decoupling during detection into an HSQC experiment. Flip-Flop removes the 1H, 1H dipolar couplings and scales the chemical shifts of the protons as well as the 1H, 13C dipolar couplings during detection. A resolution gain by a factor 1.5-4.2 and improved signal intensity by an average factor of 1.6-1.7 have been obtained. This technique is demonstrated on (+)-menthol dissolved in a PBLG/CDCl 3 phase.

  17. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine.

    PubMed

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-15

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm(-1) and 4000-10 cm(-1), respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results. PMID:24813280

  18. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine

    NASA Astrophysics Data System (ADS)

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-01

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 4000-10 cm-1, respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results.

  19. FT-IR spectra of 18O-, and 13C-enriched CO2 in the ν3 region: High accuracy frequency calibration and spectroscopic constants for 16O12C18O, 18O12C18O, and 16O13C16O

    NASA Astrophysics Data System (ADS)

    Elliott, Ben M.; Sung, Keeyoon; Miller, Charles E.

    2015-06-01

    In this report, we extend our Fourier transform infrared (FT-IR) spectroscopy measurements of CO2 in the ν3 region (2200-2450 cm-1, 65-75 THz) to the 18O-, and 13C-substituted isotopologues, using the JPL Bruker IFS-125HR Fourier Transform Spectrometer (JPL-FTS). High quality (S/N ∼ 2000) spectra were obtained separately for each of the 18O-, and 13C-isotopically enriched samples. The absolute wavenumber accuracies were better than 3 × 10-6 cm-1 (∼100 kHz) for strong, isolated transitions, calibrated against the highest accuracy reported CO and 16O12C16O (626) frequency measurements. The JPL-FTS performance and calibration procedure is shown to be reliable and consistent, achievable through vigorous maintenance of the optical alignment and regular monitoring of its instrumental line shape function. Effective spectroscopic constant fits of the 00011 ← 00001 fundamental bands for 16O12C18O (628), 18O12C18O (828), and 16O13C16O (636) were obtained with RMS residuals of 2.9 × 10-6 cm-1, 2.8 × 10-6 cm-1, and 2.9 × 10-6 cm-1, respectively. The observed bands encompassed 79 lines over the Jmax range of P67/R67, 47 lines over P70/R62, and 60 lines over P70/R70 for 628, 828, and 636, respectively. These results complement our recent work on the 17O-enriched isotopologues (Elliott et al., 2014), providing additional high-quality frequency measurements for atmospheric remote sensing applications.

  20. FTIR spectra of the ν6 and ν8 bands of 13C formic acid molecule—Assignment of FIR-laser lines

    NASA Astrophysics Data System (ADS)

    Baskakov, O.; Horneman, V.-M.; Alanko, S.; Lohilahti, J.

    2008-05-01

    Two interacting vibrational modes ν6 and ν8 of 13C species of formic acid have been studied with high resolution FTIR spectroscopy in the range 900-1300 cm -1 with an instrumental resolution of 0.0018 cm -1. More than 10 000 lines have been assigned and fitted with a RMS deviation of 0.00024 cm -1. The band centers, as well as the rotational, quartic and sextic centrifugal distortion parameters and 6 interaction parameters have been determined. The obtained parameters have enabled the assignments of 24 FIR laser emissions of this molecule observed previously by Dangoisse and Glorieux [D. Dangoisse, P. Glorieux, J. Mol. Spectrosc. 92 (1982) 283-297], Luis et al. [G.M.R.S. Luis, E.M. Telles, A. Scalabrin, D. Pereira, IEEE J. Quantum. Electron. QE-34 (1998) 767-769], and Bertolini et al. [A. Bertolini, G. Carelli, C.A. Massa, A. Moretti, F. Strumia, Infrared Phys. Technol. 40 (1999) 33-36].

  1. The NMR investigation of alkaloids. IX. /sup 13/C NMR spectra and stereochemistry of convolvine, convolamine, convoline, convolidine, subhirsine and 6-hydroxyhyoscyamine

    SciTech Connect

    Yagudaev, M.R.; Aripova, S.F.

    1986-07-01

    A correlation has been made on the basis of the results of a study of the C 13 NMR spectra, of the CSs of the C 13 carbon nuclei with the structure and stereochemistry of the tropane alkaloids convolvine, convolamine, convoline, convolidine, subhirsine, and 6-hydroxyhyoscyamine. It has been established that the N-CH/sub 3/ group in convolamine and the -OH group in convoline are oriented equatorially, and the N-CH/sub 3/ in hydroxyhyoscyamine axially.

  2. /sup 13/C spin diffusion of adamantane

    SciTech Connect

    Bronniman, C.E.; Szeverenyi, N.M.; Maciel, G.E.

    1983-10-15

    Two-dimensional exchange spectroscopy of natural abundance /sup 13/C--/sup 13/C spin diffusion in solid adamantane illustrates the influence that /sup 13/C--/sup 1/H dipole--dipole coupling exerts on /sup 13/C spin diffusion by determining spectral overlap in the /sup 13/C system. 2D /sup 13/C spectra were obtained for several values of mixing time tau/sub m/ and compared with spectra calculated in the limit of nearest-neighbor coupling. Good agreement is obtained for short tau/sub m/, during which the equilibration of neighboring spins dominates. For longer tau/sub m/, slower spin diffusion that is not acounted for by the simple model is seen; after nearest-neighbor spins equilibrate, communication over larger distances produces further mixing. It is possible to modify spin diffusion rates by altering experimental conditions, e.g., magic-angle spinning, low-power /sup 1/H decoupling, or spin locking /sup 13/C in the rotating frame during tau/sub m/.

  3. High-Speed Magic-Angle Spinning 13C MAS NMR Spectra of Adamantane: Self-Decoupling of the Heteronuclear Scalar Interaction and Proton Spin Diffusion

    NASA Astrophysics Data System (ADS)

    Ernst, Matthias; Verhoeven, Aswin; Meier, Beat H.

    1998-02-01

    We have investigated the carbon line shape of solid adamantane under high-speed magic-angle sample spinning (MAS) acquired without proton decoupling. The CH-group shows a spinning-speed-dependent line broadening while the CH2-group consists of a spinning-speed-independent sharp component and a spinning-speed-dependent broader part. These phenomena can be explained by self-decoupling of theJ-interaction due to proton spin diffusion. Such a self-decoupling process can be described by a magnetization exchange process between the multiplet lines. Changing the spin-diffusion rate constant by off-resonance irradiation of the protons allows us to observe the full range from slow exchange to coalescence to fast exchange of the carbon spectra. One of the multiplet components in the CH2-group corresponds to a group spin of the protons of zero and therefore does not couple to the other protons. This gives rise to the sharp central line. The magnetization exchange rate constant between the different multiplet lines can be determined from the spectra and is a measure for the spinning-speed-dependent proton spin-diffusion rate constant. Even at an MAS speed of 30 kHz, proton spin diffusion is still observable despite the relatively weak intermolecular proton dipolar-coupling network in adamantane which results in a static proton line width of only 14 kHz (full width at half height).

  4. 1H and 13C NMR spectra, structure and physicochemical features of phenyl acridine-9-carboxylates and 10-methyl-9-(phenoxycarbonyl)acridinium trifluoromethanesulphonates--alkyl substituted in the phenyl fragment.

    PubMed

    Krzymiński, K; Malecha, P; Zadykowicz, B; Wróblewska, A; Błażejowski, J

    2011-01-01

    The 1H and 13C NMR spectra of twelve phenyl acridine-9-carboxylates--alkyl-substituted in the phenyl fragment--and their 10-methyl-9-(phenoxycarbonyl)acridinium salts dissolved in CD3CN, CD3OD, CDCl3 and DMSO-d6 were recorded in order to examine the influence of the structure of these compounds and the properties of the solvents on chemical shifts and 1H-(1)H coupling constants. Experimental data were compared with 1H and 13C chemical shifts predicted at the GIAO/DFT level of theory for DFT(B3LYP)/6-31G** optimised geometries of molecules, as well as with values of 1H chemical shifts and 1H-(1)H coupling constants, estimated using ACD/HNMR database software to ensure that the assignment was correct. To investigate the relations between chemical shifts and selected structural or physicochemical characteristics of the target compounds, the values of several of these parameters were determined at the DFT or HF levels of theory. The HOMO and LUMO energies obtained at the HF level yielded the ionisation potentials and electron affinities of molecules. The DFT method provided atomic partial charges, dipole moments, LCAO coefficients of pz LUMO of selected C atoms, and angles reflecting characteristic structural features of the compounds. It was found that the experimentally determined 1H and 13C chemical shifts of certain atoms relate to the predicted dipole moments, the angles between the acridine and phenyl moieties, and the LCAO coefficients of the pz LUMO of the C atoms believed to participate in the initial step of the oxidation of the target compounds. The spectral and physicochemical characteristics of the target compounds were investigated in the context of their chemiluminogenic ability. PMID:21134782

  5. Isotopic splitting patterns in the (13) C NMR spectra of some partially deuterated 1-aryl-2-(phenyldiazenyl)butane-1,3-dione and 4-hydroxy-3-(phenyldiazenyl)-2H-chromen-2-one: evidence for elucidation of tautomeric forms.

    PubMed

    Noroozi Pesyan, Nader; Rashidnejad, Hamid

    2016-05-01

    Nuclear magnetic resonance spectra of synthesized azo dyes derived from aniline derivatives in reaction with benzoylacetone and 4-hydroxycoumarin were studied in both CDCl3 and (CD3 )2 SO (two drops of D2 O were added into solutions of dyes). All dyes showed intramolecular hydrogen bonding. Dyes derived from o-nitro aniline in the reaction with benzoylacetone, and 4-hydroxycoumarin showed bifurcated intramolecular hydrogen bonds. The solvent-substrate proton exchange of dyes derived from benzoylacetone and 4-hydroxycoumarin was examined in the presence of two drops of D2 O. Among ten dye samples, two dyes derived from benzoylacetone did not show deuteration, three dyes showed partial deuteration and five dyes showed full deuteration under similar conditions. For the partially deuterated dyes the β-isotope effect in (13) C splitting was investigated and was used for the determination of the predominant tautomeric form. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26776053

  6. Multi-dimensional 1H- 13C HETCOR and FSLG-HETCOR NMR study of sphingomyelin bilayers containing cholesterol in the gel and liquid crystalline states

    NASA Astrophysics Data System (ADS)

    Holland, Gregory P.; Alam, Todd M.

    2006-08-01

    13C cross polarization magic angle spinning (CP-MAS) and 1H MAS NMR spectra were collected on egg sphingomyelin (SM) bilayers containing cholesterol above and below the liquid crystalline phase transition temperature ( Tm). Two-dimensional (2D) dipolar heteronuclear correlation (HETCOR) spectra were obtained on SM bilayers in the liquid crystalline ( Lα) state for the first time and display improved resolution and chemical shift dispersion compared to the individual 1H and 13C spectra and significantly aid in spectral assignment. In the gel ( Lβ) state, the 1H dimension suffers from line broadening due to the 1H- 1H homonuclear dipolar coupling that is not completely averaged by the combination of lipid mobility and MAS. This line broadening is significantly suppressed by implementing frequency switched Lee-Goldburg (FSLG) homonuclear 1H decoupling during the evolution period. In the liquid crystalline ( Lα) phase, no improvement in line width is observed when FSLG is employed. All of the observed resonances are assignable to cholesterol and SM environments. This study demonstrates the ability to obtain 2D heteronuclear correlation experiments in the gel state for biomembranes, expands on previous SM assignments, and presents a comprehensive 1H/ 13C NMR assignment of SM bilayers containing cholesterol. Comparisons are made to a previous report on cholesterol chemical shifts in dimyristoylphosphatidylcholine (DMPC) bilayers. A number of similarities and some differences are observed and discussed.

  7. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization

    NASA Astrophysics Data System (ADS)

    Johnson, Robert L.; Schmidt-Rohr, Klaus

    2014-02-01

    A simple new method is presented that yields quantitative solid-state magic-angle spinning (MAS) 13C NMR spectra of organic materials with good signal-to-noise ratios. It achieves long (>10 ms) cross polarization (CP) from 1H without significant magnetization losses due to relaxation and with a moderate duty cycle of the radio-frequency irradiation, by multiple 1-ms CP periods alternating with 1H spin-lattice relaxation periods that repolarize the protons. The new method incorporates previous techniques that yield less distorted CP/MAS spectra, such as a linear variation (“ramp”) of the radio-frequency field strength, and it overcomes their main limitation, which is T1ρ relaxation of the spin-locked 1H magnetization. The ramp of the radio-frequency field strength and the asymptotic limit of cross polarization makes the spectral intensity quite insensitive to the exact field strengths used. The new multiCP pulse sequence is a “drop-in” replacement for previous CP methods and produces no additional data-processing burden. Compared to the only reliable quantitative 13C NMR method for unlabeled solids previously available, namely direct-polarization NMR, the measuring time is reduced by more than a factor of 50, enabling higher-throughput quantitative NMR studies. The new multiCP technique is validated with 14-kHz MAS on amino-acid derivatives, plant matter, a highly aromatic humic acid, and carbon materials made by low-temperature pyrolysis.

  8. 13C Solid State Nuclear Magnetic Resonance and µ-Raman Spectroscopic Characterization of Sicilian Amber.

    PubMed

    Barone, Germana; Capitani, Donatella; Mazzoleni, Paolo; Proietti, Noemi; Raneri, Simona; Longobardo, Ugo; Di Tullio, Valeria

    2016-08-01

    (13)C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) and µ-Raman spectroscopy were applied to characterize Sicilian amber samples. The main goal of this work was to supply a complete study of simetite, highlighting discriminating criteria useful to distinguish Sicilian amber from fossil resins from other regions and laying the foundations for building a spectroscopic database of Sicilian amber. With this aim, a private collection of unrefined simetite samples and fossil resins from the Baltic region and Dominican Republic was analyzed. Overall, the obtained spectra permitted simetite to be distinguished from the other resins. In addition, principal component analysis (PCA) was applied to the spectroscopic data, allowing the clustering of simetite samples with respect to the Baltic and Dominican samples and to group the simetite samples in two sets, depending on their maturity. Finally, the analysis of loadings allowed for a better understanding of the spectral features that mainly influenced the discriminating characteristics of the investigated ambers. PMID:27340217

  9. Dipolar-coupling-mediated total correlation spectroscopy in solid-state 13C NMR: Selection of individual 13C- 13C dipolar interactions

    NASA Astrophysics Data System (ADS)

    Spano, Justin; Wi, Sungsool

    2010-06-01

    Herein is described a useful approach in solid-state NMR, for selecting homonuclear 13C- 13C spin pairs in a multiple- 13C homonuclear dipolar coupled spin system. This method builds upon the zero-quantum (ZQ) dipolar recoupling method introduced by Levitt and coworkers (Marin-Montesinos et al., 2006 [30]) by extending the originally introduced one-dimensional (1D) experiment into a two-dimensional (2D) method with selective irradiation scheme, while moving the 13C- 13C mixing scheme from the transverse to the longitudinal mode, together with a dramatic improvement in the proton decoupling efficiency. Selective spin-pair recoupling experiments incorporating Gaussian and cosine-modulated Gaussian pulses for inverting specific spins were performed, demonstrating the ability to detect informative, simplified/individualized, long-range 13C- 13C homonuclear dipolar coupling interactions more accurately by removing less informative, stronger, short-range 13C- 13C interactions from 2D correlation spectra. The capability of this new approach was demonstrated experimentally on uniformly 13C-labeled Glutamine and a tripeptide sample, GAL.

  10. Stochastic molecular motions in the nematic, smectic-A, and solid phases of p,p{sup '}-di-n-heptyl-azoxybenzene as seen by quasielastic neutron scattering and {sup 13}C cross-polarization magic-angle-spinning NMR

    SciTech Connect

    ZajaPc, Wojciech; Urban, Stanislaw; Domenici, Valentina; Geppi, Marco; Veracini, Carlo Alberto; Telling, Mark T. F.; Gabrys, Barbara J.

    2006-05-15

    Molecular rotational dynamics in p,p{sup '}-di-n-heptyl-azoxybenzene was studied by means of quasielastic neutron scattering (QENS) and {sup 13}C cross-polarization magic-angle-spinning (CPMAS) NMR. Fast reorientation of the hydrogen nuclei was observed by QENS in the two liquid crystalline (LC) phases nematic and smectic A, as well as in the crystalline phase. The latter could not be restricted to the -CH{sub 3} rotations alone, and a clear indication was found of some other reorientation motions persisting in the crystal. Two Lorentz-type components convoluted with the resolution function gave an excellent fit to the QENS spectra in both LC phases. The narrow (slow) component was attributed to the reorientation of the whole molecule around the long axis. The corresponding characteristic time of {approx}130 ps agreed well with the values obtained in recent dielectric relaxation and {sup 2}H NMR studies. The full width at half maximum of the broader (fast) component shows a quadratic Q dependence (Q is the momentum transfer). Hence the corresponding motions could be described by a stretched exponential correlation function and were interpreted as various ''crankshaft-type'' motions within the alkyl tails. The {sup 13}C CPMAS experiments fully corroborated the QENS results, sometimes considered ambiguous in complex systems.

  11. Stochastic molecular motions in the nematic, smectic-A, and solid phases of p,p'-di-n-heptyl-azoxybenzene as seen by quasielastic neutron scattering and 13C cross-polarization magic-angle-spinning NMR.

    PubMed

    Zajac, Wojciech; Urban, Stanisław; Domenici, Valentina; Geppi, Marco; Veracini, Carlo Alberto; Telling, Mark T F; Gabryś, Barbara J

    2006-05-01

    Molecular rotational dynamics in p,p'-di-n-heptyl-azoxybenzene was studied by means of quasielastic neutron scattering (QENS) and 13C cross-polarization magic-angle-spinning (CPMAS) NMR. Fast reorientation of the hydrogen nuclei was observed by QENS in the two liquid crystalline (LC) phases nematic and smectic A, as well as in the crystalline phase. The latter could not be restricted to the -CH3 rotations alone, and a clear indication was found of some other reorientation motions persisting in the crystal. Two Lorentz-type components convoluted with the resolution function gave an excellent fit to the QENS spectra in both LC phases. The narrow (slow) component was attributed to the reorientation of the whole molecule around the long axis. The corresponding characteristic time of approximately 130 ps agreed well with the values obtained in recent dielectric relaxation and 2H NMR studies. The full width at half maximum of the broader (fast) component shows a quadratic Q dependence (Q is the momentum transfer). Hence the corresponding motions could be described by a stretched exponential correlation function and were interpreted as various "crankshaft-type" motions within the alkyl tails. The 13C CPMAS experiments fully corroborated the QENS results, sometimes considered ambiguous in complex systems. PMID:16802951

  12. Solid-state distortions of nominally square-planar palladium and platinum (R sub 3 P) sub 2 MX sub 2 complexes as determined by a combination of sup 13 C( sup 1 H) and sup 31 P( sup 31 H) NMR spectroscopy

    SciTech Connect

    Rahn, J.A.; Nelson, J.H. ); O'Donnell, D.J.; Pamer, A.R. )

    1989-06-28

    Phosphorus-31 and carbon-13 NMR spectra have been obtained for a series of 20 (R{sub 3}P){sub 2}MX{sub 2} complexes (R{sub 3}P = MePh{sub 2}P and Me{sub 2}PhP; M = Pd, Pt; X = Cl, Br, I, CN, N{sub 3}) in the solid state by cross-polarization and magic-angle-spinning (CP/MAS) techniques. Comparison of these data with spectral data obtained at 300 K in CDCl{sub 3} solutions was made in order to investigate the influence of local symmetry on {sup 31}P and {sup 13}C chemical shifts in the solid state. It was found that most of these compounds, which have regular square-planar geometries in solution, are distorted in the solid state. The solid-state distortions are evidenced by additional {sup 31}P and {sup 13}C resonances in the CP/MAS spectra as compared to the solution spectra. The nature and degree of these distortions are discussed. 25 refs., 2 figs., 6 tabs.

  13. /sup 13/C nuclear magnetic resonance studies of cardiac metabolism

    SciTech Connect

    Seeholzer, S.H.

    1985-01-01

    The last decade has witnessed the increasing use of Nuclear Magnetic Resonance (NMR) techniques for following the metabolic fate of compounds specifically labeled with /sup 13/C. The goals of the present study are: (1) to develop reliable quantitative procedures for measuring the /sup 13/C enrichment of specific carbon sites in compounds enriched by the metabolism of /sup 13/C-labeled substrates in rat heart, and (2) to use these quantitative measurements of fractional /sup 13/C enrichment within the context of a mathematical flux model describing the carbon flow through the TCA cycle and ancillary pathways, as a means for obtaining unknown flux parameters. Rat hearts have been perfused in vitro with various combinations of glucose, acetate, pyruvate, and propionate to achieve steady state flux conditions, followed by perfusion with the same substrates labeled with /sup 13/C in specific carbon sites. The hearts were frozen at different times after addition of /sup 13/C-labeled substrates and neutralized perchloric acid extracts were used to obtain high resolution proton-decoupled /sup 13/C NMR spectra at 90.55 MHz. The fractional /sup 13/C enrichment (F.E.) of individual carbon sites in different metabolites was calculated from the area of the resolved resonances after correction for saturation and nuclear Overhauser effects. These F.E. measurements by /sup 13/C NMR were validated by the analysis of /sup 13/C-/sup 1/H scalar coupling patterns observed in /sup 1/H NMR spectra of the extracted metabolites. The results obtained from perfusion of hearts glucose plus either (2-/sup 13/C) acetate or (3-/sup 13/C) pyruvate are similar to those obtained by previous investigators using /sup 14/C-labeled substrates.

  14. Characterization of the coal biosolubilization process using gel permeation chromatography and CPMAS NMR

    SciTech Connect

    Linehan, J.C.; Bean, R.M.; Franz, J.A.; Campbell, J.A.

    1990-05-01

    Leonardite, an oxidized lignite, and Illinois {number sign}6 coal were treated with Trametes versicolor and Penicillium sp., respectively, and separately with aqueous base to yield soluble and insoluble products. The products and starting materials were analyzed by gel permeation chromatography (GPC), using both aqueous and organic eluents, and by high-field, high-speed-pinning (>10.0 kHz) {sup 13}C cross polarization/magic angle spinning (CPMAS) nuclear magnetic resonance spectroscopy (NMR). The weight average molecular weights (M{sub w}) of the fungal-and base-solubilized products determined by GPC using acidic tetrahydrofuran (THF) eluent were found to be consistently lower than the M{sub w} determined using basic aqueous eluents. The M{sub w} of the leonardite product was measured to be 1800 and 6100 daltons using the THF and aqueous eluents, respectively. The aqueous eluent (phosphate buffered at pH 11.5) was found to be superior to the THF eluent in its solubilizing power, with 10% more material analyzed with the basic eluent. The solubility of the biotreated products in aqueous base was greater than either the starting coal or the chemically solubilized product. The Trametes-solubilized leonardite was found to contain a higher percentage of aliphatic carbon than the raw lignite; the Penicillium- solubilized Illinois {number sign}6 contained more aromatic carbon than before fungal treatment as determined by {sup 13}C CPMAS NMR. Pre-oxidation of Illinois {number sign}6 decreases the relative amount of aliphatic carbon. The high-field, high-speed-spinning CPMAS NMR technique was quantitatively evaluated using Argonne premium coals,International Humic Society Standards, and model compounds at various temperatures. 7 refs., 4 figs., 3 tabs.

  15. Design of a sup 13 C (1H) RF probe for monitoring the in vivo metabolism of (1- sup 13 C)glucose in primate brain

    SciTech Connect

    Hammer, B.E.; Sacks, W.; Bigler, R.E.; Hennessy, M.J.; Sacks, S.; Fleischer, A.; Zanzonico, P.B. )

    1990-01-01

    The design of an RF probe suitable for obtaining proton-decoupled {sup 13}C spectra from a subhuman primate brain is described. Two orthogonal saddle coils, one tuned to the resonant frequency of {sup 13}C and the other to the resonant frequency of 1H, were used to monitor the in vivo metabolism of (1-{sup 13}C)glucose in rhesus monkey brain at 2.1 T. Difference spectra showed the appearance of {sup 13}C-enriched glutamate and glutamine 30 to 40 min after a bolus injection of (1-{sup 13}C)glucose.

  16. 13C Nuclear magnetic resonance studies of kerogen from Cretaceous black shales thermally altered by basaltic intrusions and laboratory simulations

    USGS Publications Warehouse

    Dennis, L.W.; Maciel, G.E.; Hatcher, P.G.; Simoneit, B.R.T.

    1982-01-01

    Cretaceous black shales from DSDP Leg 41, Site 368 in the Eastern Atlantic Ocean were thermally altered during the Miocene by an intrusive basalt. The sediments overlying and underlying the intrusive body were subjected to high temperatures (up to ~ 500??C) and, as a result, their kerogen was significantly altered. The extent of this alteration has been determined by examination by means of 13C nuclear magnetic resonance, using cross polarization/magic-angle spinning (CP/MAS). Results indicate that the kerogen becomes progressively more aromatic in the vicinity of the intrusive body. Laboratory heating experiments, simulating the thermal effects of the basaltic intrusion, produced similar results on unaltered shale from the drill core. The 13C CP/MAS results appear to provide a good measure of thermal alteration. ?? 1982.

  17. Sensitivity-enhanced IPAP experiments for measuring one-bond 13C '- 13C α and 13C α- 1H α residual dipolar couplings in proteins

    NASA Astrophysics Data System (ADS)

    Ding, Keyang; Gronenborn, Angela M.

    2004-04-01

    Sensitivity-enhanced 2D IPAP experiments using the accordion principle for measuring one-bond 13C '- 13C α and 1H α- 13C α dipolar couplings in proteins are presented. The resolution of the resulting spectra is identical to that of the decoupled HSQC spectra and the sensitivity of the corresponding 1D acquisitions are only slightly lower than those obtained with 3D HNCO and 3D HN(COCA)HA pulse sequences due to an additional delay 2 Δ. For cases of limited resolution in the 2D 15N- 1H N HSQC spectrum the current pulse sequences can easily be modified into 3D versions by introducing a poorly digitized third dimension, if so desired. The experiments described here are a valuable addition to the suites available for determination of residual dipolar couplings in biological systems.

  18. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    PubMed

    Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano

    2016-01-01

    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR. PMID:27022916

  19. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy

    PubMed Central

    Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano

    2016-01-01

    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR. PMID:27022916

  20. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  1. Structure and dynamics of homoleptic beryllocenes: a solid-state 9Be and 13C NMR study.

    PubMed

    Hung, Ivan; Macdonald, Charles L B; Schurko, Robert W

    2004-11-19

    The correlation between anisotropic 9Be NMR (quadrupolar and chemical shielding) interactions and the structure and dynamics in [Cp2Be], [Cp2*Be], and [(C5Me4H)2Be] is examined by solid-state 9Be NMR spectroscopy, as well as by ab initio and hybrid density functional theory calculations. The 9Be quadrupole coupling constants in the three compounds correspond well to the relative degrees of spherical ground-state electronic symmetry of the environment about beryllium. Theoretical computations of NMR interaction tensors are in excellent agreement with experimental values and aid in understanding the origins of NMR interaction tensors and their correlation to molecular symmetry. Variable-temperature (VT) 9Be and 13C NMR experiments reveal a highly fluxional structure in the condensed phase of [Cp2Be]. In particular, the pathway by which the Cp rings of [Cp2Be] 'invert' coordination modes is examined in detail using hybrid density functional theory in order to inspect variations of the 9Be NMR interaction tensors. The activation energy for the 'inversion' process is found to be 36.9 kJ mol(-1) from chemical exchange analysis of 13C VT CP/MAS NMR spectra. The low-temperature (ca. -100 degrees C) X-ray crystal structures of all three compounds have been collected and refined, and are in agreement with previously reported structures. In addition, the structure of the same Cp2Be crystal was determined at 20 degrees C and displays features consistent with increased intramolecular motion, supporting observations by 9Be VT NMR spectroscopy. PMID:15484199

  2. Stable isotope-enhanced two- and three-dimensional diffusion ordered 13C NMR spectroscopy (SIE-DOSY 13C NMR)

    NASA Astrophysics Data System (ADS)

    Vermillion, Karl; Price, Neil P. J.

    2009-06-01

    The feasibility of obtaining high quality homonuclear or heteronuclear diffusion-ordered 13C NMR data is shown to be greatly improved by using 13C isotopically-enriched samples. Stable isotope-enhanced diffusion ordered (SIE-DOSY) 13C NMR has been applied to 13C-enriched carbohydrates, and has been used to determine diffusion coefficients for pentose and hexose monosaccharides, and a disaccharide and trisaccharide. These 2D spectra were obtained with as little as 8 min of acquisition time. Fully resolved 3D DOSY-HMQC NMR spectra of [U- 13C]xylose, [U- 13C]glucose, and [1- 13C gal]lactose were obtained in 5 h. Sample derivatization with [ carbonyl- 13C]acetate (peracetylation) extends the usefulness of the technique to included non-labeled sugars; the 13C-carbonyl - carbohydrate ring proton 1H- 13C correlations also provide additional structural information, as shown for the 3-D DOSY-HMQC analysis of a mixture of maltotriose and lactose per-[ carbonyl- 13C]acetates.

  3. Quality assurance of PASADENA hyperpolarization for 13C biomolecules

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Tran, Thao T.; Bhattacharya, Pratip

    2009-01-01

    Object Define MR quality assurance procedures for maximal PASADENA hyperpolarization of a biological 13C molecular imaging reagent. Materials and methods An automated PASADENA polarizer and a parahydrogen generator were installed. 13C enriched hydroxyethyl acrylate, 1-13C, 2,3,3-d3 (HEA), was converted to hyperpolarized hydroxyethyl propionate, 1-13C, 2,3,3-d3 (HEP) and fumaric acid, 1-13C, 2,3-d2 (FUM) to hyperpolarized succinic acid, 1-13C, 2,3-d2 (SUC), by reaction with parahydrogen and norbornadiene rhodium catalyst. Incremental optimization of successive steps in PASADENA was implemented. MR spectra and in vivo images of hyperpolarized 13C imaging agents were acquired at 1.5 and 4.7 T. Results Application of quality assurance (QA) criteria resulted in incremental optimization of the individual steps in PASADENA implementation. Optimal hyperpolarization of HEP of P = 20% was achieved by calibration of the NMR unit of the polarizer (B0 field strength ± 0.002 mT). Mean hyperpolarization of SUC, P = [15.3 ± 1.9]% (N = 16) in D2O, and P = [12.8 ± 3.1]% (N = 12) in H2O, was achieved every 5–8 min (range 13–20%). An in vivo 13C succinate image of a rat was produced. Conclusion PASADENA spin hyperpolarization of SUC to 15.3% in average was demonstrated (37,400 fold signal enhancement at 4.7 T). The biological fate of 13C succinate, a normally occurring cellular intermediate, might be monitored with enhanced sensitivity. PMID:19067009

  4. The T1 ρ13C spin-lattice relaxation time of helical polyguanidines

    NASA Astrophysics Data System (ADS)

    Lim, A. R.; Stewart, J. R.; Novak, B. M.

    1999-03-01

    The solid state dynamics of three helical polyguanidines differing only in their stereochemistry was investigated by 13C CP/MAS NMR. From these studies, the structures of the polyguanidines were confirmed, and the 13C spin-lattice relaxation times in the rotating frame were measured. The relaxation times of all the polyguanidines indicated that they undergo fast motions, i.e. motions on the fast side of the T1 ρ minimum. The main chain carbon of polyguanidine I-( R/ S), with equal amounts of ( R) and ( S) chiral side chains, has higher activation energy, 10.7 kJ/mol, than the analogous polymers with enantiomerically pure side chains ( I-( R) and I-( S)), 5.1 kJ/mol.

  5. A [sup 13]C NMR study of ethylene adsorbed on reduced and oxygen-covered Ag surfaces

    SciTech Connect

    Plischke, J.K.; Benesi, A.J.; Vannice, M.A. )

    1992-11-01

    [sup 13]C-enriched ethylene was adsorbed on both clean and oxygen-covered Ag particles dispersed on [eta]-Al[sub 2]O[sub 3]. Irreversibly adsorbed C[sub 2]H[sub 4] on O-covered Ag exhibited an upfield shift of [minus]20 ppm relative to gas-phase C[sub 2]H[sub 4], whereas a narrower line and smaller shift of [minus]5 ppm occurred for C[sub 2]H[sub 4] reversibly adsorbed on reduced Ag. In addition to the resonance at 103 ppm for irreversibly adsorbed C[sub 2]H[sub 4], CP/MAS NMR spectra also gave resonances at 179, 170, 164, 159, and 19 ppm for the O-covered Ag sample. The CP/MAS spectrum for Ag acetate powder clearly identified the 179- and 19-ppm peaks as those associated with the carboxyl and methyl carbons of the acetate anion, and the peaks at 159, 164, and 170 ppm were assigned to oxalate, formate, and carbonate (or possibly acetic anhydride) species, respectively, based on previous studies. When heated to 473 K the adsorbed C[sub 2]H[sub 4] disappeared and only acetate and oxalate groups were observed, and continued heating to 573 K removed almost all resonances. No C[sub 2]H[sub 4]O was unambiguously detected, thus with this unpromoted Ag catalyst utilizing a high-surface-area alumina the observable surface species appeared to be those associated with complete combustion, with acetate and oxalate predominating during reaction. These results directly confirm the presence of an Ag acetate species which has been proposed previously to be an intermediate in complete combustion, and the presence of the other three species support earlier tentative assignments based on IR and TPR spectroscopy. Chemical shifts at 61, 28, and 13 ppm were indicative of alkoxy species formed on Bronsted-acid sites on the Al[sub 2]O[sub 3] surface. 58 refs., 8 figs., 4 tabs.

  6. Continuous-flow 13C-filtered 1H NMR spectroscopy of ethanol metabolism in rat liver perfusate.

    PubMed

    Albert, K; Sudmeier, J L; Anwer, M S; Bachovchin, W W

    1989-09-01

    Using a 188.5-microliters continuous-flow dual probe 1H[13C] spin-echo difference spectra of rat liver perfusate were acquired. The conversion of [1-13C]ethanol to [1-13C]-acetaldehyde was readily monitored as a function of time. In combination with 1-1 water nonexcitation and WALTZ 13C decoupling, this method proved to be superior in sensitivity and selectivity to direct 1H or 13C detection. PMID:2779419

  7. Hepatic gluconeogenesis influences (13)C enrichment in lactate in human brain tumors during metabolism of [1,2-(13)C]acetate.

    PubMed

    Pichumani, Kumar; Mashimo, Tomoyuki; Vemireddy, Vamsidhara; Kovacs, Zoltan; Ratnakar, James; Mickey, Bruce; Malloy, Craig R; DeBerardinis, Ralph J; Bachoo, Robert M; Maher, Elizabeth A

    2016-07-01

    (13)C-enriched compounds are readily metabolized in human malignancies. Fragments of the tumor, acquired by biopsy or surgical resection, may be acid-extracted and (13)C NMR spectroscopy of metabolites such as glutamate, glutamine, 2-hydroxyglutarate, lactate and others provide a rich source of information about tumor metabolism in situ. Recently we observed (13)C-(13)C spin-spin coupling in (13)C NMR spectra of lactate in brain tumors removed from patients who were infused with [1,2-(13)C]acetate prior to the surgery. We found, in four patients, that infusion of (13)C-enriched acetate was associated with synthesis of (13)C-enriched glucose, detectable in plasma. (13)C labeled glucose derived from [1,2-(13)C]acetate metabolism in the liver and the brain pyruvate recycling in the tumor together lead to the production of the (13)C labeled lactate pool in the brain tumor. Their combined contribution to acetate metabolism in the brain tumors was less than 4.0%, significantly lower than the direct oxidation of acetate in the citric acid cycle in tumors. PMID:27020407

  8. Stable isotope-enhanced two- and three-dimensional diffusion ordered 13C-NMR spectroscopy (SIE-DOSY 13C-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable Isotope-Enhanced Diffusion Ordered (SIE-DOSY) 13C-NMR has been applied to 13C-enriched carbohydrates and has been used to determine diffusion coefficients for pentose and hexose monosaccharides, a disaccharide and a trisaccharide. These 2D spectra were obtained with as little as 8 min of acq...

  9. 13C NMR Metabolomics: INADEQUATE Network Analysis

    PubMed Central

    Clendinen, Chaevien S.; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S.

    2015-01-01

    The many advantages of 13C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, 13C NMR offers a straightforward measurement of these compounds. Two-dimensional 13C-13C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semi-automated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE datasets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures. PMID:25932900

  10. Rotary resonance recoupling of 13C- 1H dipolar interactions in magic angle spinning 13C NMR of dynamic solids

    NASA Astrophysics Data System (ADS)

    Kitchin, Simon J.; Harris, Kenneth D. M.; Aliev, Abil E.; Apperley, David C.

    2000-06-01

    Rotary resonance recoupling of heteronuclear 13C- 1H dipolar interactions in magic angle spinning solid state 13C NMR spectra (recorded under conditions of 1H decoupling at frequency ν1 and magic angle spinning at frequency νr) has been studied for three examples of molecular solids (adamantane, ferrocene and hexamethylbenzene) in which substantial molecular motion is known to occur. It is shown that when rotary resonance conditions are satisfied (i.e. ν1/νr= n, for n=1 or 2), the recoupling can lead to motionally averaged Pake-like powder patterns from which information on 13C- 1H internuclear distances and/or molecular motion can be derived.

  11. Two-dimensional (13)C-(13)C correlation spectroscopy with magic angle spinning and dynamic nuclear polarization.

    PubMed

    Rosay, Melanie; Weis, Volker; Kreischer, Kenneth E; Temkin, Richard J; Griffin, Robert G

    2002-04-01

    The sensitivity of solid-state NMR experiments can be enhanced with dynamic nuclear polarization (DNP), a technique that transfers the high Boltzmann polarization of unpaired electrons to nuclei. Signal enhancements of up to 23 have been obtained for magic angle spinning (MAS) experiments at 5 T and 85-90 K using a custom-designed high-power gyrotron. The extended stability of MAS/DNP experiments at low temperature is demonstrated with (1)H-driven (13)C spin-diffusion experiments on the amino acid proline. These (13)C-(13)C chemical shift correlation spectra are the first two-dimensional MAS/DNP experiments performed at high field (>1.4 T). PMID:11916398

  12. New guidelines for δ13C measurements

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Gehre, Matthias; Groning, Manfred; Meijer, Harro A. J.; Toman, Blaza; Verkouteren, R. Michael

    2006-01-01

    Consistency of δ13C measurements can be improved 39−47% by anchoring the δ13C scale with two isotopic reference materials differing substantially in 13C/12C. It is recommended thatδ13C values of both organic and inorganic materials be measured and expressed relative to VPDB (Vienna Peedee belemnite) on a scale normalized by assigning consensus values of −46.6‰ to L-SVEC lithium carbonate and +1.95‰ to NBS 19 calcium carbonate. Uncertainties of other reference material values on this scale are improved by factors up to two or more, and the values of some have been notably shifted:  the δ13C of NBS 22 oil is −30.03%.

  13. In vivo13C spectroscopy in the rat brain using hyperpolarized [1- 13C]pyruvate and [2- 13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Marjańska, Małgorzata; Iltis, Isabelle; Shestov, Alexander A.; Deelchand, Dinesh K.; Nelson, Christopher; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-10-01

    The low sensitivity of 13C spectroscopy can be enhanced using dynamic nuclear polarization. Detection of hyperpolarized [1- 13C]pyruvate and its metabolic products has been reported in kidney, liver, and muscle. In this work, the feasibility of measuring 13C signals of hyperpolarized 13C metabolic products in the rat brain in vivo following the injection of hyperpolarized [1- 13C]pyruvate and [2- 13C]pyruvate is investigated. Injection of [2- 13C]pyruvate led to the detection of [2- 13C]lactate, but no other downstream metabolites such as TCA cycle intermediates were detected. Injection of [1- 13C]pyruvate enabled the detection of both [1- 13C]lactate and [ 13C]bicarbonate. A metabolic model was used to fit the hyperpolarized 13C time courses obtained during infusion of [1- 13C]pyruvate and to determine the values of VPDH and VLDH.

  14. ^13C Solid NMR Study of Devulcanization and Revulcanization of SBR Ne

    NASA Astrophysics Data System (ADS)

    Massey, J.; Levin, V.; Isayev, A.; von Meerwall, E.

    1996-03-01

    As part of a larger effort in support of recycling of rubber-based composites, we have used ^13C CP-MAS NMR spectroscopy and relaxation to study molecular and segmental mobilities in styrene-butadiene random copolymers before and after sulfur crosslinking, after subsequent devulcanization using a thermal ultrasound technique, and following revulcanization. Tracking the cis-trans ratio indicates that overall network crosslink density increases during each of these steps, including devulcanization, which produces mesoscale network aggregates and substantial amounts of sol. This observation is confirmed by the transverse (T_2) relaxation times, which show that molecular/segmental mobilities monotonically decrease in the same sequence. Analysis of these effects requires the invocation of alterations in sulfur crosslinking, i.e. density, distribution, and functionality, including extensive cyclization. Measurements of the glass transition temperatures in melt, network, sol , and revulcanizate are in accord with this picture.

  15. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  16. Performance evaluation of quantitative adiabatic (13)C NMR pulse sequences for site-specific isotopic measurements.

    PubMed

    Thibaudeau, Christophe; Remaud, Gérald; Silvestre, Virginie; Akoka, Serge

    2010-07-01

    (2)H/(1)H and (13)C/(12)C site-specific isotope ratios determined by NMR spectroscopy may be used to discriminate pharmaceutically active ingredients based on the synthetic process used in production. Extending the Site-specific Natural Isotope Fractionation NMR (SNIF-NMR) method to (13)C is highly beneficial for complex organic molecules when measurements of (2)H/(1)H ratios lead to poorly defined molecular fingerprints. The current NMR methodology to determine (13)C/(12)C site-specific isotope ratios suffers from poor sensitivity and long experimental times. In this work, several NMR pulse sequences based on polarization transfer were evaluated and optimized to measure precise quantitative (13)C NMR spectra within a short time. Adiabatic 180 degrees (1)H and (13)C pulses were incorporated into distortionless enhancement by polarization transfer (DEPT) and refocused insensitive nuclei enhanced by polarization transfer (INEPT) to minimize the influence of 180 degrees pulse imperfections and of off-resonance effects on the precision of the measured (13)C peak areas. The adiabatic DEPT sequence was applied to draw up a precise site-specific (13)C isotope profile of ibuprofen. A modified heteronuclear cross-polarization (HCP) experiment featuring (1)H and (13)C spin-locks with adiabatic 180 degrees pulses is also introduced. This sequence enables efficient magnetization transfer across a wide (13)C frequency range although not enough for an application in quantitative (13)C isotopic analysis. PMID:20527737

  17. Crystal Structures and Vibrational and Solid-State (CPMAS) NMR Spectroscopy of Some Bis(triphenylphosphine)silver(I) Sulfate, Selenate and Phosphate Systems.

    SciTech Connect

    Bowmaker, Graham A.; Hanna, John V.; Rickard, Clifton E.; Lipton, Andrew S.

    2001-01-01

    The complexes [Ag2(PPh3)4EO4].2H2O(E=S, Se) (1,2), [Ag(PPh3)2HEO4].H2O (E=S, Se)(3,4) and [Ag9PPh3)2H2PO4].2EtOH (5) have been prepared and studied by X-ray crystallography and by infrared and solid-state 13C and 31 P cross-polarization, magic-angle-spinning (CPMAS) NMR spectroscopy.

  18. 13C NMR spectroscopy of methane adsorbed in SAPO-11 molecular sieve

    NASA Astrophysics Data System (ADS)

    Koskela, Tuomas; Ylihautala, Mika; Vaara, Juha; Jokisaari, Jukka

    1996-10-01

    Static 13C and 13C-{ 1H} NMR spectra of carbon-13 enriched methane ( 13CH 4) adsorbed into SAPO-11 molecular sieve were recorded at variable temperatures. Moreover, the corresponding MAS NMR spectra were measured. These experiments reveal a temperature-dependent, anisotropic and asymmetric 13C nuclear shielding tensor. Ab initio model calculations of methane in the field of a positive point charge suggest that the deformation of the shielding tensor may be related to the interaction between the methane molecule and the charge-compensating protons. A comparison with existing Xe data is made.

  19. Analysing Groundwater Using the 13C Isotope

    NASA Astrophysics Data System (ADS)

    Awad, Sadek

    The stable isotope of the carbon atom (13C) give information about the type of the mineralisation of the groundwater existing during the water seepage and about the recharge conditions of the groundwater. The concentration of the CO2(aq.) dissolved during the infiltration of the water through the soil's layers has an effect on the mineralisation of this water. The type of the photosynthesis's cycle (C-3 or C-4 carbon cycle) can have a very important role to determine the conditions (closed or open system) of the mineralisation of groundwater. The isotope 13C of the dissolved CO2 in water give us a certain information about the origin and the area of pollution of water. The proportion of the biogenic carbon and its percentage in the mineralisation of groundwater is determined by using the isotope 13C.

  20. States of 13C with abnormal radii

    NASA Astrophysics Data System (ADS)

    Demyanova, A. S.; Ogloblin, A. A.; Danilov, A. N.; Goncharov, S. A.; Belyaeva, T. L.; Sobolev, Yu. G.; Khlebnikov, S. V.; Burtebaev, N.; Trzaska, W.; Heikkinen, P.; Tyurin, G. P.; Janseitov, D.; Gurov, Yu. B.

    2016-05-01

    Differential cross-sections of the elastic and inelastic 13C + α scattering were measured at E(α) = 90 MeV. The root mean-square radii() of 13C nucleus in the states: 8.86 (1/2-), 3.09 (1/2+) and 9.90 (3/2-) MeV were determined by the Modified diffraction model (MDM). The radii of the first two levels are enhanced compared to that of the ground state of 13C, confirming the suggestion that the 8.86 MeV state is an analogue of the Hoyle state in 12C and the 3.09 MeV state has a neutron halo. Some indications to the abnormally small size of the 9.90 MeV state were obtained.

  1. Refined Analysis of Brain Energy Metabolism Using In Vivo Dynamic Enrichment of 13C Multiplets

    PubMed Central

    Dehghani M., Masoumeh; Duarte, João M. N.; Kunz, Nicolas; Gruetter, Rolf

    2016-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy in combination with the infusion of 13C-labeled precursors is a unique approach to study in vivo brain energy metabolism. Incorporating the maximum information available from in vivo localized 13C spectra is of importance to get broader knowledge on cerebral metabolic pathways. Metabolic rates can be quantitatively determined from the rate of 13C incorporation into amino acid neurotransmitters such as glutamate and glutamine using suitable mathematical models. The time course of multiplets arising from 13C-13C coupling between adjacent carbon atoms was expected to provide additional information for metabolic modeling leading to potential improvements in the estimation of metabolic parameters. The aim of the present study was to extend two-compartment neuronal/glial modeling to include dynamics of 13C isotopomers available from fine structure multiplets in 13C spectra of glutamate and glutamine measured in vivo in rats brain at 14.1 T, termed bonded cumomer approach. Incorporating the labeling time courses of 13C multiplets of glutamate and glutamine resulted in elevated precision of the estimated fluxes in rat brain as well as reduced correlations between them. PMID:26969691

  2. Determination of fructose metabolic pathways in normal and fructose-intolerant children: A sup 13 C NMR study using (U- sup 13 C)fructose

    SciTech Connect

    Gopher, A.; Lapidot, A. ); Vaisman, N. ); Mandel, H. )

    1990-07-01

    An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-(U-{sup 13}C)fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of {sup 13}C NMR spectra of plasma glucose. Significantly lower values ({approx}3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitative determination of the metabolic pathways of fructose conversion to glucose was derived from {sup 13}C NMR measurement of plasma ({sup 13}C)glucose isotopomer populations. The finding of isotopomer populations of three adjacent {sup 13}C atoms at glucose C-4 ({sup 13}C{sub 3}-{sup 13}C{sub 4}-{sup 13}C{sub 5}) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only {approx}50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of ({sup 13}C)glucose formation from a trace amount of (U-{sup 13}C)fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism.

  3. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  4. Interlobe communication in 13C-methionine-labeled human transferrin.

    PubMed

    Beatty, E J; Cox, M C; Frenkiel, T A; Tam, B M; Mason, A B; MacGillivray, R T; Sadler, P J; Woodworth, R C

    1996-06-18

    [1H, 13C] NMR investigations of metal-induced conformational changes in the blood serum protein transferrin (80 kDa) are reported. These are thought to play an important role in the recognition of this protein by its cellular receptors. [1H, 13C] NMR resonance assignments are presented for all nine methionine 13CH3 groups of recombinant deglycosylated human transferrin on the basis of studies of recombinant N-lobe (40 kDa, five Met residues), NOESY-relayed [1H, 13C] HMQC spectra, and structural considerations. The first specific assignments for C-lobe resonances of transferrin are presented. Using methionine 13CH3 resonances as probes, it is shown that, with oxalate as the synergistic anion, Ga3+ binds preferentially to the C-lobe and subsequently to the N-lobe. The NMR shifts of Met464, which is in the Trp460-centered hydrophobic patch of helix 5 in the C-lobe in contact with the anion and metal binding site, show that Ga3+ binding causes movement of side chains within this helix, as is also the case in the N-lobe. The C-lobe residue Met382, which contacts the N-lobe hinge region, is perturbed when Ga3+ binds to the N-lobe, indicative of interlobe communication, a feature which may control the recognition of fully-metallated transferrin by its receptor. These results demonstrate that selective 13C labeling is a powerful method for probing the structure and dynamics of high-molecular-mass proteins. PMID:8672464

  5. Impact of structural differences in carcinopreventive agents indole-3-carbinol and 3,3'-diindolylmethane on biological activity. An X-ray, ¹H-¹⁴N NQDR, ¹³C CP/MAS NMR, and periodic hybrid DFT study.

    PubMed

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Szafrański, Marek; Seliger, Janez; Žagar, Veselko; Burchardt, Dorota V

    2015-09-18

    Three experimental techniques (1)H-(14)N NQDR, (13)C CP/MAS NMR and X-ray and Density Functional Theory (GGA/BLYP with PBC) and Hirshfeld surfaces were applied for the structure-activity oriented studies of two phyto-antioxidants and anticarcinogens: indole-3-carbinol, I3C, and 3,3'-diindolylmethane, DIM, (its bioactive metabolite). One set of (14)N NQR frequencies for DIM (2.310, 2.200 and 0.110 MHz at 295K) and I3C (2.315, 1.985 and 0.330 MHz at 160K) was recorded. The multiplicity of NQR lines recorded at RT revealed high symmetry (chemical and physical equivalence) of both methyl indazole rings of DIM. Carbonyl (13)C CSA tensor components were calculated from the (13)C CP/MAS solid state NMR spectrum of I3C recorded under fast and slow spinning. At room temperature the crystal structure of I3C is orthorhombic: space group Pca21, Z=4, a=5.78922(16), b=15.6434(7) and c=8.4405(2)Å. The I3C molecules are aggregated into ribbons stacked along [001]. The oxygen atomsare disorderedbetween the two sites of different occupancy factors. It implies that the crystal is built of about 70% trans and 30% gauche conformers, and apart from the weak OH⋯O hydrogen bonds (O⋯O=3.106Å) the formation of alternative O'H⋯O bonds (O'⋯O=2.785Å) is possible within the 1D ribbons. The adjacent ribbons are further stabilised by O'H⋯O bonds (O'⋯O=2.951Å). The analysis of spectra and intermolecular interactions pattern by experimental techniques was supported by solid (periodic) DFT calculations. The knowledge of the topology and competition of the interactions in crystalline state shed some light on the preferred conformations of CH2OH in I3C and steric hindrance of methyl indole rings in DIM. A comparison of the local environment in gas phase and solid permitted drawing some conclusions on the nature of the interactions required for effective processes of recognition and binding of a given anticarcinogen to the protein or nucleic acid. PMID:26066413

  6. Characterisation of black carbon-rich samples by 13C solid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Novotny, Etelvino H.; Hayes, Michael H. B.; Deazevedo, Eduardo R.; Bonagamba, Tito J.

    2006-09-01

    There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Índio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. 13C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, 1H-13C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the π pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp—variable amplitude CP (VACP)—VACP/MAS pulse sequence, and composite π pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins.

  7. Characterisation of black carbon-rich samples by (13)C solid-state nuclear magnetic resonance.

    PubMed

    Novotny, Etelvino H; Hayes, Michael H B; Deazevedo, Eduardo R; Bonagamba, Tito J

    2006-09-01

    There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Indio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. (13)C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, (1)H-(13)C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the pi pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp--variable amplitude CP (VACP)--VACP/MAS pulse sequence, and composite pi pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins. PMID:16688435

  8. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    PubMed Central

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ,ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1–40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1–40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16–21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1–40 fibrils in 4 hr or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples. PMID:23562665

  9. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-06-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ, ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1-40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1-40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16-21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1-40 fibrils in 4 h or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples.

  10. The 4051 Å Comet Band of 13C3

    NASA Astrophysics Data System (ADS)

    Haddad, M. A.; Zhao, D.; Linnartz, H.; Ubachs, W.

    2014-02-01

    The tricarbon C3 molecule has been detected in a number of translucent interstellar clouds via its $A^1\\Piu-X^1\\Sigmag+$ (000-000) electronic `comet' band around 4051 Å. So far, it is the largest molecule unambiguously identified in the diffuse interstellar medium. In this work, rotationally resolved laboratory spectra are presented for the corresponding transition of the 13C3 isotopologue. The spectra are recorded in direct absorption using cavity ring-down spectroscopy in combination with a supersonic plasma jet. A rotational analysis yields accurate spectroscopic parameters. In contrast to 12C3, no significant perturbations are found for (e- or f-parity) levels up to J' = 18 in the A 1Π upper electronic state.

  11. 13C-NMR study of labeled vinyl groups in paramagnetic myoglobin derivatives.

    PubMed

    Sankar, S S; La Mar, G N; Smith, K M; Fujinari, E M

    1987-04-01

    The 13C-NMR spectra of high-spin met-aquo myoglobin, spin-equilibrium met-azido myoglobin, low-spin met-cyano myoglobin, deoxy myoglobin and carbonmonoxy myoglobin from sperm whale reconstituted with hemin 13C enriched at both vinyl alpha or beta positions have been recorded. In all cases the labeled vinyl 13C signals are clearly resolved and useful spectra could be obtained within approx. 15 minutes. The decoupling of multiplet structure due to attached proton(s) has led to the specific assignment of vinyl 13C alpha signals in all paramagnetic derivatives and the 13C beta signals in met-cyano myoglobin. In all other cases, the collapse of the proton multiplet structure as a function of 1H decoupling frequency has located, but not assigned, the attached 1H resonance positions which are obscured by the intense diamagnetic envelope in the 1H-NMR spectrum. The resulting vinyl 13C hyperfine shifts follow Curie behavior, and the patterns closely resemble those in the appropriate model complexes in the same oxidation/spin/ligation state, except that the protein exhibits more in-plane asymmetry. The hyperfine shift patterns are indicative of dominant pi contact shifts for all ferric complexes. Deoxy myoglobin vinyl 13C and 1H contact shifts provide little evidence for pi bonding. PMID:3828362

  12. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates

    NASA Astrophysics Data System (ADS)

    Azurmendi, Hugo F.; Freedberg, Darón I.

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very

  13. Investigating brain metabolism at high fields using localized 13C NMR spectroscopy without 1H decoupling.

    PubMed

    Deelchand, Dinesh Kumar; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2006-02-01

    Most in vivo 13C NMR spectroscopy studies in the brain have been performed using 1H decoupling during acquisition. Decoupling imposes significant constraints on the experimental setup (particularly for human studies at high magnetic field) in order to stay within safety limits for power deposition. We show here that incorporation of the 13C label from 13C-labeled glucose into brain amino acids can be monitored accurately using localized 13C NMR spectroscopy without the application of 1H decoupling. Using LCModel quantification with prior knowledge of one-bond and multiple-bond J(CH) coupling constants, the uncertainty on metabolites concentrations was only 35% to 91% higher (depending on the carbon resonance of interest) in undecoupled spectra compared to decoupled spectra in the rat brain at 9.4 Tesla. Although less sensitive, 13C NMR without decoupling dramatically reduces experimental constraints on coil setup and pulse sequence design required to keep power deposition within safety guidelines. This opens the prospect of safely measuring 13C NMR spectra in humans at varied brain locations (not only the occipital lobe) and at very high magnetic fields above 4 Tesla. PMID:16345037

  14. Cross polarization and magic angle sample spinning NMR spectra of model organic compounds. 1. Highly protonated molecules

    SciTech Connect

    Alemany, L.B.; Grant, D.M.; Pugmire, R.J.; Alger, T.D.; Zilm, K.W.

    1983-04-20

    CP/MAS /sup 13/C NMR spectra were obtained at various contact times on ten solid organic compounds containing a variety of simple functional groups. The spectra show that signal intensities that agree with atomic ratios can be obtained with a contact time of 2.25 ms and often with a contact time as short as about 1 ms. Computer analysis of signal intensities obtained at a minimum of ten different contact times provides T/sub CH/ data that are consistent with these experimental results. The experimental results are also consistent with the previously reported lack of significant variation in the spectra of complex organic solids obtained with contact times of about 1 to 3 ms. In general, nonprotonated carbon atoms polarize more slowly than protonated carbon atoms. The compounds exhibit a wide range of proton spin lattice relaxation times. Some compounds exhibit more resonances than are found in the /sup 13/C(/sup 1/H) spectra of the compounds in solution because the crystalline environment removes the nominal spatial equivalence found for carbon atoms related to each other by unimolecular symmetry elements.

  15. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  16. Metabolic pathways for ketone body production. /sup 13/C NMR spectroscopy of rat liver in vivo using /sup 13/C-multilabeled fatty acids

    SciTech Connect

    Pahl-Wostl, C.; Seelig, J.

    1986-11-04

    The hormonal regulation of ketogenesis in the liver of living rat has been studied noninvasively with /sup 13/C nuclear magnetic resonance. The spatial selection for the liver was better than 90%, with extrahepatic adipose tissue contribution only a very small amount of signal. The metabolic activities of the liver were investigated by infusion of /sup 13/C-labeled butyrate in the jugular vein of the anesthetized rat. The rate of butyrate infusion was chosen to be close to the maximum oxidative capacity of the rat liver, and the /sup 13/C signal intensities were enhanced by using doubly labeled (1,3-/sup 13/C)butyrate as a substrate. Different /sup 13/C NMR spectra and hence different metabolites were observed depending on the hormonal state of the animal. The /sup 13/C NMR studies demonstrate that even when rate of acetyl-CoA production are high, the disposal of this compound is not identical in fasted and diabetic animals. This supports previous suggestions that the redox state of the mitochondrion represents the most important factor in regulation. For a given metabolic state of the animal, different signal intensities were obtained depending on whether butyrate was labeled at C-1, C-3, or C-1,3. From the ratios of incorporation of /sup 13/C label into the carbons of 3-hydroxybutyrate, it could be estimated that a large fraction of butyrate evaded ..beta..-oxidation to acetyl-CoA but was converted directly to acetoacetyl-CoA. /sup 13/C-labeled glucose could be detected in vivo in the liver of diabetic rats.

  17. Solid-state 109Ag CP/MAS NMR spectroscopy of some diammine silver(I) complexes.

    PubMed

    Bowmaker, Graham A; Harris, Robin K; Assadollahzadeh, Behnam; Apperley, David C; Hodgkinson, Paul; Amornsakchai, Pornsawan

    2004-09-01

    Solid-state cross-polarization magic-angle spinning (CP/MAS) NMR spectra were recorded for the compounds [Ag(NH3)2]2SO4, [Ag(NH3)2]2SeO4 and [Ag(NH3))]NO3, all of which contain the linear or nearly linear two-coordinate [Ag(NH3)2]+ ion. The 109Ag CP/MAS NMR spectra show centrebands and associated spinning sideband manifolds typical for systems with moderately large shielding anisotropy, and splittings due to indirect 1J(109Ag,14N) spin-spin coupling. Spinning sideband analysis was used to determine the 109Ag shielding anisotropy and asymmetry parameters Deltasigma and eta from these spectra, yielding anisotropies in the range 1500-1600 ppm and asymmetry parameters in the range 0-0.3. Spectra were also recorded for 15N and (for the selenate) 77Se. In all cases the number of resonances observed is as expected for the crystallographic asymmetric units. The crystal structure of the selenate is reported for the first time. One-bond (107, 109Ag,15N) coupling constants are found to have magnitudes in the range 60-65 Hz. Density functional calculations of the Ag shielding tensor for model systems yield results that are in good agreement with the experimentally determined shielding parameters, and suggest that in the solid compounds Deltasigma and eta are reduced and increased, respectively, from the values calculated for the free [Ag(NH3)2]+ ion (1920 ppm and 0, respectively), primarily as a result of cation-cation interactions, for which there is evidence from the presence of metal-over-metal stacks of [Ag(NH3)2]+ ions in the solid-state structures of these compounds. PMID:15307067

  18. In vivo 13 carbon metabolic imaging at 3T with hyperpolarized 13C-1-pyruvate.

    PubMed

    Kohler, S J; Yen, Y; Wolber, J; Chen, A P; Albers, M J; Bok, R; Zhang, V; Tropp, J; Nelson, S; Vigneron, D B; Kurhanewicz, J; Hurd, R E

    2007-07-01

    We present for the first time dynamic spectra and spectroscopic images acquired in normal rats at 3T following the injection of (13)C-1-pyruvate that was hyperpolarized by the dynamic nuclear polarization (DNP) method. Spectroscopic sampling was optimized for signal-to-noise ratio (SNR) and for spectral resolution of (13)C-1-pyruvate and its metabolic products (13)C-1-alanine, (13)C-1-lactate, and (13)C-bicarbonate. Dynamic spectra in rats were collected with a temporal resolution of 3 s from a 90-mm axial slab using a dual (1)H-(13)C quadrature birdcage coil to observe the combined effects of metabolism, flow, and T(1) relaxation. In separate experiments, spectroscopic imaging data were obtained during a 17-s acquisition of a 20-mm axial slice centered on the rat kidney region to provide information on the spatial distribution of the metabolites. Conversion of pyruvate to lactate, alanine, and bicarbonate occurred within a minute of injection. Alanine was observed primarily in skeletal muscle and liver, while pyruvate, lactate, and bicarbonate concentrations were relatively high in the vasculature and kidneys. In contrast to earlier work at 1.5 T, bicarbonate was routinely observed in skeletal muscle as well as the kidney and vasculature. PMID:17659629

  19. Towards hyperpolarized 13C-succinate imaging of brain cancer

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2007-05-01

    We describe a novel 13C enriched precursor molecule, sodium 1- 13C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1- 13C-glutamate, 5- 13C-glutamate, 1- 13C-glutamine and 5- 13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images.

  20. Simultaneous DNP enhancements of (1)H and (13)C nuclei: theory and experiments.

    PubMed

    Shimon, Daphna; Hovav, Yonatan; Kaminker, Ilia; Feintuch, Akiva; Goldfarb, Daniella; Vega, Shimon

    2015-05-01

    DNP on heteronuclear spin systems often results in interesting phenomena such as the polarization enhancement of one nucleus during MW irradiation at the "forbidden" transition frequencies of another nucleus or the polarization transfer between the nuclei without MW irradiation. In this work we discuss the spin dynamics in a four-spin model system of the form {ea-eb-((1)H,(13)C)}, with the Larmor frequencies ωa, ωb, ωH and ωC, by performing Liouville space simulations. This spin system exhibits the common (1)H solid effect (SE), (13)C cross effect (CE) and in addition high order CE-DNP enhancements. Here we show, in particular, the "proton shifted (13)C-CE" mechanism that results in (13)C polarization when the model system, at one of its (13)C-CE conditions, is excited by a MW field at the zero quantum or double quantum electron-proton transitions ωMW = ωa ± ωH and ωMW = ωb ± ωH. Furthermore, we introduce the "heteronuclear" CE mechanism that becomes efficient when the system is at one of its combined CE conditions |ωa - ωb| = |ωH ± ωC|. At these conditions, simulations of the four-spin system show polarization transfer processes between the nuclei, during and without MW irradiation, resembling the polarization exchange effects often discussed in the literature. To link the "microscopic" four-spin simulations to the experimental results we use DNP lineshape simulations based on "macroscopic" rate equations describing the electron and nuclear polarization dynamics in large spin systems. This approach is applied based on electron-electron double resonance (ELDOR) measurements that show strong (1)H-SE features outside the EPR frequency range. Simulated ELDOR spectra combined with the indirect (13)C-CE (iCE) mechanism, result in additional "proton shifted (13)C-CE" features that are similar to the experimental ones. These features are also observed experimentally in (13)C-DNP spectra of a sample containing 15 mM of trityl in a glass forming solution of

  1. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  2. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  3. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    NASA Astrophysics Data System (ADS)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  4. Calculation of total meal d13C from individual food d13C.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variations in the isotopic signature of carbon in biological samples can be used to distinguish dietary patterns and monitor shifts in metabolism. But for these variations to have meaning, the isotopic signature of the diet must be known. We sought to determine if knowledge of the 13C isotopic abund...

  5. 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Frye, J. S.

    1987-01-01

    13C NMR spectra have been obtained of the insoluble carbon residues resulting from HF-digestion of three carbonaceous chondrites, Orgueil (C1), Murchison (CM2), and Allende (CV3). Spectra obtained using the cross polarization magic-angle spinning technique show two major features attributable respectively to carbon in aliphatic/olefinic structures. The spectrum obtained from the Allende sample was weak, presumably as a consequence of its low hydrogen content. Single pulse excitation spectra, which do not depend on 1H-13C polarization transfer for signal enhancement were also obtained. These spectra, which may be more representative of the total carbon in the meteorite samples, indicate a greater content of carbon in aromatic/olefinic structures. These results suggest that extensive polycyclic aromatic sheets are important structural features of the insoluble carbon of all three meteorites. The Orgueil and Murchison materials contain additional hydrogenated aromatic/olefinic and aliphatic groups.

  6. The cluster and single-particle states in 13C (α,α)13C reactions

    NASA Astrophysics Data System (ADS)

    Mynbayev, N. A.; Nurmukhanbetova, A. K.; Goldberg, V. Z.; Rogachev, G. V.; Golovkov, M. S.; Koloberdin, M.; Ivanov, I.; Nauruzbayev, D. K.; Berdibek, Sh S.; Rakhymzhanov, A. M.; Tribble, R. E.

    2016-06-01

    The excitation functions of elastic scattering of 13C on alpha particle have been measured using the thick-target inverse kinematic method at the heavy ion DC-60 cyclotron. The helium gas was used as a target and also as a degrader to stop the beam. New data (including 180°degree) of the resonances close to the threshold in 17O have been obtained.

  7. CARBON-13 NUCLEAR MAGNETIC RESONANCE. 13C CHEMICAL SHIFTS AND 13C-199HG COUPLING CONSTANTS FOR SOME ORGANOMERCURY COMPOUNDS

    EPA Science Inventory

    The (13)C shieldings and (13)C-(199)Hg coupling constants of fourteen phenyl- and seven alkyl- and alkenyl-mercury compounds have been obtained. Substituent effects on the (13)C shieldings are similar to those in nonmercurated phenyl compounds, with a similar relationship between...

  8. Spectroscopic study and astronomical detection of doubly 13C-substituted ethyl cyanide

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Belloche, A.; Müller, H. S. P.; Motiyenko, R. A.; Guillemin, J.-C.; Garrod, R. T.; Menten, K. M.

    2016-05-01

    Context. We have performed a spectral line survey called Exploring Molecular Complexity with ALMA (EMoCA) toward Sagittarius B2(N) between 84.1 and 114.4 GHz with the Atacama Large Millimeter/submillimeter Array (ALMA) in its Cycles 0 and 1. Line intensities of the main isotopic species of ethyl cyanide and its singly 13C-substituted isotopomers observed toward the hot molecular core Sagittarius B2(N2) suggest that the doubly 13C-substituted isotopomers should also be detectable. Aims: We want to determine the spectroscopic parameters of all three doubly 13C-substituted isotopologues of ethyl cyanide to search for them in our ALMA data. Methods: We investigated the laboratory rotational spectra of the three species between 150 GHz and 990 GHz. We searched for emission lines produced by these species in the ALMA spectrum of Sagittarius B2(N2). We modeled their emission and the emission of the 12C and singly 13C-substituted isotopologues assuming local thermodynamic equilibrium. Results: We identified more than 5000 rotational transitions, pertaining to more than 3500 different transition frequencies, in the laboratory for each of the three doubly 13C-substituted isotopomers. The quantum numbers reach J ≈ 115 and Ka ≈ 35, resulting in accurate spectroscopic parameters and accurate rest frequency calculations beyond 1000 GHz for strong to moderately weak transitions of either isotopomer. All three species are unambiguously detected in our ALMA data. The 12C/13C column density ratio of the isotopomers with one 13C atom to those with two 13C atoms is about 25. Conclusions: Ethyl cyanide is the second molecule after methyl cyanide for which isotopologues containing two 13C atoms have been securely detected in the interstellar medium. The model of our ethyl cyanide data suggests that we should be able to detect vibrational satellites of the main species up to at least ν19 = 1 at ~1130 K and up to ν13 + ν21 = 2 at ~600 K for the isotopologues with one 13C atom in

  9. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  10. IMPROVED LINE DATA FOR THE SWAN SYSTEM {sup 12}C{sup 13}C ISOTOPOLOGUE

    SciTech Connect

    Ram, Ram S.; Brooke, James S. A.; Bernath, Peter F.; Sneden, Christopher; Lucatello, Sara E-mail: rr662@york.ac.uk E-mail: chris@verdi.as.utexas.edu

    2014-03-01

    We present new, accurate predictions for rotational line positions, excitation energies, and transition probabilities of the {sup 12}C{sup 13}C isotopologue Swan d{sup 3}Π-a{sup 3}Π system 0-0, 0–1, 0–2, 1–0, 1–1, 1–2, 2–0, 2–1, and 2–2 vibrational bands. The line positions and energy levels were predicted through new analyses of published laboratory data for the {sup 12}C{sup 13}C lines. Transition probabilities were derived from recent computations of transition dipole moments and related quantities. The {sup 12}C{sup 13}C line data were combined with similar data for {sup 12}C{sub 2,} reported in a companion paper, and applied to produce synthetic spectra of carbon-rich metal-poor stars that have strong C{sub 2} Swan bands. The matches between synthesized and observed spectra were used to estimate band head positions for a few of the {sup 12}C{sup 13}C vibrational bands and to verify that the new computed line data match observed spectra. The much weaker C{sub 2} lines of the bright red giant Arcturus were also synthesized in the band head regions.

  11. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  12. Asymmetry measurement for (13)C(charged pion,charged pion)(13)C* at T(pi) = 162 MeV

    NASA Astrophysics Data System (ADS)

    Johnson, Kevin William

    1998-12-01

    Left-right asymmetry measurements ( AY) were obtained for charged pion scattering of incident kinetic energy 162 MeV from polarized 13C nuclei over an angular range of 30o to 90o. The experiment was performed at the Los Alamos Meson Physics Facility with the Energetic PIon Channel and Spectrometer (EPICS). The 13C target was made up of frozen beads of toluene consisting of 93% 13C612CH8 cryogenically cooled to 0.45o K by a 3He evaporation refrigerator. Polarization was achieved with the dynamic nuclear polarization method using a 2.5 Tesla magnetic field, target material doping by the paramagnetic substance DTBN, and a polarization driving microwave field of frequency 70.060 GHz for parallel and 70.320 GHz anti-parallel alignment with the applied magnetic field. Average polarization of the 13Cl nuclei was ~17% and for the 1H nuclei was ~54% which was obtained after an initial polarization time period of about 30 minutes. AY measurements were calculated by separately obtaining the excitation yield spectra for the chosen target nuclei spin orientation of up or down with respect to [/bf k]inc×[/bf k]scat of the incident and scattered pion. The separate excitation spectra for up and down were used to derive the difference and polarization scaled sum in a channel-by- channel method to reduce effects of the spectrometer plus polarization magnet acceptance. These difference and sum spectra were statistically fitted to peak shapes calculated to account for the pion energy loss straggling. The ratio of the peak yield of the difference spectra to the sum spectra is Ay. Results of AY for the elastic scattering of π+ and πsp- from 1H are consistent with the values calculated by phase shift analysis. Measured AY for the elastic scattering from 13C are found to be in general small but to exhibit two maxima at approximately 51o and 88o CMS scattering angle of approximate values 0.26 (0.24) and 0.21 (0.41) for π+/ (/pi/sp-) scattering. AY values were also measured for states

  13. The T1 ρ13C spin-lattice relaxation time of interpenetrating networks by solid state NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Schueneman, G. T.; Novak, B. M.

    1999-02-01

    Poly (2-hydroxyethyl methacrylate) (PHEMA) and poly(2-hydroxyethyl methacrylate) interpenetrated with 5% SiO 2 (PHEMA-IPN) were studied by 13C CP/MAS NMR. From these results, the structure of two polymers were verified by 13C NMR. Spin-lattice relaxation times for the polymer carbons in the rotating frame, T1 ρ, have been measured as a function of temperature. The T1 ρ spin-lattice relaxation times of the α-quarternary and carbonyl in the PHEMA and PHEMA-IPN undergo slow motions, i.e., motions on the slow side of the T1 ρ minimum, while those of the 1-,2-, β-methylene, and 3-methyl undergo fast motions, i.e., motions on the fast side of the T1 ρ minimum. From these T1 ρ spin-lattice relaxation times, we discuss the mobility, the correlation time, and activation energy for the PHEMA and PHEMA-IPN, respectively. The activation energies for the PHEMA-IPN were found to be generally higher than those of PHEMA. The higher activation energy for the side-chain 2-methylene in the PHEMA-IPN is attributed to bonding between the SiO 2 and the hydroxyl group of the PHEMA.

  14. An overview of methods using 13C for improved compound identification in metabolomics and natural products

    PubMed Central

    Clendinen, Chaevien S.; Stupp, Gregory S.; Ajredini, Ramadan; Lee-McMullen, Brittany; Beecher, Chris; Edison, Arthur S.

    2015-01-01

    Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize 13C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) 13C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two 13C-based approaches. For samples at natural abundance, we have developed a workflow to obtain 13C–13C and 13C–1H statistical correlations using 1D 13C and 1H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct 13C–13C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which 13C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest. PMID:26379677

  15. Non-stationary (13)C-metabolic flux ratio analysis.

    PubMed

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. PMID:23860906

  16. 1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy

    USGS Publications Warehouse

    Abidi, S.L.; Adams, B.R.

    1987-01-01

    Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.

  17. (1)H and (13)C magic-angle spinning nuclear magnetic resonance studies of the chicken eggshell.

    PubMed

    Pisklak, Dariusz Maciej; Szeleszczuk, Lukasz; Wawer, Iwona

    2012-12-19

    The chicken eggshell, a product of biomineralization, contains inorganic and organic substances whose content changes during the incubation process. Bloch-decay (BD) (1)H, (13)C, and cross-polarization (CP) (13)C nuclear magnetic resonance (NMR) spectra of chicken eggshells were acquired under magic-angle spinning (MAS). Variable contact time (13)C CP MAS NMR experiments revealed the signals of carbonyl groups from organic and inorganic compounds. In the (13)C BD NMR spectra, a single peak at 168.1 ppm was detected, whereas in the (1)H BD spectra, the signals from water and the bicarbonate ion were assigned. A simultaneous decrease of the water signal in the (1)H MAS NMR spectra and an increase of the carbonate ion signal in the (13)C CP MAS NMR spectra of eggshells collected during the incubation period indicate the substitution of calcium ions by hydrogen ions in the calcium carbonate crystalline phase during the incubation of an egg. PMID:23157303

  18. In vivo 13C NMR metabolite profiling: potential for understanding and assessing conifer seed quality.

    PubMed

    Terskikh, Victor V; Feurtado, J Allan; Borchardt, Shane; Giblin, Michael; Abrams, Suzanne R; Kermode, Allison R

    2005-08-01

    High-resolution 13C MAS NMR spectroscopy was used to profile a range of primary and secondary metabolites in vivo in intact whole seeds of eight different conifer species native to North America, including six of the Pinaceae family and two of the Cupressaceae family. In vivo 13C NMR provided information on the total seed oil content and fatty acid composition of the major storage lipids in a non-destructive manner. In addition, a number of monoterpenes were identified in the 13C NMR spectra of conifer seeds containing oleoresin; these compounds showed marked variability in individual seeds of Pacific silver fir within the same seed lot. In imbibed conifer seeds, the 13C NMR spectra showed the presence of considerable amounts of dissolved sucrose presumed to play a protective role in the desiccation-tolerance of seeds. The free amino acids arginine and asparagine, generated as a result of storage protein mobilization, were detected in vivo during seed germination and early seedling growth. The potential for NMR to profile metabolites in a non-destructive manner in single conifer seeds and seed populations is discussed. It is a powerful tool to evaluate seed quality because of its ability to assess reserve accumulation during seed development or at seed maturity; it can also be used to monitor reserve mobilization, which is critical for seedling emergence. PMID:15996983

  19. Functional groups identified by solid state 13C NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  20. Distinct fungal and bacterial δ13C signatures can drive the increase in soil δ13C with depth

    NASA Astrophysics Data System (ADS)

    Kohl, Lukas; Laganièrea, Jérôme; Edwards, Kate A.; Billings, Sharon A.; Morrill, Penny L.; Van Biesen, Geert; Ziegler, Susan E.

    2015-04-01

    Soil microbial biomass is a key precursor of soil organic carbon (SOC), and the enrichment in 13C during SOC diagenesis has been purported to be driven by increasing proportions of microbially derived SOC. Yet, little is known about how the δ13C of soil microbial biomass - and by extension the δ13C of microbial inputs to SOC - vary in space, time, or with the composition of the microbial community. Phospholipid fatty acids (PLFA) can be analyzed to measure the variation of the natural abundance δ13C values of both individual groups of microorganisms and the microbial community as a whole. Here, we show how variations of δ13CPLFA within the soil profile provides insight into C fluxes in undisturbed soils and demonstrate that distinct δ13C of fungal and bacterial biomass and their relative abundance can drive the increase of bulk δ13CSOC with depth. We studied the variation in natural abundance δ13C signatures of PLFA in podzolic soil profiles from mesic boreal forests in Atlantic Canada. Samples from the organic horizons (L,F,H) and the mineral (B; top 10 cm) horizons were analyzed for δ13C values of PLFA specific to fungi, G+ bacteria, or G- bacteria as proxies for the δ13C of the biomass of these groups, and for δ13C values of PLFA produced by a wide range of microorganisms (e.g. 16:0) as a proxy for the δ13C value of microbial biomass as a whole. Results were compared to fungi:bacteria ratios (F:B) and bulk δ13CSOC values. The δ13C values of group-specific PLFA were driven by differences among source organisms, with fungal PLFA consistently depleted (2.1 to 6.4‰) relative to and G+ and G- bacterial PLFA in the same sample. All group-specific PLFA, however, exhibited nearly constant δ13C values throughout the soil profile, apparently unaffected by the over 2.8‰ increase in δ13CSOC with depth from the L to B horizons. This indicates that bulk SOC poorly represents the substrates actually consumed by soil microorganisms in situ. Instead, our

  1. Relaxation-Compensated Difference Spin Diffusion NMR for Detecting 13C-13C Long-Range Correlations in Proteins and Polysaccharides

    PubMed Central

    Wang, Tuo; Williams, Jonathan K.; Schmidt-Rohr, Klaus; Hong, Mei

    2015-01-01

    The measurement of long-range distances remains a challenge in solid-state NMR structure determination of biological macromolecules. In 2D and 3D correlation spectra of uniformly 13C-labeled biomolecules, inter-residue, inter-segmental, and intermolecular 13C-13C cross peaks that provide important long-range distance constraints for three-dimensional structures often overlap with short-range cross peaks that only reflect the covalent structure of the molecule. It is therefore desirable to develop new approaches to obtain spectra containing only long-range cross peaks. Here we show that a relaxation-compensated modification of the commonly used 2D 1H-driven spin diffusion (PDSD) experiment allows the clean detection of such long-range cross peaks. By adding a z-filter to keep the total z-period of the experiment constant, we compensate for 13C T1 relaxation. As a result, the difference spectrum between a long- and a scaled short-mixing time spectrum show only long-range correlation signals. We show that one- and two-bond cross peaks equalize within a few tens of milliseconds. Within ~200 ms, the intensity equilibrates within an amino acid residue and a monosaccharide to a value that reflects the number of spins in the local network. With T1 relaxation compensation, at longer mixing times, inter-residue and inter-segmental cross peaks increase in intensity whereas intra-segmental cross-peak intensities remain unchanged relative to each other and can all be subtracted out. Without relaxation compensation, the difference 2D spectra exhibit both negative and positive intensities due to heterogeneous T1 relaxation in most biomolecules, which can cause peak cancellation. We demonstrate this relaxation-compensated difference PDSD approach on amino acids, monosaccharides, a crystalline model peptide, a membrane-bound peptide and a plant cell wall sample. The resulting difference spectra yield clean multi-bond, inter-residue and intermolecular correlation peaks, which are

  2. Accurate quantitative 13C NMR spectroscopy: repeatability over time of site-specific 13C isotope ratio determination.

    PubMed

    Caytan, Elsa; Botosoa, Eliot P; Silvestre, Virginie; Robins, Richard J; Akoka, Serge; Remaud, Gérald S

    2007-11-01

    The stability over time (repeatability) for the determination of site-specific 13C/12C ratios at natural abundance by quantitative 13C NMR spectroscopy has been tested on three probes: enriched bilabeled [1,2-13C2]ethanol; ethanol at natural abundance; and vanillin at natural abundance. It is shown in all three cases that the standard deviation for a series of measurements taken every 2-3 months over periods between 9 and 13 months is equal to or smaller than the standard deviation calculated from 5-10 replicate measurements made on a single sample. The precision which can be achieved using the present analytical 13C NMR protocol is higher than the prerequisite value of 1-2 per thousand for the determination of site-specific 13C/12C ratios at natural abundance (13C-SNIF-NMR). Hence, this technique permits the discrimination of very small variations in 13C/12C ratios between carbon positions, as found in biogenic natural products. This observed stability over time in 13C NMR spectroscopy indicates that further improvements in precision will depend primarily on improved signal-to-noise ratio. PMID:17900175

  3. State-of-the-Art Direct 13C and Indirect 1H-[13C] NMR Spectroscopy In Vivo

    PubMed Central

    de Graaf, Robin A.; Rothman, Douglas L.; Behar, Kevin L.

    2013-01-01

    Carbon-13 NMR spectroscopy in combination with 13C-labeled substrate infusion is a powerful technique to measure a large number of metabolic fluxes non-invasively in vivo. It has been used to quantify glycogen synthesis rates, establish quantitative relationships between energy metabolism and neurotransmission and evaluate the importance of different substrates. All measurements can, in principle, be performed through direct 13C NMR detection or via indirect 1H-[13C] NMR detection of the protons attached to 13C nuclei. The choice for detection scheme and pulse sequence depends on the magnetic field strength, whereas substrate selection depends on the metabolic pathways that are studied. 13C NMR spectroscopy remains a challenging technique that requires several non-standard hardware modifications, infusion of 13C-labeled substrates and sophisticated processing and metabolic modeling. Here the various aspects of direct 13C and indirect 1H-[13C] NMR are reviewed with the aim of providing a practical guide. PMID:21919099

  4. Multi-Spectroscopic Analysis of Seed Quality and 13C-Stable-Iotopologue Monitoring in Initial Growth Metabolism of Jatropha curcas L.

    PubMed Central

    Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Akashi, Kinya; Kikuchi, Jun

    2014-01-01

    In the present study, we applied nuclear magnetic resonance (NMR), as well as near-infrared (NIR) spectroscopy, to Jatropha curcas to fulfill two objectives: (1) to qualitatively examine the seeds stored at different conditions, and (2) to monitor the metabolism of J. curcas during its initial growth stage under stable-isotope-labeling condition (until 15 days after seeding). NIR spectra could non-invasively distinguish differences in storage conditions. NMR metabolic analysis of water-soluble metabolites identified sucrose and raffinose family oligosaccharides as positive markers and gluconic acid as a negative marker of seed germination. Isotopic labeling patteren of metabolites in germinated seedlings cultured in agar-plate containg 13C-glucose and 15N-nitrate was analyzed by zero-quantum-filtered-total correlation spectroscopy (ZQF-TOCSY) and 13C-detected 1H-13C heteronuclear correlation spectroscopy (HETCOR). 13C-detected HETOCR with 13C-optimized cryogenic probe provided high-resolution 13C-NMR spectra of each metabolite in molecular crowd. The 13C-13C/12C bondmer estimated from 1H-13C HETCOR spectra indicated that glutamine and arginine were the major organic compounds for nitrogen and carbon transfer from roots to leaves. PMID:25401292

  5. LINE LISTS FOR THE A {sup 2}Π-X {sup 2}Σ{sup +} (RED) AND B {sup 2}Σ{sup +}-X {sup 2}Σ{sup +} (VIOLET) SYSTEMS OF CN, {sup 13}C{sup 14}N, AND {sup 12}C{sup 15}N, AND APPLICATION TO ASTRONOMICAL SPECTRA

    SciTech Connect

    Sneden, Christopher; Lucatello, Sara; Ram, Ram S.; Brooke, James S. A.; Bernath, Peter E-mail: sara.lucatello@oapd.inaf.it E-mail: jsabrooke@gmail.com

    2014-10-01

    New red and violet system line lists for the CN isotopologues {sup 13}C{sup 14}N and {sup 12}C{sup 15}N have been generated. These new transition data are combined with those previously derived for {sup 12}C{sup 14}N, and applied to the determination of CNO abundances in the solar photosphere and in four red giant stars: Arcturus, the bright, very low-metallicity star HD 122563, and the carbon-enhanced metal-poor stars HD 196944 and HD 201626. When both red and violet system lines are detectable in a star, their derived N abundances are in good agreement. The mean N abundances determined in this work are also generally in accord with published values.

  6. Identification of natural metabolites in mixture: a pattern recognition strategy based on (13)C NMR.

    PubMed

    Hubert, Jane; Nuzillard, Jean-Marc; Purson, Sylvain; Hamzaoui, Mahmoud; Borie, Nicolas; Reynaud, Romain; Renault, Jean-Hugues

    2014-03-18

    Because of their highly complex metabolite profile, the chemical characterization of bioactive natural extracts usually requires time-consuming multistep purification procedures to achieve the structural elucidation of pure individual metabolites. The aim of the present work was to develop a dereplication strategy for the identification of natural metabolites directly within mixtures. Exploiting the polarity range of metabolites, the principle was to rapidly fractionate a multigram quantity of a crude extract by centrifugal partition extraction (CPE). The obtained fractions of simplified chemical composition were subsequently analyzed by (13)C NMR. After automatic collection and alignment of (13)C signals across spectra, hierarchical clustering analysis (HCA) was performed for pattern recognition. As a result, strong correlations between (13)C signals of a single structure within the mixtures of the fraction series were visualized as chemical shift clusters. Each cluster was finally assigned to a molecular structure with the help of a locally built (13)C NMR chemical shift database. The proof of principle of this strategy was achieved on a simple model mixture of commercially available plant secondary metabolites and then applied to a bark extract of the African tree Anogeissus leiocarpus Guill. & Perr. (Combretaceae). Starting from 5 g of this genuine extract, the fraction series was generated by CPE in only 95 min. (13)C NMR analyses of all fractions followed by pattern recognition of (13)C chemical shifts resulted in the unambiguous identification of seven major compounds, namely, sericoside, trachelosperogenin E, ellagic acid, an epimer mixture of (+)-gallocatechin and (-)-epigallocatechin, 3,3'-di-O-methylellagic acid 4'-O-xylopyranoside, and 3,4,3'-tri-O-methylflavellagic acid 4'-O-glucopyranoside. PMID:24555703

  7. Study of Urban environmental quality through Isotopes δ13C

    NASA Astrophysics Data System (ADS)

    González-Sosa, E.; Mastachi-Loza, C.; Becerril-Piña, R.; Ramos-Salinas, N. M.

    2012-04-01

    Usually, trees with similar pH values on their bark develop epiphytes of similar species, the acidity to be a factor for growth. The aim of the study was evaluate the air quality through isotope δ13C in order to define the levels of environmental quality in the city of Queretaro, Mexico. In this work were collected at least 4 epiphytes positioned in trees of the species Prosopis Laevigata at 25 sites of Queretaro City. The samples were analyzed for trace elements with an inductively coupled plasma atomic emission spectroscopy (ICP). The collecting took place during dry period, in May and early rain June 2011 period, and on four sectors to identify the spatial distribution of pollution, using isotopic analysis of concentration of δ 13C. According with the results there are significant differences among the species in each of the sampled areas. The 5 February Avenue presented greater diversity and richness of δ13C, followed by those who were surveyed in the proximity of the UAQ and finally in the middle-east area. An average value of δ13C-17.92%, followed by those surveyed in the vicinity of the UAQ that correspond to sector I and II with an concentration of δ13C-17.55% and δ13C-17.22%, and finally the samples collected in trees scattered in the East-Sector II and IV with a value of δ13C-17.02% and δ13C-15.62%, respectively. Also were observed differences between the dry and wet period. It is likely that these results of δ 13C in moist period reflect the drag of the isotopes due to rain events that could mark a trend in the dilution of this element, however there is a trend in terms of abundance and composition of finding more impact in those species sampled in dry period, in May and early June 2011.

  8. Luminescence dynamics and {sup 13}C NMR characteristics of dinuclear complexes exhibiting coupled lanthanide(III) cation pairs

    SciTech Connect

    Matthews, K.D.; Bailey-Folkes, S.A.; Kahwa, I.A.

    1992-08-20

    Luminescence and cross-polarization magic angle spinning (CP-MAS) {sup 13}C NMR properties of lanthanide dinuclear macrocyclic complexes of a compartmental Schiff base chelate (1) derived from the condensation of 2,6-diformyl-p-cresol and 3,6-dioxa-1,8-octanediamine are reported. The Schiff base chromophore in 1 is a strong light absorber and an efficient sensitizer for intense Tb{sup 3+}({sup 5}D{sub 4}) and Eu{sup 3+}({sup 5}D{sub 0})(T < 110 K ) emission which does not exhibit self-quenching effects. Emission from Tb{sup 3+} is sensitized by the ligand singlet state; in striking contrast, Eu{sup 3+} emission is sensitized by the triplet state and reveals an unusual nonradiative quenching process at T > 110 K with a thermal barrier of {approx} 2300 cm{sup {minus}1}. Weak emission is observed from Dy{sup 3+}({sup 4}F{sub 9/2}), Sm{sup 3+}({sup 4}G{sub 5/2}), and Pr{sup 3+}({sup 1}D{sub 2}) diluted in Gd{sup 3+} (i.e., from Gd{sup 3+}-Ln{sup 3+} heteropairs, Ln = Pr, Sm, Dy). Intramolecular metal-metal (Ln-Ln = 4 {Angstrom}) interactions account for the greatly quenched emission from Sm{sup 3+}-Sm{sup 3+} and Dy{sup 3+}-Dy{sup 3+} homopairs compared to Gd{sup 3+}-Ln heteropairs (Ln = Sm, Dy). Gd{sup 3+}-Ln{sup 3+} emission lifetimes at 77 K are 1610 (Tb{sup 3+}), 890 (Eu{sup 3+}), 14 (Dy{sup 3+}) and {approx} 13 {mu}s (Sm{sup 3+}). Nonradiative relaxation processes at 77 K in dilute Ln{sup 3+}:Gd{sub 2}1(NO{sub 3}){sub 4}{center_dot}H{sub 2}O, being temperature independent for Sm{sup 3+} and Eu{sup 3+} but temperature dependent for Tb{sup 3+}, follow the energy gap law with {alpha} {approx} - 10{sup {minus}3} cm and B {approx} 2 x 10{sup 8} s{sup {minus}1}. CP-MAS data show paramagnetic broadening of {sup 13}C resonances which increases with the magnetic moment of Ln{sup 3+}. Surprisingly, no significant shifts in resonance positions corresponding to the changing nature of paramagnetic Ln{sup 3+} ions are observed. 43 refs., 8 figs., 2 tabs.

  9. IRMS detection of testosterone manipulated with 13C labeled standards in human urine by removing the labeled 13C.

    PubMed

    Wang, Jingzhu; Yang, Rui; Yang, Wenning; Liu, Xin; Xing, Yanyi; Xu, Youxuan

    2014-12-10

    Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ(13)C value). However, (13)C labeled standards can be used to control the δ(13)C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the (13)C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ(13)C values between Andro and ANAD (Δδ(13)CAndro-ANAD, ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different (13)C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ(13)CAndro-ANAD post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ(13)CAndro-ANAD for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3-(13)C labeled standards. PMID:25441891

  10. Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine

    PubMed Central

    Najac, Chloé; Chaumeil, Myriam M.; Kohanbash, Gary; Guglielmetti, Caroline; Gordon, Jeremy W.; Okada, Hideho; Ronen, Sabrina M.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are highly prevalent inflammatory cells that play a key role in tumor development and are considered therapeutic targets. MDSCs promote tumor growth by blocking T-cell-mediated anti-tumoral immune response through depletion of arginine that is essential for T-cell proliferation. To deplete arginine, MDSCs express high levels of arginase, which catalyzes the breakdown of arginine into urea and ornithine. Here, we developed a new hyperpolarized 13C probe, [6-13C]-arginine, to image arginase activity. We show that [6-13C]-arginine can be hyperpolarized, and hyperpolarized [13C]-urea production from [6-13C]-arginine is linearly correlated with arginase concentration in vitro. Furthermore we show that we can detect a statistically significant increase in hyperpolarized [13C]-urea production in MDSCs when compared to control bone marrow cells. This increase was associated with an increase in intracellular arginase concentration detected using a spectrophotometric assay. Hyperpolarized [6-13C]-arginine could therefore serve to image tumoral MDSC function and more broadly M2-like macrophages. PMID:27507680

  11. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    PubMed

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  12. Noninvasive biomarkers for acute hepatotoxicity induced by 1,3-dichloro-2-propanol: hyperpolarized 13C dynamic MR spectroscopy.

    PubMed

    Kim, Gwang-Won; Oh, Chang-Hyun; Kim, Jong-Choon; Yoon, Woong; Jeong, Yong-Yeon; Kim, Yun-Hyeon; Kim, Jae-Kyu; Park, Jin-Gyoon; Kang, Heoung-Keun; Jeong, Gwang-Woo

    2016-02-01

    The purpose of this study was to investigate the cellular metabolite change for acute hepatotoxicity induced by 1,3-dichloro-2-propanol (1,3-DCP) in rats and its correlations with the enzyme levels. In order to induce acute hepatotoxicity, a single subcutaneous injection of 1,3-DCP (80 mg/kg) was given to six male Sprague-Dawley rats. Hyperpolarized (13)C dynamic magnetic resonance spectroscopy (MRS) was performed on rat liver following injection of hyperpolarized [1-(13)C] pyruvate. The levels of serum aspartate am inotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) in the 1,3-DCP treated rats were significantly increased as compared with those in normal rats. In the dynamic (13)C MR spectra, the ratios of [1-(13)C] lactate to the total carbon and [1-(13)C] alanine to the total carbon in the 1,3-DCP treated rats were significantly increased, and there were positive correlations between cellular metabolic changes and enzyme levels. The levels of [1-(13)C] lactate and [1-(13)C] alanine are potentially considered as important biomarkers for the 1,3-DCP-induced acute hepatotoxicity. PMID:26523652

  13. Anomalous 13C enrichment in modern marine organic carbon

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Claypool, G.E.

    1985-01-01

    Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, ??13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) ??13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter ??13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower PCO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4. ?? 1985 Nature Publishing Group.

  14. Quantitation of metabolic compartmentation in hyperammonemic brain by natural abundance 13C-NMR detection of 13C-15N coupling patterns and isotopic shifts.

    PubMed

    Lapidot, A; Gopher, A

    1997-02-01

    In the present study, the removal of cerebral ammonia by glutamine synthetase (GS) and by reductive amination of 2-oxoglutarate by glutamate dehydrogenase in the presence of an amino donor group, was determined in hyperammonemic rabbit brains. The 15N enrichments of brain metabolite alpha-amino and amide positions of glutamine, glutamate, and alanine were determined by the indirect detection of 15N-labeled compounds of the 13C-15N spin coupling patterns of natural abundance 13C-NMR spectra. The 13C-NMR spectra of brain extracts were obtained from rabbits infused with 15NH4Cl with or without intraperitoneal infusion of the GS inhibitor, L-methionine DL-sulfoximine, in a reasonable acquisition time period. When 15NH4Cl was infused, [5-15N]glutamine and [2-15N]glutamine concentrations reached 5.2 mumol/100 mg protein and 3.6 mumol/100 mg protein, respectively, which indicates the relatively high activity of reductive amination of 2-oxoglutarate in the glutamate dehydrogenase reaction. The low concentration of [2-15N]glutamate, which is about 30% of that of [2-15N]glutamine obtained in this study, suggests that very little glutamine serves as a precursor of neuronal glutamate. When GS was inhibited by L-methionine DL-sulfoximine, a flux of 15NH4+ via the residual activity of GS was accompanied by an apparent increase of [2-15N]glutamate and [15N]alanine concentrations (2.9 mumol/100 mg protein and 1.8 mumol/100 mg protein, respectively). These findings and those obtained from 13C-13C isotopomer analysis (Lapidot and Gopher, 1994b) suggest that astrocytic 2-oxoglutarate is partially utilized (together with an amino group donor) as a precursor for neuronal glutamate in the hyperammonemic brain when GS is inhibited. This process can partly replace GS activity in metabolizing ammonia in the hyperammonemic rabbit brain. PMID:9057821

  15. Field measurements of del13C in ecosystem respiration

    NASA Astrophysics Data System (ADS)

    van Asperen, Hella; Sabbatini, Simone; Nicolini, Giacomo; Warneke, Thorsten; Papale, Dario; Notholt, Justus

    2014-05-01

    Stable carbon isotope del13C-measurements are extensively used to study ecological and biogeochemical processes in ecosystems. Above terrestrial ecosystems, atmospheric del13C can vary largely due to photosynthetic fractionation. Photosynthetic processes prefer the uptake of the lighter isotope 12C (in CO2), thereby enriching the atmosphere in 13C and depleting the ecosystem carbon. At night, when ecosystem respiratory fluxes are dominant, 13C-depleted CO2 is respired and thereby depletes the atmospheric del13C-content. Different ecosystems and different parts of one ecosystem (type of plant, leaves, and roots) fractionate and respire with a different del13C-ratio signature. By determining the del13C-signature of ecosystem respiration in temporal and spatial scale, an analysis can be made of the composition of respiratory sources of the ecosystem. A field study at a dry cropland after harvest (province of Viterbo, Lazio, Italy) was performed in the summer of 2013. A FTIR (Fourier Transform Infrared Spectrometer) was set up to continuously measure CO2-, CH4-, N2O-, CO- and del13C-concentrations. The FTIR was connected to 2 different flux measurements systems: a Flux Gradient system (sampling every half hour at 1.3m and 4.2m) and 2 flux chambers (measured every hour), providing a continuous data set of the biosphere-atmosphere gas fluxes and of the gas concentrations at different heights. Keeling plot intercept values of respiratory CO2, measured by the Flux Gradient system at night, were determined to be between -25‰ and -20‰. Keeling plot intercept values of respiratory CO2, measured by the flux chamber system, varied between -24‰ and -29‰, and showed a clear diurnal pattern, suggesting different (dominant) respiratory processes between day and night.

  16. High-resolution magic-angle spinning (13)C spectroscopy of brain tissue at natural abundance.

    PubMed

    Yang, Yongxia; Chen, Lei; Gao, Hongchang; Zeng, Danlin; Yue, Yong; Liu, Maili; Lei, Hao; Deng, Feng; Ye, Chaohui

    2006-03-01

    High-resolution magic-angle spinning (MAS) (1)H and (13)C magnetic resonance spectroscopy (MRS) has recently been applied to study the metabolism in intact biological tissue samples. Because of the low natural abundance and the low gyromagnetic ratio of the (13)C nuclei, signal enhancement techniques such as cross-polarization (CP) and distortionless enhancement by polarization transfer (DEPT) are often employed in MAS (13)C MRS to improve the detection sensitivity. In this study, several sensitivity enhancement techniques commonly used in liquid- and solid-state NMR, including CP, DEPT and nuclear Overhauser enhancement (NOE), were combined with MAS to acquire high-resolution (13)C spectra on intact rat brain tissue at natural abundance, and were compared for their performances. The results showed that different signal enhancement techniques are sensitive to different classes of molecules/metabolites, depending on their molecular weights and mobility. DEPT was found to enhance the signals of low-molecular weight metabolites exclusively, while the signals of lipids, which often are associated with membranes and have relatively lower mobility, were highly sensitive to CP enhancement. PMID:16477685

  17. THz spectroscopy and first ISM detection of excited torsional states of 13C-methyl formate

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Carvajal, M.; Tercero, B.; Kleiner, I.; López, A.; Cernicharo, J.; Motiyenko, R. A.; Huet, T. R.; Guillemin, J. C.; Margulès, L.

    2014-08-01

    Context. An astronomical survey of interstellar molecular clouds needs a previous analysis of the spectra in the microwave and sub-mm energy range of organic molecules to be able to identify them. We obtained very accurate spectroscopic constants in a comprehensive laboratory analysis of rotational spectra. These constants can be used to predict the transitions frequencies very precisely that were not measured in the laboratory. Aims: We present the experimental study and its theoretical analysis for two 13C-methyl formate isotopologues to detect these two isotopologues for the first time in their excited torsional states, which lie at 130 cm-1 (200 K) in Orion-KL. Methods: New spectra of HCOO13CH3 (13C2) methyl formate were recorded with the mm- and submm-wave spectrometer in Lille from 50 to 940 GHz. A global fit for vt = 0 and 1 was accomplished with the BELGI program to reproduce the experimental spectra with greater accuracy. Results: We analysed 5728 and 2881 new lines for vt = 0 and 1 for HCOO13CH3. These new lines were globally fitted with 846 previously published lines for vt = 0. In consequence, 52 parameters of the RAM Hamiltonian were accurately determined and the value of the barrier height (V3 = 369.93168(395) cm-1) was improved. We report the detection of the first excited torsional states (vt = 1) in Orion-KL for the 13C2 and 13C1 methyl formate based on the present analysis and previously published data. We provide column densities, isotopic abundances, and vibrational temperatures for these species. Conclusions: Following this work, accurate prediction can be provided. This permits detecting 135 features of the first excited torsional states of 13C-methyl formate isotopologues in Orion-KL in the 80-280 GHz frequency range, without missing lines. Full Table A.1 and the IRAM spectra as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568

  18. Abundance anomaly of the 13C species of CCH

    NASA Astrophysics Data System (ADS)

    Sakai, N.; Saruwatari, O.; Sakai, T.; Takano, S.; Yamamoto, S.

    2010-03-01

    Aims: We have observed the N = 1-0 lines of CCH and its 13C isotopic species toward a cold dark cloud, TMC-1 and a star-forming region, L1527, to investigate the 13C abundances and formation pathways of CCH. Methods: The observations have been carried out with the IRAM 30 m telescope. Results: We have successfully detected the lines of 13CCH and C13CH toward the both sources and found a significant intensity difference between the two 13C isotopic species. The [C13CH] /[13CCH] abundance ratios are 1.6 ± 0.4 (3σ) and 1.6 ± 0.1 (3σ) for TMC-1 and L1527, respectively. The abundance difference between C13CH and 13CCH means that the two carbon atoms of CCH are not equivalent in the formation pathway. On the other hand, the [CCH]/[C13CH] and [CCH]/[13CCH] ratios are evaluated to be larger than 170 and 250 toward TMC-1, and to be larger than 80 and 135 toward L1527, respectively. Therefore, both of the 13C species are significantly diluted in comparison with the interstellar 12C/13C ratio of 60. The dilution is discussed in terms of a behavior of 13C in molecular clouds.

  19. Coal liquefaction process streams characterization and evaluation: [sup 13]C-NMR analysis of CONSOL THF-soluble residual materials from the Wilsonville coal liquefaction process

    SciTech Connect

    Solum, M.S.; Pugmire, R.J. )

    1992-11-01

    This study demonstrated the feasibility of using CP/MAS [sup 13]C-NMR spectroscopy for the chemical structural examination of distillation resid materials derived from direct coal liquefaction. A set of twelve carbon skeletal-structure parameters and eight molecular structural descriptors were derived from the NMR data. The technique was used previously to determine these parameters for coal and char, and in the construction of a coal pyrolysis model. The method was applied successfully to the tetrahydrofuran (THF)-soluble portion of eleven 850[degrees]F[sup +] distillation resids and one 850[degrees]F[sup +] distillation resid which contained ash and insoluble organic material (IOM). The results of this study demonstrate that this analytical method can provide data for construction of a model of direct coal liquefaction. Its further development and use is justified based on these results.

  20. Coal liquefaction process streams characterization and evaluation: {sup 13}C-NMR analysis of CONSOL THF-soluble residual materials from the Wilsonville coal liquefaction process

    SciTech Connect

    Solum, M.S.; Pugmire, R.J.

    1992-11-01

    This study demonstrated the feasibility of using CP/MAS {sup 13}C-NMR spectroscopy for the chemical structural examination of distillation resid materials derived from direct coal liquefaction. A set of twelve carbon skeletal-structure parameters and eight molecular structural descriptors were derived from the NMR data. The technique was used previously to determine these parameters for coal and char, and in the construction of a coal pyrolysis model. The method was applied successfully to the tetrahydrofuran (THF)-soluble portion of eleven 850{degrees}F{sup +} distillation resids and one 850{degrees}F{sup +} distillation resid which contained ash and insoluble organic material (IOM). The results of this study demonstrate that this analytical method can provide data for construction of a model of direct coal liquefaction. Its further development and use is justified based on these results.

  1. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  2. Quantification of protein secondary structure by (13)C solid-state NMR.

    PubMed

    Andrade, Fabiana Diuk; Forato, Lucimara Aparecida; Bernardes Filho, Rubens; Colnago, Luiz Alberto

    2016-05-01

    High-resolution (13)C solid-state NMR stands out as one of the most promising techniques to solve the structure of insoluble proteins featuring biological and technological importance. The simplest nuclear magnetic resonance (NMR) spectroscopy method to quantify the secondary structure of proteins uses the areas of carbonyl and alpha carbon peaks. The quantification obtained by fitting procedures depends on the assignment of the peaks to the structure, type of line shape, number of peaks to be used, and other parameters that are set by the operator. In this paper, we demonstrate that the analysis of (13)C NMR spectra by a pattern recognition method-based on the singular value decomposition (SVD) regression, which does not depend on the operator-shows higher correlation coefficients for α-helix and β-sheet (0.96 and 0.91, respectively) than Fourier transform infrared spectroscopy (FTIR) method. Therefore, the use of (13)C solid-state NMR spectra and SVD is a simple and reliable method for quantifying the secondary structures of insoluble proteins in solid-state. PMID:27068694

  3. Transport and imaging of brute-force (13)C hyperpolarization.

    PubMed

    Hirsch, Matthew L; Smith, Bryce A; Mattingly, Mark; Goloshevsky, Artem G; Rosay, Melanie; Kempf, James G

    2015-12-01

    We demonstrate transport of hyperpolarized frozen 1-(13)C pyruvic acid from its site of production to a nearby facility, where a time series of (13)C images was acquired from the aqueous dissolution product. Transportability is tied to the hyperpolarization (HP) method we employ, which omits radical electron species used in other approaches that would otherwise relax away the HP before reaching the imaging center. In particular, we attained (13)C HP by 'brute-force', i.e., using only low temperature and high-field (e.g., T<∼2K and B∼14T) to pre-polarize protons to a large Boltzmann value (∼0.4% (1)H polarization). After polarizing the neat, frozen sample, ejection quickly (<1s) passed it through a low field (B<100G) to establish the (1)H pre-polarization spin temperature on (13)C via the process known as low-field thermal mixing (yielding ∼0.1% (13)C polarization). By avoiding polarization agents (a.k.a. relaxation agents) that are needed to hyperpolarize by the competing method of dissolution dynamic nuclear polarization (d-DNP), the (13)C relaxation time was sufficient to transport the sample for ∼10min before finally dissolving in warm water and obtaining a (13)C image of the hyperpolarized, dilute, aqueous product (∼0.01% (13)C polarization, a >100-fold gain over thermal signals in the 1T scanner). An annealing step, prior to polarizing the sample, was also key for increasing T1∼30-fold during transport. In that time, HP was maintained using only modest cryogenics and field (T∼60K and B=1.3T), for T1((13)C) near 5min. Much greater time and distance (with much smaller losses) may be covered using more-complete annealing and only slight improvements on transport conditions (e.g., yielding T1∼5h at 30K, 2T), whereas even intercity transfer is possible (T1>20h) at reasonable conditions of 6K and 2T. Finally, it is possible to increase the overall enhancement near d-DNP levels (i.e., 10(2)-fold more) by polarizing below 100mK, where nanoparticle

  4. Transport and imaging of brute-force 13C hyperpolarization

    NASA Astrophysics Data System (ADS)

    Hirsch, Matthew L.; Smith, Bryce A.; Mattingly, Mark; Goloshevsky, Artem G.; Rosay, Melanie; Kempf, James G.

    2015-12-01

    We demonstrate transport of hyperpolarized frozen 1-13C pyruvic acid from its site of production to a nearby facility, where a time series of 13C images was acquired from the aqueous dissolution product. Transportability is tied to the hyperpolarization (HP) method we employ, which omits radical electron species used in other approaches that would otherwise relax away the HP before reaching the imaging center. In particular, we attained 13C HP by 'brute-force', i.e., using only low temperature and high-field (e.g., T < ∼2 K and B ∼ 14 T) to pre-polarize protons to a large Boltzmann value (∼0.4% 1H polarization). After polarizing the neat, frozen sample, ejection quickly (<1 s) passed it through a low field (B < 100 G) to establish the 1H pre-polarization spin temperature on 13C via the process known as low-field thermal mixing (yielding ∼0.1% 13C polarization). By avoiding polarization agents (a.k.a. relaxation agents) that are needed to hyperpolarize by the competing method of dissolution dynamic nuclear polarization (d-DNP), the 13C relaxation time was sufficient to transport the sample for ∼10 min before finally dissolving in warm water and obtaining a 13C image of the hyperpolarized, dilute, aqueous product (∼0.01% 13C polarization, a >100-fold gain over thermal signals in the 1 T scanner). An annealing step, prior to polarizing the sample, was also key for increasing T1 ∼ 30-fold during transport. In that time, HP was maintained using only modest cryogenics and field (T ∼ 60 K and B = 1.3 T), for T1(13C) near 5 min. Much greater time and distance (with much smaller losses) may be covered using more-complete annealing and only slight improvements on transport conditions (e.g., yielding T1 ∼ 5 h at 30 K, 2 T), whereas even intercity transfer is possible (T1 > 20 h) at reasonable conditions of 6 K and 2 T. Finally, it is possible to increase the overall enhancement near d-DNP levels (i.e., 102-fold more) by polarizing below 100 mK, where

  5. A 13C-NMR study of azacryptand complexes.

    PubMed

    Wild, Aljoscha A C; Fennell, Kevin; Morgan, Grace G; Hewage, Chandralal M; Malthouse, J Paul G

    2014-09-28

    An azacryptand has been solubilised in aqueous media containing 50% (v/v) dimethyl sulphoxide. (13)C-NMR has been used to determine how the azacryptand is affected by zinc binding at pH 10. Using (13)C-NMR and (13)C-enriched bicarbonate we have been able to observe the formation of 4 different carbamate derivatives of the azacryptand at pH 10. The azacryptand was shown to solubilise zinc or cadmium at alkaline pHs. Two moles of zinc are bound per mole of azacryptand and this complex binds 1 mole of carbonate. By replacing the zinc with cadmium-113 we have shown that the (13)C-NMR signal of the (13)C-enriched carbon of the bound carbonate is split into two triplets at 2.2 °C. This shows that two cadmium complexes are formed and in each of these complexes the carbonate group is bound by two magnetically equivalent metal ions. It also demonstrates that these cadmium complexes are not in fast exchange. From temperature studies we show that in the zinc complexes both complexes are in fast exchange with each other but are in slow exchange with free bicarbonate. HOESY is used to determine the position of the carbonate carbon in the complex. The solution and crystal structures of the zinc-carbonate-azacryptand complexes are compared. PMID:25091182

  6. Synthesis and applications of {sup 13}C glycerol

    SciTech Connect

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  7. A scientific workflow framework for (13)C metabolic flux analysis.

    PubMed

    Dalman, Tolga; Wiechert, Wolfgang; Nöh, Katharina

    2016-08-20

    Metabolic flux analysis (MFA) with (13)C labeling data is a high-precision technique to quantify intracellular reaction rates (fluxes). One of the major challenges of (13)C MFA is the interactivity of the computational workflow according to which the fluxes are determined from the input data (metabolic network model, labeling data, and physiological rates). Here, the workflow assembly is inevitably determined by the scientist who has to consider interacting biological, experimental, and computational aspects. Decision-making is context dependent and requires expertise, rendering an automated evaluation process hardly possible. Here, we present a scientific workflow framework (SWF) for creating, executing, and controlling on demand (13)C MFA workflows. (13)C MFA-specific tools and libraries, such as the high-performance simulation toolbox 13CFLUX2, are wrapped as web services and thereby integrated into a service-oriented architecture. Besides workflow steering, the SWF features transparent provenance collection and enables full flexibility for ad hoc scripting solutions. To handle compute-intensive tasks, cloud computing is supported. We demonstrate how the challenges posed by (13)C MFA workflows can be solved with our approach on the basis of two proof-of-concept use cases. PMID:26721184

  8. 13C NMR spectroscopy applications to brain energy metabolism

    PubMed Central

    Rodrigues, Tiago B.; Valette, Julien; Bouzier-Sore, Anne-Karine

    2013-01-01

    13C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp thefull implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of 13C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the 13C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of 13C NMR data. Finally, new perspectives and applications offered by 13C hyperpolarization are described. PMID:24367329

  9. Solid state 13C NMR characterisation study on fourth generation Ziegler-Natta catalysts.

    PubMed

    Heikkinen, Harri; Liitiä, Tiina; Virkkunen, Ville; Leinonen, Timo; Helaja, Tuulamari; Denifl, Peter

    2012-01-01

    In this study, solid state (13)C NMR spectroscopy was utilised to characterize and identify the metal-ester coordination in active fourth generation (phthalate) Ziegler-Natta catalysts. It is known that different donors affect the active species in ZN catalysts. However, there is still limited data available of detailed molecular information how the donors and the active species are interplaying. One of the main goals of this work was to get better insight into the interactions of donor and active species. Based on the anisotropy tensor values (δ(11), δ(22), δ(33)) from low magic-angle spinning (MAS) (13)C NMR spectra in combination with chemical shift anisotropy (CSA) calculations (δ(aniso) and η), both the coordinative metal (Mg/Ti) and the symmetry of this interaction between metal and the internal donor in the active catalyst (MgCl(2)/TiCl(4)/electron donor) system could be identified. PMID:22425229

  10. Line Positions and Intensities for the ν12 Band of 13C12CH_6

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Mantz, Arlan; Smith, Mary Ann H.

    2014-06-01

    High-resolution, high signal-to-noise spectra of mono-substituted 13C-ethane (13C12CH_6) in the 12.2 μm region were recorded with a Bruker IFS 125HR Fourier transform spectrometer. The spectra were obtained for four sample pressures at three different temperatures between 130 and 208 K using a 99% 13C-enriched ethane sample contained in a 20.38-cm long coolable absorption cell. A multispectrum nonlinear least squares fitting technique was used to fit the same intervals in the four spectra simultaneously to determine line positions and intensities. Similar to our previous analyses of 12C_2H_6 spectra in this same region, constraints were applied to accurately fit each pair of doublet components arising from torsional Coriolis interaction of the excited ν12 = 1 state with the nearby torsional ν_6 = 3 state. Line intensities corresponding to each spectrum temperature (130 K, 178 K and 208 K) are reported for 1660 ν12 absorption lines for which the assignments are known, and integrated intensities are estimated as the summation of the measured values. The measured line positions and intensities (re-scaled to 296 K) are compared with values in recent editions of spectroscopic databases. K. Sung, A. W. Mantz, L. R. Brown, et al., J. Mol. Spectrosc., 162 (2010) 124-134. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. Atkins, JQSRT, 53 (1995) 705-721. V. Malathy Devi, C. P. Rinsland, D. Chris Benner, et al., JQSRT, 111 (2010) 1234-1251 V. Malathy Devi, D. Chris Benner, C. P. Rinsland, et al., JQSRT, 111 (2010) 2481-2504. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  11. Structural characterization of ion-vapor deposited hydrogenated amorphous carbon coatings by solid state {sup 13}C nuclear magnetic resonance

    SciTech Connect

    Xu, Jiao; Kato, Takahisa; Watanabe, Sadayuki; Hayashi, Hideo; Kawaguchi, Masahiro

    2014-01-07

    In the present study, unique structural heterogeneity was observed in ion-vapor deposited a-C:H coatings by performing {sup 13}C MAS and {sup 1}H-{sup 13}C CPMAS experiments on solid state nuclear magnetic resonance devices. Two distinct types of sp{sup 2} C clusters were discovered: one of them denoted as sp{sup 2} C′ in content of 3–12 at. % was non-protonated specifically localized in hydrogen-absent regions, while the other dominant one denoted as sp{sup 2} C″ was hydrogenated or at least proximate to proton spins. On basis of the notably analogous variation of sp{sup 2} C′ content and Raman parameters as function of substrate bias voltage in the whole range of 0.5 kV–3.5 kV, a model of nano-clustering configuration was proposed that the sp{sup 2} C′ clusters were embedded between sp{sup 2} C″ clusters and amorphous sp{sup 3} C matrix as trapped interfaces or boundaries where the sp{sup 2} carbon bonds were highly distorted. Continuous increase of bias voltage would promote the nano-clustering and re-ordering of dominant sp{sup 2} C″ clusters, thus results in a marked decrease of interspace and a change of the content of sp{sup 2} C′ clusters. Further investigation on the {sup 13}C magnetization recovery showed typical stretched-exponential approximation due to the prominent presence of paramagnetic centers, and the stretched power α varied within 0.6–0.9 from distinct types of sp{sup 2} C clusters. Differently, the magnetization recovery of {sup 1}H showed better bi-exponential approximation with long and short T{sub 1}(H) fluctuated within 40–60 ms and 0.1–0.3 ms approximately in content of 80% ± 5% and 20% ± 5%, respectively, varying with various bias voltages. Meanwhile, the interrupted {sup 13}C saturation recovery with an interval of short T{sub 1}(H) showed that most of quick-relaxing protons were localized in sp{sup 2} C″ clusters. Such a short T{sub 1}(H) was only possibly resulted from a relaxation mechanism

  12. Inclusion of 13C and D in protonated acetylene

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Roueff, Evelyne; Lee, Timothy J.

    2016-04-01

    The rovibrational spectrum of cyclic, protonated acetylene has been established. The improvement in modern telescopes coupled with the different branching ratios in reaction models welcomes study of 13C-substitution for C2H3+. Quartic force fields (QFFs) have been previously utilized to predict the antisymmetric HCCH stretch in standard c-C2H3+ to within 0.1 cm-1 of experiment and are employed here to generate rovibrational insights for the 13C isotopologues. The zero-point energies are also given for the cyclic and 'Y'-shaped isomers for both 13C and D substitutions. Vibrational intensities and the dipole moments are provided in order to characterize more fully this simple cation.

  13. {sup 13}C relaxation in an RNA hairpin

    SciTech Connect

    King, G.C. |; Akratos, C.; Xi, Z.; Michnica, M.J.

    1994-12-01

    This initial survey of {sup 13}C relaxation in the {triangle}TAR RNA element has generated a number of interesting results that should prove generally useful for future studies. The most readily comparable study in the literature monitored {sup 13}C relaxation of the methyl groups from unusual bases in tRNA{sup Phe}. The study, which used T{sub 1} and NOE data only, reported order parameters for the methyl group axis that ranged between 0.51 and 0.97-a range similar to that observed here. However, they reported a breakdown of the standard order parameter analysis at higher (118-MHz {sup 13}C) frequencies, which should serve to emphasize the need for a thorough exploration of suitable motional models.

  14. Magnetic Resonance Imaging with Hyperpolarized 13C Contrast Agents

    NASA Astrophysics Data System (ADS)

    Gordon, Jeremy W.

    Hyperpolarized 13C substrates offer the potential to non-invasively image metabolism and enzymatic activity. However, hyperpolarization introduces a number of difficulties, and imaging is hampered by non-equilibrium magnetization and the need for spectral encoding. There is therefore a need for fast and RF efficient spectral imaging techniques. This work presents a number of new methods that can be used to improve polarization, increase RF efficiency and improve modeling accuracy in hyperpolarized 13C experiments. In particular, a novel encoding and reconstruction algorithm is presented that can generate spatially and spectrally resolved images with a single RF excitation and echo time. This reconstruction framework increases data acquisition efficiency, enabling accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution. Overall, the methods enumerated in this dissertation have the potential to improve modeling accuracy and to mitigate the conventional tradeoffs between SNR, spatial resolution, and temporal resolution that govern image quality in hyperpolarized 13C experiments.

  15. Study of molecular interactions with 13C DNP-NMR

    NASA Astrophysics Data System (ADS)

    Lerche, Mathilde H.; Meier, Sebastian; Jensen, Pernille R.; Baumann, Herbert; Petersen, Bent O.; Karlsson, Magnus; Duus, Jens Ø.; Ardenkjær-Larsen, Jan H.

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct 13C NMR ligand binding studies at natural isotopic abundance of 13C gets feasible in this way. Resultant screens are easy to interpret and can be performed at 13C concentrations below μM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands.

  16. Biosynthesis of the antibiotic maduramicin. Origin of the carbon and oxygen atoms as well as the 13C NMR assignments.

    PubMed

    Tsou, H; Rajan, S; Fiala, R; Mowery, P C; Bullock, M W; Borders, D B; James, J C; Martin, J H; Morton, G O

    1984-12-01

    The biosynthesis of maduramicin alpha and beta in a culture of Actinomadura yumaensis has been studied using 13C, 14C and 18O labeled precursors. The alpha component of this recently discovered polyether antibiotic, containing forty-seven carbon atoms in a seven-ring system, is derived from eight acetate, seven propionate and four methionine molecules. The beta component which is missing one methoxy group incorporates three methionine methyl groups. The carbohydrate moiety was enriched by methionine, but not significantly by acetate or propionate. Studies of the incorporation of 13C labeled precursors permit the 13C NMR assignment of maduramicin. The origin of oxygen atoms of maduramicin has been examined by feeding [1-13C, 18O2]acetate and [1-13C, 18O2]propionate separately in the fermentation culture and the resulting doubly labeled maduramicin samples were analyzed by the isotopic shifts in the 13C NMR spectra. These results are consistent with the initial formation of a triene, which is converted to maduramicin by cyclization of the triepoxide. PMID:6526733

  17. (13) C-TmDOTA as versatile thermometer compound for solid-state NMR of hydrated lipid bilayer membranes.

    PubMed

    Umegawa, Yuichi; Tanaka, Yuya; Nobuaki, Matsumori; Murata, Michio

    2016-03-01

    Recent advances in solid-state nuclear magnetic resonance (NMR) techniques, such as magic angle spinning and high-power decoupling, have dramatically increased the sensitivity and resolution of NMR. However, these NMR techniques generate extra heat, causing a temperature difference between the sample in the rotor and the variable temperature gas. This extra heating is a particularly crucial problem for hydrated lipid membrane samples. Thus, to develop an NMR thermometer that is suitable for hydrated lipid samples, thulium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (TmDOTA) was synthesized and labeled with (13) C (i.e., (13) C-TmDOTA) to increase the NMR sensitivity. The complex was mixed with a hydrated lipid membrane, and the system was subjected to solid-state NMR and differential scanning calorimetric analyses. The physical properties of the lipid bilayer and the quality of the NMR spectra of the membrane were negligibly affected by the presence of (13) C-TmDOTA, and the (13) C chemical shift of the complex exhibited a large-temperature dependence. The results demonstrated that (13) C-TmDOTA could be successfully used as a thermometer to accurately monitor temperature changes induced by (1) H decoupling pulses and/or by magic angle spinning and the temperature distribution of the sample inside the rotor. Thus, (13) C-TmDOTA was shown to be a versatile thermometer for hydrated lipid assemblies. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26460094

  18. Low-temperature solid-state /sup 13/C NMR studies of the retinal chromophore in rhodopsin

    SciTech Connect

    Smith, S.O.; Palings, I.; Copie, V.; Raleigh, D.P.; Courtin, J.; Pardoen, J.A.; Lugtenburg, J.; Mathies, R.A.; Griffin, R.G.

    1987-03-24

    Magic angle sample spinning (MASS) /sup 13/C NMR spectra have been obtained of bovine rhodopsin regenerated with retinal prosthetic groups isotopically enriched with /sup 13/C at C-5 and C-14. In order to observe the /sup 13/C retinal chromophore resonances, it was necessary to employ low temperatures (-15 ..-->.. -35/sup 0/C) to restrict rotational diffusion of the protein. The isotropic chemical shift and principal values of the chemical shift tensor of the /sup 13/C-5 label indicate that the retinal chromophore is in the twisted 6-s-cis conformation in rhodopsin, in contrast to the planar 6-s-trans confirmation found in bacteriorhodopsin. The /sup 13/C-14 isotropic shift and shift tensor principal values show that the Schiff base C=N bond is anti. Furthermore, the /sup 13/C-14 chemical shift (121.2 ppm) is within the range of values (120-123 ppm) exhibited by protonated (C=N anti) Schiff base model compounds, indicating that the C=N linkage is protonated. The results are discussed with regard to the mechanism of wavelength regulation in rhodopsin.

  19. Determination of sup 13 C labeling pattern of citric acid cycle intermediates by gas chromatography-mass spectrometry

    SciTech Connect

    Di Donato, L.; Montgomery, J.A.; Des Rosiers, C.; David, F.; Garneau, M.; Brunengraber, H. )

    1990-02-26

    Investigations of the regulation of the citric acid cycle require determination of labeling patterns of cycle intermediates. These were assayed to date, using infusion of: (i) ({sup 14}C)tracer followed by chemical degradation of intermediates and (ii) ({sup 13}C)tracer followed by NMR analysis of intermediates. The authors developed a strategy to analyze by GC-MS the ({sup 13}C) labeling pattern of {mu}mole samples of citrate (CIT), isocitrate (ICIT), 2-ketoglutarate (2-KG), glutamate (GLU) and glutamine (GLN). These are enzymatically or chemically converted to 2-KG, ICIT, 4-aminobutyrate (GABA) and 2-hydroxyglutarate (2-OHG). GC-MS analyses of TMS or TBDMS derivatives of these compounds yield the enrichment of each carbon. The authors confirmed the identity of each fragment using the spectra of (1-{sup 13}C), (5-{sup 13}C), (2,3,3,4,4-{sup 2}H{sub 5})glutamate and (1-{sup 13}C), (1,4-{sup 13}C)GABA.

  20. Measuring (13)C/(15)N chemical shift anisotropy in [(13)C,(15)N] uniformly enriched proteins using CSA amplification.

    PubMed

    Hung, Ivan; Ge, Yuwei; Liu, Xiaoli; Liu, Mali; Li, Conggang; Gan, Zhehong

    2015-11-01

    Extended chemical shift anisotropy amplification (xCSA) is applied for measuring (13)C/(15)N chemical shift anisotropy (CSA) of uniformly labeled proteins under magic-angle spinning (MAS). The amplification sequence consists of a sequence of π-pulses that repetitively interrupt MAS averaging of the CSA interaction. The timing of the pulses is designed to generate amplified spinning sideband manifolds which can be fitted to extract CSA parameters. The (13)C/(13)C homonuclear dipolar interactions are not affected by the π-pulses due to the bilinear nature of the spin operators and are averaged by MAS in the xCSA experiment. These features make the constant evolution-time experiment suitable for measuring CSA of uniformly labeled samples. The incorporation of xCSA with multi-dimensional (13)C/(15)N correlation is demonstrated with a GB1 protein sample as a model system for measuring (13)C/(15)N CSA of all backbone (15)NH, (13)CA and (13)CO sites. PMID:26404770

  1. Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd

    2015-03-01

    Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.

  2. VizieR Online Data Catalog: Rotational spectrum of 13C methylamine (Motiyenko+,

    NASA Astrophysics Data System (ADS)

    Motiyenko, R. A.; Margules, L.; Ilyushin, V. V.; Smirnov, I. A.; Alekseev, E. A.; Halfen, D. T.; Ziurys, L. M.

    2016-01-01

    Methylamine (CH3NH2) is a light molecule o interest, which has an intensive rotational spectrum that extends in the submillimeter wave range and far beyond, even at temperatures characteristic for the interstellar medium. It is likely for 13C isotopologue of methylamine to be identified in astronomical surveys, but there is no information available for the 13CH3NH2 millimeter and submillimeter wave spectra. In this context, to provide reliable predictions of 13CH3NH2 spectrum in millimeter and submillimeter wave ranges, we have studied rotational spectra of the 13C methylamine isotopologue in the frequency range from 48 to 945GHz. The spectrum of 13C methylamine was recorded using conventional absorption spectrometers in Lille and Kharkov. The analysis of the rotational spectrum of 13C methylamine in the ground vibrational state was performed on the basis of the group- theoretical high-barrier tunneling Hamiltonian that was developed for methylamine by Ohashi and Hougen. The available multiple observations of the parent methylamine species toward Sgr B2(N) at 1, 2, and 3mm using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory were used to make a search for interstellar 13CH3NH2. In the recorded spectra, we have assigned 2721 rotational transitions that belong to the ground vibrational state of the 13CH3NH2. These measurements were fitted to the Hamiltonian model that uses 75 parameters to achieve an overall weighted rms deviation of 0.73. On the basis of these spectroscopic results, predictions of transition frequencies in the frequency range up to 950GHz with J<50 and Ka<20 are presented. The search for interstellar 13C methylamine in available observational data was not successful and therefore only an upper limit of 6.5x1014cm-2 can be derived for the column density of 13CH3NH2 toward Sgr B2(N), assuming the same source size, temperature, linewidth, and systemic velocity as for parent methylamine isotopic species. (2 data files).

  3. Measuring doubly 13C-substituted ethane by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Clog, M.; Ling, C.; Eiler, J. M.

    2012-12-01

    Ethane (C2H6) is present in non-negligible amounts in most natural gas reservoirs and is used to produce ethylene for petrochemical industries. It is one of the by-products of lipid metabolism and is the arguably simplest molecule that can manifest multiple 13C substitutions. There are several plausible controls on the relative abundances of 13C2H6 in natural gases: thermodynamically controlled homogeneous isotope exchange reactions analogous to those behind carbonate clumped isotope thermometry; inheritance from larger biomolecules that under thermal degradation to produce natural gas; mixing of natural gases that differ markedly in bulk isotopic composition; or combinations of these and/or other, less expected fractionations. There is little basis for predicting which of these will dominate in natural samples. Here, we focus on an analytical techniques that will provide the avenue for exploring these phenomena. The method is based on high-resolution gas source isotope ratio mass spectrometry, using the Thermo 253-Ultra (a new prototype mass spectrometer). This instrument achieves the mass resolution (M/Δ M) up to 27,000, permitting separation of the isobaric interferences of potential contaminants and isotopologues of an analtye or its fragments which share a cardinal mass. We present techniques to analyze several isotopologues of molecular and fragment ions of C2H6. The critical isobaric separations for our purposes include: discrimination of 13C2H6 from 13C12CDH5 at mass 32 and separation of the 13CH3 fragment from 12CH4 at mass 16, both requiring at least a mass resolution of 20000 to make an adequate measurement. Other obvious interferences are either cleanly separated (e.g., O2, O) or accounted for by peak-stripping (CH3OH on mass 32 and NH2 on mass 16). We focus on a set of measurements which constrain: the doubly-substituted isotopologue, 13C2H6, and the 13CH3/12CH3 ratio of the methyl fragment, which constrains the bulk δ 13C. Similar methods can be

  4. Spectral editing for in vivo 13C magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiang, Yun; Shen, Jun

    2012-01-01

    In vivo detection of carboxylic/amide carbons is a promising technique for studying cerebral metabolism and neurotransmission due to the very low RF power required for proton decoupling. In the carboxylic/amide region, however, there is severe spectral overlap between acetate C1 and glutamate C5, complicating studies that use acetate as an astroglia-specific substrate. There are no known in vivo MRS techniques that can spectrally resolve acetate C1 and glutamate C5 singlets. In this study, we propose to spectrally separate acetate C1 and glutamate C5 by a two-step J-editing technique after introducing homonuclear 13C- 13C scalar coupling between carboxylic/amide carbons and aliphatic carbons. By infusing [1,2- 13C 2]acetate instead of [1- 13C]acetate the acetate doublet can be spectrally edited because of the large separation between acetate C2 and glutamate C4 in the aliphatic region. This technique can be applied to studying acetate transport and metabolism in brain in the carboxylic/amide region without spectral interference.

  5. Synthesis of 2-deoxy-(6-/sup 13/C)glucose

    SciTech Connect

    Walker, T.E.; Unkefer, C.J.; Ehler, D.S.

    1987-05-01

    The authors have prepared 2-deoxy-D-(6-/sup 13/C)glucose which will be used to test the stability of 2-deoxy-D-glucose-6-phosphate in brain tissue. They chose to label 2-deoxy-D-glucose at C-6 because of the large chemical shift difference between C-6 in the free sugar and C-6 in the 6-phosphate analog. Their synthetic scheme is similar to that used for the synthesis of D-(6-/sup 13/C)glucose which involves the removal of C-6 from D-glucose followed by its replacement with /sup 13/C. They first prepare the methyl ..cap alpha..-furanoside using trifluoroacetic acid in methanol. This product is then treated with periodate which cleaves only between C-5 and C-6 to form a hydrated aldehyde which is reacted directly with K/sup 13/CN to form a mixture of nitriles. The enriched nitriles are reduced with hydrogen to a mixture of 6-aldehydo sugars using a 5% Pd on carbon catalyst. These sugars are reduced with NaBH/sub 4/ to a mixture of labeled methyl furanosides. Acid hydrolysis followed by chromatography yields 2-deoxy-D-(6-/sup 13/C)glucose in an overall yield of 10% from K/sup 13/CN.

  6. Does the Shuram δ13C excursion record Ediacaran oxygenation?

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Maloof, A. C.; Schoene, B.; Higgins, J. A.

    2013-12-01

    The most negative carbon isotope excursion in Earth history is found in carbonate rocks of the Ediacaran Period (635-542 Ma). Known colloquially as the the 'Shuram' excursion, workers have long noted its tantalizing, broad concordance with the rise of abundant macro-scale fossils in the rock record, variously interpreted as animals, giant protists, macro-algae and lichen, and known as the 'Ediacaran Biota.' Thus, the Shuram excursion has been interpreted by many in the context of a dramatically changing redox state of the Ediacaran oceans - e.g., a result of methane cycling in a low O2 atmosphere, the final destruction of a large pool of recalcitrant dissolved organic carbon (DOC), and the step-wise oxidation of the Ediacaran oceans. More recently, diagenetic interpretations of the Shuram excursion - e.g. sedimentary in-growth of very δ13C depleted authigenic carbonates, meteoric alteration of Ediacaran carbonates, late-stage burial diagenesis - have challenged the various Ediacaran redox models. A rigorous geologic context is required to discriminate between these explanatory models, and determine whether the Shuram excursion can be used to evaluate terminal Neoproterozoic oxygenation. Here, we present chemo-stratigraphic data (δ13C, δ18O, δ44/42Ca and redox sensitive trace element abundances) from 12 measured sections of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia that require a syn-depositional age for the extraordinary range of δ13C values (-12 to +4‰) observed in the formation. In some locations, the Wonoka Fm. is ~700 meters (m) of mixed shelf limestones and siliclastics that record the full 16 ‰ δ13C excursion in a remarkably consistent fashion across 100s of square kilometers of basin area. Fabric-altering diagenesis, where present, occurs at the sub-meter vertical scale, only results in sub-permil offsets in δ13C and cannot be used to explain the full δ13C excursion. In other places, the Wonoka Fm. is host to deep (1 km

  7. /sup 13/C nuclear magnetic resonance studies of the biosynthesis by Microbacterium ammoniaphilum of L-glutamate selectively enriched with carbon-13

    SciTech Connect

    Walker, T.E.; Han, C.H.; Kollman, V.H.; London, R.E.; Matwiyoff, N.A.

    1982-02-10

    /sup 13/C NMR of isotopically enriched metabolites has been used to study the metabolism of Microbacterium ammoniaphilum, a bacterium which excretes large quantities of L-glutamic acid into the medium. Biosynthesis from 90% (1-/sup 13/C) glucose results in relatively high specificity of the label, with (2,4-/sup 13/C/sub 2/) glutamate as the major product. The predominant biosynthetic pathway for synthesis of glutamate from glucose was determined to be the Embden Meyerhof glycolytic pathway followed by P-enolpyruvate carboxylase and the first third of the Krebs cycle. Different metabolic pathways are associated with different correlations in the enrichment of the carbons, reflected in the spectrum as different /sup 13/C-/sup 13/C scalar multiplet intensities. Hence, intensity and /sup 13/C-/sup 13/C multiplet analysis allows quantitation of the pathways involved. Although blockage of the Krebs cycle at the ..cap alpha..-ketoglutarate dehydrogenase step is the basis for the accumulation of glutamate, significant Krebs cycle activity was found in glucose grown cells, and extensive Krebs cycle activity in cells metabolizing (1-/sup 13/C) acetate. In addition to the observation of the expected metabolites, the disaccharide ..cap alpha..,..cap alpha..-trehalose and ..cap alpha..,..beta..-glucosylamine were identified from the /sup 13/C NMR spectra.

  8. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  9. 13C NMR spectral characterization of epimeric rotenone and some related tetrahydrobenzopyranofurobenzopyranones

    USGS Publications Warehouse

    Abidi, S.L.; Abidi, M.S.

    1983-01-01

    The 13C nuclear magnetic resonance (nmr) spectra of epimers of rotenone and four 12a-hydroxy-analogues were examined to determine the stereochemical effect of the B/C ring fusion involving the 6a- and 12a-carbon centers. Chemical shift differences between the epimeric carbon resonances of cis- and trans-6a,12a-compounds were notably larger than those of diastereoisomers derived from the same B/C ring junction stereochemistry. Results of the spectral analysis have been useful for the quantification of mixtures of epimers and for the measurement of rates of epimerization and oxygenation.

  10. 13C NMR of methane in an AlPO4-11 molecular sieve: Exchange effects and shielding anisotropy

    NASA Astrophysics Data System (ADS)

    Koskela, Tuomas; Ylihautala, Mika; Jokisaari, Jukka; Vaara, Juha

    1998-12-01

    13C NMR spectra of 13CH4 in an AlPO4-11 molecular sieve reveal exchange effects between adsorbed and nonadsorbed methane gas. An application of pulsed field gradients is introduced to decrease nonadsorbed and exchanging gas signals in order to extract the chemical shift anisotropy line shape of the adsorbed gas. The resulting 13C shielding anisotropy of methane is compared to existing value for methane in related SAPO-11 material. Less anisotropic shielding is observed in AlPO4-11, most likely due to the lack of charge-compensating cations.

  11. Proton-Enhanced 13C Nuclear Magnetic Resonance of Lipids and Biomembranes

    PubMed Central

    Urbina, Julio; Waugh, J. S.

    1974-01-01

    A recently developed nuclear double resonance technique which permits sensitive detection, together with high resolution, of rare spins in solids or other dipolar-coupled nuclear systems [Pines, Gibby, and Waugh (1973) J. Chem. Phys. 59, 569] has been applied to the study of natural abundance 13C-nuclear magnetic resonance in lipid mesophases and of selectively labeled carbon sites in bacterial membranes. Detailed microscopic information on the molecular organization and phase transitions of the lipid phases and their interaction with ions and other molecules can be obtained from the study of the chemical shift anisotropies and dynamical aspects of the 13C NMR spectra of unsonicated lipid dispersions (liposomes). Experiments are reported which demonstrated the feasibility of quantitatively observing the 13C-nuclear magnetic resonance of specifically labeled sites in unperturbed Escherichia coli membrane vesicles for the study of the physical state of the lipids with the aim of relating it to the known lipid-dependent functional properties of the membranes. PMID:4531036

  12. Theoretical study of the structure of boron carbide B13C2

    NASA Astrophysics Data System (ADS)

    Shirai, Koun; Sakuma, Kyohei; Uemura, Naoki

    2014-08-01

    We have resolved long-standing discrepancies between the theoretical and experimental crystal structures of boron carbide B13C2. Theoretical studies predict that B13C2 should be stoichiometric and have the highest symmetry of the boron carbides. Experimentally, B13C2 is a semiconductor and many defect states have been reported, particularly in the CBC chain. Reconciling the disordered states of the chain, the chemical composition, and the lowest-energy state is problematic. We have solved this problem by constructing a structural model where approximately three-quarters of the unit cells contain (B11C)(CBC) and one-quarter of them contain (B12)(B4). This structural model explains many experimental results, such as the large thermal factors in x-ray diffraction and the broadening of the Raman spectra, without introducing unstable CBB chains. The model also solves the energy-gap problem. We show that there are many arrangements of these two types of unit cells, which are energetically almost degenerate. This demonstrates that boron carbides are well described by a geometrically frustrated system, similar to that proposed for β-rhombohedral boron.

  13. Optimization of 13C dynamic nuclear polarization: isotopic labeling of free radicals

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Parish, Christopher; Kiswandi, Andhika; Lumata, Lloyd

    Dynamic nuclear polarization (DNP) is a physics technique that amplifies the nuclear magnetic resonance (NMR) signals by transferring the high polarization of the electrons to the nuclear spins. Thus, the choice of free radical is crucial in DNP as it can directly affect the NMR signal enhancement levels, typically on the order of several thousand-fold in the liquid-state. In this study, we have investigated the efficiency of four variants of the well-known 4-oxo-TEMPO radical (normal 4-oxo-TEMPO plus its 15N-enriched and/or perdeuterated variants) for use in DNP of an important metabolic tracer [1-13C]acetate. Though the variants have significant differences in electron paramagnetic resonance (EPR) spectra, we have found that changing the composition of the TEMPO radical through deuteration or 15N doping yields no significant difference in 13C DNP efficiency at 3.35 T and 1.2 K. On the other hand, deuteration of the solvent causes a significant increase of 13C polarization that is consistent over all the 4-oxo-TEMPO variants. These findings are consistent with the thermal mixing model of DNP. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  14. Transmembrane Exchange of Hyperpolarized 13C-Urea in Human Erythrocytes: Subminute Timescale Kinetic Analysis

    PubMed Central

    Pagès, Guilhem; Puckeridge, Max; Liangfeng, Guo; Tan, Yee Ling; Jacob, Chacko; Garland, Marc; Kuchel, Philip W.

    2013-01-01

    The rate of exchange of urea across the membranes of human erythrocytes (red blood cells) was quantified on the 1-s to 2-min timescale. 13C-urea was hyperpolarized and subjected to rapid dissolution and the previously reported (partial) resolution of 13C NMR resonances from the molecules inside and outside red blood cells in suspensions was observed. This enabled a stopped-flow type of experiment to measure the (initially) zero-trans transport of urea with sequential single-pulse 13C NMR spectra, every second for up to ∼2 min. Data were analyzed using Bayesian reasoning and a Markov chain Monte Carlo method with a set of simultaneous nonlinear differential equations that described nuclear magnetic relaxation combined with transmembrane exchange. Our results contribute to quantitative understanding of urea-exchange kinetics in the whole body; and the methodological approach is likely to be applicable to other cellular systems and tissues in vivo. PMID:24209840

  15. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2009-09-01

    The present invention is directed to labeled compounds, of the formulae ##STR00001## wherein C* is each independently selected from the group consisting of .sup.13C and .sup.12C with the proviso that at least one C* is .sup.13C, each hydrogen of the methylene group can independently be either hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is from the group of sulfide, sulfinyl, and sulfone, Z is an aryl group from the group of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently from the group of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group from the group of NH.sub.2, NHR and NRR' where R and R' are each independently from the group of a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms.

  16. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    DOEpatents

    Martinez, Rodolfo A. , Unkefer; Clifford J. , Alvarez; Marc A.

    2012-06-12

    The present invention is directed to the labeled compounds, ##STR00001## wherein C* is each either .sup.13C and .sup.12C where at least one C* is .sup.13C, each hydrogen of the methylene group is hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is sulfide, sulfinyl, or sulfone, Z is an aryl group such as 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, or a phenyl group ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently either hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group such as NH.sub.2, NHR and NRR' where R and R' are each independently either a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms. The present invention is also directed to the labeled compounds ##STR00003##

  17. Synthesis and applications of selectively {sup 13}C-labeled RNA

    SciTech Connect

    SantaLucia, J. Jr.; Shen, L.X.; Lewis, H.; Cai, Z.; Tinoci, I. Jr.

    1994-12-01

    Spectral overlap is a substantial problem in NMR studies of RNA molecules >30 nucleotides. To overcome this difficulty, we synthesized selectively {sup 13}C-labeled RNAs and adapted several isotope-edited two- and three-dimensional NMR experiments originally developed for protein studies. We optimized protocols for synthesis of multi-gram quantities of CTP, UTp, ATP, and GTP using a combination of synthetic organic and enzymatic methods. Uracil is prepared in 40 to 50% yield from {sup 13}C-cyanide in two steps. Using acetyl- tribenzoyl-ribose and standard chemistry uracil is then attached to the sugar (90% yield). The tribenzoyl-uridine intermediate is converted into uridine or cytidine quantitatively, depending on the deblocking protocol. Labeled purines are synthesized using simple pyrimidine precursors and reacting with {sup 13}C-formic acid (80% yield). Purine nucleosides are then synthesized using uridine phosphorylase and purine nucleoside phosphorylase. The nucleosides were converted to NMPs by treatment with POC1{sub 3} in triethylphosphate. We converted NMPs to NTPs by standard enzymatic methods. Selectively labeled RNAs were synthesized by run-off transcription using {sup 13}C-labeled NTPs. Several different strategies help solve over-lap problems in larger RNAs. Isotope-edited two-dimensional NMR experiments such as {omega}1-1/2 X-filtered NOESY simplify NMR spectra by dividing the normal NOESY spectrum into two subspectra-one involving NOEs from protons bound to {sup 12}C and one from protons bound to {sup 13}C. For example, we labeled A and U residues of a 34-nucleotide pseudoknot, and the {sup 12}C subspectrum of the 1/2 X-filtered NOESY contained NOEs only from G and C residues (along with adenine 2H); the {sup 13}C subspectrum contained NOEs only from A and U residues. Each subspectrum has less overlap than the NOESY of an unlabeled sample; the editing strategy allows each resonance to be identified by residue type (A, C, G, or U).

  18. Quantifying the chemical composition of soil organic carbon with solid-state 13C NMR

    NASA Astrophysics Data System (ADS)

    Baldock, J. A.; Sanderman, J.

    2011-12-01

    The vulnerability of soil organic carbon (SOC) to biological decomposition and mineralisation to CO2 is defined at least partially by its chemical composition. Highly aromatic charcoal-like SOC components are more stable to biological decomposition than other forms of carbon including cellulose. Solid-state 13C NMR has gained wide acceptance as a method capable of defining SOC chemical composition and mathematical fitting processes have been developed to estimate biochemical composition. Obtaining accurate estimates depends on an ability to quantitatively detect all carbon present in a sample. Often little attention has been paid to defining the proportion of organic carbon present in a soil that is observable in solid-state 13C NMR analyses of soil samples. However, if such data is to be used to inform carbon cycling studies, it is critical that quantitative assessments of SOC observability be undertaken. For example, it is now well established that a significant discrimination exists against the detection of the low proton content polyaromatic structures typical of charcoal using cross polarisation 13C NMR analyses. Such discrimination does not exist where direct polarisation analyses are completed. In this study, the chemical composition of SOC as defined by cross polarisation and direct polarisation13C NMR analyses will be compared for Australian soils collected from under a diverse range of agricultural managements and climatic conditions. Results indicate that where significant charcoal C contents exist, it is highly under-represented in the acquired CP spectra. For some soils, a discrimination against alkyl carbon was also evident. The ability to derive correction factors to compensate for such discriminations will be assessed and presented.

  19. Experimental and theoretical study of the intramolecular C-H···N and C-H···S hydrogen bonding effects in the 1H and 13C NMR spectra of the 2-(alkylsulfanyl)-5-amino-1-vinylpyrroles: a particular state of amine nitrogen.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Albanov, Alexander I; Tarasova, Ol'ga A; Nedolya, Nina A

    2013-07-01

    In the (1)H NMR spectra of the 1-vinylpyrroles with amino- and alkylsulfanyl groups in 5 and 2 positions, an extraordinarily large difference between resonance positions of the HA and HB terminal methylene protons of the vinyl group is discovered. Also, the one-bond (1)J(C(β),H(B)) coupling constant is surprisingly greater than the (1)J(C(β),H(A)) coupling constant in pyrroles under investigation, while in all known cases, there was a reverse relationship between these coupling constants. These spectral anomalies are substantiated by quantum chemical calculations. The calculations show that the amine nitrogen lone pair is removed from the conjugation with the π-system of the pyrrole ring so that it is directed toward the HB hydrogen. These factors are favorable to the emergence of the intramolecular C-HB •••N hydrogen bonding in the s-cis(N) conformation. On the other hand, the spatial proximity of the sulfur to the HB hydrogen provides an opportunity of the intramolecular C-HB •••S hydrogen bonding in the s-cis(S) conformation. Presence of the hydrogen bond critical points as well as ring critical point for corresponding chelate ring revealed by a quantum theory of atoms in molecules (QTAIM) approach confirms the existence of the weak intramolecular C-H•••N and C-H•••S hydrogen bonding. Therefore, an unusual high-frequency shift of the HB signal and the increase in the (1)J(C(β),H(B)) coupling constant can be explained by the effects of hydrogen bonding. PMID:23695830

  20. Solid-State 13C Nuclear Magnetic Resonance Characterization of Cellulose in the Cell Walls of Arabidopsis thaliana Leaves.

    PubMed Central

    Newman, R. H.; Davies, L. M.; Harris, P. J.

    1996-01-01

    Solid-state 13C nuclear magnetic resonance was used to characterize the molecular ordering of cellulose in a cell-wall preparation containing mostly primary walls obtained from the leaves of Arabidopsis thaliana. Proton and 13C spin relaxation time constants showed that the cellulose was in a crystalline rather than a paracrystalline state or amorphous state. Cellulose chains were distributed between the interiors (40%) and surfaces (60%) of crystallites, which is consistent with crystallite cross-sectional dimensions of about 3 nm. Digital resolution enhancement revealed signals indicative of triclinic and monoclinic crystalline forms of cellulose mixed in similar proportions. Of the five nuclear spin relaxation processes used, proton rotating-frame relaxation provided the clearest distinction between cellulose and other cell-wall components for purposes of editing solid-state 13C nuclear magnetic resonance spectra. PMID:12226303

  1. Single voxel localization for dynamic hyperpolarized 13C MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Albert P.; Cunningham, Charles H.

    2015-09-01

    The PRESS technique has been widely used to achieve voxel localization for in vivo1H MRS acquisitions. However, for dynamic hyperpolarized 13C MRS experiments, the transition bands of the refocusing pulses may saturate the pre-polarized substrate spins flowing into the voxel. This limitation may be overcome by designing refocusing pulses that do not perturb the resonance of the hyperpolarized substrate, but selectively refocuses the spins of the metabolic products. In this study, a PRESS pulse sequence incorporating spectral-spatial refocusing pulses that have a stop band ('notch') at the substrate resonance is tested in vivo using hyperpolarized [1-13C]pyruvate. Higher metabolite SNR was observed in experiments using the spectral-spatial refocusing pulses as compared to conventional refocusing pulses.

  2. Single voxel localization for dynamic hyperpolarized (13)C MR spectroscopy.

    PubMed

    Chen, Albert P; Cunningham, Charles H

    2015-09-01

    The PRESS technique has been widely used to achieve voxel localization for in vivo(1)H MRS acquisitions. However, for dynamic hyperpolarized (13)C MRS experiments, the transition bands of the refocusing pulses may saturate the pre-polarized substrate spins flowing into the voxel. This limitation may be overcome by designing refocusing pulses that do not perturb the resonance of the hyperpolarized substrate, but selectively refocuses the spins of the metabolic products. In this study, a PRESS pulse sequence incorporating spectral-spatial refocusing pulses that have a stop band ('notch') at the substrate resonance is tested in vivo using hyperpolarized [1-(13)C]pyruvate. Higher metabolite SNR was observed in experiments using the spectral-spatial refocusing pulses as compared to conventional refocusing pulses. PMID:26232365

  3. Oscillator strengths for transitions to Rydberg levels in 12C 16O, 13C 16O and 13C 18O between 967 and 972 Å

    NASA Astrophysics Data System (ADS)

    Eidelsberg, M.; Lemaire, J. L.; Fillion, J. H.; Rostas, F.; Federman, S. R.; Sheffer, Y.

    2004-09-01

    Absorption oscillator strengths have been determined from high-resolution spectra in the 967-972 Å region of three CO isotopomers for transitions to the Rydberg levels 4pπ(0), 3dπ(1)b and 4pσ(0), as well as to the mixed E(6) level recently characterized by Eidelsberg et al. (\\cite{Eid04}). Synchrotron radiation from the Super-ACO electron storage ring at Orsay (LURE) was used as a light source. Oscillator strengths were extracted from the recorded spectra by least-squares fitting of the experimental profiles with synthetic spectra taking into account the homogeneous and heterogeneous interactions of the four levels. Column densities were derived from fits to the 3pπ(0) absorption band whose oscillator strength is well established. These are the first reported measurements for 13C18O. For 12C16Op, our results are consistent with the larger values obtained in the most recent laboratory and astronomical studies. Based on experiments done at the Super-ACO electron storage ring at Orsay (LURE), France.

  4. Enzymatic 13C Labeling and Multidimensional NMR Analysis of Miltiradiene Synthesized by Bifunctional Diterpene Cyclase in Selaginella moellendorffii*

    PubMed Central

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-01-01

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-13C6]mevalonate, all carbons were labeled with 13C stable isotope (>99%). The fully 13C-labeled product was subjected to 13C-13C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one-dimensional and

  5. Towards a vibrational analysis of spheroidene. Resonance Raman spectroscopy of 13C-labelled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction centre.

    PubMed

    Kok, P; Köhler, J; Groenen, E J; Gebhard, R; van der Hoef, I; Lugtenburg, J; Hoff, A F; Farhoosh, R; Frank, H A

    1994-04-28

    We report resonance Raman spectra of the carotenoid spheroidene and its 14'-13C and 15'-13C substituted analogues in petroleum ether and bound to the reaction centre of Rhodobacter sphaeroides R26. The spectra in petroleum ether correspond to planar all-trans spheroidene while those of the reaction centres are consistent with a nonplanar 15,15'-cis spheroidene. The effect of 13C labelling is largest in the carbon-carbon double-bond stretching region. The 15'-13C substitution of the reaction centre bound spheroidene, however, hardly changes the C=C band as compared to that for the natural abundance spheroidene apart from a new weak band at 1508 cm(-1). This observation has been interpreted as a decoupling of the C15=C15' stretch from the other double-bond stretches in combination with a small intrinsic Raman intensity of this local mode for 15,15'-cis spheroidene. PMID:8167135

  6. 13c Measurements On Air of Small Ice Samples

    NASA Astrophysics Data System (ADS)

    Eyer, M.; Leuenberger, M.

    We have developed a new method for 13C analysis for very small air amounts of less than 0.5 cc STP, corresponding to less than 10 gram of ice. It is based on the needle-crasher technique, which we routinely use for CO2 concentration measurements by infrared laser absorption. The extracted air is slowly expanded into a large volume through a water trap held at ­100°C. This sampled air is then carried by a high helium flux through a modified Precon system of Thermo-Finnigan to separate CO2 from the air and to inject the pure CO2 gas in a low helium stream via an open split device to a Delta Plus XL mass spectrometer. The overall precision based on replicates of standard air is significantly better than 0.1 for a single analysis and is further improved by a triplicate measurement of the same sample through a specially designed gas splitter. We have used this new method for investigations on polar ice cores. The 13C measurements are important for climate reconstructions, e.g. to reconstruct the evolution and its variability in the terrestrial and oceanic carbon sinks and to identify natural variations in the marine carbon cycle. During the industrialization atmospheric 13C decreased by about -2, mainly due to the anthropogenic release of biogenic CO2 by fossil fuel burning. Reconstructions of carbon and oxygen cycles of Joos at al. [1999] using a double deconvolution method show that between 1930 and 1950 the net terrestrial release is changing to a net terrestrial uptake of CO2. A highly resolved 13C dataset of this time window would replenish the documentation of this behaviour. Further, it would be interesting to compare such data with O2/N2 measurements, known as an other partitioning tool for carbon sources and sinks. At the EGS 2002 we will present a highly resolved 13C record from Antarctic ice covering this time period.

  7. Time-course metabolic changes in high-fat diet-induced obesity rats: A pilot study using hyperpolarized (13)C dynamic MRS.

    PubMed

    Kim, Gwang-Won; Ahn, Kyu-Youn; Kim, Yun-Hyeon; Jeong, Gwang-Woo

    2016-10-01

    The purpose of this study was to investigate the time-course metabolic changes based on hyperpolarized (13)C magnetic resonance spectroscopy (MRS) in high-fat diet (HFD)-induced obesity rats and the correlation between metabolic and serum enzyme levels. Sprague-Dawley rats were fed either HFD (60% fat) or normal diet (10% fat) for 6weeks. A HyperSense DNP was used to hyperpolarize [1-(13)C] pyruvic acid and the hyperpolarized (13)C MRS was examined every 2weeks in the course of 6weeks using a 3T GE MR750 scanner. The body weight of HFD-induced obese rats was significantly increased compared to normal rats at the 6th week after the onset of feeding (p=0.05). Simultaneously, the HFD-induced obese rats showed significantly increased levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and low-density lipoprotein (LDL)-cholesterol compared to normal rats (p≤0.05). In the dynamic (13)C MR spectra acquired at the 6th week, the obese rats showed significantly increased ratios of [1-(13)C] lactate/[1-(13)C] pyruvate and [1-(13)C] alanine/[1-(13)C] pyruvate (p=0.05). The (13)C spectral outcomes are positively correlated with the enzyme levels of ALT and LDH in the HFD-induced obesity. The [1-(13)C] lactate and [1-(13)C] alanine are potentially considered as noninvasive biomarkers for the HFD-induced obesity. PMID:27374624

  8. Calculation of the 13C NMR shieldings of the C0 2 complexes of aluminosilicates

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    1995-04-01

    complexation are much smaller. Complexation with CO 2 greatly increases the electric field gradient at the bridging oxygen of H 3AlOAlH 3-2, raising it to a value similar to that found for SiOSi linkages. Comparison of these results with the experimental 13C NMR spectra support the formation of CO 2-like complexes at SiOSi bridges in albite glasses and CO 3-like complexes at SiOAl and AlOAl bridges in albite and nepheline glasses. Changes in the calculated shieldings as Na + ions are added to the complexes suggest that some of the observed complexes may be similar in their CO 2-aluminosilicate interactions, but different with respect to the positions of the charge-compensating Na + ions.

  9. 13C and 199Hg nuclear magnetic resonance spectroscopic study of alkenemercurinium ions: Effect of methyl substituents on 199Hg chemical shifts

    PubMed Central

    Olah, George A.; Garcia-Luna, Armando

    1980-01-01

    The long-lived ethylene, cyclohexene, and norbornenemercurinium ions prepared in superacidic, low-nucleophilic media have been studied by 13C and 199Hg NMR spectroscopy. The norbornenemercurinium ion shows temperature-dependent 13C and 199Hg NMR spectra, consistent with equilibration via rapid hydride and Wagner-Meerwin shifts. The 199Hg NMR shifts of a series of alkylmercury bromides were also obtained in order to elucidate the effect of methyl substituents on 199Hg NMR chemical shifts. PMID:16592870

  10. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. II. Conformational structure of vinyl ethers

    SciTech Connect

    Krivdin, L.B.; Shcherbakov, V.V.; Bzhezovskii, V.M.; Kalabin, G.A.

    1986-10-10

    The /sup 13/C-/sup 13/C spin-spin coupling constants between the carbon nuclei of the vinyl group were measured for a series of vinyl ethers. It was established that the unshared electron pairs of the oxygen atom can make a substantial stereospecific contribution to the direct /sup 13/C-/sup 13/C constants of the adjacent nuclei. The observed effect was used to establish the conformational structure of the compounds.

  11. Conformational changes of alamethicin induced by solvent and temperature. A 13C-NMR and circular-dichroism study.

    PubMed

    Jung, G; Dubischar, N

    1975-06-01

    13C nuclear magnetic resonance (NMR) and circular dichroism (CD) have been used for studies on the conformation of alamethicin. The 13C NMR spectrum is assigned with the aid of signals of synthetic partial sequences and selective proton decoupling. The solvent and temperature-dependence of the 13C NMR spectra, T1 measurements and the use of lanthanide-shift reagents allow the differentiation between the amino acids belonging to a rigid alpha-helical portion of the alamethicin sequence and those belonging to a more flexible part. The 13C NMR results are in agreement with results obtained from extended solvent and temperature-dependent CD studies which indicate a highly stabilized nonpolar and intrachenar alpha-helical part. The concentration-dependence of the CD spectrum of alamethicin in a nematic phase revealed aggregation phenomena which might simulate those observed in natural and synthetic membranes. After dissolving alamethicin in aqueous alcohol there is a time-dependence of the ellipticity of the Cotton effects showing a sort of memory effect on the mode of dissolution. Four different conformations can be characterized by CD spectra depending on the solvent and concentration. A model illustrating the dynamic conformations and aggregation phenomena within a membrane is proposed. PMID:1175592

  12. Prospective Work for Alma: the Millimeterwave and Submillimeterwave Spectrum of 13C-GLYCOLALDEHYDE

    NASA Astrophysics Data System (ADS)

    Haykal, Imane; Margulès, Laurent; Huet, Therese R.; Motiyenko, Roman; Guillemin, J.-C.

    2011-06-01

    Glycolaldehyde has been identified in interstellar sources. The relative abundance ratios of the three isomers (acetic acid) : (glycolaldehyde) : (methylformate) were estimated . The detection of 13C_1 and 13C_2 isotopomers of methylformate has been recently reported in Orion, as a result of the detailled labororatory spectroscopic study. Therefore the spectroscopy of the 13C isotopomers of glycolaldehyde is investigated in laboratory in order to provide data for an astronomical search. The instrument ALMA will certainly be a good instrument to detect them. Up to now, only the microwave spectra of 13CH_2OH-CHO and of CH_2OH-13CHO have been observed several years ago in the 12-40 GHz range. Spectra of both species are presently recorded in Lille in the 150-950 GHz range with the new submillimetre-wave spectrometer based on harmonic generation of a microwave synthesizer source, using only solid-state devices, and coupled to a cell of 2.2 m length The absolute accuracy of the line positions is better than 30 KHz. The rotational structure of the ground state and of the three first excited vibrational states has been observed. Two 13C enriched samples were used. The analysis is in progress. This work is supported by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) and by the contract ANR-08-BLAN-0054 J. M. Hollis, S. N. Vogel, L. E. Snyder, et al., Astrophys. J. 554(2001) L81 R. A. H. Butler, F. C. De Lucia, D. T Petkie, et al., Astrophys. J. Supp. 134 (2001) 319 M. T. Beltran, C. Codella, S. Viti, R. Niri, R. Cesaroni, Astrophys. J. 690 (2009) L93. M. Carjaval, L. Margulès, B. Tercero et al., Astron. Astrophys. 500 (2009) 1109. K.-M. Marstokk and H. Møllendal, J. Mol. Struct. 16 (1973) 259. R. A. Motiyenko, L. Margulès, E. A. Alekseev et al., J. Mol. Spectrosc. 264 (2010) 94.

  13. Comparison of celery (Apium graveolens L.) collenchyma and parenchyma cell wall polysaccharides enabled by solid-state (13)C NMR.

    PubMed

    Zujovic, Zoran; Chen, Da; Melton, Laurence D

    2016-02-01

    Collenchyma cells with their thickened walls are one of specific mechanical support tissues for plants, while parenchyma cells are thin walled and serve multiple functions. The parenchyma tissue is what you enjoy eating, while collenchyma, because of its fibrous nature, is not so attractive. Celery is a useful model for comparing the cell walls (CWs) of the two cell types such as collenchyma and parenchyma. However, to date, the structural characteristics of collenchyma and parenchyma cell walls from the same plant have not been compared. Monosaccharide composition suggested the collenchyma cell walls contained less pectin but more hemicellulose in comparison to parenchyma. High-resolution solid-state NMR spectra of highly mobile pectins revealed that the arabinan signals were more evident in the collenchyma spectrum, while galactan showed a much stronger resonance in the parenchyma spectrum. In addition, methyl esterified and non-esterified galacturonic acid signals were observed in parenchyma CWs, but only the latter one appeared in the collenchyma. The ratio of cellulose surface/interior obtained from CP/MAS spectra for collenchyma suggested the cellulose microfibrils were ~2.4 nm, while in the parenchyma, these were somewhat larger. X-ray diffraction indicated the size of the cellulose microfibrils were the same for both types of CWs. PMID:26717549

  14. Galactose oxidation using (13)C in healthy and galactosemic children.

    PubMed

    Resende-Campanholi, D R; Porta, G; Ferrioli, E; Pfrimer, K; Ciampo, L A Del; Junior, J S Camelo

    2015-03-01

    Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT) deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-(13)C-galactose) allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate (13)CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-(13)C-galactose to all children. The molar ratios of (13)CO2 and (12)CO2 were quantified by the mass/charge ratio (m/z) of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of (13)C from labeled galactose (CUMPCD) in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies. PMID:25608239

  15. The 13C nuclear magnetic resonance in graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Resing, H. A.

    1985-01-01

    The (13)C NMR chemical shifts of graphite intercalation compounds were calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about -140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.

  16. S-Factor of radiative р 13C capture

    NASA Astrophysics Data System (ADS)

    Dubovichenko, S. B.

    2012-06-01

    The possibility of description of experimental data on the astrophysical S-factor of radiative р 13C capture within the framework of the potential cluster model with forbidden states is analyzed at energies in the range 0.03-0.8 MeV. It is demonstrated that the behavior of the astrophysical S-factor can be explained based on the Е1-transition to the bound 3 P 1 state of the 14N nucleus in the р 13С channel from the 3 S 1 wave of р 13С scattering at resonant energy of 0.55 MeV (l.s.).

  17. Absolute partial decay-branch measurements in 13C

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz.; Malcolm, J. D.; Ziman, V. A.; Faestermann, Th.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.

    2012-10-01

    The 9Be(6Li,d)13C* reaction at a beam energy of 42 MeV has been investigated using a large-acceptance silicon-strip detector array and the high-resolution Q3D magnetic spectrograph. The Q3D facilitated the unambiguous determination of the reaction channel via identification of the deuteron ejectile, thereby providing the spectrum of excited states in 13C in the range from 10.7 to 15.0 MeV. The silicon array was used to detect and identify the 13C recoil-breakup products with efficiencies of up to 49%. The results obtained for the absolute partial branching ratios represent the first complete measurements for states in this energy region and allow the extraction of reduced widths. The quantities measured for Γn0/Γtot and Γn1/Γtot are 0.91±0.11 and ≤0.13 (10.753 MeV), 0.51±0.04 and 0.51±0.04 (10.818 MeV), 0.68±0.03 and 0.42±0.02 (10.996 MeV), 0.49±0.08 and 0.71±0.11 (11.848 MeV), and 0.49±0.08 and 0.53±0.08 (12.130 MeV), respectively. For the two observed higher-lying energy levels, Γα0/Γtot and Γn1/Γtot have been measured as 0.54±0.02 and 0.45±0.02 (13.760 MeV) and 0.94±0.03 and 0.13±0.02 (14.582 MeV), respectively. The consequences for the proposed molecular structures in 13C are explored following the extraction of reduced widths.

  18. Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-13C]butyrate and [1-13C]pyruvate

    PubMed Central

    Bastiaansen, Jessica A. M.; Merritt, Matthew E.; Comment, Arnaud

    2016-01-01

    Cardiac dysfunction is often associated with a shift in substrate preference for ATP production. Hyperpolarized (HP) 13C magnetic resonance spectroscopy (MRS) has the unique ability to detect real-time metabolic changes in vivo due to its high sensitivity and specificity. Here a protocol using HP [1-13C]pyruvate and [1-13C]butyrate is used to measure carbohydrate versus fatty acid metabolism in vivo. Metabolic changes in fed and fasted Sprague Dawley rats (n = 36) were studied at 9.4 T after tail vein injections. Pyruvate and butyrate competed for acetyl-CoA production, as evidenced by significant changes in [13C]bicarbonate (−48%), [1-13C]acetylcarnitine (+113%), and [5-13C]glutamate (−63%), following fasting. Butyrate uptake was unaffected by fasting, as indicated by [1-13C]butyrylcarnitine. Mitochondrial pseudoketogenesis facilitated the labeling of the ketone bodies [1-13C]acetoacetate and [1-13C]β-hydroxybutyryate, without evidence of true ketogenesis. HP [1-13C]acetoacetate was increased in fasting (250%) but decreased during pyruvate co-injection (−82%). Combining HP 13C technology and co-administration of separate imaging agents enables noninvasive and simultaneous monitoring of both fatty acid and carbohydrate oxidation. This protocol illustrates a novel method for assessing metabolic flux through different enzymatic pathways simultaneously and enables mechanistic studies of the changing myocardial energetics often associated with disease. PMID:27150735

  19. Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-(13)C]butyrate and [1-(13)C]pyruvate.

    PubMed

    Bastiaansen, Jessica A M; Merritt, Matthew E; Comment, Arnaud

    2016-01-01

    Cardiac dysfunction is often associated with a shift in substrate preference for ATP production. Hyperpolarized (HP) (13)C magnetic resonance spectroscopy (MRS) has the unique ability to detect real-time metabolic changes in vivo due to its high sensitivity and specificity. Here a protocol using HP [1-(13)C]pyruvate and [1-(13)C]butyrate is used to measure carbohydrate versus fatty acid metabolism in vivo. Metabolic changes in fed and fasted Sprague Dawley rats (n = 36) were studied at 9.4 T after tail vein injections. Pyruvate and butyrate competed for acetyl-CoA production, as evidenced by significant changes in [(13)C]bicarbonate (-48%), [1-(13)C]acetylcarnitine (+113%), and [5-(13)C]glutamate (-63%), following fasting. Butyrate uptake was unaffected by fasting, as indicated by [1-(13)C]butyrylcarnitine. Mitochondrial pseudoketogenesis facilitated the labeling of the ketone bodies [1-(13)C]acetoacetate and [1-(13)C]β-hydroxybutyryate, without evidence of true ketogenesis. HP [1-(13)C]acetoacetate was increased in fasting (250%) but decreased during pyruvate co-injection (-82%). Combining HP (13)C technology and co-administration of separate imaging agents enables noninvasive and simultaneous monitoring of both fatty acid and carbohydrate oxidation. This protocol illustrates a novel method for assessing metabolic flux through different enzymatic pathways simultaneously and enables mechanistic studies of the changing myocardial energetics often associated with disease. PMID:27150735

  20. The Extended Spectroscopic Database on Formamide: Parent, 13C and Deuterated Species up to 1 THz

    NASA Astrophysics Data System (ADS)

    Kutsenko, A. S.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2011-06-01

    Formamide (NH_2CHO) is the simplest interstellar molecule containing a peptide bond that provides polymerization of amino acids. It is also considered as a precursor of acetamide - another molecule containing a peptide bond that has been recently discovered in interstellar medium. While the rotational spectra of the parent istopic species of formamide were extensively studied up to 500 GHz only few data are available on its deuterated species. We present the new study of the rotational spectra of all singly deuterated isotopologues of formamide as well as new analysis of the rotational spectra of the parent and 13C isotopic species of formamide in the frequency range up to 1 THz. All the measurements have been performed using the Lille spectrometer based on the solid state sources. In total, about 2500 newly measured transition frequencies have been added to existing dataset on the rotational spectra of formamide and its isotopologues. This work is supported by ANR-08-BLAN-0225, the french Programme National de Physique Chimie du Milieu Interstellaire. A.K. would like to acknowledge the support of the Embassy of France in Ukraine. Hollis, J.M. et al. Astrophys. J. Letters 643 (2006) L25. Kryvda, A.V. et al. J. Mol. Spec. 254 (2009) 28.

  1. Large structure rearrangement of colicin ia channel domain after membrane binding from 2D 13C spin diffusion NMR.

    PubMed

    Luo, Wenbin; Yao, Xiaolan; Hong, Mei

    2005-05-01

    One of the main mechanisms of membrane protein folding is by spontaneous insertion into the lipid bilayer from the aqueous environment. The bacterial toxin, colicin Ia, is one such protein. To shed light on the conformational changes involved in this dramatic transfer from the polar to the hydrophobic milieu, we carried out 2D magic-angle spinning (13)C NMR experiments on the water-soluble and membrane-bound states of the channel-forming domain of colicin Ia. Proton-driven (13)C spin diffusion spectra of selectively (13)C-labeled protein show unequivocal attenuation of cross-peaks after membrane binding. This attenuation can be assigned to distance increases but not reduction of the diffusion coefficient. Analysis of the statistics of the interhelical and intrahelical (13)C-(13)C distances in the soluble protein structure indicates that the observed cross-peak reduction is well correlated with a high percentage of short interhelical contacts in the soluble protein. This suggests that colicin Ia channel domain becomes open and extended upon membrane binding, thus lengthening interhelical distances. In comparison, cross-peaks with similar intensities between the two states are dominated by intrahelical contacts in the soluble state. This suggests that the membrane-bound structure of colicin Ia channel domain may be described as a "molten globule", in which the helical secondary structure is retained while the tertiary structure is unfolded. This study demonstrates that (13)C spin diffusion NMR is a valuable tool for obtaining qualitative long-range distance constraints on membrane protein folding. PMID:15853348

  2. Investigating {sup 13}C+{sup 12}C reaction by the activation method. Sensitivity tests

    SciTech Connect

    Chesneanu, Daniela Trache, L.; Margineanu, R.; Pantelica, A.; Ghita, D.; Straticiuc, M.; Burducea, I.; Blebea-Apostu, A. M.; Gomoiu, C. M.; Tang, X.

    2015-02-24

    We have performed experiments to check the limits of sensitivity of the activation method using the new 3 MV Tandetron accelerator and the low and ultra-low background laboratories of the “Horia Hulubei” National Institute of Physics and Nuclear Engineering (IFIN-HH). We have used the {sup 12}C+{sup 13}C reaction at beam energies E{sub lab}= 6, 7 and 8 MeV. The knowledge of this fusion cross section at deep sub-barrier energies is of interest for astrophysical applications, as it provides an upper limit for the fusion cross section of {sup 12}C+{sup 12}C over a wide energy range. A {sup 13}C beam with intensities 0.5–2 particleμA was provided by the accelerator and used to bombard graphite targets, resulting in activation with {sup 24}Na from the {sup 12}C({sup 13}C,p) reaction. The 1369 and 2754 keV gamma-rays from {sup 24}Na de-activation were clearly observed in the spectra obtained in two different laboratories used for measurements at low and ultralow background: one at the surface and one located underground in the Unirea salt mine from Slanic Prahova, Romania. In the underground laboratory, for E{sub lab} = 6 MeV we have measured an activity of 0.085 ± 0.011 Bq, corresponding to cross sections of 1–3 nb. This demonstrates that it is possible to measure {sup 12}C targets irradiated at lower energies for at least 10 times lower cross sections than before β–γ coincidences will lead us another factor of 10 lower, proving that this installations can be successfully used for nuclear astrophysics measurements.

  3. Investigating 13C +12C reaction by the activation method. Sensitivity tests

    NASA Astrophysics Data System (ADS)

    Chesneanu, Daniela; Trache, L.; Margineanu, R.; Pantelica, A.; Ghita, D.; Straticiuc, M.; Burducea, I.; Blebea-Apostu, A. M.; Gomoiu, C. M.; Tang, X.

    2015-02-01

    We have performed experiments to check the limits of sensitivity of the activation method using the new 3 MV Tandetron accelerator and the low and ultra-low background laboratories of the "Horia Hulubei" National Institute of Physics and Nuclear Engineering (IFIN-HH). We have used the 12C +13C reaction at beam energies Elab= 6, 7 and 8 MeV. The knowledge of this fusion cross section at deep sub-barrier energies is of interest for astrophysical applications, as it provides an upper limit for the fusion cross section of 12C +12C over a wide energy range. A 13C beam with intensities 0.5-2 particleμA was provided by the accelerator and used to bombard graphite targets, resulting in activation with 24Na from the 12C (13C ,p) reaction. The 1369 and 2754 keV gamma-rays from 24Na de-activation were clearly observed in the spectra obtained in two different laboratories used for measurements at low and ultralow background: one at the surface and one located underground in the Unirea salt mine from Slanic Prahova, Romania. In the underground laboratory, for Elab = 6 MeV we have measured an activity of 0.085 ± 0.011 Bq, corresponding to cross sections of 1-3 nb. This demonstrates that it is possible to measure 12C targets irradiated at lower energies for at least 10 times lower cross sections than before β-γ coincidences will lead us another factor of 10 lower, proving that this installations can be successfully used for nuclear astrophysics measurements.

  4. First Spectroscopic Studies and Detection in SgrB2 of 13C-DOUBLY Substitued Ethyl Cyanide

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.; Müller, Holger S. P.; Belloche, Arnaud

    2015-06-01

    Ethyl cyanide (CH_3CH_2CN) is one of the most abundant complex organic molecules in the interstellar medium firstly detected in OMC-1 and Sgr B2 in 1977. The vibrationally excited states are enough populated under ISM conditions and could be detected. Apart from the deuterated ones, all mono-substituted isotopologues of ethyl cyanide (13C and 15N have been detected in the ISM. The detection of isotopologues in the ISM is important: it can give information about the formation process of complex organic molecules, and it is essential to clean the ISM spectra from the lines of known molecules in order to detect new ones. The 12C/13C ratio found in SgrB2: 20-30 suggests that the doubly 13C could be present in the spectral line survey recently obtained with ALMA (EMoCA), but no spectroscopic studies exist up to now. We measured and analyzed the spectra of the 13C-doubly-substitued species up to 1 THz with the Lille solid-state based spectrometer. The spectroscopic results and and the detection of the doubly 13C species in SgrB2 will be presented. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under ANR-13-BS05-0008-02 IMOLABS. Support by the Deutsche Forschungsgemeinschaft via SFB 956, project B3 is acknowledged D.~R.~Johnson, et al., Astrophys.~J. 1977, 218, L370 A.~Belloche, et al., A&A 2013, 559, A47 A.M.~Daly, et al., Astrophys.~J. 2013, 768, 81 K.~Demyk, et al. A&A 2007 466, 255 Margulès, et al. A&A 2009, 493, 565 Belloche et al. 2014, Science, 345, 1584

  5. The natural abundance of 13C with different agricultural management by NIRS with fibre optic probe technology.

    PubMed

    Fuentes, Mariela; González-Martín, Inmaculada; Hernández-Hierro, Jose Miguel; Hidalgo, Claudia; Govaerts, Bram; Etchevers, Jorge; Sayre, Ken D; Dendooven, Luc

    2009-06-30

    In the present study the natural abundance of (13)C is quantified in agricultural soils in Mexico which have been submitted to different agronomic practices, zero and conventional tillage, retention of crop residues (with and without) and rotation of crops (wheat and maize) for 17 years, which have influenced the physical, chemical and biological characteristics of the soil. The natural abundance of C13 is quantified by near infrared spectra (NIRS) with a remote reflectance fibre optic probe, applying the probe directly to the soil samples. Discriminate partial least squares analysis of the near infrared spectra allowed to classify soils with and without residues, regardless of the type of tillage or rotation systems used with a prediction rate of 90% in the internal validation and 94% in the external validation. The NIRS calibration model using a modified partial least squares regression allowed to determine the delta(13)C in soils with or without residues, with multiple correlation coefficients 0.81 and standard error prediction 0.5 per thousand in soils with residues and 0.92 and 0.2 per thousand in soils without residues. The ratio performance deviation for the quantification of delta(13)C in soil was 2.5 in soil with residues and 3.8 without residues. This indicated that the model was adequate to determine the delta(13)C of unknown soils in the -16.2 per thousand to -20.4 per thousand range. The development of the NIR calibration permits analytic determinations of the values of delta(13)C in unknown agricultural soils in less time, employing a non-destructive method, by the application of the fibre optic probe of remote reflectance to the soil sample. PMID:19376340

  6. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    NASA Astrophysics Data System (ADS)

    Vinding, Mads S.; Laustsen, Christoffer; Maximov, Ivan I.; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan H.; Nielsen, Niels Chr.

    2013-02-01

    Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7 T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region-of-interest (ROI) single metabolite signals available for higher image resolution or single-peak spectra. The 2D spatial-selective rf pulses were designed using a novel Krotov-based optimal control approach capable of iteratively fast providing successful pulse sequences in the absence of qualified initial guesses. The technique may be important for early detection of abnormal metabolism, monitoring disease progression, and drug research.

  7. Partial 13C isotopic enrichment of nucleoside monophosphates: useful reporters for NMR structural studies

    PubMed Central

    Kishore, Anita I.; Mayer, Michael R.; Prestegard, James H.

    2005-01-01

    Analysis of the 13C isotopic labeling patterns of nucleoside monophosphates (NMPs) extracted from Escherichia coli grown in a mixture of C-1 and C-2 glucose is presented. By comparing our results to previous observations on amino acids grown in similar media, we have been able to rationalize the labeling pattern based on the well-known biochemistry of nucleotide biosynthesis. Except for a few notable absences of label (C4 in purines and C3′ in ribose) and one highly enriched site (C1′ in ribose), most carbons are randomly enriched at a low level (an average of 13%). These sparsely labeled NMPs give less complex NMR spectra than their fully isotopically labeled analogs due to the elimination of most 13C–13C scalar couplings. The spectral simplicity is particularly advantageous when working in ordered systems, as illustrated with guanosine diphosphate (GDP) bound to ADP ribosylation factor 1 (ARF1) aligned in a liquid crystalline medium. In this system, the absence of scalar couplings and additional long-range dipolar couplings significantly enhances signal to noise and resolution. PMID:16254075

  8. Use of solid-state 13C NMR in structural studies of humic acids and humin from Holocene sediments

    USGS Publications Warehouse

    Hatcher, P.G.; VanderHart, D.L.; Earl, W.L.

    1980-01-01

    13C NMR spectra of solid humic substances in Holocene sediments have been obtained using cross polarization with magic-angle sample spinning techniques. The results demonstrate that this technique holds great promise for structural characterizations of complex macromolecular substances such as humin and humic acids. Quantifiable distinctions can be made between structural features of aquatic and terrestrial humic substances. The aliphatic carbons of the humic substances are dominant components suggestive of input from lipid-like materials. An interesting resemblance is also noted between terrestrial humic acid and humin spectra. ?? 1980.

  9. Observation of 1H-13C and 1H-1H proximities in a paramagnetic solid by NMR at high magnetic field under ultra-fast MAS.

    PubMed

    Li, Shenhui; Trébosc, Julien; Lafon, Olivier; Zhou, Lei; Shen, Ming; Pourpoint, Frédérique; Amoureux, Jean-Paul; Deng, Feng

    2015-02-01

    The assignment of NMR signals in paramagnetic solids is often challenging since: (i) the large paramagnetic shifts often mask the diamagnetic shifts specific to the local chemical environment, and (ii) the hyperfine interactions with unpaired electrons broaden the NMR spectra and decrease the coherence lifetime, thus reducing the efficiency of usual homo- and hetero-nuclear NMR correlation experiments. Here we show that the assignment of (1)H and (13)C signals in isotopically unmodified paramagnetic compounds with moderate hyperfine interactions can be facilitated by the use of two two-dimensional (2D) experiments: (i) (1)H-(13)C correlations with (1)H detection and (ii) (1)H-(1)H double-quantum↔single-quantum correlations. These methods are experimentally demonstrated on isotopically unmodified copper (II) complex of l-alanine at high magnetic field (18.8 T) and ultra-fast Magic Angle Spinning (MAS) frequency of 62.5 kHz. Compared to (13)C detection, we show that (1)H detection leads to a 3-fold enhancement in sensitivity for (1)H-(13)C 2D correlation experiments. By combining (1)H-(13)C and (1)H-(1)H 2D correlation experiments with the analysis of (13)C longitudinal relaxation times, we have been able to assign the (1)H and (13)C signals of each l-alanine ligand. PMID:25557861

  10. Σ production from targets of ^4He and ^13C

    NASA Astrophysics Data System (ADS)

    Chrien, R. E.

    1996-10-01

    One of the abiding issues in hypernuclear research has been the question of the formation of nuclear bound states incorporating the Σ-hyperon. The recent increases in beam intensity at the Brookhaven AGS have enabled us to obtain a high statistics study on the production of Σ-hyperons on a ^4He target. Earlier research using stopped kaons at KEK indicated the presence of structure in the (K^-,π^-) reaction, and led to the postulate of a Σ bound state. That structure has now been definitely confirmed in the in-flight kaon experiment at the LESB2 beam line and Moby-Dick spectrometer. An improved measurement of the binding energy of the presumed state will be reported, together with a production cross section. In addition, both (K^-,π^-) and (K^-,π^+) reactions on ^13C have been studied and will be compared to similar measurements on ^9Be.

  11. Multiscale computational modeling of (13)C DNP in liquids.

    PubMed

    Küçük, Sami Emre; Sezer, Deniz

    2016-04-14

    Dynamic nuclear polarization (DNP) enables the substantial enhancement of the NMR signal intensity in liquids. While proton DNP is dominated by the dipolar interaction between the electron and nuclear spins, the Fermi contact (scalar) interaction is equally important for heavier nuclei. The impossibility to predict the magnitude and field dependence of the scalar contribution hampers the application of high-field DNP to nuclei other than (1)H. We demonstrate that molecular dynamics (MD) simulations followed by density functional calculations of the Fermi contacts along the MD trajectory lead to quantitative agreement with the DNP coupling factors of the methyl and carbonyl carbons of acetone in water at 0.35 T. Thus, the accurate calculation of scalar-dominated DNP enhancement at a desired magnetic field is demonstrated for the first time. For liquid chloroform at fields above 9 T, our methodology predicts direct (13)C DNP enhancements that are two orders of magnitude larger than those of (1)H. PMID:27001446

  12. 13C breath tests in infections and beyond.

    PubMed

    Kurpad, Anura V; Ajami, Alfred; Young, Vernon R

    2002-09-01

    Stable isotope labeled compounds are widely used as diagnostic probes in medicine. These diagnostic stable isotope probes are now being expanded in their scope, to provide precise indications of the presence or absence of etiologically significant change in metabolism due to a specific disease. This concept exploits a labeled tracer probe that is a specifically designed substrate of a "gateway" enzyme in a discrete metabolic pathway, whose turnover can be measured by monitoring unidirectional precursor product mass flow. An example of such a probe is the 13C-urea breath test, where labeled urea is given to patients with H. pylori infection. Another example of this kind of probe is used to study the tripeptide glutathione (glu-cys-gly, GSH), which is the most abundant cellular thiol, and protects cells from the toxic effects of reactive oxygen species. Within the gamma glutamyl cycle, 5-oxoproline (L-pyroglutamic acid) is a metabolite generated during GSH catabolism, and is metabolized to glutamic acid by 5-oxoprolinase. This enzyme can also utilize the substrate L-2-oxothiazolidone-4-carboxylate (OTC), to generate intracellular cysteine, which is beneficial to the cell. Thus, labeled (13C) OTC would, under enzymatic attack yield cysteine and 13CO2, and can thus track the state and capacity of glutathione metabolism. Similarly, stable isotope labeled probes can be used to track the activity of the rate of homocysteine clearance, lymphocyte CD26, and liver CYP (cytochrome P450) enzyme activity. In the future, these applications should be able to titrate, in vivo, the characteristics of various specific enzyme systems in the body and their response to stress or infection as well as to treatment regimes. PMID:12362798

  13. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  14. Thz Spectroscopy of 13C Isotopic Species of a "weed": Acetaldehyde

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.

    2011-06-01

    Our studies of the isotopic species of 13C and D isotopologues of methyl formate (HCOOCH_3), have allowed the detection of more than 600 lines in Orion. This confirms that many observed U-lines are coming from isotopic species of one of the most abundant molecules in space. Since its first detection in 1976 in SgrB2 and in Orion A, acetaldehyde (CH_3CHO) was detected in many other numerous objects. If its deuterated species (CD_3CHO and CH_3CDO) have been previously studied in the millimeterwave range, the data concerning the 13C species are limited to few lines measured in 1957 up to 40 GHz. In this context we decided to study the 13C species of acetaldehyde. Acetaldehyde molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with the Rho Axis Method. Recent versions of the codes include high orders term in order to reproduce the observed frequencies for large quantum numbers values as J-values as high as 70a,b,. Measurements and analysis of the rotational spectra of 13C isotopic species are in progress in Lille with a solid-state submillimetre-wave spectrometer (50-950 GHz), the first results will be presented. This work is supported by the contract ANR-08-BLAN-0054 and by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS). Carvajal, M.; Margulès, L.; Tercero, B.; et al.A&A 500, (2009) 1109 Margulès, L.; Huet, T. R.; Demaison J.; et al.,ApJ 714, (2010) 1120. Ikeda, M.; Ohishi, M.; Nummelin, A.; et al., ApJ, 560, (2001) 792 Kleiner, I.; Lopez, J.-C.; Blanco, S.; et al.J. Mol. Spectrosc. 197, (1999) 275 Elkeurti M.; Coudert, L. H.; Medvedev, I. R.; et al.J. Mol. Spectrosc. 263, (2010) 145 Kilb, R.W.; Lin, C.C.; and Wilson, E.B.J. Chem. Phys. 26, (1957) 1695 Kleiner, I. J. Mol. Spectrosc. 260, (2010) 1 Ilyushin, V.V.; Kryvda, A; and Alekseev, E;J. Mol. Spectrosc. 255, (2009) 32

  15. Novel Peak Assignments of in Vivo 13C MRS in Human Brain at 1.5 T

    NASA Astrophysics Data System (ADS)

    Blüml, Stefan; Hwang, Jong-Hee; Moreno, Angel; Ross, Brian D.

    2000-04-01

    13C MRS studies at natural abundance and after intravenous 1-13C glucose infusion were performed on a 1.5-T clinical scanner in four subjects. Localization to the occipital cortex was achieved by a surface coil. In natural abundance spectra glucose C3β,5β, myo-inositol, glutamate C1,2,5, glutamine C1,2,5, N-acetyl-aspartate C1-4,Cdbnd O, creatine CH2, CH3, and CCdbnd N, taurine C2,3, bicarbonate HCO-3 were identified. After glucose infusion 13C enrichment of glucose C1α,1β, glutamate C1-4, glutamine C1-4, aspartate C2,3, N-acetyl-aspartate C2,3, lactate C3, alanine C3, and HCO-3 were observed. The observation of 13C enrichment of resonances resonating at >150 ppm is an extension of previously published studies and will provide a more precise determination of metabolic rates and substrate decarboxylation in human brain.

  16. A practical guide for the setup of a 1H-31P-13C double cross-polarization (DCP) experiment.

    PubMed

    Ciesielski, Wlodzimierz; Kassassir, Hassan; Potrzebowski, Marek J

    2011-01-01

    O-phospho-L-threonine is a convenient sample to setup a (1)H-(31)P-(13)C double cross-polarization (DCP) Hartmann-Hahn match. The (1)H-(31)P-(13)C technique is extremely sensitive to the rate of the sample spinning. Both zero-quantum (ZQ) and double-quantum (DQ) cross-polarization operate at an average spinning rate (6-7 kHz). At higher spinning rates (10 kHz), the DQCP mechanism dominates and leads to a reduction of signal intensity, in particular for lower (31)P RF field strength. The application of two shape pulses during the second cross-polarization greatly improves the signal to noise ratio allowing the recording of better quality spectra. (31)P-(13)C spectrally induced filtering in combination with cross-polarization (SPECIFIC-CP) experiments can be carried out under ZQCP and DQCP conditions if careful attention is paid to the choice of RF field amplitudes and carriers Ω. Application of 1D and 2D (1)H-(31)P-(13)C experiments is demonstrated on model samples; disodium ATP hydrate and O-phospho-L-tyrosine. PMID:21440422

  17. Use of laser spectroscopy to measure the 13C/12C and 18O/16O compositions of carbonate minerals.

    PubMed

    Barker, Shaun L L; Dipple, Gregory M; Dong, Feng; Baer, Douglas S

    2011-03-15

    The stable carbon and oxygen isotope compositions of carbonate minerals are utilized throughout the earth and environmental sciences for various purposes. Here, we demonstrate the first application of a prototype instrument, based on off-axis integrated cavity output laser spectroscopy, to measure the carbon and oxygen isotope composition of CO(2) gas evolved from the acidification of carbonate minerals. The carbon and oxygen isotope ratios were recorded from absorption spectra of (12)C(16)O(16)O, (13)C(16)O(16)O, and (12)C(16)O(18)O in the near-infrared wavelength region. The instrument was calibrated using CaCO(3) minerals with known δ(13)C(VPDB) and δ(18)O(VSMOW) values, which had been previously calibrated by isotope ratio mass spectrometry relative to the international isotopic standards NBS 18 and NBS 19. Individual analyses are demonstrated to have internal precision (1 SE) of better than 0.15‰ for δ(13)C and 0.6‰ for δ(18)O. Analysis of four carbonate standards of known isotopic composition over 2 months, determined using the original instrumental calibration, indicates that analyses are accurate to better than 0.5‰ for both δ(13)C and δ(18)O without application of standard-sample-standard corrections. PMID:21341717

  18. High-field 13C NMR spectroscopy of tissue in Vivo. A double-resonance surface-coil probe

    NASA Astrophysics Data System (ADS)

    Reo, Nicholas V.; Ewy, Coleen S.; Siegfried, Barry A.; Ackerman, Joseph J. H.

    A double-resonance surface-coil NMR probe is described for performance of high-field (8.5 T) proton decoupled carbon-13 experiments with tissue in vivo. The probe may be accommodated in standard, 89 mm i.d. clear bore, commercial spectrometers and is suitable for studies utilizing small laboratory animals such as mice, hamsters, and rats. A coaxial coil design is employed (10 mm diameter 13C coil, 20 mm diameter 1H coil) which provides ca. 40 dB attenuation between the 13C observe and 1H decouple channels. The inherent efficiency of the surface-coil configuration provides a sensitivity comparable to a commercial probe of the same nominal dimension (10 mm Helmholtz coil) and assures adequate decoupling in conductive samples with ca. 3-5 W power. In the absence of 13C isotopic enrichment, NMR spectra of rat leg, liver, and brain in vivo provide signalto-noise sufficient for 10 min time resolution. Administration of 100 mg of 90% 13C-labeled glucose into a peripheral vein of a ca. 300 g rat resulted in a liver glucose resonance which could be monitored with good signal-to-noise and 3 min time resolution.

  19. Efficient Total Chemical Synthesis of (13) C=(18) O Isotopomers of Human Insulin for Isotope-Edited FTIR.

    PubMed

    Dhayalan, Balamurugan; Fitzpatrick, Ann; Mandal, Kalyaneswar; Whittaker, Jonathan; Weiss, Michael A; Tokmakoff, Andrei; Kent, Stephen B H

    2016-03-01

    Isotope-edited two-dimensional Fourier transform infrared spectroscopy (2 D FTIR) can potentially provide a unique probe of protein structure and dynamics. However, general methods for the site-specific incorporation of stable (13) C=(18) O labels into the polypeptide backbone of the protein molecule have not yet been established. Here we describe, as a prototype for the incorporation of specific arrays of isotope labels, the total chemical synthesis-via a key ester insulin intermediate-of 97 % enriched [(1-(13) C=(18) O)Phe(B24) ] human insulin: stable-isotope labeled at a single backbone amide carbonyl. The amino acid sequence as well as the positions of the disulfide bonds and the correctly folded structure were unambiguously confirmed by the X-ray crystal structure of the synthetic protein molecule. In vitro assays of the isotope labeled [(1-(13) C=(18) O)Phe(B24) ] human insulin showed that it had full insulin receptor binding activity. Linear and 2 D IR spectra revealed a distinct red-shifted amide I carbonyl band peak at 1595 cm(-1) resulting from the (1-(13) C=(18) O)Phe(B24) backbone label. This work illustrates the utility of chemical synthesis to enable the application of advanced physical methods for the elucidation of the molecular basis of protein function. PMID:26715336

  20. Structure and Metabolic-Flow Analysis of Molecular Complexity in a (13) C-Labeled Tree by 2D and 3D NMR.

    PubMed

    Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Kikuchi, Jun

    2016-05-10

    Improved signal identification for biological small molecules (BSMs) in a mixture was demonstrated by using multidimensional NMR on samples from (13) C-enriched Rhododendron japonicum (59.5 atom%) cultivated in air containing (13) C-labeled carbon dioxide for 14 weeks. The resonance assignment of 386 carbon atoms and 380 hydrogen atoms in the mixture was achieved. 42 BSMs, including eight that were unlisted in the spectral databases, were identified. Comparisons between the experimental values and the (13) C chemical shift values calculated by density functional theory supported the identifications of unlisted BSMs. Tracing the (13) C/(12) C ratio by multidimensional NMR spectra revealed faster and slower turnover ratios of BSMs involved in central metabolism and those categorized as secondary metabolites, respectively. The identification of BSMs and subsequent flow analysis provided insight into the metabolic systems of the plant. PMID:27060701

  1. Conformational Analysis, Thermal Rearrangement, and EI-MS Fragmentation Mechanism of (1(10)E,4E,6S,7R)-Germacradien-6-ol by (13)C-Labeling Experiments.

    PubMed

    Rabe, Patrick; Barra, Lena; Rinkel, Jan; Riclea, Ramona; Citron, Christian A; Klapschinski, Tim A; Janusko, Aron; Dickschat, Jeroen S

    2015-11-01

    An uncharacterized terpene cyclase from Streptomyces pratensis was identified as (+)-(1(10)E,4E,6S,7R)-germacradien-6-ol synthase. The enzyme product exists as two interconvertible conformers, resulting in complex NMR spectra. For the complete assignment of NMR data, all fifteen ((13)C1)FPP isotopomers (FPP=farnesyl diphosphate) and ((13)C15)FPP were synthesized and enzymatically converted. The products were analyzed using various NMR techniques, including (13)C, (13)C COSY experiments. The ((13)C)FPP isotopomers were also used to investigate the thermal rearrangement and EI fragmentation of the enzyme product. PMID:26361082

  2. Solid-state 13C NMR analysis of Lower Cretaceous Baganuur (Mongolia) lignite

    NASA Astrophysics Data System (ADS)

    Erdenetsogt, B.; Lee, I.; Lee, S.; Ko, Y.

    2009-12-01

    The transformation of plant matter into peat and coal has two steps, called the biochemical and geochemical stages of coalification. Biochemical coalification begins with the accumulation of dead vegetable matter and ends at the rank of subbituminous coal. The rank of Baganuur lignite ranges from lignite to subbituminous coal. It is transition between biochemical and physico-chemical coalification stages. The changes of chemical structure of coal during the transition between above mentioned two stages were studied by solid state CP/MAS 13C NMR. The most predominant alteration is the disappearance of the resonances from oxygenated aliphatic carbons (63 ppm), protonated aromatic carbons (114 ppm), oxygen-substituted aromatic carbons (144 ppm) and carbonyl carbons (195 ppm). In addition, the intensity of resonances from methoxyl carbons (56 ppm) and oxygenated aliphatic carbons (72 ppm) decreased. While the intensities of resonance from aliphatic (30 ppm), protonated aromatic (125 ppm) and carboxyl carbon (174 ppm) increased or remained almost constant. The relative percent of O-substituted aromatic carbons decreased by ~25% mainly due to the intensity loss of the peak at 144 ppm, indicating removal of O-containing functional groups substituted to aromatic carbons. It is consistent with the decreased relative percent (~75%) of the peak at 114 ppm from protonated aromatic carbons nearby oxygen-substituted aromatic carbons. In addition, the resonance from 125 ppm was shifted to 128 ppm and its relative area increased by ~20%, indicating replacement of O-substituent of aromatic rings by hydrogen or carbon. Protonated aromatic carbons at least two bond away from an oxygen-substituted aromatic carbons give a resonance at 125 ppm and carbon-substituted aromatic carbons give a resonance at 130-132 ppm. With the increase relative percent of C-substituted aromatic carbons, their resonance were overlapped with protonated aromatic carbons and shifted to higher ppm. A decreasing

  3. Improved Carbohydrate Structure Generalization Scheme for (1)H and (13)C NMR Simulations.

    PubMed

    Kapaev, Roman R; Toukach, Philip V

    2015-07-21

    The improved Carbohydrate Structure Generalization Scheme has been developed for the simulation of (13)C and (1)H NMR spectra of oligo- and polysaccharides and their derivatives, including those containing noncarbohydrate constituents found in natural glycans. Besides adding the (1)H NMR calculations, we improved the accuracy and performance of prediction and optimized the mathematical model of the precision estimation. This new approach outperformed other methods of chemical shift simulation, including database-driven, neural net-based, and purely empirical methods and quantum-mechanical calculations at high theory levels. It can process structures with rarely occurring and noncarbohydrate constituents unsupported by the other methods. The algorithm is transparent to users and allows tracking used reference NMR data to original publications. It was implemented in the Glycan-Optimized Dual Empirical Spectrum Simulation (GODESS) web service, which is freely available at the platform of the Carbohydrate Structure Database (CSDB) project ( http://csdb.glycoscience.ru). PMID:26087011

  4. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    PubMed

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-01

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. PMID:25843843

  5. In Vivo Natural-Abundance 13C Nuclear Magnetic Resonance Studies of Living Ectomycorrhizal Fungi 1

    PubMed Central

    Martin, Francis; Canet, Daniel; Marchal, Jean-Pierre; Brondeau, Jean

    1984-01-01

    Natural-abundance 13C nuclear magnetic resonance spectroscopy has been used to study intact mycelia of the ectomycorrhizal fungi Cenococcum graniforme (Ascomycetes) and Hebeloma crustuliniforme (Basidiomycetes). A number of sharp resonances are observed in living fungi. These signals primarily arise from fatty acyl chains and carbohydrate nuclei. The spectra are interpreted in terms of relative concentrations of the major fatty acids present in the fungal triglycerides. The small line width of fatty acids (mainly oleic, linoleic, and palmitic acids) resonances and spin-lattice relaxation time are indicative of fast rotational reorientations and are consequently thought to arise from fatty acyl chains in fat droplets. We were able to locate the site of lipids accumulation within mycelia using light microscopy and histological staining. Many lipid droplets were observed in mycelia of both species. These results suggest that fatty acids droplets could be involved in carbon storage and metabolism from ectomycorrhizal fungi. PMID:16663561

  6. 1H, 13C and 15N NMR assignments of phenazopyridine derivatives.

    PubMed

    Burgueño-Tapia, Eleuterio; Mora-Pérez, Yolanda; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2005-03-01

    Phenazopyridine hydrochloride (1), a drug in clinical use for many decades, and some derivatives were studied by one- and two-dimensional (1)H, (13)C and (15)N NMR methodology. The assignments, combined with DFT calculations, reveal that the preferred protonation site of the drug is the pyridine ring nitrogen atom. The chemoselective acetylation of phenazopyridine (2) and its influence on the polarization of the azo nitrogen atoms were evidenced by the (15)N NMR spectra. Molecular calculations of the phenazopyridines 2-4 show that the pyridine and phenyl groups are oriented in an antiperiplanar conformation with intramolecular hydrogen bonding between the N-b atom and the C-2 amino group preserving the E-azo stereochemistry. PMID:15625718

  7. A study of conformational stability of poly(L-alanine), poly(L-valine), and poly(L-alanine)/poly(L-valine) blends in the solid state by (13)C cross-polarization/magic angle spinning NMR.

    PubMed

    Murata, Katsuyoshi; Kuroki, Shigeki; Kimura, Hideaki; Ando, Isao

    2002-06-01

    13C cross-polarization/magic angle spinning (CP/MAS) NMR and (1)H T(1rho) experiments of poly(L-alanine) (PLA), poly(L-valine) (PLV), and PLA/PLV blends have been carried out in order to elucidate the conformational stability of the polypeptides in the solid state. These were prepared by adding a trifluoroacetic acid (TFA) solution of the polymer with a 2.0 wt/wt % of sulfuric acid (H(2)SO(4)) to alkaline water. From these experimental results, it is clarified that the conformations of PLA and PLV in their blends are strongly influenced by intermolecular hydrogen-bonding interactions that cause their miscibility at the molecular level. PMID:11948439

  8. Use of 13C Nuclear Magnetic Resonance To Assess Fossil Fuel Biodegradation: Fate of [1-13C]Acenaphthene in Creosote Polycyclic Aromatic Compound Mixtures Degraded by Bacteria†

    PubMed Central

    Selifonov, Sergey A.; Chapman, Peter J.; Akkerman, Simon B.; Gurst, Jerome E.; Bortiatynski, Jacqueline M.; Nanny, Mark A.; Hatcher, Patrick G.

    1998-01-01

    [1-13C]acenaphthene, a tracer compound with a nuclear magnetic resonance (NMR)-active nucleus at the C-1 position, has been employed in conjunction with a standard broad-band-decoupled 13C-NMR spectroscopy technique to study the biodegradation of acenaphthene by various bacterial cultures degrading aromatic hydrocarbons of creosote. Site-specific labeling at the benzylic position of acenaphthene allows 13C-NMR detection of chemical changes due to initial oxidations catalyzed by bacterial enzymes of aromatic hydrocarbon catabolism. Biodegradation of [1-13C]acenaphthene in the presence of naphthalene or creosote polycyclic aromatic compounds (PACs) was examined with an undefined mixed bacterial culture (established by enrichment on creosote PACs) and with isolates of individual naphthalene- and phenanthrene-degrading strains from this culture. From 13C-NMR spectra of extractable materials obtained in time course biodegradation experiments under optimized conditions, a number of signals were assigned to accumulated products such as 1-acenaphthenol, 1-acenaphthenone, acenaphthene-1,2-diol and naphthalene 1,8-dicarboxylic acid, formed by benzylic oxidation of acenaphthene and subsequent reactions. Limited degradation of acenaphthene could be attributed to its oxidation by naphthalene 1,2-dioxygenase or related dioxygenases, indicative of certain limitations of the undefined mixed culture with respect to acenaphthene catabolism. Coinoculation of the mixed culture with cells of acenaphthene-grown strain Pseudomonas sp. strain A2279 mitigated the accumulation of partial transformation products and resulted in more complete degradation of acenaphthene. This study demonstrates the value of the stable isotope labeling approach and its ability to reveal incomplete mineralization even when as little as 2 to 3% of the substrate is incompletely oxidized, yielding products of partial transformation. The approach outlined may prove useful in assessing bioremediation performance

  9. Benzenium ion chemistry on solid metal halide superacids: in situ {sup 13}C NMR experiments and theoretical calculations

    SciTech Connect

    Xu, T.; Barich, D.H.; Torres, P.D.; Haw, J.F.

    1997-01-15

    The benzenium, toluenium, and ethylbenzenium ions were synthesized on aluminium bromide by coadsorption of the precursors with either HBr or alkyl bromide. Principal components of the {sup 13}C chemical shift tensors for the ring carbons of these species were measured from magic angle spinning spectra. The benzenium ion was static at 77 K but underwent both proton scrambling and anisotropic rotation at 298 K as well as oligomerization at higher loadings. The para form of the toluenium ion was the dominant isomer at 77 K, but a temperature-dependent equilibrium between the para and ortho isomers was observed at 273 K. The energy calculations at MP4(fc,sdq)/ 6-311+G{sup *}//MP2/6-311+G{sup *} with thermal corrections resulted in good agreement between calculated and measured proton affinities for benzene, toluene, and ethylbenzene. For toluenium ion, the energies of the ortho and meta isomers were 1.2 and 5.4 kcal/mol, respectively, above the para isomer, consistent with the temperature-dependent {sup 13}C NMR spectra in the solid state. {sup 13}C chemical shift tensors calculated at the GIAO-MP2/tzp/dz//MP2/ 6-311+G{sup *} and GIAO-MP2/tzp/dz//B3LYP/6-311+G{sup *} levels of theory were in very close agreement with each other and generally in satisfactory agreement with experimental principal components. 64 refs., 8 figs., 4 tabs.

  10. FOURIER TRANSFORM EMISSION SPECTROSCOPY OF THE B {sup 2}{Sigma}{sup +}-X {sup 2}{Sigma}{sup +} (VIOLET) SYSTEM OF {sup 13}C{sup 14}N

    SciTech Connect

    Ram, R. S.; Bernath, P. F.

    2011-06-01

    Emission spectra of the B {sup 2}{Sigma}{sup +}-X {sup 2}{Sigma}{sup +} transition of {sup 13}C{sup 14}N have been observed at high resolution using the Fourier transform spectrometer associated with the McMath-Pierce Solar Telescope of the National Solar Observatory. The spectra have been measured in the 21000-30000 cm{sup -1} region and a total of 52 vibrational bands involving vibrational levels up to v = 15 of the ground and excited states have been rotationally analyzed to provide a much improved set of spectroscopic constants. An experimental line list and calculated term values are provided. The results of the present analysis should prove useful in the identification of additional {sup 13}C{sup 14}N lines in comets and cool stars, and will help in the determination of the {sup 12}C/{sup 13}C abundance ratio.

  11. Two Categories of 13C/12C Ratios for Higher Plants 1

    PubMed Central

    Smith, Bruce N.; Epstein, Samuel

    1971-01-01

    13C/12C ratios have been determined for plant tissue from 104 species representing 60 families. Higher plants fall into two categories, those with low δPDBI13C values (—24 to —34‰) and those with high δ 13C values (—6 to —19‰). Algae have δ 13C values of —12 to —23‰. Photosynthetic fractionation leading to such values is discussed. PMID:16657626

  12. Synthesis of [3,4-(13)c(2)]-enriched bile salts as NMR probes of protein-ligand interactions.

    PubMed

    Tochtrop, Gregory P; DeKoster, Gregory T; Cistola, David P; Covey, Douglas F

    2002-09-20

    Synthetic methodology that allows for incorporation of isotopic carbon at the C-3 and C-4 positions of bile salts is reported. Three [3,4-(13)C(2)]-enriched bile salts were synthesized from either deoxycholic or lithocholic acid. The steroid 3alpha-OH group was oxidized and the A-ring was converted into the Delta(4)-3-ketone. The C-24 carboxylic acid was next converted into the carbonate group and selectively reduced to the alcohol in the presence of the A-ring enone. Following protection of the 24-OH group, the Delta(4)-3-ketone was converted into the A-ring enol lactone. Condensation of the enol lactone with [1,2-(13)C(2)]-enriched acetyl chloride and subsequent Robinson annulation afforded a [3,4-(13)C(2)]-enriched Delta(4)-3-ketone that was subsequently converted back into a 3alpha-hydroxy-5beta-reduced bile steroid. C-7 hydroxylation, when necessary, was achieved via conversion of the Delta(4)-3-ketone into the corresponding Delta(4,6)-dien-3-one, epoxidation of the Delta(6)-double bond, and hydrogenolysis/hydrogenation of the 5,6-epoxy enone system. The [3,4-(13)C(2)]-enriched bile salts were subsequently complexed to human ileal bile acid binding protein (I-BABP), and (1)H-(13)C HSQC spectra were recorded to show the utility of the compounds for investigating the interactions of bile acids with I-BABP. PMID:12227809

  13. Inelastic pion scattering by /sup 13/C at low energies

    SciTech Connect

    Mitchell, J.H.

    1987-03-01

    Angular distributions for inelastically scattered pions were obtained for several states in /sup 13/C at an incident energy of 65 MeV. The data include results from both ..pi../sup +/ and ..pi../sup -/ measurements. In addition, ..pi../sup -/ measurements were made at T/sub ..pi../ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2/sup +/ state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs.

  14. PASADENA hyperpolarization of 13C biomolecules: equipment design and installation

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Robertson, Larry W.; Bhattacharya, Pratip

    2009-01-01

    Object The PASADENA method has achieved hyperpolarization of 16–20% (exceeding 40,000-fold signal enhancement at 4.7 T), in liquid samples of biological molecules relevant to in vivo MRI and MRS. However, there exists no commercial apparatus to perform this experiment conveniently and reproducibly on the routine basis necessary for translation of PASADENA to questions of biomedical importance. The present paper describes equipment designed for rapid production of six to eight liquid samples per hour with high reproducibility of hyperpolarization. Materials and methods Drawing on an earlier, but unpublished, prototype, we provide diagrams of a delivery circuit, a laminar-flow reaction chamber within a low field NMR contained in a compact, movable housing. Assembly instructions are provided from which a computer driven, semiautomated PASADENA polarizer can be constructed. Results Together with an available parahydrogen generator, the polarizer, which can be operated by a single investigator, completes one cycle of hyperpolarization each 52 s. Evidence of efficacy is presented. In contrast to competing, commercially available devices for dynamic nuclear polarization which characteristically require 90 min per cycle, PASADENA provides a low-cost alternative for high throughput. Conclusions This equipment is suited to investigators who have an established small animal NMR and wish to explore the potential of heteronuclear (13C and 15N) MRI, MRS, which harnesses the enormous sensitivity gain offered by hyperpolarization. PMID:19067008

  15. New optical analyzer for 13C-breath test

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Dressler, Matthias; Helmrich, Günther; Wolff, Marcus; Groninga, Hinrich

    2008-04-01

    Medical breath tests are well established diagnostic tools, predominantly for gastroenterological inspections, but also for many other examinations. Since the composition and concentration of exhaled volatile gases reflect the physical condition of a patient, a breath analysis allows one to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that is based on photoacoustic spectroscopy and uses a DFB diode laser at 2.744 μm. The concentration ratio of the CO II isotopologues is determined by measuring the absorption on a 13CO II line in comparison to a 12CO II line. In the specially selected spectral range the lines have similar strengths, although the concentrations differ by a factor of 90. Therefore, the signals are well comparable. Due to an excellent signal-noise-ratio isotope variations of less than 1% can be resolved as required for the breath test.

  16. The B 2Σ+→X 2Σ+, 2-v'' progression in the spectrum of 13C16O+

    NASA Astrophysics Data System (ADS)

    Kepa, R.; Malak, Z.; Szajna, W.; Zachwieja, M.

    2002-03-01

    Emission spectra of the 2-v'' progression (1≤v''≤6) in the B 2Σ+→X 2Σ+ system of 13C16O+ have been photographically recorded at a resolution that was high enough to achieve a clear separation of the spin components for most of the observed rovibronic transitions. Least-squares methods were used to reduce the measured line wavenumbers to the molecular constants appearing in the effective Hamiltonian taken from the work of Amiot et al (Amiot C, Maillard J P and Chauville J 1981 J. Mol. Spectrosc. 87 196-218). Merging of the data for the v' = 2 progression with previous measurements in the v' = 0 and 1 progressions resulted in considerably improved equilibrium molecular constants, RKR potential curves, Franck-Condon factors and r centroids for the B→X system of 13C16O+.

  17. LASER BIOLOGY AND MEDICINE: Laser analysis of the 13C/12C isotope ratio in CO2 in exhaled air

    NASA Astrophysics Data System (ADS)

    Stepanov, E. V.

    2002-11-01

    Tunable diode lasers (TDLs) are applied to the diagnostics of gastroenterological diseases using respiratory tests and preparations enriched with the stable 13C isotope. This method of the analysis of the 13C/12C isotope ratio in CO2 in exhaled air is based on the selective measurement of the resonance absorption at the vibrational — rotational structure of 12CO2 and 13CO2. The CO2 transmission spectra in the region of 4.35 μm were measured with a PbEuSe double-heterostructure TDL. The accuracy of carbon isotope ratio measurements in CO2 of exhaled air performed with the TDL was ~0.5%. The data of clinical tests of the developed laser-based analyser are presented.

  18. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  19. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  20. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  1. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  2. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  3. Global Fold of Human Cannabinoid Type 2 Receptor Probed by Solid-State 13C-, 15N-MAS NMR and Molecular Dynamics Simulations

    PubMed Central

    Kimura, Tomohiro; Vukoti, Krishna; Lynch, Diane L.; Hurst, Dow P.; Grossfield, Alan; Pitman, Michael C.; Reggio, Patricia H.; Yeliseev, Alexei A.; Gawrisch, Klaus

    2014-01-01

    The global fold of human cannabinoid type 2 (CB2) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state 13C- and 15N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly 13C-, and 15N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. 13C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of Cα, Cβ, and C=O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the 13C chemical shift distribution of Cα resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2. Thus the shape of the Cα band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular loop 2 and the second half of intracellular loop 3, change their chemical shifts significantly (≥1.5 ppm for carbons and ≥5.0 ppm for nitrogens). Simulated two-dimensional 13Cα(i)-13C=O(i) and 13C=O(i)-15NH(i+1) dipolar-interaction correlation spectra provide guidance for selective amino-acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid-state MAS NMR. PMID:23999926

  4. Accurate measurements of {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    SciTech Connect

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Nielsen, Niels Chr.; Khaneja, Navin

    2014-09-21

    Application of sets of {sup 13}C-{sup 13}C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ({sup 13}C′) and aliphatic ({sup 13}C{sub aliphatic}) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly {sup 13}C,{sup 15}N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of {sup 13}C′-{sup 13}C{sub aliphatic} distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform {sup 13}C,{sup 15}N-labeling on the FGAIL fragment.

  5. A 13C NMR study of the adsorbed states of CO on Rh dispersed on Al2O3

    NASA Astrophysics Data System (ADS)

    Duncan, T. M.; Yates, J. T.; Vaughan, R. W.

    1980-07-01

    The results of nuclear magnetic resonance (NMR) spectroscopy have been analyzed with respect to previous infrared studies of CO adsorbed on Rh dispersed on Al2O3 to quantify the site distribution and to describe the adsorbed state. The 13C NMR spectra account for all the 13CO adsorbed on a 2.2% Rh on Al2O3 substrate. Although the spectra from the different adsorbed states of CO overlap, the line shapes may be separated into two components based on differences in the 13C spin-lattice relaxation times. These two components have been assigned to the 13CO dicarbonyl formed on single Rh atoms and to 13CO adsorbed on Rh rafts. The component attributed to the CO adsorbed on the raft sites is further separated into linear and bridged CO state contributions based on chemical shift information, yielding a quantitative distribution of the three adsorbed states of CO on Rh. The 13CO distribution is used to estimate the molar integrated intensities of the infrared spectrum of 13CO on Rh at high coverage and to determine the degree of dispersion of Rh on the Al2O3. The 13C NMR line shapes of CO adsorbed on Rh are different from the powder pattern of Rh2Cl2(CO)4. It is suggested that the line shape of the dicarbonyl surface species is narrowed to a Lorentzian curve by reorientation at the site and the line shape of CO on the Rh rafts is modulated by exchange between sites on a single raft. The 13C relaxation time distribution provides further evidence for the existence of isolated Rh atoms on the Al2O3 surface.

  6. Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts.

    PubMed

    Chance, E M; Seeholzer, S H; Kobayashi, K; Williamson, J R

    1983-11-25

    Rat hearts have been perfused in vitro with 5 mM glucose and either 5 mM acetate or 1 mM pyruvate to achieve steady state conditions, followed by replacement of the acetate with 90% enriched [2-13C]acetate or pyruvate with 90% enriched [3-13C]pyruvate. The hearts were frozen different times after addition of 13C-substrate and neutralized perchloric acid extracts from three pooled hearts per time point were used to obtain high resolution proton-decoupled 13C NMR spectra at 90.55 MHz. The 13C fractional enrichment of individual carbons of different metabolites was calculated from the area of the resolved resonances after correction for nuclear Overhauser enhancement and saturation effects. A mathematical flux model of the citric acid cycle and ancillary transamination reactions was constructed with the FACSIMILE program, and used to solve unknown flux parameters with constant pool sizes by nonlinear least squares analysis of the approximately 200 simultaneous differential equations required to describe the reactions. With [2-13C] acetate as substrate, resonances and line splittings due to 13C-13C spin coupling of the C-2, C-3, and C-4 carbons of glutamate were well resolved. The half-times to reach maximum 13C enrichment were 2.6 min for glutamate C-4 and 8 min for glutamate C-2 and C-3. From these data, a well determined citric acid cycle flux of 8.3 mumol/g dry weight X min was calculated for an observed oxygen consumption of 31 mumol/g dry weight X min. With [3-13C]pyruvate as substrate, resonances of aspartate C-2 and C-3 and of alanine C-3 were well resolved in addition to those of glutamate C-2, C-3, and C-4. Nonlinear least squares fitting of these data to the model gave nonrandomly distributed residuals for the 13C fractional enrichments of glutamate C-4, suggesting an incomplete model, but a well determined cycle flux of 11.9 mumol/g dry weight X min for an oxygen uptake of 35 mumol/g dry weight X min. Our studies demonstrate the practicality of 13C NMR

  7. 13C-NMR Assessment of the Pattern of Organic Matter Transformation during Domestic Wastewater Treatment by Autothermal Aerobic Digestion (ATAD)

    PubMed Central

    Piterina, Anna V.; Barlett, John; Pembroke, J. Tony

    2009-01-01

    The pattern of biodegradation and the chemical changes occurring in the macromolecular fraction of domestic sludge during autothermal thermophilic aerobic digestion (ATAD) was monitored and characterised via solid-state 13C-NMR CP-MAS. Major indexes such as aromaticity, hydrophobicity and alkyl/O-alkyl ratios calculated for the ATAD processed biosolids were compared by means of these values to corresponding indexes reported for sludges of different origin such as manures, soil organic matter and certain types of compost. Given that this is the first time that these techniques have been applied to ATAD sludge, the data indicates that long-chain aliphatics are easily utilized by the microbial populations as substrates for metabolic activities at all stages of aerobic digestion and serve as a key substrate for the temperature increase, which in turn results in sludge sterilization. The ATAD biosolids following treatment had a prevalence of O-alkyl domains, a low aromaticity index (10.4%) and an alkyl/O-alkyl ratio of 0.48 while the hydrophobicity index of the sludge decreased from 1.12 to 0.62 during the treatment. These results have important implications for the evolution of new ATAD modalities particularly in relation to dewatering and the future use of ATAD processed biosolids as a fertilizer, particularly with respect to hydrological impacts on the soil behaviour. PMID:19742161

  8. Estimation of procyanidin/prodelphinidin and cis/trans flavanol ratios of condensed tannin fractions by 1H-13C HSQC NMR spectroscopy: Correlation with thiolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of cross-peak contours of H/C-2’,6’ signals from prodelphinidin (PD) and of H/C-6’ signals from procyanidin (PC) units in 1H-13C HSQC nuclear magnetic resonance (NMR) spectra of condensed tannins yielded nuclei-adjusted PC/PD estimates that were highly correlated with PC/PD ratios obtain...

  9. Topological Constraints on Chain-Folding Structure of Semicrystalline Polymer as Studied by 13C-13C Double Quantum NMR

    NASA Astrophysics Data System (ADS)

    Hong, Youlee; Miyoshi, Toshikazu

    Chain-folding process is a prominent feature of long polymer chains during crystallization. Over the last half century, much effort has been paid to reveal the chain trajectory. Even though various chain-folding models as well as theories of crystallization at molecule levels have been proposed, they could be not reconciled due to the limited experimental evidences. Recent development of double quantum NMR with selective isotope labeling identified the chain-trajectory of 13C labeled isotactic poly(1-butene). The systematic experiments covered a wide range of parameters, i.e. kinetics, concentration, and molecular weight (Mw) . It was demonstrated that i) adjacent re-entry site was invariant as a function of crystallization temperature (Tc) , concentration, andMw, ii) long-range order of adjacent re-entry sequence is independence of kinetics at a given concentration while it decreased with increasing the polymer concentration at a given Tc due to the increased interruption between the chains, and iii) high Mw chains led to the multilayer folded structures in single crystals, but the melt state induced the identical short adjacent sequences of long and short polymer over a wide range of Tc due to the entanglements. The behaviors indicated that the topological restriction plays significant roles in the chain-folding process rather than the kinetics. The proposed framework to control the chain-folding structure presents a new perspective into the chain organization by either the intra- or inter-chain interaction. National Science Foundation Grants DMR-1105829 and 1408855.

  10. Geochemical Approach to Archaeal Ecology: δ13C of GDGTs

    NASA Astrophysics Data System (ADS)

    Lichtin, S.; Warren, C.; Pearson, A.; Pagani, M.

    2015-12-01

    Over the last decade and a half, glycerol dialkyl glycerol tetraethers (GDGTs) have increasingly been used to reconstruct environmental temperatures; proxies like TEX86 that correlate the relative abundance of these archaeal cell membrane lipids to sea surface temperature are omnipresent in paleoclimatology literature. While it has become common to make claims about past temperatures using GDGTs, our present understanding of the organisms that synthesize the compounds is still quite limited. The generally accepted theory states that microorganisms like the Thaumarchaeota modify the structure of membrane lipids to increase intermolecular interactions, strengthening the membrane at higher temperatures. Yet to date, culture experiments have been largely restricted to a single species, Nitrosopumilus maritimes, and recent studies on oceanic archaeal rRNA have revealed that these biomarkers are produced in diverse, heterogeneous, and site-specific communities. This brings up questions as to whether different subclasses of GDGTs, and all subsequent proxies, represent adaptation within a single organismal group or a shift in community composition. To investigate whether GDGTs with different chain structures, from the simple isoprenoidal GDGT-0 to Crenarchaeol with its many cyclopentane groups, are sourced from archaea with similar or disparate metabolic pathways—and if that information is inherited in GDGTs trapped in marine sediments—this study examines the stable carbon isotope values (δ13C) of GDGTs extracted from the uppermost meters of sediment in the Orca Basin, Gulf of Mexico, using spooling-wire microcombustion isotope-ratio mass spectrometer (SWiM-IRMS), tackling a fundamental assumption of the TEX86 proxy that influences the way we perceive the veracity of existing temperature records.

  11. Fluxomers: a new approach for 13C metabolic flux analysis

    PubMed Central

    2011-01-01

    Background The ability to perform quantitative studies using isotope tracers and metabolic flux analysis (MFA) is critical for detecting pathway bottlenecks and elucidating network regulation in biological systems, especially those that have been engineered to alter their native metabolic capacities. Mathematically, MFA models are traditionally formulated using separate state variables for reaction fluxes and isotopomer abundances. Analysis of isotope labeling experiments using this set of variables results in a non-convex optimization problem that suffers from both implementation complexity and convergence problems. Results This article addresses the mathematical and computational formulation of 13C MFA models using a new set of variables referred to as fluxomers. These composite variables combine both fluxes and isotopomer abundances, which results in a simply-posed formulation and an improved error model that is insensitive to isotopomer measurement normalization. A powerful fluxomer iterative algorithm (FIA) is developed and applied to solve the MFA optimization problem. For moderate-sized networks, the algorithm is shown to outperform the commonly used 13CFLUX cumomer-based algorithm and the more recently introduced OpenFLUX software that relies upon an elementary metabolite unit (EMU) network decomposition, both in terms of convergence time and output variability. Conclusions Substantial improvements in convergence time and statistical quality of results can be achieved by applying fluxomer variables and the FIA algorithm to compute best-fit solutions to MFA models. We expect that the fluxomer formulation will provide a more suitable basis for future algorithms that analyze very large scale networks and design optimal isotope labeling experiments. PMID:21846358

  12. Nonequilibrium neutron emission from /sup 12/C + /sup 158/Gd and /sup 13/C + /sup 157/Gd reactions. [103 to 160 MeV

    SciTech Connect

    Plasil, F.; Beene, J.R.; Ferguson, R.L.

    1981-01-01

    The energy dependence of nonequilibrium neutron emission (NNE) and the effects of projectile structure were investigated in these reactions between 103 and 160 MeV. Neutron energy spectra and angular distributions were measured. Typical spectra show no projectile structure effect. The absence of difference in NNE between /sup 12/C- and /sup 13/C-induced reactions was also noted. The Wilczynski model agrees well with the data. 5 figures, 1 table. (RWR)

  13. Sc3CH@C80: selective 13C enrichment of the central carbon atom†

    PubMed Central

    Junghans, Katrin; Rosenkranz, Marco; Popov, Alexey A.

    2016-01-01

    Sc3CH@C80 is synthesized and characterized by 1H, 13C, and 45Sc NMR. A large negative chemical shift of the proton, −11.73 ppm in the Ih and −8.79 ppm in the D5h C80 cage isomers, is found. 13C satellites in the 1H NMR spectrum enabled indirect determination of the 13C chemical shift for the central carbon at 173 ± 1 ppm. Intensity of the satellites allowed determination of the 13C content for the central carbon atom. This unique possibility is applied to analyze the cluster/cage 13C distribution in mechanistic studies employing either 13CH4 or 13C powder to enrich Sc3CH@C80 with 13C. PMID:27109443

  14. Sc3CH@C80: selective (13)C enrichment of the central carbon atom.

    PubMed

    Junghans, Katrin; Rosenkranz, Marco; Popov, Alexey A

    2016-05-01

    Sc3CH@C80 is synthesized and characterized by (1)H, (13)C, and (45)Sc NMR. A large negative chemical shift of the proton, -11.73 ppm in the Ih and -8.79 ppm in the D5h C80 cage isomers, is found. (13)C satellites in the (1)H NMR spectrum enabled indirect determination of the (13)C chemical shift for the central carbon at 173 ± 1 ppm. Intensity of the satellites allowed determination of the (13)C content for the central carbon atom. This unique possibility is applied to analyze the cluster/cage (13)C distribution in mechanistic studies employing either (13)CH4 or (13)C powder to enrich Sc3CH@C80 with (13)C. PMID:27109443

  15. High Resolution Spectrum of the 13C12C12C Lowest Bending Mode

    NASA Astrophysics Data System (ADS)

    Endres, C. P.; Lutter, V.; Kötting, J.; Krieg, J.; Thorwirth, S.; Schlemmer, S.; Giesen, T. F.; Harding, M. E.; Vazquez, J.

    2012-06-01

    Linear C_3 is a floppy molecule which possesses an extremely low lying bending mode, ν_2, at roughly 60 cm-1 or 1.9 THz. Based on highly accurate laboratory data C_3 has been detected in various astronomical sources most recently with the HIFI instrument aboard the Herschel satellite. Although C_3 turns out to be quite abundant in interstellar environments which makes a search for 13C substituted isotopologs feasible, other isotopologs could not be detected so far, because no accurate transition frequencies have been available for these species in this frequency range. Relative abundance ratios of C_3 isotopologs might give important hints on its building mechanism and further constraints for chemical networks. In this work, the spectrum of the ν_2 lowest bending mode of 13CCC has been investigated. We used laser ablation of 13C enriched carbon samples to record absorption spectra in a supersonic jet expansion. The radiation in our setup is generated by a synthesizer referenced to a Rubidium standard in combination with a frequency multiplier chain and detected by a liquid Helium cooled InSb bolometer. The laboratory search has been supported by high-level coupled-cluster calculations, which turns out to compare very favorably with obtained experimental molecular parameters. Schmuttenmaer, C. A., Cohen, R. C., Pugliano, N., Heath, et al., Science 249, 897-900 (1990) Giesen, T. F., van Orden, A. O., Cruzan, J. D., and Provencal, R. A., et al., Astrophys. J. 551, L181-L184 (2001) Gendriesch, R. and Pehl, K. and Giesen, T. and Winnewisser, G. and Lewen, F., Z. Naturforsch. 58a, 129-138 (2003) Van Orden, A., Cruzan, J. D., Provencal, R. A., et al. in Proc. Airborne Astronomy Symp., ASP Conf. Ser. 73, 67 (1995) ernicharo, J. and Goicoechea, J. R. and Caux, E., Astrophys. J. Lett. 534, L199-L202 (2000) Mookerjea, B., Giesen, T., Stutzki, J., Cernicharo, J., et al., Astron. Astrophys. 521, L13 (2010)

  16. Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-01

    A proton-detected 3D 1H/13C/1H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of 13C-1H connectivities, and proximities of 13C-1H and 1H-1H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including 1H-1H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) 1H/1H and 2D 13C/1H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of 1H-1H proximity and 13C-1H connectivity. In addition, the 2D (F1/F2) 1H/13C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of 1H-1H dipolar couplings, enables the measurement of proximities between 13C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of 1H-1H-13C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ṡ H2O ṡ HCl demonstrate the efficiency of the 3D experiment.

  17. Investigations of enzymatic alterations of 2,4-dichlorophenol using {sup 13}C-nuclear magnetic resonance in combination with site-specific {sup 13}C-labeling: Understanding the environmental fate of this pollutant

    SciTech Connect

    Nanny, M.A.; Bortiatynski, J.M.; Tien, M.; Hatcher, P.G.

    1996-11-01

    The biodegradation of {sup 13}C-labeled 2,4-dichlorophenol (DCP labeled at the C-2 and C-6 positions), in the presence and absence of natural organic matter (NOM), by the white-rot fungus Phanerochaete chrysosporium, was examined using {sup 13}C-nuclear magnetic resonance (NMR). Using this method permitted the chemistry occurring at or near the labeled site to be followed. The formation of alkyl ethers and alkene ethers was observed. No aromatic by-products were detected, indicating that aromatic compounds are quickly degraded. Examining the reaction with time shows the exponential removal of 2,4-DCP and the consequential formation of labeled by-products, whose concentration reaches a maximum just before all 2,4-DCP is consumed. After this, the by-products degrade exponentially. The presence of NOM causes 2,4-DCP to be removed from the aqueous phase more quickly than in its absence and also causes the by-products to reach their maximum concentration much earlier. Degradation of the by-products occurs at a much greater rate in the presence of NOM. One hypothesis for this behavior is that the NOM interacts with 2,4-DCP and its by-products, allowing them to be incorporated into the fungal biomass. {sup 13}C-nuclear magnetic resonance spectra of the fungal biomass after NaOH extraction show the presence of alkanes and a small amount of 2,4-DCP.

  18. 13C and 31P chemical shielding tensors of a single crystal of dipotassium α- D-glucose-1-phosphate dihydrate. An application of a 13C-{ 1H, 31P} triple-resonance technique

    NASA Astrophysics Data System (ADS)

    McDowell, C. A.; Naito, A.; Sastry, D. L.; Takegoshi, K.

    The 13C NMR spectra of a single crystal of dipotassium α- D-glucose-l-phosphate dehydrate for different orientations in the external magnetic field, were recorded by using 1H and 31P double nuclear decoupling. To overcome difficulties encountered because of the high 13C RF power required to achieve the Hartmann-Hahn condition, a new cross-polarization method (K. Takegoshi and C. A. McDowell, J. Magn. Reson.67, 356 (1986)) was used. The directions of the most shielded principal value of the 13C chemical shielding tensors for the C2-C6 carbon nuclei in the glucose group were along the CO bond, and that for the CI carbon nucleus made an angle of 42† with the C1-O5 bond direction in the O1-C1-O5 plane. The 31P chemical shielding tensors are axially symmetric and the direction of the least shielded principal value is almost parallel to the P-O1(R) bond, which is the longest among the four PO bonds in the phosphate moiety.

  19. Adult-onset hypothyroidism and the cerebral metabolism of (1,2-13C2) acetate as detected by 13C nuclear magnetic resonance.

    PubMed

    Chapa, F; Künnecke, B; Calvo, R; Escobar del Rey, F; Morreale de Escobar, G; Cerdán, S

    1995-01-01

    The effects of adult-onset hypothyroidism on the metabolic compartmentation of the cerebral tricarboxylic acid cycle and the gamma-aminobutyric acid (GABA) shunt have been investigated by 13C nuclear magnetic resonance spectroscopy. Rats thyroidectomized as adults and age-matched controls were infused in the right jugular vein with unlabeled or (1,2-13C2) acetate solutions for 60 min. At the end of the infusion, the brains were frozen in situ and perchloric acid extracts were prepared and analyzed by 13C nuclear magnetic resonance and reverse-phase HPLC. Thyroidectomized animals showed a decrease in the incorporation of 13C from (1,2-13C2) acetate in cerebral metabolites and an increase in the concentrations of unlabeled glutamate and GABA. Computer-assisted interpretation of the 13C multiplets observed for the carbons of glutamate, glutamine, and GABA indicated that adult-onset hypothyroidism produced 1) a decrease in the contribution of infused (1,2-13C2) acetate to the glial tricarboxylic acid cycle; 2) an increase in the contribution of unlabeled acetyl-CoA to the neuronal tricarboxylic acid cycle; and 3) impairments in the exchange of glutamate, glutamine, and GABA between the neuronal and glial compartments. Despite the fact that the adult brain has often been considered metabolically unresponsive to thyroid hormone status, present results show metabolic alterations in the neuronal and glial compartments that are reversible with substitution therapy. PMID:7828544

  20. Comparison of structure in solid state of new 1,5- bis(4-cyano-2,6-dimethoxyphenoxy)alkanes by means of 13C CP/MAS NMR and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Żabiński, Jerzy; Wolska, Irena; Maciejewska, Dorota

    2007-05-01

    The synthesis and structural studies in solid state of new 1,5- bis(4-cyano-2,6-dimethoxyphenoxy)-3-oxapentane 1 and 1,5- bis(4-cyano-2,6-methoxyphenoxy)pentane 2 are presented. The observed complicated network of intermolecular interaction with participation of nitrile groups could play a role in their interaction with the biological target. In vitro screen against 60 human tumor cell lines revealed that compound 1 has promising growth inhibitory power GI 50 against SR (leukemia) and HOP-92 (non-small lung cancer) equal to 4.33 ×10 -6 and 1.03 ×10 -5 M, respectively.

  1. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 2 - hydrogenative and hydrothermal pretreatments and spectroscopic characterization using pyrolysis-GC-MS, CPMAS {sup 13}C NMR and FT-IR

    SciTech Connect

    Chunshan Song; Hatcher, P.G.; Saini, A.K.; Wenzel, K.A.

    1998-01-01

    It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminous coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.

  2. Improved mass analysis of oligoribonucleotides by 13C, 15N double depletion and electrospray ionization FT-ICR mass spectrometry.

    PubMed

    Xiong, Ying; Schroeder, Kersten; Greenbaum, Nancy L; Hendrickson, Christopher L; Marshall, Alan G

    2004-03-15

    13C, 15N doubly depleted 32-ribonucleotide was synthesized enzymatically by in vitro transcription from nucleoside triphosphates isolated from E. coli grown in a minimal medium containing 12C, 14N-enriched glucose and ammonium sulfate. Following purification and desalting by reversed-phase HPLC, buffer exchange with Microcon YM-3, and ethanol precipitation, electrospray ionization Fourier transform ion cyclotron resonance mass spectra revealed greatly enhanced abundance of monoisotopic ions (by a factor of approximately 100) and a narrower isotopic distribution with higher signal-to-noise ratio. The abrupt onset and high magnitude of the monoisotopic species promise to facilitate accurate mass measurement of RNA's. PMID:15018587

  3. Simple, efficient protocol for enzymatic synthesis of uniformly 13C, 15N-labeled DNA for heteronuclear NMR studies.

    PubMed Central

    Masse, J E; Bortmann, P; Dieckmann, T; Feigon, J

    1998-01-01

    The use of uniformly 13C,15N-labeled RNA has greatly facilitated structural studies of RNA oligonucleotides by NMR. Application of similar methodologies for the study of DNA has been limited, primarily due to the lack of adequate methods for sample preparation. Methods for both chemical and enzymatic synthesis of DNA oligonucleotides uniformly labeled with 13C and/or 15N have been published, but have not yet been widely used. We have developed a modified procedure for preparing uniformly 13C,15N-labeled DNA based on enzymatic synthesis using Taq DNA polymerase. The highly efficient protocol results in quantitative polymerization of the template and approximately 80% incorporation of the labeled dNTPs. Procedures for avoiding non-templated addition of nucleotides or for their removal are given. The method has been used to synthesize several DNA oligonucleotides, including two complementary 15 base strands, a 32 base DNA oligonucleotide that folds to form an intramolecular triplex and a 12 base oligonucleotide that dimerizes and folds to form a quadruplex. Heteronuclear NMR spectra of the samples illustrate the quality of the labeled DNA obtained by these procedures. PMID:9592146

  4. Analysis of hyperpolarized dynamic 13C lactate imaging in a transgenic mouse model of prostate cancer☆

    PubMed Central

    Lupo, Janine M.; Chen, Albert P.; Zierhut, Matthew L.; Bok, Robert A.; Cunningham, Charles H.; Kurhanewicz, John; Vigneron, Daniel B.; Nelson, Sarah J.

    2011-01-01

    This study investigated the application of an acquisition that selectively excites the [1-13C]lactate resonance and allows dynamic tracking of the conversion of 13C-lactate from hyperpolarized 13C-pyruvate at a high spatial resolution. In order to characterize metabolic processes occurring in a mouse model of prostate cancer, 20 sequential 3D images of 13C-lactate were acquired 5 s apart using a pulse sequence that incorporated a spectral–spatial excitation pulse and a flyback echo-planar readout to track the time course of newly converted 13C-lactate after injection of prepolarized 13C-pyruvate. The maximum lactate signal (MLS), full-width half-maximum (FWHM), time to the peak 13C-lactate signal (TTP) and area under the dynamic curve were calculated from the dynamic images of 10 TRAMP mice and two wild-type controls. The regional variation in 13C-lactate associated with the injected pyruvate was demonstrated by the peak of the 13C-lactate signal occurring earlier in the kidney than in the tumor region. The intensity of the dynamic 13C-lactate curves also varied spatially within the tumor, illustrating the heterogeneity in metabolism that was most prominent in more advanced stages of disease development. The MLS was significantly higher in TRAMP mice that had advanced disease. PMID:19695815

  5. Reduced glutamate neurotransmission in patients with Alzheimer's disease -- an in vivo (13)C magnetic resonance spectroscopy study.

    PubMed

    Lin, Alexander P; Shic, Frederick; Enriquez, Cathleen; Ross, Brian D

    2003-02-01

    Cognitive impairment in Alzheimer's disease (AD) is not fully explained. PET indicates reduced cerebral metabolic rate for glucose. Since glutamate neurotransmission (GNT) consumes more than 80% of the ATP generated from metabolism, a pilot study was carried out to determine the neuronal tricarboxylic acid cycle (TCA) based on the hypothesis that reduced GNT could contribute to cognitive impairment in AD. Three AD patients with cognitive impairment (mini-mental state exam: 24 vs 30, P<0.05) and significant reduction in both N-acetyl aspartate (NAA)/Creatine (Cr) ( P<0.009) and NAA/myo-inositol (mI) ratio ( P<0.01), and three age-matched controls each received 0.014-0.016 g/kg/min 99%1-13C glucose IV. Quantitative (1)H and proton-decoupled (13)C MR brain spectra were acquired from combined posterior-parietal white matter and posterior-cingulate gray matter every 5 min for 140 min.(13)C magnetic resonance spectroscopy (MRS) measures of glucose oxidation and neuronal TCA rate, including prolonged time to (13)C enrichment of glutamate (Glu2) ( P<0.004) and bicarbonate (HCO(3)) ( P<0.03) as well as reduced relative enrichment of Glu(2)/Glu(4) between 60 and 100 min ( P<0.04), were significantly different in AD patients vs. controls. (13)C measures of GNT, glutamine (Gln)(2)/Glu(2) ( P<0.02) and rates of glutamate enrichment (Glu(2)/glucose: 0.34 vs 0.86, P=ns and Glu(4)/glucose 0.26 vs 0.83, P=ns), were also reduced.(13)C MRS measures of neuronal TCA cycle, glucose oxidation and GNT were significantly correlated with measures of neuronal integrity: NAA/Cr, [NAA] and mI/NAA as determined by (1)H MRS ( R(2)=0.73-0.95; P<0.05-0.01), suggesting that impairment of GNT may be a contributing factor in the cognitive impairment characteristic of AD. PMID:12695884

  6. 13C metabolic flux analysis at a genome-scale.

    PubMed

    Gopalakrishnan, Saratram; Maranas, Costas D

    2015-11-01

    Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on prediction fidelity of scaling-up mapping models to a genome-scale. The core mapping model employed in this study accounts for (75 reactions and 65 metabolites) primarily from central metabolism. The genome-scale metabolic mapping model (GSMM) (697 reaction and 595 metabolites) is constructed using as a basis the iAF1260 model upon eliminating reactions guaranteed not to carry flux based on growth and fermentation data for a minimal glucose growth medium. Labeling data for 17 amino acid fragments obtained from cells fed with glucose labeled at the second carbon was used to obtain fluxes and ranges. Metabolic fluxes and confidence intervals are estimated, for both core and genome-scale mapping models, by minimizing the sum of square of differences between predicted and experimentally measured labeling patterns using the EMU decomposition algorithm. Overall, we find that both topology and estimated values of the metabolic fluxes remain largely consistent between core and GSM model. Stepping up to a genome-scale mapping model leads to wider flux inference ranges for 20 key reactions present in the core model. The glycolysis flux range doubles due to the possibility of active gluconeogenesis, the TCA flux range expanded by 80% due to the availability of a bypass through arginine consistent with labeling data, and the transhydrogenase reaction flux was essentially unresolved due to the presence of as many as five routes for the inter-conversion of NADPH to NADH afforded by the genome-scale model. By globally accounting for ATP demands in the GSMM model the unused ATP decreased drastically with the lower bound matching the maintenance ATP requirement. A non

  7. Photosynthesis and sup 13 C/ sup 12 C ratios in Amazonian rain forests

    SciTech Connect

    Van Der Merwe, N.J. ); Medina, E. )

    1989-05-01

    Measurements are reported of {sup 13}C/{sup 12}C ratios for air CO{sub 2} at different heights in two Amazonian rain forests. CO{sub 2} emitted from the forest floor is severely depleted in {sup 13}C which produces isotopically light source air throughout the forest. Air {delta}{sup 13}C values vary very little with height above ground, but are about 5 to 6{per thousand} more negative than the open atmosphere. CO{sub 2} recycling under the canopy depletes all leaf {delta}{sup 13}C values by a like amount. Additional factors further deplete leaf {delta}{sup 13}C values by 4 to 5{per thousand} at ground level; this effect decreases with height to zero in the upper canopy, yielding a gradient in {delta}{sup 13}C values.

  8. Site-specific 13C content by quantitative isotopic 13C nuclear magnetic resonance spectrometry: a pilot inter-laboratory study.

    PubMed

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Pagelot, Alain; Moskau, Detlef; Moreno, Aitor; Schleucher, Jürgen; Reniero, Fabiano; Holland, Margaret; Guillou, Claude; Silvestre, Virginie; Akoka, Serge; Remaud, Gérald S

    2013-07-25

    Isotopic (13)C NMR spectrometry, which is able to measure intra-molecular (13)C composition, is of emerging demand because of the new information provided by the (13)C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic (13)C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular (13)C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic (13)C NMR was then assessed on vanillin from three different origins associated with specific δ (13)Ci profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ (13)Ci in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results. PMID:23845488

  9. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    PubMed Central

    Moran, Nancy E.; Rogers, Randy B.; Lu, Chi-Hua; Conlon, Lauren E.; Lila, Mary Ann; Clinton, Steven K.; Erdman, John W.

    2013-01-01

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched 13C-lycopene for human bioavailability and metabolism studies. To enhance the 13C-enrichment and yields of labeled lycopene from the hp-1 tomato cell line, cultures were first grown in 13C-glucose media for three serial batches and produced increasing proportions of uniformly labeled lycopene (14.3 +/− 1.2 %, 39.6 +/− 0.5 %, and 48.9 +/− 1.5% with consistent yields (from 5.8 to 9 mg/L). An optimized 9-day-long 13C-loading and 18-day-long labeling strategy developed based on glucose utilization and lycopene yields, yielded 13C-lycopene with 93% 13C isotopic purity, and 55% of isotopomers were uniformly labeled. Furthermore, an optimized acetone and hexane extraction led to a four-fold increase in lycopene recovery from cultures compared to a standard extraction. PMID:23561155

  10. Coupling and higher-order effects in the {sup 12}C(d,p){sup 13}C and {sup 13}C(p,d){sup 12}C reactions

    SciTech Connect

    Delaunay, F.; Nunes, F.M.; Lynch, W.G.; Tsang, M.B.

    2005-07-01

    Coupled-channel calculations are performed for the {sup 12}C(d,p){sup 13}C and {sup 13}C(p,d){sup 12}C reactions between 7 and 60 MeV to study the effect of inelastic couplings in transfer reactions. The effect of treating transfer beyond Born approximation is also addressed. The coupling to the {sup 12}C 2{sup +} state is found to change the peak cross section by up to 15%. Effects beyond Born approximation lead to a significant renormalization of the cross sections, between 5% and 10% for deuteron energies above 10 MeV and larger than 10% for lower energies. We also performed calculations including the remnant term in the transfer operator, which has a small impact on the {sup 12}C(d,p){sup 13}C(g.s.) and {sup 13}C(p,d){sup 12}C(g.s.) reactions (where g.s. indicates ground state). Above 30-MeV deuteron energy, the effect of the remnant term is larger than 10% for the {sup 12}C(d,p){sup 13}C(1/2{sup +}, 3.09 MeV) reaction and is found to increase with decreasing neutron separation energy for the 3.09-MeV state of {sup 13}C. This is of importance for transfer reactions with weakly bound nuclei.

  11. Synthesis of isotopically labeled R- or S-[.sup.13C, .sup.2H] glycerols

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2008-01-22

    The present invention is directed to asymmetric chiral labeled glycerols including at least one chiral atom, from one to two .sup.13C atoms and from zero to four deuterium atoms bonded directly to a carbon atom, e.g., (2S) [1,2-.sup.13C.sub.2]glycerol and (2R) [1,2-.sup.13C.sub.2]glycerol, and to the use of such chiral glycerols in the preparation of labeled amino acids.

  12. A large metabolic carbon contribution to the δ 13C record in marine aragonitic bivalve shells

    NASA Astrophysics Data System (ADS)

    Gillikin, David P.; Lorrain, Anne; Meng, Li; Dehairs, Frank

    2007-06-01

    It is well known that the incorporation of isotopically light metabolic carbon (C M) significantly affects the stable carbon isotope (δ 13C) signal recorded in biogenic carbonates. This can obscure the record of δ 13C of seawater dissolved inorganic carbon (δ 13C DIC) potentially archived in the shell carbonate. To assess the C M contribution to Mercenaria mercenaria shells collected in North Carolina, USA, we sampled seawater δ 13C DIC, tissue, hemolymph and shell δ 13C. All shells showed an ontogenic decrease in shell δ 13C, with as much as a 4‰ decrease over the lifespan of the clam. There was no apparent ontogenic change in food source indicated by soft tissue δ 13C values, therefore a change in the respired δ 13C value cannot be the cause of this decrease. Hemolymph δ 13C, on the other hand, did exhibit a negative relationship with shell height indicating that respired CO 2 does influence the δ 13C value of internal fluids and that the amount of respired CO 2 is related to the size or age of the bivalve. The percent metabolic C incorporated into the shell (%C M) was significantly higher (up to 37%, with a range from 5% to 37%) than has been found in other bivalve shells, which usually contain less than 10%C M. Interestingly, the hemolymph did contain less than 10%C M, suggesting that complex fractionation might occur between hemolymph and calcifying fluids. Simple shell biometrics explained nearly 60% of the observed variability in %C M, however, this is not robust enough to predict %C M for fossil shells. Thus, the metabolic effect on shell δ 13C cannot easily be accounted for to allow reliable δ 13C DIC reconstructions. However, there does seem to be a common effect of size, as all sites had indistinguishable slopes between the %C M and shell height (+0.19% per mm of shell height).

  13. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.

    PubMed

    Huff, Laura A; Tavassol, Hadi; Esbenshade, Jennifer L; Xing, Wenting; Chiang, Yet-Ming; Gewirth, Andrew A

    2016-01-13

    Solid-state (7)Li and (13)C MAS NMR spectra of cycled graphitic Li-ion anodes demonstrate SEI compound formation upon lithiation that is followed by changes in the SEI upon delithiation. Solid-state (13)C DPMAS NMR shows changes in peaks associated with organic solvent compounds (ethylene carbonate and dimethyl carbonate, EC/DMC) upon electrochemical cycling due to the formation of and subsequent changes in the SEI compounds. Solid-state (13)C NMR spin-lattice (T1) relaxation time measurements of lithiated Li-ion anodes and reference poly(ethylene oxide) (PEO) powders, along with MALDI-TOF mass spectrometry results, indicate that large-molecular-weight polymers are formed in the SEI layers of the discharged anodes. MALDI-TOF MS and NMR spectroscopy results additionally indicate that delithiated anodes exhibit a larger number of SEI products than is found in lithiated anodes. PMID:26653886

  14. Improvement of the inverse-gated-decoupling sequence for a faster quantitative analysis of various samples by 13C NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Giraudeau, Patrick; Baguet, Evelyne

    2006-05-01

    The inverse-gated-decoupling sequence enables quantitative 1H decoupled 13C spectra to be obtained. We modified this sequence so as to obtain the same result in less time for molecules containing carbons with various relaxation properties. For that, we determined the optimal 13C longitudinal-magnetization initial value for a faster relaxation while 1H decoupler is stopped. This value can be calculated precisely via the nuclear Overhauser effects, the longitudinal relaxation times, together with the determination of the relaxation rate constants of carbons while 1H are out of equilibrium. A supplementary delay of 1H decoupling and/or a series of selective pulses applied at the beginning of the recovery delay allow an acceleration of 13C longitudinal relaxation. We applied this method to the molecule of vanillin. The simultaneous quantification of all carbons was carried out with a recovery delay divided by two compared to the usual sequence.

  15. Measuring (13)C-(2)D dipolar couplings with a universal REDOR dephasing curve

    PubMed

    Gullion

    2000-09-01

    A (13)C-observe REDOR experiment is described which allows (13)C-(2)D dipolar couplings to be obtained by a universal dipolar dephasing curve. Previous (13)C-observe REDOR experiments on (13)C-(2)D spin pairs generally relied on numerical simulations to obtain the dipolar coupling. The REDOR experiment described in this article is based on a deuterium composite pulse, and the data analysis eliminates the need for numerical simulations and is the same as the traditional REDOR analysis performed on pairs of spin-12 nuclei. Copyright 2000 Academic Press. PMID:10968975

  16. Open-Source Automated Parahydrogen Hyperpolarizer for Molecular Imaging Using (13)C Metabolic Contrast Agents.

    PubMed

    Coffey, Aaron M; Shchepin, Roman V; Truong, Milton L; Wilkens, Ken; Pham, Wellington; Chekmenev, Eduard Y

    2016-08-16

    An open-source hyperpolarizer producing (13)C hyperpolarized contrast agents using parahydrogen induced polarization (PHIP) for biomedical and other applications is presented. This PHIP hyperpolarizer utilizes an Arduino microcontroller in conjunction with a readily modified graphical user interface written in the open-source processing software environment to completely control the PHIP hyperpolarization process including remotely triggering an NMR spectrometer for efficient production of payloads of hyperpolarized contrast agent and in situ quality assurance of the produced hyperpolarization. Key advantages of this hyperpolarizer include: (i) use of open-source software and hardware seamlessly allowing for replication and further improvement as well as readily customizable integration with other NMR spectrometers or MRI scanners (i.e., this is a multiplatform design), (ii) relatively low cost and robustness, and (iii) in situ detection capability and complete automation. The device performance is demonstrated by production of a dose (∼2-3 mL) of hyperpolarized (13)C-succinate with %P13C ∼ 28% and 30 mM concentration and (13)C-phospholactate at %P13C ∼ 15% and 25 mM concentration in aqueous medium. These contrast agents are used for ultrafast molecular imaging and spectroscopy at 4.7 and 0.0475 T. In particular, the conversion of hyperpolarized (13)C-phospholactate to (13)C-lactate in vivo is used here to demonstrate the feasibility of ultrafast multislice (13)C MRI after tail vein injection of hyperpolarized (13)C-phospholactate in mice. PMID:27478927

  17. Sub-second Proton Imaging of 13C Hyperpolarized Contrast Agents in Water

    PubMed Central

    Truong, Milton L.; Coffey, Aaron M.; Shchepin, Roman V.; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2014-01-01

    Indirect proton detection of 13C hyperpolarized contrast agents potentially enables greater sensitivity. Presented here is a study of sub-second projection imaging of hyperpolarized 13C contrast agent addressing the obstacle posed by water suppression for indirect detection in vivo. Sodium acetate phantoms were used to develop and test water suppression and sub-second imaging with frequency selective RF pulses using spectroscopic and imaging indirect proton detection. A 9.8 mM aqueous solution of 13C PHIP hyperpolarized 2-hydroxyethyl-13C-propionate-d2,3,3 (HEP),

    ~25% was used for demonstration of indirect proton sub-second imaging detection. Balanced 2D FSSFP (Fast Steady State Free Precession) allowed recording proton images with FOV = 64×64 mm2 and spatial resolution 2×2 mm2 with total acquisition time of less than 0.2 s. In thermally polarized sodium 1-13C-acetate, 13C to 1H polarization transfer efficiency of 45.1% of the theoretically predicted values was observed in imaging detection corresponding to an 11 fold of overall sensitivity improvement compared to direct 13C FSSFP imaging. 13C to 1H polarization transfer efficiency of 27% was observed in imaging detection corresponding to a 3.25 fold sensitivity improvement compared to direct 13C FSSFP imaging with hyperpolarized HEP. The range of potential applications and limitations of this sub-second and ultra-sensitive imaging approach are discussed. PMID:24753438

  18. Conditions to obtain precise and true measurements of the intramolecular 13C distribution in organic molecules by isotopic 13C nuclear magnetic resonance spectrometry.

    PubMed

    Bayle, Kevin; Gilbert, Alexis; Julien, Maxime; Yamada, Keita; Silvestre, Virginie; Robins, Richard J; Akoka, Serge; Yoshida, Naohiro; Remaud, Gérald S

    2014-10-10

    Intramolecular (13)C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic (13)C NMR spectrometry provides a general tool for measuring the position-specific (13)C content. As an emerging technique, some aspects of its performance are not yet fully delineated. This paper reports on (i) the conditions required to obtain satisfactory trueness and precision for the determination of the internal (13)C distribution, and (ii) an approach to determining the "absolute" position-specific (13)C content. In relation to (i), a precision of <1% can be obtained whatever the molecule on any spectrometer, once quantitative conditions are met, in particular appropriate proton decoupling efficiency. This performance is a prerequisite to the measurement of isotope fractionation either on the transformed or residual compound when a chemical reaction or process is being studied. The study of the trueness has revealed that the response of the spectrometer depends on the (13)C frequency range of the studied molecule, i.e. the chemical shift range. The "absolute value" and, therefore, the trueness of the (13)C NMR measurements has been assessed on acetic acid and by comparison to the results obtained on the fragments from COOH and CH3 by isotopic mass spectrometry coupled to a pyrolysis device (GC-Py-irm-MS), this technique being the reference method for acetic acid. Of the two NMR spectrometers used in this work, one gave values that corresponded to those obtained by GC-Py-irm-MS (thus, the "true" value) while the other showed a bias, which was dependent to the range covered by the resonance frequencies of the molecule. Therefore, the former can be used directly for studying isotope affiliations, while the latter can only be used directly for comparative data, for example in authenticity studies, but can also be used to obtain the true values by applying appropriate correction factors. The present study assesses several key protocol

  19. Phase behavior and 13C NMR spectroscopic analysis of the mixed methane + ethane + propane hydrates in mesoporous silica gels.

    PubMed

    Lee, Seungmin; Cha, Inuk; Seo, Yongwon

    2010-11-25

    In this study, the phase behavior and quantitative determination of hydrate composition and cage occupancy for the mixed CH(4) + C(2)H(6) + C(3)H(8) hydrates were closely investigated through the experimental measurement of three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria and (13)C NMR spectra. To examine the effect of pore size and salinity, we measured hydrate phase equilibria for the quaternary CH(4) (90%) + C(2)H(6) (7%) + C(3)H(8) (3%) + water mixtures in silica gel pores of nominal diameters of 6.0, 15.0, and 30.0 nm and for the quinary CH(4) (90%) + C(2)H(6) (7%) + C(3)H(8) (3%) + NaCl + water mixtures of two different NaCl concentrations (3 and 10 wt %) in silica gel pores of a nominal 30.0 nm diameter. The value of hydrate-water interfacial tension for the CH(4) (90%) + C(2)H(6) (7%) + C(3)H(8) (3%) hydrate was found to be 47 ± 4 mJ/m(2) from the relation of the dissociation temperature depression with the pore size of silica gels at a given pressure. At a specified temperature, three-phase H-L(W)-V equilibrium curves of pore hydrates were shifted to higher pressure regions depending on pore sizes and NaCl concentrations. From the cage-dependent (13)C NMR chemical shifts of enclathrated guest molecules, the mixed CH(4) (90%) + C(2)H(6) (7%) + C(3)H(8) (3%) gas hydrate was confirmed to be structure II. The cage occupancies of each guest molecule and the hydration number of the mixed gas hydrates were also estimated from the (13)C NMR spectra. PMID:20964277

  20. An efficient NMR method for the characterisation of 14N sites through indirect 13C detection

    PubMed Central

    Jarvis, James A.; Haies, Ibraheem M.

    2013-01-01

    Nitrogen is one of the most abundant elements and plays a key role in the chemistry of biological systems. Despite its widespread distribution, the study of the naturally occurring isotope of nitrogen, 14N (99.6%), has been relatively limited as it is a spin-1 nucleus that typically exhibits a large quadrupolar interaction. Accordingly, most studies of nitrogen sites in biomolecules have been performed on samples enriched with 15N, limiting the application of NMR to samples which can be isotopically enriched. This precludes the analysis of naturally occurring samples and results in the loss of the wealth of structural and dynamic information that the quadrupolar interaction can provide. Recently, several experimental approaches have been developed to characterize 14N sites through their interaction with neighboring ‘spy’ nuclei. Here we describe a novel version of these experiments whereby coherence between the 14N site and the spy nucleus is mediated by the application of a moderate rf field to the 14N. The resulting 13C/14N spectra show good sensitivity on natural abundance and labeled materials; whilst the 14N lineshapes permit the quantitative analysis of the quadrupolar interaction. PMID:23589073

  1. Thz Spectroscopy of Acetaldehyde and Search of 13C Species in Orion

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Ilyushin, V. V.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.

    2012-06-01

    Acetaldehyde (CH_3CHO) is one of the high priority complex organic molecules for the astrophysical community. There is a lack of data concerning the 13C species since the measurements are limited to 40 GHz up to date. This molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with RAM36 code which used the Rho Axis Method. Last year we presented the analysis of the millimeterwave spectra of the 13CH_3CHO species. We extended the analysis to the THz range of the vibrational ground state for both species. We are also analyzing the first torsional state (≈140 cm-1) for two reasons: first, this permits to remove correlation between parameters. Second, this state contribute to the partition function even at ISM temperature (100--150 K) since there is an influence on the column density determined in case of detection. The searches of these isotopomers are in progress in ORION. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under the ANR-08-BLAN-0054. Kilb, R.W.; Lin, C.C.; and Wilson, E.B. J. Chem. Phys. 26, (1957) 1695 Ilyushin, V.V. et al J. Mol. Spectrosc. 259, (2010) 26 Margules, L. et al. FA07, 66th International Symposium on Molecular Spectroscopy (2011)

  2. 1H, 13C and 29Si NMR of tetramethylsilane in liquid crystals

    NASA Astrophysics Data System (ADS)

    Hiltunen, Y.; Jokisaari, J.

    1990-12-01

    The 1H, 13C and 29Si NMR spectra of tetramethylsilane (TMS) dissolved in two nematic liquid crystals (LC) and in their three mixtures were recorded. The proton—proton, proton—carbon and proton—silicon dipolar couplings, which arise from molecular deformation in the LC environment, were determined. The results for the 2DHH, 4DHH, 3DCH and 2DSiH couplings show only a small variation as a function of the composition of the LC mixture. On the contrary, the one-bond CH dipolar coupling is markedly solvent dependent: it varies from -6.22 Hz (in ZLI 1167) to +3.63 Hz (in phase IV). The 1DCH coupling of TMS vanishes in a certain mixture of the two liquid crystals; this mixture, however, is not the same as that in which the corresponding coupling of methane was earlier observed to vanish. This different behaviour of TMS and methane may be due to the additional torques which act on the SiC bonds of TMS.

  3. A New Tool for NMR Crystallography: Complete (13)C/(15)N Assignment of Organic Molecules at Natural Isotopic Abundance Using DNP-Enhanced Solid-State NMR.

    PubMed

    Märker, Katharina; Pingret, Morgane; Mouesca, Jean-Marie; Gasparutto, Didier; Hediger, Sabine; De Paëpe, Gaël

    2015-11-01

    NMR crystallography of organic molecules at natural isotopic abundance (NA) strongly relies on the comparison of assigned experimental and computed NMR chemical shifts. However, a broad applicability of this approach is often hampered by the still limited (1)H resolution and/or difficulties in assigning (13)C and (15)N resonances without the use of structure-based chemical shift calculations. As shown here, such difficulties can be overcome by (13)C-(13)C and for the first time (15)N-(13)C correlation experiments, recorded with the help of dynamic nuclear polarization. We present the complete de novo (13)C and (15)N resonance assignment at NA of a self-assembled 2'-deoxyguanosine derivative presenting two different molecules in the asymmetric crystallographic unit cell. This de novo assignment method is exclusively based on aforementioned correlation spectra and is an important addition to the NMR crystallography approach, rendering firstly (1)H assignment straightforward, and being secondly a prerequisite for distance measurements with solid-state NMR. PMID:26485326

  4. Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2H and 13C NMR

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Chizuwa, M.; Umiyama, T.; Kumagai, Y.; Miyatou, T.; Ohashi, R.; Ida, T.; Tansho, M.; Shimizu, T.

    2015-04-01

    The local structure and molecular motion of the imidazolium hydrogen malonate crystal were investigated using solid-state 2H and 13C NMR. The imidazolium ion undergoes isotropic rotation, which is correlated with a defect in the crystal, as observed by 2H NMR broadline spectra above 263 K. A 180∘ flip of the imidazolium ion in the regular site was observed from 2H NMR quadrupole Carr-Purcell-Meiboom-Gill (QCPMG) spectra. The Grotthuss mechanism was accompanied by a 180∘ flip of the imidazolium ion in regular sites. Moreover, the proton transfer associated with the imidazolium ion of the defective crystal is important for proton conductivity of the imidazolium hydrogen malonate crystal.

  5. Solid-state 13C nuclear magnetic resonance studies of coalified gymnosperm xylem tissue from Australian brown coals

    USGS Publications Warehouse

    Hatcher, P.G.; Lerch, H. E., III; Bates, A.L.; Verheyen, T.V.

    1989-01-01

    We report here on the use of solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to contrast the average chemical composition of modern degraded gymnosperm woods with fossil gymnosperm woods from Australian brown coals (Miocene). We first established the quantitative nature of the NMR techniques for these samples so that the conventional solid-state 13C NMR spectra and the dipolar dephasing NMR spectra could be used with a high degree of reliability to depict average chemical compositions. The NMR results provide some valuable insights about the early coalification of xylem tissue from gymnosperms. Though the cellulosic components of wood are degraded to varying degrees during peatification and ensuing coalification, it is unlikely that they play a major role in the formation of aromatic structures in coalified woods. The NMR data show that gynmosperm lignin, the primary aromatic contribution to the coal, is altered in part by demethylation of guaiacyl-units to catechol-like structures. The dipolar dephasing NMR data indicate that the lignin also becomes more cross-linked or condensed. ?? 1989.

  6. Monitoring creatine and phosphocreatine by (13)C MR spectroscopic imaging during and after (13)C4 creatine loading: a feasibility study.

    PubMed

    Janssen, Barbara H; Lassche, Saskia; Hopman, Maria T; Wevers, Ron A; van Engelen, Baziel G M; Heerschap, Arend

    2016-08-01

    Creatine (Cr) supplementation to enhance muscle performance shows variable responses among individuals and different muscles. Direct monitoring of the supplied Cr in muscles would address these differences. In this feasibility study, we introduce in vivo 3D (13)C MR spectroscopic imaging (MRSI) of the leg with oral ingestion of (13)C4-creatine to observe simultaneously Cr and phosphocreatine (PCr) for assessing Cr uptake, turnover, and the ratio PCr over total Cr (TCr) in individual muscles. (13)C MRSI was performed of five muscles in the posterior thigh in seven subjects (two males and two females of ~20 years, one 82-year-old male, and two neuromuscular patients) with a (1)H/(13)C coil in a 3T MR system before, during and after intake of 15 % (13)C4-enriched Cr. Subjects ingested 20 g Cr/day for 4 days in four 5 g doses at equal time intervals. The PCr/TCr did not vary significantly during supplementation and was similar for all subjects and investigated muscles (average 0.71 ± 0.07), except for the adductor magnus (0.64 ± 0.03). The average Cr turnover rate, assessed in male muscles, was 2.1 ± 0.7 %/day. The linear uptake rates of Cr were variable between muscles, although not significantly different. This assessment was possible in all investigated muscles of young male volunteers, but less so in muscles of the other subjects due to lower signal-to-noise ratio. Improvements for future studies are discussed. In vivo (13)C MRSI after (13)C-Cr ingestion is demonstrated for longitudinal studies of Cr uptake, turnover, and PCr/TCr ratios of individual muscles in one exam. PMID:27401085

  7. Photobioreactor design for isotopic non-stationary 13C-metabolic flux analysis (INST 13C-MFA) under photoautotrophic conditions.

    PubMed

    Martzolff, Arnaud; Cahoreau, Edern; Cogne, Guillaume; Peyriga, Lindsay; Portais, Jean-Charles; Dechandol, Emmanuel; Le Grand, Fabienne; Massou, Stéphane; Gonçalves, Olivier; Pruvost, Jérémy; Legrand, Jack

    2012-12-01

    Adaptive metabolic behavior of photoautotrophic microorganisms toward genetic and environmental perturbations can be interpreted in a quantitative depiction of carbon flow through a biochemical reaction network using isotopic non-stationary (13) C-metabolic flux analysis (INST (13) C-MFA). To evaluate (13) C-metabolic flux maps for Chlamydomonas reinhardtii, an original experimental framework was designed allowing rapid, reliable collection of high-quality isotopomer data against time. It involved (i) a short-time (13) C labeling injection device based on mixing control in a torus-shaped photobioreactor with plug-flow hydrodynamics allowing a sudden step-change in the (13) C proportion in the substrate feed and (ii) a rapid sampling procedure using an automatic fast filtration method coupled to a manual rapid liquid nitrogen quenching step. (13) C-substrate labeling enrichment was controlled through the total dissolved inorganic carbon concentration in the pulsed solution. First results were obtained from steady-state continuous culture measurements allowing the characterization of the kinetics of label incorporation into light-limited growing cells cultivated in a photobioreactor operating at the maximal biomass productivity for an incident photon flux density of 200 µmol m(-2) s(-1). (13)C label incorporation was measured for 21 intracellular metabolites using IC-MS/MS in 58 samples collected across a labeling experiment duration of 7 min. The fastest labeling rate was observed for 2/3-phosphoglycerate with an apparent isotopic stationary state reached after 300 s. The labeling rate was consistent with the optimized mixing time of about 4.9 s inside the reactor and the shortest reliable sampling period assessed at 5 s. PMID:22688667

  8. /sup 13/C NMR study of effects of fasting and diabetes on the metabolism of pyruvate in the tricarboxylic acid cycle and of the utilization of pyruvate and ethanol in lipogenesis in perfused rat liver

    SciTech Connect

    Cohen, S.M.

    1987-01-27

    /sup 13/C NMR has been used to study the competition of pyruvate dehydrogenase with pyruvate carboxylase for entry of pyruvate into the tricarboxylic acid (TCA) cycle in perfused liver from streptozotocin-diabetic and normal donor rats. The relative proportion of pyruvate entering the TCA cycle by these two routes was estimated from the /sup 13/C enrichments at the individual carbons of glutamate when (3-/sup 13/C)alanine was the only exogenous substrate present. In this way, the proportion of pyruvate entering by the pyruvate dehydrogenase route relative to the pyruvate carboxylase route was determined to be 1:1.2 +/- 0.1 in liver from fed controls, 1:7.7 +/- 2 in liver from 24-fasted controls, and 1:2.6 +/- 0.3 in diabetic liver. Pursuant to this observation that conversion of pyruvate to acetyl coenzyme A (acetyl-CoA) was greatest in perfused liver from fed controls, the incorporation of /sup 13/C label into fatty acids was monitored in this liver preparation. With the exception of the repeating methylene carbons, fatty acyl carbons labeled by (1-/sup 13/C)acetyl-CoA (from (2-/sup 13/C)pyruvate) gave rise to resonances distinguishable on the basis of chemical shift from those observed when label was introduced by (3-/sup 13/C)alanine plus (2-/sup 13/C)ethanol, which are converted to (2-/sup 13/C)acetyl-CoA. Thus, measurement of /sup 13/C enrichment at several specific sites in the fatty acyl chains in time-resolved spectra of perfused liver offers a novel way of monitoring the kinetics of the biosynthesis of fatty acids. In addition to obtaining the rate of lipogenesis, it was possible to distinguish the contributions of chain elongation from those of the de novo synthesis pathway and to estimate the average chain length of the /sup 13/C-labeled fatty acids produced.

  9. A Large Metabolic Carbon Ccontribution to the δ13C Record in Marine Aragonitic Bivalve Shells

    NASA Astrophysics Data System (ADS)

    Gillikin, D. P.; Lorrain, A.; Dehairs, F.

    2006-12-01

    The stable carbon isotopic signature archived in bivalve shells was originally thought to record the δ13C of seawater dissolved inorganic carbon (δ13C-DIC). However, more recent studies have shown that the incorporation of isotopically light metabolic carbon (M) significantly affects the δ13C signal recorded in biogenic carbonates. To assess the M contribution to Mercenaria mercenaria shells collected in North Carolina, USA, we sampled seawater δ13C-DIC, tissue, hemolymph and shell δ13C. We found up to a 4‰ decrease through ontogeny in shell δ13C in a 23 year old individual. There was no correlation between shell height or age and tissue δ13C. Thus, the ontogenic decrease observed in the shell δ13C could not be attributed to changes in food sources as the animal ages leading to more negative metabolic CO2, since this would require a negative relationship between tissue δ13C and shell height. Hemolymph δ13C, on the other hand, did exhibit a negative relationship with height, but the δ13C values were more positive than expected, indicating that hemolymph may not be a good proxy of extrapallial fluid δ13C. Nevertheless, the hemolymph data indicate that respired CO2 does influence the δ13C of internal fluids and that the amount of respired CO2 is related to the age of the bivalve. The percent metabolic C incorporated into the shell (%M) was significantly higher (up to 37%) than has been found in other bivalve shells, which usually contain less than 10 %M. Attempts to use shell biometrics to predict %M could not explain more than ~60% of the observed variability. Moreover, there were large differences in the %M between different sites. Thus, the metabolic effect on shell δ13C cannot easily be accounted for to allow reliable δ13C-DIC reconstructions. However, there does seem to be a common effect of size, as all sites had indistinguishable slopes between the %M and shell height (+0.19% per mm of shell height).

  10. Preliminary studies of a canine 13C-aminopyrine demethylation blood test.

    PubMed Central

    Moeller, E M; Steiner, J M; Williams, D A; Klein, P D

    2001-01-01

    The objectives of this study were to determine whether a 13C-aminopyrine demethylation blood test is technically feasible in clinically healthy dogs, whether oral administration of 13C-aminopyrine causes a detectable increase in percent dose/min (PCD) of 13C administered as 13C-aminopyrine and recovered in gas extracted from blood, and whether gas extraction efficiency has an impact on PCD. A dose of 2 mg/kg body weight of 13C-aminopyrine dissolved in deionized water was administered orally to 6 clinically healthy dogs. Blood samples were taken from each dog 0, 30, 60, and 120 min after administration of the 13C-aminopyrine. Carbon dioxide was extracted from blood samples by addition of acid and analyzed by fractional mass spectrometry. None of the 6 dogs showed any side effects after 13C-aminopyrine administration. All 6 dogs showed a measurable increase of the PCD in gas samples extracted from blood samples at 30 min, 60 min, and 120 min after 13C-aminopyrine administration. Coefficients of variation between the triplicate samples were statistically significantly higher for the %CO2, a measure of extraction efficiency, than for PCD values (P < 0.0001). The 13C-aminopyrine demethylation blood test described here is technically feasible. Oral administration of 13C-aminopyrine did not lead to gross side effects in the 6 dogs. Clinically healthy dogs show a measurable increase of PCD in gas extracted from blood samples after oral administration of 13C-aminopyrine. Efficiency of CO2 extraction from blood samples does not have an impact on PCD determined from these blood samples. This test may prove useful to evaluate hepatic function in dogs. PMID:11227194

  11. Metabolism of hyperpolarized [1-(13) C]pyruvate through alternate pathways in rat liver.

    PubMed

    Jin, Eunsook S; Moreno, Karlos X; Wang, Jian-Xiong; Fidelino, Leila; Merritt, Matthew E; Sherry, A Dean; Malloy, Craig R

    2016-04-01

    The source of hyperpolarized (HP) [(13) C]bicarbonate in the liver during metabolism of HP [1-(13) C]pyruvate is uncertain and likely changes with physiology. Multiple processes including decarboxylation through pyruvate dehydrogenase or pyruvate carboxylase followed by subsequent decarboxylation via phosphoenolpyruvate carboxykinase (gluconeogenesis) could play a role. Here we tested which metabolic fate of pyruvate contributed to the appearance of HP [(13) C]bicarbonate during metabolism of HP [1-(13) C]pyruvate by the liver in rats after 21 h of fasting compared to rats with free access to food. The (13) C NMR of HP [(13) C]bicarbonate was observed in the liver of fed rats, but not in fasted rats where pyruvate carboxylation and gluconeogenesis was active. To further explore the relative fluxes through pyruvate carboxylase versus pyruvate dehydrogenase in the liver under typical conditions of hyperpolarization studies, separate parallel experiments were performed with rats given non-hyperpolarized [2,3-(13) C]pyruvate. (13) C NMR analysis of glutamate isolated from the liver of rats revealed that flux from injected pyruvate through pyruvate dehydrogenase was dominant under fed conditions whereas flux through pyruvate carboxylase dominated under fasted conditions. The NMR signal of HP [(13) C]bicarbonate does not parallel pyruvate carboxylase activity followed by subsequent decarboxylation reaction leading to glucose production. In the liver of healthy well-fed rats, the appearance of HP [(13) C]bicarbonate exclusively reflects decarboxylation of HP [1-(13) C]pyruvate via pyruvate dehydrogenase. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26836042

  12. Effects of sampling method on foliar δ (13)C of Leymus chinensis at different scales.

    PubMed

    Liu, Yanjie; Li, Yan; Zhang, Lirong; Xu, Xingliang; Niu, Haishan

    2015-03-01

    Stable carbon isotope composition (δ (13)C) usually shows a negative relationship with precipitation at a large scale. We hypothesized that sampling method affects foliar δ (13)C and its response pattern to precipitation. We selected 11 sites along a precipitation gradient in Inner Mongolia and collected leaves of Leymus chinensis with five or six replications repeatedly in each site from 2009 to 2011. Additionally, we collected leaves of L. chinensis separately from two types of grassland (grazed and fenced) in 2011. Foliar δ (13)C values of all samples were measured. We compared the patterns that foliar δ (13)C to precipitation among different years or different sample sizes, the differences of foliar δ (13)C between grazed and fenced grassland. Whether actual annual precipitation (AAP) or mean annual precipitation (MAP), it was strongly correlated with foliar δ (13)C every year. Significant difference was found between the slopes of foliar δ (13)C to AAP and MAP every year, among the slopes of foliar δ (13)C to AAP from 2009 to 2011. The more samples used at each site the lower and convergent P-values of the linear regression test between foliar δ (13)C and precipitation. Furthermore, there was significant lower foliar δ (13)C value in presence of grazed type than fenced type grassland. These findings provide evidence that there is significant effect of sampling method to foliar δ (13)C and its response pattern to precipitation of L. chinensis. Our results have valuable implications in methodology for future field sampling studies. PMID:25798224

  13. Robust hyperpolarized (13)C metabolic imaging with selective non-excitation of pyruvate (SNEP).

    PubMed

    Chen, Way Cherng; Teo, Xing Qi; Lee, Man Ying; Radda, George K; Lee, Philip

    2015-08-01

    In vivo metabolic imaging using hyperpolarized [1-(13)C]pyruvate provides localized biochemical information and is particularly useful in detecting early disease changes, as well as monitoring disease progression and treatment response. However, a major limitation of hyperpolarized magnetization is its unrecoverable decay, due not only to T1 relaxation but also to radio-frequency (RF) excitation. RF excitation schemes used in metabolic imaging must therefore be able to utilize available hyperpolarized magnetization efficiently and robustly for the optimal detection of substrate and metabolite activities. In this work, a novel RF excitation scheme called selective non-excitation of pyruvate (SNEP) is presented. This excitation scheme involves the use of a spectral selective RF pulse to specifically exclude the excitation of [1-(13)C]pyruvate, while uniformly exciting the key metabolites of interest (namely [1-(13)C]lactate and [1-(13)C]alanine) and [1-(13)C]pyruvate-hydrate. By eliminating the loss of hyperpolarized [1-(13)C]pyruvate magnetization due to RF excitation, the signal from downstream metabolite pools is increased together with enhanced dynamic range. Simulation results, together with phantom measurements and in vivo experiments, demonstrated the improvement in signal-to-noise ratio (SNR) and the extension of the lifetime of the [1-(13)C]lactate and [1-(13)C]alanine pools when compared with conventional non-spectral selective (NS) excitation. SNEP has also been shown to perform comparably well with multi-band (MB) excitation, yet SNEP possesses distinct advantages, including ease of implementation, less stringent demands on gradient performance, increased robustness to frequency drifts and B0 inhomogeneity as well as easier quantification involving the use of [1-(13)C]pyruvate-hydrate as a proxy for the actual [1-(13)C] pyruvate signal. SNEP is therefore a promising alternative for robust hyperpolarized [1-(13)C]pyruvate metabolic imaging with high

  14. The Nature of Carbonate and Organic δ13C Covariance Through Geological Time

    NASA Astrophysics Data System (ADS)

    Oehlert, A. M.; Swart, P. K.

    2014-12-01

    Significant evolutionary, climatic, and oceanographic events in Earth history are often accompanied by excursions in the carbon isotope composition (δ13C) of marine carbonates and co-occurring sedimentary organic material. The observation of synchronous excursions in the δ13C values of marine carbonates and coeval organic matter is commonly thought to prove that the deposit has not been altered by diagenesis, and that the variations in the δ13C records are the result of a significant change in global carbon cycling. Furthermore, this model suggests that the covariance of carbonate and organic δ13C records is driven only by changes in the δ13C value of the dissolved inorganic carbon in the surface waters of the ocean. However, recent work suggests that there may be at least two alternate models for generating covariance between carbonate and organic δ13C values in the geologic record. One of the models invokes sea-level driven syndepositional mixing between isotopically distinct sources of carbonate and organic material to produce positive covariance between carbonate and organic δ13C values. The second model suggests that post-depositional alteration to the carbonate δ13C values during meteoric diagenesis, in concert with concurrent contributions of terrestrial organic material during subaerial exposure, can also produce co-occurring negative excursions with tightly covariant δ13C records. In contrast to earlier interpretations of covariant δ13C values, these models suggest that both syndepositional and post-depositional factors can significantly influence the relationship between carbonate and organic δ13C values in a variety of depositional environments. The implications for reconstructions of ancient global carbon cycle events will be explored within the context of these three models, and their relative importance throughout geologic time will be discussed.

  15. 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans

    PubMed Central

    Rothman, Douglas L.; De Feyter, Henk M.; de Graaf, Robin A.; Mason, Graeme F.; Behar, Kevin L.

    2011-01-01

    In the last 25 years 13C MRS has been established as the only non invasive method for measuring glutamate neurotransmission and cell specific neuroenergetics. Although technically and experimentally challenging 13C MRS has already provided important new information on the relationship between neuroenergetics and neuronal function, energy cost of brain function, the high neuronal activity in the resting brain state, and how neuroenergetics and neurotransmitter cycling are altered in neurological and psychiatric disease. In this paper the current state of 13C MRS as it is applied to study neuroenergetics and neurotransmitter cycling in humans is reviewed. The focus is predominantly on recent findings in humans regarding metabolic pathways, applications to clinical research, and the technical status of the method. Results from in vivo 13C MRS studies in animals are discussed from the standpoint of validation of MRS measurements of neuroenergetics and neurotransmitter cycling and where they have helped identify key questions to address in human research. Controversies concerning the relation of neuroenergetics and neurotransmitter cycling and factors impacting accurate determination of fluxes through mathematical modeling are addressed. We further touch upon different 13C labeled substrates used to study brain metabolism, before reviewing a number of human brain diseases studied using 13C MRS. Future technological developments are discussed that will help to overcome limitations of 13C MRS with special attention on recent developments in hyperpolarized 13C MRS. PMID:21882281

  16. Amorphous Fe72Cr8P13C7 Powder with High Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Cho, Kangjo; Hwang, Choll-Hong; Pak, Chang-Su; Ryeom, Yeong-Jo

    1982-07-01

    Amorphous Fe72Cr8P13C7 powder has been prepared by the spark erosion technique and its corrosion behavior investigated potentiodynamically. It is concluded that the powder prepared this way possesses a relatively high corrosion resistance, as does amorphous Fe72Cr8P13C7 ribbon prepared by rapid quenching.

  17. 13c-SUCROSE BREATH TEST TO DIFFERENTIATE CONGENITAL SUCRASE-ISOMALTASE DEFICIENCY FROM PANDISACCHARIDASE DEFICIENCY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: A substrate-paired breath test using 13C-sucrose (S) and 13C-glucose (G) has been developed to assess congenital sucrase-isomaltase deficiency (CSID). The aim was to determine if CSID could be detected without duodenal enzyme assay. Methods: Two patients (1F:1M, aged 1 & 15 yrs) wi...

  18. Latitudinal Variation in δ13C derived from Terrestrial Plants during the Cretaceous

    NASA Astrophysics Data System (ADS)

    Strganac, C.; Jacobs, L. L.; Ferguson, K.; Macphee, R. D.; Fiorillo, A. R.; Hooker, J.; Nishida, Y.; Flemming, C.

    2010-12-01

    Modern plankton and terrestrial plants exhibit a gradient in δ13C with latitude. Although there are several reasons for δ13C variation in plants, modern latitudinal variation is correlated with environmental and climatic factors such as temperature. We present δ13C values derived from mid-Cretaceous terrestrial plant fossils in Texas at paleolatitude ~30 N and Australia at paleolatitude ~70 S that show an offset in δ13C values, suggesting a latitudinal gradient in δ13C in plants during the Cretaceous. This hypothesis was tested by new data from Antarctica at paleolatitude ~60 S and Alaska at paleolatitude ~70 N, and we compared these data to published carbon isotope records. The latitudinal variation in plant δ13C was on the order of 2‰ more negative at high latitudes, suggesting a shallower Cretaceous latitudinal gradient in plant δ13C than at present. The shallow gradient in plant δ13C during the Cretaceous correlates with a latitudinal temperature gradient that is also less than today.

  19. Natural (13) C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern.

    PubMed

    Lamade, Emmanuelle; Tcherkez, Guillaume; Darlan, Nuzul Hijri; Rodrigues, Rosario Lobato; Fresneau, Chantal; Mauve, Caroline; Lamothe-Sibold, Marlène; Sketriené, Diana; Ghashghaie, Jaleh

    2016-01-01

    Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs. PMID:26228944

  20. Variation in woody plant delta(13)C along a topoedaphic gradient in a subtropical savanna parkland.

    PubMed

    Bai, Edith; Boutton, Thomas W; Liu, Feng; Wu, X Ben; Archer, Steven R

    2008-06-01

    delta(13)C values of C(3) plants are indicators of plant carbon-water relations that integrate plant responses to environmental conditions. However, few studies have quantified spatial variation in plant delta(13)C at the landscape scale. We determined variation in leaf delta(13)C, leaf nitrogen per leaf area (N(area)), and specific leaf area (SLA) in April and August 2005 for all individuals of three common woody species within a 308 x 12-m belt transect spanning an upland-lowland topoedaphic gradient in a subtropical savanna in southern Texas. Clay content, available soil moisture, and soil total N were all negatively correlated with elevation. The delta(13)C values of Prosopis glandulosa (deciduous N(2)-fixing tree legume), Condalia hookeri (evergreen shrub), and Zanthoxylum fagara (evergreen shrub) leaves increased 1-4 per thousand with decreasing elevation, with the delta(13)C value of P. glandulosa leaves being 1-3 per thousand higher than those of the two shrub species. Contrary to theory and results from previous studies, delta(13)C values were highest where soil water was most available, suggesting that some other variable was overriding or interacting with water availability. Leaf N(area) was positively correlated with leaf delta(13)C of all species (p < 0.01) and appeared to exert the strongest control over delta(13)C along this topoedaphic gradient. Since leaf N(area) is positively related to photosynthetic capacity, plants with high leaf N(area) are likely to have low p (I)/p (a) ratios and therefore higher delta(13)C values, assuming stomatal conductance is constant. Specific leaf area was not correlated significantly with leaf delta(13)C. Following a progressive growing season drought in July/August, leaf delta(13)C decreased. The lower delta(13)C in August may reflect the accumulation of (13)C-depleted epicuticular leaf wax. We suggest control of leaf delta(13)C along this topoedaphic gradient is mediated by leaf N(area) rather than by stomatal

  1. A 13C-NMR study of exopolysaccharide synthesis in Rhizobium meliloti Su47 strain

    NASA Astrophysics Data System (ADS)

    Tavernier, P.; Portais, J.-C.; Besson, I.; Courtois, J.; Courtois, B.; Barbotin, J.-N.

    1998-02-01

    Metabolic pathways implied in the synthesis of succinoglycan produced by the Su47 strain of R. meliloti were evaluated by 13C-NMR spectroscopy after incubation with [1{-}13C] or [2{-}13C] glucose. The biosynthesis of this polymer by R. meliloti from glucose occurred by a direct polymerisation of the introduced glucose and by the pentose phosphate pathway. Les voies métaboliques impliquées dans la synthèse du succinoglycane produit par la souche Su47 de R. meliloti ont été évaluées par la spectroscopie de RMN du carbone 13 après incubation des cellules avec du [1{-}13C] ou [2{-}13C] glucose. La biosynthèse de ce polymère à partir du glucose se produit par polymérisation directe du glucose et par la voie des pentoses phosphate.

  2. Fish Movement and Dietary History Derived from Otolith (delta)13C

    SciTech Connect

    Weber, P K; Finlay, J C; Power, M E; Phillis, C C; Ramon, C E; Eaton, G F; Ingram, B L

    2005-09-08

    Habitat use and food web linkages are critical data for fish conservation and habitat restoration efforts, particularly for threatened salmonids species. Otolith microchemistry has been shown to be a powerful tool for reconstructing fish movement, but over small distances (kilometers), geology-derived differences in otolith chemistry are rare. Here, we demonstrate that otolith {sup 13}C/{sup 12}C ratio (i.e. {delta}{sup 13}C) of anadromous steelhead trout can be used to distinguish residence in small streams from residence in larger streams and rivers. While previous research has shown that water dissolved inorganic carbon {delta}{sup 13}C is the primary source of carbon in otoliths, the downstream change in food {delta}{sup 13}C in this watershed appears to be the primary control on otolith {delta}{sup 13}C. As a result, this method can also be applied to the problem of reconstructing feeding history at a location.

  3. Fish movement and dietary history derived from otolith δ13C

    NASA Astrophysics Data System (ADS)

    Weber, P. K.; Finlay, J. C.; Power, M. E.; Phillis, C. C.; Ramon, C. E.; Eaton, G. F.; Ingram, B. L.

    2005-12-01

    Habitat use and food web linkages are critical data for fish conservation and habitat restoration efforts, particularly for threatened salmonids species. Otolith microchemistry has been shown to be a powerful tool for reconstructing fish movement, but over small distances (kilometers), geology-derived differences in otolith chemistry are rare. Here, we demonstrate that otolith 13C/12C ratio (i.e. δ13C) of anadromous steelhead trout can be used to distinguish residence in small streams from residence in larger streams and rivers. While previous research has shown that water dissolved inorganic carbon d13C is the primary source of carbon in otoliths, the downstream change in food δ13C in this watershed appears to be the primary control on otolith δ13C. As a result, this method can also be applied to the problem of reconstructing feeding history at a location.

  4. Evidence of 13C non-covalent isotope effects obtained by quantitative 13C nuclear magnetic resonance spectroscopy at natural abundance during normal phase liquid chromatography.

    PubMed

    Botosoa, Eliot P; Silvestre, Virginie; Robins, Richard J; Rojas, Jose Manuel Moreno; Guillou, Claude; Remaud, Gérald S

    2009-10-16

    Quantitative isotopic (13)C NMR at natural abundance has been used to determine the site-by-site (13)C/(12)C ratios in vanillin and a number of related compounds eluted from silica gel chromatography columns under similar conditions. Head-to-tail isotope fractionation is observed in all compounds at the majority of carbon positions. Furthermore, the site-specific isotope deviations show signatures characteristic of the position and functionality of the substituents present. The observed effects are more complex than would be obtained by simply summing the individual effects. Such detail is hidden when only the global (13)C content is measured by mass spectrometry. In particular, carbon positions within the aromatic ring are found to show site-specific isotope fractionation between the solute and the stationary phase. These interactions, defined as non-covalent isotope effects, can be normal or inverse and vary with the substitution pattern present. PMID:19748628

  5. Oscillator Strengths and Predissociation Rates for Rydberg Transitions in 12C16O, 13C16O, and 13C18O Involving the E 1Π, B 1Σ+, and W 1Π States

    NASA Astrophysics Data System (ADS)

    Eidelsberg, M.; Sheffer, Y.; Federman, S. R.; Lemaire, J. L.; Fillion, J. H.; Rostas, F.; Ruiz, J.

    2006-08-01

    One of the processes controlling the interstellar CO abundance and the ratio of its isotopologues is photodissociation. Accurate oscillator strengths and predissociation rates for Rydberg transitions are needed for modeling this process. We present results on absorption from the E 1Π-X 1Σ+ (1-0) and B 1Σ+-X 1Σ+ (6-0) bands at 1051 and 1002 Å, respectively, and the vibrational progression W 1Π-X 1Σ+ (v'-0) bands with v'=0-3 at 972, 956, 941, and 925 Å, respectively. The corresponding spectra were acquired at the high resolution (R~30,000) SU5 beam line at the Super ACO Synchrotron in Orsay, France. Spectra were obtained for the 12C16O, 13C 16O, and 13C18O isotopologues. These represent the most complete set of measurements available. Comparison is made with earlier results, both empirical and theoretical. While earlier determinations of oscillator strengths based on absorption from synchrotron radiation tend to be somewhat smaller than ours, the suite of measurements from a variety of techniques agree for the most part, considering the mutual uncertainties. For the bands studied here, their relative weakness, or their significant line widths arising from predissociation, minimizes potential problems from large optical depths at line center in absorption measurements. Predissociating line widths could generally be extracted from the spectra thanks to the profile simulations used in the analysis. In many cases, these simulations allowed us to consider e and f parity levels separately and to determine the dependence of the width on rotational quantum number, J. Our results are consistent with earlier determinations, especially the widths inferred from laser experiments.

  6. Compartmentalized Cerebral Metabolism of [1,6-13C]Glucose Determined by in vivo 13C NMR Spectroscopy at 14.1 T

    PubMed Central

    Duarte, João M. N.; Lanz, Bernard; Gruetter, Rolf

    2011-01-01

    Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by 13C nuclear magnetic resonance (NMR) spectroscopy upon infusion of 13C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-13C]glucose and 13C enrichment in the brain metabolites was measured by 13C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining 13C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (VTCA) and neurotransmission rate (VNT) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial VTCA was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (VPC) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism. PMID:21713114

  7. Metabolism of parenterally administered fat emulsions in the rat: studies of fatty acid oxidation with 1-13C- and 8-13C-labelled triolein.

    PubMed

    Bäurle, W; Brösicke, H; Matthews, D E; Pogan, K; Fürst, P

    1998-04-01

    To reassess the hypothesis that fatty acid catabolism occurs to completion via beta-oxidation, male Sprague-Dawley rats receiving continuous total parenteral nutrition (TPN) including 43% energy as fat were infused with [1-(13)C]- or [8-(13)C]triolein. Expired CO2 was collected continuously for 4 h and its 13C:12C ratio determined by isotope-ratio mass spectrometry. Bicarbonate retention was also assessed over 4 h by infusion of NaH14CO3 and measurement of the expired 14CO2. A possible loss of label from [8-(13)C]oleic acid from the citric acid cycle via labelled acetyl-CoA without oxidation to CO2 was assessed by infusing further animals with acetate labelled with 14C either at C atoms 1 or 2 and determination of its conversion to expired 14CO2. At isotopic steady state, 63.2 (SE 1.6)% (n 8) of the infused [1-(14)C]acetate and 46.0 (SE 1.2)% (n 8) of [2-(14)C]acetate was recovered as expired 14CO2. After correction for bicarbonate retention and non-oxidative isotope loss, 37.3 (SE 1.2)% (n 20) of the [1-(13)C]triolein was found to have been oxidized, whereas 32.6 (SE 1.0)% (n 20) of the [8-(13)C]triolein was oxidized (P < or = 0.01). The lower oxidation of the C atom at position 8 of oleic acid than that at position 1 indicates incomplete oxidative breakdown of the fatty acid after entering beta-oxidation. PMID:9624230

  8. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    USGS Publications Warehouse

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  9. Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N–15N and carbonyl 13C–13C dipolar recoupling data

    PubMed Central

    Hu, Kan-Nian; Qiang, Wei; Bermejo, Guillermo A.; Schwieters, Charles D.; Tycko, Robert

    2013-01-01

    Recent structural studies of uniformly 15N, 13C-labeled proteins by solid state nuclear magnetic resonance (NMR) rely principally on two sources of structural restraints: (i) restraints on backbone conformation from isotropic 15N and 13C chemical shifts, based on empirical correlations between chemical shifts and backbone torsion angles; (ii) restraints on inter-residue proximities from qualitative measurements of internuclear dipole–dipole couplings, detected as the presence or absence of inter-residue crosspeaks in multidimensional spectra. We show that site-specific dipole–dipole couplings among 15N-labeled backbone amide sites and among 13C-labeled backbone carbonyl sites can be measured quantitatively in uniformly-labeled proteins, using dipolar recoupling techniques that we call 15N-BARE and 13C-BARE (BAckbone REcoupling), and that the resulting data represent a new source of restraints on backbone conformation. 15N-BARE and 13C-BARE data can be incorporated into structural modeling calculations as potential energy surfaces, which are derived from comparisons between experimental 15N and 13C signal decay curves, extracted from crosspeak intensities in series of two-dimensional spectra, with numerical simulations of the 15N-BARE and 13C-BARE measurements. We demonstrate this approach through experiments on microcrystalline, uniformly 15N, 13C-labeled protein GB1. Results for GB1 show that 15N-BARE and 13C-BARE restraints are complementary to restraints from chemical shifts and inter-residue crosspeaks, improving both the precision and the accuracy of calculated structures. PMID:22449573

  10. Variable temperature 1H and 13C NMR study of restricted rotation in N,N-bis(2-hydroxyethyl)acetamide

    NASA Astrophysics Data System (ADS)

    Aitken, R. Alan; Smith, Melanja H.; Wilson, Heather S.

    2016-06-01

    N,N-bis(2-hydroxyethyl)acetamide shows restricted rotation about the amide bond in both 1H and 13C NMR spectra rendering the two hydroxyethyl groups non-equivalent. A variable temperature study in CD3SOCD3 allowed estimation of the free energy barrier to rotation as 75.6 ± 0.2 kJ mol-1. Previously published data in CDCl3 appears to be erroneous.

  11. Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead.

    PubMed

    Cullinan, David B; Hondrogiannis, George; Henderson, Terry J

    2008-04-15

    Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at < or = 25 microg/mL were easily detected in a sample where the 1H solvent signal was approximately 58,000-fold more intense than the analyte 1H signals. The problem of overlapping signals typically observed in conventional 1H spectroscopy was essentially eliminated, while 1H and 13C chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental

  12. VizieR Online Data Catalog: Doubly 13C-substituted ethyl cyanide (Margules+,

    NASA Astrophysics Data System (ADS)

    Margules, L.; Belloche, A.; Muller, H. S. P.; Motiyenko, R. A.; Guillemin, J.-C.; Garrod, R. T.; Menten, K. M.

    2016-04-01

    We identified more than 5000 rotational transitions, pertaining to more than 3500 different transition frequencies, in the laboratory for each of the three doubly 13C-substituted isotopomers. The quantum numbers reach J~115 and Ka~35, resulting in accurate spectroscopic parameters and accurate rest frequency calculations beyond 1000 GHz for strong to moderately weak transitions of either isotopomer. All three species are unambiguously detected in our ALMA data. The 12C/13C column density ratio of the isotopomers with one 13C atom to those with two 13C atoms is about 25. Ethyl cyanide is the second molecule after methyl cyanide for which isotopologues containing two 13C atoms have been securely detected in the interstellar medium. The model of our ethyl cyanide data suggests that we should be able to detect vibrational satellites of the main species up to at least v19=1 at 1130K and up to v13+v21=2 at 600K for the isotopologues with one 13C atom in our present ALMA data. Such satellites may be too weak to be identified unambiguously for isotopologues with two 13C atoms. (3 data files).

  13. Simultaneous imaging of 13C metabolism and 1H structure: technical considerations and potential applications.

    PubMed

    Gordon, Jeremy W; Fain, Sean B; Niles, David J; Ludwig, Kai D; Johnson, Kevin M; Peterson, Eric T

    2015-05-01

    Real-time imaging of (13)C metabolism in vivo has been enabled by recent advances in hyperpolarization. As a result of the inherently low natural abundance of endogenous (13)C nuclei, hyperpolarized (13)C images lack structural information that could be used to aid in motion detection and anatomical registration. Motion before or during the (13)C acquisition can therefore result in artifacts and misregistration that may obscure measures of metabolism. In this work, we demonstrate a method to simultaneously image both (1)H and (13)C nuclei using a dual-nucleus spectral-spatial radiofrequency excitation and a fully coincident readout for rapid multinuclear spectroscopic imaging. With the appropriate multinuclear hardware, and the means to simultaneously excite and receive on both channels, this technique is straightforward to implement requiring little to no increase in scan time. Phantom and in vivo experiments were performed with both Cartesian and spiral trajectories to validate and illustrate the utility of simultaneous acquisitions. Motion compensation of dynamic metabolic measurements acquired during free breathing was demonstrated using motion tracking derived from (1)H data. Simultaneous multinuclear imaging provides structural (1)H and metabolic (13)C images that are correlated both spatially and temporally, and are therefore amenable to joint (1)H and (13)C analysis and correction of structure-function images. PMID:25810146

  14. Dephosphorylation and biodistribution of 1-13C-phospholactate in vivo†

    PubMed Central

    Shchepin, Roman V.; Pham, Wellington; Chekmenev, Eduard Y.

    2015-01-01

    Here, we present a new approach for the delivery of a metabolic contrast agent for in vivo molecular imaging. The use of a phosphate-protecting group that facilitates parahydrogen-induced polarization of 1-13C-phospholactate potentially enables the in vivo administration of a hydrogenated hyperpolarized adduct. When injected, nonhyperpolarized 1-13C-phospholactate is retained in the vasculature during its metabolic conversion to 1-13C-lactate by blood phosphatases as demonstrated here using a mucin 1 mouse model of breast cancer and ex vivo high-resolution 13C NMR. This multisecond process is a suitable mechanism for the delivery of relatively short-lived 13C and potentially 15N hyperpolarized contrast agents using –OH phosphorylated small molecules, which is demonstrated here for the first time as an example of 1-13C-phospholactate. Through this approach, DL-1-13C-lactate is taken up by tissues and organs including the liver, kidneys, brain, heart, and tumors according to a timescale amenable to hyperpolarized magnetic resonance imaging. PMID:24995802

  15. Stereospecificity of (1) H, (13) C and (15) N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on (1) H chemical shifts.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Ushakov, Igor A; Keiko, Natalia A

    2012-07-01

    In the (13) C NMR spectra of methylglyoxal bisdimethylhydrazone, the (13) C-5 signal is shifted to higher frequencies, while the (13) C-6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the (1) H-6 chemical shift and (1) J(C-6,H-6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the -CH═N- bond does not change. This paradox can be rationalized by the C-H⋯N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum-chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ((1) H-6) and (1) J(C-6,H-6) parameters. The effect of the C-H⋯N hydrogen bond on the (1) H shielding and one-bond (13) C-(1) H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The (1) H, (13) C and (15) N chemical shifts of the 2- and 8-(CH(3) )(2) N groups attached to the -C(CH(3) )═N- and -CH═N- moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8-(CH(3) )(2) N group conjugate effectively with the π-framework, and the 2-(CH(3) )(2) N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N-2- and N-8- nitrogen lone pairs to the π-framework varies, which affects the (1) H, (13) C and (15) N shieldings. PMID:22615146

  16. Toward using delta13C of ecosystem respiration to monitor canopy physiology in complex terrain.

    PubMed

    Pypker, T G; Hauck, M; Sulzman, E W; Unsworth, M H; Mix, A C; Kayler, Z; Conklin, D; Kennedy, A M; Barnard, H R; Phillips, C; Bond, B J

    2008-12-01

    In 2005 and 2006, air samples were collected at the base of a Douglas-fir watershed to monitor seasonal changes in the delta13CO2 of ecosystem respiration (delta13C(ER)). The goals of this study were to determine whether variations in delta13C(ER) correlated with environmental variables and could be used to predict expected variations in canopy-average stomatal conductance (Gs). Changes in delta13C(ER) correlated weakly with changes in vapor pressure deficit (VPD) measured 0 and 3-7 days earlier and significantly with soil matric potential (psi(m)) (P value <0.02) measured on the same day. Midday G (s) was estimated using sapflow measurements (heat-dissipation method) at four plots located at different elevations within the watershed. Values of midday Gs from 0 and 3-7 days earlier were correlated with delta13C(ER), with the 5-day lag being significant (P value <0.05). To examine direct relationships between delta13C(ER) and recent Gs, we used models relating isotope discrimination to stomatal conductance and photosynthetic capacity at the leaf level to estimate values of stomatal conductance ("Gs-I") that would be expected if respired CO2 were derived entirely from recent photosynthate. We compared these values with estimates of Gs using direct measurement of transpiration at multiple locations in the watershed. Considering that the approach based on isotopes considers only the effect of photosynthetic discrimination on delta13C(ER), the magnitude and range in the two values were surprisingly similar. We conclude that: (1) delta13C(ER) is sensitive to variations in weather, and (2) delta13C(ER) potentially could be used to directly monitor average, basin-wide variations in Gs in complex terrain if further research improves understanding of how delta13C(ER) is influenced by post-assimilation fractionation processes. PMID:18839214

  17. Clinical NOE 13C MRS for neuropsychiatric disorders of the frontal lobe

    NASA Astrophysics Data System (ADS)

    Sailasuta, Napapon; Robertson, Larry W.; Harris, Kent C.; Gropman, Andrea L.; Allen, Peter S.; Ross, Brian D.

    2008-12-01

    In this communication, a scheme is described whereby in vivo 13C MRS can safely be performed in the frontal lobe, a human brain region hitherto precluded on grounds of SAR, but important in being the seat of impaired cognitive function in many neuropsychiatric and developmental disorders. By combining two well known features of 13C NMR—the use of low power NOE and the focus on 13C carbon atoms which are only minimally coupled to protons, we are able to overcome the obstacle of SAR and develop means of monitoring the 13C fluxes of critically important metabolic pathways in frontal brain structures of normal volunteers and patients. Using a combination of low-power WALTZ decoupling, variants of random noise for nuclear overhauser effect enhancement it was possible to reduce power deposition to 20% of the advised maximum specific absorption rate (SAR). In model solutions 13C signal enhancement achieved with this scheme were comparable to that obtained with WALTZ-4. In human brain, the low power procedure effectively determined glutamine, glutamate and bicarbonate in the posterior parietal brain after [1- 13C] glucose infusion. The same 13C enriched metabolites were defined in frontal brain of human volunteers after administration of [1- 13C] acetate, a recognized probe of glial metabolism. Time courses of incorporation of 13C into cerebral glutamate, glutamine and bicarbonate were constructed. The results suggest efficacy for measurement of in vivo cerebral metabolic rates of the glutamate-glutamine and tricarboxylic acid cycles in 20 min MR scans in previously inaccessible brain regions in humans at 1.5T. We predict these will be clinically useful biomarkers in many human neuropsychiatric and genetic conditions.

  18. GlyNest and CASPER: two independent approaches to estimate 1H and 13C NMR shifts of glycans available through a common web-interface.

    PubMed

    Loss, Alexander; Stenutz, Roland; Schwarzer, Eberhard; von der Lieth, Claus-W

    2006-07-01

    GlyNest and CASPER (www.casper.organ.su.se/casper/) are two independent services aiming to predict (1)H- and (13)C-NMR chemical shifts of glycans. GlyNest estimates chemical shifts of glycans based on a spherical environment encoding scheme for each atom. CASPER is an increment rule-based approach which uses chemical shifts of the free reducing monosaccharides which are altered according to attached residues of an oligo- or polysaccharide sequence. Both services, which are located on separate, distributed, servers are now available through a common interface of the GLYCOSCIENCES.de portal (www.glycosciences.de). The predictive ability of both techniques was evaluated for a test set of 155 (13)C and 181 (1)H spectra of assigned glycan structures. The standard deviations between experimental and estimated shifts ((1)H; 0.081/0.102; (13)C 0.763/0.794; GlyNest/CASPER) are comparable for both methods and significantly better than procedures where stereochemistry is not encoded. The predictive ability of both approaches is in most cases sufficiently precise to be used for an automatic assignment of NMR-spectra. Since both procedures work efficiently and require computation times in the millisecond range on standard computers, they are well suited for the assignment of NMR spectra in high-throughput glycomics projects. The service is available at www.glycosciences.de/sweetdb/start.php?action=form_shift_estimation. PMID:16845109

  19. The carbon abundance and 12C/13C isotopic ratio in the atmosphere of Arcturus from 2.3 µm CO bands

    NASA Astrophysics Data System (ADS)

    Pavlenko, Ya. V.

    2008-09-01

    We have modeled absorption lines of the 12CO and 13CO (Δ υ = 2) molecular bands at λλ 2.29 2.45 µm in the spectrum of Arcturus (K2III). A grid of model atmospheres and synthetic spectra were computed for the red giant using T eff = 4300, log g = 1.5, and the elemental abundances of Peterson et al. (1993), with the exception of the abundances of carbon, log N(C), and oxygen, log N(O) and the carbon isotopic ratio, 12C/13C, which were varied in our computations. The computed spectra were compared to the observed spectrum of Arcturus from the atlas of Hinkle et al. (1976). The best fit between the synthetic and observed spectra is achieved for log N(C) = -3.78, 12C/13C = 8 ± 0.5. We discuss the dependence of 12C/13C on log N(C) and log N(O) in the atmosphere of the red giant.

  20. 13C, 2h NMR studies of structural and dynamical modifications of glucose-exposed porcine aortic elastin.

    PubMed

    Silverstein, Moshe C; Bilici, Kübra; Morgan, Steven W; Wang, Yunjie; Zhang, Yanhang; Boutis, Gregory S

    2015-04-01

    Elastin, the principal component of the elastic fiber of the extracellular matrix, imparts to vertebrate tissues remarkable resilience and longevity. This work focuses on elucidating dynamical and structural modifications of porcine aortic elastin exposed to glucose by solid-state NMR spectroscopic and relaxation methodologies. Results from macroscopic stress-strain tests are also presented and indicate that glucose-treated elastin is mechanically stiffer than the same tissue without glucose treatment. These measurements show a large hysteresis in the stress-strain behavior of glucose-treated elastin-a well-known signature of viscoelasticity. Two-dimensional relaxation NMR methods were used to investigate the correlation time, distribution, and population of water in these samples. Differences are observed between the relative populations of water, whereas the measured correlation times of tumbling motion of water across the samples were similar. (13)C magic-angle-spinning NMR methods were applied to investigate structural and dynamical modifications after glucose treatment. Although some overall structure is preserved, the process of glucose exposure results in more heterogeneous structures and slower mobility. The correlation times of tumbling motion of the (13)C-(1)H internuclear vectors in the glucose-treated sample are larger than in untreated samples, pointing to their more rigid structure. The (13)C cross-polarization spectra reveal a notably increased α-helical character in the alanine motifs after glucose exposure. Results from molecular dynamics simulations are provided that add further insight into dynamical and structural changes of a short repeat, [VPGVG]5, an alanine pentamer, desmosine, and isodesmosine sites with and without glucose. The simulations point to changes in the entropic and energetic contributions in the retractive forces of VPGVG and AAAAA motifs. The most notable change is the increase of the energetic contribution in the retractive

  1. Hydrothermal carbon from biomass: structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR.

    PubMed

    Falco, Camillo; Perez Caballero, Fernando; Babonneau, Florence; Gervais, Christel; Laurent, Guillaume; Titirici, Maria-Magdalena; Baccile, Niki

    2011-12-01

    The objective of this paper is to better describe the structure of the hydrothermal carbon (HTC) process and put it in relationship with the more classical pyrolytic carbons. Indeed, despite the low energetic impact and the number of applications described so far for HTC, very little is known about the structure, reaction mechanism, and the way these materials relate to coals. Are HTC and calcination processes equivalent? Are the structures of the processed materials related to each other in any way? Which is the extent of polyaromatic hydrocarbons (PAH) inside HTC? In this work, the effect of hydrothermal treatment and pyrolysis are compared on glucose, a good model carbohydrate; a detailed single-quantum double-quantum (SQ-DQ) solid state (13)C NMR study of the HTC and calcined HTC is used to interpret the spectral region corresponding to the signal of furanic and arene groups. These data are compared to the spectroscopic signatures of calcined glucose, starch, and xylose. A semiquantitative analysis of the (13)C NMR spectra provides an estimation of the furanic-to-arene ratio which varies from 1:1 to 4:1 according to the processing conditions and carbohydrate employed. In addition, we formulate some hypothesis, validated by DFT (density functional theory) modeling associated with (13)C NMR chemical shifts calculations, about the possible furan-rich structural intermediates that occur in the coalification process leading to condensed polyaromatic structures. In combination with a broad parallel study on the HTC processing conditions effect on glucose, cellulose, and raw biomass (Falco, C.; Baccile, N.; Titirici, M.-M. Green Chem., 2011, DOI: 10.1039/C1GC15742F), we propose a broad reaction scheme and in which we show that, through HTC, it is possible to tune the furan-to-arene ratio composing the aromatic core of the produced HTC carbons, which is not possible if calcination is used alone, in the temperature range below 350 °C. PMID:22050004

  2. 13C, 2H NMR Studies of Structural and Dynamical Modifications of Glucose-Exposed Porcine Aortic Elastin

    PubMed Central

    Silverstein, Moshe C.; Bilici, Kübra; Morgan, Steven W.; Wang, Yunjie; Zhang, Yanhang; Boutis, Gregory S.

    2015-01-01

    Elastin, the principal component of the elastic fiber of the extracellular matrix, imparts to vertebrate tissues remarkable resilience and longevity. This work focuses on elucidating dynamical and structural modifications of porcine aortic elastin exposed to glucose by solid-state NMR spectroscopic and relaxation methodologies. Results from macroscopic stress-strain tests are also presented and indicate that glucose-treated elastin is mechanically stiffer than the same tissue without glucose treatment. These measurements show a large hysteresis in the stress-strain behavior of glucose-treated elastin—a well-known signature of viscoelasticity. Two-dimensional relaxation NMR methods were used to investigate the correlation time, distribution, and population of water in these samples. Differences are observed between the relative populations of water, whereas the measured correlation times of tumbling motion of water across the samples were similar. 13C magic-angle-spinning NMR methods were applied to investigate structural and dynamical modifications after glucose treatment. Although some overall structure is preserved, the process of glucose exposure results in more heterogeneous structures and slower mobility. The correlation times of tumbling motion of the 13C-1H internuclear vectors in the glucose-treated sample are larger than in untreated samples, pointing to their more rigid structure. The 13C cross-polarization spectra reveal a notably increased α-helical character in the alanine motifs after glucose exposure. Results from molecular dynamics simulations are provided that add further insight into dynamical and structural changes of a short repeat, [VPGVG]5, an alanine pentamer, desmosine, and isodesmosine sites with and without glucose. The simulations point to changes in the entropic and energetic contributions in the retractive forces of VPGVG and AAAAA motifs. The most notable change is the increase of the energetic contribution in the retractive force

  3. Compositional differences among Chinese soy sauce types studied by (13)C NMR spectroscopy coupled with multivariate statistical analysis.

    PubMed

    Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili

    2016-09-01

    Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. PMID:27343582

  4. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    PubMed Central

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  5. Position-Specific Isotope Analysis of Xanthines: A (13)C Nuclear Magnetic Resonance Method to Determine the (13)C Intramolecular Composition at Natural Abundance.

    PubMed

    Diomande, Didier G; Martineau, Estelle; Gilbert, Alexis; Nun, Pierrick; Murata, Ariaki; Yamada, Keita; Watanabe, Naoharu; Tea, Illa; Robins, Richard J; Yoshida, Naohiro; Remaud, Gérald S

    2015-07-01

    The natural xanthines caffeine, theobromine, and theophylline are of major commercial importance as flavor constituents in coffee, cocoa, tea, and a number of other beverages. However, their exploitation for authenticity, a requirement in these commodities that have a large origin-based price-range, by the standard method of isotope ratio monitoring by mass spectrometry (irm-MS) is limited. We have now developed a methodology that overcomes this deficit that exploits the power of isotopic quantitative (13)C nuclear magnetic resonance (NMR) spectrometry combined with chemical modification of the xanthines to enable the determination of positional intramolecular (13)C/(12)C ratios (δ(13)Ci) with high precision. However, only caffeine is amenable to analysis: theobromine and theophylline present substantial difficulties due to their poor solubility. However, their N-methylation to caffeine makes spectral acquisition feasible. The method is confirmed as robust, with good repeatability of the δ(13)Ci values in caffeine appropriate for isotope fractionation measurements at natural abundance. It is shown that there is negligible isotope fractionation during the chemical N-methylation procedure. Thus, the method preserves the original positional δ(13)Ci values. The method has been applied to measure the position-specific variation of the (13)C/(12)C distribution in caffeine. Not only is a clear difference between caffeine isolated from different sources observed, but theobromine from cocoa is found to show a (13)C pattern distinct from that of caffeine. PMID:26067163

  6. Comprehensive signal assignment of 13C-labeled lignocellulose using multidimensional solution NMR and 13C chemical shift comparison with solid-state NMR.

    PubMed

    Komatsu, Takanori; Kikuchi, Jun

    2013-09-17

    A multidimensional solution NMR method has been developed using various pulse programs including HCCH-COSY and (13)C-HSQC-NOESY for the structural characterization of commercially available (13)C labeled lignocellulose from potatoes (Solanum tuberosum L.), chicory (Cichorium intybus), and corn (Zea mays). This new method allowed for 119 of the signals in the (13)C-HSQC spectrum of lignocelluloses to be assigned and was successfully used to characterize the structures of lignocellulose samples from three plants in terms of their xylan and xyloglucan structures, which are the major hemicelluloses in angiosperm. Furthermore, this new method provided greater insight into fine structures of lignin by providing a high resolution to the aromatic signals of the β-aryl ether and resinol moieties, as well as the diastereomeric signals of the β-aryl ether. Finally, the (13)C chemical shifts assigned in this study were compared with those from solid-state NMR and indicated the presence of heterogeneous dynamics in the polysaccharides where rigid cellulose and mobile hemicelluloses moieties existed together. PMID:24010724

  7. A roadmap for interpreting 13C metabolite labeling patterns from cells

    PubMed Central

    Buescher, Joerg M.; Antoniewicz, Maciek R.; Boros, Laszlo G.; Burgess, Shawn C.; Brunengraber, Henri; Clish, Clary B.; DeBerardinis, Ralph J.; Feron, Olivier; Frezza, Christian; Ghesquiere, Bart; Gottlieb, Eyal; Hiller, Karsten; Jones, Russell G.; Kamphorst, Jurre J.; Kibbey, Richard G.; Kimmelman, Alec C.; Locasale, Jason W.; Lunt, Sophia Y.; Maddocks, Oliver D. K.; Malloy, Craig; Metallo, Christian M.; Meuillet, Emmanuelle J.; Munger, Joshua; Nöh, Katharina; Rabinowitz, Joshua D.; Ralser, Markus; Sauer, Uwe; Stephanopoulos, Gregory; St-Pierre, Julie; Tennant, Daniel A.; Wittmann, Christoph; Vander Heiden, Matthew G.; Vazquez, Alexei; Vousden, Karen; Young, Jamey D.; Zamboni, Nicola; Fendt, Sarah-Maria

    2015-01-01

    Measuring intracellular metabolism has increasingly led to important insights in biomedical research. 13C tracer analysis, although less information-rich than quantitative 13C flux analysis that requires computational data integration, has been established as a time-efficient method to unravel relative pathway activities, qualitative changes in pathway contributions, and nutrient contributions. Here, we review selected key issues in interpreting 13C metabolite labeling patterns, with the goal of drawing accurate conclusions from steady state and dynamic stable isotopic tracer experiments. PMID:25731751

  8. High-field dissolution dynamic nuclear polarization of [1-(13)C]pyruvic acid.

    PubMed

    Yoshihara, Hikari A I; Can, Emine; Karlsson, Magnus; Lerche, Mathilde H; Schwitter, Juerg; Comment, Arnaud

    2016-05-14

    [1-(13)C]pyruvate is the most widely used hyperpolarized metabolic magnetic resonance imaging agent. Using a custom-built 7.0 T polarizer operating at 1.0 K and trityl radical-doped [1-(13)C]pyruvic acid, unextrapolated solution-state (13)C polarization greater than 60% was measured after dissolution and rapid transfer to a spectrometer magnet, demonstrating the signal enhancement attainable using optimized hardware. Slower rates of polarization under these conditions can be largely overcome with higher radical concentrations. PMID:27093499

  9. Synthesis of D-[U-{sup 13}C]Glucal, D-[U-{sup 13}C] Galactal, and L-[U-{sup 13}C]Fucose for NMR structure studies of oligosaccharides

    SciTech Connect

    Wu, R.; Unkefer, C.J.; Silks, L.A. III

    1996-12-31

    The role of carbohydrates is well recognized in a variety of important biological phenomena such as cell surface recognition. Recent advances in carbohydrate chemistry, including the development of solid phase synthesis methods, have helped to provide significant quantities of material by offering general protocols for synthesis of well-defined, pure material. However, the study of the solution structure of oligosaccharides by nuclear magnetic resonance techniques have been hampered by the lack of enriched {sup 13}C material. In an effort to help alleviate this situation, we have been interested in the construction of the title compounds from a single economical carbon source, D-[U-{sup 13}C]glucose. Details of the syntheses will be provided.

  10. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Geilmann, Heike; Brand, Willi A.; Bohlke, John Karl

    2003-01-01

    Analytical grade L-glutamic acid is chemically stable and has a C/N mole ratio of 5, which is close to that of many of natural biological materials, such as blood and animal tissue. Two L-glutamic acid reference materials with substantially different 13C and 15N abundances have been prepared for use as organic reference materials for C and N isotopic measurements. USGS40 is analytical grade L-glutamic acid and has a δ13C value of −26.24‰ relative to VPDB and a δ15N value of −4.52‰ relative to N2 in air. USGS41 was prepared by dissolving analytical grade L-glutamic acid with L-glutamic acid enriched in 13C and 15N. USGS41 has a δ13C value of +37.76‰ and a δ15N value of +47.57‰. The δ13C and δ15N values of both materials were measured against the international reference materials NBS 19 calcium carbonate (δ13C = +1.95‰), L-SVEC lithium carbonate (δ13C = −46.48‰), IAEA-N-1 ammonium sulfate (δ15N = 0.43‰), and USGS32 potassium nitrate (δ15N = 180‰) by on-line combustion continuous-flow and off-line dual-inlet isotope-ratio mass spectrometry. Both USGS40 and USGS41 are isotopically homogeneous; reproducibility of δ13C is better than 0.13‰, and that of δ15N is better than 0.13‰ in 100-μg amounts. These two isotopic reference materials can be used for (i) calibrating local laboratory reference materials, and (ii) quantifying drift with time, mass-dependent fractionations, and isotope-ratio-scale contraction in the isotopic analysis of various biological materials. Isotopic results presented in this paper yield a δ13C value for NBS 22 oil of −29.91‰, in contrast to the commonly accepted value of −29.78‰ for which off-line blank corrections probably have not been quantified satisfactorily.

  11. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  12. Stable Carbon Isotopes (δ 13C) in Coral Skeletons: Experimental Approach and Applications for Paleoceanography

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.

    2004-12-01

    Scleractinian corals obtain fixed carbon via photosynthesis by their endosymbiotic algae (zooxanthellae) and via hetertrophy (injestion of zooplankton, δ 13C ≈ -17 to -22‰ ). Carbon dioxide (CO2) used for photosynthesis is obtained from seawater (δ 13C ≈ 0%) or from respired CO2 within the coral host. The δ 13C of the carbon used in the formation of the underlying coral skeleton is fractionated as a result of both of these metabolic processes. Here I have pooled evidence from several field and tank experiments on the effect of photosynthesis and heterotrophy of coral skeletal δ 13C. In the experiments, decreases in light levels due to shading or depth resulted in a significant decrease in skeletal δ 13C in all species studied (Pavona gigantea, Pavona clavus, Porites compressa). Decreases in photosynthesis in bleached corals also resulted in a decrease in skeletal δ 13C compared to non-bleached corals growing under the same conditions and at the same location. Skeletal δ 13C also decreased at higher than normal light levels most likely due to photoinhibition. Thus, decreases in photosynthesis due to reduced light levels, due to bleaching-induced decreases in chlorophyll a concentrations, or due to photodamage-induced decreases in functional cholorphyll a, results in significant δ 13C decreases. Comprehensive interpretation of all of the data showed that changes in photosynthesis itself can drive the changes in δ 13C. In field experiments, the addition of natural concentrations of zooplankton to the diet resulted in decreases in skeletal δ 13C. Such a decrease was more pronounced with depth and in P. gigantea compared to P. clavus. In situ feeding experiments have since confirmed these findings. However under tank conditions with unaturally high feeding rates, enhanced nitrogen supply in the diet can disrupt the coral-algal symbiosis, stimlate zooxanthellae growth and photosynthesis, and cause an incrase in skeletal δ 13C. It is proposed that under

  13. Trimethylation Enhancement Using (13)C-Diazomethane ((13)C-TrEnDi): Increased Sensitivity and Selectivity of Phosphatidylethanolamine, Phosphatidylcholine, and Phosphatidylserine Lipids Derived from Complex Biological Samples.

    PubMed

    Canez, Carlos R; Shields, Samuel W J; Bugno, Magdalena; Wasslen, Karl V; Weinert, Hillary P; Willmore, William G; Manthorpe, Jeffrey M; Smith, Jeffrey C

    2016-07-19

    Significant sensitivity enhancements in the tandem mass spectrometry-based analysis of complex mixtures of several phospholipid classes has been achieved via (13)C-TrEnDi. (13)C-TrEnDi-modified phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylcholine (PC) lipids extracted from HeLa cells demonstrated greater sensitivity via precursor ion scans (PISs) than their unmodified counterparts. Sphingomyelin (SM) species exhibited neither an increased nor decreased sensitivity following modification. The use of isotopically labeled diazomethane enabled the distinction of modified PE and modified PC species that would yield isobaric species with unlabeled diazomethane. (13)C-TrEnDi created a PE-exclusive PIS of m/z 202.1, two PS-exclusive PISs of m/z 148.1 and m/z 261.1, and a PIS of m/z 199.1 for PC species (observed at odd m/z values) and SM species (observed at even m/z values). The standardized average area increase after TrEnDi modification was 10.72-fold for PE species, 2.36-fold for PC, and 1.05-fold for SM species. The sensitivity increase of PS species was not quantifiable, as there were no unmodified PS species identified prior to derivatization. (13)C-TrEnDi allowed for the identification of 4 PE and 7 PS species as well as the identification and quantitation of an additional 4 PE and 4 PS species that were below the limit of detection (LoD) prior to modification. (13)C-TrEnDi also pushed 24 PE and 6 PC lipids over the limit of quantitation (LoQ) that prior to modification were above the LoD only. PMID:27275841

  14. Observation of cytoplasmic and vacuolar malate in maize root tips by sup 13 C-NMR spectroscopy. [Zea mays L

    SciTech Connect

    Chang, K.; Roberts, J.K.M. )

    1989-01-01

    The accumulation of malate by maize (Zea mays L.) root tips perfused with KH{sup 13}CO{sub 3} was followed by {sup 13}C nuclear magnetic resonance spectroscopy. In vivo nuclear magnetic resonance spectra contained distinct signals from two pools of malate in maize root tips, one at a pH {approximately}5.3 (assigned to the vacuole) and one at a pH > 6.5 (assigned to the cytoplasm). The ratio of cytoplasmic to vacuolar malate was lower in 12 millimeter long root tips than in 2 millimeter root tips. The relatively broad width of the signals from C1- and C4-labeled vacuolar malate indicated heterogeneity in vacuolar pH. During the 3 hour KH{sup 13}CO{sub 3} treatment, {sup 13}C-malate accumulated first primarily in the cytoplasm, increasing to a fairly constant level of {approximately}6 millimolar by 1 hour. After a lag, vacuolar malate increased throughout the experiment.

  15. High resolution analysis of the ethylene-1-13C spectrum in the 8.4-14.3 um region

    SciTech Connect

    Flaud, Jean Marie; Lafferty, Walter J.; Sams, Robert L.; Devi, V. M.

    2010-01-29

    Fourier transform spectra of mono-13C ethylene have been recorded in the 8.4-14.3- μm spectral region (700 cm-1 to 1190 cm-1) using a Bruker 120 HR interferometer at a resolution of 0.0017 cm-1 allowing the extensive study of the set of resonating states {101, 81, 71,41,61}. Due to the high resolution available as well as the extended spectral range involved in this study, a much larger set of line assignments are now available. The present analysis has leads to the determination of more accurate spectroscopic constants including interaction constants than were obtained in earlier studies. In particular, the following band centers were derived: ν0(ν10) = 825.40602(30) cm-1, ν0(ν8) = 932.19572(15) cm-1, ν0(ν7) = 937.44452(10) cm-1, ν0(ν4) = 1025.6976(14) cm-1. Finally a synthetic spectrum was generated leading to the assignment of a number of 13C12CH4 lines observed through an earlier heterodyne spectroscopic study.

  16. Study of stereospecificity of 1H, 13C, 15N and 77Se shielding constants in the configurational isomers of the selenophene-2-carbaldehyde azine by NMR spectroscopy and MP2-GIAO calculations.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Albanov, Alexander I; Levanova, Ekaterina P; Levkovskaya, Galina G

    2011-11-01

    In the (1)H and (13)C NMR spectra of selenophene-2-carbaldehyde azine, the (1)H-5, (13)C-3 and (13)C-5 signals of the selenophene ring are shifted to higher frequencies, whereas those of the (1)H-1, (13)C-1, (13)C-2 and (13)C-4 are shifted to lower frequencies on going from the EE to ZZ isomer or from the E moiety to the Z moiety of EZ isomer. The (15)N chemical shift is significantly larger in the EE isomer relative to the ZZ isomer and in the E moiety relative to the Z moiety of EZ isomer. A very pronounced difference (60-65 mg/g) between the (77)Se resonance positions is revealed in the studied azine isomers, the (77)Se peak being shifted to higher frequencies in the ZZ isomer and in the Z moiety of EZ isomer. The trends in the changes of the measured chemical shifts are reasonably reproduced by the GIAO calculations at the MP2 level of the (1)H, (13)C, (15)N and (77)Se shielding constants in the energy-favorable conformation with the syn orientation of both selenophene rings relative to the C = N groups. The NBO analysis suggests that such an arrangement of the selenophene rings may take place because of a higher energy of some intramolecular interactions. PMID:22002712

  17. 13C MR imaging of methionine-rich gliomas at 4.7T: a pilot study.

    PubMed

    Sasao, Akira; Hirai, Toshinori; Iriguchi, Norio; Nakamura, Hideo; Kudo, Mareina; Sasao, Ako; Yamashita, Yasuyuki

    2011-01-01

    We explored the feasibility of using carbon-13 ((13)C) magnetic resonance imaging ((13)C-MRI) to depict (13)C-labeled methionine-enriched gliomas at 4.7 tesla. We transplanted 2 types of glioma cells separately to 2 subcutaneous tissue sites on the backs of mice weighing 15 to 20 g. After confirming tumor growth, we used (13)C-MRI and (1)H-MRI to scan 4 mice that had been administered (13)C-labeled methionine and 2 control mice. (13)C-MRI of all 4 transplanted mice administered with (13)C-labeled methionine revealed 2 areas of hyperintensity that corresponded to the tumor sites on (1)H-MR images, but no such areas were visualized in transplanted controls. Our data suggest that (13)C-MRI can show the accumulation of (13)C-labeled tracer by gliomas. PMID:21720117

  18. Separation of extra- and intracellular metabolites using hyperpolarized 13C diffusion weighted MR

    NASA Astrophysics Data System (ADS)

    Koelsch, Bertram L.; Sriram, Renuka; Keshari, Kayvan R.; Leon Swisher, Christine; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B.; Wang, Zhen J.; Larson, Peder E. Z.; Kurhanewicz, John

    2016-09-01

    This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized 13C magnetic resonance spectroscopy. Using b-values of up to 15,000 s mm-2, a multi-exponential signal response was measured for hyperpolarized [1-13C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized 13C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized 13C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers.

  19. Fusion cross section of 12C+13C at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Zhang, N. T.; Tang, X. D.; Chen, H.; Chesneanu, D.; Straticiuc, M.; Trache, L.; Burducea, I.; Li, K. A.; Li, Y. J.; Ghita, D. G.; Margineanu, R.; Pantelica, A.; Gomoiu, C.

    2016-02-01

    In the recent work at Notre Dame, correlations between three carbon isotope fusion systems have been studied and it is found that the fusion cross sections of 12C+13Cand 13C+13C provide an upper limit on the fusion cross section of the astrophysically important 12C+12C reaction.The aim of this work is to continue such research by measuring the fusion cross section of the 12C+13C reaction to lower energies. In this experiment, the off-line activity measurement was performed in the ultra-low background laboratory 12C+13C and the fusion cross section for has been determined in the energy range of Ec.m. =2.5-6.8 MeV. Comparison between this work and several models is also presented.

  20. Strongly polarizing weakly coupled 13C nuclear spins with optically pumped nitrogen-vacancy center

    PubMed Central

    Wang, Ping; Liu, Bao; Yang, Wen

    2015-01-01

    Enhancing the polarization of nuclear spins surrounding the nitrogen-vacancy (NV) center in diamond has recently attracted widespread attention due to its various applications. Here we present an analytical formula that not only provides a clear physical picture for the recently observed polarization reversal of strongly coupled13C nuclei over a narrow range of magnetic field [H. J. Wang et al., Nat. Commun. 4, 1940 (2013)], but also demonstrates the possibility to strongly polarize weakly coupled13C nuclei. This allows sensitive magnetic field control of the 13C nuclear spin polarization for NMR applications and significant suppression of the 13C nuclear spin noise to prolong the NV spin coherence time. PMID:26521962

  1. 13C-DEPLETED MICROBIAL LIPIDS INDICATE SEASONAL METHANOTROPHIC ACTIVITY IN SHALLOW ESTUARINE SEDIMENTS

    EPA Science Inventory

    Compound specific isotope analysis was combined with phospholipid fatty acid (PLFA) analysis to identify methanotrophic activity in members of the sedimentary microbial community in the Altamaha and Savannah River estuaries in Georgia. 13C-depleted PLFAs indicate methane utilizat...

  2. Separation of extra- and intracellular metabolites using hyperpolarized (13)C diffusion weighted MR.

    PubMed

    Koelsch, Bertram L; Sriram, Renuka; Keshari, Kayvan R; Leon Swisher, Christine; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B; Wang, Zhen J; Larson, Peder E Z; Kurhanewicz, John

    2016-09-01

    This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized (13)C magnetic resonance spectroscopy. Using b-values of up to 15,000smm(-2), a multi-exponential signal response was measured for hyperpolarized [1-(13)C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized (13)C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized (13)C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers. PMID:27434780

  3. Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction

    DOEpatents

    Chen, Xian; Gupta, Goutam; Bradbury, E. Morton

    2001-01-01

    Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.

  4. Natural abundance measurements of 13C indicate increased deep soil carbon mineralization after forest disturbance

    NASA Astrophysics Data System (ADS)

    Diochon, Amanda; Kellman, Lisa

    2008-07-01

    Northern forest soils represent globally important stores of carbon (C), yet there is no consensus about how they are altered by the widespread practice of harvesting that dominates many forested landscapes. Here we present the first study to systematically investigate the utility of δ 13C and C content depth profiles to infer temporal changes in belowground carbon cycling processes following disturbance in a pure C3 ecosystem. We document carbon concentration and δ 13C depth profile enrichment trends consistent with a kinetic fractionation arising from soil organic carbon (SOC) humification across a northern forest chronosequence (1, 15, 45, 80 and 125+ yrs). Reduced soil C storage that coincided with observed soil profile δ 13C-enrichment patterns which intensified following clearcut harvesting, pointed to losses of SOC in the deeper (>20 cm) mineral soil. This study suggests the δ 13C approach may assist in identifying mechanisms responsible for soil C storage changes in disturbed C3 forest ecosystems.

  5. A procedure to validate and correct the 13C chemical shift calibration of RNA datasets.

    PubMed

    Aeschbacher, Thomas; Schubert, Mario; Allain, Frédéric H-T

    2012-02-01

    Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of (13)C NMR data of RNAs. Our procedure uses five (13)C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the (13)C calibration and detect errors or inconsistencies in RNA (13)C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure-(13)C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable (13)C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure-chemical shift relationships with this improved list of (13)C chemical shift data. This is demonstrated by a clear relationship between ribose (13)C shifts and the sugar pucker, which can be used to predict a C2'- or C3'-endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA. PMID:22252483

  6. Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for (13)C metabolic flux analysis.

    PubMed

    Au, Jennifer; Choi, Jungik; Jones, Shawn W; Venkataramanan, Keerthi P; Antoniewicz, Maciek R

    2014-11-01

    In this work, we provide new insights into the metabolism of Clostridium acetobutylicum ATCC 824 obtained using a systematic approach for quantifying fluxes based on parallel labeling experiments and (13)C-metabolic flux analysis ((13)C-MFA). Here, cells were grown in parallel cultures with [1-(13)C]glucose and [U-(13)C]glucose as tracers and (13)C-MFA was used to quantify intracellular metabolic fluxes. Several metabolic network models were compared: an initial model based on current knowledge, and extended network models that included additional reactions that improved the fits of experimental data. While the initial network model did not produce a statistically acceptable fit of (13)C-labeling data, an extended network model with five additional reactions was able to fit all data with 292 redundant measurements. The model was subsequently trimmed to produce a minimal network model of C. acetobutylicum for (13)C-MFA, which could still reproduce all of the experimental data. The flux results provided valuable new insights into the metabolism of C. acetobutylicum. First, we found that TCA cycle was effectively incomplete, as there was no measurable flux between α-ketoglutarate and succinyl-CoA, succinate and fumarate, and malate and oxaloacetate. Second, an active pathway was identified from pyruvate to fumarate via aspartate. Third, we found that isoleucine was produced exclusively through the citramalate synthase pathway in C. acetobutylicum and that CAC3174 was likely responsible for citramalate synthase activity. These model predictions were confirmed in several follow-up tracer experiments. The validated metabolic network model established in this study can be used in future investigations for unbiased (13)C-flux measurements in C. acetobutylicum. PMID:25183671

  7. (13)C-Breath testing in animals: theory, applications, and future directions.

    PubMed

    McCue, Marshall D; Welch, Kenneth C

    2016-04-01

    The carbon isotope values in the exhaled breath of an animal mirror the carbon isotope values of the metabolic fuels being oxidized. The measurement of stable carbon isotopes in carbon dioxide is called (13)C-breath testing and offers a minimally invasive method to study substrate oxidation in vivo. (13)C-breath testing has been broadly used to study human exercise, nutrition, and pathologies since the 1970s. Owing to reduced use of radioactive isotopes and the increased convenience and affordability of (13)C-analyzers, the past decade has witnessed a sharp increase in the use of breath testing throughout comparative physiology-especially to answer questions about how and when animals oxidize particular nutrients. Here, we review the practical aspects of (13)C-breath testing and identify the strengths and weaknesses of different methodological approaches including the use of natural abundance versus artificially-enriched (13)C tracers. We critically compare the information that can be obtained using different experimental protocols such as diet-switching versus fuel-switching. We also discuss several factors that should be considered when designing breath testing experiments including extrinsic versus intrinsic (13)C-labelling and different approaches to model nutrient oxidation. We use case studies to highlight the myriad applications of (13)C-breath testing in basic and clinical human studies as well as comparative studies of fuel use, energetics, and carbon turnover in multiple vertebrate and invertebrate groups. Lastly, we call for increased and rigorous use of (13)C-breath testing to explore a variety of new research areas and potentially answer long standing questions related to thermobiology, locomotion, and nutrition. PMID:26660654

  8. The effect of chemical processing on the δ 13C value of plant tissue

    NASA Astrophysics Data System (ADS)

    Van de Water, Peter K.

    2002-04-01

    The effect of standard processing techniques on the δ 13C value of plant tissue was tested using species representing the three photosynthetic pathways, including angiosperms and gymnosperms within the C 3 taxonomic division. The species include Cowania mexicana (C 3 angiosperm), Juniperus osteosperma (C 3 gymnosperm), Opuntia spp. (crassulacean acid metabolism [CAM] angiosperm), and Atriplex canescens (C 4 angiosperm). Each species is represented by 5 plants collected at two different sites, for a total of 10 samples. The samples were processed to whole plant tissue, holocellulose, α-cellulose, and nitrocellulose. An additional process was added with the discovery of residual Ca-oxalate crystals in holocellulose samples. Both C 3 species show δ 13C values becoming 13C enriched with increased processing. The CAM representative shows the opposite trend, with 13C depletion during the progression of treatments. The greatest range of values and most inconsistent trends occur in the C 4 representative. Removal of the Ca-oxalate fraction resulted in different mean weight percentages and δ 13C values among the species. Calculated δ 13C values of the Ca-oxalate crystals show depletion from the tissue values in the two C 3 species and enrichment in the C 4 and CAM representatives. The C. mexicana samples show the greatest change between the tissue and Ca-oxalates (7.3‰) but the least mean weight percentage (11%), whereas A. canescens shows the greatest overall change, with a -2.8‰ isotopic shift and over 48% mean weight percentage. Variability within the samples undergoing each treatment remained relatively unchanged even with increased cellulose purity. This paper provides estimates of isotopic offsets necessary to correct from one treatment to another. Significant differences in δ 13C among different treatments confirm the need to state the tissue fraction analyzed when reporting δ 13C results.

  9. Multi-year estimates of plant and ecosystem 13C discrimination at AmeriFlux sites

    NASA Astrophysics Data System (ADS)

    Dang, X.; Lai, C.; Hollinger, D. Y.; Bush, S.; Randerson, J. T.; Law, B. E.; Schauer, A. J.; Ehleringer, J.

    2011-12-01

    We estimated plant and ecosystem 13C discrimination continuously at 8 AmeriFlux sites (Howland Forest, Harvard Forest, Wind River Forest, Rannells Prairie, Freeman Ranch, Chestnut Ridge, Metolius, and Marys River fir) over 8 years (2002-2009). We used an observation-based approach from weekly measurements of eddy covariance CO2 fluxes and their 13C/12C ratios to estimate photosynthetic 13C discrimination (△A) and respiration (δ13CR) on seasonal and interannual time scales. The coordinated, systematic flask sampling across the AmeriFlux subnetwork were used for cross-site synthesis of monthly flux estimates [Dang et al. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over 4 flux towers in the U.S.A., Journal of Geophysical Research-Biogeosciences, in press]. Here, we evaluated environmental factors that also influenced temporal variability in △A and δ13CR from daily to interannual time scales, comparing atmospheric 13C/12C measurements, leaf and needle organic matter, and tree ring cellulose. Across these major biomes that dominate the continent, we show differential ecophysiological responses to environmental stresses, among which water availability appeared to be a dominant factor. Our decadal measurement period provided robust estimates of atmospheric 13C discrimination by terrestrial ecosystems, but also suggest regions where enhanced monitoring efforts are required (e.g., 13C/12C emission from fire and urban metabolism; increased temporal resolution of 13C measurements in stress-sensitive ecosystems) to make atmospheric 13C/12C measurements an effective constraint for continental-scale assessments of the terrestrial carbon cycle.

  10. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of (13)C-labeled Plant Metabolites and Lignocellulose.

    PubMed

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our (13)C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the (13)C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the (13)C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in (13)C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  11. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose

    PubMed Central

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  12. Simultaneous cross polarization to 13C and 15N with 1H detection at 60 kHz MAS solid-state NMR

    NASA Astrophysics Data System (ADS)

    Das, Bibhuti B.; Opella, Stanley J.

    2016-01-01

    We describe high resolution MAS solid-state NMR experiments that utilize 1H detection with 60 kHz magic angle spinning; simultaneous cross-polarization from 1H to 15N and 13C nuclei; bidirectional cross-polarization between 13C and 15N nuclei; detection of both amide nitrogen and aliphatic carbon 1H; and measurement of both 13C and 15N chemical shifts through multi-dimensional correlation experiments. Three-dimensional experiments correlate amide 1H and alpha 1H selectively with 13C or 15N nuclei in a polypeptide chain. Two separate three-dimensional spectra correlating 1Hα/13Cα/1HN and 1HN/15N/1Hα are recorded simultaneously in a single experiment, demonstrating that a twofold savings in experimental time is potentially achievable. Spectral editing using bidirectional coherence transfer pathways enables simultaneous magnetization transfers between 15N, 13Cα(i) and 13C‧(i-1), facilitating intra- and inter-residue correlations for sequential resonance assignment. Non-uniform sampling is integrated into the experiments, further reducing the length of experimental time.

  13. Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls

    SciTech Connect

    Dick-Perez, Marilu; Wang, Tuo; Salazar, Andre; Zabotina, Olga A.; Hong, Mei

    2012-07-08

    Plant cell wall (CW) polysaccharides are responsible for the mechanical strength and growth of plant cells; however, the high-resolution structure and dynamics of the CW polysaccharides are still poorly understood because of the insoluble nature of these molecules. Here, we use 2D and 3D magic-angle-spinning (MAS) solid-state NMR (SSNMR) to investigate the structural role of pectins in the plant CW. Intact and partially depectinated primary CWs of Arabidopsis thaliana were uniformly labeled with 13C and their NMR spectra were compared. Recent 13C resonance assignment of the major polysaccharides in Arabidopsis thaliana CWs allowed us to determine the effects of depectination on the intermolecular packing and dynamics of the remaining wall polysaccharides. 2D and 3D correlation spectra show the suppression of pectin signals, confirming partial pectin removal by chelating agents and sodium carbonate. Importantly, higher cross peaks are observed in 2D and 3D 13C spectra of the depectinated CW, suggesting higher rigidity and denser packing of the remaining wall polysaccharides compared with the intact CW. 13C spin–lattice relaxation times and 1H rotating-frame spin–lattice relaxation times indicate that the polysaccharides are more rigid on both the nanosecond and microsecond timescales in the depectinated CW. Taken together, these results indicate that pectic polysaccharides are highly dynamic and endow the polysaccharide network of the primary CW with mobility and flexibility, which may be important for pectin functions. This study demonstrates the capability of multidimensional SSNMR to determine the intermolecular interactions and dynamic structures of complex plant materials under near-native conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Directly detected 55Mn MRI: Application to phantoms for human hyperpolarized 13C MRI development

    PubMed Central

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D.; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B.

    2014-01-01

    In this work we demonstrate for the first time directly detected manganese-55 (55Mn) MRI using a clinical 3T MRI scanner designed for human hyperpolarized 13C clinical studies with no additional hardware modifications. Due to the similar frequency of the 55Mn and 13C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective “13C” MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, 55Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical 13C phantom MRI, at greatly reduced cost as compared with large 13C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d= 8 cm) containing concentrated aqueous sodium permanganate (2.7M) was scanned rapidly by 55Mn MRI in a human head coil tuned for 13C, using a balanced SSFP acquisition. The requisite penetration of RF magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for 55Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image SNR of ~60 at 0.5cm3 spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP 13C coils and methods designed for human studies. PMID:25179135

  15. Extreme (13)C depletion of carbonates formed during oxidation of biogenic methane in fractured granite.

    PubMed

    Drake, Henrik; Åström, Mats E; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-01-01

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C13C as light as -69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to -125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane. PMID:25948095

  16. Extreme 13C depletion of carbonates formed during oxidation of biogenic methane in fractured granite

    PubMed Central

    Drake, Henrik; Åström, Mats E.; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-01-01

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C13C as light as −69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to −125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane. PMID:25948095

  17. Perfusion and diffusion sensitive 13C stimulated-echo MRSI for metabolic imaging of cancer.

    PubMed

    Larson, Peder E Z; Hurd, Ralph E; Kerr, Adam B; Pauly, John M; Bok, Robert A; Kurhanewicz, John; Vigneron, Daniel B

    2013-06-01

    Metabolic imaging with hyperpolarized [1-(13)C]-pyruvate can rapidly probe tissue metabolic profiles in vivo and has been shown to provide cancer imaging biomarkers for tumor detection, progression, and response to therapy. This technique uses a bolus injection followed by imaging within 1-2 minutes. The observed metabolites include vascular components and their generation is also influenced by cellular transport. These factors complicate image interpretation, especially since [1-(13)C]lactate, a metabolic product that is a biomarker of cancer, is also produced by red blood cells. It would be valuable to understand the distribution of metabolites between the vasculature, interstitial space, and intracellular compartments. The purpose of this study was to better understand this compartmentalization by using a perfusion and diffusion-sensitive stimulated-echo acquisition mode (STEAM) MRSI acquisition method tailored to hyperpolarized substrates. Our results in mouse models showed that among metabolites, the injected substrate (13)C-pyruvate had the largest vascular fraction overall while (13)C-alanine had the smallest vascular fraction. We observed a larger vascular fraction of pyruvate and lactate in the kidneys and liver when compared to back muscle and prostate tumor tissue. Our data suggests that (13)C-lactate in prostate tumor tissue voxels was the most abundant labeled metabolite intracellularly. This was shown in STEAM images that highlighted abnormal cancer cell metabolism and suppressed vascular (13)C metabolite signals. PMID:23260391

  18. Development of a 13C-optimized 1.5-mm high temperature superconducting NMR probe

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Vijaykumar; Hooker, Jerris W.; Withers, Richard S.; Nast, Robert E.; Brey, William W.; Edison, Arthur S.

    2013-10-01

    We report a 1.5-mm NMR probe based on high temperature superconductors operating at 14.1 T optimized for 13C detection. The probe has a total sample volume of about 35 microliters (μL) with an active volume of 20 μL and provides exceptional mass sensitivity for 13C detection. The probe also has excellent 1H sensitivity and employs a 2H lock; 15N irradiation capability can be added in the future. The coils are cooled to about 20 K using a standard Agilent cryogenic refrigeration system, and the sample temperature is regulated near room temperature. The coil design considerations are discussed in detail. This probe is ideal for directly detected 13C NMR experiments for natural products chemistry and metabolomics applications, for which 35 μL is an optimal sample volume. The outstanding 13C sensitivity of this probe allowed us to directly determine the 13C connectivity on 1.1 mg of natural abundance histidine using an INADEQUATE experiment. We demonstrated the utility of this probe for 13C-based metabolomics using a synthetic mixture of common natural abundance metabolites whose concentrations ranged from 1 to 5 mM (40-200 nmol).

  19. R-Matrix Analysis of the 13C(α,n)16O Reaction

    NASA Astrophysics Data System (ADS)

    Kock, Arthur; Rogachev, Grigory

    2015-10-01

    The 13C(α,n)16O reaction plays a crucial role in the main s-process occurring in low-mass thermally-pulsing asymptotic giant branch (TP-AGB) stars, which produces about half of all nuclei heavier than iron. However, direct measurements of this reaction cross section near the Gamow-peak energy are currently not possible due to very small reaction cross sections. Additionally, available cross-section data at higher energy have some inconsistencies, leading to significant uncertainties in low energy extrapolations. A global R-matrix fit was conducted, using all available data for the 13C(α,n)16O, 13C(α, α)13C, and 16O(n,n)16O reactions. Of particular importance was the inclusion of the fixed ANC for the 1 / 2 + state at 6 . 356 MeV in 17O, which was measured recently using the sub-Coulomb α-transfer reaction, as well as the new 13C+ α elastic-scattering data measured in the low-energy region 1 . 6 - 3 . 8 MeV. Important constraining information on various resonances was found, and the uncertainty for the astrophysical 13C(α,n)16O reaction rate was dramatically reduced. Much work on the analysis was done by A. K. Nurmukhanbetova from National Laboratory Astana in Astana, Kazakhstan.

  20. The paper trail of the 13C of atmospheric CO2 since the industrial revolution period

    NASA Astrophysics Data System (ADS)

    Yakir, Dan

    2011-07-01

    The 13C concentration in atmospheric CO2 has been declining over the past 150 years as large quantities of 13C-depleted CO2 from fossil fuel burning are added to the atmosphere. Deforestation and other land use changes have also contributed to the trend. Looking at the 13C variations in the atmosphere and in annual growth rings of trees allows us to estimate CO2 uptake by land plants and the ocean, and assess the response of plants to climate. Here I show that the effects of the declining 13C trend in atmospheric CO2 are recorded in the isotopic composition of paper used in the printing industry, which provides a well-organized archive and integrated material derived from trees' cellulose. 13C analyses of paper from two European and two American publications showed, on average, a - 1.65 ± 1.00‰ trend between 1880 and 2000, compared with - 1.45 and - 1.57‰ for air and tree-ring analyses, respectively. The greater decrease in plant-derived 13C in the paper we tested than in the air is consistent with predicted global-scale increases in plant intrinsic water-use efficiency over the 20th century. Distinct deviations from the atmospheric trend were observed in both European and American publications immediately following the World War II period.

  1. 13C-labelled microdialysis studies of cerebral metabolism in TBI patients☆

    PubMed Central

    Carpenter, Keri L.H.; Jalloh, Ibrahim; Gallagher, Clare N.; Grice, Peter; Howe, Duncan J.; Mason, Andrew; Timofeev, Ivan; Helmy, Adel; Murphy, Michael P.; Menon, David K.; Kirkpatrick, Peter J.; Carpenter, T. Adrian; Sutherland, Garnette R.; Pickard, John D.; Hutchinson, Peter J.

    2014-01-01

    Human brain chemistry is incompletely understood and better methodologies are needed. Traumatic brain injury (TBI) causes metabolic perturbations, one result of which includes increased brain lactate levels. Attention has largely focussed on glycolysis, whereby glucose is converted to pyruvate and lactate, and is proposed to act as an energy source by feeding into neurons’ tricarboxylic acid (TCA) cycle, generating ATP. Also reportedly upregulated by TBI is the pentose phosphate pathway (PPP) that does not generate ATP but produces various molecules that are putatively neuroprotective, antioxidant and reparative, in addition to lactate among the end products. We have developed a novel combination of 13C-labelled cerebral microdialysis both to deliver 13C-labelled substrates into brains of TBI patients and recover the 13C-labelled metabolites, with high-resolution 13C NMR analysis of the microdialysates. This methodology has enabled us to achieve the first direct demonstration in humans that the brain can utilise lactate via the TCA cycle. We are currently using this methodology to make the first direct comparison of glycolysis and the PPP in human brain. In this article, we consider the application of 13C-labelled cerebral microdialysis for studying brain energy metabolism in patients. We set this methodology within the context of metabolic pathways in the brain, and 13C research modalities addressing them. PMID:24361470

  2. Metabolism of [13C5]hydroxyproline in vitro and in vivo: implications for primary hyperoxaluria

    PubMed Central

    Jiang, Juquan; Johnson, Lynnette C.; Knight, John; Callahan, Michael F.; Riedel, Travis J.; Holmes, Ross P.

    2012-01-01

    Hydroxyproline (Hyp) metabolism is a key source of glyoxylate production in the body and may be a major contributor to excessive oxalate production in the primary hyperoxalurias where glyoxylate metabolism is impaired. Important gaps in our knowledge include identification of the tissues with the capacity to degrade Hyp and the development of model systems to study this metabolism and how to suppress it. The expression of mRNA for enzymes in the pathway was examined in 15 different human tissues. Expression of the complete pathway was identified in liver, kidney, pancreas, and small intestine. HepG2 cells also expressed these mRNAs and enzymes and were shown to metabolize Hyp in the culture medium to glycolate, glycine, and oxalate. [18O]- and [13C5]Hyp were synthesized and evaluated for their use with in vitro and in vivo models. [18O]Hyp was not suitable because of an apparent tautomerism of [18O]glyoxylate between enol and hydrated forms, which resulted in a loss of isotope. [13C5]Hyp, however, was metabolized to [13C2]glycolate, [13C2]glycine, and [13C2]oxalate in vitro in HepG2 cells and in vivo in mice infused with [13C5]Hyp. These model systems should be valuable tools for exploring various aspects of Hyp metabolism and will be useful in determining whether blocking Hyp catabolism is an effective therapy in the treatment of primary hyperoxaluria. PMID:22207577

  3. (13) C Breath Tests Are Feasible in Patients With Extracorporeal Membrane Oxygenation Devices.

    PubMed

    Bednarsch, Jan; Menk, Mario; Malinowski, Maciej; Weber-Carstens, Steffen; Pratschke, Johann; Stockmann, Martin

    2016-07-01

    Temporary extracorporeal membrane oxygenation (ECMO) has been established as an essential part of therapy in patients with pulmonary or cardiac failure. As physiological gaseous exchange is artificially altered in this patient group, it is debatable whether a (13) C-breath test can be carried out. In this proof of technical feasibility report, we assess the viability of the (13) C-breath test LiMAx (maximum liver function capacity) in patients on ECMO therapy. All breath probes for the test device were obtained directly via the membrane oxygenator. Data of four patients receiving liver function assessment with the (13) C-breath test LiMAx while having ECMO therapy were analyzed. All results were compared with validated scenarios of the testing procedures. The LiMAx test could successfully be carried out in every case without changing ECMO settings. Clinical course of the patients ranging from multiorgan failure to no sign of liver insufficiency was in accordance with the results of the LiMAx liver function test. The (13) C-breath test is technically feasible in the context of ECMO. Further evaluation of (13) C-breath test in general would be worthwhile. The LiMAx test as a (13) C-breath test accessing liver function might be of particular predictive interest if patients with ECMO therapy develop multiorgan failure. PMID:26527580

  4. sup 13 C and sup 18 O isotopic disequilibrium in biological carbonates: I. Patterns

    SciTech Connect

    McConnaughey, T. )

    1989-01-01

    Biological carbonates frequently precipitate out of {sup 18}O and {sup 13}C equilibrium with ambient waters. Two patterns of isotopic disequilibrium are particularly common. Kinetic disequilibria, so designated because they apparently result from kinetic isotope effects during CO{sub 2} hydration and hydroxylation, involve simultaneous depletions of {sup 18}O and {sup 13}C as large as 4{per thousand} and 10 to 15{per thousand}, respectively. Rapid skeletogenesis favors strong kinetic effects, and approximately linear correlations between skeletal {delta}{sup 18}O and {delta}{sup 13}C are common in carbonates showing mainly the kinetic pattern. Metabolic effects involve additional positive or negative modulation of skeletal {delta}{sup 13}C, reflecting changes in the {delta}{sup 13}C of dissolved inorganic carbon, caused mainly by photosynthesis and respiration. Kinetic isotope disequilibria tend to be fairly consistent in rapidly growing parts of photosynthetic corals, and time dependent isotopic variations therefore reflect changes in environmental conditions. {delta}{sup 18}O variations from Galapagos corals yields meaningful clues regarding seawater temperature, while {delta}{sup 13}C variations reflect changes in photosynthesis, modulated by cloudiness.

  5. Development of a 13C-Optimized 1.5-mm High Temperature Superconducting NMR Probe

    PubMed Central

    Ramaswamy, Vijaykumar; Hooker, Jerris W.; Withers, Richard S.; Nast, Robert E.; Brey, William W.; Edison, Arthur S.

    2013-01-01

    We report a 1.5-mm NMR probe based on high temperature superconductors operating at 14.1 T optimized for 13C detection. The probe has a total sample volume of about 35 microliters (μL) with an active volume of 20 μL and provides exceptional mass sensitivity for 13C detection. The probe also has excellent 1H sensitivity and employs a 2H channel lock; 15N irradiation capability can be added in the future. The coils are cooled to about 20 K using a standard Agilent cryogenic refrigeration system, and the sample temperature is regulated near room temperature. The coil design considerations are discussed in detail. This probe is ideal for directly detected 13C NMR experiments for natural products chemistry and metabolomics applications, for which 35 μL is an optimal sample volume. The outstanding 13C sensitivity of this probe allowed us to directly determine the 13C connectivity on 1.1 mg of natural abundance histidine using an INADEQUATE experiment. We demonstrated the utility of this probe for 13C-based metabolomics using a synthetic mixture of common natural abundance metabolites whose concentrations ranged from 1 to 5 mM (40 to 200 nmol). PMID:23969086

  6. [2,4-13C2]-β-Hydroxybutyrate Metabolism in Human Brain

    PubMed Central

    Pan, Jullie W.; de Graaf, Robin A.; Petersen, Kitt F.; Shulman, Gerald I.; Hetherington, Hoby P.; Rothman, Douglas L.

    2010-01-01

    Summary Infusions of [2,4-13C2]-β-hydroxybutyrate and 1H–13C polarization transfer spectroscopy were used in normal human subjects to detect the entry and metabolism of β-hydroxybutyrate in the brain. During the 2-hour infusion study, 13C label was detectable in the β-hydroxybutyrate resonance positions and in the amino acid pools of glutamate, glutamine, and aspartate. With a plasma concentration of 2.25 ± 0.24 mmol/L (four volunteers), the apparent tissue β-hydroxybutyrate concentration reached 0.18 ± 0.06 mmol/L during the last 20 minutes of the study. The relative fractional enrichment of 13C-4-glutamate labeling was 6.78 ± 1.71%, whereas 13C-4-glutamine was 5.68 ± 1.84%. Steady-state modeling of the 13C label distribution in glutamate and glutamine suggests that, under these conditions, the consumption of the β-hydroxybutyrate is predominantly neuronal, used at a rate of 0.032 ± 0.009 mmol · kg−1 · min−1, and accounts for 6.4 ± 1.6% of total acetyl coenzyme A oxidation. These results are consistent with minimal accumulation of cerebral ketones with rapid utilization, implying blood–brain barrier control of ketone oxidation in the nonfasted adult human brain. PMID:12142574

  7. [2,4-13 C2 ]-beta-Hydroxybutyrate metabolism in human brain.

    PubMed

    Pan, Jullie W; de Graaf, Robin A; Petersen, Kitt F; Shulman, Gerald I; Hetherington, Hoby P; Rothman, Douglas L

    2002-07-01

    Infusions of [2,4-13C2]-beta-hydroxybutyrate and 1H-13C polarization transfer spectroscopy were used in normal human subjects to detect the entry and metabolism of beta-hydroxybutyrate in the brain. During the 2-hour infusion study, 13C label was detectable in the beta-hydroxybutyrate resonance positions and in the amino acid pools of glutamate, glutamine, and aspartate. With a plasma concentration of 2.25 +/- 0.24 mmol/L (four volunteers), the apparent tissue beta-hydroxybutyrate concentration reached 0.18 +/- 0.06 mmol/L during the last 20 minutes of the study. The relative fractional enrichment of 13C-4-glutamate labeling was 6.78 +/- 1.71%, whereas 13C-4-glutamine was 5.68 +/- 1.84%. Steady-state modeling of the 13C label distribution in glutamate and glutamine suggests that, under these conditions, the consumption of the beta-hydroxybutyrate is predominantly neuronal, used at a rate of 0.032 +/- 0.009 mmol. kg-1. min-1, and accounts for 6.4 +/- 1.6% of total acetyl coenzyme A oxidation. These results are consistent with minimal accumulation of cerebral ketones with rapid utilization, implying blood-brain barrier control of ketone oxidation in the nonfasted adult human brain. PMID:12142574

  8. Interactions of D-cellobiose with selected chloride salts: A 13C NMR and FT-IR study

    NASA Astrophysics Data System (ADS)

    Amarasekara, Ananda S.; Wiredu, Bernard

    2016-04-01

    The interactions of cellulose model compound D-cellobiose with chloride salts of Zn2 +, Ca2 +, Li+, Sn2 +, La3 +, Mg2 +, K+ and NH4+ were evaluated by measuring the 13C NMR chemical shift changes (Δδ) of the disaccharide due to the addition of salts in D2O. The KCl and NH4Cl showed similar Δδ changes due to interactions only with the Cl- anion. Whereas other chloride salts showed interactions with both cation and anion. Among these salts the total interactions are in the order: Zn2 + > Sn2 + > Li+ > Ca2 + ~ La3 + > Mg2 +. The FT-IR spectra of D-cellobiose-chloride salt 1:2 mixtures also indicate that KCl and NH4Cl interacts similarly with D-cellobiose in the solid state.

  9. Migration and deposition of 13C in the full-tungsten ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Hakola, A.; Likonen, J.; Aho-Mantila, L.; Groth, M.; Koivuranta, S.; Krieger, K.; Kurki-Suonio, T.; Makkonen, T.; Mayer, M.; Müller, H. W.; Neu, R.; Rohde, V.; ASDEX Upgrade Team

    2010-06-01

    The migration of carbon in low-density, low-confinement plasmas of ASDEX Upgrade was studied by injecting 13C into the main chamber of the torus at the end of the 2007 experimental campaign. A selection of standard tungsten-coated lower-divertor and main-chamber tiles as well as a complete set of lower-divertor tiles with an uncoated poloidal marker stripe were removed from one poloidal cross section and analysed using secondary ion mass spectrometry. The poloidal deposition profiles of 13C on both the tungsten-coated tiles and on the uncoated graphite areas of the marker tiles were measured and compared. For the W-coated lower-divertor tiles, 13C was deposited mainly on the high-field side tiles, while barely detectable amounts of 13C were observed on low-field side samples. In contrast, on the uncoated marker stripes the deposition was equally pronounced in the high-field and low-field side divertor. The marker-tile results are in agreement with those obtained from graphite tiles after the 2003 and 2005 13C experiments in ASDEX Upgrade. In the case of W-coated tiles, the 13C measurements were complemented by determining the total amount of deposited carbon (12C) on the tiles, which also shows strong deposition at the inner parts of the lower divertor. The estimated deposition of 13C on W at the divertor areas was less than 1.5% of the injected amount of 13C atoms. The 13C analyses of the main-chamber tiles and small silicon samples mounted in remote areas revealed significant deposition in the upper divertor, in upper parts of the heat shield, in the limiter region close to the injection valve, and below the roof baffle. Approximately 8% of the injected 13C is estimated to have accumulated in these regions. Possible reasons for the different deposition patterns on W and on graphite in different regions of the torus are discussed.

  10. The use of dynamic nuclear polarization 13C-pyruvate MRS in cancer

    PubMed Central

    Gutte, Henrik; Hansen, Adam Espe; Johannesen, Helle Hjorth; Clemmensen, Andreas Ettrup; Ardenkjær-Larsen, Jan Henrik; Nielsen, Carsten Haagen; Kjær, Andreas

    2015-01-01

    In recent years there has been an immense development of new targeted anti-cancer drugs. For practicing precision medicine, a sensitive method imaging for non-invasive, assessment of early treatment response and for assisting in developing new drugs is warranted. Magnetic Resonance Spectroscopy (MRS) is a potent technique for non-invasive in vivo investigation of tissue chemistry and cellular metabolism. Hyperpolarization by Dynamic Nuclear Polarization (DNP) is capable of creating solutions of molecules with polarized nuclear spins in a range of biological molecules and has enabled the real-time investigation of in vivo metabolism. The development of this new method has been demonstrated to enhance the nuclear polarization more than 10,000-fold, thereby significantly increasing the sensitivity of the MRS with a spatial resolution to the millimeters and a temporal resolution at the subsecond range. Furthermore, the method enables measuring kinetics of conversion of substrates into cell metabolites and can be integrated with anatomical proton magnetic resonance imaging (MRI). Many nuclei and substrates have been hyperpolarized using the DNP method. Currently, the most widely used compound is 13C-pyruvate due to favoring technicalities. Intravenous injection of the hyperpolarized 13C-pyruvate results in appearance of 13C-lactate, 13C-alanine and 13C-bicarbonate resonance peaks depending on the tissue, disease and the metabolic state probed. In cancer, the lactate level is increased due to increased glycolysis. The use of DNP enhanced 13C-pyruvate has in preclinical studies shown to be a sensitive method for detecting cancer and for assessment of early treatment response in a variety of cancers. Recently, a first-in-man 31-patient study was conducted with the primary objective to assess the safety of hyperpolarized 13C-pyruvate in healthy subjects and prostate cancer patients. The study showed an elevated 13C-lactate/13C-pyruvate ratio in regions of biopsy

  11. On the use of phloem sap δ13C to estimate canopy carbon discrimination

    NASA Astrophysics Data System (ADS)

    Rascher, Katherine; Máguas, Cristina; Werner, Christiane

    2010-05-01

    Although the carbon stable isotope composition (d13C) of bulk leaf material is a good integrative parameter of photosynthetic discrimination and can be used as a reliable ecological index of plant functioning; it is not a good tracer of short-term changes in photosynthetic discrimination. In contrast, d13C of phloem sap is potentially useful as an indicator of short-term changes in canopy photosynthetic discrimination. However, recent research indicates that d13C signatures may be substantially altered by metabolic processes downstream of initial leaf-level carbon fixation (e.g. post-photosynthetic fractionation). Accordingly, before phloem sap d13C can be used as a proxy for canopy level carbon discrimination an understanding of factors influencing the degree and magnitude of post-photosynthetic fractionation and how these vary between species is of paramount importance. In this study, we measured the d13C signature along the basipetal transport pathway in two co-occurring tree species in the field - an understory invasive exotic legume, Acacia longifolia, and a native pine, Pinus pinaster. We measured d13C of bulk leaf and leaf water soluble organic matter (WSOM), phloem sap sampled at two points along the plant axis and leaf and root dark respiration. In general, species differences in photosynthetic discrimination resulted in more enriched d13C values in the water-conserving P. pinaster relative to the water-spending A. longifolia. Post-photosynthetic fractionation led to differences in d13C of carbon pools along the plant axis with progressively more depleted d13C from the canopy to the trunk (~6.5 per mil depletion in A. longifolia and ~0.8per mil depletion in P. pinaster). Leaf and root respiration, d13C, were consistently enriched relative to putative substrates. We hypothesize that the pronounced enrichment of leaf respired CO2 relative to leaf WSOM may have left behind relatively depleted carbon to be loaded into the phloem resulting in d13C depletion

  12. Paleoclimate Reconstruction From the d13C Organic and d13C Carbonate Proxies in Triassic Paleosols and Sediments, Ischigualasto Basin Argentina

    NASA Astrophysics Data System (ADS)

    Moore, K. A.; Tabor, N. J.; Montañez, I. P.; Currie, B.; Shipman, T.

    2001-12-01

    Stable carbon isotopes of organic matter and paleosol carbonate from the Triassic Ischigualasto Formation, Argentina are used as a proxy of paleoatmospheric pCO2 and d13CO2. Carbon and Oxygen isotope values were determined for over 100 Triassic pedogenic carbonate nodules and associated organic matter. The d13C of carbonate ranges from -3.29 per mil to -10.56 per mil. The d13C of organic matter ranges from -21.07 per mil to -24.24 per mil. The Hydrogen and Oxygen indices and TOC values indicate that the best preserved organic matter samples yield the most negative d13C values. Reconstructed pCO2 levels were around 1000 ppm V in the early to mid- Triassic and increased to around 2000 ppm V later in the Triassic. This maximum is followed by a fall in pCO2 in the late Triassic. This previously undocumented rapid change in paleo-CO2 levels likely accompanied the evolution of mammal-like reptiles to true dinosaurs as well as rapid climate change.

  13. Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish

    NASA Astrophysics Data System (ADS)

    Thorrold, Simon R.; Campana, Steven E.; Jones, Cynthia M.; Swart, Peter K.

    1997-07-01

    Fish otoliths are aragonitic accretions located within the inner ear of teleost fish. The acellular nature of otoliths, along with taxon-specific shapes, chronological growth increments, and abundance in the fossil record suggest that the stable isotope chemistry of these structures may be unique recorders of environmental conditions experienced by fish in both modern and ancient water masses. To assess the factors determining δ 13C and δ 18O fractionation in fish otoliths, we reared Atlantic croaker ( Micropogonias undulatus) larvae under controlled environmental conditions. Metabolic effects apparently generated large isotopic disequilibria in the δ 13C values of M. undulatus otoliths. We found evidence of a negative regression between δ 13C- carbonate-δ 13C water (δ 13C) and temperature: δ 13C = -1.78 - 0.18 T °C However, this relationship was aliased to a degree by a positive correlation between δ 13C and somatic growth and otolith precipitation rates. Oxygen isotopes were deposited close to equilibrium with the ambient water. The relationship between temperature and the 18O/ 16O fractionation factor (α) was determined empirically to be: 1000 ln α = 18.56(10 3T K -1) - 32.54 The fractionation factor was not affected by either otolith precipitation or fish growth rates. Reconstruction of water temperature histories should, therefore, be possible from the δ 18O values of M. undulatus otoliths with a precision of 1°C, providing the δ 18O of the ambient water can be estimated.

  14. Theoretical estimation of 13C-D clumped isotope effects in methyl of several organic compound

    NASA Astrophysics Data System (ADS)

    LIU, Q.; Yin, X.; Liu, Y.

    2015-12-01

    Recent developments in mass spectrometry and tunable infrared laser direct absorption spectroscopy make it possible to measure 13C-D clumped isotope effects of methane. These techniques can be further applied to determine 13C-D clumped isotope effects of methyl fragments, therefore need accurate equilirbium Δi values to calibrate experimental measurements. In this study, we calculate temperature depandences of 13C-D clumped isotope signatures in methyl of several organic compounds including ethane, propane, acetic acid, etc. Our calculation are performed at CCSD/6-311+G(3df,3pd) by using Gaussian 03 program with no scale treament. Our results show that the Δi values of 13C-D clumping in methyl fragments of different organic compounds yield similar signals (~5.5‰ at 25˚C, slightly lower than Δi value of 13C-D clumping in methane). For testing the calculated accuracy, theoretical treaments beyond the harmonic level by including several higher-order corrections to the Bigeleisen-Mayer equation are used. Contributions from higher-order corrections (e.g., AnZPE, AnEXC, VrZPE, VrEXC, QmCorr and CenDist) are estimated to repire the ignorings of the Bigeleisen-Mayer equation (the anharmonic effects of vibration, vibration-rotation coupling, quantum mechanics and centrifugal distortion for rotation, etc.) for the calculation of partition function ratios. The results show that the higher-order corrections contribute ~0.05‰ at 25˚C, which is similar to the contribution for calculating 13C-D clumped isotope signature of methane. By comparing our calculated frequencies to the measured ones, the uncertainty of our calculation of Δi values 13C-D clumping in methyl fragments is considered to be within ~0.05‰ at room temperature.

  15. Directly detected (55)Mn MRI: application to phantoms for human hyperpolarized (13)C MRI development.

    PubMed

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B

    2014-12-01

    In this work we demonstrate for the first time directly detected manganese-55 ((55)Mn) magnetic resonance imaging (MRI) using a clinical 3T MRI scanner designed for human hyperpolarized (13)C clinical studies with no additional hardware modifications. Due to the similar frequency of the (55)Mn and (13)C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective "(13)C" MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, (55)Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical (13)C phantom MRI, at greatly reduced cost as compared with large (13)C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d=8 cm) containing concentrated aqueous sodium permanganate (2.7 M) was scanned rapidly by (55)Mn MRI in a human head coil tuned for (13)C, using a balanced steady state free precession acquisition. The requisite penetration of radiofrequency magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for (55)Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image signal-to-noise ratio of ~60 at 0.5 cm(3) spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP (13)C coils and methods designed for human studies. PMID:25179135

  16. The Fate of Oral Glucosamine Traced by 13C Labeling in the Dog

    PubMed Central

    Dodge, George R.; Regatte, Ravinder R.; Noyszewski, Elizabeth A.; Hall, Jeffery O.; Sharma, Akella V.; Callaway, D. Allen; Reddy, Ravinder

    2011-01-01

    Objective: It has remained ambiguous as to whether oral dosing of glucosamine (GlcN) would make its way to the joint and affect changes in the cartilage, particularly the integrity of cartilage and chondrocyte function. The objective of this study was to trace the fate of orally dosed GlcN and determine definitively if GlcN was incorporated into cartilage proteoglycans. Design: Two dogs were treated with 13C-GlcN-HCl by oral dosing (500 mg/dog/d for 2 weeks and 250 mg/dog/d for 3 weeks). Cartilage was harvested from the tibial plateau and femoral condyles along with tissue specimens from the liver, spleen, heart, kidney, skin, skeletal muscle, lung, and costal cartilage. Percentages of 13C and 13C-GlcN present in each tissue sample were determined by inductively coupled plasma mass spectroscopy (ICP-MS) and nuclear magnetic resonance spectroscopy, respectively. Results: In the case of dog 1 (2-week treatment), there was an increase of 2.3% of 13C present in the articular cartilage compared to the control and an increase of 1.6% of 13C in dog 2 compared to control. As to be expected, the highest percentage of 13C in the other tissues tested was found in the liver, and the remaining tissues had percentages of 13C less than that of articular cartilage. Conclusion: The results are definitive and for the first time provide conclusive evidence that orally given GlcN can make its way through the digestive tract and be used by chondrocytes in joint cartilage, thereby potentially having an effect on the available GlcN for proteoglycan biosynthesis. PMID:26069586

  17. 13C-phenylalanine breath test detects altered phenylalanine kinetics in schizophrenia patients.

    PubMed

    Teraishi, T; Ozeki, Y; Hori, H; Sasayama, D; Chiba, S; Yamamoto, N; Tanaka, H; Iijima, Y; Matsuo, J; Kawamoto, Y; Kinoshita, Y; Hattori, K; Ota, M; Kajiwara, M; Terada, S; Higuchi, T; Kunugi, H

    2012-01-01

    Phenylalanine is an essential amino acid required for the synthesis of catecholamines including dopamine. Altered levels of phenylalanine and its metabolites in blood and cerebrospinal fluid have been reported in schizophrenia patients. This study attempted to examine for the first time whether phenylalanine kinetics is altered in schizophrenia using L-[1-(13)C]phenylalanine breath test ((13)C-PBT). The subjects were 20 chronically medicated schizophrenia patients (DSM-IV) and the same number of age- and sex-matched controls. (13)C-phenylalanine (99 atom% (13)C; 100 mg) was administered orally and the breath (13)CO(2) /(12)CO(2) ratio was monitored for 120 min. The possible effect of antipsychotic medication (risperidone (RPD) or haloperidol (HPD) treatment for 21 days) on (13)C-PBT was examined in rats. Body weight (BW), age and diagnostic status were significant predictors of the area under the curve of the time course of Δ(13)CO(2) (‰) and the cumulative recovery rate (CRR) at 120 min. A repeated measures analysis of covariance controlled for age and BW revealed that the patterns of CRR change over time differed between the patients and controls and that Δ(13)CO(2) was lower in the patients than in the controls at all sampling time points during the 120 min test, with an overall significant difference between the two groups. Chronic administration of RPD or HPD had no significant effect on (13)C-PBT indices in rats. Our results suggest that (13)C-PBT is a novel laboratory test that can detect altered phenylalanine kinetics in chronic schizophrenia patients. Animal experiments suggest that the observed changes are unlikely to be attributable to antipsychotic medication. PMID:22832963

  18. Non-targeted determination of (13)C-labeling in the Methylobacterium extorquens AM1 metabolome using the two-dimensional mass cluster method and principal component analysis.

    PubMed

    Reaser, Brooke C; Yang, Song; Fitz, Brian D; Parsons, Brendon A; Lidstrom, Mary E; Synovec, Robert E

    2016-02-01

    A novel analytical workflow is presented for the analysis of time-dependent (13)C-labeling of the metabolites in the methylotrophic bacterium Methylobacterium extorquens AM1 using gas chromatography time-of-flight mass spectrometry (GC-TOFMS). Using (13)C-methanol as the substrate in a time course experiment, the method provides an accurate determination of the number of carbons converted to the stable isotope. The method also extracts a quantitative isotopic dilution time course profile for (13)C uptake of each metabolite labeled that could in principle be used to obtain metabolic flux rates. The analytical challenges encountered require novel analytical platforms and chemometric techniques. GC-TOFMS offers advanced separation of mixtures, identification of individual components, and high data density for the application of advanced chemometrics. This workflow combines both novel and traditional chemometric techniques, including the recently reported two-dimensional mass cluster plot method (2D m/z cluster plot method) as well as principal component analysis (PCA). The 2D m/z cluster plot method effectively indexed all metabolites present in the sample and deconvoluted metabolites at ultra-low chromatographic resolution (RS≈0.04). Using the pure mass spectra extracted, two PCA models were created. Firstly, PCA was used on the first and last time points of the time course experiment to determine and quantify the extent of (13)C uptake. Secondly, PCA modeled the full time course in order to quantitatively extract the time course profile for each metabolite. The 2D m/z cluster plot method found 152 analytes (metabolites and reagent peaks), with 54 pure analytes, and 98 were convoluted, with 65 of the 98 requiring mathematical deconvolution. Of the 152 analytes surveyed, 83 were metabolites determined by the PCA model to have incorporated (13)C while 69 were determined to be either metabolites or reagent peaks that remained unlabeled. PMID:26787164

  19. Depletion of 13C in Cretaceous marine organic matter: Source, diagenetic, or environmental sigal?

    USGS Publications Warehouse

    Dean, W.E.; Arthur, M.A.; Claypool, G.E.

    1986-01-01

    Geochemical studies of Cretaceous strata rich in organic carbon (OC) from Deep Sea Drilling Project (DSDP) sites and several land sections reveal several consistent relationships among amount of OC, hydrocarbon generating potential of kerogen (measured by pyrolysis as the hydrogen index, HI), and the isotopic composition of the OC. First, there is a positive correlation between HI and OC in strata that contain more than about 1% OC. Second, percent OC and HI often are negatively correlated with carbon isotopic composition (?? 13C) of kerogen. The relationship between HI and OC indicates that as the amount of organic matter increases, this organic matter tends to be more lipid rich reflecting the marine source of the organic matter. Cretaceous samples that contain predominantly marine organic matter tend to be isotopically lighter than those that contain predominantly terrestrial organic matter. Average ?? 13C values for organic matter from most Cretaceous sites are between -26 and -28???, and values heavier than about -25??? occur at very few sites. Most of the ?? 13C values of Miocene to Holocene OC-rich strata and modern marine plankton are between -16 to -23???. Values of ??13C of modern terrestrial organic matter are mostly between -23 and -33???. The depletion of terrestial OC in 13C relative to marine planktonic OC is the basis for numerous statements in the literature that isotopically light Cretaceous organic matter is of terrestrial origin, even though other organic geochemical and(or) optical indicators show that the organic matter is mainly of marine origin. A difference of about 5??? in ?? 13C between modern and Cretaceous OC-rich marine strata suggests either that Cretaceous marine planktonic organic matter had the same isotopic signature as modern marine plankton and that signature has been changed by diagenesis, or that OC derived from Cretaceous marine plankton was isotopically lighter by about 5??? relative to modern plankton OC. Diagenesis does

  20. Monitoring electron donor metabolism under variable electron acceptor conditions using 13C-labeled lactate

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.; Yang, L.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Three sets of flow-through columns constructed with aquifer sediment from Hanford (WA) were used to study reduction of Cr(VI) to poorly soluble Cr(III) under denitrifying, sulfate-reducing/fermentative, and iron-reducing conditions with lactate as the electron donor. In order to understand the relationship between electron donors and biomarkers, and to determine the differences in carbon isotope fractionation resulting from different microbial metabolic processes, we monitored the variation in carbon isotopes in dissolved inorganic carbon (DIC), in total organic carbon (TOC), and in lactate, acetate and propionate. The greatest enrichment in 13C in columns was observed under denitrifying conditions. The δ13C of DIC increased by ~1750 to ~2000‰ fifteen days after supplementation of natural abundance lactate with a 13C-labeled lactate tracer (for an influent δ13C of ~2250‰ for the lactate) indicating almost complete oxidation of the electron donor. The denitrifying columns were among the most active columns and had the highest cell counts and the denitrification rate was highly correlated with Cr(VI) reduction rate. δ13C values of DIC ranged from ~540 to ~1170‰ for iron-reducing conditions. The lower enrichment in iron columns was related to the lower biological activity observed with lower yields of RNA and cell numbers in the column effluents. The carbon isotope shift in the sulfate-reducing ~198 to ~1960‰ for sulfate-reducing conditions reflecting the lower levels of the lactate in these columns. Additionally, in two of the sulfate columns, almost complete fermentation of the lactate occurred, producing acetate and propionate with the labeled carbon signature, but relatively smaller amounts of inorganic carbon. For all electron-accepting conditions, TOC yielded similar δ13C values as lactate stock solutions. Differences in C use efficiency, metabolic rate or metabolic pathway contributed to the differing TOC δ13C to DIC δ13C ratios between treatments

  1. Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Reed, Galen Durant

    Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.

  2. Multi-objective experimental design for (13)C-based metabolic flux analysis.

    PubMed

    Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel

    2015-10-01

    (13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi

  3. Anaerobic Methane Oxidation in Soils - revealed using 13C-labelled methane tracers

    NASA Astrophysics Data System (ADS)

    Riekie, G. J.; Baggs, E. M.; Killham, K. S.; Smith, J. U.

    2008-12-01

    In marine sediments, anaerobic methane oxidation is a significant biogeochemical process limiting methane flux from ocean to atmosphere. To date, evidence for anaerobic methane oxidation in terrestrial environments has proved elusive, and its significance is uncertain. In this study, an isotope dilution method specifically designed to detect the process of anaerobic methane oxidation in methanogenic wetland soils is applied. Methane emissions of soils from three contrasting permanently waterlogged sites in Scotland are investigated in strictly anoxic microcosms to which 13C- labelled methane is added, and changes in the concentration and 12C/13C isotope ratios of methane and carbon dioxide are subsequently measured and used to calculate separate the separate components of the methane flux. The method used takes into account the 13C-methane associated with methanogenesis, and the amount of methane dissolved in the soil. The calculations make no prior assumptions about the kinetics of methane production or oxidation. The results indicate that methane oxidation can take place in anoxic soil environments. The clearest evidence for anaerobic methane oxidation is provided by soils from a minerotrophic fen site (pH 6.0) in Bin Forest underlain by ultra-basic and serpentine till. In the fresh soil anoxic microcosms, net consumption methane was observed, and the amount of headspace 13C-CO2 increased at a greater rate than the 12+13C-CO2, further proof of methane oxidation. A net increase in methane was measured in microcosms of soil from Murder Moss, an alkaline site, pH 6.5, with a strong calcareous influence. However, the 13C-CH4 data provided evidence of methane oxidation, both in the disappearance of C- CH4 and appearance of smaller quantities of 13C-CO2. The least alkaline (pH 5.5) microcosms, of Gateside Farm soil - a granitic till - exhibited net methanogenesis and the changes in 13C-CH4 and 13C-CO2 here followed the pattern expected if no methane is consumed

  4. Evaluation of a [13C]-Dextromethorphan Breath Test to Assess CYP2D6 Phenotype

    PubMed Central

    Leeder, J. Steven; Pearce, Robin E.; Gaedigk, Andrea; Modak, Anil; Rosen, David I.

    2016-01-01

    A [13C]-dextromethorphan ([13C]-DM) breath test was evaluated to assess its feasibility as a rapid, phenotyping assay for CYP2D6 activity. [13C]-DM (0.5 mg/kg) was administered orally with water or potassium bicarbonate-sodium bicarbonate to 30 adult Caucasian volunteers (n = 1 each): CYP2D6 poor metabolizers (2 null alleles; PM-0) and extensive metabolizers with 1 (EM-1) or 2 functional alleles (EM-2). CYP2D6 phenotype was determined by 13CO2 enrichment measured by infrared spectrometry (delta-over-baseline [DOB] value) in expired breath samples collected before and up to 240 minutes after [13C]-DM ingestion and by 4-hour urinary metabolite ratio. The PM-0 group was readily distinguishable from either EM group by both the breath test and urinary metabolite ratio. Using a single point determination of phenotype at 40 minutes and defining PMs as subjects with a DOB ≤ 0.5, the sensitivity of the method was 100%; specificity was 95% with 95% accuracy and resulted in the misclassification of 1 EM-1 individual as a PM. Modification of the initial protocol (timing of potassium bicarbonate-sodium bicarbonate administration relative to dose) yielded comparable results, but there was a tendency toward increased DOB values. Although further development is required, these studies suggest that the [13C]-DM breath test offers promise as a rapid, minimally invasive phenotyping assay for CYP2D6 activity. PMID:18728242

  5. Elucidation of intrinsic biosynthesis yields using 13C-based metabolism analysis

    PubMed Central

    2014-01-01

    This paper discusses the use of 13C-based metabolism analysis for the assessment of intrinsic product yields — the actual carbon contribution from a single carbon substrate to the final product via a specific biosynthesis route — in the following four cases. First, undefined nutrients (such as yeast extract) in fermentation may contribute significantly to product synthesis, which can be quantified through an isotopic dilution method. Second, product and biomass synthesis may be dependent on the co-metabolism of multiple-carbon sources. 13C labeling experiments can track the fate of each carbon substrate in the cell metabolism and identify which substrate plays a main role in product synthesis. Third, 13C labeling can validate and quantify the contribution of the engineered pathway (versus the native pathway) to the product synthesis. Fourth, the loss of catabolic energy due to cell maintenance (energy used for functions other than production of new cell components) and low P/O ratio (Phosphate/Oxygen Ratio) significantly reduces product yields. Therefore, 13C-metabolic flux analysis is needed to assess the influence of suboptimal energy metabolism on microbial productivity, and determine how ATP/NAD(P)H are partitioned among various cellular functions. Since product yield is a major determining factor in the commercialization of a microbial cell factory, we foresee that 13C-isotopic labeling experiments, even without performing extensive flux calculations, can play a valuable role in the development and verification of microbial cell factories. PMID:24642094

  6. Production and NMR signal optimization of hyperpolarized 13C-labeled amino acids

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Ferguson, Sarah; Kiswandhi, Andhika; Lumata, Lloyd

    Amino acids are targeted nutrients for consumption by cancers to sustain their rapid growth and proliferation. 13C-enriched amino acids are important metabolic tracers for cancer diagnostics using nuclear magnetic resonance (NMR) spectroscopy. Despite this diagnostic potential, 13C NMR of amino acids however is hampered by the inherently low NMR sensitivity of the 13C nuclei. In this work, we have employed a physics technique known as dynamic nuclear polarization (DNP) to enhance the NMR signals of 13C-enriched amino acids. DNP works by transferring the high polarization of electrons to the nuclear spins via microwave irradiation at low temperature and high magnetic field. Using a fast dissolution method in which the frozen polarized samples are dissolved rapidly with superheated water, injectable solutions of 13C-amino acids with highly enhanced NMR signals (by at least 5,000-fold) were produced at room temperature. Factors that affect the NMR signal enhancement levels such as the choice of free radical polarizing agents and sample preparation will be discussed along with the thermal mixing physics model of DNP. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  7. 13C NMR study of the generation of C2- and C3-deuterated lactic acid by tumoral pancreatic islet cells exposed to D-[1-13C]-, D-[2-13C]- and D-[6-13C]-glucose in 2H2O.

    PubMed

    Willem, R; Biesemans, M; Kayser, F; Malaisse, W J

    1994-03-01

    Tumoral pancreatic islet cells of the RIN5mF line were incubated for 120 min in media prepared in 2H2O and containing D-[1-13C]glucose, D-[2-13C]glucose, and D-[6-13C]glucose. The generation of C2- and C3-deuterated lactic acid was assessed by 13C NMR. The interpretation of experimental results suggests that a) the efficiency of deuteration on the C1 of D-fructose 6-phosphate does not exceed about 47% and 4% in the phosphoglucoisomerase and phosphomannoisomerase reactions, respectively; b) approximately 38% of the molecules of D-glyceraldehyde 3-phosphate generated from D-glucose escape deuteration in the sequence of reactions catalyzed by triose phosphate isomerase and aldolase; and c) about 41% of the molecules of pyruvate generated by glycolysis are immediately converted to lactate, the remaining 59% of pyruvate molecules undergoing first a single or double back-and-forth interconversion with L-alanine. It is proposed that this methodological approach, based on high resolution 13C NMR spectroscopy, may provide novel information on the regulation of back-and-forth interconversion of glycolytic intermediates in intact cells as modulated, for instance, by enzyme-to-enzyme tunneling. PMID:8057796

  8. Online Compound-Specific δ13C and δD Determinations Using Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Saad, N.; Hoffnagle, J.

    2012-04-01

    A unique laser spectroscopic approach for making online high-precision compound-specific isotope analysis (CSIA) of both δ13C and δD of the CO2 and H2O organic combustion products is described. The system consists of a gas chromatograph (GC) for the separation of an organic mixture coupled to a novel micro-fabricated microreactor (MFMR) for the complete combustion of each organic compound into CO2 and H2O and the precise measurements of δ13C in the CO2 gas and δ2H in the H2O vapor from the well established infrared spectrum of both gases, using an isotopic CO2 Cavity Ring-Down Spectroscopy (CRDS) analyzer and an isotopic H2O vapor CRDS analyzer, respectively. Light hydrocarbons are used as our test compounds in this study. The analyses of CH4, C2H6 and C3H8 for δ13C and δ2H values resulted in precisions of SD(δ13C)<1‰ and SD(δ2H)<2‰, respectively. These results were further compared to the gold standard method using Dual Inlet IRMS (DI-IRMS) and showed excellent agreements in isotopic measurements. The preliminary results presented here pave the way for a single CRDS analyzer-based system that simultaneously measures δ13C and δD, is field-deployable, less costly and necessitates less operator expertise than IRMS-based systems.

  9. (13)C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy.

    PubMed

    Idström, Alexander; Schantz, Staffan; Sundberg, Johan; Chmelka, Bradley F; Gatenholm, Paul; Nordstierna, Lars

    2016-10-20

    From the assignment of the solid-state (13)C NMR signals in the C4 region, distinct types of crystalline cellulose, cellulose at crystalline surfaces, and disordered cellulose can be identified and quantified. For regenerated cellulose, complete (13)C assignments of the other carbon regions have not previously been attainable, due to signal overlap. In this study, two-dimensional (2D) NMR correlation methods were used to resolve and assign (13)C signals for all carbon atoms in regenerated cellulose. (13)C-enriched bacterial nanocellulose was biosynthesized, dissolved, and coagulated as highly crystalline cellulose II. Specifically, four distinct (13)C signals were observed corresponding to conformationally different anhydroglucose units: two signals assigned to crystalline moieties and two signals assigned to non-crystalline species. The C1, C4 and C6 regions for cellulose II were fully examined by global spectral deconvolution, which yielded qualitative trends of the relative populations of the different cellulose moieties, as a function of wetting and drying treatments. PMID:27474592

  10. In vivo 31P and multilabel 13C NMR measurements for evaluation of plant metabolic pathways.

    PubMed

    Rijhwani, S K; Ho, C H; Shanks, J V

    1999-01-01

    Reliable measurements of intracellular metabolites are useful for effective plant metabolic engineering. This study explored the application of in situ 31P and 13C NMR spectroscopy for long-term measurements of intracellular pH and concentrations of several metabolites in glycolysis, glucan synthesis, and central carbon metabolic pathways in plant tissues. An NMR perfusion reactor system was designed to allow Catharanthus roseus hairy root cultures to grow for 3-6 weeks, during which time NMR spectroscopy was performed. Constant cytoplasmic pH (7.40+/-0.06), observed during the entire experiment, indicated adequate oxygenation. 13C NMR spectroscopy was performed on hairy root cultures grown in solutions containing 1-13C-, 2-13C-, and 3-13C-labeled glucose in separate experiments and the flow of label was monitored. Activities of pentose phosphate pathways, nonphotosynthetic CO2 fixation, and glucan synthesis pathways were evident from the experimental results. Scrambling of label in glucans also indicated recycling of triose phosphate and their subsequent conversion to hexose phosphates. PMID:10935751

  11. Histidine side-chain dynamics and protonation monitored by 13C CPMG NMR relaxation dispersion.

    PubMed

    Hass, Mathias A S; Yilmaz, Ali; Christensen, Hans E M; Led, Jens J

    2009-08-01

    The use of 13C NMR relaxation dispersion experiments to monitor micro-millisecond fluctuations in the protonation states of histidine residues in proteins is investigated. To illustrate the approach, measurements on three specifically 13C labeled histidine residues in plastocyanin (PCu) from Anabaena variabilis (A.v.) are presented. Significant Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is observed for 13C(epsilon1) nuclei in the histidine imidazole rings of A.v. PCu. The chemical shift changes obtained from the CPMG dispersion data are in good agreement with those obtained from the chemical shift titration experiments, and the CPMG derived exchange rates agree with those obtained previously from 15N backbone relaxation measurements. Compared to measurements of backbone nuclei, 13C(epsilon1) dispersion provides a more direct method to monitor interchanging protonation states or other kinds of conformational changes of histidine side chains or their environment. Advantages and shortcomings of using the 13C(epsilon1) dispersion experiments in combination with chemical shift titration experiments to obtain information on exchange dynamics of the histidine side chains are discussed. PMID:19533375

  12. Continuous field measurements of delta(13)C-CO(2) and trace gases by FTIR spectroscopy.

    PubMed

    Mohn, Joachim; Zeeman, Matthias J; Werner, Roland A; Eugster, Werner; Emmenegger, Lukas

    2008-09-01

    Continuous analysis of the (13)C/(12)C ratio of atmospheric CO(2) (delta(13)C-CO(2)) is a powerful tool to quantify CO(2) flux strengths of the two major ecosystem processes assimilation and respiration. Traditional laboratory techniques such as isotope ratio mass spectrometry (IRMS) in combination with flask sampling are subject to technical limitations that do not allow to fully characterising variations of atmospheric delta(13)C-CO(2) at all relevant timescales. In our study, we demonstrate the strength of Fourier transform infrared (FTIR) spectroscopy in combination with a PLS-based calibration strategy for online analysis of delta(13)C-CO(2) in ambient air. The ability of the instrument to measure delta(13)C-CO(2) was tested on a grassland field-site and compared with standard laboratory-based IRMS measurements made on field-collected flask samples. Both methods were in excellent agreement, with an average difference of 0.4 per thousand (n=81). Simultaneously, other important trace gases such as CO, N(2)O and CH(4) were analysed by FTIR spectroscopy. PMID:18763182

  13. A Method to Constrain Genome-Scale Models with 13C Labeling Data

    PubMed Central

    García Martín, Héctor; Kumar, Vinay Satish; Weaver, Daniel; Ghosh, Amit; Chubukov, Victor; Mukhopadhyay, Aindrila; Arkin, Adam; Keasling, Jay D.

    2015-01-01

    Current limitations in quantitatively predicting biological behavior hinder our efforts to engineer biological systems to produce biofuels and other desired chemicals. Here, we present a new method for calculating metabolic fluxes, key targets in metabolic engineering, that incorporates data from 13C labeling experiments and genome-scale models. The data from 13C labeling experiments provide strong flux constraints that eliminate the need to assume an evolutionary optimization principle such as the growth rate optimization assumption used in Flux Balance Analysis (FBA). This effective constraining is achieved by making the simple but biologically relevant assumption that flux flows from core to peripheral metabolism and does not flow back. The new method is significantly more robust than FBA with respect to errors in genome-scale model reconstruction. Furthermore, it can provide a comprehensive picture of metabolite balancing and predictions for unmeasured extracellular fluxes as constrained by 13C labeling data. A comparison shows that the results of this new method are similar to those found through 13C Metabolic Flux Analysis (13C MFA) for central carbon metabolism but, additionally, it provides flux estimates for peripheral metabolism. The extra validation gained by matching 48 relative labeling measurements is used to identify where and why several existing COnstraint Based Reconstruction and Analysis (COBRA) flux prediction algorithms fail. We demonstrate how to use this knowledge to refine these methods and improve their predictive capabilities. This method provides a reliable base upon which to improve the design of biological systems. PMID:26379153

  14. Synthesis of [13C6]-labelled phenethylamine derivatives for drug quantification in biological samples.

    PubMed

    Karlsen, Morten; Liu, HuiLing; Berg, Thomas; Johansen, Jon Eigill; Hoff, Bård Helge

    2014-05-15

    The availability of high-quality (13)C-labelled internal standards will improve accurate quantification of narcotics and drugs in biological samples. Thus, the synthesis of 10 [(13)C6]-labelled phenethylamine derivatives, namely amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxy-N-ethylamphetamine, 4-methoxyamphetamine, 4-methoxymethamphetamine, 3,5-dimethoxyphenethylamine 4-bromo-2,5-dimethoxyphenethylamine and 2,5-dimethoxy-4-iodophenethylamine, have been undertaken. [(13)C6]-Phenol proved to be an excellent starting material for making (13)C-labelled narcotic substances in the phenethylamine class, and a developed Stille-type coupling enabled an efficient synthesis of the 3,4-methylenedioxy and 4-methoxy derivatives. The pros and cons of alternative routes and transformations are also discussed. The [(13)C6]-labelled compounds are intended for use as internal standards in forensic analysis, health sciences and metabolomics studies by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. PMID:24634286

  15. A Peptide-Based Method for 13C Metabolic Flux Analysis in Microbial Communities

    PubMed Central

    Ghosh, Amit; Nilmeier, Jerome; Weaver, Daniel; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Martín, Héctor García

    2014-01-01

    The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13C Metabolic Flux Analysis (13C MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13C labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained for each of the members of the community. Here we propose a new type of 13C MFA that infers fluxes based on peptide labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular metabolic fluxes in the same way as through the standard amino acid based 13C MFA, and quantify the amount of information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small number of peptides we can counter this information loss. We computationally tested this method with a well-characterized simple microbial community consisting of two species. PMID:25188426

  16. Global-mean marine δ13C and its uncertainty in a glacial state estimate

    NASA Astrophysics Data System (ADS)

    Gebbie, Geoffrey; Peterson, Carlye D.; Lisiecki, Lorraine E.; Spero, Howard J.

    2015-10-01

    A paleo-data compilation with 492 δ13C and δ18O observations provides the opportunity to better sample the Last Glacial Maximum (LGM) and infer its global properties, such as the mean δ13C of dissolved inorganic carbon. Here, the paleo-compilation is used to reconstruct a steady-state water-mass distribution for the LGM, that in turn is used to map the data onto a 3D global grid. A global-mean marine δ13C value and a self-consistent uncertainty estimate are derived using the framework of state estimation (i.e., combining a numerical model and observations). The LGM global-mean δ13C is estimated to be 0.14‰ ± 0.20‰ at the two standard error level, giving a glacial-to-modern change of 0.32‰ ± 0.20‰. The magnitude of the error bar is attributed to the uncertain glacial ocean circulation and the lack of observational constraints in the Pacific, Indian, and Southern Oceans. To halve the error bar, roughly four times more observations are needed, although strategic sampling may reduce this number. If dynamical constraints can be used to better characterize the LGM circulation, the error bar can also be reduced to 0.05 to 0.1‰, emphasizing that knowledge of the circulation is vital to accurately map δ13C in three dimensions.

  17. Oscillator Strengths and Predissociation Rates for W-X Bands and the 4P5P Complex in 13C18O

    NASA Astrophysics Data System (ADS)

    Eidelsberg, Michele; Lemaire, Jean Louis; Federman, Steven; Stark, Glenn; Heays, Alan; Gavilan, Lisseth; Lyons, James R.; Smith, Peter L.; de Oliveira, Nelson; Joyeux, Denis

    2015-06-01

    In our ongoing experiments on the DESIRS beam-line at the SOLEIL Synchrotron, we are acquiring the necessary data on oscillator strengths and predissociation rates for modeling CO photochemistry in astronomical environments. A VUV Fourier Transform Spectrometer with a resolving power of about 350,000 allows us to discern individual lines in electronic transitions. Here we focus on results obtained from absorption spectra of 13C18O, for the W ^1Π - X ^1σ^+ bands with v'=0, 2, {and} 3 and v''=0 and three resolved bands involving transitions to the upper levels 4pπ(2), 5pπ(0), and 5pσ(0) of the 4p(2) and 5p(0) complexes. We compare our results with earlier determinations for this isotopologue of CO, as well as with our SOLEIL measurements on 12C16O, 13C16O, and 12C18O.

  18. Quantitative 13C NMR of whole and fractionated Iowa Mollisols for assessment of organic matter composition

    NASA Astrophysics Data System (ADS)

    Fang, Xiaowen; Chua, Teresita; Schmidt-Rohr, Klaus; Thompson, Michael L.

    2010-01-01

    Both the concentrations and the stocks of soil organic carbon vary across the landscape. Do the amounts of recalcitrant components of soil organic matter (SOM) vary with landscape position? To address this question, we studied four Mollisols in central Iowa, two developed in till and two developed in loess. Two of the soils were well drained and two were poorly drained. We collected surface-horizon samples and studied organic matter in the particulate organic matter (POM) fraction, the clay fractions, and the whole, unfractionated samples. We treated the soil samples with 5 M HF at ambient temperature or at 60 °C for 30 min to concentrate the SOM. To assess the composition of the SOM, we used solid-state nuclear magnetic resonance (NMR) spectroscopy, in particular, quantitative 13C DP/MAS (direct-polarization/magic-angle spinning), with and without recoupled dipolar dephasing. Spin counting by correlation of the integral NMR intensity with the C concentration by elemental analysis showed that NMR was ⩾85% quantitative for the majority of the samples studied. For untreated whole-soil samples with <2.5 wt.% C, which is considerably less than in most previous quantitative NMR analyses of SOM, useful spectra that reflected ⩾65% of all C were obtained. The NMR analyses allowed us to conclude (1) that the HF treatment (with or without heat) had low impact on the organic C composition in the samples, except for protonating carboxylate anions to carboxylic acids, (2) that most organic C was observable by NMR even in untreated soil materials, (3) that esters were likely to compose only a minor fraction of SOM in these Mollisols, and (4) that the aromatic components of SOM were enriched to ˜53% in the poorly drained soils, compared with ˜48% in the well drained soils; in plant tissue and particulate organic matter (POM) the aromaticities were ˜18% and ˜32%, respectively. Nonpolar, nonprotonated aromatic C, interpreted as a proxy for charcoal C, dominated the

  19. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    USGS Publications Warehouse

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  20. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hockaday, W. C.; Masiello, C. A.; Randerson, J. T.; Smernik, R. J.; Baldock, J. A.; Chadwick, O. A.; Harden, J. W.

    2009-06-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known Cox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ±0.036 Cox units (±0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ± 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  1. HCN, a triple-resonance NMR technique for selective observation of histidine and tryptophan side chains in 13C/15N-labeled proteins.

    PubMed

    Sudmeier, J L; Ash, E L; Günther, U L; Luo, X; Bullock, P A; Bachovchin, W W

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from 1H to 13C to 15N and reverse through direct spin couplings 1JCH and 1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain 1H, 13C, and 15N resonances in uniformly 13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay tau 3 were employed for determination of optimal tau 3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the 1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the 13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 12 1H and 13C chemical shifts and 10 of the 12 15N chemical shifts were determined. The 13C dimension proved essential in assignment of the multiply overlapping 1H and 15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mM sample of phenylmethanesulfonyl fluoride (PMSF)-inhibited alpha-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited alpha-lytic protease after 18 h at various temperatures ranging from 5 to 55 degrees C, probably due to efficient relaxation of active-site imidazole 1H and/or 15N nuclei. PMID:8995843

  2. HCN, A Triple-Resonance NMR Technique for Selective Observation of Histidine and Tryptophan Side Chains in 13C/ 15N-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Sudmeier, James L.; Ash, Elissa L.; Günther, Ulrich L.; Luo, Xuelian; Bullock, Peter A.; Bachovchin, William W.

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from1H to13C to15N and reverse through direct spin couplings1JCHand1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain1H,13C, and15N resonances in uniformly13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay τ3were employed for determination of optimal τ3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 121H and13C chemical shifts and 10 of the 1215N chemical shifts were determined. The13C dimension proved essential in assignment of the multiply overlapping1H and15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mMsample of phenylmethanesulfonyl fluoride (PMSF)-inhibited α-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited α-lytic protease after 18 h at various temperatures ranging from 5 to 55°C, probably due to efficient relaxation of active-site imidazole1H and/or15N nuclei.