Science.gov

Sample records for 13c cross-polarization magic

  1. Characterization of fungal-degraded lime wood by X-ray diffraction and cross-polarization magic-angle-spinning 13C-nuclear magnetic resonance spectroscopy.

    PubMed

    Popescu, Carmen-Mihaela; Larsson, Per Tomas; Tibirna, Carmen Mihaela; Vasile, Cornelia

    2010-09-01

    X-ray diffraction, scanning electron microscopy (SEM), and solid-state cross-polarization magic-angle-spinning (CP/MAS) (13)C-NMR spectroscopy were applied to determine changes over time in the morphology and crystallinity of lime wood (Tilia cordata Miller) generated by the soft-rot fungi. Wood samples were inoculated with Trichoderma viride Pers for various durations up to 84 days. Structural and morphological modifications were assessed by comparing the structural features of decayed lime wood samples with references. Significant morphology changes such as defibration or small cavities were clearly observed on the SEM micrographs of lime wood samples exposed to fungi. Following the deconvolution process of the diffraction patterns, the degree of crystallinity, apparent lateral crystallite size, the proportion of crystallite interior chains, and the cellulose fraction have been determined. It was found that all crystallographic data vary with the duration of exposure to fungi. The degree of crystallinity and cellulose fraction tend to decrease, whereas the apparent lateral crystallite size and the proportion of crystallite interior chains increase with prolonged biodegradation processes. The most relevant signals in CP/MAS (13)C-NMR spectra were assigned according to literature data. The differences observed were discussed in terms of lignin and cellulose composition: by fixing the lignin reference signal intensity, the cellulose and hemicelluloses moieties showed a relative decrease compared to the lignin signals in decayed wood.

  2. Vibrational 13C-cross-polarization/magic angle spinning NMR spectroscopic and thermal characterization of poly(alanine-glycine) as model for silk I Bombyx mori fibroin.

    PubMed

    Monti, Patrizia; Taddei, Paola; Freddi, Giuliano; Ohgo, Kosuke; Asakura, Tetsuo

    2003-01-01

    This study focuses on the conformational characterization of poly(alanine-glycine) II (pAG II) as a model for a Bombyx mori fibroin silk I structure. Raman, IR, and 13C-cross-polarization/magic angle spinning NMR spectra of pAG II are discussed in comparison with those of the crystalline fraction of B. mori silk fibroin (chymotryptic precipitate, Cp) with a silk I (silk I-Cp) structure. The spectral data give evidence that silk I-Cp and the synthetic copolypeptide pAG II have similar conformations. Moreover, the spectral findings reveal that silk I-Cp is more crystalline than pAG II; consequently, the latter contains a larger amount of the random coil conformation. Differential scanning calorimetry measurements confirm this result. N-Deuteration experiments on pAG II allow us to attribute the Raman component at 1320 cm(-1) to the amide III mode of a beta-turn type II conformation, thus confirming the results of those who propose a repeated beta-turn type II structure for silk I. The analysis of the Raman spectra in the nuNH region confirms that the silk I structure is characterized by the presence of different types of H-bonding arrangements, in agreement with the above model.

  3. Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by 13C cross polarization/magic angle spinning NMR.

    PubMed

    Yang, Mingying; Nakazawa, Yasumoto; Yamauchi, Kazuo; Knight, David; Asakura, Tetsuo

    2005-01-01

    To obtain detailed structural information for spider dragline spidroin (MaSp1), we prepared three versions of the consensus peptide GGLGGQGAGAAAAAAGGAGQGGYGGLGSQGAGR labeled with 13C at six different sites. The 13C CP/MAS NMR spectra were observed after treating the peptides with different reagents known to alter silk protein conformations. The conformation-dependent 13C NMR chemical shifts and peak deconvolution were used to determine the local structure and the fractional compositions of the conformations, respectively. After trifluoroacetic acid (solvent)/diethyl ether (coagulant) treatment, the N-terminal region of poly-Ala (PLA) sequence, Ala8 and Ala10, adopted predominantly the alpha-helix with a substantial amount of beta-sheet. The central region, Ala15, Ala18, and Leu26, and C-terminal region, Ala31, of the peptide were dominated by either 3(1)-helix or alpha-helix. There was no indication of beta-sheet, although peak broadening indicates that the torsion angle distribution is relatively large. After 9 M LiBr/dialysis treatment, three kinds of conformation, beta-sheet, random coil, and 3(1)-helix, appeared, in almost equal amounts of beta-sheet and random coil conformations for Ala8 and Ala10 residues and distorted 3(1)-helix at the central region of the peptide. In contrast, after formic acid/methanol and 8 M urea/acetonitrile treatments, all of the local structure tends to beta-sheet, although small amounts of random coil are also observed. The peak pattern of the Ala Cbeta carbon after 8 M urea/acetonitrile treatment is similar to the corresponding patterns of silk fiber from Bombyx mori and Samia cynthia ricini. We also synthesized a longer 13C-labeled peptide containing two PLA blocks and three Gly-rich blocks. After 8 M urea/acetonitrile treatment, the conformation pattern was closely similar to that of the shorter peptide.

  4. Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids.

    PubMed

    Hung, Ivan; Gan, Zhehong

    2015-07-01

    Spin-locking and cross-polarization under magic-angle spinning are investigated for uniformly (13)C and (15)N labeled solids. In particular, the interferences from chemical shift anisotropy, and (1)H heteronuclear and (13)C homonuclear dipolar couplings are identified. The physical origin of these interferences provides guidelines for selecting the best (13)C and (15)N polarization transfer rf fields. Optimal settings for both the zero- and double-quantum cross-polarization transfer mechanisms are recommended.

  5. Crystal structure solid-state cross polarization magic angle spinning 13C NMR correlation in luminescent d10 metal-organic frameworks constructed with the 1,2-Bis(1,2,4-triazol-4-yl)ethane ligand.

    PubMed

    Habib, Hesham A; Hoffmann, Anke; Höppe, Henning A; Steinfeld, Gunther; Janiak, Christoph

    2009-03-02

    Hydrothermal reactions of 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) with copper(II), zinc(II), and cadmium(II) salts have yielded the dinuclear complexes [Zn2Cl4(mu2-btre)2] (1) and [Zn2Br4(mu2-btre)2] (2), the one-dimensional coordination polymer infinity1[Zn(NCS)2(2-btre)] (3), the two-dimensional networks infinity2[Cu2(mu2-Cl)2(mu4-btre)] (4), infinity2[Cu2(mu2-Br)2(mu4-btre)] (5), and infinity2{[Cd6(mu3-OH)2(mu3-SO4)4(mu4-btre)3(H2O)6](SO4).6H2O} (6), and the three-dimensional frameworks infinity3{[Cu(mu4-btre)]ClO4.0.25H2O} (7), 3{[Zn(mu4-btre)(mu2-btre)](ClO4)2} (8), infinity3{[Cd(mu4-btre)(mu2-btre)](ClO4)2} (9), and infinity3[Cu2(mu2-CN)2(mu4-btre)] (10, 2-fold 3D interpenetrated framework). The copper-containing products 4, 5, 7, and 10 contain the metal in the +1 oxidation state, from a simultaneous redox and self-assembly reaction of the Cu(II) starting materials. The cyanide-containing framework 10 has captured the CN- ions from the oxidative btre decomposition. The perchlorate frameworks 7, 8, or 9 react in an aqueous NH4+PF6- solution with formation of the related PF6--containing frameworks. The differences in the metal-btre bridging mode (mu2-kappaN1:N1', mu2-kappaN1:N2 or mu4-kappaN1:N2:N1':N2') and the btre ligand symmetry can be correlated with different signal patterns in the 13C cross polarization magic angle spinning (CPMAS) NMR spectra. Compounds 2, 4, 5 and 7 to 10 exhibit fluorescence at 403-481 nm upon excitation at 270-373 nm which is not seen in the free btre ligand.

  6. Protonation of carbon single-walled nanotubes studied using 13C and 1H-13C cross polarization nuclear magnetic resonance and Raman spectroscopies.

    PubMed

    Engtrakul, Chaiwat; Davis, Mark F; Gennett, Thomas; Dillon, Anne C; Jones, Kim M; Heben, Michael J

    2005-12-14

    The reversible protonation of carbon single-walled nanotubes (SWNTs) in sulfuric acid and Nafion was investigated using solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies. Magic-angle spinning (MAS) was used to obtain high-resolution 13C and 1H-13C cross polarization (CP) NMR spectra. The 13C NMR chemical shifts are reported for bulk SWNTs, H2SO4-treated SWNTs, SWNT-Nafion polymer composites, SWNT-AQ55 polymer composites, and SWNTs in contact with water. Protonation occurs without irreversible oxidation of the nanotube substrate via a charge-transfer process. This is the first report of a chemically induced change in a SWNT 13C resonance brought about by a reversible interaction with an acidic proton, providing additional evidence that carbon nanotubes behave as weak bases. Cross polarization was found to be a powerful technique for providing an additional contrast mechanism for studying nanotubes in contact with other chemical species. The CP studies confirmed polarization transfer from nearby protons to nanotube carbon atoms. The CP technique was also applied to investigate water adsorbed on carbon nanotube surfaces. Finally, the degree of bundling of the SWNTs in Nafion films was probed with the 1H-13C CP-MAS technique.

  7. Cross polarization magic-angle spinning NMR at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Macho, V.; Kendrick, R.; Yannoni, C. S.

    A magic angle spinning (MAS) apparatus which can be used for high resolution solid state NMR at temperatures as low as 15 K is described. To demonstrate the utility of this apparatus, 13C spectra of molecules containing methyl groups have been investigated at cryogenic temperatures. The spectra, which are described in detail, provide direct evidence for the slowdown of methyl rotation.

  8. Motion-Insensitive Localized 13C Spectroscopy Using Cyclic and Slice-Selective J Cross Polarization

    NASA Astrophysics Data System (ADS)

    Kunze, C.; Kimmich, R.

    Several new methods are proposed for the sensitive localized detection of 13C nuclei on the basis of cyclic and slice-selective J cross polarization in 13C 1H x spin systems. The 13C nuclei are detected either directly after the amplitude is enhanced by polarization transfer in the rotating frame or, preferably, indirectly by heteronuclear editing of signals of the 1H nuclei coupled to 13C. In the latter case, the sensitivity corresponds to that of 1H rather than to that of 13C resonance. Test experiments are reported. In vitro applications to a hen egg and a fresh porcine shank prove the applicability of the methods to biological objects with 13C in natural abundance. A particular advantage of the new rotating-frame methods over laboratory-frame techniques serving the same purpose is the insensitivity to motions of the object. This is demonstrated by experiments with a moving sample. Hartmann/Hahn mismatch can be compensated using the MOIST modification. The time-averaged absorbed radiofrequency power per kilogram body weight was estimated on the basis of a model for surface power absorption. The result lies well below the standard safety limits for clinical applications.

  9. Adiabatic sweep cross-polarization magic-angle-spinning NMR of half-integer quadrupolar spins

    NASA Astrophysics Data System (ADS)

    Wi, Sungsool; Kim, Chul; Schurko, Robert; Frydman, Lucio

    2017-04-01

    The use of frequency-swept radiofrequency (rf) pulses for enhancing signals in the magic-angle spinning (MAS) spectra of half-integer quadrupolar nuclides was explored. The broadband adiabatic inversion cross-polarization magic-angle spinning (BRAIN-CPMAS) method, involving an adiabatic inversion pulse on the S-channel and a simultaneous rectangular spin-lock pulse on the I-channel (1H), was applied to I(1/2) → S(3/2) systems. Optimal BRAIN-CPMAS matching conditions were found to involve low rf pulse strengths for both the I- and S-spin channels. At these low and easily attainable rf field strengths, level-crossing events among the energy levels | 3 / 2 >, | 1 / 2 >, | - 1 / 2 >, | - 3 / 2 > that are known to complicate the CPMAS of quadrupolar nuclei, are mostly avoided. Zero- and double-quantum polarization transfer modes, akin to those we have observed for I(1/2) → S(1/2) polarization transfers, were evidenced by these analyses even in the presence of the quadrupolar interaction. 1H-23Na and 1H-11B BRAIN-CPMAS conditions were experimentally explored on model compounds by optimizing the width of the adiabatic sweep, as well as the rf pulse powers of the 1H and 23Na/11B channels, for different MAS rates. The experimental data obtained on model compounds containing spin-3/2 nuclides, matched well predictions from numerical simulations and from an average Hamiltonian theory model. Extensions to half-integer spin nuclides with higher spins and potential applications of this BRAIN-CPMAS approach are discussed.

  10. Properties of mixtures of cholesterol with phosphatidylcholine or with phosphatidylserine studied by (13)C magic angle spinning nuclear magnetic resonance.

    PubMed Central

    Epand, Richard M; Bain, Alex D; Sayer, Brian G; Bach, Diana; Wachtel, Ellen

    2002-01-01

    The behavior of cholesterol is different in mixtures with phosphatidylcholine as compared with phosphatidylserine. In (13)C cross polarization/magic angle spinning nuclear magnetic resonance spectra, resonance peaks of the vinylic carbons of cholesterol are a doublet in samples containing 0.3 or 0.5 mol fraction cholesterol with 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) or in cholesterol monohydrate crystals, but a singlet with mixtures of cholesterol and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC). At these molar fractions of cholesterol with POPS, resonances of the C-18 of cholesterol appear at the same chemical shifts as in pure cholesterol monohydrate crystals. These resonances do not appear in samples of POPS with 0.2 mol fraction cholesterol or with POPC up to 0.5 mol fraction cholesterol. In addition, there is another resonance from the cholesterol C18 that appears in all of the mixtures of phospholipid and cholesterol but not in pure cholesterol monohydrate crystals. Using direct polarization, the fraction of cholesterol present as crystallites in POPS with 0.5 mol fraction cholesterol is found to be 80%, whereas with the same mol fraction of cholesterol and POPC none of the cholesterol is crystalline. After many hours of incubation, cholesterol monohydrate crystals in POPS undergo a change that results in an increase in the intensity of certain resonances of cholesterol monohydrate in (13)C cross polarization/magic angle spinning nuclear magnetic resonance, indicating a rigidification of the C and D rings of cholesterol but not other regions of the molecule. PMID:12324423

  11. Carbon-13 cross-polarization magic-angle-spinning nuclear magnetic resonance investigation of the interactions between maleic anhydride grafted polypropylene and wood polymers.

    PubMed

    Rude, Erica; Laborie, Marie-Pierre G

    2008-05-01

    The chemical interactions between maleic anhydride grafted polypropylene (MAPP) and wood were studied with solid-state carbon-13 cross-polarization magic-angle-spinning nuclear magnetic resonance ((13)C CPMAS NMR) spectroscopy. MAPP was synthesized with 100% (13)C enrichment at the C(1) and C(4) carbons to allow detection of the [1,4-(13)C(2)]MAPP functional groups and was melt blended with cellulose, lignin, and maple wood. In the cellulose/MAPP blend, changes in (13)C CPMAS NMR corrected signal intensities for the anhydride and dicarboxylic maleic acid functionalities suggested that esterification may have occurred predominantly from the more numerous diacid carbons. A single proton longitudinal relaxation in the rotating frame, (H)T(1rho), for the MAPP and the cellulose carbons in the blend suggested that they were spin coupled, i.e., homogeneous on a 10-200 Angstrom scale. Esterification was also suggested in the lignin/MAPP blend. Furthermore, the more significant changes in the intensities of the carbonyl signals and (H)T(1rho) values suggested that lignin may be more reactive to MAPP than cellulose. Finally, when maple was melt blended with MAPP, the same trends in the (13)C CP-MAS NMR spectra and (H)T(1rho) behavior were observed as when MAPP was blended with cellulose or lignin. This study therefore clarifies that during melt compounding of wood with MAPP, esterification occurs with wood polymers, preferentially with lignin. Understanding the interactions of MAPP with wood is of significance for the development of natural-fiber-reinforced thermoplastic composites.

  12. Chemical shift powder spectra enhanced by multiple-contact cross-polarization under slow magic-angle spinning.

    PubMed

    Raya, Jésus; Perrone, Barbara; Hirschinger, Jérôme

    2013-02-01

    A simple multiple-contact cross-polarization (CP) scheme is applied to a powder sample of ferrocene and β-calcium formate under static and magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. We show that multiple equilibrations-re-equilibrations with the proton spin bath improves the polarization transfer efficiency at short contact times and provides higher signal enhancements than state-of-the art techniques such as adiabatic passage through the Hartmann-Hahn condition CP (APHH-CP) when MAS is applied. The resulting chemical shift powder spectra then are identical to the ones obtained by using ROtor-Directed Exchange of Orientations CP (APHH-RODEO-CP) with intensity gains of a factor 1.1-1.3.

  13. Chemical shift powder spectra enhanced by multiple-contact cross-polarization under slow magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Raya, Jésus; Perrone, Barbara; Hirschinger, Jérôme

    2013-02-01

    A simple multiple-contact cross-polarization (CP) scheme is applied to a powder sample of ferrocene and β-calcium formate under static and magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. We show that multiple equilibrations-re-equilibrations with the proton spin bath improves the polarization transfer efficiency at short contact times and provides higher signal enhancements than state-of-the art techniques such as adiabatic passage through the Hartmann-Hahn condition CP (APHH-CP) when MAS is applied. The resulting chemical shift powder spectra then are identical to the ones obtained by using ROtor-Directed Exchange of Orientations CP (APHH-RODEO-CP) with intensity gains of a factor 1.1-1.3.

  14. Functional groups identified by solid state 13C NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  15. Solid state 31P cross-polarization/magic angle sample spinning nuclear magnetic resonance studies of crystalline glycogen phosphorylase b

    PubMed Central

    Taguchi, Jocelyn E.; Heyes, Stephen J.; Barford, David; Johnson, Louise N.; Dobson, Christopher M.

    1993-01-01

    31P cross-polarization/magic angle sample spinning nuclear magnetic resonance spectra have been obtained for pyridoxal 5′-phosphate (PLP) bound to glycogen phosphorylase b (GPb) in two different crystalline forms, monoclinic and tetragonal. Analysis of the intensities of the spinning sidebands in the nuclear magnetic resonance spectra has enabled estimates of the principal values of the 31P chemical shift tensors to be obtained. Differences between the two sets of values suggest differences in the environment of the phosphate moiety of the pyridoxal phosphate in the two crystalline forms. The tensor for the tetragonal crystalline form, T state GPb, is fully consistent with those found for dianionic phosphate groups in model compounds. The spectrum for the monoclinic crystalline form, R state GPb, although closer to that of dianionic than monoanionic model phosphate compounds, deviates significantly from that expected for a simple dianion or monoanion. This is likely to result from specific interactions between the PLP phosphate group and residues in its binding site in the protein. A possible explanation for the spectrum of the monoclinic crystals is that the shift tensor is averaged by a proton exchange process between different ionization states of the PLP associated with the presence of a sulfate ion bound in the vicinity of the PLP. PMID:8457673

  16. Partitioning of main and side-chain units between different phases: a solid-state 13C NMR inversion-recovery cross-polarization study on a homogeneous, metallocene-based, ethylene-1-octene copolymer.

    PubMed

    Litvinov, Victor M; Mathot, Vincent B F

    2002-01-01

    13C NMR inversion-recovery cross-polarization experiments are used to study the phase structure and partitioning of main and side-chain groups in a homogeneous, metallocene-based, ethylene-1-octene copolymer. The results provide strong evidence for a three-phase model, i.e. a rigid, (imperfect) crystalline phase, which is mainly composed of long sequences of methylene carbon atoms of the main chain, a semi-rigid, amorphous interphase (also denoted as 'rigid amorphous'), which is enriched by chain segments bearing methylene and methine carbon atoms of the main chain, and a soft fraction of the amorphous phase (also denoted as 'mobile amorphous'), which is largely composed of side chains and short methylene sequences of the main chain.

  17. - and Cross-Polarization 13C NMR Evidence of Alterations in Molecular Composition of Humic Substances Following Afforestation with Eucalypt in Distinct Brazilian Biomes

    NASA Astrophysics Data System (ADS)

    Silva, I. R.; Soares, E. M.; Schmidt-Rohr, K.; Novais, R.; Barros, N.; Fernandes, S.

    2010-12-01

    The effect of planting fast growing tree species on SOM quality in tropical regions has been overlooked. In the present study 13C-NMR approaches were used to evaluate the impact of eucalypt cultivation on humic and fulvic acids molecular composition. The results indicate that the replacement of native vegetation by eucalypt plantations increased the relative contribution of aliphatic groups in HA from soils previously under Atlantic Forest, Grassland, and the Cerrado (Curvelo site only). The same trend was observed for FA, except in the Curvelo site. A trend for degradation and smaller contribution of O-alkyl C (carbohydrates) in HA was observed in soils under eucalyptus in Atlantic Forest and Cerrado. For FA such decreases were seen in Cerrado and Grassland biomes after eucalypt planting. In the area cultivated with pasture in the Atlantic Forest biome and in the Grassland soil, the largest contributions of lignin-derived compounds were detected in HA. The HA from the Cerrado at the Curvelo site, where the woody vegetation is virtually devoid of grassy species, showed the lowest intensity of lignin signal then those from the Cerrado sensu stricto in Itacambira, where grass species are more abundant. At our study sites, charred material are most likely derived from burning of the native vegetation, as naturally occurs in the Cerrado region, or anthropogenic fires in the Grassland biome. Burning of harvest residues in eucalypt fields was also a common practice in the early rotations. The replacement of native vegetation by eucalypt plantations increases the relative contribution of nonpolar alkyl groups in HA from soils previously under Atlantic Forest, Grassland, and the Cerrado (Curvelo site only) biomes. There is evidence of substantial contribution of lignin-derived C to HA and FA, especially in sites planted with Brachiaria sp pastures. Eucalypt introduction decreases the relative contribution of carbohydrates in HA and FA. 13C DP/MAS NMR functional groups in

  18. Low-power broadband homonuclear dipolar recoupling without decoupling: Double-quantum 13C NMR correlations at very fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Teymoori, Gholamhasan; Pahari, Bholanath; Stevensson, Baltzar; Edén, Mattias

    2012-09-01

    We report novel symmetry-based radio-frequency (rf) pulse sequences for efficient excitation of double-quantum (2Q) coherences under very fast (>60 kHz) magic-angle spinning (MAS) conditions. The recursively generated pulse-scheme series, R22p1R22p-1(p=1,2,3,…), offers broadband 13C-13C recoupling in organic solids at a very low rf power. No proton decoupling is required. A high-order average Hamiltonian theory analysis reveals a progressively enhanced resonance-offset compensation for increasing p, as verified both by numerical simulations and 2Q filtration NMR experiments on 13C2-glycine, [2,3-13C2]alanine, and [U-13C]tyrosine at 14.1 T and 66 kHz MAS, where the pulse schemes with p⩾3 compare favorably to current state-of-the-art recoupling options.

  19. Elucidating connectivity and metal-binding structures of unlabeled paramagnetic complexes by 13C and 1H solid-state NMR under fast magic angle spinning.

    PubMed

    Wickramasinghe, Nalinda P; Shaibat, Medhat A; Ishii, Yoshitaka

    2007-08-23

    Characterizing paramagnetic complexes in solids is an essential step toward understanding their molecular functions. However, methodologies to characterize chemical and electronic structures of paramagnetic systems at the molecular level have been notably limited, particularly for noncrystalline solids. We present an approach to obtain connectivities of chemical groups and metal-binding structures for unlabeled paramagnetic complexes by 13C and 1H high-resolution solid-state NMR (SSNMR) using very fast magic angle spinning (VFMAS, spinning speed >or=20 kHz). It is experimentally shown for unlabeled Cu(II)(Ala-Thr) that 2D 13C/1H correlation SSNMR under VFMAS provides the connectivity of chemical groups and assignments for the characterization of unlabeled paramagnetic systems in solids. We demonstrate that on the basis of the assignments provided by the VFMAS approach multiple 13C-metal distances can be simultaneously elucidated by a combination of measurements of 13C anisotropic hyperfine shifts and 13C T1 relaxation due to hyperfine interactions for this peptide-Cu(II) complex. It is also shown that an analysis of 1H anisotropic hyperfine shifts allows for the determination of electron-spin states in Fe(III)-chloroprotoporphyin-IX in solid states.

  20. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose

    PubMed Central

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  1. 1H–13C hetero-nuclear dipole–dipole couplings of methyl groups in stationary and magic angle spinning solid-state NMR experiments of peptides and proteins

    PubMed Central

    Wu, Chin H.; Das, Bibhuti B.; Opella, Stanley J.

    2010-01-01

    13C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure 1H–13C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the 1H–13C hetero-nuclear dipolar interactions of 13C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of 13C3 labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples. PMID:19896874

  2. Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    SciTech Connect

    Lafon, Olivier; Thankamony, Aany S. Lilly; Kokayashi, Takeshi; Carnevale, Diego; Vitzthum, Veronika; Slowing, Igor I.; Kandel, Kapil; Vezin, Herve; Amoureux, Jean-Paul; Bodenhausen, Geoffrey; Pruski, Marek

    2012-12-21

    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of 13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements εon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to εon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated.

  3. Dual-band selective double cross polarization for heteronuclear polarization transfer between dilute spins in solid-state MAS NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengfeng; Miao, Yimin; Liu, Xiaoli; Yang, Jun; Li, Conggang; Deng, Feng; Fu, Riqiang

    2012-04-01

    A sinusoidal modulation scheme is described for selective heteronuclear polarization transfer between two dilute spins in double cross polarization magic-angle-spinning nuclear magnetic resonance spectroscopy. During the second N → C cross polarization, the 13C RF amplitude is modulated sinusoidally while the 15N RF amplitude is tangent. This modulation induces an effective spin-lock field in two selective frequency bands in either side of the 13C RF carrier frequency, allowing for simultaneous polarization transfers from 15N to 13C in those two selective frequency bands. It is shown by experiments and simulations that this sinusoidal modulation allows one to selectively polarize from 15N to its covalently bonded 13Cα and 13C' carbons in neighboring peptide planes simultaneously, which is useful for establishing the backbone connectivity between two sequential residues in protein structural elucidation. The selectivity and efficiency were experimentally demonstrated on a uniformly 13C,15N-labeled β1 immunoglobulin binding domain of protein G (GB1).

  4. Solid-state 13C NMR and molecular modeling studies of acetyl aleuritolic acid obtained from Croton cajucara Benth

    NASA Astrophysics Data System (ADS)

    da Silva San Gil, Rosane Aguiar; Albuquerque, Magaly Girão; de Alencastro, Ricardo Bicca; da Cunha Pinto, Angelo; do Espírito Santo Gomes, Fabiano; de Castro Dantas, Tereza Neuma; Maciel, Maria Aparecida Medeiros

    2008-08-01

    Solid-state 13C nuclear magnetic resonance ( 13C NMR) with magic-angle spinning (MAS) and with cross-polarization and magic-angle spinning (CP/MAS) spectra, and differential scanning calorimetry (DSC) techniques were used to obtain structural data from a sample of acetyl aleuritolic acid (AAA) extracted from the stem bark of Croton cajucara Benth. (Euphorbiaceae) and recrystallized from acetone. Since solid-state 13C NMR results suggested the presence of more than one molecule in the unitary cell for the AAA, DSC analysis and molecular modeling calculations were used to access this possibility. The absence of phase transition peaks in the DSC spectra and the dimeric models of AAA simulated using the semi-empirical PM3 method are in agreement with that proposal.

  5. Protein-chromophore interactions in alpha-crustacyanin, the major blue carotenoprotein from the carapace of the lobster, Homarus gammarus. A study by 13C magic angle spinning NMR.

    PubMed

    Weesie, R J; Askin, D; Jansen, F J; de Groot, H J; Lugtenburg, J; Britton, G

    1995-03-27

    MAS (magic angle spinning) 13C NMR has been used to study protein-chromophore interactions in alpha-crustacyanin, the blue astaxanthin-binding carotenoprotein of the lobster, Homarus gammarus, reconstituted with astaxanthins labelled with 13C at the 14,14' or 15,15' positions. Two signals are seen for alpha-crustacyanin containing [14,14'-13C2]astaxanthin, shifted 6.9 and 4.0 ppm downfield from the 134.1 ppm signal of uncomplexed astaxanthin in the solid state. With alpha-crustacyanin containing [15,15'-13C2]astaxanthin, one essentially unshifted broad signal is seen. Hence binding to the protein causes a decrease in electronic charge density, providing the first experimental evidence that a charge redistribution mechanism contributes to the bathochromic shift of the astaxanthin in alpha-crustacyanin, in agreement with inferences based on resonance Raman data [Salares, et al. (1979) Biochim. Biophys. Acta 576, 176-191]. The splitting of the 14 and 14' signals provides evidence for asymmetric binding of each astaxanthin molecule by the protein.

  6. Use of solid-state 13C NMR in structural studies of humic acids and humin from Holocene sediments

    USGS Publications Warehouse

    Hatcher, P.G.; VanderHart, D.L.; Earl, W.L.

    1980-01-01

    13C NMR spectra of solid humic substances in Holocene sediments have been obtained using cross polarization with magic-angle sample spinning techniques. The results demonstrate that this technique holds great promise for structural characterizations of complex macromolecular substances such as humin and humic acids. Quantifiable distinctions can be made between structural features of aquatic and terrestrial humic substances. The aliphatic carbons of the humic substances are dominant components suggestive of input from lipid-like materials. An interesting resemblance is also noted between terrestrial humic acid and humin spectra. ?? 1980.

  7. J Cross-Polarization Methods for Localized NMR without Magnetic Field Gradients

    NASA Astrophysics Data System (ADS)

    Kostler, H.; Kimmich, R.

    1993-10-01

    This work predominantly refers to 13C in vivo spectroscopy and has two objectives. First, heteronuclear editing is considered for proton-detected NMR spectroscopy of rare nuclei. The second aspect refers to localized heteronuclear NMR spectroscopy implying the editing option. Both purposes are achieved by employing J cross polarization (or coherent rotating-frame polarization transfer). The spatial selectivity is due to different in-homogeneities of the superimposed double-resonance radiofrequency fields of the J cross-polarization experiment. A 13C surface coil, for instance, was combined with a 1H birdcage resonator, so that J cross polarization is restricted to the region where the Hartmann/Hahn condition is approached. Heteronuclear editing of NMR lines for proton-detected 13C spectroscopy was performed by the aid of a cyclic cross-polarization pathway. Test experiments demonstrating the volume selectivity of the transfer process and the editing efficiency of the cyclic cross-polarization procedure are reported.

  8. Characterization of covalent protein conjugates using solid-state sup 13 C NMR spectroscopy

    SciTech Connect

    Garbow, J.R.; Fujiwara, Hideji; Sharp, C.R.; Logusch, E.W. )

    1991-07-23

    Cross-polarization magic-angle spinning (CPMAS) {sup 13}C NMR spectroscopy has been used to characterize covalent conjugates of alachlor, an {alpha}-chloroacetamide hapten, with glutathione (GSH) and bovine serum albumin (BSA). The solid-state NMR method demonstrates definitively the covalent nature of these conjugates and can also be used to characterize the sites of hapten attachment to proteins. Three different sites of alachlor binding are observed in the BSA system. Accurate quantitation of the amount of hapten covalently bound to GSH and BSA is reported. The solid-state {sup 13}C NMR technique can easily be generalized to study other small molecule/protein conjugates and can be used to assist the development and refinement of synthetic methods needed for the successful formation of such protein alkylation products.

  9. 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Frye, J. S.

    1987-01-01

    13C NMR spectra have been obtained of the insoluble carbon residues resulting from HF-digestion of three carbonaceous chondrites, Orgueil (C1), Murchison (CM2), and Allende (CV3). Spectra obtained using the cross polarization magic-angle spinning technique show two major features attributable respectively to carbon in aliphatic/olefinic structures. The spectrum obtained from the Allende sample was weak, presumably as a consequence of its low hydrogen content. Single pulse excitation spectra, which do not depend on 1H-13C polarization transfer for signal enhancement were also obtained. These spectra, which may be more representative of the total carbon in the meteorite samples, indicate a greater content of carbon in aromatic/olefinic structures. These results suggest that extensive polycyclic aromatic sheets are important structural features of the insoluble carbon of all three meteorites. The Orgueil and Murchison materials contain additional hydrogenated aromatic/olefinic and aliphatic groups.

  10. Triosephosphate isomerase: 15N and 13C chemical shift assignments and conformational change upon ligand binding by magic-angle spinning solid-state NMR spectroscopy.

    PubMed

    Xu, Yimin; Lorieau, Justin; McDermott, Ann E

    2010-03-19

    Microcrystalline uniformly (13)C,(15)N-enriched yeast triosephosphate isomerase (TIM) is sequentially assigned by high-resolution solid-state NMR (SSNMR). Assignments are based on intraresidue and interresidue correlations, using dipolar polarization transfer methods, and guided by solution NMR assignments of the same protein. We obtained information on most of the active-site residues involved in chemistry, including some that were not reported in a previous solution NMR study, such as the side-chain carbons of His95. Chemical shift differences comparing the microcrystalline environment to the aqueous environment appear to be mainly due to crystal packing interactions. Site-specific perturbations of the enzyme's chemical shifts upon ligand binding are studied by SSNMR for the first time. These changes monitor proteinwide conformational adjustment upon ligand binding, including many of the sites probed by solution NMR and X-ray studies. Changes in Gln119, Ala163, and Gly210 were observed in our SSNMR studies, but were not reported in solution NMR studies (chicken or yeast). These studies identify a number of new sites with particularly clear markers for ligand binding, paving the way for future studies of triosephosphate isomerase dynamics and mechanism.

  11. In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of Supercritical CO2 Incorporation in Smectite-Natural Organic Matter Composites

    SciTech Connect

    Bowers, Geoffrey M.; Hoyt, David W.; Burton, Sarah D.; Ferguson, Brennan O.; Varga, Tamas; Kirkpatrick, Robert J.

    2014-01-29

    This paper presents an in situ NMR study of clay-natural organic polymer systems (a hectoritehumic acid [HA] composite) under CO2 storage reservoir conditions (90 bars CO2 pressure, 50°C). The 13C and 23Na NMR data show that supercritical CO2 interacts more strongly with the composite than with the base clay and does not react to form other C-containing species over several days at elevated CO2. With and without organic matter, the data suggest that CO2 enters the interlayer space of Na-hectorite equilibrated at 43% relative humidity. The presence of supercritical CO2 also leads to increased 23Na signal intensity, reduced line width at half height, increased basal width, more rapid 23Na T1 relaxation rates, and a shift to more positive resonance frequencies. Larger changes are observed for the hectorite-HA composite than for the base clay. In light of recently reported MD simulations of other polymer-Na-smectite composites, we interpret the observed changes as an increase in the rate of Na+ site hopping in the presence of supercritical CO2, the presence of potential new Na+ sorption sites when the humic acid is present, and perhaps an accompanying increase in the number of Na+ ions actively involved in site hopping. The results suggest that the presence of organic material either in clay interlayers or on external particle surfaces can significantly affect the behavior of supercritical CO2 and the mobility of metal ions in reservoir rocks.

  12. 13C Nuclear magnetic resonance studies of kerogen from Cretaceous black shales thermally altered by basaltic intrusions and laboratory simulations

    USGS Publications Warehouse

    Dennis, L.W.; Maciel, G.E.; Hatcher, P.G.; Simoneit, B.R.T.

    1982-01-01

    Cretaceous black shales from DSDP Leg 41, Site 368 in the Eastern Atlantic Ocean were thermally altered during the Miocene by an intrusive basalt. The sediments overlying and underlying the intrusive body were subjected to high temperatures (up to ~ 500??C) and, as a result, their kerogen was significantly altered. The extent of this alteration has been determined by examination by means of 13C nuclear magnetic resonance, using cross polarization/magic-angle spinning (CP/MAS). Results indicate that the kerogen becomes progressively more aromatic in the vicinity of the intrusive body. Laboratory heating experiments, simulating the thermal effects of the basaltic intrusion, produced similar results on unaltered shale from the drill core. The 13C CP/MAS results appear to provide a good measure of thermal alteration. ?? 1982.

  13. Bonding in hard and elastic amorphous carbon nitride films investigated using 15N, 13C, and 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Hoatson, G. L.; Holloway, B. C.; Vold, R. L.; Reilly, A. C.

    2003-11-01

    The nitrogen bonding in hard and elastic amorphous carbon nitride (a-CNx) films is examined with 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. Films were deposited by dc magnetron sputtering, in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests revealed an elastic recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. The NMR results show that nitrogen bonding in this material is consistent with sp2 hybridized nitrogen incorporated in an aromatic carbon environment. The data also indicate that the a-CNx prepared for this study has very low hydrogen content and is hydrophilic. Specifically, analysis of 15N and 13C cross polarization magic angle spinning and 1H NMR experiments suggests that water preferentially protonates nitrogen sites.

  14. Characterization of a Mixture of CO2 Adsorption Products in Hyperbranched Aminosilica Adsorbents by (13)C Solid-State NMR.

    PubMed

    Moore, Jeremy K; Sakwa-Novak, Miles A; Chaikittisilp, Watcharop; Mehta, Anil K; Conradi, Mark S; Jones, Christopher W; Hayes, Sophia E

    2015-11-17

    Hyperbranched amine polymers (HAS) grown from the mesoporous silica SBA-15 (hereafter "SBA-15-HAS") exhibit large capacities for CO2 adsorption. We have used static in situ and magic-angle spinning (MAS) ex situ (13)C nuclear magnetic resonance (NMR) to examine the adsorption of CO2 by SBA-15-HAS. (13)C NMR distinguishes the signal of gas-phase (13)CO2 from that of the chemisorbed species. HAS polymers possess primary, secondary, and tertiary amines, leading to multiple chemisorption reaction outcomes, including carbamate (RnNCOO(-)), carbamic acid (RnNCOOH), and bicarbonate (HCO3(-)) moieties. Carbamates and bicarbonate fall within a small (13)C chemical shift range (162-166 ppm), and a mixture was observed including carbamic acid and carbamate, the former disappearing upon evacuation of the sample. By examining the (13)C-(14)N dipolar coupling through low-field (B0 = 3 T) (13)C{(1)H} cross-polarization MAS NMR, carbamate is confirmed through splitting of the (13)C resonance. A third species that is either bicarbonate or a second carbamate is evident from bimodal T2 decay times of the ∼163 ppm peak, indicating the presence of two species comprising that single resonance. The mixture of products suggests that (1) the presence of amines and water leads to bicarbonate being present and/or (2) the multiple types of amine sites in HAS permit formation of chemically distinct carbamates.

  15. Solid-state 13C NMR study of banana liquid crystals - 3: Alkyl-tail-group packing environments of an acute-angle bent-core molecule in the hexagonal columnar and cubic phases

    NASA Astrophysics Data System (ADS)

    Kurosu, Hiromichi; Endo, Yumi; Kimura, Saori; Hashimoto, Tomoko; Harada, Motoi; Lee, Eun-Woo; Sone, Masato; Watanabe, Junji; Kang, Sungmin

    2016-02-01

    Solid-state 13C nuclear magnetic resonance (NMR) measurements were performed on the hexagonal columnar and cubic phases of an acute-angle banana-shaped molecule, N(1,7)-S30. In the hexagonal columnar phase, three peaks appear at the NMR chemical shifts assigned to the internal methylene carbons of alkyl tails, indicating that the two alkyl tails have different packing structures, and one of the tails has two different conformations within a single molecule. Combined cross-polarization/magic-angle spinning and pulse saturation transfer/magic-angle spinning measurements show that one of the alkyl chains is located inside and the other is located outside the columnar structure. In the cubic phase, pulse saturation transfer/magic-angle spinning measurement shows that only one peak appears at the NMR chemical shifts assigned to the internal methylene carbons of alkyl tails, indicating that both of the alkyl chains are located outside the cubic structure.

  16. Variability of cork from Portuguese Quercus suber studied by solid-state (13)C-NMR and FTIR spectroscopies.

    PubMed

    Lopes, M H; Barros, A S; Pascoal Neto, C; Rutledge, D; Delgadillo, I; Gil, A M

    2001-01-01

    A new approach is presented for the study of the variability of Portuguese reproduction cork using solid-state (13)C-NMR spectroscopy and photoacoustic (PAS) FTIR (FTIR-PAS) spectroscopy combined with chemometrics. Cork samples were collected from 12 different geographical sites, and their (13)C-cross-polarization with magic angle spinning (CP/MAS) and FTIR spectra were registered. A large spectral variability among the cork samples was detected by principal component analysis and found to relate to the suberin and carbohydrate contents. This variability was independent of the sample geographical origin but significantly dependent on the cork quality, thus enabling the distinction of cork samples according to the latter property. The suberin content of the cork samples was predicted using multivariate regression models based on the (13)C-NMR and FTIR spectra of the samples as reported previously. Finally, the relationship between the variability of the (13)C-CP/MAS spectra with that of the FTIR-PAS spectra was studied by outer product analysis. This type of multivariate analysis enabled a clear correlation to be established between the peaks assigned to suberin and carbohydrate in the FTIR spectrum and those appearing in the (13)C-CP/MAS spectra.

  17. Solid state (13)C NMR analysis of human gallstones from cancer and benign gall bladder diseases.

    PubMed

    Jayalakshmi, K; Sonkar, Kanchan; Behari, Anu; Kapoor, V K; Sinha, Neeraj

    2009-09-01

    Natural abundance (13)C cross polarized (CP) magic angle spinning (MAS) nuclear magnetic resonance (NMR) analysis of human gall bladder stones collected from patients suffering from malignant and benign gall bladder disease was carried out which revealed different polymorphs of cholesterol in these stones. All gall bladder stones in present study had cholesterol as their main constituent. (13)C CP-MAS NMR analysis revealed three forms of cholesterol molecules in these stones, which are anhydrous form, monohydrate crystalline with amorphous form and monohydrate crystalline form. Our study revealed that stones collected from patients associated with chronic cholecystitis (CC) disease have mostly different polymorph of cholesterol than stones collected from patients associated with gall bladder cancer (GBC). Such study will be helpful in understanding the mechanism of formation of gallstones which are associated with different gall bladder diseases. This is the first study by solid state NMR revealing different crystal polymorphism of cholesterol in human gallstones, extending the applicability of (13)C CP-MAS NMR technique for the routine study of gallstones.

  18. [Characterization of biochar by X-ray photoelectron spectroscopy and 13C nuclear magnetic resonance].

    PubMed

    Xu, Dong-yu; Jin, Jie; Yan, Yu; Han, Lan-fang; Kang, Ming-jie; Wang, Zi-ying; Zhao, Ye; Sun, Ke

    2014-12-01

    The wood (willow branch) and grass (rice straw) materials were pyrolyzed at different temperatures (300, 450 and 600 °C) to obtain the biochars used in the present study. The biochars were characterized using elementary analysis, X-ray photoelectron spectroscopy (XPS) and solid state 13C cross-polarization and magic angle spinning nuclear magnetic resonance spectroscopy (13C NMR) to illuminate the structure and composition of the biochars which were derived from the different thermal temperatures and biomass. The results showed that the H/C, O/C and (O+N)/C ratios of the biochars decreased with the increase in the pyrolysis temperatures. The surface polarity and ash content of the grass-derived biochars were higher than those of the wood-derived biochars. The minerals of the wood-derived biochars were mainly covered by the organic matter; in contrast, parts of the mineral surfaces of the grass-derived biochars were not covered by organic matter? The 13C NMR of the low temperature-derived biochars revealed a large contribution of aromatic carbon, aliphatic carbon, carboxyl and carbonyl carbon, while the high temperature-derived biochars contained a large amount of aromatic carbon. Moreover, the wood-derived biochars produced at low heat treatment temperatures contained more lignin residues than grass-derived ones, probably due to the existence of high lignin content in the feedstock soures of wood-derived biochars. The results of the study would be useful for environmental application of biochars.

  19. Cross polarization compatible dialysis chip.

    PubMed

    Kornreich, Micha; Heymann, Michael; Fraden, Seth; Beck, Roy

    2014-10-07

    We visualize birefringence in microliter sample volumes using a microfluidic dialysis chip optimized for cross polarization microscopy. The chip is composed of two overlapping polydimethylsiloxane (PDMS) channels separated by a commercial cellulose ester membrane. Buffer exchange in the sample chamber is achieved within minutes by dialyzing under continuous reservoir flow. Using fd virus as a birefringent model system, we monitor the fd virus isotropic to liquid crystal phase transition as a function of ionic strength. We show that the reorientation of the fd virus spans a few tens of seconds, indicative of fast ion exchange across the membrane. Complete phase separation reorganization takes minutes to hours as it involves diffusive virus mass transport within the storage chamber.

  20. 13C CP/MAS NMR studies of vitamin E model compounds.

    PubMed

    Witkowski, Stanislaw; Paradowska, Katarzyna; Wawer, Iwona

    2004-10-01

    13C cross-polarization magic angle spinning (CP/MAS) NMR data for 2,2,5,7,8-pentamethylchroman-6-ol (2), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox c) (3) and its acetate (4), 2-methoxy-2,2,5,7,8-pentamethylchroman-6-ol (5), 2-hydroxy-2,2,5,7,8-pentamethylchroman-6-ol (6) and 2,2,5,7,8-pentamethylchroman (7) are reported. A deshielding of 7.7 ppm for the carboxylic carbon was observed in solid Trolox due to formation of intermolecular hydrogen bonds within cyclic dimers. Such crystal packing permits effective cross-polarization and fast relaxation (short T1rho(H)). The impact of the proton concentration on the CP dynamics is reflected by the longer T(CP) and T1rhoH for Trolox-d2 (deuterated at mobile proton sites). The calculated GIAO RHF shielding constants are sensitive to intramolecular effects: rotation around the C-6-O bond (changes of sigma up to 8 ppm) and conformation at C-2.

  1. Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR.

    PubMed

    Fritzsching, Keith J; Kim, Jihyun; Holland, Gregory P

    2013-08-01

    The interaction between cholesterol (Chol) and phospholipids in bilayers was investigated for the ternary model lipid rafts, DOPC/eSM/Chol and DOPC/DPPC/Chol, with differential scanning calorimetry (DSC) and (13)C cross polarization magic angle spinning (CP-MAS) solid-state NMR. The enthalpy and transition temperature (Tm) of the Lα liquid crystalline phase transition from DSC was used to probe the thermodynamics of the different lipids in the two systems as a function of Chol content. The main chain (13)C (CH2)n resonance is resolved in the (13)C CP-MAS NMR spectra for the unsaturated (DOPC) and saturated (eSM or DPPC) chain lipid in the ternary lipid raft mixtures. The (13)C chemical shift of this resonance can be used to detect differences in chain ordering and overall interactions with Chol for the different lipid constituents in the ternary systems. The combination of DSC and (13)C CP-MAS NMR results indicate that there is a preferential interaction between SM and Chol below Tm for the DOPC/eSM/Chol system when the Chol content is ≤20mol%. In contrast, no preferential interaction between Chol and DPPC is observed in the DOPC/DPPC/Chol system above or below Tm. Finally, (13)C CP-MAS NMR resolves two Chol environments in the DOPC/eSM/Chol system below Tm at Chol contents >20mol% while, a single Chol environment is observed for DOPC/DPPC/Chol at all compositions.

  2. Following Suberization in Potato Wound Periderm by Histochemical and Solid-State 13C Nuclear Magnetic Resonance Methods.

    PubMed

    Stark, R. E.; Sohn, W.; Pacchiano Jr, R. A.; Al-Bashir, M.; Garbow, J. R.

    1994-02-01

    The time course of suberization in wound periderm from potato (Solanum tuberosum L.) has been monitored by histochemical and high-resolution solid-state nuclear magnetic resonance (NMR) methods. Light microscopy conducted after selective staining of the lipid and double-bonded constituents shows that suberin is deposited at the outermost intact cell-wall surface during the first 7 d of wound healing; suberization forms a barrier to tissue infiltration at later times. Cross polarization-magic angle spinning 13C NMR spectra demonstrate the deposition of a polyester containing all major suberin functional groups after just 4 d of wound healing. Initially the suberin includes a large proportion of aromatic groups and fairly short aliphatic chains, but the spectral data demonstrate the growing dominance of long-chain species during the period 7 to 14 d after wounding. The results of preliminary 13C-labeling experiments with sodium [2-13C]acetate and DL-[1-13C]phenylalanine provide an excellent prospectus for future NMR-based studies of suberin biosynthesis.

  3. Solid-State Selective 13C Excitation and Spin Diffusion NMR to Resolve Spatial Dimensions in Plant Cell Walls

    SciTech Connect

    Foston, M.; Katahira, R.; Gjersing, E.; Davis, M. F.; Ragauskas, A. J.

    2012-02-15

    The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a {sup 13}C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. {sup 13}C spin diffusion time constants (T{sub SD}) were extracted using a two-site spin diffusion theory developed for {sup 13}C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated {sup 13}C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances {approx}0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.

  4. Investigation of gamma-irradiated vegetable seeds with high-resolution solid-state 13C NMR.

    PubMed

    Bardet, Michel; Maron, Sébastien; Foray, Marie Françoise; Berger, Maurice; Guillermo, Armel

    2004-04-01

    13C solid-state NMR was used to investigate the effects of gamma radiation on vegetable seeds, Pisum sativum and Latuca sativa, at absorbed doses that inhibit their germination. By combining single-pulse excitation and cross-polarization experiments under magic angle spinning, both liquid and solid domains of seeds can be characterized. We showed that the liquid domains, mostly made of triacylglycerols (TAG), of vegetable seeds are not sensitive to radiation. The main structural changes have been observed in the embryonic axes of seeds when the seeds are water-imbibed before irradiation. These results rule out a starting hypothesis concerning the potential role of TAG contained in oil bodies as a potential source of aldehydes that could further react with DNA moiety.

  5. 13C MAS NMR studies of the effects of hydration on the cell walls of potatoes and Chinese water chestnuts.

    PubMed

    Tang, H; Belton, P S; Ng, A; Ryden, P

    1999-02-01

    13C NMR with magic angle spinning (MAS) has been employed to investigate the cell walls of potatoes and Chinese water chestnuts over a range of hydration levels. Both single-pulse excitation (SPEMAS) and cross-polarization (CPMAS) experiments were carried out. Hydration led to a substantial increase in signal intensities of galactan and galacturonan in the SPEMAS spectra and a decrease in line width, implying mobilization in the backbone and side chains of pectin. In CPMAS spectra of both samples, noncellulose components showed signal loss as hydration increased. However, the signals of some galacturonan in the 3(1) helix configuration remained in the spectra even when the water content was as high as 110%. Cellulose was unaffected. It is concluded that the pectic polysaccharides experience a distribution of molecular conformations and mobility, whereas cellulose remained as typical rigid solid.

  6. Optically enhanced nuclear cross polarization in acridine-doped fluorene

    SciTech Connect

    Oshiro, C.M.

    1982-06-01

    The objective of this work has been to create large polarizations of the dilute /sup 13/C nuclei in the solid state. The idea was to create /sup 1/H polarizations larger than Boltzmann and to use the proton enhanced nuclear induction spectroscopy cross polarization technique to then transfer this large polarization to the /sup 13/C spin system. Optical Nuclear Polarization (ONP) of acridine-doped fluorene single crystals was studied. In addition, ONP of powdered samples of the acridine-doped fluorene was studied. In general, many compounds do not crystallize easily or do not form large crystals suitable for NMR experiments. Powdered, amorphous and randomly dispersed samples are generally far more readily available than single crystals. One objective of this work has been to (first) create large /sup 1/H polarizations. Although large optical proton polarizations in single crystals have been reported previously, optically generated polarizations in powdered samples have not been reported. For these reasons, ONP studies of powdered samples of the acridine-doped fluorene were also undertaken. Using ONP in combination with the proton enhanced nuclear induction spectroscopy experiment, large /sup 13/C polarizations have been created in fluorene single crystals. These large /sup 13/C polarizations have permitted the determination of the seven incongruent chemical shielding tensors of the fluorene molecule. Part 2 of this thesis describes the proton enhanced nuclear induction spectroscopy experiment. Part 3 describes the ONP experiment. Part 4 is a description of the experimental set-up. Part 5 describes the data analysis for the determination of the chemical shielding tensors. Part 6 presents the results of the ONP experiments performed in this work and the chemical shielding tensors determined.

  7. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  8. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    SciTech Connect

    De Paul, Susan M.

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  9. Accurate measurements of 13C-13C distances in uniformly 13C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Khaneja, Navin; Nielsen, Niels Chr.

    2014-09-01

    Application of sets of 13C-13C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important 13C-13C distances in uniformly 13C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl (13C') and aliphatic (13Caliphatic) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly 13C,15N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of 13C'-13Caliphatic distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform 13C,15N-labeling on the FGAIL fragment.

  10. Solid-State NMR Study of Paramagnetic Bis(alaninato-κ(2)N,O)copper(II) and Bis(1-amino(cyclo)alkane-1-carboxylato-κ(2)N,O)copper(II) Complexes: Reflection of Stereoisomerism and Molecular Mobility in (13)C and (2)H Fast Magic Angle Spinning Spectra.

    PubMed

    Szalontai, Gábor; Csonka, Róbert; Speier, Gábor; Kaizer, József; Sabolović, Jasmina

    2015-05-18

    Solid-state stereochemistry and mobility of paramagnetic copper(II) complexes formed by aliphatic amino acids (l-alanine, d,l-alanine, 1-amino-2-methyl-alanine) and 1-amino(cyclo)alkane-1-carboxylic acids (alkane = propane, butane, pentane, hexane) as bidentate ligands has been studied by (13)C and (2)H solid-state fast magic angle spinning (MAS) NMR spectroscopy. We examined the prospective method to characterize solid-state paramagnetic compounds in a routine way. Both (13)C and (2)H MAS spectra can distinguish d,l and l,l diastereomers of natural and polydeuterated bis([Dn]alaninato)copper(II) (n = 0, 2, 8) complexes with axial and/or equatorial methyl positions (conformations) primarily due to different Fermi-contact (FC) contributions. The three-bond hyperfine couplings clearly show Karplus-like dependence on the torsional angles which turned out to be a useful assignment aid. Density functional theory calculations of the FC term and crystal structures were also used to aid the final assignments. The correlations obtained for bis(alaninato-κ(2)N,O)copper(II) complexes were successfully used to characterize other complexes. The usefulness of the (2)H MAS spectra of the deuterated complexes was underlined. Even the spectra of the easily exchangeable amine protons contained essential stereochemical information. In the case of a dimer structure of bis(1-aminohexane-1-carboxylato-κ(2)N,O)copper(II) both the (13)C and (2)H resolutions were good enough to confirm the presence of the cis and trans forms in the asymmetric unit. With regard to the internal solid-state motions in the crystal lattice, the obtained quadrupolar tensor parameters were similar for the d,l- and l,l-alaninato isomers and also for the cis-trans forms suggesting similar crystal packing effects, static amine deuterons involved in hydrogen bonding, and fast rotating methyl groups.

  11. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    PubMed Central

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio

    2015-01-01

    Summary The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  12. Polydisperse methyl β-cyclodextrin-epichlorohydrin polymers: variable contact time (13)C CP-MAS solid-state NMR characterization.

    PubMed

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio; Mele, Andrea

    2015-01-01

    The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state (13)C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices.

  13. Glycerin-Induced Conformational Changes in Bombyx mori Silk Fibroin Film Monitored by 13C CP/MAS NMR and 1H DQMAS NMR

    PubMed Central

    Asakura, Tetsuo; Endo, Masanori; Hirayama, Misaki; Arai, Hiroki; Aoki, Akihiro; Tasei, Yugo

    2016-01-01

    In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, 13C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The 1H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using 1H–1H distance constraints obtained from the 1H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra. PMID:27618034

  14. Quantitative solid-state 13C nuclear magnetic resonance spectrometric analyses of wood xylen: effect of increasing carbohydrate content

    USGS Publications Warehouse

    Bates, A.L.; Hatcher, P.G.

    1992-01-01

    Isolated lignin with a low carbohydrate content was spiked with increasing amounts of alpha-cellulose, and then analysed by solid-state 13C nuclear magnetic resonance (NMR) using cross-polarization with magic angle spinning (CPMAS) and dipolar dephasing methods in order to assess the quantitative reliability of CPMAS measurement of carbohydrate content and to determine how increasingly intense resonances for carbohydrate carbons affect calculations of the degree of lignin's aromatic ring substitution and methoxyl carbon content. Comparisons were made of the carbohydrate content calculated by NMR with carbohydrate concentrations obtained by phenol-sulfuric acid assay and by the calculation from the known amounts of cellulose added. The NMR methods used in this study yield overestimates for carbohydrate carbons due to resonance area overlap from the aliphatic side chain carbons of lignin. When corrections are made for these overlapping resonance areas, the NMR results agree very well with results obtained by other methods. Neither the calculated methoxyl carbon content nor the degree of aromatic ring substitution in lignin, both calculated from dipolar dephasing spectra, change with cellulose content. Likewise, lignin methoxyl content does not correlate with cellulose abundance when measured by integration of CPMAS spectra. ?? 1992.

  15. Dissolution dynamic nuclear polarization of deuterated molecules enhanced by cross-polarization

    NASA Astrophysics Data System (ADS)

    Kurzbach, Dennis; Weber, Emmanuelle M. M.; Jhajharia, Aditya; Cousin, Samuel F.; Sadet, Aude; Marhabaie, Sina; Canet, Estel; Birlirakis, Nicolas; Milani, Jonas; Jannin, Sami; Eshchenko, Dmitry; Hassan, Alia; Melzi, Roberto; Luetolf, Stephan; Sacher, Marco; Rossire, Marc; Kempf, James; Lohman, Joost A. B.; Weller, Matthias; Bodenhausen, Geoffrey; Abergel, Daniel

    2016-11-01

    We present novel means to hyperpolarize deuterium nuclei in 13CD2 groups at cryogenic temperatures. The method is based on cross-polarization from 1H to 13C and does not require any radio-frequency fields applied to the deuterium nuclei. After rapid dissolution, a new class of long-lived spin states can be detected indirectly by 13C NMR in solution. These long-lived states result from a sextet-triplet imbalance (STI) that involves the two equivalent deuterons with spin I = 1. An STI has similar properties as a triplet-singlet imbalance that can occur in systems with two equivalent I = 1/2 spins. Although the lifetimes TSTI are shorter than T1(Cz), they can exceed the life-time T1(Dz) of deuterium Zeeman magnetization by a factor of more than 20.

  16. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    PubMed Central

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592

  17. Site-Specific Internal Motions in GB1 Protein Microcrystals Revealed by 3D 2H–13C–13C Solid-State NMR Spectroscopy

    PubMed Central

    2016-01-01

    2H quadrupolar line shapes deliver rich information about protein dynamics. A newly designed 3D 2H–13C–13C solid-state NMR magic angle spinning (MAS) experiment is presented and demonstrated on the microcrystalline β1 immunoglobulin binding domain of protein G (GB1). The implementation of 2H–13C adiabatic rotor-echo-short-pulse-irradiation cross-polarization (RESPIRATION CP) ensures the accuracy of the extracted line shapes and provides enhanced sensitivity relative to conventional CP methods. The 3D 2H–13C–13C spectrum reveals 2H line shapes for 140 resolved aliphatic deuterium sites. Motional-averaged 2H quadrupolar parameters obtained from the line-shape fitting identify side-chain motions. Restricted side-chain dynamics are observed for a number of polar residues including K13, D22, E27, K31, D36, N37, D46, D47, K50, and E56, which we attribute to the effects of salt bridges and hydrogen bonds. In contrast, we observe significantly enhanced side-chain flexibility for Q2, K4, K10, E15, E19, N35, N40, and E42, due to solvent exposure and low packing density. T11, T16, and T17 side chains exhibit motions with larger amplitudes than other Thr residues due to solvent interactions. The side chains of L5, V54, and V29 are highly rigid because they are packed in the core of the protein. High correlations were demonstrated between GB1 side-chain dynamics and its biological function. Large-amplitude side-chain motions are observed for regions contacting and interacting with immunoglobulin G (IgG). In contrast, rigid side chains are primarily found for residues in the structural core of the protein that are absent from protein binding and interactions. PMID:26849428

  18. Magic angle Lee-Goldburg frequency offset irradiation improves the efficiency and selectivity of SPECIFIC-CP in triple-resonance MAS solid-state NMR.

    PubMed

    Wu, Chin H; De Angelis, Anna A; Opella, Stanley J

    2014-09-01

    The efficiency and selectivity of SPECIFIC-CP, a widely used method for selective double cross-polarization in triple-resonance magic angle spinning solid-state NMR, is improved by performing the tangential-shaped (13)C irradiation at an offset frequency that meets the Lee-Goldburg condition (LG-SPECIFIC-CP). This is demonstrated on polycrystalline samples of uniformly (13)C, (15)N labeled N-acetyl-leucine and N-formyl-Met-Leu-Phe-OH (MLF) at 700MHz and 900MHz (1)H resonance frequencies, respectively. For the single (13)Cα of N-acetyl-leucine, relative to conventional broad band cross-polarization, the SPECIFIC-CP signal has 47% of the intensity. Notably, the LG-SPECIFIC-CP signal has 72% of the intensity, essentially the theoretical maximum. There were no other changes in the experimental parameters. The three (13)Cα signals in MLF show some variation in intensities, reflecting the relatively narrow bandwidth of a frequency-offset procedure, and pointing to future developments for this class of experiment.

  19. Magic Physics?

    ERIC Educational Resources Information Center

    Featonby, David

    2010-01-01

    This article examines several readily available "magic tricks" which base their "trickery" on physics principles, and questions the use of the word "magic" in the 21st century, both in popular children's science and in everyday language. (Contains 18 figures.)

  20. Efficient cross-polarization using a composite 0 degrees pulse for NMR studies on static solids.

    PubMed

    Fukuchi, Masashi; Ramamoorthy, Ayyalusamy; Takegoshi, K

    2009-02-01

    In most solid-state NMR experiments, cross-polarization is an essential step to detect low-gamma nuclei such as (13)C and (15)N. In this study, we present a new cross-polarization scheme using spin-locks composed of composite 0 degrees pulses in the RF channels of high-gamma and low-gamma nuclei to establish the Hartmann-Hahn match. The composite 0 degrees pulses with no net nutation-angle{(2pi)(X)-(2pi)(-X)-(2pi)(Y)-(2pi)(-Y) -}(n) applied simultaneously to both high-gamma (I) and low-gamma (S) nuclei create an effective heteronuclear dipolar Hamiltonian H(d)((0))=d/2(2I(Z)S(Z)+I(X)S(X)+I(Y)S(Y)), which is capable of transferring the Z-component of the I spin magnetization to the Z-component of the S spin magnetization. It also retains a homonuclear dipolar coupling Hamiltonian that enables the flip-flop transfer among abundant spins. While our experimental results indicate that the new pulse sequence, called composite zero cross-polarization (COMPOZER-CP) performs well on adamantane, it is expected to be more valuable to study semi-solids like liquid crystalline materials and model lipid membranes. Theoretical analysis of COMPOZER-CP is presented along with experimental results. Our experimental results demonstrate that COMPOZER-CP overcomes the RF field inhomogeneity and Hartmann-Hahn mismatch for static solids. Experimental results comparing the performance of COMPOZER-CP with that of the traditional constant-amplitude CP and rampCP sequences are also presented in this paper.

  1. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  2. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  3. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  4. Unilateral NMR, 13C CPMAS NMR spectroscopy and micro-analytical techniques for studying the materials and state of conservation of an ancient Egyptian wooden sarcophagus.

    PubMed

    Proietti, Noemi; Presciutti, Federica; Di Tullio, Valeria; Doherty, Brenda; Marinelli, Anna Maria; Provinciali, Barbara; Macchioni, Nicola; Capitani, Donatella; Miliani, Costanza

    2011-03-01

    A multi-technique approach was employed to study a decorated Egyptian wooden sarcophagus (XXV-XXVI dynasty, Third Intermediate Period), belonging to the Museo del Vicino Oriente of the Sapienza University of Rome. Portable non-invasive unilateral NMR was applied to evaluate the conservation state of the sarcophagus. Moreover, using unilateral NMR, a non-invasive analytical protocol was established to detect the presence of organic substances on the surface and/or embedded in the wooden matrix. This protocol allowed for an educated sampling campaign aimed at further investigating the state of degradation of the wood and the presence of organic substances by (13)C cross polarization magic angle spinning (CPMAS) NMR spectroscopy. The composition of the painted layer was analysed by optical microscopy (OM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Raman and surface enhanced (resonance) Raman spectroscopy (SERS/SERRS), infrared and GC-MS techniques, evidencing original components such as clay minerals, Egyptian green, indigo, natural gums, and also highlighting restoration pigments and alteration compounds. The identification of the wood, of great value for the reconstruction of the history of the artwork, was achieved by means of optical microscopy.

  5. Application of (13)C ramp CPMAS NMR with phase-adjusted spinning sidebands (PASS) for the quantitative estimation of carbon functional groups in natural organic matter.

    PubMed

    Ikeya, Kosuke; Watanabe, Akira

    2016-01-01

    The composition of carbon (C) functional groups in natural organic matter (NOM), such as dissolved organic matter, soil organic matter, and humic substances, is frequently estimated using solid-state (13)C NMR techniques. A problem associated with quantitative analysis using general cross polarization/magic angle spinning (CPMAS) spectra is the appearance of spinning side bands (SSBs) split from the original center peaks of sp (2) hybridized C species (i.e., aromatic and carbonyl C). Ramp CP/phase-adjusted side band suppressing (PASS) is a pulse sequence that integrates SSBs separately and quantitatively recovers them into their inherent center peaks. In the present study, the applicability of ramp CP/PASS to NOM analysis was compared with direct polarization (DPMAS), another quantitative method but one that requires a long operation time, and/or a ramp CP/total suppression side band (ramp CP/TOSS) technique, a popular but non-quantitative method for deleting SSBs. The test materials were six soil humic acid samples with various known degrees of aromaticity and two fulvic acids. There were no significant differences in the relative abundance of alkyl C, O-alkyl C, and aromatic C between the ramp CP/PASS and DPMAS methods, while the signal intensities corresponding to aromatic C in the ramp CP/TOSS spectra were consistently less than the values obtained in the ramp CP/PASS spectra. These results indicate that ramp CP/PASS can be used to accurately estimate the C composition of NOM samples.

  6. Characterization of cromolyn sodium hydrates and its formulation by (23) Na-multiquantum and magic-angle spinning nuclear magnetic resonance spectroscopy.

    PubMed

    Umino, Makoto; Higashi, Kenjirou; Masu, Hyuma; Limwikrant, Waree; Yamamoto, Keiji; Moribe, Kunikazu

    2013-08-01

    We characterized cromolyn sodium (CS) hydrates and evaluated their molecular states in low-dose formulations using Na-multiquantum magic-angle spinning (MQMAS) nuclear magnetic resonance (NMR) analysis. Two CS hydrates, low-water-content hydrated form and high-water-content hydrated form containing 2-3 and 5-6 hydrates, respectively, were prepared by humidification. Single-crystal X-ray diffraction and powder X-ray diffraction analysis revealed that these CS hydrates contained sodium channel structures and that water molecules were adsorbed on the sodium nucleus. (13) C-cross-polarization/MAS NMR spectra of these hydrates revealed similar results, confirming that the water molecules were adsorbed not on the cromolyn skeletons but mainly on the sodium nucleus. In contrast, (23) Na-MQMAS NMR analysis allowed us to clearly distinguish these hydrates without discernible effects from quadrupolar interaction. Thus, MQMAS NMR analysis is a valuable tool for evaluating salt drugs and their formulations.

  7. Coherent Backscattering in the Cross-Polarized Channel

    NASA Technical Reports Server (NTRS)

    Mischenko, Michael I.; Mackowski, Daniel W.

    2011-01-01

    We analyze the asymptotic behavior of the cross-polarized enhancement factor in the framework of the standard low-packing-density theory of coherent backscattering by discrete random media composed of spherically symmetric particles. It is shown that if the particles are strongly absorbing or if the smallest optical dimension of the particulate medium (i.e., the optical thickness of a plane-parallel slab or the optical diameter of a spherically symmetric volume) approaches zero, then the cross-polarized enhancement factor tends to its upper-limit value 2. This theoretical prediction is illustrated using direct computer solutions of the Maxwell equations for spherical volumes of discrete random medium.

  8. 13C metabolic flux analysis.

    PubMed

    Wiechert, W

    2001-07-01

    Metabolic flux analysis using 13C-labeled substrates has become an important tool in metabolic engineering. It allows the detailed quantification of all intracellular fluxes in the central metabolism of a microorganism. The method has strongly evolved in recent years by the introduction of new experimental procedures, measurement techniques, and mathematical data evaluation methods. Many of these improvements require advanced skills in the application of nuclear magnetic resonance and mass spectrometry techniques on the one hand and computational and statistical experience on the other hand. This minireview summarizes these recent developments and sketches the major practical problems. An outlook to possible future developments concludes the text.

  9. Spatio-Temporal Dynamics of Cross Polarized Wave Generation

    NASA Astrophysics Data System (ADS)

    Adams, Daniel; Squier, Jeff; Durfee, Charles

    2009-10-01

    We use time-domain Spatially and Spectrally Resolved Interferometry (SSRI) to investigate cross-polarized wave (XPW) generation in barium fluoride. We find that the XPW pulse is √3 smaller than the input in the spatiotemporal domain regardless of the input chirp. Additionally, we calculate a temporally dependent focal length resulting from the nonlinear interaction, and discuss its implications.

  10. Dynamic nuclear polarization-enhanced 1H–13C double resonance NMR in static samples below 20 K

    PubMed Central

    Potapov, Alexey; Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We demonstrate the feasibility of one-dimensional and two-dimensional 1H–13C double resonance NMR experiments with dynamic nuclear polarization (DNP) at 9.4 T and temperatures below 20 K, including both 1H–13C cross-polarization and 1H decoupling, and discuss the effects of polarizing agent type, polarizing agent concentration, temperature, and solvent deuteration. We describe a two-channel low-temperature DNP/NMR probe, capable of carrying the radio-frequency power load required for 1H–13C cross-polarization and high-power proton decoupling. Experiments at 8 K and 16 K reveal a significant T2 relaxation of 13C, induced by electron spin flips. Carr–Purcell experiments and numerical simulations of Carr–Purcell dephasing curves allow us to determine the effective correlation time of electron flips under our experimental conditions. The dependence of the DNP signal enhancement on electron spin concentration shows a maximum near 80 mM. Although no significant difference in the absolute DNP enhancements for triradical (DOTOPA-TEMPO) and biradical (TOTAPOL) dopants was found, the triradical produced greater DNP build-up rates, which are advantageous for DNP experiments. Additionally the feasibility of structural measurements on 13C-labeled biomolecules was demonstrated with a two-dimensional 13C–13C exchange spectrum of selectively 13C-labeled β-amyloid fibrils. PMID:22743540

  11. 1H and 13C MAS NMR analysis for the role of chemically inequivalent a-N(CH3)4 and b-N(CH3)4 ions in [N(CH3)4]2CuCl4

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2014-01-01

    The spin-lattice relaxation times in the laboratory frame, T1, and in the rotating frame, T1ρ, for 1H and 13C in [N(CH3)4]2CuCl4 were measured by static NMR and magic angle spinning (MAS) NMR as functions of temperature. The intensities of the 1H and 13C signals changed near phase transition temperatures TC1 and TC3, which indicated that N(CH3)4 plays an important role in these phase transitions. It was thus apparent that the T1 and T1ρ for 1H are governed by the same molecular motions. Two inequivalent ions, a-N(CH3)4 and b-N(CH3)4, were identified by 13C cross-polarization (CP)/MAS NMR. From these results, the behaviors of these two chemically inequivalent N(CH3)4 groups in the paraelastic and ferroelastic phases are discussed.

  12. Probing the molecular architecture of Arabidopsis thaliana secondary cell walls using two- and three-dimensional (13)C solid state nuclear magnetic resonance spectroscopy.

    PubMed

    Dupree, Ray; Simmons, Thomas J; Mortimer, Jennifer C; Patel, Dharmesh; Iuga, Dinu; Brown, Steven P; Dupree, Paul

    2015-04-14

    The plant secondary cell wall is a thickened polysaccharide and phenolic structure, providing mechanical strength to cells, particularly in woody tissues. It is the main feedstock for the developing bioenergy and green chemistry industries. Despite the role that molecular architecture (the arrangement of biopolymers relative to each other, and their conformations) plays in dictating biomass properties, such as recalcitrance to breakdown, it is poorly understood. Here, unprocessed dry (13)C-labeled stems from the model plant Arabidopsis thaliana were analyzed by a variety of (13)C solid state magic angle spinning nuclear magnetic resonance methods, such as one-dimensional cross-polarization and direct polarization, two-dimensional refocused INADEQUATE, RFDR, PDSD, and three-dimensional DARR, demonstrating their viability for the study of native polymer arrangements in intact secondary cell walls. All carbon sites of the two main glucose environments in cellulose (previously assigned to microfibril surface and interior residues) are clearly resolved, as are carbon sites of the other major components of the secondary cell wall: xylan and lignin. The xylan carbon 4 chemical shift is markedly different from that reported previously for solution or primary cell wall xylan, indicating significant changes in the helical conformation in these dried stems. Furthermore, the shift span indicates that xylan adopts a wide range of conformations in this material, with very little in the 31 conformation typical of xylan in solution. Additionally, spatial connections of noncarbohydrate species were observed with both cellulose peaks conventionally assigned as "surface" and as "interior" cellulose environments, raising questions about the origin of these two cellulose signals.

  13. Chemical characterization of pigment gallstones using /sup 13/C nuclear magnetic resonance analysis

    SciTech Connect

    Woolfenden, W.R.; Grant, D.M.; Straight, R.C.; Englert, E. Jr.

    1982-07-30

    The unique ability of Carbon-13 nuclear magnetic resonance analysis with cross polarization/magic angle spinning techniques to investigate chemical structures of solids is used to probe the chemical characteristics of several gallstone types. New pulse program techniques are used to distinguish various carbon atoms in studying the polymeric nature of the black bilirubinoid pigment of pigment gallstones. Evidence for the involvement of the carboxyl group and noninvolvement of vinyl groups of bilirubinoids in the polymeric bond formation is presented. Conjugated bilirubin structures are found to be present in some solid residues from pigment stones extracted with acidic methanol/chloroform.

  14. The use of variable temperature and magic-angle sample spinning in studies of fulvic acids

    USGS Publications Warehouse

    Earl, W.L.; Wershaw, R. L.; Thorn, K.A.

    1987-01-01

    Intensity distortions and poor signal to noise in the cross-polarization magic-angle sample spinning NMR of fulvic acids were investigated and attributed to molecular mobility in these ostensibly "solid" materials. We have shown that inefficiencies in cross polarization can be overcome by lowering the sample temperature to about -60??C. These difficulties can be generalized to many other synthetic and natural products. The use of variable temperature and cross-polarization intensity as a function of contact time can yield valuable qualitative information which can aid in the characterization of many materials. ?? 1987.

  15. Hyperpolarization of nitrogen-15 nuclei by cross polarization and dissolution dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Milani, Jonas; Vuichoud, Basile; Bornet, Aurélien; Melzi, Roberto; Jannin, Sami; Bodenhausen, Geoffrey

    2017-01-01

    Dynamic Nuclear Polarization (DNP) is often achieved by the direct transfer of polarization from electrons to nuclei such as 13C, induced by microwave saturation of the wings of narrow EPR lines of radicals like trityl. In the indirect approach on the other hand, DNP is used to transfer the polarization from the electrons of radicals such as nitroxides that have broad EPR lines to nuclear spins I = 1H, followed by cross-polarization (CP) from I = 1H to S = 13C or other nuclei with low gyromagnetic ratios. This approach is particularly attractive for S = 15N, since direct DNP yields modest polarizations P(15N) < 4% with build-up times that can be as long as τDNP(15N) > 2 h. In this paper, we show that CP from 1H to 15N at 1.2 K can yield P(15N) = 25% with τCP-DNP(15N) = 10-15 min. After rapid dissolution and transfer to a solution-state NMR spectrometer, a polarization P(15N) = 20% was observed at 300 K. The longitudinal relaxation times in solution can be as long as T1(15N) > 800 s in favorable cases.

  16. Synthesis of exemestane labelled with (13)C.

    PubMed

    Fontana, Erminia; Pignatti, Alberto; Giribone, Danilo; Di Salle, Enrico

    2008-08-01

    The synthesis of exemestane Aromasin, an irreversible steroidal aromatase inhibitor, specifically labelled with (13)C is reported. The preparation of [(13)C(3)]exemestane was achieved according to an eight-step procedure starting from the commercially available testosterone.

  17. Luminescence dynamics and {sup 13}C NMR characteristics of dinuclear complexes exhibiting coupled lanthanide(III) cation pairs

    SciTech Connect

    Matthews, K.D.; Bailey-Folkes, S.A.; Kahwa, I.A.

    1992-08-20

    Luminescence and cross-polarization magic angle spinning (CP-MAS) {sup 13}C NMR properties of lanthanide dinuclear macrocyclic complexes of a compartmental Schiff base chelate (1) derived from the condensation of 2,6-diformyl-p-cresol and 3,6-dioxa-1,8-octanediamine are reported. The Schiff base chromophore in 1 is a strong light absorber and an efficient sensitizer for intense Tb{sup 3+}({sup 5}D{sub 4}) and Eu{sup 3+}({sup 5}D{sub 0})(T < 110 K ) emission which does not exhibit self-quenching effects. Emission from Tb{sup 3+} is sensitized by the ligand singlet state; in striking contrast, Eu{sup 3+} emission is sensitized by the triplet state and reveals an unusual nonradiative quenching process at T > 110 K with a thermal barrier of {approx} 2300 cm{sup {minus}1}. Weak emission is observed from Dy{sup 3+}({sup 4}F{sub 9/2}), Sm{sup 3+}({sup 4}G{sub 5/2}), and Pr{sup 3+}({sup 1}D{sub 2}) diluted in Gd{sup 3+} (i.e., from Gd{sup 3+}-Ln{sup 3+} heteropairs, Ln = Pr, Sm, Dy). Intramolecular metal-metal (Ln-Ln = 4 {Angstrom}) interactions account for the greatly quenched emission from Sm{sup 3+}-Sm{sup 3+} and Dy{sup 3+}-Dy{sup 3+} homopairs compared to Gd{sup 3+}-Ln heteropairs (Ln = Sm, Dy). Gd{sup 3+}-Ln{sup 3+} emission lifetimes at 77 K are 1610 (Tb{sup 3+}), 890 (Eu{sup 3+}), 14 (Dy{sup 3+}) and {approx} 13 {mu}s (Sm{sup 3+}). Nonradiative relaxation processes at 77 K in dilute Ln{sup 3+}:Gd{sub 2}1(NO{sub 3}){sub 4}{center_dot}H{sub 2}O, being temperature independent for Sm{sup 3+} and Eu{sup 3+} but temperature dependent for Tb{sup 3+}, follow the energy gap law with {alpha} {approx} - 10{sup {minus}3} cm and B {approx} 2 x 10{sup 8} s{sup {minus}1}. CP-MAS data show paramagnetic broadening of {sup 13}C resonances which increases with the magnetic moment of Ln{sup 3+}. Surprisingly, no significant shifts in resonance positions corresponding to the changing nature of paramagnetic Ln{sup 3+} ions are observed. 43 refs., 8 figs., 2 tabs.

  18. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  19. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations. PMID:24832263

  20. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    SciTech Connect

    Thurber, Kent R. Tycko, Robert

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  1. Accurate measurements of {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    SciTech Connect

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Nielsen, Niels Chr.; Khaneja, Navin

    2014-09-21

    Application of sets of {sup 13}C-{sup 13}C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ({sup 13}C′) and aliphatic ({sup 13}C{sub aliphatic}) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly {sup 13}C,{sup 15}N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of {sup 13}C′-{sup 13}C{sub aliphatic} distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform {sup 13}C,{sup 15}N-labeling on the FGAIL fragment.

  2. Cross-polarized interferometry of a Jovian decametric radio storm

    NASA Astrophysics Data System (ADS)

    Phillips, J. A.; Carr, T. D.; Greenman, W. B.; Levy, J.

    1987-09-01

    Observations of an 18-MHz Io-A storm have been conducted using a 46 km cross-polarized interferometer at the University of Florida. The pre- and postdetection correlation properties of LH and RH elliptically polarized L bursts have been studied. Fringe visibility measurements suggest that two discrete and independent sources are sometimes simultaneously active, the polarization sense of one being LH and that of the other RH. A scintillation analysis supports the conclusion that two or more sources were active in such cases.

  3. (13)C NMR Metabolomics: INADEQUATE Network Analysis.

    PubMed

    Clendinen, Chaevien S; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S

    2015-06-02

    The many advantages of (13)C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, (13)C NMR offers a straightforward measurement of these compounds. Two-dimensional (13)C-(13)C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semiautomated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE data sets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures.

  4. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    PubMed Central

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  5. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  6. (13)C and (19)F solid-state NMR and X-ray crystallographic study of halogen-bonded frameworks featuring nitrogen-containing heterocycles.

    PubMed

    Szell, Patrick M J; Gabriel, Shaina A; Gill, Russell D D; Wan, Shirley Y H; Gabidullin, Bulat; Bryce, David L

    2017-03-01

    Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P21/c space group: acridine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C13H9N, 1,10-phenanthroline-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C12H8N2, and 2,3,5,6-tetramethylpyrazine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C8H12N2. (13)C and (19)F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from (19)F to (13)C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional (1)H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental (13)C and (19)F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.

  7. New guidelines for δ13C measurements

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Gehre, Matthias; Groning, Manfred; Meijer, Harro A. J.; Toman, Blaza; Verkouteren, R. Michael

    2006-01-01

    Consistency of δ13C measurements can be improved 39−47% by anchoring the δ13C scale with two isotopic reference materials differing substantially in 13C/12C. It is recommended thatδ13C values of both organic and inorganic materials be measured and expressed relative to VPDB (Vienna Peedee belemnite) on a scale normalized by assigning consensus values of −46.6‰ to L-SVEC lithium carbonate and +1.95‰ to NBS 19 calcium carbonate. Uncertainties of other reference material values on this scale are improved by factors up to two or more, and the values of some have been notably shifted:  the δ13C of NBS 22 oil is −30.03%.

  8. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state 13C nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Cao, X.; Mastalerz, Maria; Chappell, M.A.; Miller, L.F.; Li, Y.; Mao, J.

    2011-01-01

    Four lithotypes (vitrain, bright clarain, clarain, and fusain) of a high volatile bituminous Springfield Coal from the Illinois Basin were characterized using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The NMR techniques included quantitative direct polarization/magic angle spinning (DP/MAS), cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CHn selection, and recoupled C-H long-range dipolar dephasing techniques. The lithotypes that experienced high-pressure CO2 adsorption isotherm analysis were also analyzed to determine possible changes in coal structure as a result of CO2 saturation at high pressure and subsequent evacuation. The main carbon functionalities present in original vitrain, bright clarain, clarain and fusain were aromatic carbons (65.9%-86.1%), nonpolar alkyl groups (9.0%-28.9%), and aromatic C-O carbons (4.1%-9.5%). Among these lithotypes, aromaticity increased in the order of clarain, bright clarain, vitrain, and fusain, whereas the fraction of alkyl carbons decreased in the same order. Fusain was distinct from other three lithotypes in respect to its highest aromatic composition (86.1%) and remarkably small fraction of alkyl carbons (11.0%). The aromatic cluster size in fusain was larger than that in bright clarain. The lithotypes studied responded differently to high pressure CO2 saturation. After exposure to high pressure CO2, vitrain and fusain showed a decrease in aromaticity but an increase in the fraction of alkyl carbons, whereas bright clarain and clarain displayed an increase in aromaticity but a decrease in the fraction of alkyl carbons. Aromatic fused-rings were larger for bright clarain but smaller for fusain in the post-CO2 adsorption samples compared to the original lithotypes. These observations suggested chemical CO2-coal interactions at high pressure and the selectivity of lithotypes in response to CO2 adsorption. ?? 2011 Elsevier B.V.

  9. Magical Boxes

    ERIC Educational Resources Information Center

    Costello, Judith

    2005-01-01

    Students get excited when they realize that they can transform a flat sheet of paper into a box. By using different sizes of paper, they can make different sizes of boxes and put a box inside a box, inside a box. These magical boxes within boxes can contain unwanted emotions or special treasures. The project described in this article incorporates…

  10. Magic Mirrors

    ERIC Educational Resources Information Center

    Mills, Allan

    2011-01-01

    "Magic mirrors" were so named because, when they were positioned to throw a reflected patch of sunlight on a nearby wall, this area contained an outline of a design cast on the back of the (bronze) mirror. Investigations begun in the 19th century showed that this was a response to heavy localized pressures exerted on the face of the thin mirror…

  11. Matisse Magic.

    ERIC Educational Resources Information Center

    Gibson, Marcia

    2002-01-01

    Presents an art lesson in which kindergarten and first-grade students learn about Henri Matisse and his art work. Explains that the students use "Model Magic" to create Matisse style face refrigerator magnets. Discusses in detail how to create the magnets. (CMK)

  12. Mummies & Magic.

    ERIC Educational Resources Information Center

    Casey, Jeanne E.

    1989-01-01

    Covers the cultural and aesthetic significance of Egyptian mummies, as explained in an exhibition at Boston's Museum of Fine Arts. The display, "Mummies & Magic: The Funerary Arts of Ancient Egypt," allowed for restoration work which did much to advance modern knowledge of Egyptian culture and funerary art. (LS)

  13. Bilayer metasurface for directional launching of cross-polarization component

    NASA Astrophysics Data System (ADS)

    Kim, Joonsoo; Lee, Yohan; Yun, Hansik; Park, Hyeonsoo; Lee, Byoungho

    2016-10-01

    In this paper, we propose a bilayer metasurface which is capable of launching helicity-inverted wave only in the forward direction. In order to obtain directional scattering characteristics of individual cells, we employed two layers of thin metasurfaces that are separated by a dielectric spacer. Multiple scattering analysis is used to derive design conditions for single metasurface reflectances for each polarization and it was shown that such target reflectances are realizable with split-ring aperture. The unit cell structure optimized for forward-only scattering of cross-polarization component is shown to have power extinction ratio as high as 32. The proposed structure can potentially form a supercell with reflective cells so that geometric phases of transmitted light and reflected light can be independently controlled. The proposed scheme is expected to pave a way to new types of metasurfaces with multiplexed optical functions.

  14. Cross-Polar Aircraft Trajectory Optimization and Potential Climate Impact

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chen, Neil; Ng, Hok

    2011-01-01

    Cross-Polar routes offer new opportunities for air travel markets. Transpolar flights reduce travel times, fuel burns, and associated environmental emissions by flying direct paths between many North American and Asian cities. This study evaluates the potential benefits of flying wind-optimal polar routes and assessed their potential impact on climate change. An optimization algorithm is developed for transpolar flights to generate wind-optimal trajectories that minimize climate impact of aircraft, in terms of global warming potentials (relative to warming by one kg of CO2) of several types of emissions, while avoiding regions of airspace that facilitate persistent contrail formation. Estimations of global warming potential are incorporated into the objective function of the optimization algorithm to assess the climate impact of aircraft emissions discharged at a given location and altitude. The regions of airspace with very low ambient temperature and areas favorable to persistent contrail formation are modeled as undesirable regions that aircraft should avoid and are formulated as soft state constraints. The fuel burn and climate impact of cross-polar air traffic flying various types of trajectory including flightplan, great circle, wind-optimal, and contrail-avoidance are computed for 15 origin-destination pairs between major international airports in the U.S. and Asia. Wind-optimal routes reduce average fuel burn of flight plan routes by 4.4% on December 4, 2010 and 8.0% on August 7, 2010, respectively. The tradeoff between persistent contrail formation and additional global warming potential of aircraft emissions is investigated with and without altitude optimization. Without altitude optimization, the reduction in contrail travel times is gradual with increase in total fuel consumption. When altitude is optimized, a one percent increase in additional global warming potential, a climate impact equivalent to that of 4070kg and 4220kg CO2 emission, reduces 135

  15. Cross-polarization in quasi-optical receivers: ALMA band 4 and 10

    NASA Astrophysics Data System (ADS)

    Gonzalez, A.; Uzawa, Y.

    2012-09-01

    A careful study about the influence of individual optical components on receiver cross-polarization has been performed. The basic mechanisms of generation of cross-polarization in ellipsoidal mirrors and dielectrics have been reviewed and characterized in terms of higher-order Gaussian beam modes. A simple model considering the phase differences of different Gaussian beam modes is proposed in order to calculate the final system cross-polarization pattern. This model has been successfully used to characterize the total cross-polarization in two cryogenically-cooled receivers for astronomy: ALMA band 4 and band 10.

  16. 13C NMR of tunnelling methyl groups

    NASA Astrophysics Data System (ADS)

    Detken, A.

    The dipolar interactions between the protons and the central 13C nucleus of a 13CH3 group are used to study rotational tunnelling and incoherent dynamics of such groups in molecular solids. Single-crystal 13C NMR spectra are derived for arbitrary values of the tunnel frequency upsilon t. Similarities to ESR and 2H NMR are pointed out. The method is applied to three different materials. In the hydroquinone/acetonitrile clathrate, the unique features in the 13C NMR spectra which arise from tunnelling with a tunnel frequency that is much larger than the dipolar coupling between the methyl protons and the 13C nucleus are demonstrated, and the effects of incoherent dynamics are studied. The broadening of the 13C resonances is related to the width of the quasi-elastic line in neutron scattering. Selective magnetization transfer experiments for studying slow incoherent dynamics are proposed. For the strongly hindered methyl groups of L-alanine, an upper limit for upsilon is derived from the 13C NMR spectrum. In aspirinTM (acetylsalicylic acid), incoherent reorientations dominate the spectra down to the lowest temperatures studied; their rate apparently increases with decreasing temperature below 25K.

  17. 1H-2H cross-polarization NMR in fast spinning solids by adiabatic sweeps

    NASA Astrophysics Data System (ADS)

    Wi, Sungsool; Schurko, Robert; Frydman, Lucio

    2017-03-01

    Cross-polarization (CP) experiments employing frequency-swept radiofrequency (rf) pulses have been successfully used in static spin systems for obtaining broadband signal enhancements. These experiments have been recently extended to heteronuclear I, S = spin-1/2 nuclides under magic-angle spinning (MAS), by applying adiabatic inversion pulses along the S (low-γ) channel while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). This study explores an extension of this adiabatic frequency sweep concept to quadrupolar nuclei, focusing on CP from 1H (I = 1/2) to 2H spins (S = 1) undergoing fast MAS (νr = 60 kHz). A number of new features emerge, including zero- and double-quantum polarization transfer phenomena that depend on the frequency offsets of the swept pulses, the rf pulse powers, and the MAS spinning rate. An additional mechanism found operational in the 1H-2H CP case that was absent in the spin-1/2 counterpart, concerns the onset of a pseudo-static zero-quantum CP mode, driven by a quadrupole-modulated rf/dipolar recoupling term arising under the action of MAS. The best CP conditions found at these fast spinning rates correspond to double-quantum transfers, involving weak 2H rf field strengths. At these easily attainable (ca. 10 kHz) rf field conditions, adiabatic level-crossings among the {|1 ⟩ ,|0 ⟩ ,|-1 ⟩ } mS energy levels, which are known to complicate the CP MAS of quadrupolar nuclei, are avoided. Moreover, the CP line shapes generated in this manner are very close to the ideal 2H MAS spectral line shapes, facilitating the extraction of quadrupolar coupling parameters. All these features were corroborated with experiments on model compounds and justified using numerical simulations and average Hamiltonian theory models. Potential applications of these new phenomena, as well as extensions to higher spins S, are briefly discussed.

  18. Probing crystal packing of uniformly (13)C-enriched powder samples using homonuclear dipolar coupling measurements.

    PubMed

    Mollica, Giulia; Dekhil, Myriam; Ziarelli, Fabio; Thureau, Pierre; Viel, Stéphane

    2015-02-01

    The relationship between the crystal packing of powder samples and long-range (13)C-(13)C homonuclear dipolar couplings is presented and illustrated for the case of uniformly (13)C-enriched L-alanine and L-histidine·HCl·H2O. Dipolar coupling measurement is based on the partial reintroduction of dipolar interactions by spinning the sample slightly off-magic-angle, while the coupling of interest for a given spin pair is isolated with a frequency-selective pulse. A cost function is used to correlate the so-derived dipolar couplings to trial crystal structures of the samples under study. This procedure allowed for the investigation of the l-alanine space group and L-histidine·HCl·H2O space group and unit-cell parameters.

  19. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning.

    PubMed

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states.

  20. Application of 13C-labeling and 13C-13C COSY NMR experiments in the structure determination of a microbial natural product.

    PubMed

    Kwon, Yun; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2014-08-01

    The elucidation of the structures of complex natural products bearing many quaternary carbons remains challenging, even in this advanced spectroscopic era. (13)C-(13)C COSY NMR spectroscopy shows direct couplings between (13)C and (13)C, which comprise the backbone of a natural product. Thus, this type of experiment is particularly useful for natural products bearing consecutive quaternary carbons. However, the low sensitivity of (13)C-based NMR experiments, due to the low natural abundance of the (13)C nucleus, is problematic when applying these techniques. Our efforts in the (13)C labeling of a microbial natural product, cyclopiazonic acid (1), by feeding (13)C-labeled glucose to the fungal culture, enabled us to acquire (13)C-(13)C COSY NMR spectra on a milligram scale that clearly show the carbon backbone of the compound. This is the first application of (13)C-(13)C COSY NMR experiments for a natural product. The results suggest that (13)C-(13)C COSY NMR spectroscopy can be routinely used for the structure determination of microbial natural products by (13)C-enrichment of a compound with (13)C-glucose.

  1. Comparative absorption of [13C]glucose and [13C]lactose by premature infants.

    PubMed

    Murray, R D; Boutton, T W; Klein, P D; Gilbert, M; Paule, C L; MacLean, W C

    1990-01-01

    Oxidation of orally administered [13C]glucose and [13C]lactose and fecal recovery of malabsorbed substrates were determined in two groups of premature infants. Eighteen studies were performed with six infants at Johns Hopkins Hospital (JHH); 24 studies were performed with nine infants at Columbus Children's Hospital (CCH). The two groups differed in that JHH infants had shorter gestations but were older when studied. Fecal 13C loss after [13C]glucose administration did not differ between the two groups. Compared with glucose, the metabolism of lactose appeared to involve more malabsorption and colonic fermentation in JHH infants than in CCH infants and resulted in higher fecal losses of substrate carbon. Maturation appeared to involve increased proximal intestinal absorption and greater retention of absorbed carbohydrate. Simultaneous absorption of substrate from the small and large intestine may limit the usefulness of breath tests for 13C in the premature infant.

  2. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  3. Cross polarization optical coherence tomography for diagnosis of oral soft tissues

    NASA Astrophysics Data System (ADS)

    Gladkova, Natalia; Karabut, Maria; Kiseleva, Elena; Robakidze, Natalia; Muraev, Alexander; Fomina, Julia

    2011-03-01

    We consider the capabilities of cross-polarization OCT (CP OCT) focused on comparison of images resulting from cross-polarization and co-polarization scattering simultaneously for diagnosis of oral soft tissues. CP OCT was done for 35 patients with dental implants and 30 patients with inflammatory intestine diseases. Our study showed good diagnostic capabilities of CP OCT for detecting soft tissue pathology in the oral cavity. The cross-polarized images demonstrate the ability of tissue to depolarize. CP OCT demonstrates clinical capabilities for early diagnosis of inflammatory intestine diseases by the state of oral cavity mucosa and for early detection of gingivitis in patients above implant.

  4. MAGIC highlights

    NASA Astrophysics Data System (ADS)

    López-Coto, Rubén

    2016-07-01

    The present generation of Imaging Air Cherenkov Telescopes (IACTs) has greatly improved our knowledge on the Very High Energy (VHE) side of our Universe. The MAGIC IACTs operate since 2004 with one telescope and since 2009 as a two telescope stereoscopic system. I will outline a few of our latest and most relevant results: the discovery of pulsed emission from the Crab pulsar at VHE, recently found to extend up to 400 GeV and along the "bridge" of the light curve, the measurement of the Crab nebula spectrum over three decades of energy, the discovery of VHE γ-ray emission from the PWN 3C 58, the very rapid emission of IC 310, in addition to dark matter studies. The results that will be described here and the planned deep observations in the next years will pave the path for the future generation of IACTs.

  5. Structural analysis of uniformly (13)C-labelled solids from selective angle measurements at rotational resonance.

    PubMed

    Patching, Simon G; Edwards, Rachel; Middleton, David A

    2009-08-01

    We demonstrate that individual H-C-C-H torsional angles in uniformly labelled organic solids can be estimated by selective excitation of (13)C double-quantum coherences under magic-angle spinning at rotational resonance. By adapting a straightforward one-dimensional experiment described earlier [T. Karlsson, M. Eden, H. Luhman, M.H. Levitt, J. Magn. Reson. 145 (2000) 95-107], a double-quantum filtered spectrum selective for Calpha and Cbeta of uniformly labelled L-[(13)C,(15)N]valine is obtained with 25% efficiency. The evolution of Calpha-Cbeta double-quantum coherence under the influence of the dipolar fields of bonded protons is monitored to provide a value of the Halpha-Calpha-Cbeta-Hbeta torsional angle that is consistent with the crystal structure. In addition, double-quantum filtration selective for C6 and C1' of uniformly labelled [(13)C,(15)N]uridine is achieved with 12% efficiency for a (13)C-(13)C distance of 2.5A, yielding a reliable estimate of the C6-H and C1'-H projection angle defining the relative orientations of the nucleoside pyrimidine and ribose rings. This procedure will be useful, in favourable cases, for structural analysis of fully labelled small molecules such as receptor ligands that are not readily synthesised with labels placed selectively at structurally diagnostic sites.

  6. Structural analysis of uniformly 13C-labelled solids from selective angle measurements at rotational resonance

    NASA Astrophysics Data System (ADS)

    Patching, Simon G.; Edwards, Rachel; Middleton, David A.

    2009-08-01

    We demonstrate that individual H-C-C-H torsional angles in uniformly labelled organic solids can be estimated by selective excitation of 13C double-quantum coherences under magic-angle spinning at rotational resonance. By adapting a straightforward one-dimensional experiment described earlier [T. Karlsson, M. Eden, H. Luhman, M.H. Levitt, J. Magn. Reson. 145 (2000) 95-107], a double-quantum filtered spectrum selective for Cα and Cβ of uniformly labelled L-[ 13C, 15N]valine is obtained with 25% efficiency. The evolution of Cα-Cβ double-quantum coherence under the influence of the dipolar fields of bonded protons is monitored to provide a value of the Hα-Cα-Cβ-Hβ torsional angle that is consistent with the crystal structure. In addition, double-quantum filtration selective for C6 and C1' of uniformly labelled [ 13C, 15N]uridine is achieved with 12% efficiency for a 13C- 13C distance of 2.5 Å, yielding a reliable estimate of the C6-H and C1'-H projection angle defining the relative orientations of the nucleoside pyrimidine and ribose rings. This procedure will be useful, in favourable cases, for structural analysis of fully labelled small molecules such as receptor ligands that are not readily synthesised with labels placed selectively at structurally diagnostic sites.

  7. The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids

    USGS Publications Warehouse

    Hatcher, P.G.; Wilson, M.A.

    1991-01-01

    Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.

  8. Ice Shelf Modeling: A Cross-Polar Bayesian Statistical Approach

    NASA Astrophysics Data System (ADS)

    Kirchner, N.; Furrer, R.; Jakobsson, M.; Zwally, H. J.

    2010-12-01

    Ice streams interlink glacial terrestrial and marine environments: embedded in a grounded inland ice such as the Antarctic Ice Sheet or the paleo ice sheets covering extensive parts of the Eurasian and Amerasian Arctic respectively, ice streams are major drainage agents facilitating the discharge of substantial portions of continental ice into the ocean. At their seaward side, ice streams can either extend onto the ocean as floating ice tongues (such as the Drygalsky Ice Tongue/East Antarctica), or feed large ice shelves (as is the case for e.g. the Siple Coast and the Ross Ice Shelf/West Antarctica). The flow behavior of ice streams has been recognized to be intimately linked with configurational changes in their attached ice shelves; in particular, ice shelf disintegration is associated with rapid ice stream retreat and increased mass discharge from the continental ice mass, contributing eventually to sea level rise. Investigations of ice stream retreat mechanism are however incomplete if based on terrestrial records only: rather, the dynamics of ice shelves (and, eventually, the impact of the ocean on the latter) must be accounted for. However, since floating ice shelves leave hardly any traces behind when melting, uncertainty regarding the spatio-temporal distribution and evolution of ice shelves in times prior to instrumented and recorded observation is high, calling thus for a statistical modeling approach. Complementing ongoing large-scale numerical modeling efforts (Pollard & DeConto, 2009), we model the configuration of ice shelves by using a Bayesian Hiearchial Modeling (BHM) approach. We adopt a cross-polar perspective accounting for the fact that currently, ice shelves exist mainly along the coastline of Antarctica (and are virtually non-existing in the Arctic), while Arctic Ocean ice shelves repeatedly impacted the Arctic ocean basin during former glacial periods. Modeled Arctic ocean ice shelf configurations are compared with geological spatial

  9. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  10. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates

    NASA Astrophysics Data System (ADS)

    Azurmendi, Hugo F.; Freedberg, Darón I.

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very

  11. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates.

    PubMed

    Azurmendi, Hugo F; Freedberg, Darón I

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for (1)D(CC) determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a (13)C-(13)C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield (1)J(CC) and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for J(HH) determinations, but adapted and extended to applications where, like in sugars, large one-bond (13)C-(13)C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and

  12. Cross-polarization beam coupling in photorefractive GaAs crystals

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Yeh, Pochi

    1988-01-01

    Theoretical and experimental investigations on the cross-polarization coupling of two contradirectional laser beams in a photorefractive GaAs crystal are reported. There is good agreement between these results.

  13. Broadband cross-polarization-based heteronuclear dipolar recoupling for structural and dynamic NMR studies of rigid and soft solids

    SciTech Connect

    Kharkov, B. B.; Chizhik, V. I.; Dvinskikh, S. V.

    2016-01-21

    Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental data obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees.

  14. Broadband cross-polarization-based heteronuclear dipolar recoupling for structural and dynamic NMR studies of rigid and soft solids

    NASA Astrophysics Data System (ADS)

    Kharkov, B. B.; Chizhik, V. I.; Dvinskikh, S. V.

    2016-01-01

    Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental data obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees.

  15. Broadband cross-polarization-based heteronuclear dipolar recoupling for structural and dynamic NMR studies of rigid and soft solids.

    PubMed

    Kharkov, B B; Chizhik, V I; Dvinskikh, S V

    2016-01-21

    Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental data obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees.

  16. The Versatile Magic Square.

    ERIC Educational Resources Information Center

    Watson, Gale A.

    2003-01-01

    Demonstrates the transformations that are possible to construct a variety of magic squares, including modifications to challenge students from elementary grades through algebra. Presents an example of using magic squares with students who have special needs. (YDS)

  17. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  18. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  19. Application of DRIFTS, (13)C NMR, and py-MBMS to Characterize the Effects of Soil Science Oxidation Assays on Soil Organic Matter Composition in a Mollic Xerofluvent.

    PubMed

    Margenot, Andrew J; Calderón, Francisco J; Magrini, Kimberly A; Evans, Robert J

    2017-01-01

    Chemical oxidations are routinely employed in soil science to study soil organic matter (SOM), and their interpretation could be improved by characterizing oxidation effects on SOM composition with spectroscopy. We investigated the effects of routinely employed oxidants on SOM composition in a Mollic Xerofluvent representative of intensively managed agricultural soils in the California Central Valley. Soil samples were subjected to oxidation by potassium permanganate (KMnO4), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2). Additionally, non-oxidized and oxidized soils were treated with hydrofluoric acid (HF) to evaluate reduction of the mineral component to improve spectroscopy of oxidation effects. Oxidized non-HF and HF-treated soils were characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), (13)C cross polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, and pyrolysis molecular beam mass spectrometry (py-MBMS), and for particle size distribution (PSD) using laser diffractometry (LD). Across the range of soil organic carbon (OC) removed by oxidations (14-72%), aliphatic C-H stretch at 3000-2800 cm(-1) (DRIFTS) decreased with OC removal, and this trend was enhanced by HF treatment due to significant demineralization in this soil (70%). Analysis by NMR spectroscopy was feasible only after HF treatment, and did not reveal trends between OC removal and C functional groups. Pyrolysis-MBMS did not detect differences among oxidations, even after HF treatment of soils. Hydrofluoric acid entailed OC loss (13-39%), and for H2O2 oxidized soils increased C:N and substantially decreased mean particle size. This study demonstrates the feasibility of using HF to improve characterizations of SOM composition following oxidations as practiced in soil science, in particular for DRIFTS. Since OC removal by oxidants, mineral removal by HF, and the interaction of oxidants and HF observed for this soil

  20. Towards hyperpolarized 13C-succinate imaging of brain cancer

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2007-05-01

    We describe a novel 13C enriched precursor molecule, sodium 1- 13C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1- 13C-glutamate, 5- 13C-glutamate, 1- 13C-glutamine and 5- 13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images.

  1. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    NASA Astrophysics Data System (ADS)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  2. Calculation of total meal d13C from individual food d13C.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variations in the isotopic signature of carbon in biological samples can be used to distinguish dietary patterns and monitor shifts in metabolism. But for these variations to have meaning, the isotopic signature of the diet must be known. We sought to determine if knowledge of the 13C isotopic abund...

  3. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  4. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  5. 13C MAS NMR studies of crystalline cholesterol and lipid mixtures modeling atherosclerotic plaques.

    PubMed Central

    Guo, W; Hamilton, J A

    1996-01-01

    Cholesterol and cholesteryl esters are the predominant lipids of atherosclerotic plaques. To provide fundamental data for the quantitative study of plaque lipids in situ, crystalline cholesterol (CHOL) and CHOL/cholesteryl ester (CE) mixtures with other lipids were studied by solid-state nuclear magnetic resonance with magic-angle-sample spinning. Highly distinctive spectra for three different crystalline structures of CHOL were obtained. When CHOL crystals were mixed with isotropic CE oil, solubilized CHOL (approximately 13 mol % CHOL) was detected by characteristic resonances such as C5, C6, and C3; the excess crystalline CHOL (either anhydrous or monohydrate) remained in its original crystalline structure, without being affected by the coexisting CE. By use of 13C-enriched CHOL, the solubility of CHOL in the CE liquid-crystalline phase (approximately 8 mol %) was measured. When phosphatidylcholine was hydrated in presence of CHOL and CE, magic-angle-sampling nuclear magnetic resonance revealed liquid-crystalline CHOL/phosphatidylcholine multilayers with approximately an equal molar ratio of CHOL/phosphatidylcholine. Excess CHOL existed in the monohydrate crystalline form, and CE in separate oil or crystalline phases, depending on the temperature. The magic-angle-sampling nuclear magnetic resonance protocol for identifying different lipid phases was applied to intact (ex vivo) atherosclerotic plaques of cholesterol-fed rabbits. Liquid, liquid-crystalline, and solid phases of CE were characterized. Images FIGURE 2 PMID:8913623

  6. Solubilization and localization of weakly polar lipids in unsonicated egg phosphatidylcholine: A sup 13 C MAS NMR study

    SciTech Connect

    Hamilton, J.A. ); Fujito, D.T.; Hammer, C.F. )

    1991-03-19

    The weakly polar lipids cholesteryl ester, triacylglycerol, and diacylglycerol incorporate to a limited extent into the lamellar structure of small unilamellar vesicles. The localization of the carbonyl group(s) at the aqueous interface was detected by ({sup 13}C)carbonyl chemical shift changes relative to the neat unhydrated lipid. This study uses {sup 13}C NMR to investigate the interactions of thes lipids with unsonicated (multilamellar) phosphatidylcholine, a model system for cellular membranes and surfaces of emulsion particles with low curvature. Magic angle spinning reduced the broad lines of the unsonicated dispersions to narrow lines comparable to those from sonicated dispersions. ({sup 13}C)Carbonyl chemical shifts revealed incorporation of the three lipids into the lamellar structure of the unsonicated phospholipids and a partial hydration of the carbonyl groups similar to that observed in small vesicles. Other properties of interfacial weakly polar lipids in multilayers were similar to those in small unilamellar bilayers. There is thus a general tendency of weakly polar lipids to incorparate at least to a small extent into the lamellar structure of phospholipids and take on interfacial properties that are distinct from their bulk-phase properties. This pool of surface-located lipid is likely to be directly involved in enzymatyic transformations and protein-mediated transport. The {sup 13}C magic angle spinning NMR method may be generally useful for determining the orientation of molecules in model membranes.

  7. A Low Cross-Polarization Smooth-Walled Horn with Improved Bandwidth

    NASA Technical Reports Server (NTRS)

    Zeng, Lingzhen; Bennett, Charles L.; Chuss, David T.; Wollack, Edward J.

    2009-01-01

    Corrugated feed horns offer excellent beam symmetry, main beam efficiency, and cross-polar response over wide bandwidths, but can be challenging to fabricate. An easier-to-manufacture smooth-walled feed is explored that approximates these properties over a finite bandwidth. The design, optimization and measurement of a monotonically-profiled, smooth-walled scalar feedhorn with a diffraction-limited approximately 7 degrees full width at half maximum (FWHM) is presented. The feed was demonstrated to have low cross polarization (<-30 dB) across the frequency range 33-45 GHz (30% fractional bandwidth). A return loss better than -28 dB was measured across the band.

  8. A Low Cross-Polarization Smooth-Walled Horn with Improved Bandwidth

    NASA Technical Reports Server (NTRS)

    Zeng, Lingzhen; Bennette, Charles L.; Chuss, David T.; Wollack, Edward J.

    2009-01-01

    Corrugated feed horns offer excellent beam symmetry, main beam efficiency, and cross-polar response over wide bandwidths, but can be challenging to fabricate. An easier-to-manufacture smooth-walled feed is explored that approximates these properties over a finite bandwidth. The design, optimization and measurement of a monotonically-profiled, smooth-walled scalar feedhorn with a diffraction-limited approx. 14deg FWHM beam is presented. The feed was demonstrated to have low cross polarization (<-30 dB) across the frequency range 33-45 GHz (30% fractional bandwidth). A power reflection below -28 dB was measured across the band.

  9. Multiple-quantum cross-polarization in MAS NMR of quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Ashbrook, Sharon E.; Brown, Steven P.; Wimperis, Stephen

    1998-05-01

    Using 27Al ( I=5/2) NMR of aluminium acetylacetonate, we show that it is possible to cross-polarize from a spin I=1/2 nucleus ( 1H) directly to the central triple-quantum transition of a half-integer quadrupolar nucleus ( 27Al) in a powdered sample under MAS conditions. The optimum conditions for this multiple-quantum cross-polarization (MQCP) are investigated experimentally and compared with existing theoretical results. The new technique is applied to the recently introduced two-dimensional MQMAS experiment for recording high-resolution NMR spectra of half-integer quadrupolar nuclei.

  10. The Magic of Balanced Groups: Educational Applications of Magic Squares

    ERIC Educational Resources Information Center

    Bosse, Michael J.; Nandakumar, N. R.; Ore, Melanie L.

    2007-01-01

    This paper provides students with many interesting observations regarding the nature of magic squares, magic rectangles, and quasi-magic squares and provides tools for teachers to group students into ability-balanced cooperative learning groups.

  11. 31P to 77Se cross polarization in beta-P4Se3.

    PubMed

    Pietrass, T; Seydoux, R; Roth, R E; Eckert, H; Pines, A

    1997-08-01

    Cross polarization from 31P to 77Se is demonstrated in beta-P4Se3. This material, an inorganic glass, is readily synthesized from the elements and serves as a convenient sample for setting the Hartmann-Hahn condition.

  12. On the cross-polarization characteristics of crooked wire antennas designed by genetic-algorithms

    NASA Technical Reports Server (NTRS)

    Rengarajan, S. R.; Rahmat-Samii, Y.

    2002-01-01

    In many modern communication applications there is a need for simple circularly polarized antennas for hemispherical coverage with good axial ratio or low value of cross polarization. We revisited the crooked wire antenna because of its simplicity. This paper presents results of our investigation on the crooked wire antennas and other elements.

  13. Circularly Polarized Microwave Antenna Element with Very Low Off-Axis Cross-Polarization

    NASA Technical Reports Server (NTRS)

    Greem. David; DuToit, Cornelis

    2013-01-01

    The goal of this work was to improve off-axis cross-polarization performance and ease of assembly of a circularly polarized microwave antenna element. To ease assembly, the initial design requirement of Hexweb support for the internal circuit part, as well as the radiating disks, was eliminated. There is a need for different plating techniques to improve soldering. It was also desirable to change the design to eliminate soldering as well as the need to use the Hexweb support. Thus, a technique was developed to build the feed without using solder, solving the lathing and soldering issue. Internal parts were strengthened by adding curvature to eliminate Hexweb support, and in the process, the new geometries of the internal parts opened the way for improving the off-axis cross-polarization performance as well. The radiating disks curvatures were increased for increased strength, but it was found that this also improved crosspolarization. Optimization of the curvatures leads to very low off-axis cross-polarization. The feed circuit was curved into a cylinder for improved strength, eliminating Hexweb support. An aperture coupling feed mechanism eliminated the need for feed pins to the disks, which would have required soldering. The aperture coupling technique also improves cross-polarization performance by effectively exciting the radiating disks very close to the antenna s central axis of symmetry. Because of the shape of the parts, it allowed for an all-aluminum design bolted together and assembled with no solder needed. The advantage of a solderless design is that the reliability is higher, with no single-point failure (solder), and no need for special plating techniques in order to solder the unit together. The shapes (curved or round) make for a more robust build without extra support materials, as well as improved offaxis cross-polarization.

  14. Hyperpolarized 13C Metabolic MRI of the Human Heart

    PubMed Central

    Lau, Justin Y.C.; Chen, Albert P.; Geraghty, Benjamin J.; Perks, William J.; Roifman, Idan; Wright, Graham A.; Connelly, Kim A.

    2016-01-01

    Rationale: Altered cardiac energetics is known to play an important role in the progression toward heart failure. A noninvasive method for imaging metabolic markers that could be used in longitudinal studies would be useful for understanding therapeutic approaches that target metabolism. Objective: To demonstrate the first hyperpolarized 13C metabolic magnetic resonance imaging of the human heart. Methods and Results: Four healthy subjects underwent conventional proton cardiac magnetic resonance imaging followed by 13C imaging and spectroscopic acquisition immediately after intravenous administration of a 0.1 mmol/kg dose of hyperpolarized [1-13C]pyruvate. All subjects tolerated the procedure well with no adverse effects reported ≤1 month post procedure. The [1-13C]pyruvate signal appeared within the chambers but not within the muscle. Imaging of the downstream metabolites showed 13C-bicarbonate signal mainly confined to the left ventricular myocardium, whereas the [1-13C]lactate signal appeared both within the chambers and in the myocardium. The mean 13C image signal:noise ratio was 115 for [1-13C]pyruvate, 56 for 13C-bicarbonate, and 53 for [1-13C]lactate. Conclusions: These results represent the first 13C images of the human heart. The appearance of 13C-bicarbonate signal after administration of hyperpolarized [1-13C]pyruvate was readily detected in this healthy cohort (n=4). This shows that assessment of pyruvate metabolism in vivo in humans is feasible using current technology. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02648009. PMID:27635086

  15. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  16. The "Magic" String

    ERIC Educational Resources Information Center

    Hoover, Todd F.

    2010-01-01

    The "Magic" String is a discrepant event that includes a canister with what appears to be the end of two strings protruding from opposite sides of it. Due to the way the strings are attached inside the canister, it appears as if the strings can magically switch the way they are connected. When one string end is pulled, the observer's expectation…

  17. Chinese "Magic" Mirrors.

    ERIC Educational Resources Information Center

    Swinson, Derek B.

    1992-01-01

    Chinese "magic" mirrors are made from bronze with the front side a mirror and the reverse side a molded image. When light is reflected from the mirror,the image on the reverse side appears. Discusses reflections of conventional mirrors, possible explanations for the magic mirror phenomenon, and applications of the phenomenon to…

  18. /sup 13/C nuclear magnetic resonance studies of cardiac metabolism

    SciTech Connect

    Seeholzer, S.H.

    1985-01-01

    The last decade has witnessed the increasing use of Nuclear Magnetic Resonance (NMR) techniques for following the metabolic fate of compounds specifically labeled with /sup 13/C. The goals of the present study are: (1) to develop reliable quantitative procedures for measuring the /sup 13/C enrichment of specific carbon sites in compounds enriched by the metabolism of /sup 13/C-labeled substrates in rat heart, and (2) to use these quantitative measurements of fractional /sup 13/C enrichment within the context of a mathematical flux model describing the carbon flow through the TCA cycle and ancillary pathways, as a means for obtaining unknown flux parameters. Rat hearts have been perfused in vitro with various combinations of glucose, acetate, pyruvate, and propionate to achieve steady state flux conditions, followed by perfusion with the same substrates labeled with /sup 13/C in specific carbon sites. The hearts were frozen at different times after addition of /sup 13/C-labeled substrates and neutralized perchloric acid extracts were used to obtain high resolution proton-decoupled /sup 13/C NMR spectra at 90.55 MHz. The fractional /sup 13/C enrichment (F.E.) of individual carbon sites in different metabolites was calculated from the area of the resolved resonances after correction for saturation and nuclear Overhauser effects. These F.E. measurements by /sup 13/C NMR were validated by the analysis of /sup 13/C-/sup 1/H scalar coupling patterns observed in /sup 1/H NMR spectra of the extracted metabolites. The results obtained from perfusion of hearts glucose plus either (2-/sup 13/C) acetate or (3-/sup 13/C) pyruvate are similar to those obtained by previous investigators using /sup 14/C-labeled substrates.

  19. High-resolution {sup 13}C nuclear magnetic resonance evidence of phase transition of Rb,Cs-intercalated single-walled nanotubes

    SciTech Connect

    Bouhrara, M.; Saih, Y.; Waagberg, T.; Goze-Bac, C.; Abou-Hamad, E.

    2011-09-01

    We present 13 C high-resolution magic-angle-turning (MAT) and magic angle spinning nuclear magnetic resonance data of Cs and Rb intercalated single walled carbon nanotubes. We find two distinct phases at different intercalation levels. A simple charge transfer is applicable at low intercalation level. The new phase at high intercalation level is accompanied by a hybridization of alkali (s) orbitals with the carbon (sp2) orbitals of the single walled nanotubes, which indicate bundle surface sites is the most probable alkali site.

  20. 13C NMR Metabolomics: Applications at Natural Abundance

    PubMed Central

    2015-01-01

    13C NMR has many advantages for a metabolomics study, including a large spectral dispersion, narrow singlets at natural abundance, and a direct measure of the backbone structures of metabolites. However, it has not had widespread use because of its relatively low sensitivity compounded by low natural abundance. Here we demonstrate the utility of high-quality 13C NMR spectra obtained using a custom 13C-optimized probe on metabolomic mixtures. A workflow was developed to use statistical correlations between replicate 1D 13C and 1H spectra, leading to composite spin systems that can be used to search publicly available databases for compound identification. This was developed using synthetic mixtures and then applied to two biological samples, Drosophila melanogaster extracts and mouse serum. Using the synthetic mixtures we were able to obtain useful 13C–13C statistical correlations from metabolites with as little as 60 nmol of material. The lower limit of 13C NMR detection under our experimental conditions is approximately 40 nmol, slightly lower than the requirement for statistical analysis. The 13C and 1H data together led to 15 matches in the database compared to just 7 using 1H alone, and the 13C correlated peak lists had far fewer false positives than the 1H generated lists. In addition, the 13C 1D data provided improved metabolite identification and separation of biologically distinct groups using multivariate statistical analysis in the D. melanogaster extracts and mouse serum. PMID:25140385

  1. A wide-band smooth-walled feedhorn with low cross polarization for millimeter astronomy

    NASA Astrophysics Data System (ADS)

    Zeng, Lingzhen; Bennett, Charles L.; Chuss, David T.; Wollack, Edward J.

    2010-07-01

    We present a smooth-walled feedhorn with cross polarization and reflected power lower than -30 dB across the entire 30% bandwidth. A prototype feedhorn has been fabricated, and the wide-band, low-cross polarization performance has been demonstrated. The feedhorn has a circular aperture and monotonically narrows towards an input waveguide interface. This allows it to be manufactured by progressively milling the profile using a set of custom tools. This is especially useful in applications where a large number of feeds are desired in a planar array format. Such applications include astronomical cameras in millimeter waveband that require large arrays of detectors for future increases in mapping speed and sensitivity. Specifically, large arrays of feedhorns are well-matched to the problem of measuring the polarization of the cosmic microwave background to search for the faint signature of inflation, as they provide good beam control, the requisite sensitivity, and compatibility with low-noise bolometric detectors.

  2. Evaluation of Waveform Structure Features on Time Domain Target Recognition under Cross Polarization

    NASA Astrophysics Data System (ADS)

    Selver, M. A.; Seçmen, M.; Zoral, E. Y.

    2016-08-01

    Classification of aircraft targets from scattered electromagnetic waves is a challenging application, which suffers from aspect angle dependency. In order to eliminate the adverse effects of aspect angle, various strategies were developed including the techniques that rely on extraction of several features and design of suitable classification systems to process them. Recently, a hierarchical method, which uses features that take advantage of waveform structure of the scattered signals, is introduced and shown to have effective results. However, this approach has been applied to the special cases that consider only a single planar component of electric field that cause no-cross polarization at the observation point. In this study, two small scale aircraft models, Boeing-747 and DC-10, are selected as the targets and various polarizations are used to analyse the cross-polarization effects on system performance of the aforementioned method. The results reveal the advantages and the shortcomings of using waveform structures in time-domain target identification.

  3. Advantages of cross-polarization endoscopic optical coherence tomography in diagnosis of bladder neoplasia

    NASA Astrophysics Data System (ADS)

    Gladkova, N. D.; Zagaynova, E. V.; Streltsova, O. S.; Kiseleva, E. B.; Karabut, M. M.; Snopova, L. B.; Yunusova, E. E.; Tararova, E.; Gelikonov, V. M.

    2010-02-01

    We consider the cross-polarization OCT (CP OCT) that is focused on comparison of images resulting from cross-polarization and co-polarization scattering simultaneously. This technique provides information about microstructural and biochemical alterations in depolarizing tissue components (collagen). We found that mature type I collagen gives a strong signal in orthogonal polarization. CP OCT images of benign inflammatory processes always feature signal in orthogonal polarization, with layers and borders persisting to be well defined. In the presence of precancerous alterations, signal in orthogonal polarization is available in the image but it is irregular, disappearing in some areas. A CP OCT image of bladder cancer in orthogonal polarization either shows no signal at all or a weak signal.

  4. Like and cross polarized reflections and transmission matrices for propagation across a chiral slab

    NASA Astrophysics Data System (ADS)

    Bahar, Ezekiel

    2006-10-01

    Explicit expressions are derived for the like and cross linear polarized reflection and transmission coefficients in terms of the chiral parameter. Taylor series expansions of these coefficients are derived. The diagonal like polarized reflection and transmission coefficients are insensitive to the chiral properties of the material while the off diagonal cross polarized terms are proportional to the chiral parameter to first order. Continuity relations in and perpendicular to the plane of incidence for vertically and horizontally like and cross polarized waves, energy conservation and duality relations at a free space-chiral interface are satisfied. Applications for the optimal detection and identification of chiral materials such as drugs and biological or chemical threat agents are considered.

  5. Surface configuration as an explanation for lithology-related cross-polarized radar image anomalies

    NASA Technical Reports Server (NTRS)

    Mccauley, J. R.

    1973-01-01

    One problem that has persisted since the development of multipolarized radar is the cause or causes of differential depolarization which is expressed as tonal reversals between like- and cross-polarized images of certain outcrops. Rocks producing anomalously low returns on the cross-polarized image could be classed into three general types: (1) certain geologically recent lava flows (late Pleistocene and Holocene), (2) some tertiary volcanics and (3) certain massive sandstones. Differential depolarization has been produced by volcanic rocks of various compositions including rhyolite, rhyodacite, dacite, andesite, and basalt. This has led to the conclusion that differential depolarization is not directly caused by any compositional factor. However, the study of aerial photos and subsequent field observation have led to the conclusion that the weathering and other surface characteristics of the outcrops are responsible for their appearance on multipolarized imagery.

  6. Discovering the Magic of Magic Squares

    ERIC Educational Resources Information Center

    Semanisinova, Ingrid; Trenkler, Marian

    2007-01-01

    The purpose of this article is to present a collection of problems that allow students to investigate magic squares and Latin squares, formulate their own conjectures about these mathematical objects, look for arguments supporting or disproving their conjectures, and finally establish and prove mathematical assertions. Each problem is completed…

  7. CTS attenuation and cross polarization measurements at 11.7 GHz

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.

    1979-01-01

    Attenuation and cross-polarization isolation at 11.7 GHz, measured at Austin, Texas by receiving the circularly polarized emissions from the CTS satellite are presented. A 12 month summary for Feb 78 to Jan 79 is presented. For .016 percent of the time the attenuation was greater than 10 dB, the isolation was less than 21 dB and the rainrate exceeded 55 mm/hr. Ice depolarization was observed frequently.

  8. DESIGN AND PERFORMANCE OF A LOW-FREQUENCY CROSS-POLARIZED LOG-PERIODIC DIPOLE ANTENNA

    SciTech Connect

    Raja, K. Sasikumar; Kathiravan, C.; Ramesh, R.; Rajalingam, M.; Barve, Indrajit V.

    2013-07-01

    We report the design and performance of a cross-polarized log-periodic dipole (CLPD) antenna for observations of polarized radio emission from the solar corona at low frequencies. The measured isolation between the two mutually orthogonal log-periodic dipole antennas was as low as Almost-Equal-To - 43 dBm in the 65-95 MHz range. We carried out observations of the solar corona at 80 MHz with the above CLPD and successfully recorded circularly polarized emission.

  9. Lenz's Law Magic Trick

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.

    2006-02-01

    The demonstration of Lenz's law by dropping a powerful magnet down a nonmagnetic metal pipe has become a classic lecture-hall demonstration.1,2 An inexpensive version is packaged as a professional magic trick3 called "Newton's Nightmare." Combining sleight-of-hand with a demonstration of Lenz's law is a surefire way to heighten student interest. The subsequent student discussion motivated by a desire to understand the magic trick can lead to a memorable physics lesson. This paper will discuss Lenz's law magic and review literature that reveals the subtlety of the physics.

  10. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    DTIC Science & Technology

    2013-10-01

    reliably distinguish renal cancer aggressiveness for optimal triage of therapies . Hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI...reliably distinguish renal cancer aggressiveness for optimal triage of therapies . Hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) is... cancer and normal tissues were obtained from nephrectomy specimens and sliced using Krumdieck slicer. With a precision gauge micrometer, the slice

  11. Linking Biogeochemistry to Microbial Diversity Using New 13C Approaches

    NASA Astrophysics Data System (ADS)

    Baggs, E. M.

    2005-12-01

    The use of 13C enables us to overcome uncertainties associated with soil C processes and to assess the links between species diversity and ecosystem function. Recent advances in stable isotope techniques enable determination of process rates, for example CH4 oxidation by direct measurement of 13C-CH4 and 13C-CO2. This overcomes uncertainties associated with reliance on changes in net CH4 emission, which may have compromised some earlier studies as both methanogenesis and CH4 oxidation may occur simultaneously in soil, providing significant advances in our understanding of the process of CH4 oxidation. These stable isotope techniques can be combined with molecular techniques (analysis of gene expression, stable isotope probing (SIP)) to relate the measured process to the microbial populations responsible. Here we will give a synthesis of results from experiments in which we applied 13C-CH4 to accurately determine CH4 oxidation rates in soils, and also present results of 13C-SIP from which we can identify the key players in the microbial population that are using the applied 13C substrate. With the 13C-CH4 technique we were able to provide direct evidence of inhibition of CH4 oxidation following fertiliser application (50-300 kg N ha-1) that was less under elevated pCO2, and evidence for anaerobic CH4 oxidation occurring in soil at 75% soil water filled pore space that would not have been apparent from changes in net CH4 emissions. 13C-SIP both through plants (using 13C-CO2) and directly into soil (using 13C-methane and -organic substrates) has revealed how key players in C utilisation vary under different soil conditions, for example, under improved and unimproved grasslands.

  12. Freezing of Molecular Motions Probed by Cryogenic Magic Angle Spinning NMR.

    PubMed

    Concistrè, Maria; Carignani, Elisa; Borsacchi, Silvia; Johannessen, Ole G; Mennucci, Benedetta; Yang, Yifeng; Geppi, Marco; Levitt, Malcolm H

    2014-02-06

    Cryogenic magic angle spinning makes it possible to obtain the NMR spectra of solids at temperatures low enough to freeze out most molecular motions. We have applied cryogenic magic angle spinning NMR to a crystalline small-molecule solid (ibuprofen sodium salt), which displays a variety of molecular dynamics. Magic angle (13)C NMR spectra are shown for a wide range of temperatures, including in the cryogenic regime down to 20 K. The hydrophobic and hydrophilic regions of the molecular structure display different behavior in the cryogenic regime, with the hydrophilic region remaining well-structured, while the hydrophobic region exhibits a broad frozen conformational distribution.

  13. Magic of Light

    NASA Astrophysics Data System (ADS)

    Curticapean, Dan

    2010-08-01

    This paper focuses on the concept of the website "Magic of Light", an internet platform that offers podcasts, slides, pictures, Flash animations and educational materials to allow a better understanding in optics and photonics.

  14. About Magic Rectangles

    ERIC Educational Resources Information Center

    Hakopian, Yuri R.; Eloyan, Ani N.; Khachatryan, David E.

    2006-01-01

    This paper introduces a class of matrices, the rows and columns of which add up to identical constants (generally speaking, different for rows and columns). Some properties of these matrices, which will be called "magic rectangles" are discussed.

  15. Let's Make Magic.

    ERIC Educational Resources Information Center

    Bang-Jensen, Valerie

    1986-01-01

    A learning experience designed to expand primary students' knowledge of what is and is not magic is described. Included are activities involving language arts, math, art, class discussion, and motor skills. (MT)

  16. Distinct fungal and bacterial δ13C signatures can drive the increase in soil δ13C with depth

    NASA Astrophysics Data System (ADS)

    Kohl, Lukas; Laganièrea, Jérôme; Edwards, Kate A.; Billings, Sharon A.; Morrill, Penny L.; Van Biesen, Geert; Ziegler, Susan E.

    2015-04-01

    Soil microbial biomass is a key precursor of soil organic carbon (SOC), and the enrichment in 13C during SOC diagenesis has been purported to be driven by increasing proportions of microbially derived SOC. Yet, little is known about how the δ13C of soil microbial biomass - and by extension the δ13C of microbial inputs to SOC - vary in space, time, or with the composition of the microbial community. Phospholipid fatty acids (PLFA) can be analyzed to measure the variation of the natural abundance δ13C values of both individual groups of microorganisms and the microbial community as a whole. Here, we show how variations of δ13CPLFA within the soil profile provides insight into C fluxes in undisturbed soils and demonstrate that distinct δ13C of fungal and bacterial biomass and their relative abundance can drive the increase of bulk δ13CSOC with depth. We studied the variation in natural abundance δ13C signatures of PLFA in podzolic soil profiles from mesic boreal forests in Atlantic Canada. Samples from the organic horizons (L,F,H) and the mineral (B; top 10 cm) horizons were analyzed for δ13C values of PLFA specific to fungi, G+ bacteria, or G- bacteria as proxies for the δ13C of the biomass of these groups, and for δ13C values of PLFA produced by a wide range of microorganisms (e.g. 16:0) as a proxy for the δ13C value of microbial biomass as a whole. Results were compared to fungi:bacteria ratios (F:B) and bulk δ13CSOC values. The δ13C values of group-specific PLFA were driven by differences among source organisms, with fungal PLFA consistently depleted (2.1 to 6.4‰) relative to and G+ and G- bacterial PLFA in the same sample. All group-specific PLFA, however, exhibited nearly constant δ13C values throughout the soil profile, apparently unaffected by the over 2.8‰ increase in δ13CSOC with depth from the L to B horizons. This indicates that bulk SOC poorly represents the substrates actually consumed by soil microorganisms in situ. Instead, our

  17. NMR structure analysis of uniformly 13C-labeled carbohydrates.

    PubMed

    Fontana, Carolina; Kovacs, Helena; Widmalm, Göran

    2014-06-01

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.

  18. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  19. Study of Urban environmental quality through Isotopes δ13C

    NASA Astrophysics Data System (ADS)

    González-Sosa, E.; Mastachi-Loza, C.; Becerril-Piña, R.; Ramos-Salinas, N. M.

    2012-04-01

    Usually, trees with similar pH values on their bark develop epiphytes of similar species, the acidity to be a factor for growth. The aim of the study was evaluate the air quality through isotope δ13C in order to define the levels of environmental quality in the city of Queretaro, Mexico. In this work were collected at least 4 epiphytes positioned in trees of the species Prosopis Laevigata at 25 sites of Queretaro City. The samples were analyzed for trace elements with an inductively coupled plasma atomic emission spectroscopy (ICP). The collecting took place during dry period, in May and early rain June 2011 period, and on four sectors to identify the spatial distribution of pollution, using isotopic analysis of concentration of δ 13C. According with the results there are significant differences among the species in each of the sampled areas. The 5 February Avenue presented greater diversity and richness of δ13C, followed by those who were surveyed in the proximity of the UAQ and finally in the middle-east area. An average value of δ13C-17.92%, followed by those surveyed in the vicinity of the UAQ that correspond to sector I and II with an concentration of δ13C-17.55% and δ13C-17.22%, and finally the samples collected in trees scattered in the East-Sector II and IV with a value of δ13C-17.02% and δ13C-15.62%, respectively. Also were observed differences between the dry and wet period. It is likely that these results of δ 13C in moist period reflect the drag of the isotopes due to rain events that could mark a trend in the dilution of this element, however there is a trend in terms of abundance and composition of finding more impact in those species sampled in dry period, in May and early June 2011.

  20. Area per lipid and cholesterol interactions in membranes from separated local-field (13)C NMR spectroscopy.

    PubMed

    Leftin, Avigdor; Molugu, Trivikram R; Job, Constantin; Beyer, Klaus; Brown, Michael F

    2014-11-18

    Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state (13)C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved (13)C-(1)H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the (13)C-(1)H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state (13)C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive.

  1. Constraining 3-PG with a new δ13C submodel: a test using the δ13C of tree rings.

    PubMed

    Wei, Liang; Marshall, John D; Link, Timothy E; Kavanagh, Kathleen L; DU, Enhao; Pangle, Robert E; Gag, Peter J; Ubierna, Nerea

    2014-01-01

    A semi-mechanistic forest growth model, 3-PG (Physiological Principles Predicting Growth), was extended to calculate δ(13)C in tree rings. The δ(13)C estimates were based on the model's existing description of carbon assimilation and canopy conductance. The model was tested in two ~80-year-old natural stands of Abies grandis (grand fir) in northern Idaho. We used as many independent measurements as possible to parameterize the model. Measured parameters included quantum yield, specific leaf area, soil water content and litterfall rate. Predictions were compared with measurements of transpiration by sap flux, stem biomass, tree diameter growth, leaf area index and δ(13)C. Sensitivity analysis showed that the model's predictions of δ(13)C were sensitive to key parameters controlling carbon assimilation and canopy conductance, which would have allowed it to fail had the model been parameterized or programmed incorrectly. Instead, the simulated δ(13)C of tree rings was no different from measurements (P > 0.05). The δ(13)C submodel provides a convenient means of constraining parameter space and avoiding model artefacts. This δ(13)C test may be applied to any forest growth model that includes realistic simulations of carbon assimilation and transpiration.

  2. Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine

    PubMed Central

    Najac, Chloé; Chaumeil, Myriam M.; Kohanbash, Gary; Guglielmetti, Caroline; Gordon, Jeremy W.; Okada, Hideho; Ronen, Sabrina M.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are highly prevalent inflammatory cells that play a key role in tumor development and are considered therapeutic targets. MDSCs promote tumor growth by blocking T-cell-mediated anti-tumoral immune response through depletion of arginine that is essential for T-cell proliferation. To deplete arginine, MDSCs express high levels of arginase, which catalyzes the breakdown of arginine into urea and ornithine. Here, we developed a new hyperpolarized 13C probe, [6-13C]-arginine, to image arginase activity. We show that [6-13C]-arginine can be hyperpolarized, and hyperpolarized [13C]-urea production from [6-13C]-arginine is linearly correlated with arginase concentration in vitro. Furthermore we show that we can detect a statistically significant increase in hyperpolarized [13C]-urea production in MDSCs when compared to control bone marrow cells. This increase was associated with an increase in intracellular arginase concentration detected using a spectrophotometric assay. Hyperpolarized [6-13C]-arginine could therefore serve to image tumoral MDSC function and more broadly M2-like macrophages. PMID:27507680

  3. (13)C metabolic flux analysis of recombinant expression hosts.

    PubMed

    Young, Jamey D

    2014-12-01

    Identifying host cell metabolic phenotypes that promote high recombinant protein titer is a major goal of the biotech industry. (13)C metabolic flux analysis (MFA) provides a rigorous approach to quantify these metabolic phenotypes by applying isotope tracers to map the flow of carbon through intracellular metabolic pathways. Recent advances in tracer theory and measurements are enabling more information to be extracted from (13)C labeling experiments. Sustained development of publicly available software tools and standardization of experimental workflows is simultaneously encouraging increased adoption of (13)C MFA within the biotech research community. A number of recent (13)C MFA studies have identified increased citric acid cycle and pentose phosphate pathway fluxes as consistent markers of high recombinant protein expression, both in mammalian and microbial hosts. Further work is needed to determine whether redirecting flux into these pathways can effectively enhance protein titers while maintaining acceptable glycan profiles.

  4. Synthesis of Site-Specifically (13)C Labeled Linoleic Acids.

    PubMed

    Offenbacher, Adam R; Zhu, Hui; Klinman, Judith P

    2016-10-12

    Soybean lipoxygenase-1 (SLO-1) catalyzes the C-H abstraction from the reactive carbon (C-11) in linoleic acid as the first and rate-determining step in the formation of alkylhydroperoxides. While previous labeling strategies have focused on deuterium labeling to ascertain the primary and secondary kinetic isotope effects for this reaction, there is an emerging interest and need for selectively enriched (13)C isotopologues. In this report, we present synthetic strategies for site-specific (13)C labeled linoleic acid substrates. We take advantage of a Corey-Fuchs formyl to terminal (13)C-labeled alkyne conversion, using (13)CBr4 as the labeling source, to reduce the number of steps from a previous fatty acid (13)C synthetic labeling approach. The labeled linoleic acid substrates are useful as nuclear tunneling markers and for extracting active site geometries of the enzyme-substrate complex in lipoxygenase.

  5. Anomalous 13C enrichment in modern marine organic carbon

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Claypool, G.E.

    1985-01-01

    Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, ??13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) ??13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter ??13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower PCO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4. ?? 1985 Nature Publishing Group.

  6. An in Vivo 13C NMR Analysis of the Anaerobic Yeast Metabolism of 1-13C-Glucose

    NASA Astrophysics Data System (ADS)

    Giles, Brent J.; Matsche, Zenziwe; Egeland, Ryan D.; Reed, Ryan A.; Morioka, Scott S.; Taber, Richard L.

    1999-11-01

    A biochemistry laboratory experiment that studies the dynamics of the anaerobic yeast metabolism of 1-13C-D-glucose via NMR is described. Fleischmann's Active Dry yeast, under anaerobic conditions, produces primarily 2-13C-ethanol and some 1-13C-glycerol as end products. An experiment is described in which the yeast is subjected to osmotic shock from an increasing sodium chloride concentration. Under these conditions, the yeast increases the ratio of glycerol to ethanol. The experiment can be accomplished in a single laboratory period.

  7. CTS attenuation and cross polarization measurements at 11.7 GHz

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.

    1980-01-01

    The long-term attenuation, cross-polarization, and rain-rate data monitored in Austin, Texas from the circularly polarized 11.7 GHz satellite beacon transmitter aboard the Communications Technology Satellite are analyzed. Data events are significantly more likely during April-September, than during October-March, except for ice deplorization which predominates during the winter months. A time of day dependence of the events is also noted. The 10 dB fade level is exceeded for .03% during the thunderstorm months. Isolation with the same probability is 23 dB.

  8. Characterization of atherosclerotic plaques by cross-polarization optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gubarkova, Ekaterina V.; Dudenkova, Varvara V.; Feldchtein, Felix I.; Timofeeva, Lidia B.; Kiseleva, Elena B.; Kuznetsov, Sergei S.; Moiseev, Alexander A.; Gelikonov, Gregory V.; Vitkin, Alex I.; Gladkova, Natalia D.

    2016-02-01

    We combined cross-polarization optical coherence tomography (CP OCT) and non-linear microscopy based on second harmonic generation (SHG) and two-photon-excited fluorescence (2PEF) to assess collagen and elastin fibers in the development of the atherosclerotic plaque (AP). The study shows potential of CP OCT for the assessment of collagen and elastin fibers condition in atherosclerotic arteries. Specifically, the additional information afforded by CP OCT, related to birefringence and cross-scattering properties of arterial tissues, may improve the robustness and accuracy of assessment about the microstructure and composition of the plaque for different stages of atherosclerosis.

  9. Single Shot Polarization Characterization of XUV FEL Pulses from Crossed Polarized Undulators

    PubMed Central

    Ferrari, E.; Allaria, E.; Buck, J.; De Ninno, G.; Diviacco, B.; Gauthier, D.; Giannessi, L.; Glaser, L.; Huang, Z.; Ilchen, M.; Lambert, G.; Lutman, A. A.; Mahieu, B.; Penco, G.; Spezzani, C.; Viefhaus, J.

    2015-01-01

    Polarization control is a key feature of light generated by short-wavelength free-electron lasers. In this work, we report the first experimental characterization of the polarization properties of an extreme ultraviolet high gain free-electron laser operated with crossed polarized undulators. We investigate the average degree of polarization and the shot-to-shot stability and we analyze aspects such as existing possibilities for controlling and switching the polarization state of the emitted light. The results are in agreement with predictions based on Gaussian beams propagation. PMID:26314764

  10. Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators

    DOE PAGES

    Ferrari, E.; Allaria, E.; Buck, J.; ...

    2015-08-28

    Polarization control is a key feature of light generated by short-wavelength free-electron lasers. In this work, we report the first experimental characterization of the polarization properties of an extreme ultraviolet high gain free-electron laser operated with crossed polarized undulators. We research the average degree of polarization and the shot-to-shot stability and we analyze aspects such as existing possibilities for controlling and switching the polarization state of the emitted light. The results are in agreement with predictions based on Gaussian beams propagation.

  11. [Homeopathic medicine and magic].

    PubMed

    Angutek, Dorota

    2007-01-01

    The article compares homeopathic medicine and primitive magic. The author realises formal similarities beetwen these two fields of knowledge. The primitive homeopathic magic characterised by J. G. Frazer in his The Golden Bought announces that "similar courses similar". M. Mauss and H. Hubert added to this "low" an another formula: "similar acts on similar that courses a contrary phenomenon". The last formula is an identic one with the "low" of homeopathic medicine. Moreover there is a similarity between pantheistic religion of Hahnemann and magician beliefs in the power named mana in Melanesia and Polinesia or orenda, wakan, manitou and so on, by the Indians from The North America. The amazing thing is that homeopathic chemists belive that kinetic power transforms itself into esoteric one, during preparation of homeopathic medicines.In the end of this article the author ascertains that homeopathic medicine and magic has certain paradigm in common what is opposit to racionalism of official European paradigm of thinking.

  12. Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Staninec, Michal; Darling, Cynthia; Kang, Hobin; Chan, Kenneth

    2012-01-01

    New methods are needed for the nondestructive measurement of tooth demineralization and remineralization to monitor the progression of incipient caries lesions (tooth decay) for effective nonsurgical intervention and to evaluate the performance of anti-caries treatments such as chemical treatments or laser irradiation. Studies have shown that optical coherence tomography (OCT) has great potential to fulfill this role since it can be used to measure the depth and severity of early lesions with an axial resolution exceeding 10-μm, it is easy to apply in vivo and it can be used to image the convoluted topography of tooth occlusal surfaces. In this paper we present early results using a new cross-polarization OCT system introduced by Santec. This system utilizes a swept laser source and a MEMS scanner for rapid acquisition of cross polarization images. Preliminary studies show that this system is useful for measurement of the severity of demineralization on tooth surfaces and for showing the spread of occlusal lesions under the dentinal-enamel junction.

  13. Cross-polarization microwave radar return at severe wind conditions: laboratory model and geophysical model function.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Abramov, Victor; Ermoshkin, Alexey; Zuikova, Emma; Kazakov, Vassily; Sergeev, Daniil; Kandaurov, Alexandr

    2014-05-01

    Satellite remote sensing is one of the main techniques of monitoring severe weather conditions over the ocean. The principal difficulty of the existing algorithms of retrieving wind based on dependence of microwave backscattering cross-section on wind speed (Geophysical Model Function, GMF) is due to its saturation at winds exceeding 25 - 30 m/s. Recently analysis of dual- and quad-polarization C-band radar return measured from satellite Radarsat-2 suggested that the cross-polarized radar return has much higher sensitivity to the wind speed than co-polarized back scattering [1] and conserved sensitivity to wind speed at hurricane conditions [2]. Since complete collocation of these data was not possible and time difference in flight legs and SAR images acquisition was up to 3 hours, these two sets of data were compared in [2] only statistically. The main purpose of this paper is investigation of the functional dependence of cross-polarized radar cross-section on the wind speed in laboratory experiment. Since cross-polarized radar return is formed due to scattering at small-scale structures of the air-sea interface (short-crested waves, foam, sprays, etc), which are well reproduced in laboratory conditions, then the approach based on laboratory experiment on radar scattering of microwaves at the water surface under hurricane wind looks feasible. The experiments were performed in the Wind-wave flume located on top of the Large Thermostratified Tank of the Institute of Applied Physics, where the airflow was produced in the flume with the straight working part of 10 m and operating cross section 0.40?0.40 sq. m, the axis velocity can be varied from 5 to 25 m/s. Microwave measurements were carried out by a coherent Doppler X-band (3.2 cm) scatterometer with the consequent receive of linear polarizations. Experiments confirmed higher sensitivity to the wind speed of the cross-polarized radar return. Simultaneously parameters of the air flow in the turbulent boundary layer

  14. Evaluation of cross-polarized near infrared hyperspectral imaging for early detection of dental caries

    NASA Astrophysics Data System (ADS)

    Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-01-01

    Despite major improvements in dental healthcare and oral hygiene, dental caries remains one of the most prevalent oral diseases and represents the primary cause of oral pain and tooth loss. The initial stages of dental caries are characterized by demineralization of enamel crystals and are difficult to diagnose. Near infrared (NIR) hyperspectral imaging is a new promising technique for detection of early changes in the surfaces of carious teeth. This noninvasive imaging technique can characterize and differentiate between the sound tooth surface and initial or advanced tooth caries. The absorbing and scattering properties of dental tissues reflect in distinct spectral features, which can be measured, quantified and used to accurately classify and map different dental tissues. Specular reflections from the tooth surface, which appear as bright spots, mostly located around the edges and the crests of the teeth, act as a noise factor which can significantly interfere with the spectral measurements and analysis of the acquired images, degrading the accuracy of the classification and diagnosis. Employing cross-polarized imaging setup can solve this problem, however has yet to be systematically evaluated, especially in broadband hyperspectral imaging setups. In this paper, we employ cross-polarized illumination setup utilizing state-of-the-art high-contrast broadband wire-grid polarizers in the spectral range from 900 nm to 1700 nm for hyperspectral imaging of natural and artificial carious lesions of various degrees.

  15. 13C-based metabolic flux analysis: fundamentals and practice.

    PubMed

    Yang, Tae Hoon

    2013-01-01

    Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo.

  16. A scientific workflow framework for (13)C metabolic flux analysis.

    PubMed

    Dalman, Tolga; Wiechert, Wolfgang; Nöh, Katharina

    2016-08-20

    Metabolic flux analysis (MFA) with (13)C labeling data is a high-precision technique to quantify intracellular reaction rates (fluxes). One of the major challenges of (13)C MFA is the interactivity of the computational workflow according to which the fluxes are determined from the input data (metabolic network model, labeling data, and physiological rates). Here, the workflow assembly is inevitably determined by the scientist who has to consider interacting biological, experimental, and computational aspects. Decision-making is context dependent and requires expertise, rendering an automated evaluation process hardly possible. Here, we present a scientific workflow framework (SWF) for creating, executing, and controlling on demand (13)C MFA workflows. (13)C MFA-specific tools and libraries, such as the high-performance simulation toolbox 13CFLUX2, are wrapped as web services and thereby integrated into a service-oriented architecture. Besides workflow steering, the SWF features transparent provenance collection and enables full flexibility for ad hoc scripting solutions. To handle compute-intensive tasks, cloud computing is supported. We demonstrate how the challenges posed by (13)C MFA workflows can be solved with our approach on the basis of two proof-of-concept use cases.

  17. Synthesis and applications of {sup 13}C glycerol

    SciTech Connect

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  18. Manufacturing Magic and Computational Creativity

    PubMed Central

    Williams, Howard; McOwan, Peter W.

    2016-01-01

    This paper describes techniques in computational creativity, blending mathematical modeling and psychological insight, to generate new magic tricks. The details of an explicit computational framework capable of creating new magic tricks are summarized, and evaluated against a range of contemporary theories about what constitutes a creative system. To allow further development of the proposed system we situate this approach to the generation of magic in the wider context of other areas of application in computational creativity in performance arts. We show how approaches in these domains could be incorporated to enhance future magic generation systems, and critically review possible future applications of such magic generating computers. PMID:27375533

  19. Manufacturing Magic and Computational Creativity.

    PubMed

    Williams, Howard; McOwan, Peter W

    2016-01-01

    This paper describes techniques in computational creativity, blending mathematical modeling and psychological insight, to generate new magic tricks. The details of an explicit computational framework capable of creating new magic tricks are summarized, and evaluated against a range of contemporary theories about what constitutes a creative system. To allow further development of the proposed system we situate this approach to the generation of magic in the wider context of other areas of application in computational creativity in performance arts. We show how approaches in these domains could be incorporated to enhance future magic generation systems, and critically review possible future applications of such magic generating computers.

  20. Dynamic pictures of membrane proteins in two-dimensional crystal, lipid bilayer and detergent as revealed by site-directed solid-state 13C NMR.

    PubMed

    Saitô, Hazime

    2004-11-01

    We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.

  1. δ(13)C values of some succulent plants from Madagascar.

    PubMed

    Winter, Klaus

    1979-01-01

    δ(13)C values were determined in 20 succulents from Madagascar. The values were indicative of Crassulacean Acid Metabolism in 10 species of the Didiereaceae, 4 species of the Euphorbiaceae, 2 species of the Crassulaceae and 1 species of the Cucurbitaceae. The Didiereaceae and Euphorbiaceae studied are major components of a high biomass xerophytic flora in the semi-arid southwest and south of Madagascar. Three species of the Euphorbiaceae with succulent stems and non-succulent leaves, which were cultivated outdoors in the Tananarive Botanic Garden, showed C3 like δ(13)C values for both leaves and stems. δ(13)C values of leaf and stem material from a similar species, collected in the south of Madagascar, indicated Crassulacean Acid Metabolism.

  2. {sup 13}C relaxation in an RNA hairpin

    SciTech Connect

    King, G.C. |; Akratos, C.; Xi, Z.; Michnica, M.J.

    1994-12-01

    This initial survey of {sup 13}C relaxation in the {triangle}TAR RNA element has generated a number of interesting results that should prove generally useful for future studies. The most readily comparable study in the literature monitored {sup 13}C relaxation of the methyl groups from unusual bases in tRNA{sup Phe}. The study, which used T{sub 1} and NOE data only, reported order parameters for the methyl group axis that ranged between 0.51 and 0.97-a range similar to that observed here. However, they reported a breakdown of the standard order parameter analysis at higher (118-MHz {sup 13}C) frequencies, which should serve to emphasize the need for a thorough exploration of suitable motional models.

  3. Helping, Manipulation, and Magic

    ERIC Educational Resources Information Center

    Frey, Louise A.; Edinburg, Golda M.

    1978-01-01

    The thesis of this article is that an understanding of the primitive origins of the helping process in myth, magic, and ritual may prevent social workers from engaging in practices that negate their clients' ability to work out their own solutions to problems. (Author)

  4. Magic, Morals and Health

    ERIC Educational Resources Information Center

    Johnson, Warren R.

    2010-01-01

    Magic has to do with the supernatural and the unnatural. It is indifferent to natural law and science and is aloof from scientific inquiry. Its existence depends upon unquestioning faith. Granted such faith, it is extraordinarily potent. If it does not move mountains, it convinces the faithful that it can. It can damage health and perhaps, restore…

  5. Neuroscience, Magic, and Counseling

    ERIC Educational Resources Information Center

    Echterling, Lennis G.; Presbury, Jack; Cowan, Eric

    2012-01-01

    Recent findings in neuroscience have identified principles, such as attention management and change blindness, which stage magicians exploit to create illusions. Neuroscientists have also revealed how mirror neurons and oxytocin enhance the impact of magic. In other words, magicians are just as much practitioners of sleight of mind as they are of…

  6. The Magic of Mathematics.

    ERIC Educational Resources Information Center

    Morgan, John L.; Ginther, John L.

    1994-01-01

    Describes the effect, method, and mathematics of the following magic tricks which can be used in introducing mathematics lessons: the Ninth Card, Fibonacci Revealed, the Case of the Missing Area, I've Got Your Numbers, and the Card That Turns Inside Out. (MKR)

  7. Inspecting Magic Words.

    ERIC Educational Resources Information Center

    White, John Howell

    1998-01-01

    Considers neopragmatism's use-value for art educators as they inspect the magic words, images, and practices that influence curriculum and instruction. Explains that neopragmatism offers art educators three concepts (contingency, demystification, and recontextualization) as tools to interpret educational beliefs and classroom practices. (CMK)

  8. Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd

    2015-03-01

    Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.

  9. Structure of uniaxially aligned 13C labeled silk fibroin fibers with solid state 13C-NMR

    NASA Astrophysics Data System (ADS)

    Demura, Makoto; Yamazaki, Yasunobu; Asakura, Tetsuo; Ogawa, Katsuaki

    1998-01-01

    Carbon-13 isotopic labeling of B. mori silk fibroin was achieved biosynthetically with [1- 13C] glycine in order to determine the carbonyl bond orientation angle of glycine sites with the silk fibroin. Angular dependence of 13C solid state NMR spectra of uniaxially oriented silk fibroin fiber block sample due to the carbonyl 13C chemical shift anisotropy was simulated according to the chemical shift transformation with Euler angles, αF and βF, from principal axis system (PAS) to fiber axis system (FAS). The another Euler angles, αDCO and βDCO, for transformation from PAS to the molecular symmetry axis were determined from the [1- 13C] glycine sequence model compounds for the silk fibroin. By the combination of these Euler angles, the carbonyl bond orientation angle with respect to FAS of the [1- 13C] glycine sites of the silk fibroin was determined to be 90 ± 5°. This value is in agreement with the X-ray diffraction and our previous solid state NMR data of B. mori silk fibroin fiber (a typical β-pleated sheet) within experimental error.

  10. Benzenium ion chemistry on solid metal halide superacids: in situ {sup 13}C NMR experiments and theoretical calculations

    SciTech Connect

    Xu, T.; Barich, D.H.; Torres, P.D.; Haw, J.F.

    1997-01-15

    The benzenium, toluenium, and ethylbenzenium ions were synthesized on aluminium bromide by coadsorption of the precursors with either HBr or alkyl bromide. Principal components of the {sup 13}C chemical shift tensors for the ring carbons of these species were measured from magic angle spinning spectra. The benzenium ion was static at 77 K but underwent both proton scrambling and anisotropic rotation at 298 K as well as oligomerization at higher loadings. The para form of the toluenium ion was the dominant isomer at 77 K, but a temperature-dependent equilibrium between the para and ortho isomers was observed at 273 K. The energy calculations at MP4(fc,sdq)/ 6-311+G{sup *}//MP2/6-311+G{sup *} with thermal corrections resulted in good agreement between calculated and measured proton affinities for benzene, toluene, and ethylbenzene. For toluenium ion, the energies of the ortho and meta isomers were 1.2 and 5.4 kcal/mol, respectively, above the para isomer, consistent with the temperature-dependent {sup 13}C NMR spectra in the solid state. {sup 13}C chemical shift tensors calculated at the GIAO-MP2/tzp/dz//MP2/ 6-311+G{sup *} and GIAO-MP2/tzp/dz//B3LYP/6-311+G{sup *} levels of theory were in very close agreement with each other and generally in satisfactory agreement with experimental principal components. 64 refs., 8 figs., 4 tabs.

  11. Slow-down of 13C spin diffusion in organic solids by fast MAS: a CODEX NMR Study.

    PubMed

    Reichert, D; Bonagamba, T J; Schmidt-Rohr, K

    2001-07-01

    One- and two-dimensional 13C exchange nuclear magnetic resonance experiments under magic-angle spinning (MAS) can provide detailed information on slow segmental reorientations and chemical exchange in organic solids, including polymers and proteins. However, observations of dynamics on the time scale of seconds or longer are hampered by the competing process of dipolar 13C spin exchange (spin diffusion). In this Communication, we show that fast MAS can significantly slow down the dipolar spin exchange effect for unprotonated carbon sites. The exchange is measured quantitatively using the centerband-only detection of exchange technique, which enables the detection of exchange at any spinning speed, even in the absence of changes of isotropic chemical shifts. For chemically equivalent unprotonated 13C sites, the dipolar spin exchange rate is found to decrease slightly less than proportionally with the sample-rotation frequency, between 8 and 28 kHz. In the same range, the dipolar spin exchange rate for a glassy polymer with an inhomogeneously broadened MAS line decreases by a factor of 10. For methylene groups, no or only a minor slow-down of the exchange rate is found.

  12. Cross-polarization coupling and switching in an open nano-meta-resonator

    NASA Astrophysics Data System (ADS)

    Szabelak, W.; Nasalski, W.

    2011-11-01

    We demonstrate the reconfiguration process of optical beam fields circulating in an open nano-meta-resonator cavity. The cavity is composed of four corners or quadrants of space filled alternatively with dielectric and metamaterial media. The media are assumed to be lossless, nondispersive and of parameters precluding impedance matching at the boundaries between the subsequent corners. Beam path retracement in the cavity is obtained from a resonance condition of phase compensation along each optical ray contributed to the circulating beam. Cross-polarization coupling between TM and TE components of elegant higher-order Hermite-Gaussian beams propagating in the resonator is analysed. The existence of the phenomena of beam excitation, filtering and switching predicted on these grounds is explicitly confirmed by numerical simulations. All phenomena described depend substantially on a field cross-sectional diameter of the circulating beams.

  13. Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers.

    PubMed

    Nazirizadeh, Yousef; Bog, Uwe; Sekula, Sylwia; Mappes, Timo; Lemmer, Uli; Gerken, Martina

    2010-08-30

    There is a strong need for low-cost biosensors to enable rapid, on-site analysis of biological, biomedical, or chemical substances. We propose a platform for label-free optical biosensors based on applying the analyte onto a surface-functionalized photonic crystal slab and performing a transmission measurement with two crossed polarization filters. This dark-field approach allows for efficient background suppression as only the photonic crystal guided-mode resonances interacting with the functionalized surface experience significant polarization rotation. We present a compact biosensor demonstrator using a low-cost light emitting diode and a simple photodiode capable of detecting the binding kinetics of a 2.5 nM solution of the protein streptavidin on a biotin-functionalized photonic crystal surface.

  14. Ray Scattering by an Arbitrarily Oriented Spheroid: 2. Transmission and Cross-polarization Effects

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    1996-01-01

    Transmission of an arbitrarily polarized plane wave by an arbitrarily oriented spheroid in the short-wavelength limit is considered in the context of ray theory. The transmitted electric field is added to the diffracted plus reflected ray-theory electric field that was previously derived to obtain an approximation to the far-zone scattered intensity in the forward hemisphere. Two different types of cross-polarization effects are found. These are: (a) a rotation of the polarization state of the transmitted rays from when they are referenced with respect to their entrance into the spheroid to when they are referenced with respect to their exit from it and (b) a rotation of the polarization state of the transmitted rays when they are referenced with respect to the polarization state of the diffracted plus reflected rays.

  15. Differential diagnosis of human bladder mucosa pathologies in vivo with cross-polarization optical coherence tomography

    PubMed Central

    Kiseleva, Elena; Kirillin, Mikhail; Feldchtein, Felix; Vitkin, Alex; Sergeeva, Ekaterina; Zagaynova, Elena; Streltzova, Olga; Shakhov, Boris; Gubarkova, Ekaterina; Gladkova, Natalia

    2015-01-01

    Quantitative image analysis and parameter extraction using a specific implementation of polarization-sensitive optical coherence tomography (OCT) provides differential diagnosis of mucosal pathologies in in-vivo human bladders. We introduce a cross-polarization (CP) OCT image metric called Integral Depolarization Factor (IDF) to enable automatic diagnosis of bladder conditions (assessment the functional state of collagen fibers). IDF-based diagnostic accuracy of identification of the severe fibrosis of normal bladder mucosa is 79%; recurrence of carcinoma on the post-operative scar is 97%; and differentiation between neoplasia and acute inflammation is 75%. The promising potential of CP OCT combined with image analysis in human urology is thus demonstrated in vivo. PMID:25909028

  16. Metabolic flux analysis using 13C peptide label measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate cellular metabolism. MFA has established flux maps of central metabolism for dozens of microbes, cell cultures, and plant seeds. Steady-state MFA utilizes isotopic labeling measurements of amino acids obtai...

  17. Quantitative 13C NMR characterization of fast pyrolysis oils

    DOE PAGES

    Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.

    2016-10-20

    Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.

  18. Modeling of the 2007 JET ^13C migration experiments

    NASA Astrophysics Data System (ADS)

    Strachan, J. D.; Likonen, J.; Hakola, A.; Coad, J. P.; Widdowson, A.; Koivuranta, S.; Hole, D. E.; Rubel, M.

    2010-11-01

    Using the last run day of the 2007 JET experimental campaign, ^13CH4 was introduced repeatedly from the vessel top into a single plasma type (H-mode, Ip= 1.6 MA, Bt= 1.6 T). Similar experiments were performed in 2001 (vessel top into L-Mode) and 2004 (outer divertor into H-Mode). Divertor and wall tiles were removed and been analysed using secondary ion mass spectrometry (SIMS) and Rutherford backscattering (RBS) to determine the ^13C migration. ^13C was observed to migrate both to the inner (largest deposit), outer divertor (less) , and the floor tiles (least). This paper reports the EDGE2D/NIMBUS based modelling of the carbon migration. The emphasis is on the comparison of the 2007 results with the 2001 results where both injections were from the machine top but ELMs were present in 2007 but not present in 2001. The ELMs seemed to cause more ^13C re-erosion near the inner strike point. Also of interest is the difference in the Private Flux Region deposits where the changes in divertor geometry between 2004 and 2007 caused differences in the deposits. In 2007, the tilting of the load bearing tile caused regions of the PFR to be shadowed from the inner strike point which were not shadowed in 2004, indicating ^13C neutrals originated from the OSP.

  19. Complete 1H and 13C spectral assignment of floridoside.

    PubMed

    Simon-Colin, Christelle; Kervarec, Nelly; Pichon, Roger; Deslandes, Eric

    2002-02-11

    Floridoside (2-O-alpha-D-galactopyranosylglycerol) was extracted from the red marine alga Rhodymenia palmata, and purified by ion-exchange chromatography: 1D and 2D NMR spectroscopy experiments were used to unambiguously assign the complete 1H and 13C spectra.

  20. A cross-polarized freeform illumination design for glare reduction in fruit quality inspection

    NASA Astrophysics Data System (ADS)

    Keresztes, Janos C.; Koshel, R. John; Chipman, Russel; Stover, John C.; Saeys, Wouter

    2015-09-01

    Common illumination systems in short wave infrared (SWIR) hyperspectral imaging (HSI) include direct or indirect tungsten halogen lights. While direct lights provide more radiation onto the samples than dome setups, thus being more energy efficient, the acquired images often suffer from specular reflections and gloss. Glare artifacts in images increase variability in the data limiting the accuracy of machine vision algorithms for defect detection and quality inspection, or even providing false positives. Although domes are known to provide a near Lambertian illumination and glare free images, glossy regions and heterogeneities may remain in the data in practice. More particularly, in the field of fruit and vegetable quality inspection, due to their waxy surface, it remains challenging to design an efficient realistic lighting system. This paper suggests a new approach to optimize the illumination of fruit and vegetables based on measurements of the bidirectional reflectance distribution function (BRDF), shape and Stokes parameters. From these measured values, a BRDF model is loaded into ray-tracing software for realistic illumination engineering in order to determine the most suitable illumination scheme. This concept is applied to apples and a cross polarizer (CP) with freeform optics (FO) optical configuration is proposed, which allows the FO to be optimized to maximize uniformity in the field of view of the imager and removes the parallel polarized gloss on the apples. The performance of this CP illumination system was determined experimentally for a set of apples. This cross polarized (CP) illumination system provided a uniformity (U) of 92% and an efficiency (ν) of 90%, while U = 87% and ν = 14% for an ideal dome configuration when illuminating a rectangular target. The simulated imaged apples with assigned optical properties performed better with CP (U=80%) than when using a dome (U=73%) by 7%. Finally, the sensitivity of the design for the light

  1. Cross-Polar Aircraft Trajectory Optimization and the Potential Climate Impact

    NASA Technical Reports Server (NTRS)

    Ng, Hok K.; Sridhar, Banavar; Grabbe, Shon; Chen, Neil

    2011-01-01

    Cross-Polar routes offer new opportunities for air travel markets. Transpolar flights reduce travel times, fuel burns, and associated environmental emissions by flying direct paths between many North American and Asian cities. This study evaluates the potential benefits of flying wind-optimal polar routes and assessed their potential impact on climate change. An optimization algorithm is developed for transpolar flights to generate wind-optimal trajectories that minimize climate impact of aircraft, in terms of global warming potentials (relative to warming by one kg of CO2) of several types of emissions, while avoiding regions of airspace that facilitate persistent contrail formation. Estimations of global warming potential are incorporated into the objective function of the optimization algorithm to assess the climate impact of aircraft emissions discharged at a given location and altitude. The regions of airspace with very low ambient temperature and areas favorable to persistent contrail formation are modeled as undesirable regions that aircraft should avoid and are formulated as soft state constraints. The fuel burn and climate impact of cross-polar air traffic flying various types of trajectory including flight plan, great circle, wind-optimal, and contrail-avoidance are computed for 15 origin-destination pairs between major international airports in the U.S. and Asia. Wind-optimal routes reduce average fuel burn of flight plan routes by 4.4% on December 4, 2010 and 8.0% on August 7, 2010, respectively. The tradeoff between persistent contrail formation and additional global warming potential of aircraft emissions is investigated with and without altitude optimization. Without altitude optimization, the reduction in contrail travel times is gradual with increase in total fuel consumption. When altitude is optimized, a one percent increase in additional global warming potential, a climate impact equivalent to that of 4070kg and 4220kg CO2 emission, reduces 135

  2. Does the Shuram δ13C excursion record Ediacaran oxygenation?

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Maloof, A. C.; Schoene, B.; Higgins, J. A.

    2013-12-01

    The most negative carbon isotope excursion in Earth history is found in carbonate rocks of the Ediacaran Period (635-542 Ma). Known colloquially as the the 'Shuram' excursion, workers have long noted its tantalizing, broad concordance with the rise of abundant macro-scale fossils in the rock record, variously interpreted as animals, giant protists, macro-algae and lichen, and known as the 'Ediacaran Biota.' Thus, the Shuram excursion has been interpreted by many in the context of a dramatically changing redox state of the Ediacaran oceans - e.g., a result of methane cycling in a low O2 atmosphere, the final destruction of a large pool of recalcitrant dissolved organic carbon (DOC), and the step-wise oxidation of the Ediacaran oceans. More recently, diagenetic interpretations of the Shuram excursion - e.g. sedimentary in-growth of very δ13C depleted authigenic carbonates, meteoric alteration of Ediacaran carbonates, late-stage burial diagenesis - have challenged the various Ediacaran redox models. A rigorous geologic context is required to discriminate between these explanatory models, and determine whether the Shuram excursion can be used to evaluate terminal Neoproterozoic oxygenation. Here, we present chemo-stratigraphic data (δ13C, δ18O, δ44/42Ca and redox sensitive trace element abundances) from 12 measured sections of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia that require a syn-depositional age for the extraordinary range of δ13C values (-12 to +4‰) observed in the formation. In some locations, the Wonoka Fm. is ~700 meters (m) of mixed shelf limestones and siliclastics that record the full 16 ‰ δ13C excursion in a remarkably consistent fashion across 100s of square kilometers of basin area. Fabric-altering diagenesis, where present, occurs at the sub-meter vertical scale, only results in sub-permil offsets in δ13C and cannot be used to explain the full δ13C excursion. In other places, the Wonoka Fm. is host to deep (1 km

  3. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  4. Proton-detected 3D (1)H/(13)C/(1)H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz.

    PubMed

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-28

    A proton-detected 3D (1)H/(13)C/(1)H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of (13)C-(1)H connectivities, and proximities of (13)C-(1)H and (1)H-(1)H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including (1)H-(1)H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) (1)H/(1)H and 2D (13)C/(1)H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of (1)H-(1)H proximity and (13)C-(1)H connectivity. In addition, the 2D (F1/F2) (1)H/(13)C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of (1)H-(1)H dipolar couplings, enables the measurement of proximities between (13)C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of (1)H-(1)H-(13)C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H2O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  5. Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-01

    A proton-detected 3D 1H/13C/1H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of 13C-1H connectivities, and proximities of 13C-1H and 1H-1H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including 1H-1H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) 1H/1H and 2D 13C/1H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of 1H-1H proximity and 13C-1H connectivity. In addition, the 2D (F1/F2) 1H/13C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of 1H-1H dipolar couplings, enables the measurement of proximities between 13C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of 1H-1H-13C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ṡ H2O ṡ HCl demonstrate the efficiency of the 3D experiment.

  6. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    DOEpatents

    Martinez, Rodolfo A. , Unkefer; Clifford J. , Alvarez; Marc, A [Santa Fe, NM

    2012-06-12

    The present invention is directed to the labeled compounds, ##STR00001## wherein C* is each either .sup.13C and .sup.12C where at least one C* is .sup.13C, each hydrogen of the methylene group is hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is sulfide, sulfinyl, or sulfone, Z is an aryl group such as 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, or a phenyl group ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently either hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group such as NH.sub.2, NHR and NRR' where R and R' are each independently either a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms. The present invention is also directed to the labeled compounds ##STR00003##

  7. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2009-09-01

    The present invention is directed to labeled compounds, of the formulae ##STR00001## wherein C* is each independently selected from the group consisting of .sup.13C and .sup.12C with the proviso that at least one C* is .sup.13C, each hydrogen of the methylene group can independently be either hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is from the group of sulfide, sulfinyl, and sulfone, Z is an aryl group from the group of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently from the group of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group from the group of NH.sub.2, NHR and NRR' where R and R' are each independently from the group of a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms.

  8. Quantification of 13C pyruvate and 13C lactate in dog blood by reversed-phase liquid chromatography-electrospray ionization mass spectrometry after derivatization with 3-nitrophenylhydrazine.

    PubMed

    Uran, Steinar; Landmark, Kristin Eitrem; Hjellum, Gro; Skotland, Tore

    2007-08-15

    Injection of hyperpolarized (13)C-labelled pyruvate ((13)C pyruvate) is under evaluation as an agent for medical metabolic imaging by measuring formation of (13)C lactate using magnetic resonance spectroscopy of the (13)C nuclei. A quantitative method for analysis of these (13)C-labelled substances in dog blood was needed as part of the development of this agent and we here describe a liquid chromatography-mass spectrometry method for that purpose. Immediately after blood collection, the blood proteins were precipitated using methanol added internal standard ([U-(13)C]pyruvate and [U-(13)C]lactate). Prior to analysis, the compounds were derivatized using 3-nitrophenylhydrazine. Following separation on a Supelco Discovery HS C18 column, (13)C pyruvate and (13)C lactate were detected using negative electrospray ionization mass spectrometry. Calibration standards (4.5-4500 microM (13)C pyruvate and 9-9000 microM (13)C lactate) and added internal standard were used to make the calibration curves, which were fitted to a non-linear equation y=a+bx+cx(2) and weighted with a weighting factor of 1/y(2). The analytical lower limit of quantification of (13)C pyruvate and (13)C lactate was 4.5 and 9 microM, respectively. The total precision of the method was below 9.2% for (13)C pyruvate and below 5.8% for (13)C lactate. The accuracy of the method showed a relative error less than 2.4% for (13)C pyruvate and less than 6.3% for (13)C lactate. The recoveries were in the range 93-115% for (13)C pyruvate and 70-111% for (13)C lactate. Both substances were stable in protein-free supernatant when stored for up to 3 weeks in a -20 degrees C freezer, during three freeze/thaw cycles, and when stored in an autosampler for at least 30 h.

  9. A (13)C solid-state NMR investigation of four cocrystals of caffeine and theophylline.

    PubMed

    Vigilante, Nicolas J; Mehta, Manish A

    2017-03-01

    We report an analysis of the (13)C solid-state NMR chemical shift data in a series of four cocrystals involving two active pharmaceutical ingredient (API) mimics (caffeine and theophylline) and two diacid coformers (malonic acid and glutaric acid). Within this controlled set, we make comparisons of the isotropic chemical shifts and the principal values of the chemical shift tensor. The dispersion at 14.1 T (600 MHz (1)H) shows crystallographic splittings in some of the resonances in the magic angle spinning spectra. By comparing the isotropic chemical shifts of individual C atoms across the four cocrystals, we are able to identify pronounced effects on the local electronic structure at some sites. We perform a similar analysis of the principal values of the chemical shift tensors for the anisotropic C atoms (most of the ring C atoms for the API mimics and the carbonyl C atoms of the diacid coformers) and link them to differences in the known crystal structures. We discuss the future prospects for extending this type of study to incorporate the full chemical shift tensor, including its orientation in the crystal frame of reference.

  10. Imaging pH with hyperpolarized 13C.

    PubMed

    Gallagher, Ferdia A; Kettunen, Mikko I; Brindle, Kevin M

    2011-10-01

    pH is a fundamental physiological parameter that is tightly controlled by endogenous buffers. The acid-base balance is altered in many disease states, such as inflammation, ischemia and cancer. Despite the importance of pH, there are currently no routine methods for imaging the spatial distribution of pH in humans. The enormous gain in sensitivity afforded by dynamic nuclear polarization (DNP) has provided a novel way in which to image tissue pH using MR, which has the potential to be translated into the clinic. This review explores the advantages and disadvantages of current pH imaging techniques and how they compare with DNP-based approaches for the measurement and imaging of pH with hyperpolarized (13)C. Intravenous injection of hyperpolarized (13)C-labeled bicarbonate results in the rapid production of hyperpolarized (13)CO(2) in the reaction catalyzed by carbonic anhydrase. As this reaction is close to equilibrium in the body and is pH dependent, the ratio of the (13)C signal intensities from H(13)CO(3)(-) and (13)CO(2), measured using MRS, can be used to calculate pH in vivo. The application of this technique to a murine tumor model demonstrated that it measured predominantly extracellular pH and could be mapped in the animal using spectroscopic imaging techniques. A second approach has been to use the production of hyperpolarized (13)CO(2) from hyperpolarized [1-(13)C]pyruvate to measure predominantly intracellular pH. In tissues with a high aerobic capacity, such as the heart, the hyperpolarized [1-(13)C]pyruvate undergoes rapid oxidative decarboxylation, catalyzed by intramitochondrial pyruvate dehydrogenase. Provided that there is sufficient carbonic anhydrase present to catalyze the rapid equilibration of the hyperpolarized (13)C label between CO(2) and bicarbonate, the ratio of their resonance intensities may again be used to estimate pH, which, in this case, is predominantly intracellular. As both pyruvate and bicarbonate are endogenous molecules they

  11. In Situ Solid-State (13)C NMR Observation of Pore Mouth Catalysis in Etherification of β-Citronellene with Ethanol on Zeolite Beta.

    PubMed

    Radhakrishnan, Sambhu; Goossens, Pieter-Jan; Magusin, Pieter C M M; Sree, Sreeprasanth Pulinthanathu; Detavernier, Christophe; Breynaert, Eric; Martineau, Charlotte; Taulelle, Francis; Martens, Johan A

    2016-03-02

    The reaction mechanism of etherification of β-citronellene with ethanol in liquid phase over acid zeolite beta is revealed by in situ solid-state (13)C NMR spectroscopy. Comparison of (13)C Hahn-echo and (1)H-(13)C cross-polarization NMR characteristics is used to discriminate between molecules freely moving in liquid phase outside the zeolite and molecules adsorbed inside zeolite pores and in pore mouths. In the absence of ethanol, β-citronellene molecules enter zeolite pores and react to isomers. In the presence of ethanol, the concentration of β-citronellene inside zeolite pores is very low because of preferential adsorption of ethanol. The etherification reaction proceeds by adsorption of β-citronellene molecule from the external liquid phase in a pore opening where it reacts with ethanol from inside the pore. By competitive adsorption, ethanol prevents the undesired side reaction of β-citronellene isomerization inside zeolite pores. β-citronellene etherification on zeolite beta is suppressed by bulky base molecules (2,4,6-collidine and 2,6-ditertiarybutylpyridine) that do not enter the zeolite pores confirming the involvement of easily accessible acid sites in pore openings. The use of in situ solid-state NMR to probe the transition from intracrystalline catalysis to pore mouth catalysis depending on reaction conditions is demonstrated for the first time. The study further highlights the potential of this NMR approach for investigations of adsorption of multicomponent mixtures in general.

  12. [Magical and physical reality].

    PubMed

    Kállai, János

    2016-01-01

    In the postmodern countries the computer generated virtual reality provides new perceptual domains wherein the evaluation of real and unreal contents generates an essential challenge for both children and adults. The expectances to perceive unreal content which is contradictory with the common sense experiences become seductive for most of people. The time in front of the screen that emits the magic reality gradually rises. The sudden advance in generation of alternative realities demands that we have to recall the basic principles of psychological reality testing and the involving mechanism that produces a distinction between phantasy and reality for both healthy and pathological mind. Frame of reference usually restrains the thinking. This review contains two parts, the first is focuses on the historical aspect of magical and physical reality and the second one, that will be published in a next issue, will present an evaluation of the boundary between self and another person in point of view of the psychopathological phenomenon. This analysis will focus on how the boundary of the self behaves in physically real and magic computer generated environment.

  13. 'Magic Angle Precession'

    SciTech Connect

    Binder, Bernd

    2008-01-21

    An advanced and exact geometric description of nonlinear precession dynamics modeling very accurately natural and artificial couplings showing Lorentz symmetry is derived. In the linear description it is usually ignored that the geometric phase of relativistic motion couples back to the orbital motion providing for a non-linear recursive precession dynamics. The high coupling strength in the nonlinear case is found to be a gravitomagnetic charge proportional to the precession angle and angular velocity generated by geometric phases, which are induced by high-speed relativistic rotations and are relevant to propulsion technologies but also to basic interactions. In the quantum range some magic precession angles indicating strong coupling in a phase-locked chaotic system are identified, emerging from a discrete time dynamical system known as the cosine map showing bifurcations at special precession angles relevant to heavy nuclei stability. The 'Magic Angle Precession' (MAP) dynamics can be simulated and visualized by cones rolling in or on each other, where the apex and precession angles are indexed by spin, charge or precession quantum numbers, and corresponding magic angles. The most extreme relativistic warping and twisting effect is given by the Dirac spinor half spin constellation with 'Hyperdiamond' MAP, which resembles quark confinement.

  14. 13C Tracer Studies of Metabolism in Mouse Tumor Xenografts

    PubMed Central

    Lane, Andrew N.; Yan, Jun; Fan, Teresa W-M.

    2015-01-01

    Mice are widely used for human tumor xenograft studies of cancer development and drug efficacy and toxicity. Stable isotope tracing coupled with metabolomic analysis is an emerging approach for assaying metabolic network activity. In mouse models there are several routes of tracer introduction, which have particular advantages and disadvantages that depend on the model and the questions addressed. This protocol describes the bolus i.v. route via repeated tail vein injections of solutions of stable isotope enriched tracers including 13C6-glucose and 13C5,15N2-glutamine. Repeated injections give higher enrichments and over longer labeling periods than a single bolus. Multiple injections of glutamine are necessary to achieve adequate enrichment in engrafted tumors. PMID:26693168

  15. Two models of cross polar cap potential saturation compared: Siscoe-Hill model versus Kivelson-Ridley model

    NASA Astrophysics Data System (ADS)

    Gao, Ye; Kivelson, Margaret G.; Walker, Raymond J.

    2013-02-01

    The cross polar cap potential is considered an instantaneous monitor of the rate at which magnetic flux couples the solar wind to the Earth's magnetosphere-ionosphere system. Studies have shown that the cross polar cap potential responds linearly to the solar wind electric field under nominal solar wind conditions but asymptotes to the order of 200 kV for large electric field. Saturation of the cross polar cap potential is also found to occur in MHD simulations. Several mechanisms have been proposed to explain this phenomenon. Two well-developed models are those of Siscoe et al. (2002), herein referred to as the Siscoe-Hill model, and of Kivelson and Ridley (2008), herein referred to as the Kivelson-Ridley model. In this study, we compare the mathematical formulas as well as the predictions of the two models with data. We find that the two models predict similar saturation limits. Their difference can be expressed in terms of a factor, which is close to unity during a saturation interval. A survey of the differences in the model predictions show that, on average, the potential of the Kivelson-Ridley model is smaller than that of the Siscoe-Hill model by 10 kV. Measurements of AMIE, DMSP, PC index, and SuperDARN are used to differentiate between the two models. However, given the uncertainties of the measurements, it is impossible to conclude that one model does a better job than the other of predicting the observed cross polar cap potentials.

  16. SMMR data set development for GARP. [impact of cross polarization and Faraday rotation on SMMR derived brightness temperatures

    NASA Technical Reports Server (NTRS)

    Kogut, J.

    1981-01-01

    The NIMBUS 7 Scanning Multichannel Microwave Radiometer (SMMR) data are analyzed. The impact of cross polarization and Faraday rotation on SMMR derived brightness temperatures is evaluated. The algorithms used to retrieve the geophysical parameters are tested, refined, and compared with values derived by other techniques. The technical approach taken is described and the results presented.

  17. Galactose oxidation using (13)C in healthy and galactosemic children.

    PubMed

    Resende-Campanholi, D R; Porta, G; Ferrioli, E; Pfrimer, K; Ciampo, L A Del; Junior, J S Camelo

    2015-03-01

    Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT) deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-(13)C-galactose) allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate (13)CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-(13)C-galactose to all children. The molar ratios of (13)CO2 and (12)CO2 were quantified by the mass/charge ratio (m/z) of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of (13)C from labeled galactose (CUMPCD) in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies.

  18. 13C NMR of Nephila clavipes major ampullate silk gland.

    PubMed

    Hijirida, D H; Do, K G; Michal, C; Wong, S; Zax, D; Jelinski, L W

    1996-12-01

    The major ampullate glands of the spider Nephila clavipes contain approximately 0.2 microliter each of a highly concentrated (approximately 50%) solution of silk fibroin. Therefore, the reservoir of silk in these glands presents an ideal opportunity to observe prefolded conformations of a protein in its native state. To this end, the structure and conformation of major ampullate gland silk fibroin within the glands of the spider N. clavipes were examined by 13C NMR spectroscopy. These results were compared to those from silk protein first drawn from the spinneret and then denatured. The 13C NMR chemical shifts, along with infrared and circular dichroism data, suggest that the silk fibroin in the glands exists in dynamically averaged helical conformations. Furthermore, there is no evidence of proline residues in U-(13)C-D-glucose-labeled silk. This transient prefolded "molten fibril" state may correspond to the silk I form found in Bombyx mori silk. There is no evidence of the final beta-sheet structure in the ampullate gland silk fibroin before final silk processing. However, the conformation of silk in the glands appears to be in a highly metastable state, as plasticization with water produces the beta-sheet structure. Therefore, the ducts connecting the ampullate glands to the spinnerets play a larger role in silk processing than previously thought.

  19. HYDROGEN AND DEUTERIUM NMR OF SOLIDS BY MAGIC ANGLE SPINNING

    SciTech Connect

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large spectral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. For example, the homonuclear dipolar broadening, HD, for hydrogen is usually several tens of kilohertz. For deuterium, HD is relatively small; however, the quadrupole interaction causes a broadening which can be hundreds of kilohertz in polycrystalline or amorphous solids. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, {beta}{sub m} = Arccos(3{sup -1/2}), with respect to the direction of the external magnetic field. Two approaches have been developed for each nucleus. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of {beta}. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H{sub D} was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal

  20. Millimeter and submillimeter wave spectra of 13C methylamine

    NASA Astrophysics Data System (ADS)

    Motiyenko, R. A.; Margulès, L.; Ilyushin, V. V.; Smirnov, I. A.; Alekseev, E. A.; Halfen, D. T.; Ziurys, L. M.

    2016-03-01

    Context. Methylamine (CH3NH2) is a light molecule of astrophysical interest, which has an intensive rotational spectrum that extends in the submillimeter wave range and far beyond, even at temperatures characteristic for the interstellar medium. It is likely for 13C isotopologue of methylamine to be identified in astronomical surveys, but there is no information available for the 13CH3NH2 millimeter and submillimeter wave spectra. Aims: In this context, to provide reliable predictions of 13CH3NH2 spectrum in millimeter and submillimeter wave ranges, we have studied rotational spectra of the 13C methylamine isotopologue in the frequency range from 48 to 945 GHz. Methods: The spectrum of 13C methylamine was recorded using conventional absorption spectrometers. The analysis of the rotational spectrum of 13C methylamine in the ground vibrational state was performed on the basis of the group-theoretical high-barrier tunneling Hamiltonian that was developed for methylamine. The available multiple observations of the parent methylamine species toward Sgr B2(N) at 1, 2, and 3 mm using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory were used to make a search for interstellar 13CH3NH2. Results: In the recorded spectra, we have assigned 2721 rotational transitions that belong to the ground vibrational state of the 13CH3NH2. These measurements were fitted to the Hamiltonian model that uses 75 parameters to achieve an overall weighted rms deviation of 0.73. On the basis of these spectroscopic results, predictions of transition frequencies in the frequency range up to 950 GHz with J ≤ 50 and Ka ≤ 20 are presented. The search for interstellar 13C methylamine in available observational data was not successful and therefore only an upper limit of 6.5 × 1014 cm-2 can be derived for the column density of 13CH3NH2 toward Sgr B2(N), assuming the same source size, temperature, linewidth, and systemic velocity as for parent methylamine isotopic

  1. Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens

    2012-06-20

    The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two.

  2. Chemical shift anisotropy and offset effects in cross polarization solid-state NMR spectroscopy.

    PubMed

    Shekar, Srinivasan C; Lee, Dong-Kuk; Ramamoorthy, A

    2002-08-01

    The effect of an offset term in the cross-polarization (CP) Hamiltonian of a heteronuclear spin-12 pair due to off-resonant radio frequency (rf) irradiation and/or chemical shift anisotropy on one of the rf channels is investigated. Analytical solutions, simulations, and experimental results are presented. Formulating the CP spin dynamics in terms of an explicit unitary evolution operator enables the CP period to be inserted as a module in a given pulse scheme regardless of the initial density matrix present. The outcome of post-CP manipulation via pulses can be calculated on the resulting density matrix as the phases and amplitudes of all coherence modes are available. Using these tools it is shown that the offset can be used to reduce the rf power on that channel and the performance is further improved by a post-CP pulse whose flip angle matches and compensates the tilt of the effective field on the offset channel. Experimental investigations on single crystalline and polycrystalline samples of peptides confirm the oscillatory nature of CP dynamics and prove the slowing down of the dynamics under offset and/or mismatch conditions.

  3. A new formulation for the ionospheric cross polar cap potential including saturation effects

    NASA Astrophysics Data System (ADS)

    Ridley, A. J.

    2005-12-01

    It is known that the ionospheric cross polar cap potential (CPCP) saturates when the interplanetary magnetic field (IMF) Bz becomes very large. Few studies have offered physical explanations as to why the polar cap potential saturates. We present 13 events in which the reconnection electric field (REF) goes above 12mV/m at some time. When these events are examined as typically done in previous studies, all of them show some signs of saturation (i.e., over-prediction of the CPCP based on a linear relationship between the IMF and the CPCP). We show that by taking into account the size of the magnetosphere and the fact that the post-shock magnetic field strength is strongly dependent upon the solar wind Mach number, we can better specify the ionospheric CPCP. The CPCP (Φ) can be expressed as Φ=(10-4v2+11.7B(1-e-Ma/3)sin3(θ/2)) {rms/9 (where v is the solar wind velocity, B is the combined Y and Z components of the interplanetary magnetic field, Ma is the solar wind Mach number, θ=acos(Bz/B), and rms is the stand-off distance to the magnetopause, assuming pressure-balance between the solar wind and the magnetosphere). This is a simple modification of the original Boyle et al. (1997) formulation.

  4. Clinical cross-polarization optical coherence tomography assessment of subsurface enamel below dental resin composite restorations

    PubMed Central

    Lenton, Patricia; Rudney, Joel; Fok, Alex; Jones, Robert S.

    2014-01-01

    Abstract. A newly designed intraoral swept source cross-polarization optical coherence tomography (CP-OCT) imaging system was used to examine the integrity of the subsurface enamel below resin composite restorations placed in primary teeth. CP-OCT analysis was performed using images obtained from resin composite restoration in 62 (n=62) pediatric subjects. Clinical examination was performed by a single examiner prior to CP-OCT imaging and analysis. CP-OCT images are presented using a unique combined intensity image, where a false color scale is overlaid on the grayscale intensity image. There was a clear difference in the distribution of the mean-backscattered intensity (mR) between restorations recently placed and those possessing frank cavitation (Student’s t-test, P<0.0001). For mR above 15.49 dB, the sensitivity was 80% and specificity 86%. The Youden index J was 0.8 above 12.3 dB where sensitivity was 100% and specificity was 80%. CP-OCT imaging may be used to confirm the subsurface marginal integrity below resin composite restorations but with careful consideration of limitations of the imaging modality. CP-OCT imaging may be a useful adjunct to clinical visual investigation to confirm that a composite margin has a sound and well-adapted interface. PMID:26158031

  5. A parallel-series-fed microstrip array with high efficiency and low cross-polarization

    NASA Technical Reports Server (NTRS)

    Huang, John

    1992-01-01

    The requirements of a microstrip array with a vertically polarized fan beam are addressed that correspond to its use in C-band interferometric SAR. A combination of parallel- and series-feed techniques are utilized in an array design with a three-stage parallel-fed configuration to enhance bandwidth performance. The linearly polarized traveling-wave microstrip array antenna is fed by microstrip transmission lines in two rows of 36 elements that resonate at 5.30 GHz. The transmission lines are impedance-matched at every junction for all the waves that travel toward the two ends of the array. The two measured principal-plane patterns are shown, and the measured narrow-beam pattern is found to agree with the calculated values. The VSWR bandwidths and narrow and broad beamwidths of the antenna are found to permit efficient performance. The efficiency is attributed to the parallel and series-feed configuration which allows proper impedance matching, and low cross-polarization is a result of the antiphase feed technique employed in the configuration.

  6. Parallel and series FED microstrip array with high efficiency and low cross polarization

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor)

    1995-01-01

    A microstrip array antenna for vertically polarized fan beam (approximately 2 deg x 50 deg) for C-band SAR applications with a physical area of 1.7 m by 0.17 m comprises two rows of patch elements and employs a parallel feed to left- and right-half sections of the rows. Each section is divided into two segments that are fed in parallel with the elements in each segment fed in series through matched transmission lines for high efficiency. The inboard section has half the number of patch elements of the outboard section, and the outboard sections, which have tapered distribution with identical transmission line sections, terminated with half wavelength long open-circuit stubs so that the remaining energy is reflected and radiated in phase. The elements of the two inboard segments of the two left- and right-half sections are provided with tapered transmission lines from element to element for uniform power distribution over the central third of the entire array antenna. The two rows of array elements are excited at opposite patch feed locations with opposite (180 deg difference) phases for reduced cross-polarization.

  7. Cross-polarization confocal imaging of subsurface flaws in silicon nitride.

    SciTech Connect

    Liu, Z.; Sun, J. G.; Pei, Z.

    2011-03-01

    A cross-polarization confocal microscopy (CPCM) method was developed to image subsurface flaws in optically translucent silicon nitride (Si{sub 3}N{sub 4}) ceramics. Unlike conventional confocal microscopy, which measures reflected light so is applicable only to transparent and semi-transparent materials, CPCM detects scattered light from subsurface while filtering out the reflected light from ceramic surface. For subsurface imaging, the refractive-index mismatch between imaging (air) and imaged (ceramic) medium may cause image distortion and reduce resolution in the depth direction. This effect, characterized by an axial scaling factor (ASF), was analyzed and experimentally determined for glass and Si{sub 3}N{sub 4} materials. The experimental CPCM system was used to image Hertzian C-cracks generated by various indentation loads in the subsurface of a Si{sub 3}N{sub 4} specimen. It was demonstrated that CPCM may provide detailed information of subsurface cracks, such as crack angle and path, and subsurface microstructural variations.

  8. Magical Landscapes: Two Love Stories.

    ERIC Educational Resources Information Center

    Moore, John Noell

    2002-01-01

    Introduces two books about magic, one a collection of essays "Ex Libris: Confessions of a Common Reader," which describes the author's inherited lifelong passion for books and reading; and the other a novel, "Mangos, Bananas and Coconuts: A Cuban Love Story," which tells a story of love and magic that seems both real and…

  9. The lure of magic thinking.

    PubMed

    Wilder, J

    1975-01-01

    The development of the thinking processes from childhood to maturity is analyzed and three stages are distinguished: the magic omnipotent stage of the preschool child, the development of the realistic ego, and the future-directed value-building superego. The role of the lure to return to the magic thinking in our culture is described.

  10. Garden Gnomes: Magical or Tacky?

    ERIC Educational Resources Information Center

    Flynt, Deborah

    2012-01-01

    Garden gnomes: magical or tacky? Well, art is in the eye of the beholder, and for the author's advanced seventh-grade art class, garden gnomes are magical. Gnomes have a very long history, dating back to medieval times. A fairytale describes them as brownie-like creatures that are nocturnal helpers. In this article, the author describes how her…

  11. In vivo investigation of cardiac metabolism in the rat using MRS of hyperpolarized [1-13C] and [2-13C]pyruvate.

    PubMed

    Josan, Sonal; Park, Jae Mo; Hurd, Ralph; Yen, Yi-Fen; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk

    2013-12-01

    Hyperpolarized (13)C MRS allows the in vivo assessment of pyruvate dehydrogenase complex (PDC) flux, which converts pyruvate to acetyl-coenzyme A (acetyl-CoA). [1-(13)C]pyruvate has been used to measure changes in cardiac PDC flux, with demonstrated increase in (13)C-bicarbonate production after dichloroacetate (DCA) administration. With [1-(13)C]pyruvate, the (13)C label is released as (13 CO2 /(13)C-bicarbonate, and, hence, does not allow us to follow the fate of acetyl-CoA. Pyruvate labeled in the C2 position has been used to track the (13)C label into the TCA (tricarboxylic acid) cycle and measure [5-(13)C]glutamate as well as study changes in [1-(13)C]acetylcarnitine with DCA and dobutamine. This work investigates changes in the metabolic fate of acetyl-CoA in response to metabolic interventions of DCA-induced increased PDC flux in the fed and fasted state, and increased cardiac workload with dobutamine in vivo in rat heart at two different pyruvate doses. DCA led to a modest increase in the (13)C labeling of [5-(13)C]glutamate, and a considerable increase in [1-(13)C]acetylcarnitine and [1,3-(13)C]acetoacetate peaks. Dobutamine resulted in an increased labeling of [2-(13)C]lactate, [2-(13)C]alanine and [5-(13)C]glutamate. The change in glutamate with dobutamine was observed using a high pyruvate dose but not with a low dose. The relative changes in the different metabolic products provide information about the relationship between PDC-mediated oxidation of pyruvate and its subsequent incorporation into the TCA cycle compared with other metabolic pathways. Using a high dose of pyruvate may provide an improved ability to observe changes in glutamate.

  12. Old and New Magic Numbers

    SciTech Connect

    Talmi, Igal

    2008-11-11

    The discovery of magic numbers led to the shell model. They indicated closure of major shells and are robust: proton magic numbers are rather independent of the occupation of neutron orbits and vice versa. Recently the magic property became less stringent and we hear a lot about the discovery of new magic numbers. These, however, indicate sub-shell closures and strongly depend on occupation numbers and hence, may be called quasi-magic numbers. Some of these have been known for many years and the mechanism for their appearance as well as disappearance, was well understood within the simple shell model. The situation will be illustrated by a few examples which demonstrate the simple features of the shell model. Will this simplicity emerge from the complex computations of nuclear many-body theory?.

  13. The 13C nuclear magnetic resonance in graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Resing, H. A.

    1985-01-01

    The (13)C NMR chemical shifts of graphite intercalation compounds were calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about -140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.

  14. Solid-state {sup 19}F and {sup 13}C NMR of room temperature fluorinated graphite and samples thermally treated under fluorine: Low-field and high-resolution studies

    SciTech Connect

    Giraudet, J.; Dubois, M.; Guerin, K.; Pinheiro, J.P.; Hamwi, A.; Stone, W.E.E.; Pirotte, P.; Masin, F. . E-mail: fmasin@ulb.ac.be

    2005-04-15

    Room temperature graphite fluorides consisting of raw material and samples post-treated in pure fluorine atmosphere in the temperature range 100-500 deg. C have been studied by solid-state NMR. Several NMR approaches have been used, both high and low-field {sup 19}F, {sup 19}F MAS and {sup 13}C MAS with {sup 19}F to {sup 13}C cross polarization. The modifications, in the graphitic lattice, of the catalytic iodine fluorides products have been examined. A transformation of the C-F bond character from semi-ionic to covalent has been found to occur at a post-treatment temperature close to 400 deg. C. It is shown that covalency increases with temperature.

  15. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    PubMed

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately.

  16. Microscopic structure of heterogeneous lipid-based formulations revealed by 13C high-resolution solid-state and 1H PFG NMR methods.

    PubMed

    Guillermo, Armel; Gerbaud, Guillaume; Bardet, Michel

    2010-03-01

    Lipid-based formulations such as lip glosses that are very alike on the base of their components may have significant differences in their expected macroscopic properties as cosmetics. To differentiate such formulations, high-resolution (13)C NMR was performed under magic angle spinning to investigate the properties at both molecular and microscopic levels. Temperature studies were carried out and no polymorphism in the solid domains could be evidenced after the thermal treatment performed for obtaining the commercial lip glosses. (13)C NMR spectra also showed that some waxes remain partially solubilized in the oils of formulations. The microscopic structure of the wax-oil liquid domains was worked out on the basis of restricted diffusion properties obtained with proton pulsed-field gradient NMR. Changing a single wax component, in two identical formulations, yields significant morphological differences. In the first one the liquid phase appears as a continuum whereas in the second one, the liquid phase is fractionated into micrometric droplets.

  17. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  18. 13C metabolic flux analysis in complex systems.

    PubMed

    Zamboni, Nicola

    2011-02-01

    Experimental determination of in vivo metabolic rates by methods of (13)C metabolic flux analysis is a pivotal approach to unravel structure and regulation of metabolic networks, in particular with microorganisms grown in minimal media. However, the study of real-life and eukaryotic systems calls for the quantification of fluxes also in cellular compartments, rich media, cell-wide metabolic networks, dynamic systems or single cells. These scenarios drastically increase the complexity of the task, which is only partly dealt by existing approaches that rely on rigorous simulations of label propagation through metabolic networks and require multiple labeling experiments or a priori information on pathway inactivity to simplify the problem. Albeit qualitative and largely driven by human interpretation, statistical analysis of measured (13)C-patterns remains the exclusive alternative to comprehensively handle such complex systems. In the future, this practice will be complemented by novel modeling frameworks to assay particular fluxes within a network by stable isotopic tracer for targeted validation of well-defined hypotheses.

  19. Glucogenesis in an insect, Manduca sexta L., estimated from the 13C isotopomer distribution in trehalose synthesized from [1,3-13C2]glycerol.

    PubMed

    Thompson, S N

    1997-07-19

    Glucogenesis from [3-13C]alanine and [1,3-13C2]glycerol was demonstrated in the insect Manduca sexta by examining the 13C enrichment of trehalose, a non-reducing disaccharide of glucose synthesized in the insect fat body and released into the blood or hemolymph. In insects maintained on a low carbohydrate diet, trehalose synthesized from [3-13C]alanine was selectively enriched at C1 and C6, and C2 and C5. The 13C-labelling pattern indicated the carboxylation of [3-13C]pyruvate, formed by transamination of the [3-13C]alanine followed by randomization of the label at the fumarate step of the tricarboxylic acid cycle and glucose synthesis via the gluconeogenic pathway. 13C enrichment of trehalose was absent in similarly maintained insect larvae administered 3-mercaptopicolinic acid, an inhibitor of hepatic phosphoenolpyruvate carboxykinase. Insects on the low carbohydrate diet also synthesized trehalose from [1,3-13C2]glycerol. 13C multiplets were observed in trehalose C3 and C4 demonstrating the synthesis of three 13C enriched glucose isotopomers from the 13C-labelled glycerol. The relative contributions of 13C-labelled glycerol and unlabelled 3 carbon substrates to the synthesis of the 13C enriched trehalose isotopomers were determined from the multiplet structure at C3, and calculation of minimal rates of glucogenesis were based on the 13C enrichment of C4. The C4/C3 13C enrichment ratio in trehalose synthesized from [1,3-13C2]glycerol was close to unity, and total glucogenesis was calculated after estimation of the expected contribution of unlabelled trehalose synthesis from 3 carbon substrates by comparison of the ratio of unlabelled and labelled contributions to the 13C enriched trehalose isotopomers with the 13C enrichment of [1,3-13C2]glycerol-3-phosphate. The estimated total rates of glucogenesis varied from 0.33 to 2.80 micromol glucose/g fresh weight/h. The blood sugar level of M. sexta was also highly variable. Although the potential importance of

  20. Methionine bound to Pd/γ-Al2O3 catalysts studied by solid-state (13)C NMR.

    PubMed

    Johnson, Robert L; Schwartz, Thomas J; Dumesic, James A; Schmidt-Rohr, Klaus

    2015-11-01

    The chemisorption and breakdown of methionine (Met) adsorbed on Pd/γ-Al2O3 catalysts were investigated by solid-state NMR. (13)C-enriched Met (ca. 0.4mg) impregnated onto γ-Al2O3 or Pd/γ-Al2O3 gives NMR spectra with characteristic features of binding to γ-Al2O3, to Pd nanoparticles, and oxidative or reductive breakdown of Met. The SCH3 groups of Met showed characteristic changes in chemical shift on γ-Al2O3 (13ppm) vs. Pd (19ppm), providing strong evidence for preferential binding to Pd, while the NC carbon generates a small resonance at 96ppm assigned to a distinct nonprotonated species bound to O or Pd. Additionally, NMR shows that the SCH3 groups of Met are mobile on γ-Al2O3 but immobilized by binding to Pd particles; on small Pd particles (ca. 4nm), the NCH groups undergo large-amplitude motions. In a reducing environment, Met breaks down by C-S bond cleavage followed by formation of C2-C4 organic acids. The SCH3 signal shifts to 22ppm, which is likely the signature of the principal species responsible for strong catalyst inhibition. These experiments demonstrate that solid-state magic-angle spinning NMR of (13)C-enriched Met can be a sensitive probe to investigate catalyst surfaces and characterize catalyst inhibition both before reaction and postmortem.

  1. Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-13C]butyrate and [1-13C]pyruvate

    PubMed Central

    Bastiaansen, Jessica A. M.; Merritt, Matthew E.; Comment, Arnaud

    2016-01-01

    Cardiac dysfunction is often associated with a shift in substrate preference for ATP production. Hyperpolarized (HP) 13C magnetic resonance spectroscopy (MRS) has the unique ability to detect real-time metabolic changes in vivo due to its high sensitivity and specificity. Here a protocol using HP [1-13C]pyruvate and [1-13C]butyrate is used to measure carbohydrate versus fatty acid metabolism in vivo. Metabolic changes in fed and fasted Sprague Dawley rats (n = 36) were studied at 9.4 T after tail vein injections. Pyruvate and butyrate competed for acetyl-CoA production, as evidenced by significant changes in [13C]bicarbonate (−48%), [1-13C]acetylcarnitine (+113%), and [5-13C]glutamate (−63%), following fasting. Butyrate uptake was unaffected by fasting, as indicated by [1-13C]butyrylcarnitine. Mitochondrial pseudoketogenesis facilitated the labeling of the ketone bodies [1-13C]acetoacetate and [1-13C]β-hydroxybutyryate, without evidence of true ketogenesis. HP [1-13C]acetoacetate was increased in fasting (250%) but decreased during pyruvate co-injection (−82%). Combining HP 13C technology and co-administration of separate imaging agents enables noninvasive and simultaneous monitoring of both fatty acid and carbohydrate oxidation. This protocol illustrates a novel method for assessing metabolic flux through different enzymatic pathways simultaneously and enables mechanistic studies of the changing myocardial energetics often associated with disease. PMID:27150735

  2. Observational Evidence that Magnetosheath Plasma Parameters are Prominent in Determining Cross Polar Cap Potential Saturation

    NASA Astrophysics Data System (ADS)

    Clauer, Robert; Xu, Zhonghua; Hartinger, Michael; Ruohoniemi, Michael; Scales, Wayne; Maimaiti, Maimaitirebike; Nicolls, Michael; Wilder, Rick; Lopez, Ramon

    2016-04-01

    A variety of statistical studies have shown that the ionospheric polar potential produced by solar wind - magnetosphere - ionosphere coupling is linear for weak to moderate solar wind driving, but becomes non-linear during periods of very strong driving. It has been shown that this applies to the two-cell convection potential that develops during southward interplanetary magnetic field (IMF) and also to the reverse convection cells that develop during northward IMF. This has been described as polar potential saturation and it appears to begin when the driving solar wind electric field becomes greater than 3 mV/m. It has also been shown that the summer ionospheric electric field saturates at about the same value (20 mV/m) for both northward or southward IMF. Recent measurements of the high latitude convection on September 12 - 13, 2014 using the Resolute Incoherent Scatter Radar during periods of large northward IMF show ionospheric electric fields varying between 56 mV/m and 156 mV/m within the dayside reverse convection cells. There is no indication of saturation during these periods of very strong driving. We believe that the extremely rare conditions in the solar wind that produce extreme driving while also producing a high plasma beta in the magnetosheath provide the best explanation for the lack of potential saturation of the reverse convection cells. That is to say, the conditions in the magnetosheath that contribute to enhancing or limiting reconnection are most important in determining cross polar cap potential saturation. This research was supported at Virginia Tech by National Science Foundation Grant AGS-1216373.

  3. Heteronuclear cross-polarization in multinuclear multidimensional NMR: Prospects for triple-resonance CP

    SciTech Connect

    Majumdar, A.; Zuiderweg, E.R.P.

    1994-12-01

    Heteronuclear multiple-pulse-based Cross Polarization (HECP) between scalar coupled spins is gaining an important role in high-resolution multidimensional NMR of isotopically labeled biomolecules, especially in experiments involving net magnetization transfer. It has generally been observed that in these situations, the performance of HECP is superior to that of INEPT-based sequences. In particular, HECP-based three-dimensional HCCH spectroscopy is more efficient than the INEPT version of the same experiment. Differences in sensitivity have been intuitively attributed to relaxation effects and technical factors such as radiofrequency (rf) inhomogeneity We present theoretical analyses and computer simulations to probe the effects of these factors. Relaxation effects were treated phenomenologically; we found that relaxation differences are relatively small (up to 25%) between pulsed-free-precession (INEPT) and HECP-although always in favor of HECP. We explored the rf effects by employing a Gaussian distribution of rf amplitude over sample volume. We found that inhomogeneity effects significantly favor HECP over INEPT, especially under conditions of {open_quotes}matched {close_quotes} inhomogeneity in the two rf coils. The differences in favor of HECP indicate that an extension of HECP to triple resonance experiments (TRCP) in I -> S -> Q net transfers might yield better results relative to analogous INEPT-based net transfers. We theoretically analyze the possibilities of TRCP and find that transfer functions are critically dependent on the ratio J{sub IS}/J{sub SQ}. When J{sub IS} equals J{sub SQ}, we find that 100% transfer is possible for truly simultaneous TRCP and this transfer is obtained in a time 1.41 /J. The TRCP time requirement compares favorably with optimally concatenated INEPT-transfers, where net transfer I -> S -> Q is complete at 1.5 /J.

  4. Phase dynamics in vertical-cavity surface-emitting lasers with delayed optical feedback and cross-polarized reinjection

    NASA Astrophysics Data System (ADS)

    Javaloyes, J.; Marconi, M.; Giudici, M.

    2014-08-01

    We study theoretically the nonlinear polarization dynamics of vertical-cavity surface-emitting lasers in the presence of an external cavity providing delayed optical feedback and cross-polarized reinjection. We show that, far from the laser threshold, the dynamics remains confined close to the equatorial plane of a Poincaré sphere with a fixed radius. It entails that the evolution of the system is described by two phase variables: the orientation phase of the quasilinear polarization and the optical phase of the field. We explore the complex modal structure given by the double reinjection configuration and how it evolves between the cases of single cross-polarized reinjection and single optical feedback, hence disclosing the relationship with the Lang-Kobayashi model. We also reinterpret the square-wave switching observed by J. Mulet et al. [Phys. Rev. A 76, 043801 (2007), 10.1103/PhysRevA.76.043801] in terms of phase kinks.

  5. Retrieval of Droplet size Density Distribution from Multiple field of view Cross polarized Lidar Signals: Theory and Experimental Validation

    DTIC Science & Technology

    2016-06-02

    is derived to facilitate use of secondary polarization. The model is supported by exper- imental MFOV lidar measurements carried out in a controlled ...Retrieval of droplet-size density distribution from multiple-field-of- view cross-polarized lidar signals: theory and experimental validation...Gilles Roy, Luc Bissonnette, Christian Bastille, and Gilles Vallee Multiple-field-of- view (MFOV) secondary-polarization lidar signals are used to

  6. Improved ground state and ν12 = 1 state rovibrational constants for ethylene-13C2 (13C2H4)

    NASA Astrophysics Data System (ADS)

    Gabona, M. G.; Tan, T. L.

    2014-05-01

    The Fourier transform infrared (FTIR) absorption spectrum of the ν12 fundamental band of ethylene-13C2 (13C2H4) was recorded in the frequency range of 1350-1550 cm-1 with unapodized resolution of 0.0063 cm-1. Improved upper state (ν12 = 1) rovibrational constants consisting of three rotational, five quartic and five sextic constants were derived by assigning and fitting 1731 infrared transitions using Watson's A-reduced Hamiltonian in the Ir representation. The root-mean-square deviation of the fit was 0.00030 cm-1. More higher-order upper state (ν12 = 1) constant were derived in the present analysis than previously reported. Improved ground state rovibrational constants were also determined from the fit of 1104 ground state combination differences (GSCD) with a root-mean-square deviation of 0.00029 cm-1. The A-type ν12 band centered at 1436.65409 ± 0.00002 cm-1 has a calculated inertial defect Δ12 is 0.242896 ± 0.000007 μÅ2. No indications of perturbation were found in the analysis of the band.

  7. Hydrogen and deuterium NMR of solids by magic-angle spinning

    SciTech Connect

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, ..beta../sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of ..beta... A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of /sup 1/H with /sup 2/H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids.

  8. 13C Metabolomics: NMR and IROA for Unknown Identification

    PubMed Central

    Clendinen, Chaevien S.; Stupp, Gregory S.; Wang, Bing; Garrett, Timothy J.; Edison, Arthur S.

    2016-01-01

    Abstract: Background Isotopic Ratio Outlier Analysis (IROA) is an untargeted metabolomics method that uses stable isotopic labeling and LC-HRMS for identification and relative quantification of metabolites in a biological sample under varying experimental conditions. Objective We demonstrate a method using high-sensitivity 13C NMR to identify an unknown metabolite isolated from fractionated material from an IROA LC-HRMS experiment. Methods IROA samples from the nematode Caenorhabditis elegans were fractionated using LC-HRMS using 5 repeated injections and collecting 30 sec fractions. These were concentrated and analyzed by 13C NMR. Results We isotopically labeled samples of C. elegans and collected 2 adjacent LC fractions. By HRMS, one contained at least 2 known metabolites, phenylalanine and inosine, and the other contained tryptophan and an unknown feature with a monoisotopic mass of m/z 380.0742 [M+H]+. With NMR, we were able to easily verify the known compounds, and we then identified the spin system networks responsible for the unknown resonances. After searching the BMRB database and comparing the molecular formula from LC-HRMS, we determined that the fragments were a modified anthranilate and a glucose modified by a phosphate. We then performed quantum chemical NMR chemical shift calculations to determine the most likely isomer, which was 3’-O-phospho-β-D-glucopyranosyl-anthranilate. This compound had previously been found in the same organism, validating our approach. Conclusion We were able to dereplicate previously known metabolites and identify a metabolite that was not in databases by matching resonances to NMR databases and using chemical shift calculations to determine the correct isomer. This approach is efficient and can be used to identify unknown compounds of interest using the same material used for IROA. PMID:28090435

  9. Millimeter and submillimeter wave spectra of 13C-glycolaldehydes

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Motiyenko, R. A.; Margulès, L.; Huet, T. R.

    2013-01-01

    Context. Glycolaldehyde (CH2OHCHO) is the simplest sugar and an important intermediate in the path toward forming more complex biologically relevant molecules. Astronomical surveys of interstellar molecules, such as those available with the very sensitive ALMA telescope, require preliminary laboratory investigations of the microwave and submillimeter-wave spectra of molecular species including new isotopologs - to identify these in the interstellar media. Aims: To achieve the detection of the 13C isotopologs of glycolaldehyde in the interstellar medium, their rotational spectra in the millimeter and submillimeter-wave regions were studied. Methods: The spectra of 13CH2OHCHO and CH2OH13CHO were recorded in the 150-945 GHz spectral range in the laboratory using a solid-state submillimeter-wave spectrometer in Lille. The observed line frequencies were measured with an accuracy of 30 kHz up to 700 GHz and of 50 kHz above 700 GHz. We analyzed the spectra with a standard Watson Hamiltonian. Results: About 10 000 new lines were identified for each isotopolog. The spectroscopic parameters were determined for the ground- and the three lowest vibrational states up to 945 and 630 GHz. Previous microwave assignments of 13CH2OHCHO were not confirmed. Conclusions: The provided line-lists and sets of molecular parameters meet the needs for a first astrophysical search of 13C-glycolaldehydes. Full Tables 3 and 4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A96

  10. Revealing ontological commitments by magic.

    PubMed

    Griffiths, Thomas L

    2015-03-01

    Considering the appeal of different magical transformations exposes some systematic asymmetries. For example, it is more interesting to transform a vase into a rose than a rose into a vase. An experiment in which people judged how interesting they found different magic tricks showed that these asymmetries reflect the direction a transformation moves in an ontological hierarchy: transformations in the direction of animacy and intelligence are favored over the opposite. A second and third experiment demonstrated that judgments of the plausibility of machines that perform the same transformations do not show the same asymmetries, but judgments of the interestingness of such machines do. A formal argument relates this sense of interestingness to evidence for an alternative to our current physical theory, with magic tricks being a particularly pure source of such evidence. These results suggest that people's intuitions about magic tricks can reveal the ontological commitments that underlie human cognition.

  11. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  12. Reaction cross sections for. nu. sup 13 C r arrow e sup minus sup 13 N and. nu. sup 13 C r arrow. nu. prime sup 13 C sup * for low energy neutrinos

    SciTech Connect

    Fukugita, M. ); Kohyama, Y.; Kubodera, K.; Kuramoto, T. )

    1990-04-01

    Cross sections for {nu}+{sup 13}C reactions are calculated both for charged- and neutral-current reactions in order to estimate the efficiency of a {sup 13}C target as a solar neutrino detector. The relevant transition matrix elements are obtained using the semiphenomenological effective-operator approach for {ital p}-shell nuclei.

  13. PASADENA hyperpolarization of 13C biomolecules: equipment design and installation

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Robertson, Larry W.; Bhattacharya, Pratip

    2009-01-01

    Object The PASADENA method has achieved hyperpolarization of 16–20% (exceeding 40,000-fold signal enhancement at 4.7 T), in liquid samples of biological molecules relevant to in vivo MRI and MRS. However, there exists no commercial apparatus to perform this experiment conveniently and reproducibly on the routine basis necessary for translation of PASADENA to questions of biomedical importance. The present paper describes equipment designed for rapid production of six to eight liquid samples per hour with high reproducibility of hyperpolarization. Materials and methods Drawing on an earlier, but unpublished, prototype, we provide diagrams of a delivery circuit, a laminar-flow reaction chamber within a low field NMR contained in a compact, movable housing. Assembly instructions are provided from which a computer driven, semiautomated PASADENA polarizer can be constructed. Results Together with an available parahydrogen generator, the polarizer, which can be operated by a single investigator, completes one cycle of hyperpolarization each 52 s. Evidence of efficacy is presented. In contrast to competing, commercially available devices for dynamic nuclear polarization which characteristically require 90 min per cycle, PASADENA provides a low-cost alternative for high throughput. Conclusions This equipment is suited to investigators who have an established small animal NMR and wish to explore the potential of heteronuclear (13C and 15N) MRI, MRS, which harnesses the enormous sensitivity gain offered by hyperpolarization. PMID:19067008

  14. New optical analyzer for 13C-breath test

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Dressler, Matthias; Helmrich, Günther; Wolff, Marcus; Groninga, Hinrich

    2008-04-01

    Medical breath tests are well established diagnostic tools, predominantly for gastroenterological inspections, but also for many other examinations. Since the composition and concentration of exhaled volatile gases reflect the physical condition of a patient, a breath analysis allows one to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that is based on photoacoustic spectroscopy and uses a DFB diode laser at 2.744 μm. The concentration ratio of the CO II isotopologues is determined by measuring the absorption on a 13CO II line in comparison to a 12CO II line. In the specially selected spectral range the lines have similar strengths, although the concentrations differ by a factor of 90. Therefore, the signals are well comparable. Due to an excellent signal-noise-ratio isotope variations of less than 1% can be resolved as required for the breath test.

  15. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  16. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  17. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  18. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  19. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  20. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  1. Abject Magic: Reasoning Madness in Justine Larbalestier's "Magic or Madness" Trilogy

    ERIC Educational Resources Information Center

    Potter, Troy

    2013-01-01

    This paper explores the representation of magic and madness in Justine Larbalestier's "Magic or Madness" trilogy (2005-2007). Throughout the series, magic is constructed as an abject and disabling force that threatens to disable magic-wielders, either through madness or death. Despite being represented as a ubiquitous force, the…

  2. Enhancing the [13C]bicarbonate signal in cardiac hyperpolarized [1-13C]pyruvate MRS studies by infusion of glucose, insulin and potassium.

    PubMed

    Lauritzen, Mette Hauge; Laustsen, Christoffer; Butt, Sadia Asghar; Magnusson, Peter; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan Henrik; Åkeson, Per

    2013-11-01

    A change in myocardial metabolism is a known effect of several diseases. MRS with hyperpolarized (13)C-labelled pyruvate is a technique capable of detecting changes in myocardial pyruvate metabolism, and has proven to be useful for the evaluation of myocardial ischaemia in vivo. However, during fasting, the myocardial glucose oxidation is low and the fatty acid oxidation (β-oxidation) is high, which complicates the interpretation of pyruvate metabolism with the technique. The aim of this study was to investigate whether the infusion of glucose, insulin and potassium (GIK) could increase the myocardial glucose oxidation in the citric acid cycle, reflected as an increase in the [(13)C]bicarbonate signal in cardiac hyperpolarized [1-(13)C]pyruvate MRS measurements in fasted rats. Two groups of rats were infused with two different doses of GIK and investigated by MRS after injection of hyperpolarized [1-(13)C]pyruvate. No [(13)C]bicarbonate signal could be detected in the fasted state. However, a significant increase in the [(13)C]bicarbonate signal was observed by the infusion of a high dose of GIK. This study demonstrates that a high [(13)C]bicarbonate signal can be achieved by GIK infusion in fasted rats. The increased [(13)C]bicarbonate signal indicates an increased flux of pyruvate through the pyruvate dehydrogenase enzyme complex and an increase in myocardial glucose oxidation through the citric acid cycle.

  3. 13C nuclear magnetic resonance data of lanosterol derivatives—Profiling the steric topology of the steroid skeleton via substituent effects on its 13C NMR

    NASA Astrophysics Data System (ADS)

    Dias, Jerry Ray; Gao, Hongwu

    2009-12-01

    The 13C NMR spectra of over 24 tetracyclic triterpenoid derivatives have been structurally analyzed. The 13C NMR chemical shifts allow one to probe the steric topology of the rigid steroid skeleton and inductive effects of its substituents. Use of deuterium labeling in chemical shift assignment and B-ring aromatic terpenoids are also featured.

  4. Geochemical Approach to Archaeal Ecology: δ13C of GDGTs

    NASA Astrophysics Data System (ADS)

    Lichtin, S.; Warren, C.; Pearson, A.; Pagani, M.

    2015-12-01

    Over the last decade and a half, glycerol dialkyl glycerol tetraethers (GDGTs) have increasingly been used to reconstruct environmental temperatures; proxies like TEX86 that correlate the relative abundance of these archaeal cell membrane lipids to sea surface temperature are omnipresent in paleoclimatology literature. While it has become common to make claims about past temperatures using GDGTs, our present understanding of the organisms that synthesize the compounds is still quite limited. The generally accepted theory states that microorganisms like the Thaumarchaeota modify the structure of membrane lipids to increase intermolecular interactions, strengthening the membrane at higher temperatures. Yet to date, culture experiments have been largely restricted to a single species, Nitrosopumilus maritimes, and recent studies on oceanic archaeal rRNA have revealed that these biomarkers are produced in diverse, heterogeneous, and site-specific communities. This brings up questions as to whether different subclasses of GDGTs, and all subsequent proxies, represent adaptation within a single organismal group or a shift in community composition. To investigate whether GDGTs with different chain structures, from the simple isoprenoidal GDGT-0 to Crenarchaeol with its many cyclopentane groups, are sourced from archaea with similar or disparate metabolic pathways—and if that information is inherited in GDGTs trapped in marine sediments—this study examines the stable carbon isotope values (δ13C) of GDGTs extracted from the uppermost meters of sediment in the Orca Basin, Gulf of Mexico, using spooling-wire microcombustion isotope-ratio mass spectrometer (SWiM-IRMS), tackling a fundamental assumption of the TEX86 proxy that influences the way we perceive the veracity of existing temperature records.

  5. Finding All Solutions to the Magic Hexagram

    ERIC Educational Resources Information Center

    Holland, Jason; Karabegov, Alexander

    2008-01-01

    In this article, a systematic approach is given for solving a magic star puzzle that usually is accomplished by trial and error or "brute force." A connection is made to the symmetries of a cube, thus the name Magic Hexahedron.

  6. Airbag Trail Dubbed 'Magic Carpet'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for Airbag Trail Dubbed 'Magic Carpet' (QTVR)

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Magic Carpet Close-upMagic Carpet Close-up HD

    This section of the first color image from the Mars Exploration Rover Spirit has been further processed to produce a sharper look at a trail left by the one of rover's airbags. The drag mark was made after the rover landed and its airbags were deflated and retracted. Scientists have dubbed the region the 'Magic Carpet' after a crumpled portion of the soil that appears to have been peeled away (lower left side of the drag mark). Rocks were also dragged by the airbags, leaving impressions and 'bow waves' in the soil. The mission team plans to drive the rover over to this site to look for additional clues about the composition of the martian soil. This image was taken by Spirit's panoramic camera.

    This extreme close-up image (see insets above) highlights the martian feature that scientists have named 'Magic Carpet' because of its resemblance to a crumpled carpet fold. Scientists think the soil here may have detached from its underlying layer, possibly due to interaction with the Mars Exploration Rover Spirit's airbag after landing. This image was taken on Mars by the rover's panoramic camera.

  7. A magic pyramid of supergravities

    NASA Astrophysics Data System (ADS)

    Anastasiou, A.; Borsten, L.; Duff, M. J.; Hughes, L. J.; Nagy, S.

    2014-04-01

    By formulating = 1, 2, 4, 8, D = 3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in , it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D = 3 supergravities. This was subsequently tied in with the more familiar description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D = 3, 4, 6, 10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3 is the known 4 × 4 magic square, while the higher levels are comprised of a 3 × 3 square in D = 4, a 2 × 2 square in D = 6 and Type II supergravity at the apex in D = 10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also construct a conformal magic pyramid by tensoring conformal supermultiplets in D = 3, 4, 6. The missing entry in D = 10 is suggestive of anexotic theory with G/ H duality structure F 4(4)/Sp(3) × Sp(1).

  8. NOTE The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  9. The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  10. The use of 13C labeling to enhance the sensitivity of 13C solid-state CPMAS NMR to study polymorphism in low dose solid formulations.

    PubMed

    Booy, Kees-Jan; Wiegerinck, Peter; Vader, Jan; Kaspersen, Frans; Lambregts, Dorette; Vromans, Herman; Kellenbach, Edwin

    2005-02-01

    (13)C labeling was used to enhance the sensitivity of (13)C solid-state NMR to study the effect of tabletting on the polymorphism of a steroidal drug. The steroidal drug Org OD 14 was (13)C labeled and formulated into tablets containing only 0.5-2.5% active ingredient. The tablets were subsequently studied by solid-state (13)C CPMAS NMR. The crystalline form present in tablets could readily be analyzed in tablets. No change in crystalline form was observed as a result of formulation or in subsequent stability studies. Solid-state NMR in combination with (13)C labeling can, in suitable cases, be used as a strategy to study the effect of formulation on the polymorphism of low dose drugs.

  11. Methods for metabolic evaluation of prostate cancer cells using proton and 13C HR-MAS spectroscopy and [3-13C] pyruvate as a metabolic substrate

    PubMed Central

    Levin, Yakir S.; Albers, Mark J.; Butler, Thomas N.; Spielman, Daniel; Peehl, Donna M.; Kurhanewicz, John

    2009-01-01

    Prostate cancer has been shown to undergo unique metabolic changes associated with neoplastic transformation, with associated changes in citrate, alanine, and lactate concentrations. 13C HR-MAS spectroscopy provides an opportunity to simultaneously investigate the metabolic pathways implicated in these changes by using 13C labeled substrates as metabolic probes. In this work, a method to reproducibly interrogate metabolism in prostate cancer cells in primary culture was developed using HR-MAS spectroscopy. Optimization of cell culture protocols, labeling parameters, harvesting, storage, and transfer was performed. Using [3-13C] pyruvate as a metabolic probe, 1H and 13C HR-MAS spectroscopy were used to quantify the net amount and fractional enrichment of several labeled metabolites that evolved in multiple cell samples from each of five different prostate cancers. Average enrichment across all cancers was 32.4±5.4% for [3-13C] alanine, 24.5±5.4% for [4-13C] glutamate, 9.1±2.5% for [3-13C] glutamate, 25.2±5.7% for [3-13C] aspartate, and 4.2±1.0% for [3-13C] lactate. Cell samples from the same parent population demonstrated reproducible fractional enrichments of alanine, glutamate, and aspartate to within 12%, 10%, and 10%, respectively. Furthermore, the cells produced a significant amount of [4-13C] glutamate, which supports the bioenergetic theory for prostate cancer. These methods will allow further characterization of metabolic properties of prostate cancer cells in the future. PMID:19780158

  12. Determination of fructose metabolic pathways in normal and fructose-intolerant children: A sup 13 C NMR study using (U- sup 13 C)fructose

    SciTech Connect

    Gopher, A.; Lapidot, A. ); Vaisman, N. ); Mandel, H. )

    1990-07-01

    An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-(U-{sup 13}C)fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of {sup 13}C NMR spectra of plasma glucose. Significantly lower values ({approx}3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitative determination of the metabolic pathways of fructose conversion to glucose was derived from {sup 13}C NMR measurement of plasma ({sup 13}C)glucose isotopomer populations. The finding of isotopomer populations of three adjacent {sup 13}C atoms at glucose C-4 ({sup 13}C{sub 3}-{sup 13}C{sub 4}-{sup 13}C{sub 5}) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only {approx}50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of ({sup 13}C)glucose formation from a trace amount of (U-{sup 13}C)fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism.

  13. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide.

    PubMed

    Cai, Weiwei; Piner, Richard D; Stadermann, Frank J; Park, Sungjin; Shaibat, Medhat A; Ishii, Yoshitaka; Yang, Dongxing; Velamakanni, Aruna; An, Sung Jin; Stoller, Meryl; An, Jinho; Chen, Dongmin; Ruoff, Rodney S

    2008-09-26

    The detailed chemical structure of graphite oxide (GO), a layered material prepared from graphite almost 150 years ago and a precursor to chemically modified graphenes, has not been previously resolved because of the pseudo-random chemical functionalization of each layer, as well as variations in exact composition. Carbon-13 (13C) solid-state nuclear magnetic resonance (SSNMR) spectra of GO for natural abundance 13C have poor signal-to-noise ratios. Approximately 100% 13C-labeled graphite was made and converted to 13C-labeled GO, and 13C SSNMR was used to reveal details of the chemical bonding network, including the chemical groups and their connections. Carbon-13-labeled graphite can be used to prepare chemically modified graphenes for 13C SSNMR analysis with enhanced sensitivity and for fundamental studies of 13C-labeled graphite and graphene.

  14. Local deposition of 13C tracer in the JET MKII-HD divertor

    NASA Astrophysics Data System (ADS)

    Likonen, Jari; Airila, M. I.; Coad, J. P.; Hakola, A.; Koivuranta, S.; Ahonen, E.; Alves, E.; Barradas, N.; Widdowson, A.; Rubel, M.; Brezinsek, S.; Groth, M.; JET-EFDA Contributors

    2013-07-01

    Migration and deposition of 13C have been investigated at JET by injecting 13C-labelled methane at the outer divertor base at the end of the 2009 campaign. The 13C deposition profile was measured with enhanced proton scattering (EPS) and secondary ion mass spectrometry (SIMS) techniques. A strong toroidal deposition band for 13C was observed experimentally on each of the analysed four outer divertor floor tiles. In addition, 13C was also found on the vertical edge of load bearing tile (LBT) and at the bottom of the LBT tile facing the puffing hole. Local 13C migration in the vicinity of the injection location was modelled by the ERO code. The ERO simulations also produced the strong toroidal 13C deposition band but there is strong deposition also on the vertical edge of the LBT tile and elsewhere on the horizontal part of the outer divertor floor tile.

  15. Wave-mixing interference in three-photon resonant atomic excitation with cross-polarized angled beams

    SciTech Connect

    Peet, V.

    2006-09-15

    Three-photon excitation and associated wave mixing near the 6s and 6s{sup '} resonances of xenon have been studied utilizing resonance-enhanced multiphoton ionization in angled beams with different polarizations. It has been shown that a complete cancellation of three-photon resonant atomic excitation caused by the well-known destructive wave-mixing interference occurs in s and p polarization of angled beams but distinct resonance ionization enhancement is observed when pump beams have orthogonal polarization planes. Pressure-induced evolution of the resonance ionization peak in cross-polarized beams is identical to that observed with counterpropagating beams. The reason for such resonance ionization enhancement is unknown and cannot be explained within the frame work of existing theory. The effect may result from some peculiarities of wave-mixing interference in a multilevel atomic system, where different degenerate magnetic sublevels of the upper atomic state and multiple interfering excitation processes are involved. Another possibility is that the resonance ionization enhancement results from a process where weak counterpropagating light is generated within the excitation region of cross-polarized angled beams.

  16. Propionate metabolism in the rat heart by 13C n.m.r. spectroscopy.

    PubMed Central

    Sherry, A D; Malloy, C R; Roby, R E; Rajagopal, A; Jeffrey, F M

    1988-01-01

    High-resolution 13C n.m.r. spectroscopy has been used to examine propionate metabolism in the perfused rat heart. A number of tricarboxylic acid (TCA) cycle intermediates are observable by 13C n.m.r. in hearts perfused with mixtures of pyruvate and propionate. When the enriched 13C-labelled nucleus originates with pyruvate, the resonances of the intermediates appear as multiplets due to formation of multiply-enriched 13C-labelled isotopomers, whereas when the 13C-labelled nucleus originates with propionate, these same intermediates appear as singlets in the 13C spectrum since entry of propionate into the TCA cycle occurs via succinyl-CoA. An analysis of the isotopomer populations in hearts perfused with [3-13C]pyruvate plus unlabelled propionate indicates that about 27% of the total pyruvate pool available to the heart is derived directly from unlabelled propionate. This was substantiated by perfusing a heart for 2 h with [3-13C]propionate as the only available exogenous substrate. Under these conditions, all of the propionate consumed by the heart, as measured by conventional chemical analysis, ultimately entered the oxidative pathway as [2-13C] or [3-13C]pyruvate. This is consistent with entry of propionate into the TCA cycle intermediate pools as succinyl-CoA and concomitant disposal of malate to pyruvate via the malic enzyme. 13C resonances arising from enriched methylmalonate and propionylcarnitine are also detected in hearts perfused with [3-13C] or [1-13C]propionate which suggests that 13C n.m.r. may be useful as a non-invasive probe in vivo of metabolic abnormalities involving the propionate pathway, such as methylmalonic aciduria or propionic acidaemia. PMID:3178775

  17. Characterization of uniformly and atom-specifically 13C-labeled heparin and heparan sulfate polysaccharide precursors using 13C NMR spectroscopy and ESI mass spectrometry

    PubMed Central

    Nguyen, Thao K. N.; Tran, Vy M.; Victor, Xylophone V.; Skalicky, Jack J.; Kuberan, Balagurunathan

    2010-01-01

    The biological actions of heparin and heparan sulfate, two structurally related glycosaminoglycans, depend on the organization of the complex heparanome. Due to the structural complexity of the heparanome, the sequence of variably sulfonated uronic acid and glucosamine residues is usually characterized by the analysis of smaller oligosaccharide and disaccharide fragments. Even characterization of smaller heparin/heparan sulfate oligosaccharide or disaccharide fragments using simple 1D 1H NMR spectroscopy is often complicated by the extensive signal overlap. 13C NMR signals, on the other hand, overlap less and therefore, 13C NMR spectroscopy can greatly facilitate the structural elucidation of the complex heparanome and provide finer insights into the structural basis for biological functions. This is the first report of the preparation of anomeric carbon-specific 13C-labeled heparin/heparan sulfate precursors from the Escherichia coli K5 strain. Uniformly 13C- and 15N-labeled precursors were also produced and characterized by 13C NMR spectroscopy. Mass spectrometric analysis of enzymatically fragmented disaccharides revealed that anomeric carbon-specific labeling efforts resulted in a minor loss/scrambling of 13C in the precursor backbone, whereas uniform labeling efforts resulted in greater than 95% 13C isotope enrichment in the precursor backbone. These labeled precursors provided high-resolution NMR signals with great sensitivity and set the stage for studying the heparanome–proteome interactions. PMID:20832774

  18. 13C MRS of Human Brain at 7 Tesla Using [2-13C]Glucose Infusion and Low Power Broadband Stochastic Proton Decoupling

    PubMed Central

    Li, Shizhe; An, Li; Yu, Shao; Araneta, Maria Ferraris; Johnson, Christopher S.; Wang, Shumin; Shen, Jun

    2015-01-01

    Purpose 13C magnetic resonance spectroscopy (MRS) of human brain at 7 Tesla (T) may pose patient safety issues due to high RF power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo 13C MRS of human brain at 7 T using broadband low RF power proton decoupling. Methods Carboxylic/amide 13C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. 13C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. Results At 7 T, the peak amplitude of carboxylic/amide 13C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T 13C MRS technique used decoupling power and average transmit power of less than 35 W and 3.6 W, respectively. Conclusion In vivo 13C MRS studies of human brain can be performed at 7 T well below the RF safety threshold by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. PMID:25917936

  19. Magical attachment: Children in magical relations with hospital clowns

    PubMed Central

    2012-01-01

    The aim of the present study was to achieve a theoretical understanding of several different-age children's experiences of magic relations with hospital clowns in the context of medical care, and to do so using psychological theory and a child perspective. The method used was qualitative and focused on nine children. The results showed that age was important to consider in better understanding how the children experienced the relation with the hospital clowns, how they described the magical aspects of the encounter and how they viewed the importance of clown encounters to their own well-being. The present theoretical interpretation characterized the encounter with hospital clowns as a magical safe area, an intermediate area between fantasy and reality. The discussion presented a line of reasoning concerning a magical attachment between the child and the hospital clowns, stating that this attachment: a) comprised a temporary relation; b) gave anonymity; c) entailed reversed roles; and d) created an emotional experience of boundary-transcending opportunities. PMID:22371813

  20. Proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-10-28

    A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  1. Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional (13)C solid-state nuclear magnetic resonance spectroscopy.

    PubMed

    Wang, Tuo; Salazar, Andre; Zabotina, Olga A; Hong, Mei

    2014-05-06

    The polysaccharide structure and dynamics in the primary cell wall of the model grass Brachypodium distachyon are investigated for the first time using solid-state nuclear magnetic resonance (NMR). While both grass and non-grass cell walls contain cellulose as the main structural scaffold, the former contains xylan with arabinose and glucuronic acid substitutions as the main hemicellulose, with a small amount of xyloglucan (XyG) and pectins, while the latter contains XyG as the main hemicellulose and significant amounts of pectins. We labeled the Brachypodium cell wall with (13)C to allow two-dimensional (2D) (13)C correlation NMR experiments under magic-angle spinning. Well-resolved 2D spectra are obtained in which the (13)C signals of cellulose, glucuronoarabinoxylan (GAX), and other matrix polysaccharides can be assigned. The assigned (13)C chemical shifts indicate that there are a large number of arabinose and xylose linkages in the wall, and GAX is significantly branched at the developmental stage of 2 weeks. 2D (13)C-(13)C correlation spectra measured with long spin diffusion mixing times indicate that the branched GAX approaches cellulose microfibrils on the nanometer scale, contrary to the conventional model in which only unbranched GAX can bind cellulose. The GAX chains are highly dynamic, with average order parameters of ~0.4. Biexponential (13)C T1 and (1)H T1ρ relaxation indicates that there are two dynamically distinct domains in GAX: the more rigid domain may be responsible for cross-linking cellulose microfibrils, while the more mobile domain may fill the interfibrillar space. This dynamic heterogeneity is more pronounced than that of the non-grass hemicellulose, XyG, suggesting that GAX adopts the mixed characteristics of XyG and pectins. Moderate differences in cellulose rigidity are observed between the Brachypodium and Arabidopsis cell walls, suggesting different effects of the matrix polysaccharides on cellulose. These data provide the first

  2. It's magic: a unique practice management strategy.

    PubMed

    Schwartz, Steven

    2003-11-15

    For thousands of years prior to the advent of modern dentistry, magic has been used to entertain, impress, and motivate individuals. Today's dental professionals are using the concept of The Magic of a Healthy Smile through their use of modern clinical techniques and as a means for practice marketing, patient education, and the reduction of patient stress and fear. This article describes how dentists/magicians have incorporated magic into their practices and the benefits of this useful patient management strategy. A script of the "Happy Tooth Magic Show" and resources for dentists to create their own dental magic show are provided.

  3. 13C metabolic flux analysis at a genome-scale.

    PubMed

    Gopalakrishnan, Saratram; Maranas, Costas D

    2015-11-01

    Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on prediction fidelity of scaling-up mapping models to a genome-scale. The core mapping model employed in this study accounts for (75 reactions and 65 metabolites) primarily from central metabolism. The genome-scale metabolic mapping model (GSMM) (697 reaction and 595 metabolites) is constructed using as a basis the iAF1260 model upon eliminating reactions guaranteed not to carry flux based on growth and fermentation data for a minimal glucose growth medium. Labeling data for 17 amino acid fragments obtained from cells fed with glucose labeled at the second carbon was used to obtain fluxes and ranges. Metabolic fluxes and confidence intervals are estimated, for both core and genome-scale mapping models, by minimizing the sum of square of differences between predicted and experimentally measured labeling patterns using the EMU decomposition algorithm. Overall, we find that both topology and estimated values of the metabolic fluxes remain largely consistent between core and GSM model. Stepping up to a genome-scale mapping model leads to wider flux inference ranges for 20 key reactions present in the core model. The glycolysis flux range doubles due to the possibility of active gluconeogenesis, the TCA flux range expanded by 80% due to the availability of a bypass through arginine consistent with labeling data, and the transhydrogenase reaction flux was essentially unresolved due to the presence of as many as five routes for the inter-conversion of NADPH to NADH afforded by the genome-scale model. By globally accounting for ATP demands in the GSMM model the unused ATP decreased drastically with the lower bound matching the maintenance ATP requirement. A non

  4. Magic User’s Manual 2006

    DTIC Science & Technology

    2006-12-01

    starts MAGIC2D single precision. If the open file in Mugman is a . m2d or .mgc file, it will be used as the input file. Magic3D-Sng This button starts...precision. If the open file in Mugman is a . m2d or .mgc file, it will be used as the input file. 1W Magic3DDbl This button starts MAGIC3D double precision. If...type: [All - -] Cancel Magic [l.mgc;-. m2d ;-.m3d] Magic 2D [(. m2d ;x.log] Magic 3D [’.m3d;’.log) Review [*.toc;’.obr;x.obi;x.obs) Log (’.log] Text (R.txt

  5. GRB neutrino search with MAGIC

    SciTech Connect

    Becker, Julia K.; Rhode, Wolfgang; Gaug, Markus

    2008-05-22

    The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescope was designed for the detection of photon sources > or approx. 50 GeV. The measurement of highly-inclined air showers renders possible the search for high-energy neutrinos, too. Only neutrinos can traverse the Earth without interaction, and therefore, events close to the horizon can be identified as neutrino-induced rather than photon-induced or hadronic events. In this paper, Swift-XRT-detected GRBs with given spectral information are used in order to calculate the potential neutrino energy spectrum from prompt and afterglow emission for each individual GRB. The event rate in MAGIC is estimated assuming that the GRB happens within the field of view of MAGIC. A sample of 568 long GRBs as detected by BATSE is used to compare the detection rates with 163 Swift-detected bursts. BATSE has properties similar to the Gamma-ray Burst Monitor (GBM) on board of GLAST. Therefore the estimated rates give an estimate for the possibilities of neutrino detection with MAGIC from GLAST-triggered bursts.

  6. Pentose cycling and the distribution of 13C in trehalose during glucogenesis from 13C-labelled substrates in an insect.

    PubMed

    Thompson, S N; Scales, V M; Bochardt, D B

    1995-07-26

    Redistribution of 13C in trehalose (Tre) due to pentose cycling was observed in vivo in Manduca sexta during glucogenesis from [3-13C]alanine (Ala) and [2-13C]glycerol (Gly). The extent of cycling was affected by dietary composition. Larvae maintained on a low-carbohydrate diet (LCD) exhibited approximately 13% cycling, while those on a complete-balanced diet (CBD) or low-fat diet (LFD) displayed much higher rates of cycling. Significant incorporation of 13C via reversal of the non-oxidative phase was evident on all diets but was greatest on the CBD and LFD. In contrast to conclusions from previous studies with insects, the present results indicate that under normal conditions the pentose pathway is not the principal source of triose phosphates for oxidative catabolism during larval development.

  7. Isotopic 13C NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: site-specific 13C content of aspirin and paracetamol.

    PubMed

    Silvestre, Virginie; Mboula, Vanessa Maroga; Jouitteau, Catherine; Akoka, Serge; Robins, Richard J; Remaud, Gérald S

    2009-10-15

    Isotope profiling is a well-established technique to obtain information about the chemical history of a given compound. However, the current methodology using IRMS can only determine the global (13)C content, leading to the loss of much valuable data. The development of quantitative isotopic (13)C NMR spectrometry at natural abundance enables the measurement of the (13)C content of each carbon within a molecule, thus giving simultaneous access to a number of isotopic parameters. When it is applied to active pharmaceutical ingredients, each manufactured batch can be characterized better than by IRMS. Here, quantitative isotopic (13)C NMR is shown to be a very promising and effective tool for assessing the counterfeiting of medicines, as exemplified by an analysis of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) samples collected from pharmacies in different countries. It is proposed as an essential complement to (2)H NMR and IRMS.

  8. Metabolic pathways for ketone body production. /sup 13/C NMR spectroscopy of rat liver in vivo using /sup 13/C-multilabeled fatty acids

    SciTech Connect

    Pahl-Wostl, C.; Seelig, J.

    1986-11-04

    The hormonal regulation of ketogenesis in the liver of living rat has been studied noninvasively with /sup 13/C nuclear magnetic resonance. The spatial selection for the liver was better than 90%, with extrahepatic adipose tissue contribution only a very small amount of signal. The metabolic activities of the liver were investigated by infusion of /sup 13/C-labeled butyrate in the jugular vein of the anesthetized rat. The rate of butyrate infusion was chosen to be close to the maximum oxidative capacity of the rat liver, and the /sup 13/C signal intensities were enhanced by using doubly labeled (1,3-/sup 13/C)butyrate as a substrate. Different /sup 13/C NMR spectra and hence different metabolites were observed depending on the hormonal state of the animal. The /sup 13/C NMR studies demonstrate that even when rate of acetyl-CoA production are high, the disposal of this compound is not identical in fasted and diabetic animals. This supports previous suggestions that the redox state of the mitochondrion represents the most important factor in regulation. For a given metabolic state of the animal, different signal intensities were obtained depending on whether butyrate was labeled at C-1, C-3, or C-1,3. From the ratios of incorporation of /sup 13/C label into the carbons of 3-hydroxybutyrate, it could be estimated that a large fraction of butyrate evaded ..beta..-oxidation to acetyl-CoA but was converted directly to acetoacetyl-CoA. /sup 13/C-labeled glucose could be detected in vivo in the liver of diabetic rats.

  9. Magic and the aesthetic illusion.

    PubMed

    Balter, Leon

    2002-01-01

    The aesthetic illusion is the subjective experience that the content of a work of art is reality. It has an intrinsic relation to magic, an intrapsychic maneuver oriented toward modification and control of the extraspyschic world, principally through ego functioning. Magic is ontogenetically and culturally archaic, expresses the omnipotence inherent in primary narcissism, and operates according to the logic of the primary process. Magic is a constituent of all ego functioning, usually latent in later development. It may persist as an archaic feature or may be evoked regressively in global or circumscribed ways. It causes a general disinhibition of instincts and impulses attended by a sense of confidence, exhiliration, and exuberance. The aesthetic illusion is a combination of illusions: (1) that the daydream embodied by the work of art is the beholder's own, the artist being ignored, and (2) that the artistically described protagonist is a real person with a real "world." The first illusion arises through the beholder's emotional-instinctual gratification from his or her own fantasy-memory constellations; the second comes about because the beholder, by taking the protagonist as proxy, mobilizes the subjective experience of the imaginary protagonist's "reality." The first illusion is necessary for the second to take place; the second establishes the aesthetic illusion proper. Both illusions are instances of magic. Accordingly, the aesthetic illusion is accompanied by a heady experience of excitement and euphoria. The relation among the aesthetic illusion, magic, and enthusiasm is illustrated by an analytic case, J. D. Salinger's "The Laughing Man," Woody Allen's Play It Again, Sam, Don Quixote, and the medieval Cult of the Saints.

  10. Site-specific 13C content by quantitative isotopic 13C nuclear magnetic resonance spectrometry: a pilot inter-laboratory study.

    PubMed

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Pagelot, Alain; Moskau, Detlef; Moreno, Aitor; Schleucher, Jürgen; Reniero, Fabiano; Holland, Margaret; Guillou, Claude; Silvestre, Virginie; Akoka, Serge; Remaud, Gérald S

    2013-07-25

    Isotopic (13)C NMR spectrometry, which is able to measure intra-molecular (13)C composition, is of emerging demand because of the new information provided by the (13)C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic (13)C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular (13)C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic (13)C NMR was then assessed on vanillin from three different origins associated with specific δ (13)Ci profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ (13)Ci in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results.

  11. A 13C NMR spectrometric method for the determination of intramolecular δ13C values in fructose from plant sucrose samples.

    PubMed

    Gilbert, Alexis; Silvestre, Virginie; Robins, Richard J; Tcherkez, Guillaume; Remaud, Gérald S

    2011-07-01

    Recent developments in (13) C NMR spectrometry have allowed the determination of intramolecular (13) C/(12) C ratios with high precision. However, the analysis of carbohydrates requires their derivatization to constrain the anomeric carbon. Fructose has proved to be particularly problematic because of a byproduct occurring during derivatization and the complexity of the NMR spectrum of the derivative. Here, we describe a method to determine the intramolecular (13) C/(12) C ratios in fructose by (13) C NMR analysis of the acetyl-isopropylidene derivative. We have applied this method to measure the intramolecular (13) C/(12) C distribution in the fructosyl moiety of sucrose and have compared this with that in the glucosyl moiety. Three prominent features stand out. First, in sucrose from both C(3) and C(4) plants, the C-1 and C-2 positions of the glucosyl and fructosyl moieties are markedly different. Second, these positions in C(3) and C(4) plants show a similar profile. Third, the glucosyl and fructosyl moieties of sucrose from Crassulacean acid metabolism (CAM) metabolism have a different profile. These contrasting values can be interpreted as a result of the isotopic selectivity of enzymes that break or make covalent bonds in glucose metabolism, whereas the distinctive (13) C pattern in CAM sucrose probably indicates a substantial contribution of gluconeogenesis to glucose synthesis.

  12. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose.

    PubMed

    Moran, Nancy Engelmann; Rogers, Randy B; Lu, Chi-Hua; Conlon, Lauren E; Lila, Mary Ann; Clinton, Steven K; Erdman, John W

    2013-08-15

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched (13)C-lycopene for human bioavailability and metabolism studies. To enhance the (13)C-enrichment and yields of labelled lycopene from the hp-1 tomato cell line, cultures were first grown in (13)C-glucose media for three serial batches and produced increasing proportions of uniformly labelled lycopene (14.3±1.2%, 39.6±0.5%, and 48.9±1.5%) with consistent yields (from 5.8 to 9 mg/L). An optimised 9-day-long (13)C-loading and 18-day-long labelling strategy developed based on glucose utilisation and lycopene yields, yielded (13)C-lycopene with 93% (13)C isotopic purity, and 55% of isotopomers were uniformly labelled. Furthermore, an optimised acetone and hexane extraction led to a fourfold increase in lycopene recovery from cultures compared to a standard extraction.

  13. Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls

    SciTech Connect

    Dick-Perez, Marilu; Wang, Tuo; Salazar, Andre; Zabotina, Olga A.; Hong, Mei

    2012-07-08

    Plant cell wall (CW) polysaccharides are responsible for the mechanical strength and growth of plant cells; however, the high-resolution structure and dynamics of the CW polysaccharides are still poorly understood because of the insoluble nature of these molecules. Here, we use 2D and 3D magic-angle-spinning (MAS) solid-state NMR (SSNMR) to investigate the structural role of pectins in the plant CW. Intact and partially depectinated primary CWs of Arabidopsis thaliana were uniformly labeled with 13C and their NMR spectra were compared. Recent 13C resonance assignment of the major polysaccharides in Arabidopsis thaliana CWs allowed us to determine the effects of depectination on the intermolecular packing and dynamics of the remaining wall polysaccharides. 2D and 3D correlation spectra show the suppression of pectin signals, confirming partial pectin removal by chelating agents and sodium carbonate. Importantly, higher cross peaks are observed in 2D and 3D 13C spectra of the depectinated CW, suggesting higher rigidity and denser packing of the remaining wall polysaccharides compared with the intact CW. 13C spin–lattice relaxation times and 1H rotating-frame spin–lattice relaxation times indicate that the polysaccharides are more rigid on both the nanosecond and microsecond timescales in the depectinated CW. Taken together, these results indicate that pectic polysaccharides are highly dynamic and endow the polysaccharide network of the primary CW with mobility and flexibility, which may be important for pectin functions. This study demonstrates the capability of multidimensional SSNMR to determine the intermolecular interactions and dynamic structures of complex plant materials under near-native conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy.

    PubMed Central

    Naito, A; Nagao, T; Norisada, K; Mizuno, T; Tuzi, S; Saitô, H

    2000-01-01

    The conformation and dynamics of melittin bound to the dimyristoylphosphatidylcholine (DMPC) bilayer and the magnetic orientation in the lipid bilayer systems were investigated by solid-state (31)P and (13)C NMR spectroscopy. Using (31)P NMR, it was found that melittin-lipid bilayers form magnetically oriented elongated vesicles with the long axis parallel to the magnetic field above the liquid crystalline-gel phase transition temperature (T(m) = 24 degrees C). The conformation, orientation, and dynamics of melittin bound to the membrane were further determined by using this magnetically oriented lipid bilayer system. For this purpose, the (13)C NMR spectra of site-specifically (13)C-labeled melittin bound to the membrane in the static, fast magic angle spinning (MAS) and slow MAS conditions were measured. Subsequently, we analyzed the (13)C chemical shift tensors of carbonyl carbons in the peptide backbone under the conditions where they form an alpha-helix and reorient rapidly about the average helical axis. Finally, it was found that melittin adopts a transmembrane alpha-helix whose average axis is parallel to the bilayer normal. The kink angle between the N- and C-terminal helical rods of melittin in the lipid bilayer is approximately 140 degrees or approximately 160 degrees, which is larger than the value of 120 degrees determined by x-ray diffraction studies. Pore formation was clearly observed below the T(m) in the initial stage of lysis by microscope. This is considered to be caused by the association of melittin molecules in the lipid bilayer. PMID:10777736

  15. 13cRA regulates the differentiation of antler chondrocytes through targeting Runx3.

    PubMed

    Zhang, Hong-Liang; Cao, Hang; Yang, Zhan-Qing; Geng, Shuang; Wang, Kai; Yu, Hai-Fan; Guo, Bin; Yue, Zhan-Peng

    2017-03-01

    Although 13cRA is involved in the regulation of cellular proliferation and differentiation, its physiological roles in chondrocyte proliferation and differentiation still remain unknown. Here, we showed that 13cRA could induce the proliferation of sika deer antler chondrocytes and expression of Ccnd3 and Cdk6. Administration of 13cRA to antler chondrocytes resulted in an obvious increase in the expression of chondrocyte marker Col II and hypertrophic chondrocyte marker Col X. Silencing of Crabp2 expression by specific siRNA could prevent the 13cRA-induced up-regulation of Col X, whereas overexpression of Crabp2 showed the opposite effects. Further study found that Crabp2 mediated the regulation of 13cRA on the expression of Runx3 which was highly expressed in the antler cartilage and inhibited the differentiation of antler chondrocytes. Moreover, attenuation of Runx3 expression greatly raised 13cRA-induced chondrocyte differentiation. Simultaneously, 13cRA could stimulate the expression of Cyp26a1 and Cyp26b1 in the antler chondrocytes. Inhibition of Cyp26a1 and/or Cyp26b1 reinforced the effects of 13cRA on the expression of Col X and Runx3, while overexpression of Cyp26b1 rendered the antler chondrocytes hyposensitive to 13cRA. Collectively, 13cRA may play an important role in the differentiation of antler chondrocytes through targeting Runx3. Crabp2 enhances the effects of 13cRA on chondrocyte differentiation, while Cyp26a1 and Cyp26b1 weaken the sensitivity of antler chondrocytes to 13cRA.

  16. Synthesis of isotopically labeled R- or S-[.sup.13C, .sup.2H] glycerols

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2008-01-22

    The present invention is directed to asymmetric chiral labeled glycerols including at least one chiral atom, from one to two .sup.13C atoms and from zero to four deuterium atoms bonded directly to a carbon atom, e.g., (2S) [1,2-.sup.13C.sub.2]glycerol and (2R) [1,2-.sup.13C.sub.2]glycerol, and to the use of such chiral glycerols in the preparation of labeled amino acids.

  17. 13C-NOESY-HSQC with Split Carbon Evolution for Increased Resolution with Uniformly Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Baur, Matthias; Gemmecker, Gerd; Kessler, Horst

    1998-06-01

    Two new pulse sequences are presented for the recording of 2D13C-HSQC and 3D13C-NOESY-HSQC experiments, containing two consecutive carbon evolution periods. The two periods are separated by az-filter which creates a clean CxHz-quantum state for evolution in the second period. Each period is incremented (in anon-constant-time fashion) only to the extent that the defocusing of carbon inphase magnetization throughJ-coupling with neighboring carbons remains insignificant. Therefore,13C homonuclearJ-couplings are rendered ineffective, reducing the loss of signal and peak splitting commonly associated with long13C evolution times. The two periods are incremented according to a special acquisition protocol employing a13C-13C gradient echo to yield a data set analogous to one obtained by evolution over the added duration of both periods. The spectra recorded with the new technique on uniformly13C-labeled proteins at twice the evolution time of the standard13C-HSQC experiment display a nearly twofold enhancement of resolution in the carbon domain, while maintaining a good sensitivity even in the case of large proteins. Applied to the IIAManprotein ofE. coli(31 kDa), the13C-HSQC experiment recorded with a carbon evolution time of 2 × 8 ms showed a 36% decrease in linewidths compared to the standard13C-HSQC experiment, and theS/Nratio of representative cross-peaks was reduced to 40%. This reduction reflects mostly the typical loss of intensity observed when recording with an increased resolution. The13C-NOESY-HSQC experiment derived from the13C-HSQC experiment yielded additional NOE restraints between resonances which previously had been unresolved.

  18. The Magic of Magic: The Effect of Magic Tricks on Subsequent Engagement with Lecture Material

    ERIC Educational Resources Information Center

    Moss, Simon A.; Irons, Melanie; Boland, Martin

    2017-01-01

    Background and aims: Lecturers often present entertaining videos, or organize a variety of amusing demonstrations, to foster student engagement or to encourage critical analysis. Magic tricks, in particular, have been shown to activate neural circuits that underpin motivation or problem-solving and, therefore, could be beneficial during lectures.…

  19. Lowest bending mode of 13C-substituted C3 and an experimentally derived structure

    NASA Astrophysics Data System (ADS)

    Breier, Alexander A.; Büchling, Thomas; Schnierer, Rico; Lutter, Volker; Fuchs, Guido W.; Yamada, Koichi M. T.; Mookerjea, Bhaswati; Stutzki, Jürgen; Giesen, Thomas F.

    2016-12-01

    The ν2 lowest bending mode of linear C3 and of all its 13C-substituted isotopologues was recorded using a terahertz-supersonic jet spectrometer in combination with a laser ablation source. Sixty-five ro-vibrational transitions between 1.8 and 1.9 THz have been assigned to linear 12C12C12C, 12C12C13, 12C13C12C, 13C13C12C, 13C12C13C, and 13C13C13. For each isotopologue, molecular parameters were obtained and the C-C-bond length was derived experimentally. All results are in excellent agreement with recent ab initio calculations [B. Schröder and P. Sebald, J. Chem. Phys. 144, 044307 (2016)]. The new measurements explain why the interstellar search for singly substituted 12C12C13C has failed so far. A spectral line list with recommended transition frequencies based on global data fits is given to foster future interstellar detections.

  20. Quantitative evaluation of atherosclerotic plaques using cross-polarization optical coherence tomography, nonlinear, and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Gubarkova, Ekaterina V.; Kirillin, Mikhail Yu.; Dudenkova, Varvara V.; Timashev, Peter S.; Kotova, Svetlana L.; Kiseleva, Elena B.; Timofeeva, Lidia B.; Belkova, Galina V.; Solovieva, Anna B.; Moiseev, Alexander A.; Gelikonov, Gregory V.; Fiks, Ilya I.; Feldchtein, Felix I.; Gladkova, Natalia D.

    2016-12-01

    A combination of approaches to the image analysis in cross-polarization optical coherence tomography (CP OCT) and high-resolution imaging by nonlinear microscopy and atomic force microscopy (AFM) at the different stages of atherosclerotic plaque development is studied. This combination allowed us to qualitatively and quantitatively assess the disorganization of collagen in the atherosclerotic arterial tissue (reduction and increase of CP backscatter), at the fiber (change of the geometric distribution of fibers in the second-harmonic generation microscopy images) and fibrillar (violation of packing and different nature of a basket-weave network of fibrils in the AFM images) organization levels. The calculated CP channel-related parameters are shown to have a statistically significant difference between stable and unstable (also called vulnerable) plaques, and hence, CP OCT could be a potentially powerful, minimally invasive method for vulnerable plaques detection.

  1. Assessing ex vivo dental biofilms and in vivo composite restorations using cross-polarization optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jones, R.; Aparicio, C.; Chityala, R.; Chen, R.; Fok, A.; Rudney, J.

    2012-01-01

    A cross-polarization 1310-nm optical coherence tomography system (CP-OCT), using a beam splitter based design, was used to assess ex vivo growth of complex multi-species dental biofilms. These biofilm microcosms were derived from plaque samples along the interface of composite or amalgam restoration in children with a history of early childhood caries. This paper presents a method of measuring the mean biofilm height of mature biofilms using CP-OCT. For our in vivo application, the novel swept source based CP-OCT intraoral probe (Santec Co. Komaki, Japan) dimensions and system image acquisition speed (20 image frames/second) allowed imaging pediatric subjects as young as 4 years old. The subsurface enamel under the interface of composite resin restorations of pediatric subjects were imaged using CP-OCT. Cavitated secondary caries is clearly evident from sound resin composite restorations.

  2. Biokinetics of (13)C in the human body after oral administration of (13)C-labeled glucose as an index for the biokinetics of (14)C.

    PubMed

    Masuda, Tsuyoshi; Tako, Yasuhiro; Matsushita, Kensaku; Takeda, Hiroshi; Endo, Masahiro; Nakamura, Yuji; Hisamatsu, Shun'ichi

    2016-09-01

    The retention of (13)C in the human body after oral administration of (13)C-labeled glucose was studied in three healthy volunteer subjects to estimate the 50 year cumulative body burden for (13)C as an index of the committed dose of the radioisotope (14)C. After administration of (13)C-labeled glucose, the volunteers ingested controlled diets with a fixed number of calories for 112 d. Samples of breath and urine were collected up to 112 d after administration. Samples of feces were collected up to 14 d after administration. Hair samples were obtained at 119 d after administration and analyzed as a representative index of the rate of excretion of organic (13)C via pathways such as skin cell exfoliation and mucus secretion. All samples were analyzed for (13)C/(12)C atomic ratio to determine the rate of excretion via each pathway. We then constructed a metabolic model with a total of four pathways (breath, urine, feces, and other) comprising seven compartments. We determined the values of the biokinetic parameters in the model by using the obtained excretion data. From 74% to 94% of the (13)C administered was excreted in breath, whereas  <2% was excreted in urine and feces. In the other pathway, the excretion rate constant in the compartment with the longest residence time stretched to hundreds of days but the rate constant for each subject was not statistically significant (P value  >  0.1). In addition, the dataset for one of the three subjects was markedly different from those of the other two. When we estimated the 50 year cumulative body burden for (13)C by using our model and we included non-statistically significant parameters, a considerable cumulative body burden was found in the compartments excreting to the other pathway. Although our results on the cumulative body burden of (13)C from orally administered carbon as glucose were inconclusive, we found that the compartments excreting to the other pathway had a markedly long residence time and

  3. Magic star puzzle for educational mathematics

    NASA Astrophysics Data System (ADS)

    Gan, Yee Siang; Fong, Wan Heng; Sarmin, Nor Haniza

    2013-04-01

    One of the interesting fields in recreational mathematics is the magic number arrangement. There are different kinds of arrays in the arrangement for a group of numbers. In particular, one of the arrays in magic number arrangement is called magic star. In fact, magic star involves combinatorics that contributes to geometrical analysis and number theory. Hence, magic star is suitable to be introduced as educational mathematics to cultivate interest in different area of mathematics. To obtain the solutions of normal magic stars of order six, the possible sets of numbers for every line in a magic star have been considered. Previously, the calculation for obtaining the solutions has been done manually which is time-consuming. Therefore, a programming code to generate all the fundamental solutions for normal magic star of order six without including the properties of rotation and reflection has been done. In this puzzle, a magic star puzzle is created by using Matlab software, which enables a user to verify the entries for the cells of magic star of order six. Moreover, it is also user-friendly as it provides interactive commands on the inputs given by the user, which enables the user to detect the incorrect inputs. In addition, user can also choose to view all the fundamental solutions as generated by the programming code.

  4. Scattering of a cross-polarized linear wave by a soliton at an optical event horizon in a birefringent nanophotonic waveguide.

    PubMed

    Ciret, Charles; Gorza, Simon-Pierre

    2016-06-15

    The scattering of a linear wave on an optical event horizon, induced by a cross-polarized soliton, is experimentally and numerically investigated in integrated structures. The experiments are performed in a dispersion-engineered birefringent silicon nanophotonic waveguide. In stark contrast with copolarized waves, the large difference between the group velocity of the two cross-polarized waves enables a frequency conversion almost independent of the soliton wavelength. It is shown that the generated idler is only shifted by 10 nm around 1550 nm over a pump tuning range of 350 nm. Simulations using two coupled full vectorial nonlinear Schrödinger equations fully support the experimental results.

  5. Photobioreactor design for isotopic non-stationary 13C-metabolic flux analysis (INST 13C-MFA) under photoautotrophic conditions.

    PubMed

    Martzolff, Arnaud; Cahoreau, Edern; Cogne, Guillaume; Peyriga, Lindsay; Portais, Jean-Charles; Dechandol, Emmanuel; Le Grand, Fabienne; Massou, Stéphane; Gonçalves, Olivier; Pruvost, Jérémy; Legrand, Jack

    2012-12-01

    Adaptive metabolic behavior of photoautotrophic microorganisms toward genetic and environmental perturbations can be interpreted in a quantitative depiction of carbon flow through a biochemical reaction network using isotopic non-stationary (13) C-metabolic flux analysis (INST (13) C-MFA). To evaluate (13) C-metabolic flux maps for Chlamydomonas reinhardtii, an original experimental framework was designed allowing rapid, reliable collection of high-quality isotopomer data against time. It involved (i) a short-time (13) C labeling injection device based on mixing control in a torus-shaped photobioreactor with plug-flow hydrodynamics allowing a sudden step-change in the (13) C proportion in the substrate feed and (ii) a rapid sampling procedure using an automatic fast filtration method coupled to a manual rapid liquid nitrogen quenching step. (13) C-substrate labeling enrichment was controlled through the total dissolved inorganic carbon concentration in the pulsed solution. First results were obtained from steady-state continuous culture measurements allowing the characterization of the kinetics of label incorporation into light-limited growing cells cultivated in a photobioreactor operating at the maximal biomass productivity for an incident photon flux density of 200 µmol m(-2) s(-1). (13)C label incorporation was measured for 21 intracellular metabolites using IC-MS/MS in 58 samples collected across a labeling experiment duration of 7 min. The fastest labeling rate was observed for 2/3-phosphoglycerate with an apparent isotopic stationary state reached after 300 s. The labeling rate was consistent with the optimized mixing time of about 4.9 s inside the reactor and the shortest reliable sampling period assessed at 5 s.

  6. The Nature of Carbonate and Organic δ13C Covariance Through Geological Time

    NASA Astrophysics Data System (ADS)

    Oehlert, A. M.; Swart, P. K.

    2014-12-01

    Significant evolutionary, climatic, and oceanographic events in Earth history are often accompanied by excursions in the carbon isotope composition (δ13C) of marine carbonates and co-occurring sedimentary organic material. The observation of synchronous excursions in the δ13C values of marine carbonates and coeval organic matter is commonly thought to prove that the deposit has not been altered by diagenesis, and that the variations in the δ13C records are the result of a significant change in global carbon cycling. Furthermore, this model suggests that the covariance of carbonate and organic δ13C records is driven only by changes in the δ13C value of the dissolved inorganic carbon in the surface waters of the ocean. However, recent work suggests that there may be at least two alternate models for generating covariance between carbonate and organic δ13C values in the geologic record. One of the models invokes sea-level driven syndepositional mixing between isotopically distinct sources of carbonate and organic material to produce positive covariance between carbonate and organic δ13C values. The second model suggests that post-depositional alteration to the carbonate δ13C values during meteoric diagenesis, in concert with concurrent contributions of terrestrial organic material during subaerial exposure, can also produce co-occurring negative excursions with tightly covariant δ13C records. In contrast to earlier interpretations of covariant δ13C values, these models suggest that both syndepositional and post-depositional factors can significantly influence the relationship between carbonate and organic δ13C values in a variety of depositional environments. The implications for reconstructions of ancient global carbon cycle events will be explored within the context of these three models, and their relative importance throughout geologic time will be discussed.

  7. Metabolism of hyperpolarized [1‐13C]pyruvate through alternate pathways in rat liver

    PubMed Central

    Moreno, Karlos X.; Wang, Jian‐Xiong; Fidelino, Leila; Merritt, Matthew E.; Sherry, A. Dean; Malloy, Craig R.

    2016-01-01

    The source of hyperpolarized (HP) [13C]bicarbonate in the liver during metabolism of HP [1‐13C]pyruvate is uncertain and likely changes with physiology. Multiple processes including decarboxylation through pyruvate dehydrogenase or pyruvate carboxylase followed by subsequent decarboxylation via phosphoenolpyruvate carboxykinase (gluconeogenesis) could play a role. Here we tested which metabolic fate of pyruvate contributed to the appearance of HP [13C]bicarbonate during metabolism of HP [1‐13C]pyruvate by the liver in rats after 21 h of fasting compared to rats with free access to food. The 13C NMR of HP [13C]bicarbonate was observed in the liver of fed rats, but not in fasted rats where pyruvate carboxylation and gluconeogenesis was active. To further explore the relative fluxes through pyruvate carboxylase versus pyruvate dehydrogenase in the liver under typical conditions of hyperpolarization studies, separate parallel experiments were performed with rats given non‐hyperpolarized [2,3‐13C]pyruvate. 13C NMR analysis of glutamate isolated from the liver of rats revealed that flux from injected pyruvate through pyruvate dehydrogenase was dominant under fed conditions whereas flux through pyruvate carboxylase dominated under fasted conditions. The NMR signal of HP [13C]bicarbonate does not parallel pyruvate carboxylase activity followed by subsequent decarboxylation reaction leading to glucose production. In the liver of healthy well‐fed rats, the appearance of HP [13C]bicarbonate exclusively reflects decarboxylation of HP [1‐13C]pyruvate via pyruvate dehydrogenase. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26836042

  8. Metabolism of hyperpolarized [1-(13)C]pyruvate through alternate pathways in rat liver.

    PubMed

    Jin, Eunsook S; Moreno, Karlos X; Wang, Jian-Xiong; Fidelino, Leila; Merritt, Matthew E; Sherry, A Dean; Malloy, Craig R

    2016-04-01

    The source of hyperpolarized (HP) [(13)C]bicarbonate in the liver during metabolism of HP [1-(13)C]pyruvate is uncertain and likely changes with physiology. Multiple processes including decarboxylation through pyruvate dehydrogenase or pyruvate carboxylase followed by subsequent decarboxylation via phosphoenolpyruvate carboxykinase (gluconeogenesis) could play a role. Here we tested which metabolic fate of pyruvate contributed to the appearance of HP [(13)C]bicarbonate during metabolism of HP [1-(13)C]pyruvate by the liver in rats after 21 h of fasting compared to rats with free access to food. The (13)C NMR of HP [(13)C]bicarbonate was observed in the liver of fed rats, but not in fasted rats where pyruvate carboxylation and gluconeogenesis was active. To further explore the relative fluxes through pyruvate carboxylase versus pyruvate dehydrogenase in the liver under typical conditions of hyperpolarization studies, separate parallel experiments were performed with rats given non-hyperpolarized [2,3-(13)C]pyruvate. (13)C NMR analysis of glutamate isolated from the liver of rats revealed that flux from injected pyruvate through pyruvate dehydrogenase was dominant under fed conditions whereas flux through pyruvate carboxylase dominated under fasted conditions. The NMR signal of HP [(13)C]bicarbonate does not parallel pyruvate carboxylase activity followed by subsequent decarboxylation reaction leading to glucose production. In the liver of healthy well-fed rats, the appearance of HP [(13)C]bicarbonate exclusively reflects decarboxylation of HP [1-(13)C]pyruvate via pyruvate dehydrogenase.

  9. Robust hyperpolarized (13)C metabolic imaging with selective non-excitation of pyruvate (SNEP).

    PubMed

    Chen, Way Cherng; Teo, Xing Qi; Lee, Man Ying; Radda, George K; Lee, Philip

    2015-08-01

    In vivo metabolic imaging using hyperpolarized [1-(13)C]pyruvate provides localized biochemical information and is particularly useful in detecting early disease changes, as well as monitoring disease progression and treatment response. However, a major limitation of hyperpolarized magnetization is its unrecoverable decay, due not only to T1 relaxation but also to radio-frequency (RF) excitation. RF excitation schemes used in metabolic imaging must therefore be able to utilize available hyperpolarized magnetization efficiently and robustly for the optimal detection of substrate and metabolite activities. In this work, a novel RF excitation scheme called selective non-excitation of pyruvate (SNEP) is presented. This excitation scheme involves the use of a spectral selective RF pulse to specifically exclude the excitation of [1-(13)C]pyruvate, while uniformly exciting the key metabolites of interest (namely [1-(13)C]lactate and [1-(13)C]alanine) and [1-(13)C]pyruvate-hydrate. By eliminating the loss of hyperpolarized [1-(13)C]pyruvate magnetization due to RF excitation, the signal from downstream metabolite pools is increased together with enhanced dynamic range. Simulation results, together with phantom measurements and in vivo experiments, demonstrated the improvement in signal-to-noise ratio (SNR) and the extension of the lifetime of the [1-(13)C]lactate and [1-(13)C]alanine pools when compared with conventional non-spectral selective (NS) excitation. SNEP has also been shown to perform comparably well with multi-band (MB) excitation, yet SNEP possesses distinct advantages, including ease of implementation, less stringent demands on gradient performance, increased robustness to frequency drifts and B0 inhomogeneity as well as easier quantification involving the use of [1-(13)C]pyruvate-hydrate as a proxy for the actual [1-(13)C] pyruvate signal. SNEP is therefore a promising alternative for robust hyperpolarized [1-(13)C]pyruvate metabolic imaging with high

  10. Preliminary studies of a canine 13C-aminopyrine demethylation blood test.

    PubMed Central

    Moeller, E M; Steiner, J M; Williams, D A; Klein, P D

    2001-01-01

    The objectives of this study were to determine whether a 13C-aminopyrine demethylation blood test is technically feasible in clinically healthy dogs, whether oral administration of 13C-aminopyrine causes a detectable increase in percent dose/min (PCD) of 13C administered as 13C-aminopyrine and recovered in gas extracted from blood, and whether gas extraction efficiency has an impact on PCD. A dose of 2 mg/kg body weight of 13C-aminopyrine dissolved in deionized water was administered orally to 6 clinically healthy dogs. Blood samples were taken from each dog 0, 30, 60, and 120 min after administration of the 13C-aminopyrine. Carbon dioxide was extracted from blood samples by addition of acid and analyzed by fractional mass spectrometry. None of the 6 dogs showed any side effects after 13C-aminopyrine administration. All 6 dogs showed a measurable increase of the PCD in gas samples extracted from blood samples at 30 min, 60 min, and 120 min after 13C-aminopyrine administration. Coefficients of variation between the triplicate samples were statistically significantly higher for the %CO2, a measure of extraction efficiency, than for PCD values (P < 0.0001). The 13C-aminopyrine demethylation blood test described here is technically feasible. Oral administration of 13C-aminopyrine did not lead to gross side effects in the 6 dogs. Clinically healthy dogs show a measurable increase of PCD in gas extracted from blood samples after oral administration of 13C-aminopyrine. Efficiency of CO2 extraction from blood samples does not have an impact on PCD determined from these blood samples. This test may prove useful to evaluate hepatic function in dogs. PMID:11227194

  11. Economical synthesis of 13C-labeled opiates, cocaine derivatives and selected urinary metabolites by derivatization of the natural products.

    PubMed

    Karlsen, Morten; Liu, Huiling; Johansen, Jon Eigill; Hoff, Bård Helge

    2015-03-25

    The illegal use of opiates and cocaine is a challenge world-wide, but some derivatives are also valuable pharmaceuticals. Reference samples of the active ingredients and their metabolites are needed both for controlling administration in the clinic and to detect drugs of abuse. Especially, (13)C-labeled compounds are useful for identification and quantification purposes by mass spectroscopic techniques, potentially increasing accuracy by minimizing ion alteration/suppression effects. Thus, the synthesis of [acetyl-(13)C4]heroin, [acetyl-(13)C4-methyl-(13)C]heroin, [acetyl-(13)C2-methyl-(13)C]6-acetylmorphine, [N-methyl-(13)C-O-metyl-(13)C]codeine and phenyl-(13)C6-labeled derivatives of cocaine, benzoylecgonine, norcocaine and cocaethylene was undertaken to provide such reference materials. The synthetic work has focused on identifying (13)C atom-efficient routes towards these derivatives. Therefore, the (13)C-labeled opiates and cocaine derivatives were made from the corresponding natural products.

  12. Magic Carpet Shows Its Colors

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The upper left image in this display is from the panoramic camera on the Mars Exploration Rover Spirit, showing the 'Magic Carpet' region near the rover at Gusev Crater, Mars, on Sol 7, the seventh martian day of its journey (Jan. 10, 2004). The lower image, also from the panoramic camera, is a monochrome (single filter) image of a rock in the 'Magic Carpet' area. Note that colored portions of the rock correlate with extracted spectra shown in the plot to the side. Four different types of materials are shown: the rock itself, the soil in front of the rock, some brighter soil on top of the rock, and some dust that has collected in small recesses on the rock face ('spots'). Each color on the spectra matches a line on the graph, showing how the panoramic camera's different colored filters are used to broadly assess the varying mineral compositions of martian rocks and soils.

  13. Towards a science of magic.

    PubMed

    Kuhn, Gustav; Amlani, Alym A; Rensink, Ronald A

    2008-09-01

    It is argued here that cognitive science currently neglects an important source of insight into the human mind: the effects created by magicians. Over the centuries, magicians have learned how to perform acts that are perceived as defying the laws of nature, and that induce a strong sense of wonder. This article argues that the time has come to examine the scientific bases behind such phenomena, and to create a science of magic linked to relevant areas of cognitive science. Concrete examples are taken from three areas of magic: the ability to control attention, to distort perception, and to influence choice. It is shown how such knowledge can help develop new tools and indicate new avenues of research into human perception and cognition.

  14. T(2) relaxation times of (13)C metabolites in a rat hepatocellular carcinoma model measured in vivo using (13)C-MRS of hyperpolarized [1-(13)C]pyruvate.

    PubMed

    Yen, Yi-Fen; Le Roux, Patrick; Mayer, Dirk; King, Randy; Spielman, Daniel; Tropp, James; Butts Pauly, Kim; Pfefferbaum, Adolf; Vasanawala, Shreyas; Hurd, Ralph

    2010-05-01

    A single-voxel Carr-Purcell-Meibloom-Gill sequence was developed to measure localized T(2) relaxation times of (13)C-labeled metabolites in vivo for the first time. Following hyperpolarized [1-(13)C]pyruvate injections, pyruvate and its metabolic products, alanine and lactate, were observed in the liver of five rats with hepatocellular carcinoma and five healthy control rats. The T(2) relaxation times of alanine and lactate were both significantly longer in HCC tumors than in normal livers (p < 0.002). The HCC tumors also showed significantly higher alanine signal relative to the total (13)C signal than normal livers (p < 0.006). The intra- and inter-subject variations of the alanine T(2) relaxation time were 11% and 13%, respectively. The intra- and inter-subject variations of the lactate T(2) relaxation time were 6% and 7%, respectively. The intra-subject variability of alanine to total carbon ratio was 16% and the inter-subject variability 28%. The intra-subject variability of lactate to total carbon ratio was 14% and the inter-subject variability 20%. The study results show that the signal level and relaxivity of [1-(13)C]alanine may be promising biomarkers for HCC tumors. Its diagnostic values in HCC staging and treatment monitoring are yet to be explored.

  15. Draft Genome Sequence of a Tropical Freshwater Cyanobacterium, Limnothrix sp. Strain P13C2

    PubMed Central

    Tan, Boon Fei; Gin, Karina Yew-Hoong

    2016-01-01

    A nonaxenic unialgal culture of Limnothrix sp. strain P13C2 was obtained through multiple subculturing of an inoculum obtained from a tropical freshwater lake. Here, we report the genome of P13C2 of 4.6 Mbp, extracted from the metagenome of this coculture. PMID:27795269

  16. 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans.

    PubMed

    Rothman, Douglas L; De Feyter, Henk M; de Graaf, Robin A; Mason, Graeme F; Behar, Kevin L

    2011-10-01

    In the last 25 years, (13)C MRS has been established as the only noninvasive method for the measurement of glutamate neurotransmission and cell-specific neuroenergetics. Although technically and experimentally challenging, (13)C MRS has already provided important new information on the relationship between neuroenergetics and neuronal function, the energy cost of brain function, the high neuronal activity in the resting brain state and how neuroenergetics and neurotransmitter cycling are altered in neurological and psychiatric disease. In this article, the current state of (13)C MRS as it is applied to the study of neuroenergetics and neurotransmitter cycling in humans is reviewed. The focus is predominantly on recent findings in humans regarding metabolic pathways, applications to clinical research and the technical status of the method. Results from in vivo (13)C MRS studies in animals are discussed from the standpoint of the validation of MRS measurements of neuroenergetics and neurotransmitter cycling, and where they have helped to identify key questions to address in human research. Controversies concerning the relationship between neuroenergetics and neurotransmitter cycling and factors having an impact on the accurate determination of fluxes through mathematical modeling are addressed. We further touch upon different (13)C-labeled substrates used to study brain metabolism, before reviewing a number of human brain diseases investigated using (13)C MRS. Future technological developments are discussed that will help to overcome the limitations of (13)C MRS, with special attention given to recent developments in hyperpolarized (13)C MRS.

  17. Measuring δ(13)C values of atmospheric acetaldehyde via sodium bisulfite adsorption and cysteamine derivatisation.

    PubMed

    Guo, Songjun; Chen, Mei; Wen, Sheng; Sheng, Guoying; Fu, Jiamo

    2012-01-01

    δ(13)C values of gaseous acetaldehyde were measured by gas chromatograph-combustion-isotope ratio mass spectrometer (GC-C-IRMS) via sodium bisulfite (NaHSO(3)) adsorption and cysteamine derivatisation. Gaseous acetaldehyde was collected via NaHSO(3)-coated Sep-Pak(®) silica gel cartridge, then derivatised with cysteamine, and then the δ(13)C value of the acetaldehyde-cysteamine derivative was measured by GC-C-IRMS. Using two acetaldehydes with different δ(13)C values, derivatisation experiments were carried out to cover concentrations between 0.009×10(-3) and 1.96×10(-3) mg·l(-1)) of atmospheric acetaldehyde, and then δ(13)C fractionation was evaluated in the derivatisation of acetaldehyde based on stoichiometric mass balance after measuring the δ(13)C values of acetaldehyde, cysteamine and the acetaldehyde-cysteamine derivative. δ(13)C measurements in the derivertisation process showed good reproducibility (<0.5 ‰) for gaseous acetaldehyde. The differences between predicted and measured δ(13)C values were 0.04-0.31 ‰ for acetaldehyde-cysteamine derivative, indicating that the derivatisation introduces no isotope fractionation for gaseous acetaldehyde, and obtained δ(13)C values of acetaldehyde in ambient air at the two sites were distinct (-34.00 ‰ at an urban site versus-31.00 ‰ at a forest site), implying potential application of the method to study atmospheric acetaldehyde.

  18. Refined Analysis of Brain Energy Metabolism Using In Vivo Dynamic Enrichment of 13C Multiplets

    PubMed Central

    Dehghani M., Masoumeh; Duarte, João M. N.; Kunz, Nicolas; Gruetter, Rolf

    2016-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy in combination with the infusion of 13C-labeled precursors is a unique approach to study in vivo brain energy metabolism. Incorporating the maximum information available from in vivo localized 13C spectra is of importance to get broader knowledge on cerebral metabolic pathways. Metabolic rates can be quantitatively determined from the rate of 13C incorporation into amino acid neurotransmitters such as glutamate and glutamine using suitable mathematical models. The time course of multiplets arising from 13C-13C coupling between adjacent carbon atoms was expected to provide additional information for metabolic modeling leading to potential improvements in the estimation of metabolic parameters. The aim of the present study was to extend two-compartment neuronal/glial modeling to include dynamics of 13C isotopomers available from fine structure multiplets in 13C spectra of glutamate and glutamine measured in vivo in rats brain at 14.1 T, termed bonded cumomer approach. Incorporating the labeling time courses of 13C multiplets of glutamate and glutamine resulted in elevated precision of the estimated fluxes in rat brain as well as reduced correlations between them. PMID:26969691

  19. Natural (13) C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern.

    PubMed

    Lamade, Emmanuelle; Tcherkez, Guillaume; Darlan, Nuzul Hijri; Rodrigues, Rosario Lobato; Fresneau, Chantal; Mauve, Caroline; Lamothe-Sibold, Marlène; Sketriené, Diana; Ghashghaie, Jaleh

    2016-01-01

    Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs.

  20. Witnessing the elimination of magic wands.

    PubMed

    Blom, Stefan; Huisman, Marieke

    This paper discusses static verification of programs that have been specified using separation logic with magic wands. Magic wands are used to specify incomplete resources in separation logic, i.e., if missing resources are provided, a magic wand allows one to exchange these for the completed resources. One of the applications of the magic wand operator is to describe loop invariants for algorithms that traverse a data structure, such as the imperative version of the tree delete problem (Challenge 3 from the VerifyThis@FM2012 Program Verification Competition), which is the motivating example for our work. Most separation logic-based static verification tools do not provide support for magic wands, possibly because validity of formulas containing the magic wand is, by itself, undecidable. To avoid this problem, in our approach the program annotator has to provide a witness for the magic wand, thus circumventing undecidability due to the use of magic wands. A witness is an object that encodes both instructions for the permission exchange that is specified by the magic wand and the extra resources needed during that exchange. We show how this witness information is used to encode a specification with magic wands as a specification without magic wands. Concretely, this approach is used in the VerCors tool set: annotated Java programs are encoded as Chalice programs. Chalice then further translates the program to BoogiePL, where appropriate proof obligations are generated. Besides our encoding of magic wands, we also discuss the encoding of other aspects of annotated Java programs into Chalice, and in particular, the encoding of abstract predicates with permission parameters. We illustrate our approach on the tree delete algorithm, and on the verification of an iterator of a linked list.

  1. The Other Side of Magic.

    PubMed

    Ekroll, Vebjørn; Sayim, Bilge; Wagemans, Johan

    2017-01-01

    When magicians perform spectacles that seem to defy the laws of nature, they do so by manipulating psychological reality. Hence, the principles underlying the art of conjuring are potentially of interest to psychological science. Here, we argue that perceptual and cognitive principles governing how humans experience hidden things and reason about them play a central role in many magic tricks. Different from tricks based on many other forms of misdirection, which require considerable skill on the part of the magician, many elements of these tricks are essentially self-working because they rely on automatic perceptual and cognitive processes. Since these processes are not directly observable, even experienced magicians may be oblivious to their central role in creating strong magical experiences and tricks that are almost impossible to debunk, even after repeated presentations. We delineate how insights from perceptual psychology provide a framework for understanding why these tricks work so well. Conversely, we argue that studying magic tricks that work much better than one intuitively would believe provides a promising heuristic for charting unexplored aspects of perception and cognition.

  2. Integrated 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli.

    PubMed

    Crown, Scott B; Long, Christopher P; Antoniewicz, Maciek R

    2015-03-01

    The use of parallel labeling experiments for (13)C metabolic flux analysis ((13)C-MFA) has emerged in recent years as the new gold standard in fluxomics. The methodology has been termed COMPLETE-MFA, short for complementary parallel labeling experiments technique for metabolic flux analysis. In this contribution, we have tested the limits of COMPLETE-MFA by demonstrating integrated analysis of 14 parallel labeling experiments with Escherichia coli. An effort on such a massive scale has never been attempted before. In addition to several widely used isotopic tracers such as [1,2-(13)C]glucose and mixtures of [1-(13)C]glucose and [U-(13)C]glucose, four novel tracers were applied in this study: [2,3-(13)C]glucose, [4,5,6-(13)C]glucose, [2,3,4,5,6-(13)C]glucose and a mixture of [1-(13)C]glucose and [4,5,6-(13)C]glucose. This allowed us for the first time to compare the performance of a large number of isotopic tracers. Overall, there was no single best tracer for the entire E. coli metabolic network model. Tracers that produced well-resolved fluxes in the upper part of metabolism (glycolysis and pentose phosphate pathways) showed poor performance for fluxes in the lower part of metabolism (TCA cycle and anaplerotic reactions), and vice versa. The best tracer for upper metabolism was 80% [1-(13)C]glucose+20% [U-(13)C]glucose, while [4,5,6-(13)C]glucose and [5-(13)C]glucose both produced optimal flux resolution in the lower part of metabolism. COMPLETE-MFA improved both flux precision and flux observability, i.e. more independent fluxes were resolved with smaller confidence intervals, especially exchange fluxes. Overall, this study demonstrates that COMPLETE-MFA is a powerful approach for improving flux measurements and that this methodology should be considered in future studies that require very high flux resolution.

  3. A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values

    NASA Astrophysics Data System (ADS)

    Alderman, D. W.

    1998-12-01

    A sensitive, high-resolution 'FIREMAT' two-dimensional (2D) magic-angle-turning experiment is described that measures chemical shift tensor principal values in powdered solids. The spectra display spinning-sideband patterns separated by their isotropic shifts. The new method's sensitivity and high resolution in the isotropic-shift dimension result from combining the 5pi magic-angle-turning pulse sequence, an extension of the pseudo-2D sideband-suppression data rearrangement, and the TIGER protocol for processing 2D data. TPPM decoupling is used to enhance resolution. The method requires precise synchronization of the pulses and sampling to the rotor position. It is shown that the technique obtains 35 natural-abundance 13C tensors from erythromycin in 19 hours, and high quality naturalabundance 15N tensors from eight sites in potassium penicillin V in three days on a 400MHz spectrometer.

  4. A 13C-NMR study of exopolysaccharide synthesis in Rhizobium meliloti Su47 strain

    NASA Astrophysics Data System (ADS)

    Tavernier, P.; Portais, J.-C.; Besson, I.; Courtois, J.; Courtois, B.; Barbotin, J.-N.

    1998-02-01

    Metabolic pathways implied in the synthesis of succinoglycan produced by the Su47 strain of R. meliloti were evaluated by 13C-NMR spectroscopy after incubation with [1{-}13C] or [2{-}13C] glucose. The biosynthesis of this polymer by R. meliloti from glucose occurred by a direct polymerisation of the introduced glucose and by the pentose phosphate pathway. Les voies métaboliques impliquées dans la synthèse du succinoglycane produit par la souche Su47 de R. meliloti ont été évaluées par la spectroscopie de RMN du carbone 13 après incubation des cellules avec du [1{-}13C] ou [2{-}13C] glucose. La biosynthèse de ce polymère à partir du glucose se produit par polymérisation directe du glucose et par la voie des pentoses phosphate.

  5. Fish Movement and Dietary History Derived from Otolith (delta)13C

    SciTech Connect

    Weber, P K; Finlay, J C; Power, M E; Phillis, C C; Ramon, C E; Eaton, G F; Ingram, B L

    2005-09-08

    Habitat use and food web linkages are critical data for fish conservation and habitat restoration efforts, particularly for threatened salmonids species. Otolith microchemistry has been shown to be a powerful tool for reconstructing fish movement, but over small distances (kilometers), geology-derived differences in otolith chemistry are rare. Here, we demonstrate that otolith {sup 13}C/{sup 12}C ratio (i.e. {delta}{sup 13}C) of anadromous steelhead trout can be used to distinguish residence in small streams from residence in larger streams and rivers. While previous research has shown that water dissolved inorganic carbon {delta}{sup 13}C is the primary source of carbon in otoliths, the downstream change in food {delta}{sup 13}C in this watershed appears to be the primary control on otolith {delta}{sup 13}C. As a result, this method can also be applied to the problem of reconstructing feeding history at a location.

  6. Reconstruction of δ 13C of chemocline CO 2 (aq) in past oceans and lakes using the δ 13C of fossil isorenieratene

    NASA Astrophysics Data System (ADS)

    van Breugel, Yvonne; Schouten, Stefan; Paetzel, Matthias; Ossebaar, Jort; Sinninghe Damsté, Jaap S.

    2005-06-01

    High abundances of the diaromatic carotenoid isorenieratene derived from photosynthetic green sulfur bacteria (Chlorobiaceae) were found just below the chemocline in an anoxic fjord in Norway, throughout the annual cycle. The stable carbon isotope composition of this carotenoid co-varied with the δ 13C of CO 2 (aq) and is independent of the CO 2 and isorenieratene concentration. This constant isotopic fractionation ɛp of isorenieratene versus CO 2, 4 ± 1‰, was subsequently used in the reconstruction of δ 13C of CO 2 at the chemocline in ancient oceans and lakes. These reconstructions indicate that δ 13C of CO 2 at the chemocline is often influenced by isotopically light CO 2, formed by remineralization of organic matter. This process can, depending on the depth and stability of the chemocline, also effect the isotopic composition of the phytoplankton and, thus, isotopic records of sedimentary inorganic and organic carbon.

  7. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    PubMed Central

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ,ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1–40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1–40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16–21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1–40 fibrils in 4 hr or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples. PMID:23562665

  8. An overview of methods using (13)C for improved compound identification in metabolomics and natural products.

    PubMed

    Clendinen, Chaevien S; Stupp, Gregory S; Ajredini, Ramadan; Lee-McMullen, Brittany; Beecher, Chris; Edison, Arthur S

    2015-01-01

    Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize (13)C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) (13)C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two (13)C-based approaches. For samples at natural abundance, we have developed a workflow to obtain (13)C-(13)C and (13)C-(1)H statistical correlations using 1D (13)C and (1)H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct (13)C-(13)C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which (13)C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest.

  9. 13C magnetic resonance spectroscopy measurements with hyperpolarized [1‐13C] pyruvate can be used to detect the expression of transgenic pyruvate decarboxylase activity in vivo

    PubMed Central

    Dzien, Piotr; Tee, Sui‐Seng; Kettunen, Mikko I.; Lyons, Scott K.; Larkin, Timothy J.; Timm, Kerstin N.; Hu, De‐En; Wright, Alan; Rodrigues, Tiago B.; Serrao, Eva M.; Marco‐Rius, Irene; Mannion, Elizabeth; D'Santos, Paula; Kennedy, Brett W. C.

    2015-01-01

    Purpose Dissolution dynamic nuclear polarization can increase the sensitivity of the 13C magnetic resonance spectroscopy experiment by at least four orders of magnitude and offers a novel approach to the development of MRI gene reporters based on enzymes that metabolize 13C‐labeled tracers. We describe here a gene reporter based on the enzyme pyruvate decarboxylase (EC 4.1.1.1), which catalyzes the decarboxylation of pyruvate to produce acetaldehyde and carbon dioxide. Methods Pyruvate decarboxylase from Zymomonas mobilis (zmPDC) and a mutant that lacked enzyme activity were expressed using an inducible promoter in human embryonic kidney (HEK293T) cells. Enzyme activity was measured in the cells and in xenografts derived from the cells using 13C MRS measurements of the conversion of hyperpolarized [1‐13C] pyruvate to H13 CO3–. Results Induction of zmPDC expression in the cells and in the xenografts derived from them resulted in an approximately two‐fold increase in the H13 CO3–/[1‐13C] pyruvate signal ratio following intravenous injection of hyperpolarized [1‐13C] pyruvate. Conclusion We have demonstrated the feasibility of using zmPDC as an in vivo reporter gene for use with hyperpolarized 13C MRS. Magn Reson Med 76:391–401, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26388418

  10. Foliar d13C within a temperate deciduous forest: spatial, temporal, and species sources of variation

    SciTech Connect

    Garten Jr, Charles T; TaylorJr, G. E.

    1992-04-01

    Foliar {sup 13}C-abundance ({delta}{sup 13}C) was analyzed in the dominant trees of a temperate deciduous forest in east Tennessee (Walker Branch Watershed) to investigate the variation in foliar {delta}{sup 13}C as a function of time (within-year and between years), space (canopy height, watershed topography and habitat) and species (deciduous and coniferous taxa). Various hypotheses were tested by analyzing (i) samples collected from the field during the growing season and (ii) foliar tissues maintained in an archived collection. The {delta}{sup 13}C-value for leaves from the tops of trees was 2 to 3%. more positive than for leaves sampled at lower heights in the canopy. Quercus prinus leaves sampled just prior to autumn leaf fall had significantly more negative {delta}{sup 13}C-values than those sampled during midsummer. On the more xeric ridges, needles of Pinus spp. had more positive {delta}{sup 13}C-values than leaves from deciduous species. Foliar {delta}{sup 13}C-values differed significantly as a function of topography. Deciduous leaves from xeric sites (ridges and slopes) had more positive {delta}{sup 13}C-values than those from mesic (riparian and cove) environments. On the more xeric sites, foliar {delta}{sup 13}C was significantly more positive in 1988 (a dry year) relative to that in 1989 (a year with above-normal precipitation). In contrast, leaf {delta}{sup 13}C in trees from mesic valley bottoms did not differ significantly among years with disparate precipitation. Patterns in foliar {delta}{sup 13}C indicated a higher ratio of net CO{sub 2} assimilation to transpiration (A/E) for trees in more xeric versus mesic habitats, and for trees in xeric habitats during years of drought versus years of normal precipitation. However, A/E (units of mmol CO{sub 2} fixed/mol H{sub 2}O transpired) calculated on the basis of {delta}{sup 13}C-values for leaves from the more xeric sites was higher in a wet year (6.6 {+-} 1.2) versus a dry year (3.4 {+-} 0.4). This

  11. Quantitative comparison of structure and dynamics of elastin following three isolation schemes by 13C solid state NMR and MALDI mass spectrometry.

    PubMed

    Papaioannou, A; Louis, M; Dhital, B; Ho, H P; Chang, E J; Boutis, G S

    2015-05-01

    Methods for isolating elastin from fat, collagen, and muscle, commonly used in the design of artificial elastin based biomaterials, rely on exposing tissue to harsh pH levels and temperatures that usually denature many proteins. At present, a quantitative measurement of the modifications to elastin following isolation from other extracellular matrix constituents has not been reported. Using magic angle spinning (13)C NMR spectroscopy and relaxation methodologies, we have measured the modification in structure and dynamics following three known purification protocols. Our experimental data reveal that the (13)C spectra of the hydrated samples appear remarkably similar across the various purification methods. Subtle differences in the half maximum widths were observed in the backbone carbonyl suggesting possible structural heterogeneity across the different methods of purification. Additionally, small differences in the relative signal intensities were observed between purified samples. Lyophilizing the samples results in a reduction of backbone motion and reveals additional differences across the purification methods studied. These differences were most notable in the alanine motifs indicating possible changes in cross-linking or structural rigidity. The measured correlation times of glycine and proline moieties are observed to also vary considerably across the different purification methods, which may be related to peptide bond cleavage. Lastly, the relative concentration of desmosine cross-links in the samples quantified by MALDI mass spectrometry is reported.

  12. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    SciTech Connect

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  13. Simultaneous imaging of 13C metabolism and 1H structure: technical considerations and potential applications.

    PubMed

    Gordon, Jeremy W; Fain, Sean B; Niles, David J; Ludwig, Kai D; Johnson, Kevin M; Peterson, Eric T

    2015-05-01

    Real-time imaging of (13)C metabolism in vivo has been enabled by recent advances in hyperpolarization. As a result of the inherently low natural abundance of endogenous (13)C nuclei, hyperpolarized (13)C images lack structural information that could be used to aid in motion detection and anatomical registration. Motion before or during the (13)C acquisition can therefore result in artifacts and misregistration that may obscure measures of metabolism. In this work, we demonstrate a method to simultaneously image both (1)H and (13)C nuclei using a dual-nucleus spectral-spatial radiofrequency excitation and a fully coincident readout for rapid multinuclear spectroscopic imaging. With the appropriate multinuclear hardware, and the means to simultaneously excite and receive on both channels, this technique is straightforward to implement requiring little to no increase in scan time. Phantom and in vivo experiments were performed with both Cartesian and spiral trajectories to validate and illustrate the utility of simultaneous acquisitions. Motion compensation of dynamic metabolic measurements acquired during free breathing was demonstrated using motion tracking derived from (1)H data. Simultaneous multinuclear imaging provides structural (1)H and metabolic (13)C images that are correlated both spatially and temporally, and are therefore amenable to joint (1)H and (13)C analysis and correction of structure-function images.

  14. Are accurate computations of the 13C' shielding feasible at the DFT level of theory?

    PubMed

    Vila, Jorge A; Arnautova, Yelena A; Martin, Osvaldo A; Scheraga, Harold A

    2014-02-05

    The goal of this study is twofold. First, to investigate the relative influence of the main structural factors affecting the computation of the (13)C' shielding, namely, the conformation of the residue itself and the next nearest-neighbor effects. Second, to determine whether calculation of the (13)C' shielding at the density functional level of theory (DFT), with an accuracy similar to that of the (13)C(α) shielding, is feasible with the existing computational resources. The DFT calculations, carried out for a large number of possible conformations of the tripeptide Ac-GXY-NMe, with different combinations of X and Y residues, enable us to conclude that the accurate computation of the (13)C' shielding for a given residue X depends on the: (i) (ϕ,ψ) backbone torsional angles of X; (ii) side-chain conformation of X; (iii) (ϕ,ψ) torsional angles of Y; and (iv) identity of residue Y. Consequently, DFT-based quantum mechanical calculations of the (13)C' shielding, with all these factors taken into account, are two orders of magnitude more CPU demanding than the computation, with similar accuracy, of the (13)C(α) shielding. Despite not considering the effect of the possible hydrogen bond interaction of the carbonyl oxygen, this work contributes to our general understanding of the main structural factors affecting the accurate computation of the (13)C' shielding in proteins and may spur significant progress in effort to develop new validation methods for protein structures.

  15. [Determination of 13C enrichment in soil amino acid enantiomers by gas chromatogram/mass spectrometry].

    PubMed

    He, Hong-Bo; Zhang, Wei; Ding, Xue-Li; Bai, Zhen; Liu, Ning; Zhang, Xu-Dong

    2008-06-01

    The transformation and renewal of amino acid enantiomers is of significance in indicating the turnover mechanism of soil organic matter. In this paper, a method of gas chromatogram/mass spectrometry combined with U-13 C-glucose incubation was developed to determine the 13C enrichment in soil amino acid enantiomers, which could effectively differentiate the original and the newly synthesized amino acids in soil matrix. The added U-13 C-glucose was utilized rapidly to structure the amino acid carbon skeleton, and the change of relative abundance of isotope ions could be determined by mass spectrometry. The direct incorporation of U-13 C glucose was estimated by the intensity increase of m/z (F + n) to F (F was parent fragment, and n was the carbon number in the fragment), while the total isotope incorporation from the added 13C could be calculated according to the abundance ratio increment summation from m/z (Fa + 1) through (Fa + T) (Fa was the fragment containing all original skeleton carbons, and T was the carbon number in the amino acid molecule). The 13C enrichment in the target compound was expressed as atom percentage excess (APE), and that of D-amino acid needed to be corrected by the coefficient of hydrolysis-induced racemization. The 13C enrichment reflected the carbon turnover velocity of individual amino acid enantiomers, and was powerful to investigate the dynamics of soil amino acids.

  16. Deposition of 13C tracer in the JET MkII-HD divertor

    NASA Astrophysics Data System (ADS)

    Likonen, J.; Airila, M.; Alves, E.; Barradas, N.; Brezinsek, S.; Coad, J. P.; Devaux, S.; Groth, M.; Grünhagen, S.; Hakola, A.; Jachmich, S.; Koivuranta, S.; Makkonen, T.; Rubel, M.; Strachan, J.; Stamp, M.; Widdowson, A.; EFDA contributors, JET-

    2011-12-01

    Migration of 13C has been investigated at JET by injecting 13C-labelled methane at the outer divertor base at the end of the 2009 campaign. The 13C deposition profiles on carbon fibre composite divertor tiles were measured by secondary ion mass spectrometry and Rutherford backscattering techniques. 13C was mainly deposited near the puffing location on the outer divertor base tiles. High amounts of 13C were also found at the outer vertical target: at the bottom of the lower and at the top of the upper plates. Thirty-three percent of puffed 13CH4 was instantly pumped out by the divertor cryopump, which is close to the pump duct entrance. Global 13C transport in the torus was modelled by the EDGE2D/EIRENE and DIVIMP codes, and local 13C migration in the vicinity of the injection location by the ERO code. The DIVIMP and EDGE2D simulations show strong prompt deposition of 13C directly adjacent to the injection point as well as in the far scrape-off layer (SOL) along both the inner and outer divertor targets. In addition, the measured 13C deposition along the outer divertor wall tiles is qualitatively reproduced. However, EDGE2D and DIVIMP do not predict any deposition along the divertor surfaces facing the private plasma on the inner floor tile and inboard of the outer strike point on tile 5. The ERO calculations also indicate that most of the deposition occurs close to the injection location on the vertical face of the LBSRP tile and the horizontal part of tile 6.

  17. Clinical NOE 13C MRS for neuropsychiatric disorders of the frontal lobe

    NASA Astrophysics Data System (ADS)

    Sailasuta, Napapon; Robertson, Larry W.; Harris, Kent C.; Gropman, Andrea L.; Allen, Peter S.; Ross, Brian D.

    2008-12-01

    In this communication, a scheme is described whereby in vivo 13C MRS can safely be performed in the frontal lobe, a human brain region hitherto precluded on grounds of SAR, but important in being the seat of impaired cognitive function in many neuropsychiatric and developmental disorders. By combining two well known features of 13C NMR—the use of low power NOE and the focus on 13C carbon atoms which are only minimally coupled to protons, we are able to overcome the obstacle of SAR and develop means of monitoring the 13C fluxes of critically important metabolic pathways in frontal brain structures of normal volunteers and patients. Using a combination of low-power WALTZ decoupling, variants of random noise for nuclear overhauser effect enhancement it was possible to reduce power deposition to 20% of the advised maximum specific absorption rate (SAR). In model solutions 13C signal enhancement achieved with this scheme were comparable to that obtained with WALTZ-4. In human brain, the low power procedure effectively determined glutamine, glutamate and bicarbonate in the posterior parietal brain after [1- 13C] glucose infusion. The same 13C enriched metabolites were defined in frontal brain of human volunteers after administration of [1- 13C] acetate, a recognized probe of glial metabolism. Time courses of incorporation of 13C into cerebral glutamate, glutamine and bicarbonate were constructed. The results suggest efficacy for measurement of in vivo cerebral metabolic rates of the glutamate-glutamine and tricarboxylic acid cycles in 20 min MR scans in previously inaccessible brain regions in humans at 1.5T. We predict these will be clinically useful biomarkers in many human neuropsychiatric and genetic conditions.

  18. Quantitative 13C traces of glucose fate in hepatitis B virus infected hepatocytes.

    PubMed

    Wan, Qianfen; Wang, Yulan; Tang, Huiru

    2017-02-21

    Quantitative characterization of 13C-labeled metabolites is an important part of the stable isotope tracing method widely used in metabolic flux analysis. Due to long relaxation time and low sensitivity of 13C nuclei, direct measurement of 13C labeled metabolites using one dimensional 13C NMR often fails to meet the demand of metabolomics studies especially with large number of samples and metabolites having low abundance. Although HSQC-based 2D NMR methods have improved sensitivity with inversion detection, they are time-consuming thus unsuitable for high-throughput absolute quantification of 13C-labeled metabolites. In this study, we developed a method for absolute quantification of 13C labeled metabolites using naturally abundant TSP as a reference with the first increment of HMQC pulse sequence, taking polarization transfer efficiencies into consideration. We validated this method using a mixture of 13C-labeled alanine, methionine, glucose and formic acid together with a mixture of alanine, lactate, glycine, uridine, cytosine, and hypoxanthine having natural 13C abundance with known concentrations. We subsequently applied this method to analyze the flux of glucose in HepG2 cells infected with hepatitis B virus (HBV). The results showed that HBV infection increased the cellular uptake of glucose, stimulated glycolysis and enhanced the pentose phosphate and hexosamine pathways for biosynthesis of RNA and DNA and nucleotide sugars to facilitate HBV replication. This method saves experimental time and provides a possibility for absolute quantitative tracking of the 13C labeled metabolites for high throughput studies.

  19. Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1- 13C]pyruvate and 13C magnetic resonance spectroscopic imaging.

    PubMed

    Day, Sam E; Kettunen, Mikko I; Cherukuri, Murali Krishna; Mitchell, James B; Lizak, Martin J; Morris, H Douglas; Matsumoto, Shingo; Koretsky, Alan P; Brindle, Kevin M

    2011-02-01

    We show here that hyperpolarized [1-(13) C]pyruvate can be used to detect treatment response in a glioma tumor model; a tumor type where detection of response with (18) fluoro-2-deoxyglucose, using positron emission tomography, is limited by the high background signals from normal brain tissue. (13) C chemical shift images acquired following intravenous injection of hyperpolarized [1-(13) C]pyruvate into rats with implanted C6 gliomas showed significant labeling of lactate within the tumors but comparatively low levels in surrounding brain.Labeled pyruvate was observed at high levels in blood vessels above the brain and from other major vessels elsewhere but was detected at only low levels in tumor and brain.The ratio of hyperpolarized (13) C label in tumor lactate compared to the maximum pyruvate signal in the blood vessels was decreased from 0.38 ± 0.16 to 0.23 ± 0.13, (a reduction of 34%) by 72 h following whole brain irradiation with 15 Gy.

  20. Synthesis of D-[U-{sup 13}C]Glucal, D-[U-{sup 13}C] Galactal, and L-[U-{sup 13}C]Fucose for NMR structure studies of oligosaccharides

    SciTech Connect

    Wu, R.; Unkefer, C.J.; Silks, L.A. III

    1996-12-31

    The role of carbohydrates is well recognized in a variety of important biological phenomena such as cell surface recognition. Recent advances in carbohydrate chemistry, including the development of solid phase synthesis methods, have helped to provide significant quantities of material by offering general protocols for synthesis of well-defined, pure material. However, the study of the solution structure of oligosaccharides by nuclear magnetic resonance techniques have been hampered by the lack of enriched {sup 13}C material. In an effort to help alleviate this situation, we have been interested in the construction of the title compounds from a single economical carbon source, D-[U-{sup 13}C]glucose. Details of the syntheses will be provided.

  1. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  2. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Geilmann, Heike; Brand, Willi A.; Böhlke, John Karl

    2003-01-01

    Analytical grade L-glutamic acid is chemically stable and has a C/N mole ratio of 5, which is close to that of many of natural biological materials, such as blood and animal tissue. Two L-glutamic acid reference materials with substantially different 13C and 15N abundances have been prepared for use as organic reference materials for C and N isotopic measurements. USGS40 is analytical grade L-glutamic acid and has a δ13C value of −26.24‰ relative to VPDB and a δ15N value of −4.52‰ relative to N2 in air. USGS41 was prepared by dissolving analytical grade L-glutamic acid with L-glutamic acid enriched in 13C and 15N. USGS41 has a δ13C value of +37.76‰ and a δ15N value of +47.57‰. The δ13C and δ15N values of both materials were measured against the international reference materials NBS 19 calcium carbonate (δ13C = +1.95‰), L-SVEC lithium carbonate (δ13C = −46.48‰), IAEA-N-1 ammonium sulfate (δ15N = 0.43‰), and USGS32 potassium nitrate (δ15N = 180‰) by on-line combustion continuous-flow and off-line dual-inlet isotope-ratio mass spectrometry. Both USGS40 and USGS41 are isotopically homogeneous; reproducibility of δ13C is better than 0.13‰, and that of δ15N is better than 0.13‰ in 100-μg amounts. These two isotopic reference materials can be used for (i) calibrating local laboratory reference materials, and (ii) quantifying drift with time, mass-dependent fractionations, and isotope-ratio-scale contraction in the isotopic analysis of various biological materials. Isotopic results presented in this paper yield a δ13C value for NBS 22 oil of −29.91‰, in contrast to the commonly accepted value of −29.78‰ for which off-line blank corrections probably have not been quantified satisfactorily.

  3. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Geilmann, Heike; Brand, Willi A.; Böhlke, J.K.

    2003-01-01

    Analytical grade L-glutamic acid is chemically stable and has a C/N mole ratio of 5, which is close to that of many of natural biological materials, such as blood and animal tissue. Two L-glutamic acid reference materials with substantially different 13C and 15N abundances have been prepared for use as organic reference materials for C and N isotopic measurements. USGS40 is analytical grade L-glutamic acid and has a δ13C value of −26.24‰ relative to VPDB and a δ15N value of −4.52‰ relative to N2 in air. USGS41 was prepared by dissolving analytical grade L-glutamic acid with L-glutamic acid enriched in 13C and 15N. USGS41 has a δ13C value of +37.76‰ and a δ15N value of +47.57‰. The δ13C and δ15N values of both materials were measured against the international reference materials NBS 19 calcium carbonate (δ13C = +1.95‰), L-SVEC lithium carbonate (δ13C = −46.48‰), IAEA-N-1 ammonium sulfate (δ15N = 0.43‰), and USGS32 potassium nitrate (δ15N = 180‰) by on-line combustion continuous-flow and off-line dual-inlet isotope-ratio mass spectrometry. Both USGS40 and USGS41 are isotopically homogeneous; reproducibility of δ13C is better than 0.13‰, and that of δ15N is better than 0.13‰ in 100-μg amounts. These two isotopic reference materials can be used for (i) calibrating local laboratory reference materials, and (ii) quantifying drift with time, mass-dependent fractionations, and isotope-ratio-scale contraction in the isotopic analysis of various biological materials. Isotopic results presented in this paper yield a δ13C value for NBS 22 oil of −29.91‰, in contrast to the commonly accepted value of −29.78‰ for which off-line blank corrections probably have not been quantified satisfactorily.

  4. Derivatives of pyrazinecarboxylic acid: 1H, 13C and 15N NMR spectroscopic investigations.

    PubMed

    Holzer, Wolfgang; Eller, Gernot A; Datterl, Barbara; Habicht, Daniela

    2009-07-01

    NMR spectroscopic studies are undertaken with derivatives of 2-pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts ((1)H, (13)C, (15)N) and coupling constants ((1)H,(1)H; (13)C,(1)H; (15)N,(1)H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of (13)C,(1)H spin coupling constants is accomplished by 2D (delta,J) long-range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3-hydroxy-2-pyrazinecarboxylic acid are discussed.

  5. Isotopic ((13)C) fractionation during plant residue decomposition and its implications for soil organic matter studies.

    PubMed

    Schweizer; Fear; Cadisch

    1999-07-01

    Carbon isotopic fractionations in plant materials and those occurring during decomposition have direct implications in studies of short-and longer-term soil organic matter dynamics. Thus the products of decomposition, the evolved CO(2) and the newly formed soil organic matter, may vary in their (13)C signature from that of the original plant material. To evaluate the importance of such fractionation processes, the variations in (13)C signatures between and within plant parts of a tropical grass (Brachiaria humidicola) and tropical legume (Desmodium ovalifolium) were measured and the changes in (13)C content (signatures) during decomposition were monitored over a period of four months. As expected the grass materials were less depleted in (13)C (-11.4 to -11.9 per thousand) than those of the legume (-27.3 to -25.8 per thousand). Root materials of the legume were less (1.5 per thousand) depleted in (13)C compared with the leaves. Plant lignin-C was strongly depleted in (13)C compared with the bulk material by up to 2.5 per thousand in the legume and up to 4.7 per thousand in the grass. Plant materials were subsequently incubated in a sand/nutrient-solution/microbial inoculum mixture. The respiration product CO(2) was trapped in NaOH and precipitated as CaCO(3), suitable for analysis using an automated C/N analyser coupled to an isotope ratio mass spectrometer. Significant depletion in (13)C of the evolved CO(2) was observed during the initial stages of decomposition probably as a result of microbial fractionation as it was not associated with the (13)C signatures of the measured more decomposable fractions (non-acid detergent fibre and cellulose). While the cumulative CO(2)-(13)C signatures of legume materials became slightly enriched with ongoing decomposition, the CO(2)-C of the grass materials remained depleted in (13)C. Associated isotopic fractionation correction factors for source identification of CO(2-)C varied with time and suggested errors of 2-19% in the

  6. Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-labeled lactate.

    PubMed

    Katz, J; Wals, P; Lee, W N

    1993-12-05

    Fasted rats were intragastrically infused with either [2,3-13C]lactate or [1,2,3-13C]lactate. The infusate also contained 14C-labeled lactate and [3-3H]glucose. Glucose, alanine, glutamate, and glutamine were isolated from liver and blood. There was near complete equilibration of lactate and alanine, and the relative specific activities and relative enrichments were the same in blood and liver. Glucose was cleaved enzymatically to lactate. The compounds were examined by gas chromatography-mass spectroscopy. From the mass isotopomer spectra of the lactate, glutamate, and glutamine and their cleavage fragments the positional isotopomer composition of these compounds was obtained. The enrichment and isotopomer pattern in the lactate from cleaved glucose represents that in phosphoenolpyruvate (PEP). When [1,2,3-13C]lactate was infused the mass isotopomer spectrum of glutamates consisted only of compounds containing either one, two, or three 13C carbons per molecule (m1, m2, and m3). There was little 13C in C-4 and C-5 of glutamate. The rate of pyruvate decarboxylation is low, and 3-4% of the acetyl-CoA flux in the Krebs cycle is contributed by lactate carbon. The major isotopomers in lactate, alanine, and PEP were m3 and m2 with 13C in C-2 and C-3. The predominant isotopomer in PEP from [2,3-13C]lactate was m2 with 13C in C-2 and C-3. There was much more of m1 isotopomer with 13C in C-3 and C-2 than the m1 isotopomer with 13C in C-1. There was very little m3, the isotopomer with 13C in all three carbons. Most of the 13C in C-3 and C-4 of glucose and C-1 of glutamate was introduced via 13CO2 fixation. From the isotopomer distribution and the rate of glucose turnover we deduced, applying the analysis described in the "Appendix," the absolute rates of gluconeogenic pathways, recycling of PEP and the Cori cycle, and flux in the Krebs cycle. The flux from oxaloacetate (OAA)-->PEP was seven times that of OAA-->citrate, and about half of PEP was recycled to pyruvate via

  7. A roadmap for interpreting 13C metabolite labeling patterns from cells

    PubMed Central

    Buescher, Joerg M.; Antoniewicz, Maciek R.; Boros, Laszlo G.; Burgess, Shawn C.; Brunengraber, Henri; Clish, Clary B.; DeBerardinis, Ralph J.; Feron, Olivier; Frezza, Christian; Ghesquiere, Bart; Gottlieb, Eyal; Hiller, Karsten; Jones, Russell G.; Kamphorst, Jurre J.; Kibbey, Richard G.; Kimmelman, Alec C.; Locasale, Jason W.; Lunt, Sophia Y.; Maddocks, Oliver D. K.; Malloy, Craig; Metallo, Christian M.; Meuillet, Emmanuelle J.; Munger, Joshua; Nöh, Katharina; Rabinowitz, Joshua D.; Ralser, Markus; Sauer, Uwe; Stephanopoulos, Gregory; St-Pierre, Julie; Tennant, Daniel A.; Wittmann, Christoph; Vander Heiden, Matthew G.; Vazquez, Alexei; Vousden, Karen; Young, Jamey D.; Zamboni, Nicola; Fendt, Sarah-Maria

    2015-01-01

    Measuring intracellular metabolism has increasingly led to important insights in biomedical research. 13C tracer analysis, although less information-rich than quantitative 13C flux analysis that requires computational data integration, has been established as a time-efficient method to unravel relative pathway activities, qualitative changes in pathway contributions, and nutrient contributions. Here, we review selected key issues in interpreting 13C metabolite labeling patterns, with the goal of drawing accurate conclusions from steady state and dynamic stable isotopic tracer experiments. PMID:25731751

  8. Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy*

    PubMed Central

    Timm, Kerstin N.; Hu, De-En; Williams, Michael; Wright, Alan J.; Kettunen, Mikko I.; Kennedy, Brett W. C.; Larkin, Timothy J.; Dzien, Piotr; Marco-Rius, Irene; Bohndiek, Sarah E.; Brindle, Kevin M.

    2017-01-01

    Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-13C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive 13C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-13C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using 13C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-13C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo. However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic. PMID:27994059

  9. On the Magic Square and Inverse

    ERIC Educational Resources Information Center

    Elzaidi, S. M.

    2005-01-01

    In this note, we give a method for finding the inverse of a three by three magic square matrix without using the usual methods for finding the inverse of a matrix. Also we give a method for finding the inverse of a three by three magic square matrix whose entries are also matrices. By using these ideas, we can construct large matrices whose…

  10. The Role of Statistics in Management Magic

    ERIC Educational Resources Information Center

    Stivers, Richard

    2004-01-01

    Technology and magic both represent the human will to power - to dominate nature and ultimately humans. In a technological civilization, magic imitates technology. Modern management often entails psychological techniques (the human relations approach) and organizational techniques (the scientific approach). The heart of the latter is statistical…

  11. Measurement of local, internal magnetic fluctuations via cross-polarization scattering in the DIII-D tokamak (invited).

    PubMed

    Barada, K; Rhodes, T L; Crocker, N A; Peebles, W A

    2016-11-01

    We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, these measurements provide a new ability to challenge and test linear and nonlinear simulations and basic theory. The CPS method, based upon the scattering of an incident microwave beam into the opposite polarization by magnetic fluctuations, has been significantly extended and improved over the method as originally developed on the Tore Supra tokamak. A new scattering geometry, provided by a unique probe beam, is utilized to improve the spatial localization and wavenumber range. Remotely controllable polarizer and mirror angles allow polarization matching and wavenumber selection for a range of plasma conditions. The quasi-optical system design, its advantages and challenges, as well as important physics validation tests are presented and discussed. Effect of plasma beta (ratio of kinetic to magnetic pressure) on both density and magnetic fluctuations is studied and it is observed that internal magnetic fluctuations increase with beta. During certain quiescent high confinement operational regimes, coherent low frequency modes not detected by magnetic probes are detected locally by CPS diagnostics.

  12. Measurement of local, internal magnetic fluctuations via cross-polarization scattering in the DIII-D tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Barada, K.; Rhodes, T. L.; Crocker, N. A.; Peebles, W. A.

    2016-11-01

    We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, these measurements provide a new ability to challenge and test linear and nonlinear simulations and basic theory. The CPS method, based upon the scattering of an incident microwave beam into the opposite polarization by magnetic fluctuations, has been significantly extended and improved over the method as originally developed on the Tore Supra tokamak. A new scattering geometry, provided by a unique probe beam, is utilized to improve the spatial localization and wavenumber range. Remotely controllable polarizer and mirror angles allow polarization matching and wavenumber selection for a range of plasma conditions. The quasi-optical system design, its advantages and challenges, as well as important physics validation tests are presented and discussed. Effect of plasma beta (ratio of kinetic to magnetic pressure) on both density and magnetic fluctuations is studied and it is observed that internal magnetic fluctuations increase with beta. During certain quiescent high confinement operational regimes, coherent low frequency modes not detected by magnetic probes are detected locally by CPS diagnostics.

  13. Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett's-associated neoplasia

    NASA Astrophysics Data System (ADS)

    Thekkek, Nadhi; Pierce, Mark C.; Lee, Michelle H.; Polydorides, Alexandros D.; Flores, Raja M.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca R.

    2013-02-01

    A modular video endoscope is developed and tested to allow imaging in different modalities. This system incorporates white light imaging (WLI), cross-polarized imaging (CPI), and vital-dye fluorescence imaging (VFI), using interchangeable filter modules. CPI and VFI are novel endoscopic modalities that probe mucosal features associated with Barrett's neoplasia. CPI enhances vasculature, while VFI enhances glandular architecture. In this pilot study, we demonstrate the integration of these modalities by imaging areas of Barrett's metaplasia and neoplasia in an esophagectomy specimen. We verify that those key image features are also observed during an in vivo surveillance procedure. CPI images demonstrate improved visualization of branching blood vessels associated with neoplasia. VFI images show glandular architecture with increased glandular effacement associated with neoplasia. Results suggests that important pathologic features seen in CPI and VFI are not visible during standard endoscopic white light imaging, and thus the modalities may be useful in future in vivo studies for discriminating neoplasia from Barrett's metaplasia. We further demonstrate that the integrated WLI/CPI/VFI endoscope is compatible with complementary high-resolution endomicroscopy techniques such as the high-resolution microendoscope, potentially enabling two-step ("red-flag" widefield plus confirmatory high-resolution imaging) protocols to be enhanced.

  14. Solar wind density controlling penetration electric field at the equatorial ionosphere during a saturation of cross polar cap potential

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Wan, W.; Zhao, B.; Hong, M.; Ridley, A.; Ren, Z.; Fraenz, M.; Dubinin, E.; He, M.

    2012-09-01

    The most important source of electrodynamic disturbances in the equatorial ionosphere during the main phase of a storm is the prompt penetration electric field (PPEF) originating from the high-latitude region. It has been known that such an electric field is correlated with the magnetospheric convection or interplanetary electric field. Here we show a unique case, in which the electric field disturbance in the equatorial ionosphere cannot be interpreted by this concept. During the superstorm on Nov. 20-21, 2003, the cross polar cap potential (CPCP) saturated at least for 8.2 h. The CPCP reconstructed by Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure suggested that the PPEF at the equatorial ionosphere still correlated with the saturated CPCP, but the CPCP was controlled by the solar wind density instead of the interplanetary electric field. However, the predicted CPCPs by Hill-Siscoe-Ober (HSO) model and Boyle-Ridley (BR) model were not fully consistent with the AMIE result and PPEF. The PPEF also decoupled from the convection electric field in the magnetotail. Due to the decoupling, the electric field in the ring current was not able to comply with the variations of PPEF, and this resulted in a long-duration electric field penetration without shielding.

  15. Confocal microscopy of excised human skin using acetic acid and crossed polarization: rapid detection of nonmelanoma skin cancers

    NASA Astrophysics Data System (ADS)

    Rajadhyaksha, Milind M.; Menaker, Gregg; Gonzalez, Salvador

    2000-05-01

    Moh's micrographic surgery for basal- and squamous-cell cancers (BCCs, SCCs) involves precise excision of the tumor with minimal damage to the surrounding normal skin. Precise excision is guided by histopathologic examination for tumor margins; typically, 2 - 4 slices of skin are excised, and there is a waiting time of 15 - 45 minutes for the surgeon and patient while each slice is being processed for histopathology. We can avoid the processing by using a confocal reflectance microscope; confocal detection of BCCs and SCCs is possible after staining the nuclei in the excised skin with 5% acetic acid, and imaging in crossed polarization. The cancerous nuclei appear bright against the dark surrounding normal dermis. The contrast is due to increased back-scattering as well as increased depolarization from the intra-nuclear structure relative to that from the surrounding normal dermis. As in conventional histopathology, the tumors are first detected at low resolution (section thickness 20 micrometer) in a wide field (1-2 mm); nuclear morphology is then viewed at high resolution (section thickness 2 micrometer) in a small field (0.25 - 0.50 mm). Mosaics of images are assembled to produce confocal maps of the BCCs or SCCs within large excised tissue. Rapid detection (within minutes) is possible.

  16. Dynamic structures of intact chicken erythrocyte chromatins as studied by 1H-31P cross-polarization NMR.

    PubMed Central

    Akutsu, H; Nishimoto, S; Kyogoku, Y

    1994-01-01

    The dynamic properties of DNA in intact chicken erythrocyte cells, nuclei, nondigested chromatins, digested soluble chromatins, H1, H5-depleted soluble chromatins and nucleosome cores were investigated by means of single-pulse and 1H-31P cross-polarization NMR. The temperature dependence of the phosphorus chemical shift anisotropy was identical for the former three in the presence of 3 mM MgCl2, suggesting that the local higher order structure is identical for these chromatins. The intrinsic phosphorus chemical shift anisotropy of the nucleosome cores was -159 ppm. The chemical shift anisotropy of DNA in the chromatins can be further averaged by the motion of the linker DNA. The spin-lattice relaxation time in the rotating frame of the proton spins (T1p) of the nondigested chromatins was measured at various locking fields. The result was analyzed on the assumption of the isotropic motion to get a rough value of the correlation time of the motion efficient for the relaxation, which was eventually ascribed to the segmental motion of the linker DNA with restricted amplitude. The 30 nm filament structure induced by NaCl was shown to be dynamically different from that induced by MgCl2. Side-by-side compaction of 30-nm filaments was suggested to be induced in the MgCl2 concentration range higher than 0.3 mM. Biological significance of the dynamic structure was discussed in connection with the results obtained. PMID:7948693

  17. Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2012-10-01

    13C and 15N chemical shift (CS) interaction is a sensitive probe of structure and dynamics in a wide variety of biological and inorganic systems, and in the recent years several magic angle spinning NMR approaches have emerged for residue-specific measurements of chemical shift anisotropy (CSA) tensors in uniformly and sparsely enriched proteins. All of the currently existing methods are applicable to slow and moderate magic angle spinning (MAS) regime, i.e., MAS frequencies below 20 kHz. With the advent of fast and ultrafast MAS probes capable of spinning frequencies of 40-100 kHz, and with the superior resolution and sensitivity attained at such high frequencies, development of CSA recoupling techniques working under such conditions is necessary. In this work, we present a family of R-symmetry based pulse sequences for recoupling of 13C/15N CSA interactions that work well in both natural abundance and isotopically enriched systems. We demonstrate that efficient recoupling of either first-rank (σ1) or second-rank (σ2) spatial components of CSA interaction is attained with appropriately chosen γ-encoded RNnv symmetry sequences. The advantage of these γ-encoded RNnv-symmetry based CSA (RNCSA) recoupling schemes is that they are suitable for CSA recoupling under a wide range of MAS frequencies, including fast MAS regime. Comprehensive analysis of the recoupling properties of these RNnv symmetry sequences reveals that the σ1-CSA recoupling symmetry sequences exhibit large scaling factors; however, the partial homonuclear dipolar Hamiltonian components are symmetry allowed, which makes this family of sequences suitable for CSA measurements in systems with weak homonuclear dipolar interactions. On the other hand, the γ-encoded symmetry sequences for σ2-CSA recoupling have smaller scaling factors but they efficiently suppress the homonuclear dipole-dipole interactions. Therefore, the latter family of sequences is applicable for measurements of CSA parameters in

  18. Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy.

    PubMed

    Schroeder, Marie A; Atherton, Helen J; Ball, Daniel R; Cole, Mark A; Heather, Lisa C; Griffin, Julian L; Clarke, Kieran; Radda, George K; Tyler, Damian J

    2009-08-01

    The Krebs cycle plays a fundamental role in cardiac energy production and is often implicated in the energetic imbalance characteristic of heart disease. In this study, we measured Krebs cycle flux in real time in perfused rat hearts using hyperpolarized magnetic resonance spectroscopy (MRS). [2-(13)C]Pyruvate was hyperpolarized and infused into isolated perfused hearts in both healthy and postischemic metabolic states. We followed the enzymatic conversion of pyruvate to lactate, acetylcarnitine, citrate, and glutamate with 1 s temporal resolution. The appearance of (13)C-labeled glutamate was delayed compared with that of other metabolites, indicating that Krebs cycle flux can be measured directly. The production of (13)C-labeled citrate and glutamate was decreased postischemia, as opposed to lactate, which was significantly elevated. These results showed that the control and fluxes of the Krebs cycle in heart disease can be studied using hyperpolarized [2-(13)C]pyruvate.

  19. Nanotwins soften boron-rich boron carbide (B13C2)

    NASA Astrophysics Data System (ADS)

    An, Qi; Goddard, William A.

    2017-03-01

    Extensive studies of metals and alloys have observed that nanotwins lead to strengthening, but the role of nanotwins in ceramics is not well established. We compare here the shear strength and the deformation mechanism of nanotwinned boron-rich boron carbide (B13C2) with the perfect crystal under both pure shear and biaxial shear deformations. We find that the intrinsic shear strength of crystalline B13C2 is higher than that of crystalline boron carbide (B4C). But nanotwins in B13C2 lower the strength, making it softer than crystalline B4C. This reduction in strength of nanotwinned B13C2 arises from the interaction of the twin boundary with the C-B-C chains that connect the B12 icosahedra.

  20. Strongly polarizing weakly coupled 13C nuclear spins with optically pumped nitrogen-vacancy center

    PubMed Central

    Wang, Ping; Liu, Bao; Yang, Wen

    2015-01-01

    Enhancing the polarization of nuclear spins surrounding the nitrogen-vacancy (NV) center in diamond has recently attracted widespread attention due to its various applications. Here we present an analytical formula that not only provides a clear physical picture for the recently observed polarization reversal of strongly coupled13C nuclei over a narrow range of magnetic field [H. J. Wang et al., Nat. Commun. 4, 1940 (2013)], but also demonstrates the possibility to strongly polarize weakly coupled13C nuclei. This allows sensitive magnetic field control of the 13C nuclear spin polarization for NMR applications and significant suppression of the 13C nuclear spin noise to prolong the NV spin coherence time. PMID:26521962

  1. Deposition of 13C tracer in the JET MkII-HD divertor

    NASA Astrophysics Data System (ADS)

    Jet-Efda Contributors Likonen, J.; Hakola, A.; Strachan, J.; Coad, J. P.; Widdowson, A.; Koivuranta, S.; Hole, D. E.; Mizohata, K.; Rubel, M.; Jachmich, S.; Stamp, M.

    2011-08-01

    Migration of 13C has been investigated at JET by puffing 13CH4 into the outer midplane at the end of the 2007 campaign. The 13C deposition profile was measured with secondary ion mass spectrometry (SIMS) and Rutherford backscattering (RBS) techniques. 13C was mainly found on Tile 1 and near the outer strike point (OSP) on Tile 7. The 13C transport was modelled with the EDGE2D/NIMBUS code. Previous work indicates that migration pathways are: (1) through the main chamber scrape-off layer (SOL), (2) migration through the private flux region (PFR) aided by E × B drifts and (3) neutral migration originating near the strike points. The main contribution of this paper is to further describe the neutral migration.

  2. Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction

    DOEpatents

    Chen, Xian; Gupta, Goutam; Bradbury, E. Morton

    2001-01-01

    Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.

  3. Separation of extra- and intracellular metabolites using hyperpolarized 13C diffusion weighted MR

    NASA Astrophysics Data System (ADS)

    Koelsch, Bertram L.; Sriram, Renuka; Keshari, Kayvan R.; Leon Swisher, Christine; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B.; Wang, Zhen J.; Larson, Peder E. Z.; Kurhanewicz, John

    2016-09-01

    This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized 13C magnetic resonance spectroscopy. Using b-values of up to 15,000 s mm-2, a multi-exponential signal response was measured for hyperpolarized [1-13C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized 13C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized 13C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers.

  4. Water availability and branch length determine delta(13)C in foliage of Pinus pinaster.

    PubMed

    Warren, Charles R.; Adams, Mark A.

    2000-05-01

    The stable carbon isotope composition (delta(13)C) of foliage integrates signals resulting from environmental and hydraulic constraints on water movement and photosynthesis. We used branch length as a simple predictor of hydraulic constraints to water fluxes and determined the response of delta(13)C to varying water availability. Foliage up to 6 years old was taken from Pinus pinaster Ait. trees growing at four sites differing in precipitation (P; 414-984 mm year(-1)) and potential evaporation (ET; 1091-1750 mm year(-1)). Branch length was the principal determinant of temporal trends in delta(13)C. The strong relationship between delta(13)C and branch length was a function of hydraulic conductance, which was negatively correlated with branch length (r(2) = 0.84). Variation in P and ET among sites was reflected in delta(13)C, which was negatively correlated with P/ET (r(2) = 0.66). However, this analysis was confounded by differences in branch length. If the effects of branch length on delta(13)C were first removed, then the 'residual' delta(13)C was more closely related to P/ET (r(2) = 0.99), highlighting the importance of accounting for variation in hydraulic constraints to water flux between sites and years. For plant species that exhibit considerable phenotypic plasticity in response to changes in environment (e.g., variation in leaf area, branch length and number, or stem form), the environmental effects on delta(13)C in foliage can only be reliably assessed if deconvoluted from hydraulic constraints.

  5. Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for (13)C metabolic flux analysis.

    PubMed

    Au, Jennifer; Choi, Jungik; Jones, Shawn W; Venkataramanan, Keerthi P; Antoniewicz, Maciek R

    2014-11-01

    In this work, we provide new insights into the metabolism of Clostridium acetobutylicum ATCC 824 obtained using a systematic approach for quantifying fluxes based on parallel labeling experiments and (13)C-metabolic flux analysis ((13)C-MFA). Here, cells were grown in parallel cultures with [1-(13)C]glucose and [U-(13)C]glucose as tracers and (13)C-MFA was used to quantify intracellular metabolic fluxes. Several metabolic network models were compared: an initial model based on current knowledge, and extended network models that included additional reactions that improved the fits of experimental data. While the initial network model did not produce a statistically acceptable fit of (13)C-labeling data, an extended network model with five additional reactions was able to fit all data with 292 redundant measurements. The model was subsequently trimmed to produce a minimal network model of C. acetobutylicum for (13)C-MFA, which could still reproduce all of the experimental data. The flux results provided valuable new insights into the metabolism of C. acetobutylicum. First, we found that TCA cycle was effectively incomplete, as there was no measurable flux between α-ketoglutarate and succinyl-CoA, succinate and fumarate, and malate and oxaloacetate. Second, an active pathway was identified from pyruvate to fumarate via aspartate. Third, we found that isoleucine was produced exclusively through the citramalate synthase pathway in C. acetobutylicum and that CAC3174 was likely responsible for citramalate synthase activity. These model predictions were confirmed in several follow-up tracer experiments. The validated metabolic network model established in this study can be used in future investigations for unbiased (13)C-flux measurements in C. acetobutylicum.

  6. Tracing the biosynthetic source of essential amino acids in marine turtles using delta13C fingerprints.

    PubMed

    Arthur, Karen E; Kelez, Shaleyla; Larsen, Thomas; Choy, C Anela; Popp, Brian N

    2014-05-01

    Plants, bacteria, and fungi produce essential amino acids (EAAs) with distinctive patterns of delta13C values that can be used as naturally occurring fingerprints of biosynthetic origin of EAAs in a food web. Because animals cannot synthesize EAAs and must obtain them from food, their tissues reflect delta13C(EAA) patterns found in diet, but it is not known how microbes responsible for hindgut fermentation in some herbivores influence the delta13C values of EAAs in their hosts' tissues. We examined whether distinctive delta13C fingerprints of hindgut flora are evident in the tissues of green turtles (Chelonia mydas), which are known to be facultative hindgut fermenters. We determined delta13C(EAA) values in tissues of green turtles foraging herbivorously in neritic habitats of Hawaii and compared them with those from green, olive ridley, and loggerhead turtles foraging carnivorously in oceanic environments of the central and southeast Pacific Ocean. Results of multivariate statistical analysis revealed two distinct groups that could be distinguished based on unique delta13C(EAA) patterns. A three-end-member predictive linear discriminant model indicated that delta13C(EAA) fingerprints existed in the tissues of carnivorous turtles that resembled patterns found in microalgae, which form the base of an oceanic food web, whereas herbivorous turtles derive EAAs from a bacterial or seagrass source. This study demonstrates the capacity for delta13C fingerprinting to establish the biosynthetic origin of EAAs in higher consumers, and that marine turtles foraging on macroalgal diets appear to receive nutritional supplementation from bacterial symbionts in their digestive system.

  7. Multi-year estimates of plant and ecosystem 13C discrimination at AmeriFlux sites

    NASA Astrophysics Data System (ADS)

    Dang, X.; Lai, C.; Hollinger, D. Y.; Bush, S.; Randerson, J. T.; Law, B. E.; Schauer, A. J.; Ehleringer, J.

    2011-12-01

    We estimated plant and ecosystem 13C discrimination continuously at 8 AmeriFlux sites (Howland Forest, Harvard Forest, Wind River Forest, Rannells Prairie, Freeman Ranch, Chestnut Ridge, Metolius, and Marys River fir) over 8 years (2002-2009). We used an observation-based approach from weekly measurements of eddy covariance CO2 fluxes and their 13C/12C ratios to estimate photosynthetic 13C discrimination (△A) and respiration (δ13CR) on seasonal and interannual time scales. The coordinated, systematic flask sampling across the AmeriFlux subnetwork were used for cross-site synthesis of monthly flux estimates [Dang et al. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over 4 flux towers in the U.S.A., Journal of Geophysical Research-Biogeosciences, in press]. Here, we evaluated environmental factors that also influenced temporal variability in △A and δ13CR from daily to interannual time scales, comparing atmospheric 13C/12C measurements, leaf and needle organic matter, and tree ring cellulose. Across these major biomes that dominate the continent, we show differential ecophysiological responses to environmental stresses, among which water availability appeared to be a dominant factor. Our decadal measurement period provided robust estimates of atmospheric 13C discrimination by terrestrial ecosystems, but also suggest regions where enhanced monitoring efforts are required (e.g., 13C/12C emission from fire and urban metabolism; increased temporal resolution of 13C measurements in stress-sensitive ecosystems) to make atmospheric 13C/12C measurements an effective constraint for continental-scale assessments of the terrestrial carbon cycle.

  8. Soil compaction effects on water status of ponderosa pine assessed through 13C/12C composition.

    PubMed

    Gomez, G Armando; Singer, Michael J; Powers, Robert F; Horwath, William R

    2002-05-01

    Soil compaction is a side effect of forest reestablishment practices resulting from use of heavy equipment and site preparation. Soil compaction often alters soil properties resulting in changes in plant-available water. The use of pressure chamber methods to assess plant water stress has two drawbacks: (1) the measurements are not integrative; and (2) the method is difficult to apply extensively to establish seasonal soil water status. We evaluated leaf carbon isotopic composition (delta13C) as a means of assessing effects of soil compaction on water status and growth of young ponderosa pine (Pinus ponderosa var. ponderosa Dougl. ex Laws) stands across a range of soil textures. Leaf delta13C in cellulose and whole foliar tissue were highly correlated. Leaf delta13C in both whole tissue and cellulose (holocellulose) was up to 1.0 per thousand lower in trees growing in non-compacted (NC) loam or clay soils than in compacted (SC) loam or clay soils. Soil compaction had the opposite effect on leaf delta13C in trees growing on sandy loam soil, indicating that compaction increased water availability in this soil type. Tree growth response to compaction also varied with soil texture, with no effect, a negative effect and a positive effect as a result of compaction of loam, clay and sandy loam soils, respectively. There was a significant correlation between 13C signature and tree growth along the range of soil textures. Leaf delta13C trends were correlated with midday stem water potentials. We conclude that leaf delta13C can be used to measure retrospective water status and to assess the impact of site preparation on tree growth. The advantage of the leaf delta13C approach is that it provides an integrative assessment of past water status in different aged leaves.

  9. The effect of chemical processing on the δ 13C value of plant tissue

    NASA Astrophysics Data System (ADS)

    Van de Water, Peter K.

    2002-04-01

    The effect of standard processing techniques on the δ 13C value of plant tissue was tested using species representing the three photosynthetic pathways, including angiosperms and gymnosperms within the C 3 taxonomic division. The species include Cowania mexicana (C 3 angiosperm), Juniperus osteosperma (C 3 gymnosperm), Opuntia spp. (crassulacean acid metabolism [CAM] angiosperm), and Atriplex canescens (C 4 angiosperm). Each species is represented by 5 plants collected at two different sites, for a total of 10 samples. The samples were processed to whole plant tissue, holocellulose, α-cellulose, and nitrocellulose. An additional process was added with the discovery of residual Ca-oxalate crystals in holocellulose samples. Both C 3 species show δ 13C values becoming 13C enriched with increased processing. The CAM representative shows the opposite trend, with 13C depletion during the progression of treatments. The greatest range of values and most inconsistent trends occur in the C 4 representative. Removal of the Ca-oxalate fraction resulted in different mean weight percentages and δ 13C values among the species. Calculated δ 13C values of the Ca-oxalate crystals show depletion from the tissue values in the two C 3 species and enrichment in the C 4 and CAM representatives. The C. mexicana samples show the greatest change between the tissue and Ca-oxalates (7.3‰) but the least mean weight percentage (11%), whereas A. canescens shows the greatest overall change, with a -2.8‰ isotopic shift and over 48% mean weight percentage. Variability within the samples undergoing each treatment remained relatively unchanged even with increased cellulose purity. This paper provides estimates of isotopic offsets necessary to correct from one treatment to another. Significant differences in δ 13C among different treatments confirm the need to state the tissue fraction analyzed when reporting δ 13C results.

  10. Detection of human muscle glycogen by natural abundance /sup 13/C NMR

    SciTech Connect

    Avison, M.J.; Rothman, D.L.; Nadel, E.; Shulman, R.G.

    1988-03-01

    Natural abundance /sup 13/C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated /sup 1/H decoupling was used to obtain decoupled natural abundance /sup 13/C NMR spectra of the C-1 position of muscle glycogen.

  11. (13) C dynamic nuclear polarization using isotopically enriched 4-oxo-TEMPO free radicals.

    PubMed

    Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Lumata, Lloyd

    2016-12-01

    The nitroxide-based free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) is a widely used polarizing agent in NMR signal amplification via dissolution dynamic nuclear polarization (DNP). In this study, we have thoroughly investigated the effects of (15) N and/or (2) H isotopic labeling of 4-oxo-TEMPO free radical on (13) C DNP of 3 M [1-(13) C] sodium acetate samples in 1 : 1 v/v glycerol : water at 3.35 T and 1.2 K. Four variants of this free radical were used for (13) C DNP: 4-oxo-TEMPO, 4-oxo-TEMPO-(15) N, 4-oxo-TEMPO-d16 and 4-oxo-TEMPO-(15) N,d16 . Our results indicate that, despite the striking differences seen in the electron spin resonance (ESR) spectral features, the (13) C DNP efficiency of these (15) N and/or (2) H-enriched 4-oxo-TEMPO free radicals are relatively the same compared with (13) C DNP performance of the regular 4-oxo-TEMPO. Furthermore, when fully deuterated glassing solvents were used, the (13) C DNP signals of these samples all doubled in the same manner, and the (13) C polarization buildup was faster by a factor of 2 for all samples. The data here suggest that the hyperfine coupling contributions of these isotopically enriched 4-oxo-TEMPO free radicals have negligible effects on the (13) C DNP efficiency at 3.35 T and 1.2 K. These results are discussed in light of the spin temperature model of DNP. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Concentric Rings K-Space Trajectory for Hyperpolarized 13C MR Spectroscopic Imaging

    PubMed Central

    Jiang, Wenwen; Lustig, Michael; Larson, Peder E.Z.

    2014-01-01

    Purpose To develop a robust and rapid imaging technique for hyperpolarized 13C MR Spectroscopic Imaging (MRSI) and investigate its performance. Methods A concentric rings readout trajectory with constant angular velocity is proposed for hyperpolarized 13C spectroscopic imaging and its properties are analyzed. Quantitative analyses of design tradeoffs are presented for several imaging scenarios. The first application of concentric rings on 13C phantoms and in vivo animal hyperpolarized 13C MRSI studies were performed to demonstrate the feasibility of the proposed method. Finally, a parallel imaging accelerated concentric rings study is presented. Results The concentric rings MRSI trajectory has the advantages of acquisition timesaving compared to echo-planar spectroscopic imaging (EPSI). It provides sufficient spectral bandwidth with relatively high SNR efficiency compared to EPSI and spiral techniques. Phantom and in vivo animal studies showed good image quality with half the scan time and reduced pulsatile flow artifacts compared to EPSI. Parallel imaging accelerated concentric rings showed advantages over Cartesian sampling in g-factor simulations and demonstrated aliasing-free image quality in a hyperpolarized 13C in vivo study. Conclusion The concentric rings trajectory is a robust and rapid imaging technique that fits very well with the speed, bandwidth, and resolution requirements of hyperpolarized 13C MRSI. PMID:25533653

  13. Tracing carbon monoxide uptake by Clostridium ljungdahlii during ethanol fermentation using (13)C-enrichment technique.

    PubMed

    Yun, Seok-In; Gang, Seong-Joo; Ro, Hee-Myong; Lee, Min-Jin; Choi, Woo-Jung; Hong, Seong-Gu; Kang, Kwon-Kyoo

    2013-05-01

    Conversion of synthesis gas (CO and H2) to ethanol can be an alternative, promising technology to produce biofuels from renewable biomass. To distinguish microbial utilization of carbon source between fructose and synthesis gas CO and to evaluate biological production of ethanol from CO, we adopted the (13)C-enrichment of the CO substrate and hypothesized that the residual increase in δ(13)C of the cell biomass would reflect the increased contribution of (13)C-enriched CO. Addition of synthesis gas to live culture medium for ethanol fermentation by Clostridum ljungdahlii increased the microbial growth and ethanol production. Despite the high (13)C-enrichment in CO (99 atom % (13)C), however, microbial δ(13)C increased relatively small compared to the microbial growth. The uptake efficiency of CO estimated using the isotope mass balance equation was also very low: 0.0014 % for the low CO and 0.0016 % for the high CO treatment. Furthermore, the fast production of ethanol in the early stage indicated that the presence of sugar in fermentation medium would limit the utilization of CO as a carbon source by C. ljungdahlii.

  14. Extreme (13)C depletion of carbonates formed during oxidation of biogenic methane in fractured granite.

    PubMed

    Drake, Henrik; Åström, Mats E; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-05-07

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C13C as light as -69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to -125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane.

  15. Extreme 13C depletion of carbonates formed during oxidation of biogenic methane in fractured granite

    PubMed Central

    Drake, Henrik; Åström, Mats E.; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-01-01

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C13C as light as −69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to −125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane. PMID:25948095

  16. Extreme 13C depletion of carbonates formed during oxidation of biogenic methane in fractured granite

    NASA Astrophysics Data System (ADS)

    Drake, Henrik; Åström, Mats E.; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-05-01

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C13C as light as -69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to -125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane.

  17. 13C-labelled microdialysis studies of cerebral metabolism in TBI patients☆

    PubMed Central

    Carpenter, Keri L.H.; Jalloh, Ibrahim; Gallagher, Clare N.; Grice, Peter; Howe, Duncan J.; Mason, Andrew; Timofeev, Ivan; Helmy, Adel; Murphy, Michael P.; Menon, David K.; Kirkpatrick, Peter J.; Carpenter, T. Adrian; Sutherland, Garnette R.; Pickard, John D.; Hutchinson, Peter J.

    2014-01-01

    Human brain chemistry is incompletely understood and better methodologies are needed. Traumatic brain injury (TBI) causes metabolic perturbations, one result of which includes increased brain lactate levels. Attention has largely focussed on glycolysis, whereby glucose is converted to pyruvate and lactate, and is proposed to act as an energy source by feeding into neurons’ tricarboxylic acid (TCA) cycle, generating ATP. Also reportedly upregulated by TBI is the pentose phosphate pathway (PPP) that does not generate ATP but produces various molecules that are putatively neuroprotective, antioxidant and reparative, in addition to lactate among the end products. We have developed a novel combination of 13C-labelled cerebral microdialysis both to deliver 13C-labelled substrates into brains of TBI patients and recover the 13C-labelled metabolites, with high-resolution 13C NMR analysis of the microdialysates. This methodology has enabled us to achieve the first direct demonstration in humans that the brain can utilise lactate via the TCA cycle. We are currently using this methodology to make the first direct comparison of glycolysis and the PPP in human brain. In this article, we consider the application of 13C-labelled cerebral microdialysis for studying brain energy metabolism in patients. We set this methodology within the context of metabolic pathways in the brain, and 13C research modalities addressing them. PMID:24361470

  18. sup 13 C and sup 18 O isotopic disequilibrium in biological carbonates: I. Patterns

    SciTech Connect

    McConnaughey, T. )

    1989-01-01

    Biological carbonates frequently precipitate out of {sup 18}O and {sup 13}C equilibrium with ambient waters. Two patterns of isotopic disequilibrium are particularly common. Kinetic disequilibria, so designated because they apparently result from kinetic isotope effects during CO{sub 2} hydration and hydroxylation, involve simultaneous depletions of {sup 18}O and {sup 13}C as large as 4{per thousand} and 10 to 15{per thousand}, respectively. Rapid skeletogenesis favors strong kinetic effects, and approximately linear correlations between skeletal {delta}{sup 18}O and {delta}{sup 13}C are common in carbonates showing mainly the kinetic pattern. Metabolic effects involve additional positive or negative modulation of skeletal {delta}{sup 13}C, reflecting changes in the {delta}{sup 13}C of dissolved inorganic carbon, caused mainly by photosynthesis and respiration. Kinetic isotope disequilibria tend to be fairly consistent in rapidly growing parts of photosynthetic corals, and time dependent isotopic variations therefore reflect changes in environmental conditions. {delta}{sup 18}O variations from Galapagos corals yields meaningful clues regarding seawater temperature, while {delta}{sup 13}C variations reflect changes in photosynthesis, modulated by cloudiness.

  19. The paper trail of the 13C of atmospheric CO2 since the industrial revolution period

    NASA Astrophysics Data System (ADS)

    Yakir, Dan

    2011-07-01

    The 13C concentration in atmospheric CO2 has been declining over the past 150 years as large quantities of 13C-depleted CO2 from fossil fuel burning are added to the atmosphere. Deforestation and other land use changes have also contributed to the trend. Looking at the 13C variations in the atmosphere and in annual growth rings of trees allows us to estimate CO2 uptake by land plants and the ocean, and assess the response of plants to climate. Here I show that the effects of the declining 13C trend in atmospheric CO2 are recorded in the isotopic composition of paper used in the printing industry, which provides a well-organized archive and integrated material derived from trees' cellulose. 13C analyses of paper from two European and two American publications showed, on average, a - 1.65 ± 1.00‰ trend between 1880 and 2000, compared with - 1.45 and - 1.57‰ for air and tree-ring analyses, respectively. The greater decrease in plant-derived 13C in the paper we tested than in the air is consistent with predicted global-scale increases in plant intrinsic water-use efficiency over the 20th century. Distinct deviations from the atmospheric trend were observed in both European and American publications immediately following the World War II period.

  20. (13) C Breath Tests Are Feasible in Patients With Extracorporeal Membrane Oxygenation Devices.

    PubMed

    Bednarsch, Jan; Menk, Mario; Malinowski, Maciej; Weber-Carstens, Steffen; Pratschke, Johann; Stockmann, Martin

    2016-07-01

    Temporary extracorporeal membrane oxygenation (ECMO) has been established as an essential part of therapy in patients with pulmonary or cardiac failure. As physiological gaseous exchange is artificially altered in this patient group, it is debatable whether a (13) C-breath test can be carried out. In this proof of technical feasibility report, we assess the viability of the (13) C-breath test LiMAx (maximum liver function capacity) in patients on ECMO therapy. All breath probes for the test device were obtained directly via the membrane oxygenator. Data of four patients receiving liver function assessment with the (13) C-breath test LiMAx while having ECMO therapy were analyzed. All results were compared with validated scenarios of the testing procedures. The LiMAx test could successfully be carried out in every case without changing ECMO settings. Clinical course of the patients ranging from multiorgan failure to no sign of liver insufficiency was in accordance with the results of the LiMAx liver function test. The (13) C-breath test is technically feasible in the context of ECMO. Further evaluation of (13) C-breath test in general would be worthwhile. The LiMAx test as a (13) C-breath test accessing liver function might be of particular predictive interest if patients with ECMO therapy develop multiorgan failure.

  1. (13)C-labelled microdialysis studies of cerebral metabolism in TBI patients.

    PubMed

    Carpenter, Keri L H; Jalloh, Ibrahim; Gallagher, Clare N; Grice, Peter; Howe, Duncan J; Mason, Andrew; Timofeev, Ivan; Helmy, Adel; Murphy, Michael P; Menon, David K; Kirkpatrick, Peter J; Carpenter, T Adrian; Sutherland, Garnette R; Pickard, John D; Hutchinson, Peter J

    2014-06-16

    Human brain chemistry is incompletely understood and better methodologies are needed. Traumatic brain injury (TBI) causes metabolic perturbations, one result of which includes increased brain lactate levels. Attention has largely focussed on glycolysis, whereby glucose is converted to pyruvate and lactate, and is proposed to act as an energy source by feeding into neurons' tricarboxylic acid (TCA) cycle, generating ATP. Also reportedly upregulated by TBI is the pentose phosphate pathway (PPP) that does not generate ATP but produces various molecules that are putatively neuroprotective, antioxidant and reparative, in addition to lactate among the end products. We have developed a novel combination of (13)C-labelled cerebral microdialysis both to deliver (13)C-labelled substrates into brains of TBI patients and recover the (13)C-labelled metabolites, with high-resolution (13)C NMR analysis of the microdialysates. This methodology has enabled us to achieve the first direct demonstration in humans that the brain can utilise lactate via the TCA cycle. We are currently using this methodology to make the first direct comparison of glycolysis and the PPP in human brain. In this article, we consider the application of (13)C-labelled cerebral microdialysis for studying brain energy metabolism in patients. We set this methodology within the context of metabolic pathways in the brain, and (13)C research modalities addressing them.

  2. OEDGE Modeling of {sup 13}C Deposition in the Inner Divertor of DIII-D

    SciTech Connect

    Elder, J; Stangeby, P; Whyte, D; Allen, S; McLean, A; Boedo, J; Bray, B; Brooks, N; Fenstermacher, M; Groth, M; Lasnier, C; Lisgo, S; Rudakov, D; Wampler, W; Watkins, J; West, W

    2004-12-01

    Use of carbon in tokamaks leads to a major tritium retention issue due to co-deposition. To investigate this process a low power (no beams) L-mode experiment was performed on DIII-D in which {sup 13}CH{sub 4} was puffed into the main vessel through the toroidally-symmetric pumping plenum at the top of lower single-null discharges. Subsequently, the {sup 13}C content of tiles taken from the vessel wall was measured. The interpretive OEDGE code was used to model the results. It was found that the {sup 13}C deposition pattern is controlled by: (a) source strength of {sup 13}C{sup +}, (b) radial location of the {sup 13}C{sup +} source, (c) D{sub {perpendicular}}, (d) M{sub {parallel}}, the scrape-off layer parallel Mach number. Best agreement was found for (a) {approx}50% conversion efficiency {sup 13}CH{sub 4} {yields} {sup 13}C{sup +}, (b) {sup 13}C{sup +} source {approx}3.5 cm outboard of separatrix near {sup 13}CH{sub 4} injection location, (c)D{sub {perpendicular}} {approx} 0.3 m{sup 2}s{sup -1}, (d) M{sub {parallel}} {approx} 0.4 toward inside.

  3. Cancer, unproven therapies, and magic.

    PubMed

    Wein, S

    2000-09-01

    Commonly used by cancer patients, unproven therapies are treatments that the practitioner claims can alter the disease process although there is no proof to support the claim. The reasons for the popularity of unproven therapies fall into two categories--practical considerations and fundamental mechanisms. Research has implicated the following practical factors: a pragmatic search for relief of symptoms, expression of a philosophical view, a need to reestablish a sense of control in life, and dissatisfaction with conventional medicine. Fundamental mechanisms include traditional magic, the heroic individual, and a delusional pattern of thinking. Underpinning and generating these factors is the fear of death. Particularly in patients with cancer, this is not only a fear of nonexistence, but of loneliness, the unknown, pain, loss of control, and emptiness. The popularity of unproven therapies poses a challenge to the medical system at large, and oncologists, psycho-oncologists, and palliative-care physicians, in particular. The essence of the challenge is to understand the reasons for the use of unproven therapies, to analyze our own behavior, and conclude what if anything our response should be. Unproven therapies (as with magic, a sense of heroism, and delusional thinking) fulfill the function of resolving the inexplicable and the psychologically painful--i.e., relieving the anxiety associated with cancer.

  4. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples.

  5. Interference effects between /sup 17/O states populated in the /sup 13/C(/sup 6/Li,d)/sup 17/O*. --> cap alpha. +/sup 13/C reaction

    SciTech Connect

    Cardella, G.; Cunsolo, A.; Foti, A.; Imme, G.; Pappalardo, G.; Raciti, G.; Rizzo, F.; Alamanos, N.; Berthier, B.; Saunier, N.

    1987-12-01

    An analysis of the /sup 13/C(/sup 6/Li,d..cap alpha..)/sup 13/C reaction in the collinear (theta/sub d/ = 0/sup 0/) and noncollinear (theta/sub d/ = 10/sup 0/,8/sup 0/) geometry is made for two peaks observed in the deuteron energy spectrum and corresponding to excitation energies of 16.1 and 13.6 MeV in the /sup 17/O nucleus. It is shown that the reaction proceeds via a direct alpha-transfer process which populates doublets of interfering /sup 17/O levels. Spins, weights, and parities of these levels are obtained by means of a least square procedure.

  6. The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer.

    PubMed

    Gutte, Henrik; Hansen, Adam Espe; Johannesen, Helle Hjorth; Clemmensen, Andreas Ettrup; Ardenkjær-Larsen, Jan Henrik; Nielsen, Carsten Haagen; Kjær, Andreas

    2015-01-01

    In recent years there has been an immense development of new targeted anti-cancer drugs. For practicing precision medicine, a sensitive method imaging for non-invasive, assessment of early treatment response and for assisting in developing new drugs is warranted. Magnetic Resonance Spectroscopy (MRS) is a potent technique for non-invasive in vivo investigation of tissue chemistry and cellular metabolism. Hyperpolarization by Dynamic Nuclear Polarization (DNP) is capable of creating solutions of molecules with polarized nuclear spins in a range of biological molecules and has enabled the real-time investigation of in vivo metabolism. The development of this new method has been demonstrated to enhance the nuclear polarization more than 10,000-fold, thereby significantly increasing the sensitivity of the MRS with a spatial resolution to the millimeters and a temporal resolution at the subsecond range. Furthermore, the method enables measuring kinetics of conversion of substrates into cell metabolites and can be integrated with anatomical proton magnetic resonance imaging (MRI). Many nuclei and substrates have been hyperpolarized using the DNP method. Currently, the most widely used compound is (13)C-pyruvate due to favoring technicalities. Intravenous injection of the hyperpolarized (13)C-pyruvate results in appearance of (13)C-lactate, (13)C-alanine and (13)C-bicarbonate resonance peaks depending on the tissue, disease and the metabolic state probed. In cancer, the lactate level is increased due to increased glycolysis. The use of DNP enhanced (13)C-pyruvate has in preclinical studies shown to be a sensitive method for detecting cancer and for assessment of early treatment response in a variety of cancers. Recently, a first-in-man 31-patient study was conducted with the primary objective to assess the safety of hyperpolarized (13)C-pyruvate in healthy subjects and prostate cancer patients. The study showed an elevated (13)C-lactate/(13)C-pyruvate ratio in regions of

  7. The use of dynamic nuclear polarization 13C-pyruvate MRS in cancer

    PubMed Central

    Gutte, Henrik; Hansen, Adam Espe; Johannesen, Helle Hjorth; Clemmensen, Andreas Ettrup; Ardenkjær-Larsen, Jan Henrik; Nielsen, Carsten Haagen; Kjær, Andreas

    2015-01-01

    In recent years there has been an immense development of new targeted anti-cancer drugs. For practicing precision medicine, a sensitive method imaging for non-invasive, assessment of early treatment response and for assisting in developing new drugs is warranted. Magnetic Resonance Spectroscopy (MRS) is a potent technique for non-invasive in vivo investigation of tissue chemistry and cellular metabolism. Hyperpolarization by Dynamic Nuclear Polarization (DNP) is capable of creating solutions of molecules with polarized nuclear spins in a range of biological molecules and has enabled the real-time investigation of in vivo metabolism. The development of this new method has been demonstrated to enhance the nuclear polarization more than 10,000-fold, thereby significantly increasing the sensitivity of the MRS with a spatial resolution to the millimeters and a temporal resolution at the subsecond range. Furthermore, the method enables measuring kinetics of conversion of substrates into cell metabolites and can be integrated with anatomical proton magnetic resonance imaging (MRI). Many nuclei and substrates have been hyperpolarized using the DNP method. Currently, the most widely used compound is 13C-pyruvate due to favoring technicalities. Intravenous injection of the hyperpolarized 13C-pyruvate results in appearance of 13C-lactate, 13C-alanine and 13C-bicarbonate resonance peaks depending on the tissue, disease and the metabolic state probed. In cancer, the lactate level is increased due to increased glycolysis. The use of DNP enhanced 13C-pyruvate has in preclinical studies shown to be a sensitive method for detecting cancer and for assessment of early treatment response in a variety of cancers. Recently, a first-in-man 31-patient study was conducted with the primary objective to assess the safety of hyperpolarized 13C-pyruvate in healthy subjects and prostate cancer patients. The study showed an elevated 13C-lactate/13C-pyruvate ratio in regions of biopsy

  8. Paleoclimate Reconstruction From the d13C Organic and d13C Carbonate Proxies in Triassic Paleosols and Sediments, Ischigualasto Basin Argentina

    NASA Astrophysics Data System (ADS)

    Moore, K. A.; Tabor, N. J.; Montañez, I. P.; Currie, B.; Shipman, T.

    2001-12-01

    Stable carbon isotopes of organic matter and paleosol carbonate from the Triassic Ischigualasto Formation, Argentina are used as a proxy of paleoatmospheric pCO2 and d13CO2. Carbon and Oxygen isotope values were determined for over 100 Triassic pedogenic carbonate nodules and associated organic matter. The d13C of carbonate ranges from -3.29 per mil to -10.56 per mil. The d13C of organic matter ranges from -21.07 per mil to -24.24 per mil. The Hydrogen and Oxygen indices and TOC values indicate that the best preserved organic matter samples yield the most negative d13C values. Reconstructed pCO2 levels were around 1000 ppm V in the early to mid- Triassic and increased to around 2000 ppm V later in the Triassic. This maximum is followed by a fall in pCO2 in the late Triassic. This previously undocumented rapid change in paleo-CO2 levels likely accompanied the evolution of mammal-like reptiles to true dinosaurs as well as rapid climate change.

  9. Metabolite channeling and compartmentation in the human cell line AGE1.HN determined by 13C labeling experiments and 13C metabolic flux analysis.

    PubMed

    Niklas, Jens; Sandig, Volker; Heinzle, Elmar

    2011-12-01

    This study focused on analyzing active pathways and the metabolic flux distribution in human neuronal AGE1.HN cells that is a desirable basis for a rational design and optimization of producing cell lines and production processes for biopharmaceuticals. (13)C-labeling experiments and (13)C metabolic flux analysis were conducted using glucose, glutamine, alanine and lactate tracers in parallel experiments. Connections between cytosolic and mitochondrial metabolite pools were verified, e.g., flux from TCA cycle metabolite (13)C to glycolytic metabolites. It was also found that lactate and alanine are produced from the same pyruvate pool and that consumed alanine is mainly directly metabolized and secreted as lactate. Activity of the pentose phosphate pathway was low being around 2.3% of the glucose uptake flux. This might be compensated in AGE1.HN by high mitochondrial malic enzyme flux producing NADPH. Mitochondrial pyruvate transport was almost zero. Instead pyruvate carbons were channeled via oxaloacetate into the TCA cycle which was mainly fed via α-ketoglutarate and oxaloacetate during the investigated phase. The data indicate that further optimization of this cell line should focus on the improved substrate usage which can be accomplished by an improved connectivity between glycolytic and mitochondrial pyruvate pools or by better control of the substrate uptake.

  10. On the use of phloem sap δ13C to estimate canopy carbon discrimination

    NASA Astrophysics Data System (ADS)

    Rascher, Katherine; Máguas, Cristina; Werner, Christiane

    2010-05-01

    Although the carbon stable isotope composition (d13C) of bulk leaf material is a good integrative parameter of photosynthetic discrimination and can be used as a reliable ecological index of plant functioning; it is not a good tracer of short-term changes in photosynthetic discrimination. In contrast, d13C of phloem sap is potentially useful as an indicator of short-term changes in canopy photosynthetic discrimination. However, recent research indicates that d13C signatures may be substantially altered by metabolic processes downstream of initial leaf-level carbon fixation (e.g. post-photosynthetic fractionation). Accordingly, before phloem sap d13C can be used as a proxy for canopy level carbon discrimination an understanding of factors influencing the degree and magnitude of post-photosynthetic fractionation and how these vary between species is of paramount importance. In this study, we measured the d13C signature along the basipetal transport pathway in two co-occurring tree species in the field - an understory invasive exotic legume, Acacia longifolia, and a native pine, Pinus pinaster. We measured d13C of bulk leaf and leaf water soluble organic matter (WSOM), phloem sap sampled at two points along the plant axis and leaf and root dark respiration. In general, species differences in photosynthetic discrimination resulted in more enriched d13C values in the water-conserving P. pinaster relative to the water-spending A. longifolia. Post-photosynthetic fractionation led to differences in d13C of carbon pools along the plant axis with progressively more depleted d13C from the canopy to the trunk (~6.5 per mil depletion in A. longifolia and ~0.8per mil depletion in P. pinaster). Leaf and root respiration, d13C, were consistently enriched relative to putative substrates. We hypothesize that the pronounced enrichment of leaf respired CO2 relative to leaf WSOM may have left behind relatively depleted carbon to be loaded into the phloem resulting in d13C depletion

  11. 13C-phenylalanine breath test detects altered phenylalanine kinetics in schizophrenia patients

    PubMed Central

    Teraishi, T; Ozeki, Y; Hori, H; Sasayama, D; Chiba, S; Yamamoto, N; Tanaka, H; Iijima, Y; Matsuo, J; Kawamoto, Y; Kinoshita, Y; Hattori, K; Ota, M; Kajiwara, M; Terada, S; Higuchi, T; Kunugi, H

    2012-01-01

    Phenylalanine is an essential amino acid required for the synthesis of catecholamines including dopamine. Altered levels of phenylalanine and its metabolites in blood and cerebrospinal fluid have been reported in schizophrenia patients. This study attempted to examine for the first time whether phenylalanine kinetics is altered in schizophrenia using L-[1-13C]phenylalanine breath test (13C-PBT). The subjects were 20 chronically medicated schizophrenia patients (DSM-IV) and the same number of age- and sex-matched controls. 13C-phenylalanine (99 atom% 13C; 100 mg) was administered orally and the breath 13CO2 /12CO2 ratio was monitored for 120 min. The possible effect of antipsychotic medication (risperidone (RPD) or haloperidol (HPD) treatment for 21 days) on 13C-PBT was examined in rats. Body weight (BW), age and diagnostic status were significant predictors of the area under the curve of the time course of Δ13CO2 (‰) and the cumulative recovery rate (CRR) at 120 min. A repeated measures analysis of covariance controlled for age and BW revealed that the patterns of CRR change over time differed between the patients and controls and that Δ13CO2 was lower in the patients than in the controls at all sampling time points during the 120 min test, with an overall significant difference between the two groups. Chronic administration of RPD or HPD had no significant effect on 13C-PBT indices in rats. Our results suggest that 13C-PBT is a novel laboratory test that can detect altered phenylalanine kinetics in chronic schizophrenia patients. Animal experiments suggest that the observed changes are unlikely to be attributable to antipsychotic medication. PMID:22832963

  12. 13C/12C isotope ratio MS analysis of testosterone, in chemicals and pharmaceutical preparations.

    PubMed

    de la Torre, X; González, J C; Pichini, S; Pascual, J A; Segura, J

    2001-02-01

    The 13C/12C ratio can be used to detect testosterone misuse in sport because (semi)-synthetic testosterone is supposed to have a 13C abundance different from that of endogenous natural human testosterone. In this study, gas chromatography/combustion isotope ratio mass spectrometry (GC/C/IRMS) analysis for the measurement of the delta 13C/1000 value of testosterone from esterified forms of 13 pharmaceutical preparations, six reagent grade chemicals and three bulk materials (raw materials used in pharmaceutical proarations) obtained world-wide was investigated after applying a strong acidic solvolytic procedure. Mean delta 13C/1000 values of non esterified (free) testosterone from chemicals and bulk materials of several testosterone esters were in the range: -25.91/-32.82/1000 while the value obtained for a (semi)-synthetic, reagent grade, free testosterone was -27.36/1000. The delta 13C/1000 results obtained for testosterone from the pharmaceuticals investigated containing testosterone esters were quite homogeneous (mean and S.D. of delta 13C/1000 values of free testosterone: 27.43 +/- 0.76/1000), being the range between -26.18 and -30.04/1000. Values described above were clearly different from those reported by several authors for endogenous natural human testosterone and its main metabolites excreted into the urine in non-consumers of testosterone (delta 13C/1000 range: from -21.3 to -24.4/1000), while they were similar to those of urinary testosterone and metabolites from individuals treated with testosterone esters and testosterone precursors. This finding justifies the fact that administration of these pharmaceutical formulations led to a statistical decrease of carbon isotope ratio of urinary testosterone and its main metabolites in treated subjects.

  13. An overview of methods using 13C for improved compound identification in metabolomics and natural products

    PubMed Central

    Clendinen, Chaevien S.; Stupp, Gregory S.; Ajredini, Ramadan; Lee-McMullen, Brittany; Beecher, Chris; Edison, Arthur S.

    2015-01-01

    Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize 13C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) 13C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two 13C-based approaches. For samples at natural abundance, we have developed a workflow to obtain 13C–13C and 13C–1H statistical correlations using 1D 13C and 1H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct 13C–13C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which 13C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest. PMID:26379677

  14. Ecological processes dominate the 13C land disequilibrium in a Rocky Mountain subalpine forest

    NASA Astrophysics Data System (ADS)

    Bowling, D. R.; Ballantyne, A. P.; Miller, J. B.; Burns, S. P.; Conway, T. J.; Menzer, O.; Stephens, B. B.; Vaughn, B. H.

    2014-04-01

    Fossil fuel combustion has increased atmospheric CO2 by ≈ 115 µmol mol-1 since 1750 and decreased its carbon isotope composition (δ13C) by 1.7-2‰ (the 13C Suess effect). Because carbon is stored in the terrestrial biosphere for decades and longer, the δ13C of CO2 released by terrestrial ecosystems is expected to differ from the δ13C of CO2 assimilated by land plants during photosynthesis. This isotopic difference between land-atmosphere respiration (δR) and photosynthetic assimilation (δA) fluxes gives rise to the 13C land disequilibrium (D). Contemporary understanding suggests that over annual and longer time scales, D is determined primarily by the Suess effect, and thus, D is generally positive (δR > δA). A 7 year record of biosphere-atmosphere carbon exchange was used to evaluate the seasonality of δA and δR, and the 13C land disequilibrium, in a subalpine conifer forest. A novel isotopic mixing model was employed to determine the δ13C of net land-atmosphere exchange during day and night and combined with tower-based flux observations to assess δA and δR. The disequilibrium varied seasonally and when flux-weighted was opposite in sign than expected from the Suess effect (D = -0.75 ± 0.21‰ or -0.88 ± 0.10‰ depending on method). Seasonality in D appeared to be driven by photosynthetic discrimination (Δcanopy) responding to environmental factors. Possible explanations for negative D include (1) changes in Δcanopy over decades as CO2 and temperature have risen, and/or (2) post-photosynthetic fractionation processes leading to sequestration of isotopically enriched carbon in long-lived pools like wood and soil.

  15. Age-related variations in delta(13)C of ecosystem respiration across a coniferous forest chronosequence in the Pacific Northwest.

    PubMed

    Fessenden, Julianna E; Ehleringer, James R

    2002-02-01

    We tested the hypothesis that forest age influences the carbon isotope ratio (delta13C) of carbon reservoirs and CO2 at local and regional levels. Carbon isotope ratios of ecosystem respiration (delta13C(R)), soil respiration (delta13C(R-soil)), bulk needle tissue (delta13C(P)) and soil organic carbon (delta(13)C(SOC)) were measured in > 450-, 40- and 20-year-old temperate, mixed coniferous forests in southern Washington, USA. Values of delta13C(R), delta13C(R-soil), delta13C(P) and delta13C(SOC) showed consistent enrichment with increasing stand age. Between the youngest and oldest forests there was an approximately 1 per thousand enrichment in delta13C(P) (at similar canopy levels), delta13C(SOC) (throughout the soil column), delta13C(R-soil) (during the wet season) and delta13C(R) (during the dry season). Mean values of delta13C(R) were -25.9, -26.5 and -27.0 per thousand for the 450-, 40- and 20-year-old forests, respectively. Both delta13C(R-soil) and the difference between delta13C(R) and delta13C(R-soil) were more 13C enriched in older forests than in young forest: delta13C(R) - delta13C(R-soil) = 2.3, 1.1 and 0.5 per thousand for the 450-, 40- and 20-year-old forests, respectively. Values of delta(13)C(P) were proportionally more depleted relative to delta13C(R): delta13C(R) - delta13C(P) = 0.5, 2.2 and 2.5 per thousand for the 450-, 40- and 20-year-old forests, respectively. Values of delta13C(P) were most 13C-enriched at the top of the canopy and in the oldest forest regardless of season (overall values were -26.9, -28.7 and -29.4 per thousand for the 450-, 40- and 20-year-old forests, respectively). Values of delta13C(SOC) from shallow soil depths were similar to delta13C(P) values of upper- and mid-canopy needles. All delta13C data are consistent with the hypothesis that a decrease in stomatal conductance associated with decreased hydraulic conductance leads to increased CO2 diffusional limitations in older coniferous trees. The strong associations

  16. Magic wavelengths for terahertz clock transitions

    SciTech Connect

    Zhou Xiaoji; Xu Xia; Chen Xuzong; Chen Jingbiao

    2010-01-15

    Magic wavelengths for laser trapping of boson isotopes of alkaline-earth metal atoms Sr, Ca, and Mg are investigated while considering terahertz clock transitions between the {sup 3}P{sub 0}, {sup 3}P{sub 1}, and {sup 3}P{sub 2} metastable triplet states. Our calculation shows that magic wavelengths for laser trapping do exist. This result is important because those metastable states have already been used to make accurate clocks in the terahertz frequency domain. Detailed discussions for magic wavelengths for terahertz clock transitions are given in this article.

  17. Magic wavelengths for terahertz clock transitions

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoji; Xu, Xia; Chen, Xuzong; Chen, Jingbiao

    2010-01-01

    Magic wavelengths for laser trapping of boson isotopes of alkaline-earth metal atoms Sr, Ca, and Mg are investigated while considering terahertz clock transitions between the 3P0, 3P1, and 3P2 metastable triplet states. Our calculation shows that magic wavelengths for laser trapping do exist. This result is important because those metastable states have already been used to make accurate clocks in the terahertz frequency domain. Detailed discussions for magic wavelengths for terahertz clock transitions are given in this article.

  18. Multi-objective experimental design for (13)C-based metabolic flux analysis.

    PubMed

    Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel

    2015-10-01

    (13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi

  19. Anaerobic Methane Oxidation in Soils - revealed using 13C-labelled methane tracers

    NASA Astrophysics Data System (ADS)

    Riekie, G. J.; Baggs, E. M.; Killham, K. S.; Smith, J. U.

    2008-12-01

    In marine sediments, anaerobic methane oxidation is a significant biogeochemical process limiting methane flux from ocean to atmosphere. To date, evidence for anaerobic methane oxidation in terrestrial environments has proved elusive, and its significance is uncertain. In this study, an isotope dilution method specifically designed to detect the process of anaerobic methane oxidation in methanogenic wetland soils is applied. Methane emissions of soils from three contrasting permanently waterlogged sites in Scotland are investigated in strictly anoxic microcosms to which 13C- labelled methane is added, and changes in the concentration and 12C/13C isotope ratios of methane and carbon dioxide are subsequently measured and used to calculate separate the separate components of the methane flux. The method used takes into account the 13C-methane associated with methanogenesis, and the amount of methane dissolved in the soil. The calculations make no prior assumptions about the kinetics of methane production or oxidation. The results indicate that methane oxidation can take place in anoxic soil environments. The clearest evidence for anaerobic methane oxidation is provided by soils from a minerotrophic fen site (pH 6.0) in Bin Forest underlain by ultra-basic and serpentine till. In the fresh soil anoxic microcosms, net consumption methane was observed, and the amount of headspace 13C-CO2 increased at a greater rate than the 12+13C-CO2, further proof of methane oxidation. A net increase in methane was measured in microcosms of soil from Murder Moss, an alkaline site, pH 6.5, with a strong calcareous influence. However, the 13C-CH4 data provided evidence of methane oxidation, both in the disappearance of C- CH4 and appearance of smaller quantities of 13C-CO2. The least alkaline (pH 5.5) microcosms, of Gateside Farm soil - a granitic till - exhibited net methanogenesis and the changes in 13C-CH4 and 13C-CO2 here followed the pattern expected if no methane is consumed

  20. Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Reed, Galen Durant

    Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.

  1. Monitoring electron donor metabolism under variable electron acceptor conditions using 13C-labeled lactate

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.; Yang, L.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Three sets of flow-through columns constructed with aquifer sediment from Hanford (WA) were used to study reduction of Cr(VI) to poorly soluble Cr(III) under denitrifying, sulfate-reducing/fermentative, and iron-reducing conditions with lactate as the electron donor. In order to understand the relationship between electron donors and biomarkers, and to determine the differences in carbon isotope fractionation resulting from different microbial metabolic processes, we monitored the variation in carbon isotopes in dissolved inorganic carbon (DIC), in total organic carbon (TOC), and in lactate, acetate and propionate. The greatest enrichment in 13C in columns was observed under denitrifying conditions. The δ13C of DIC increased by ~1750 to ~2000‰ fifteen days after supplementation of natural abundance lactate with a 13C-labeled lactate tracer (for an influent δ13C of ~2250‰ for the lactate) indicating almost complete oxidation of the electron donor. The denitrifying columns were among the most active columns and had the highest cell counts and the denitrification rate was highly correlated with Cr(VI) reduction rate. δ13C values of DIC ranged from ~540 to ~1170‰ for iron-reducing conditions. The lower enrichment in iron columns was related to the lower biological activity observed with lower yields of RNA and cell numbers in the column effluents. The carbon isotope shift in the sulfate-reducing ~198 to ~1960‰ for sulfate-reducing conditions reflecting the lower levels of the lactate in these columns. Additionally, in two of the sulfate columns, almost complete fermentation of the lactate occurred, producing acetate and propionate with the labeled carbon signature, but relatively smaller amounts of inorganic carbon. For all electron-accepting conditions, TOC yielded similar δ13C values as lactate stock solutions. Differences in C use efficiency, metabolic rate or metabolic pathway contributed to the differing TOC δ13C to DIC δ13C ratios between treatments

  2. A Method to Constrain Genome-Scale Models with 13C Labeling Data

    PubMed Central

    García Martín, Héctor; Kumar, Vinay Satish; Weaver, Daniel; Ghosh, Amit; Chubukov, Victor; Mukhopadhyay, Aindrila; Arkin, Adam; Keasling, Jay D.

    2015-01-01

    Current limitations in quantitatively predicting biological behavior hinder our efforts to engineer biological systems to produce biofuels and other desired chemicals. Here, we present a new method for calculating metabolic fluxes, key targets in metabolic engineering, that incorporates data from 13C labeling experiments and genome-scale models. The data from 13C labeling experiments provide strong flux constraints that eliminate the need to assume an evolutionary optimization principle such as the growth rate optimization assumption used in Flux Balance Analysis (FBA). This effective constraining is achieved by making the simple but biologically relevant assumption that flux flows from core to peripheral metabolism and does not flow back. The new method is significantly more robust than FBA with respect to errors in genome-scale model reconstruction. Furthermore, it can provide a comprehensive picture of metabolite balancing and predictions for unmeasured extracellular fluxes as constrained by 13C labeling data. A comparison shows that the results of this new method are similar to those found through 13C Metabolic Flux Analysis (13C MFA) for central carbon metabolism but, additionally, it provides flux estimates for peripheral metabolism. The extra validation gained by matching 48 relative labeling measurements is used to identify where and why several existing COnstraint Based Reconstruction and Analysis (COBRA) flux prediction algorithms fail. We demonstrate how to use this knowledge to refine these methods and improve their predictive capabilities. This method provides a reliable base upon which to improve the design of biological systems. PMID:26379153

  3. Production and NMR signal optimization of hyperpolarized 13C-labeled amino acids

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Ferguson, Sarah; Kiswandhi, Andhika; Lumata, Lloyd

    Amino acids are targeted nutrients for consumption by cancers to sustain their rapid growth and proliferation. 13C-enriched amino acids are important metabolic tracers for cancer diagnostics using nuclear magnetic resonance (NMR) spectroscopy. Despite this diagnostic potential, 13C NMR of amino acids however is hampered by the inherently low NMR sensitivity of the 13C nuclei. In this work, we have employed a physics technique known as dynamic nuclear polarization (DNP) to enhance the NMR signals of 13C-enriched amino acids. DNP works by transferring the high polarization of electrons to the nuclear spins via microwave irradiation at low temperature and high magnetic field. Using a fast dissolution method in which the frozen polarized samples are dissolved rapidly with superheated water, injectable solutions of 13C-amino acids with highly enhanced NMR signals (by at least 5,000-fold) were produced at room temperature. Factors that affect the NMR signal enhancement levels such as the choice of free radical polarizing agents and sample preparation will be discussed along with the thermal mixing physics model of DNP. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  4. A predictive tool for assessing (13)C NMR chemical shifts of flavonoids.

    PubMed

    Burns, Darcy C; Ellis, David A; March, Raymond E

    2007-10-01

    Herein are presented the (1)H and (13)C NMR data for seven monohydroxyflavones (3-, 5-, 6-, 7-, 2'-, 3'-, and 4'-hydroxyflavone), five dihydroxyflavones (3,2'-, 3,3'-, 3,4'-, 3,6-, 2',3'-dihydroxyflavone), a trihydroxyflavone (apigenin; 5,7,4'-trihydroxyflavone), a tetrahydroxyflavone (luteolin; 5,7,3',4'-tetrahydroxyflavone), and three glycosylated hydroxyflavones (orientin; luteolin-6C-beta-D-glucoside, homoorientin; luteolin-8C-beta-D-glucoside, vitexin; apigenin-8C-beta-D-glucoside). When these NMR spectra are compared, it is possible to assess the impact of flavone modification and to elucidate detailed structural and electronic information for these flavonoids. A simple predictive tool for assigning flavonoid (13)C chemical shifts, which is based on the cumulative differences between the monohydroxyflavones and flavone (13)C chemical shifts, is demonstrated. The tool can be used to accurately predict (13)C flavonoid chemical shifts and it is expected to be useful for rapid assessment of flavonoid (13)C NMR spectra and for assigning substitution patterns in newly isolated flavonoids.

  5. Global-mean marine δ13C and its uncertainty in a glacial state estimate

    NASA Astrophysics Data System (ADS)

    Gebbie, Geoffrey; Peterson, Carlye D.; Lisiecki, Lorraine E.; Spero, Howard J.

    2015-10-01

    A paleo-data compilation with 492 δ13C and δ18O observations provides the opportunity to better sample the Last Glacial Maximum (LGM) and infer its global properties, such as the mean δ13C of dissolved inorganic carbon. Here, the paleo-compilation is used to reconstruct a steady-state water-mass distribution for the LGM, that in turn is used to map the data onto a 3D global grid. A global-mean marine δ13C value and a self-consistent uncertainty estimate are derived using the framework of state estimation (i.e., combining a numerical model and observations). The LGM global-mean δ13C is estimated to be 0.14‰ ± 0.20‰ at the two standard error level, giving a glacial-to-modern change of 0.32‰ ± 0.20‰. The magnitude of the error bar is attributed to the uncertain glacial ocean circulation and the lack of observational constraints in the Pacific, Indian, and Southern Oceans. To halve the error bar, roughly four times more observations are needed, although strategic sampling may reduce this number. If dynamical constraints can be used to better characterize the LGM circulation, the error bar can also be reduced to 0.05 to 0.1‰, emphasizing that knowledge of the circulation is vital to accurately map δ13C in three dimensions.

  6. Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging.

    PubMed

    Keshari, Kayvan R; Kurhanewicz, John; Bok, Robert; Larson, Peder E Z; Vigneron, Daniel B; Wilson, David M

    2011-11-15

    Reduction and oxidation (redox) chemistry is involved in both normal and abnormal cellular function, in processes as diverse as circadian rhythms and neurotransmission. Intracellular redox is maintained by coupled reactions involving NADPH, glutathione (GSH), and vitamin C, as well as their corresponding oxidized counterparts. In addition to functioning as enzyme cofactors, these reducing agents have a critical role in dealing with reactive oxygen species (ROS), the toxic products of oxidative metabolism seen as culprits in aging, neurodegenerative disease, and ischemia/ reperfusion injury. Despite this strong relationship between redox and human disease, methods to interrogate a redox pair in vivo are limited. Here we report the development of [1-(13)C] dehydroascorbate [DHA], the oxidized form of Vitamin C, as an endogenous redox sensor for in vivo imaging using hyperpolarized (13)C spectroscopy. In murine models, hyperpolarized [1-(13)C] DHA was rapidly converted to [1-(13)C] vitamin C within the liver, kidneys, and brain, as well as within tumor in a transgenic prostate cancer mouse. This result is consistent with what has been previously described for the DHA/Vitamin C redox pair, and points to a role for hyperpolarized [1-(13)C] DHA in characterizing the concentrations of key intracellular reducing agents, including GSH. More broadly, these findings suggest a prognostic role for this new redox sensor in determining vulnerability of both normal and abnormal tissues to ROS.

  7. Profiling human gut bacterial metabolism and its kinetics using [U-13C]glucose and NMR.

    PubMed

    de Graaf, Albert A; Maathuis, Annet; de Waard, Pieter; Deutz, Nicolaas E P; Dijkema, Cor; de Vos, Willem M; Venema, Koen

    2010-01-01

    This study introduces a stable-isotope metabolic approach employing [U-(13)C]glucose that, as a novelty, allows selective profiling of the human intestinal microbial metabolic products of carbohydrate food components, as well as the measurement of the kinetics of their formation pathways, in a single experiment. A well-established, validated in vitro model of human intestinal fermentation was inoculated with standardized gastrointestinal microbiota from volunteers. After culture stabilization, [U-(13)C]glucose was added as an isotopically labeled metabolic precursor. System lumen and dialysate samples were taken at regular intervals. Metabolite concentrations and isotopic labeling were determined by NMR, GC, and enzymatic methods. The main microbial metabolites were lactate, acetate, butyrate, formate, ethanol, and glycerol. They together accounted for a (13)C recovery rate as high as 91.2%. Using an NMR chemical shift prediction approach, several minor products that showed (13)C incorporation were identified as organic acids, amino acids, and various alcohols. Using computer modeling of the (12)C contents and (13)C labeling kinetics, the metabolic fluxes in the gut microbial pathways for synthesis of lactate, formate, acetate, and butyrate were determined separately for glucose and unlabeled background substrates. This novel approach enables the study of the modulation of human intestinal function by single nutrients, providing a new rational basis for achieving control of the short-chain fatty acids profile by manipulating substrate and microbiota composition in a purposeful manner.

  8. A Peptide-Based Method for 13C Metabolic Flux Analysis in Microbial Communities

    PubMed Central

    Ghosh, Amit; Nilmeier, Jerome; Weaver, Daniel; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Martín, Héctor García

    2014-01-01

    The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13C Metabolic Flux Analysis (13C MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13C labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained for each of the members of the community. Here we propose a new type of 13C MFA that infers fluxes based on peptide labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular metabolic fluxes in the same way as through the standard amino acid based 13C MFA, and quantify the amount of information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small number of peptides we can counter this information loss. We computationally tested this method with a well-characterized simple microbial community consisting of two species. PMID:25188426

  9. Emission of highly 13C-depleted methane from an upland blanket mire

    NASA Astrophysics Data System (ADS)

    Bowes, Helen L.; Hornibrook, Edward R. C.

    2006-02-01

    Rates and δ13C values of CH4 flux are reported from an upland blanket mire (Blaen Fign) situated in Wales UK. The δ13C values of CH4 flux were similar from Sphagnum and vascular flora dominated areas despite flux rates being an order of magnitude greater from the latter. Methane flux was 13C-depleted relative to belowground CH4, indicating that transport occurred predominately via passive diffusion through vascular flora and that pore water diffusion and ebullition contributed little to CH4 flux. The strong influence of vascular flora abundance on CH4 flux strength suggests that any factors altering vegetation assemblages in blanket mires will likely impact CH4 emission rates. Methane flux from Blaen Fign was highly 13C-depleted compared to emissions from minerotrophic wetlands, suggesting that δ13C values may be useful for tracing CH4 flux from blanket mires and other types of ombrogenous peatlands to the global CH4 budget.

  10. The magic of relay mirrors

    NASA Astrophysics Data System (ADS)

    Duff, Edward A.; Washburn, Donald C.

    2004-09-01

    Laser weapon systems would be significantly enhanced with the addition of high altitude or space-borne relay mirrors. Such mirrors, operating alone with a directed energy source, or many in a series fashion, can be shown to effectively move the laser source to the last, so-called fighting mirror. This "magically" reduces the range to target and offers to enhance the performance of directed energy systems like the Airborne Laser and even ground-based or ship-based lasers. Recent development of high altitude airships will be shown to provide stationary positions for such relay mirrors thereby enabling many new and important applications for laser weapons. The technical challenges to achieve this capability are discussed.

  11. Insurance, risk, and magical thinking.

    PubMed

    Tykocinski, Orit E

    2008-10-01

    The possession of an insurance policy may not only affect the severity of a potential loss but also its perceived probability. Intuitively, people may feel that if they are insured nothing bad is likely to happen, but if they do not have insurance they are at greater peril. In Experiment 1, respondents who were reminded of their medical insurance felt they were less likely to suffer health problems in the future compared to people who were not reminded of their medical insurance. In Experiment 2a, participants who were unable to purchase travel insurance judged the probability of travel-related calamities higher compared to those who were insured. These results were replicated in Experiment 3a in a simulation of car accident insurance. The findings are explained in terms of intuitive magical thinking, specifically, the negative affective consequences of "tempting fate" and the sense of safety afforded by the notion of "being covered."

  12. [Magical and religious healing in Byzantium].

    PubMed

    Józsa, László

    2010-01-01

    Religious and magical ways of healing have been known and practiced since the very beginning of human history. In the present article, the Byzantine philosophical, cultural, historical and "methodological" aspects of this way of healing are discussed. The article outlines the development of magic healing in Byzantium from the 4th to the 15th century. During this period magical therapy included the cult of patron saints--listed by the author--and pleading for divine intervention as well. The activity of "anargyroi" and the use of magical objects and amulets is also discussed in detail. Exorcism was also a part of religious therapy both against psychical and somatical diseases. In early Christianity, and especially in Byzantium the devil or other demons were also supposed to cause various somatical or psychical illnesses by "intrusion" or "internalisation," i.e. by possession or obsession of their victims.

  13. Magical thinking in narratives of adolescent cutters.

    PubMed

    Gregory, Robert J; Mustata, Georgian T

    2012-08-01

    Adolescents sometimes cut themselves to relieve distress; however, the mechanism is unknown. Previous studies have linked self-injury to deficits in processing emotions symbolically through language. To investigate expressive language of adolescent cutters, the authors analyzed 100 narratives posted on the Internet. Most narratives (n = 66) displayed idiosyncratic use of language indicating poor differentiation between the real and the symbolic, such as blood substituting for negative emotions, which can then be released from the self; or emotional pain magically transforming into physical pain, which can then be managed. This kind of magical thinking correlated with cutting to relieve distress, to see blood, and to feel pain, but negatively correlated with complex representation of people, understanding social causality, and self-esteem. The results suggest that magical thinking represents a pre-symbolic mental state that processes and organizes distressing emotions through body schema. Magical thinking thus provides a plausible mechanism for why cutting works.

  14. Ruminant Methane δ (13C/12C) - Values: Relation to Atmospheric Methane

    NASA Astrophysics Data System (ADS)

    Rust, Fleet

    1981-03-01

    The δ (13C/12C) - values of methane produced by fistulated steers, dairy cattle, and wethers, and dairy and beef cattle herds show a bimodal distribution that appears to be correlated with the plant type (C3 or C4, that is, producing either a three- or a four-carbon acid in the first step of photosynthesis) consumed by the animals. These results indicate that cattle and sheep, on a global basis, release methane with an average δ (13C/12C) value of -60 and -63 per mil, respectively. Together they are a source of atmospheric methane whose δ (13C/12C) is similar to published values for marsh gas and cannot explain the 20 per mil higher values for atmospheric methane.

  15. Parallel labeling experiments for pathway elucidation and (13)C metabolic flux analysis.

    PubMed

    Antoniewicz, Maciek R

    2015-12-01

    Metabolic pathway models provide the foundation for quantitative studies of cellular physiology through the measurement of intracellular metabolic fluxes. For model organisms metabolic models are well established, with many manually curated genome-scale model reconstructions, gene knockout studies and stable-isotope tracing studies. However, for non-model organisms a similar level of knowledge is often lacking. Compartmentation of cellular metabolism in eukaryotic systems also presents significant challenges for quantitative (13)C-metabolic flux analysis ((13)C-MFA). Recently, innovative (13)C-MFA approaches have been developed based on parallel labeling experiments, the use of multiple isotopic tracers and integrated data analysis, that allow more rigorous validation of pathway models and improved quantification of metabolic fluxes. Applications of these approaches open new research directions in metabolic engineering, biotechnology and medicine.

  16. Following Glycolysis Using 13C NMR: An Experiment Adaptable to Different Undergraduate Levels

    NASA Astrophysics Data System (ADS)

    Mega, T. L.; Carlson, C. B.; Cleary, D. A.

    1997-12-01

    This paper describes a laboratory exercise where the glycolysis of [1-13C] glucose under anaerobic conditions was followed using 13C NMR spectroscopy. The exercise is described in terms of its suitability for a variety of different undergraduate levels, although the emphasis in this paper is on its use in a n advanced chemistry laboratory course. The kinetics of the loss of glucose and the production of ethanol were investigated and found not to fit simple first or second order kinetics. In addition, the relative reaction rates of the two anomeric forms of glucose were analyzed, and it was determined that the a anomeric form reacted faster than the β anomeric form. Using proton-coupled 13C NMR, some of the metabolites were identified including ethanol (major) and glycerol (minor). Reaction and spectroscopic details are included.

  17. Anthropogenic and solar forcing in δ13C time pattern of coralline sponges.

    PubMed

    Madonia, Paolo; Reitner, Joachim

    2014-01-01

    We present the results of a re-analysis of a previously published carbon isotope data-set related to coralline sponges in the Caribbean Sea. The original interpretation led to the discrimination between a pre-industrial period, with a signal controlled by solar-induced climatic variations, followed by the industrial era, characterized by a progressive δ(13)C negative shift due to the massive anthropogenic carbon emissions. Our re-analysis allowed to extract from the raw isotopic data evidence of a solar forcing still visible during the industrial era, with a particular reference to the 88-year Gleissberg periods. These signals are related to slope changes in both the δ(13)C versus time and the δ(13)C versus carbon emission curves.

  18. Transmembrane exchange of hyperpolarized 13C-urea in human erythrocytes: subminute timescale kinetic analysis.

    PubMed

    Pagès, Guilhem; Puckeridge, Max; Liangfeng, Guo; Tan, Yee Ling; Jacob, Chacko; Garland, Marc; Kuchel, Philip W

    2013-11-05

    The rate of exchange of urea across the membranes of human erythrocytes (red blood cells) was quantified on the 1-s to 2-min timescale. (13)C-urea was hyperpolarized and subjected to rapid dissolution and the previously reported (partial) resolution of (13)C NMR resonances from the molecules inside and outside red blood cells in suspensions was observed. This enabled a stopped-flow type of experiment to measure the (initially) zero-trans transport of urea with sequential single-pulse (13)C NMR spectra, every second for up to ~2 min. Data were analyzed using Bayesian reasoning and a Markov chain Monte Carlo method with a set of simultaneous nonlinear differential equations that described nuclear magnetic relaxation combined with transmembrane exchange. Our results contribute to quantitative understanding of urea-exchange kinetics in the whole body; and the methodological approach is likely to be applicable to other cellular systems and tissues in vivo.

  19. GFT projection NMR for efficient (1)H/ (13)C sugar spin system identification in nucleic acids.

    PubMed

    Atreya, Hanudatta S; Sathyamoorthy, Bharathwaj; Jaipuria, Garima; Beaumont, Victor; Varani, Gabriele; Szyperski, Thomas

    2012-12-01

    A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify (1)H/(13)C sugar spin systems in (13)C labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of (13)C-(1)H groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1'- and 3'-CH signal dispersion for complete spin system identification including 5'-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3'-untranslated region of the pre-mRNA of human U1A protein.

  20. Magnetic susceptibility effects on 13C MAS NMR spectra of carbon materials and graphite.

    PubMed

    Freita, J C; Emmerich, F G; Cernicchiaro, G R; Sampaio, L C; Bonagamba, T J

    2001-01-01

    13C high-resolution solid-state nuclear magnetic resonance (NMR) was employed to study carbon materials prepared through the thermal decomposition of four different organic precursors (rice hulls, endocarp of babassu coconut, peat, and PVC). For heat treatment temperatures (HTTs) above about 600 C, all materials presented 13C NMR spectra composed of a unique resonance line associated with carbon atoms in aromatic planes. With increasing HTT a continuous broadening of this resonance and a diamagnetic shift in its central frequency were verified for all samples. The evolution of the magnitude and anisotropy of the magnetic susceptibility of the heat-treated carbon samples with HTT explains well these findings. It is shown that these results are better understood when a comparison is made with the features of the 13C NMR spectrum of polycrystalline graphite, for which the magnetic susceptibility effect is also present and is much more pronounced.

  1. δ13C in aspen tree-rings using a long-term soil moisture record

    NASA Astrophysics Data System (ADS)

    Dymond, S.; Roden, J. S.; Bolstad, P.; Kolka, R. K.

    2013-12-01

    Isotopes have been used to assess the relationship between δ13C and climate variables such as precipitation, temperature, and PDSI. However, soil moisture, which gives a much better indication of the water available to the tree as well as its evaporative process, has either been ignored or has been modeled. At the Marcell Experimental Forest (MEF), scientists have collected 50 years of uniform, depth- resolved, seasonal, and spatially replicated soil moisture in addition to climate measurements (e.g. precipitation and temperature) and stream discharge. We utilized this unique soil moisture dataset to evaluate whether δ13C preserved annually in aspen tree-rings can be used as an indicator of past soil water availability. We found inter-annual variation between individual trees that was consistent with soil moisture availability, suggesting that δ13C can be successfully used to understand water-plant dynamics in aspen trees.

  2. *d13C composition of primary producers and role of detritus in a freshwater coastal ecosystem

    USGS Publications Warehouse

    Keough, J.R.; Hagley, C.A.; Sierszen, M.

    1998-01-01

    Stable-isotope ratio signatures of primary producers in a coastal wetland and in adjacent offshore waters of western Lake Superior indicated that phytoplankton are the primary source of carbon for the grazing food web of this ecosystem. This study outlines the possible roles of other autotrophs in this regard. Isotopic signatures of macrophytes reflected their life-form-associated constraints on diffusion of inorganic carbon. Data indicated that differences between wetland and lake phytoplankton may be explained by the isotopic signatures of their dissolved inorganic carbon (DIC) sources. Results of an in situ experiment showed that respiration associated with macrophyte decomposition is capable of enriching surrounding water with significant amounts of *d13C-depleted DIC and lowering the net *d13C ratio of DIC in water in low-turbulence situations. The *d13C ratio for wetland phytoplankton may be depleted relative to pelagic algae because the fixed carbon is derived from decomposing detritus.

  3. δ 13C response surface resolves humidity and temperature signals in trees

    NASA Astrophysics Data System (ADS)

    Edwards, T. W. D.; Graf, W.; Trimborn, P.; Stichler, W.; Lipp, J.; Payer, H. D.

    2000-01-01

    Stem cellulose of bean plants ( Vicia faba) grown under controlled conditions exhibits inverse linear carbon-isotope reactions to changes in both relative humidity (RH) and temperature (T), readily mappable as a planar δ 13C response surface in RH-T space. The analogous response surface for annual late-wood cellulose δ 13C from a field calibration using fir trees ( Abies alba) in the Black Forest, southern Germany, also supports resolution of independent δ-RH and δ-T effects. The response of cellulose δ 13C to RH and T derived from this new calibration differs markedly from estimates based on univariate linear regression analysis: The sensitivity of δ 13C to RH is stronger than that inferred previously ( c. -0.17‰/% vs. -0.12‰/%, respectively), whereas the δ-T coefficient is weaker and reversed in sign ( c. -0.15‰/K vs. +0.36‰/K). This new perspective on the coupled influence of moisture and temperature changes on tree-ring cellulose δ 13C helps to unify divergent observations about carbon-isotope signals in trees, especially the broad range of apparent δ-T relations obtained in calibration studies, which are often used as paleoclimate transfer functions. Although this highlights the large potential uncertainties surrounding paleoclimate reconstruction based solely on δ 13C data, coupling of the carbon-isotope response-surface approach with equivalent response surfaces for hydrogen or oxygen isotopes may afford new opportunities for investigating the nature of past climate variability and change from tree-ring sequences.

  4. Process Model for Studying Regional 13C Stable Isotope Exchange between Vegetation and Atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, B.; Huang, L.; Tans, P.; Worthy, D.; Ishizawa, M.; Chan, D.

    2007-12-01

    The variation of the stable isotope 13CO2 in the air in exchange with land ecosystems results from fractionation processes in both plants and soil during photosynthesis and respiration. Its diurnal and seasonal variations therefore contain information on the carbon cycle. We developed a model (BEPS-iso) to simulate its exchange between vegetation and the atmosphere. To be useful for regional carbon cycle studies, the model has the following characteristics: (i) it considers the turbulent mixing in the vertical profile from the soil surface to the top of the planetary boundary layer (PBL); (ii) it scales individual leaf photosynthetic discrimination to the whole canopy through the separation of sunlit and shaded leaf groups; (iii) through simulating leaf-level photosynthetic processes, it has the capacity to mechanistically examine isotope discrimination resulting from meteorological forcings, such as radiation, precipitation and humidity; and (iv) through complete modeling of radiation, energy and water fluxes, it also simulates soil moisture and temperature needed for estimating ecosystem respiration and the 13C signal from the soil. After validation using flask data acquired at 20 m level on a tower near Fraserdale, Ontario, Canada, during intensive campaigns (1998-2000), the model has been used for several purposes: (i) to investigate the diurnal and seasonal variations in the disequilibrium in 13C fractionation between ecosystem respiration and photosynthesis, which is an important step in using 13C measurements to separate these carbon cycle components; (ii) to quantify the 13C rectification in the PBL, which differs significantly from CO2 rectification because of the diurnal and seasonal disequilibriums; and (iii) to model the 13C spatial and temporal variations over the global land surface for the purpose of CO2 inversion using 13C as an additional constraint.

  5. Neuroprotective effects of caffeine in MPTP model of Parkinson's disease: A (13)C NMR study.

    PubMed

    Bagga, Puneet; Chugani, Anup N; Patel, Anant B

    2016-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of nigrostriatal dopaminergic neurons with an accompanying neuroinflammation leading to loss of dopamine in the basal ganglia. Caffeine, a well-known A2A receptor antagonist is reported to slow down the neuroinflammation caused by activated microglia and reduce the extracellular glutamate in the brain. In this study, we have evaluated the neuroprotective effect of caffeine in the MPTP model of PD by monitoring the region specific cerebral energy metabolism. Adult C57BL6 mice were treated with caffeine (30 mg/kg, i.p.) 30 min prior to MPTP (25 mg/kg, i.p.) administration for 8 days. The paw grip strength of mice was assessed in order to evaluate the motor function after various treatments. For metabolic studies, mice were infused with [1,6-(13)C2]glucose, and (13)C labeling of amino acids was monitored using ex vivo(1)H-[(13)C]-NMR spectroscopy. The paw grip strength was found to be reduced following the MPTP treatment. The caffeine pretreatment showed significant protection against the reduction of paw grip strength in MPTP treated mice. The levels of GABA and myo-inositol were found to be elevated in the striatum of MPTP treated mice. The (13)C labeling of GluC4, GABAC2 and GlnC4 from [1,6-(13)C2]glucose was decreased in the cerebral cortex, striatum, olfactory bulb, thalamus and cerebellum suggesting impaired glutamatergic and GABAergic neuronal activity and neurotransmission of the MPTP treated mice. Most interestingly, the pretreatment of caffeine maintained the (13)C labeling of amino acids to the control values in cortical, olfactory bulb and cerebellum regions while it partially retained in striatal and thalamic regions in MPTP treated mice. The pretreatment of caffeine provides a partial neuro-protection against severe striatal degeneration in the MPTP model of PD.

  6. Kinetic modeling of hyperpolarized 13C 1-pyruvate metabolism in normal rats and TRAMP mice

    NASA Astrophysics Data System (ADS)

    Zierhut, Matthew L.; Yen, Yi-Fen; Chen, Albert P.; Bok, Robert; Albers, Mark J.; Zhang, Vickie; Tropp, Jim; Park, Ilwoo; Vigneron, Daniel B.; Kurhanewicz, John; Hurd, Ralph E.; Nelson, Sarah J.

    2010-01-01

    PurposeTo investigate metabolic exchange between 13C 1-pyruvate, 13C 1-lactate, and 13C 1-alanine in pre-clinical model systems using kinetic modeling of dynamic hyperpolarized 13C spectroscopic data and to examine the relationship between fitted parameters and dose-response. Materials and methodsDynamic 13C spectroscopy data were acquired in normal rats, wild type mice, and mice with transgenic prostate tumors (TRAMP) either within a single slice or using a one-dimensional echo-planar spectroscopic imaging (1D-EPSI) encoding technique. Rate constants were estimated by fitting a set of exponential equations to the dynamic data. Variations in fitted parameters were used to determine model robustness in 15 mm slices centered on normal rat kidneys. Parameter values were used to investigate differences in metabolism between and within TRAMP and wild type mice. ResultsThe kinetic model was shown here to be robust when fitting data from a rat given similar doses. In normal rats, Michaelis-Menten kinetics were able to describe the dose-response of the fitted exchange rate constants with a 13.65% and 16.75% scaled fitting error (SFE) for kpyr→lac and kpyr→ala, respectively. In TRAMP mice, kpyr→lac increased an average of 94% after up to 23 days of disease progression, whether the mice were untreated or treated with casodex. Parameters estimated from dynamic 13C 1D-EPSI data were able to differentiate anatomical structures within both wild type and TRAMP mice. ConclusionsThe metabolic parameters estimated using this approach may be useful for in vivo monitoring of tumor progression and treatment efficacy, as well as to distinguish between various tissues based on metabolic activity.

  7. Habitat-specific differences in plasticity of foliar δ13C in temperate steppe grasses

    PubMed Central

    Liu, Yanjie; Zhang, Lirong; Niu, Haishan; Sun, Yue; Xu, Xingliang

    2014-01-01

    A decrease in foliar δ13C with increasing precipitation is a common tendency in steppe plants. However, the rate of decrease has been reported to differ between different species or populations. We here hypothesized that plant populations in the same habitat of temperate steppes may not differ in foliar δ13C response patterns to precipitation, but could differ in the levels of plasticity of foliar δ13C across different habitats. In order to test this hypothesis, we conducted controlled watering experiments in northeast China at five sites along a west–east transect at latitude 44°N, which show substantial interannual fluctuations and intra-annual changes in precipitation among them. In 2001, watering treatment (six levels, three replicates) was assigned to 18 plots at each site. The responses of foliar δ13C to precipitation (i.e., the sum of watering and rainfall) were determined in populations of several grass species that were common across all sites. Although similar linear regression slopes were observed for populations of different species growing at the same site, significantly different slopes were obtained for populations of the same species growing at different sites. Further, the slope of the line progressively decreased from Site I to Site V for all species in this study. These results suggest habitat-specific differences in plasticity of foliar δ13C in temperate steppe grasses. This indicates that species' δ13C response to precipitation is conservative at the same site due to their long-term acclimation, but the mechanism responsible behind this needs further investigations. PMID:25035804

  8. {sup 13}C-enrichment at carbons 8 and 2 of uric acid after {sup 13}C-labeled folate dose in man

    SciTech Connect

    Baggott, Joseph E.; Gorman, Gregory S.; Morgan, Sarah L.; Tamura, Tsunenobu . E-mail: tamurat@uab.edu

    2007-09-21

    To evaluate folate-dependent carbon incorporation into the purine ring, we measured {sup 13}C-enrichment independently at C{sub 2} and C{sub 8} of urinary uric acid (the final catabolite of purines) in a healthy male after an independent oral dose of [6RS]-5-[{sup 13}C]-formyltetrahydrofolate ([6RS]-5-H{sup 13}CO-H{sub 4}folate) or 10-H{sup 13}CO-7,8-dihydrofolate (10-H{sup 13}CO-H{sub 2}folate). The C{sub 2} position was {sup 13}C-enriched more than C{sub 8} after [6RS]-5-H{sup 13}CO-H{sub 4}folate, and C{sub 2} was exclusively enriched after 10-H{sup 13}CO-H{sub 2}folate. The enrichment of C{sub 2} was greater from [6RS]-5-H{sup 13}CO-H{sub 4}folate than 10-H{sup 13}CO-H{sub 2}folate using equimolar bioactive doses. Our data suggest that formyl C of [6RS]-10-H{sup 13}CO-H{sub 4}folate was not equally utilized by glycinamide ribotide transformylase (enriches C{sub 8}) and aminoimidazolecarboxamide ribotide (AICAR) transformylase (enriches C{sub 2}), and the formyl C of 10-H{sup 13}CO-H{sub 2}folate was exclusively used by AICAR transformylase. 10-HCO-H{sub 2}folate may function in vivo as the predominant substrate for AICAR transformylase in humans.

  9. Stratification of δ(13)C values of leaves in Amazonian rain forests.

    PubMed

    Medina, E; Minchin, P

    1980-01-01

    The contribution of soil respiration to the photosynthesis of the shade flora in the Amazon forest was evaluated by measuring the δ(13)C values of leaves collected at different levels in two forest communities. Canopy leaves have an average δ(13)C of-30.5‰ in the podsol forest and-28.7‰ in the laterite forest. Leaves from plants in the lower forest strata have a significantly lower value of-35.2‰ in the podsol forest and-34.3‰ in the laterite forest.

  10. Spinning sidebands from chemical shift anisotropy in 13C MAS imaging.

    PubMed

    Scheler, U; Blümich, B; Spiess, H W

    1993-07-01

    Solid state imaging by 13C MAS imaging is described. The spinning sidebands occurring at moderate spinning speeds, which disturb the images, can be suppressed by TOSS. For rigid solids the spatial resolution that can be achieved in this way is better than that of 1H images at the same spinning speed. Spatially resolved spectra with or without spinning sidebands can likewise be recorded providing information about the isotropic and the anisotropic chemical shifts which can be exploited for the study of structure, order and dynamics. The techniques are demonstrated on a phantom made with 13C-labelled glycine.

  11. 13C-methionine breath tests for mitochondrial liver function assessment.

    PubMed

    Candelli, M; Miele, L; Armuzzi, A; Nista, E C; Pignataro, G; Fini, L; Cazzato, I A; Zocco, M A; Bartolozzi, F; Gasbarrini, G; Grieco, A; Gasbarrini, A

    2008-01-01

    13C-methionine breath test has been proposed as a non-invasive tool for the assessment of human hepatic mithocondrial function. Two methionine breath labeled with 13C in differents point of his molecular structure have been used for breath test analisys. Aim of this study was to compare two differently 13C-labeled methionines in the evaluation of mitochondrial oxidation in basal conditions and after an acute oxidative stress. 15 healthy male subjects (mean age 30.5 +/- 3.1) received [methyl-13C]-methionine dissolved in water. Breath samples were taken at baseline and and 10, 20, 30, 45, 60, 75, 90, 105 and 120 minutes after the ingestion of the labeled substrate. Forthy-eight hours later, subjects underwent the same test 30 minutes after ethanol ingestion (0,3 g/kg of body weight). Seven-day later, subjects underwent breath test using (L-methionine-1-13COOH) as substrate, in basal condition and after ethanol ingestion. At basal condition, the cumulative percentage of 13CO2 recovered in breath during the test period (%cum-dose) was higher using L-methionine-1-13COOH than [methyl-13C]-methionine (10.25 +/- 1.0 vs 4.07 +/- 0.8; p < 0.01). After ethanol ingestion, % cum dose was significantly decreased at 60 and 120 minutes with both methionines (120 min: 10.25 +/- 1.0 vs 5.03% +/- 1.8; < 0.01 and 4.07 +/- 0.8 vs 2.16% +/- 0.9; p < 0.01, respectively). However, %cum-dose during L-methionine-1-13C-breath test was significantly lower than that observed during methyl-13C-methionine breath test (120 minutes: 5.03% +/- 1.8 vs 2.16% +/- 0.9; p < 0.01). In conclusion, breath test based on L-methionine-1-13COOH seems to show a greater reliability when compared to [methyl-13C]-methionine to assess mitochondrial function because a larger amount of labeled carbon that reaches the Krebs' cicle.

  12. Analysis and theoretical modeling of 18O enriched carbon dioxide spectrum by CRDS near 1.35 μm: (II) 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O

    NASA Astrophysics Data System (ADS)

    Karlovets, E. V.; Campargue, A.; Kassi, S.; Tashkun, S. A.; Perevalov, V. I.

    2017-04-01

    This contribution is the second part of the analysis of the room temperature absorption spectrum of 18O enriched carbon dioxide by very high sensitivity Cavity Ring Down spectroscopy between 6977 and 7918 cm-1 (1.43-1.26 μm). Overall, more than 8600 lines belonging to 166 bands of eleven carbon dioxide isotopologues were rovibrationnally assigned. In a first part (Kassi et al. J Quant Spectrosc Radiat Transfer 187 (2017) 414-425, http://dx.doi.org/10.1016/j.jqsrt.2016.09.002), the results relative to mono-substituted isotopologues, 16O12C18O, 16O12C17O, 12C16O2 and 13C16O2, were presented. This second contribution is devoted to the multiply-substituted isotopologues or clumped isotopologues of particular importance in geochemistry: 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O. On the basis of the predictions of effective Hamiltonian models, a total of 3195 transitions belonging to 73 bands were rovibrationnally assigned for these seven species. Among the 73 observed bands, 55 are newly reported. All the identified bands correspond to ΔP=10 and 11 series of transitions, where P= 2V1+V2+3V3 is the polyad number (Vi are vibrational quantum numbers). The accurate spectroscopic parameters of 70 bands have been determined from the standard band-by-band analysis. Global fits of the measured line intensities of the ΔP=10 series of transitions of 17O12C18O and 16O13C18O and of the ΔP=11 series of transitions of 12C18O2, 17O12C18O, 16O13C18O and 13C18O2 were performed to determine the corresponding sets of the effective dipole moment parameters.

  13. CO bands in V4334 Sgr (Sakurai's Object): The 12C/13C ratio

    NASA Astrophysics Data System (ADS)

    Pavlenko, Ya. V.; Geballe, T. R.; Evans, A.; Smalley, B.; Eyres, S. P. S.; Tyne, V. H.; Yakovina, L. A.

    2004-04-01

    We present the results of our analysis of a high resolution (R≃30 000) infrared spectrum of V4334 Sgr (Sakurai's Object) around the first overtone CO bands, obtained in 1998 July. The 12CO and 13CO bands are well-resolved, and we compute synthetic hydrogen-deficient model atmosphere spectra to determine the 12C/13C ratio. We find 12C/13C ≃ 4 ± 1, consistent with the interpretation of V4334 Sgr as an object that has undergone a very late thermal pulse.

  14. Synthesis and NMR studies of (13)C-labeled vitamin D metabolites.

    PubMed

    Okamura, William H; Zhu, Gui-Dong; Hill, David K; Thomas, Richard J; Ringe, Kerstin; Borchardt, Daniel B; Norman, Anthony W; Mueller, Leonard J

    2002-03-08

    Isotope-labeled drug molecules may be useful for probing by NMR spectroscopy the conformation of ligand associated with biological hosts such as membranes and proteins. Triple-labeled [7,9,19-(13)C(3)]-vitamin D(3) (56), its 25-hydroxylated and 1 alpha,25-dihydroxylated metabolites (58 and 68, respectively), and other labeled materials have been synthesized via coupling of [9-(13)C]-Grundmann's ketone 39 or its protected 25-hydroxy derivative 43 with labeled A ring enyne fragments 25 or 26. The labeled CD-ring fragment 39 was prepared by a sequence involving Grignard addition of [(13)C]-methylmagnesium iodide to Grundmann's enone 28, oxidative cleavage, functional group modifications leading to seco-iodide 38, and finally a kinetic enolate S(N)2 cycloalkylation. The C-7,19 double labeling of the A-ring enyne was achieved by the Corey-Fuchs/Wittig processes on keto aldehyde 11. By employing these labeled fragments in the Wilson-Mazur route, the C-7,9,19 triple-(13)C-labeled metabolites 56, 58, and 68 as well as other (13)C-labeled metabolites have been prepared. In an initial NMR investigation of one of the labeled metabolites prepared in this study, namely [7,9,19-(13)C(3)]-25-hydroxyvitamin D(3) (58), the three (13)C-labeled carbons of the otherwise water insoluble steroid could be clearly detected by (13)C NMR analysis at 0.1 mM in a mixture of CD(3)OD/D(2)O (60/40) or in aqueous dimethylcyclodextrin solution and at 2 mM in 20 mM sodium dodecyl sulfate (SDS) aqueous micellar solution. In the SDS micellar solution, a double half-filter NOESY experiment revealed that the distance between the H(19Z) and H(7) protons is significantly shorter than that of the corresponding distance calculated from the solid state (X-ray) structure of the free ligand. The NMR data in micelles reveals that 58 exists essentially completely in the alpha-conformer with the 3 beta-hydroxyl equatorially oriented, just as in the solid state. The shortened distance (H(19Z))-H(7)) in micellar

  15. Coupling aboveground and belowground activities using short term fluctuations in 13C composition of soil respiration

    NASA Astrophysics Data System (ADS)

    Epron, D.; Parent, F.; Grossiord, C.; Plain, C.; Longdoz, B.; Granier, A.

    2011-12-01

    There is a growing amount of evidence that belowground processes in forest ecosystems are tightly coupled to aboveground activities. Soil CO2 efflux, the largest flux of CO2 to the atmosphere, is dominated by root respiration and by respiration of microorganisms that find the carbohydrates required to fulfil their energetic costs in the rhizosphere. A close coupling between aboveground photosynthetic activity and soil CO2 efflux is therefore expected. The isotopic signature of photosynthates varies with time because photosynthetic carbon isotope discrimination is dynamically controlled by environmental factors. This temporal variation of δ13C of photosynthate is thought to be transferred along the tree-soil continuum and it will be retrieved in soil CO2 efflux after a time lag that reflects the velocity of carbon transport from canopy to belowground. However, isotopic signature of soil CO2 efflux is not solely affected by photosynthetic carbon discrimination, bur also by post photosynthetic fractionation, and especially by fractionation processes affecting CO2 during the transport from soil layers to surface. Tunable diode laser spectrometry is a useful tool to quantify short-term variation in δ13C of soil CO2 efflux and of CO2 in the soil atmosphere. We set up hydrophobic tubes to measure the vertical profile of soil CO2 concentration and its δ13C composition in a temperate beech forest, and we monitored simultaneously δ13C of trunk and soil CO2 efflux, δ13C of phloem exudate and δ13C of leaf sugars. We evidenced that temporal changes in δ13C of soil CO2 and soil CO2 efflux reflected changes in environmental conditions that affect photosynthetic discrimination and that soil CO2 was 4.4% enriched compared to soil CO2 efflux according to diffusion fractionation. However, this close coupling can be disrupted when advective transport of CO2 took place. We also reported evidences that temporal variations in the isotopic composition of soil CO2 efflux reflect

  16. Origin of acetaldehyde during milk fermentation using (13)C-labeled precursors.

    PubMed

    Ott, A; Germond, J E; Chaintreau, A

    2000-05-01

    Acetaldehyde formation by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus during fermentation of cow's milk was investigated using (13)C-labeled glucose, L-threonine, and pyruvate with a recent static-and-trapped-headspace technique that does not require derivatization of acetaldehyde prior to gas chromatography-mass spectrometry. Over 90% and almost 100% of acetaldehyde originated from glucose during fermentation by L. delbrueckii subsp. bulgaricus and S. thermophilus, respectively, taking into account both singly and doubly labeled acetaldehyde. As both microorganisms showed threonine aldolase activity and formed labeled acetaldehyde from (13)C-labeled threonine during the fermentation of milk, this amino acid should also contribute to the acetaldehyde produced.

  17. Working wonders? investigating insight with magic tricks.

    PubMed

    Danek, Amory H; Fraps, Thomas; von Müller, Albrecht; Grothe, Benedikt; Ollinger, Michael

    2014-02-01

    We propose a new approach to differentiate between insight and noninsight problem solving, by introducing magic tricks as problem solving domain. We argue that magic tricks are ideally suited to investigate representational change, the key mechanism that yields sudden insight into the solution of a problem, because in order to gain insight into the magicians' secret method, observers must overcome implicit constraints and thus change their problem representation. In Experiment 1, 50 participants were exposed to 34 different magic tricks, asking them to find out how the trick was accomplished. Upon solving a trick, participants indicated if they had reached the solution either with or without insight. Insight was reported in 41.1% of solutions. The new task domain revealed differences in solution accuracy, time course and solution confidence with insight solutions being more likely to be true, reached earlier, and obtaining higher confidence ratings. In Experiment 2, we explored which role self-imposed constraints actually play in magic tricks. 62 participants were presented with 12 magic tricks. One group received verbal cues, providing solution relevant information without giving the solution away. The control group received no informative cue. Experiment 2 showed that participants' constraints were suggestible to verbal cues, resulting in higher solution rates. Thus, magic tricks provide more detailed information about the differences between insightful and noninsightful problem solving, and the underlying mechanisms that are necessary to have an insight.

  18. Simultaneous steady-state and dynamic 13C NMR can differentiate alternative routes of pyruvate metabolism in living cancer cells.

    PubMed

    Yang, Chendong; Harrison, Crystal; Jin, Eunsook S; Chuang, David T; Sherry, A Dean; Malloy, Craig R; Merritt, Matthew E; DeBerardinis, Ralph J

    2014-02-28

    Metabolic reprogramming facilitates cancer cell growth, so quantitative metabolic flux measurements could produce useful biomarkers. However, current methods to analyze flux in vivo provide either a steady-state overview of relative activities (infusion of (13)C and analysis of extracted metabolites) or a dynamic view of a few reactions (hyperpolarized (13)C spectroscopy). Moreover, although hyperpolarization has successfully quantified pyruvate-lactate exchanges, its ability to assess mitochondrial pyruvate metabolism is unproven in cancer. Here, we combined (13)C hyperpolarization and isotopomer analysis to quantify multiple fates of pyruvate simultaneously. Two cancer cell lines with divergent pyruvate metabolism were incubated with thermally polarized [3-(13)C]pyruvate for several hours, then briefly exposed to hyperpolarized [1-(13)C]pyruvate during acquisition of NMR spectra using selective excitation to maximize detection of H[(13)C]O3(-) and [1-(13)C]lactate. Metabolites were then extracted and subjected to isotopomer analysis to determine relative rates of pathways involving [3-(13)C]pyruvate. Quantitation of hyperpolarized H[(13)C]O3(-) provided a single definitive metabolic rate, which was then used to convert relative rates derived from isotopomer analysis into quantitative fluxes. This revealed that H[(13)C]O3(-) appearance reflects activity of pyruvate dehydrogenase rather than pyruvate carboxylation followed by subsequent decarboxylation reactions. Glucose substantially altered [1-(13)C]pyruvate metabolism, enhancing exchanges with [1-(13)C]lactate and suppressing H[(13)C]O3(-) formation. Furthermore, inhibiting Akt, an oncogenic kinase that stimulates glycolysis, reversed these effects, indicating that metabolism of pyruvate by both LDH and pyruvate dehydrogenase is subject to the acute effects of oncogenic signaling on glycolysis. The data suggest that combining (13)C isotopomer analyses and dynamic hyperpolarized (13)C spectroscopy may enable

  19. Spatio-temporal variability of Δ13C in tree-rings of Aleppo pine

    NASA Astrophysics Data System (ADS)

    del Castillo, Jorge; Ferrio, Juan Pedro; Voltas, Jordi

    2014-05-01

    Aim: To study the spatiotemporal variability of Δ13C using a tree-ring network of Aleppo pine (Pinus halepensis Mill.) in the eastern part of the Iberian Peninsula. In this study, we tried to understand some of the environmental drivers behind changes in Δ13C as well as to decide the most optimal sites to infer paleoclimatic information using such variables. We also try to understand key physiological aspects of P. halepensis. Methods: In order to do that, we have collected biannual Δ13C time series (1950-1998) together with mean annual precipitation (MAP), tree-ring width (TRW) and remote sensing (NDVI) data, for 7 different locations along a precipitation gradient. We assessed how correlations between variables changed along that gradient. In addition to that, we have also looked at how that precipitation gradient changed along the years and thus its relationships with the Δ13C at the spatial level, giving us an idea whether changes in MAP at each site could affect the relationship between these two variables. Results: We found that a log model better explains the relationship between Δ13C and MAP and that it reaches a saturation point at values above 800 mm of MAP. Similarly, we found that, in the drier sites, correlations between Δ13C and precipitation were higher than in wetter ones. In addition, the coefficient of variation (CV) of Δ13C was a good indicator of the correlation between Δ13C and MAP. Similarly, the mean and the CV of TRW and summer NDVI were good indicators of the level of such correlation between Δ13C and MAP. On the other hand, the inter-site analysis of the data suggested that during dry years exists a stronger relationship between Δ13C and precipitation than in wet years. Discussion: Our results pointed out that the threshold for water limitation for Aleppo pine was around MAP=800 mm, an amount that might be sufficient for the tree to grow during most of the growing season without altering its water use efficiency (WUE) by closing

  20. Pre-treatment Effects on Coral Skeletal δ 13C and δ 18O

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.; Gibb, O.; Wellington, G. M.

    2003-12-01

    Pre-treatment protocols for coral skeletal stable carbon (δ 13C) and oxygen (δ 18O) isotope analyses include no treatment, bleach (NaOH), hydrogen peroxide (H2O2), or vacuum roasting prior to analysis. Such pre-treatments are used to remove organic material prior to isotopic analyses. Researchers that do not pre-treat samples argue that such treatments result in non-linear shifts in coral skeletal δ 13C and δ 18O thus increasing the analytical error in the δ 13C and δ 18O values. Vacuum roasting does cause isotopic shifts and is no longer practiced. However, both no pre-treatment and pre-treatment (with either NaOH or H2O2) coral δ 13C and δ 18O values continue to be published in the literature. In all previous studies of the effects of NaOH and H2O2 pre-treatments on coral δ 13C and δ 18O, the samples sizes were typically small and the exact time interval being sampled and compared was not specifically controlled. Here, we evaluated the effects of NaOH and H2O2 pre-treatments on coral skeletal δ 13C and δ 18O in Pavona clavus and Pavona gigantea from Panama, and Porites compressa from Hawaii. In Panama, at least five coral fragments from five different colonies of each species were stained on November 1978 and April 1979 then collected in November 1979. In Hawaii, at least five coral fragments from five different colonies at 1.7 and 7 m depths were stained on 1 September and 21 November 1996 then collected 2 March 1997. For each fragment, a bulk skeletal sample was extracted representing the entire growth interval between the two stain lines yielding at least 24 mg of material. Sampling between the stain lines ensured that all of the fragments from a given site and species were sampled over the same time interval and avoided any potential contamination from the tissue layer. Eight milligram subsamples from each fragment were subjected to 24 hours of the following treatments: NaOH, H2O2, Milli-Q filtered water (control), or no pre-treatment (control

  1. Effects of Ergot Alkaloids on Liver Function of Piglets as Evaluated by the 13C-Methacetin and 13C-α-Ketoisocaproic Acid Breath Test

    PubMed Central

    Dänicke, Sven; Diers, Sonja

    2013-01-01

    Ergot alkaloids (the sum of individual ergot alkaloids are termed as total alkaloids, TA) are produced by the fungus Claviceps purpurea, which infests cereal grains commonly used as feedstuffs. Ergot alkaloids potentially modulate microsomal and mitochondrial hepatic enzymes. Thus, the aim of the present experiment was to assess their effects on microsomal and mitochondrial liver function using the 13C-Methacetin (MC) and 13C-α-ketoisocaproic acid (KICA) breath test, respectively. Two ergot batches were mixed into piglet diets, resulting in 11 and 22 mg (Ergot 5-low and Ergot 5-high), 9 and 14 mg TA/kg (Ergot 15-low and Ergot 15-high) and compared to an ergot-free control group. Feed intake and live weight gain decreased significantly with the TA content (p < 0.001). Feeding the Ergot 5-high diet tended to decrease the 60-min-cumulative 13CO2 percentage of the dose recovery (cPDR60) by 26% and 28% in the MC and KICA breath test, respectively, compared to the control group (p = 0.065). Therefore, both microsomal and mitochondrial liver function was slightly affected by ergot alkaloids. PMID:23322130

  2. High-resolution FTIR analysis and rotational constants for the ν12 band of ethylene-1-13C (13C12CH4)

    NASA Astrophysics Data System (ADS)

    Gabona, M. G.; Tan, T. L.; Woo, J. Q.

    2014-11-01

    The Fourier transform infrared (FTIR) absorption spectrum of the ν12 fundamental band of ethylene-1-13C (or 13C12CH4) was recorded in the frequency range of 1350-1510 cm-1 with an unapodized resolution of 0.0063 cm-1. The upper state (ν12 = 1) and ground state rotational constants derived in the present analysis cover a wide wavenumber range and high J and Ka (J = 41 and Ka = 14). By assigning and fitting 1602 infrared transitions using Watson's A-reduced Hamiltonian in the Ir representation, upper state (ν12 = 1) constants consisting of three rotational, five quartic and two sextic constants were more accurately determined. The root-mean-square deviation of the fit was 0.00030 cm-1. Ground state rotational constants were also improved from the fit of 808 ground state combination differences (GSCDs) with a root-mean-square deviation of 0.00032 cm-1. The unperturbed A-type ν12 band is centered at 1439.34612(2) cm-1. The inertial defect Δ of 0.05381(8) μÅ2 for the ground state has been derived using the ground state rotational constants obtained from this work.

  3. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics

    NASA Astrophysics Data System (ADS)

    Chen, Daizhao; Qing, Hairuo; Li, Renwei

    2005-06-01

    A severe biotic crisis occurred during the Late Devonian Frasnian-Famennian (F/F) transition (± 367 Myr). Here we present δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics, from identical samples of two sections across F/F boundary in South China, which directly demonstrate large and frequent climatic fluctuations (˜200 kyr) from warming to cooling during the F/F transition. These climate fluctuations are interpreted to have been induced initially by increased volcanic outgassing, and subsequent enhanced chemical weathering linked to the rapid expansion of vascular plants on land, which would have increased riverine delivery to oceans and primary bioproductivity, and subsequent burial of organic matter, thereby resulting in climate cooling. Such large and frequent climatic fluctuations, together with volcanic-induced increases in nutrient (e.g., biolimiting Fe), toxin (sulfide) and anoxic water supply, and subsequent enhanced riverine fluxes and microbial bloom, were likely responsible for the stepwise faunal demise of F/F biotic crisis.

  4. OpenMebius: an open source software for isotopically nonstationary 13C-based metabolic flux analysis.

    PubMed

    Kajihata, Shuichi; Furusawa, Chikara; Matsuda, Fumio; Shimizu, Hiroshi

    2014-01-01

    The in vivo measurement of metabolic flux by (13)C-based metabolic flux analysis ((13)C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a (13)C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model to the isotopic labeling enrichment of intracellular metabolites measured by mass spectrometry. Whereas (13)C-MFA is conventionally performed under isotopically constant conditions, isotopically nonstationary (13)C metabolic flux analysis (INST-(13)C-MFA) has recently been developed for flux analysis of cells with photosynthetic activity and cells at a quasi-steady metabolic state (e.g., primary cells or microorganisms under stationary phase). Here, the development of a novel open source software for INST-(13)C-MFA on the Windows platform is reported. OpenMebius (Open source software for Metabolic flux analysis) provides the function of autogenerating metabolic models for simulating isotopic labeling enrichment from a user-defined configuration worksheet. Analysis using simulated data demonstrated the applicability of OpenMebius for INST-(13)C-MFA. Confidence intervals determined by INST-(13)C-MFA were less than those determined by conventional methods, indicating the potential of INST-(13)C-MFA for precise metabolic flux analysis. OpenMebius is the open source software for the general application of INST-(13)C-MFA.

  5. Probing metabolic processes of intact soil microbial communities using position-specific 13C-labeled glucose

    NASA Astrophysics Data System (ADS)

    Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.; Dijkstra, P.

    2012-12-01

    Soils represent one of the largest carbon pools in the terrestrial biosphere and fluxes into or out of this pool may feedback to current climate change. Understanding the mechanisms behind microbial processes regulating C cycling, microbial turnover, and soil organic matter stabilization is hindered by our lack of understanding of the details of microbial physiology in soils. Position-specific 13C labeled metabolic tracers are proposed as a new way to probe microbial community energy production, biosynthesis, C use efficiency (the proportion of substrate incorporated into microbial biomass), and enables the determination of C fluxes through the various C metabolic pathways. We determined the 13CO2 production from microbial communities within a one hour time frame by adding six isotopomers (1-13C, 2-13C, 3-13C, 4-13C, 5-13C, 6-13C) of glucose in parallel incubations using a young volcanic soil (Pinyon-juniper wood, near Sunset Crater, Flagstaff, Arizona). We compared the measured rates of position-specific 13CO2 production with modeled results based on glucose (1-13C and U-13C) and pyruvate (1-13C and 2,3-13C) incubations. These labeling and modeling techniques may improve our ability to analyze the biochemistry and ecophysiology of intact soil microbial communities.

  6. Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.

    1994-08-01

    We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.

  7. The 'Nuts and Bolts' of 13C NMR Spectroscopy at Elevated-Pressures and -Temperatures for Monitoring In Situ CO2 Conversion to Metal Carbonates

    NASA Astrophysics Data System (ADS)

    Moore, J. K.; Surface, J. A.; Skemer, P. A.; Conradi, M. S.; Hayes, S. E.

    2013-12-01

    We will present details of newly-constructed specialized NMR designed to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies on unmixed slurries of minerals in the presence of CO2 or other gases. This static probe is capable of achieving 300 bar, 300C conditions, and it is designed to spectroscopically examine 13C signals in mixtures of solids, liquids, gases, and supercritical fluids. Ultimately, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. We will give details of the hardware setup, and we will show a variety of static in situ NMR, as well as ex situ 'magic-angle spinning' NMR to show the analyses that are possible of minerals in pure form and in mixtures. In addition, specific NMR pulse sequences, techniques, and modeling will be described in detail. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine conditions that affect the efficacy of carbonate formation in various targeted geological reservoirs (i.e., peroditite, or others). Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals, including metastable intermediates (such as hydromagnesite, or dypingite in the case of magnesium carbonate species, or vaterite in the case of calcium carbonate species). Such species are distinguishable from a combination of the 13C isotropic chemical shift, the static 13C lineshape, and changes in spin-lattice (T1) relaxation times. We will demonstrate that NMR can be used for quantitative

  8. High-pressure magic angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg 2SiO 4) reacted with supercritical CO 2 and H 2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  9. High-pressure magic angle spinning nuclear magnetic resonance.

    PubMed

    Hoyt, David W; Turcu, Romulus V F; Sears, Jesse A; Rosso, Kevin M; Burton, Sarah D; Felmy, Andrew R; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ(13)C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg(2)SiO(4)) reacted with supercritical CO(2) and H(2)O at 150 bar and 50°C are reported, with relevance to geological sequestration of carbon dioxide.

  10. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  11. Mapping carbon fate during bleaching in a model cnidarian symbiosis: the application of (13) C metabolomics.

    PubMed

    Hillyer, Katie E; Dias, Daniel A; Lutz, Adrian; Roessner, Ute; Davy, Simon K

    2017-03-08

    Coral bleaching is a major threat to the persistence of coral reefs. Yet we lack detailed knowledge of the metabolic interactions that determine symbiosis function and bleaching-induced change. We mapped autotrophic carbon fate within the free metabolite pools of both partners of a model cnidarian-dinoflagellate symbiosis (Aiptasia-Symbiodinium) during exposure to thermal stress via the stable isotope tracer ((13) C bicarbonate), coupled to GC-MS. Symbiont photodamage and pronounced bleaching coincided with substantial increases in the turnover of non(13) C-labelled pools in the dinoflagellate (lipid and starch store catabolism). However, (13) C enrichment of multiple compounds associated with ongoing carbon fixation and de novo biosynthesis pathways was maintained (glucose, fatty acid and lipogenesis intermediates). Minimal change was also observed in host pools of (13) C-enriched glucose (a major symbiont-derived mobile product). However, host pathways downstream showed altered carbon fate and/or pool composition, with accumulation of compatible solutes and nonenzymic antioxidant precursors. In hospite symbionts continue to provide mobile products to the host, but at a significant cost to themselves, necessitating the mobilization of energy stores. These data highlight the need to further elucidate the role of metabolic interactions between symbiotic partners, during the process of thermal acclimation and coral bleaching.

  12. Ethane's 12C/13C Ratio in Titan: Implications for Methane Replenishment

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Nixon, C. A.; Romani, P. N.; Bjoraker, G. L.; Sada, P. V.; Lunsford, A. W.; Boyle, R. J.; Hesman, B. E.; McCabe, G. H.

    2009-01-01

    As the .main destination of carbon in the destruction of methane in the atmosphere of Titan, ethane provides information about the carbon isotopic composition of the reservoir from which methane is replenished. If the amount of methane entering the atmosphere is presently equal to the amount converted to ethane, the 12C/13C ratio in ethane should be close to the ratio in the reservoir. We have measured the 12C/13C ratio in ethane both with Cassini CIRS(exp 1) and from the ground and find that it is very close to the telluric standard and outer planet values (89), consistent with a primordial origin for the methane reservoir. The lower 12C/13C ratio measured for methane by Huygens GCMS (82.3) can be explained if the conversion of CH4 to CH3 (and C2H6) favors 12C over 13C with a carbon kinetic isotope effect of 1.08. The time required for the atmospheric methane to reach equilibrium, i.e., for replenishment to equal destruction, is approximately 5 methane atmospheric lifetimes.

  13. First airborne samples of a volcanic plume for δ13C of CO2 determinations

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias P.; Lopez, Taryn M.

    2016-04-01

    Volcanic degassing is one of the main natural sources of CO2 to the atmosphere. Carbon isotopes of volcanic gases enable the determination of CO2 sources including mantle, organic or carbonate sediments, and atmosphere. Until recently, this work required sample collection from vents followed by laboratory analyses. Isotope ratio infrared analyzers now enable rapid analyses of plume δ13C-CO2, in situ and in real time. Here we report the first analyses of δ13C-CO2 from airborne samples. These data combined with plume samples from the vent area enable extrapolation to the volcanic source δ13C. We performed our experiment at the previously unsampled and remote Kanaga Volcano in the Western Aleutians. We find a δ13C source composition of -4.4‰, suggesting that CO2 from Kanaga is primarily sourced from the upper mantle with minimal contributions from subducted components. Our method is widely applicable to volcanoes where remote location or activity level precludes sampling using traditional methods.

  14. IMPROVED LINE DATA FOR THE SWAN SYSTEM {sup 12}C{sup 13}C ISOTOPOLOGUE

    SciTech Connect

    Ram, Ram S.; Brooke, James S. A.; Bernath, Peter F.; Sneden, Christopher; Lucatello, Sara E-mail: rr662@york.ac.uk E-mail: chris@verdi.as.utexas.edu

    2014-03-01

    We present new, accurate predictions for rotational line positions, excitation energies, and transition probabilities of the {sup 12}C{sup 13}C isotopologue Swan d{sup 3}Π-a{sup 3}Π system 0-0, 0–1, 0–2, 1–0, 1–1, 1–2, 2–0, 2–1, and 2–2 vibrational bands. The line positions and energy levels were predicted through new analyses of published laboratory data for the {sup 12}C{sup 13}C lines. Transition probabilities were derived from recent computations of transition dipole moments and related quantities. The {sup 12}C{sup 13}C line data were combined with similar data for {sup 12}C{sub 2,} reported in a companion paper, and applied to produce synthetic spectra of carbon-rich metal-poor stars that have strong C{sub 2} Swan bands. The matches between synthesized and observed spectra were used to estimate band head positions for a few of the {sup 12}C{sup 13}C vibrational bands and to verify that the new computed line data match observed spectra. The much weaker C{sub 2} lines of the bright red giant Arcturus were also synthesized in the band head regions.

  15. Computer-assisted structural analysis of regular glycopolymers on the basis of 13C NMR data.

    PubMed

    Toukach, F V; Shashkov, A S

    2001-09-28

    A computer-assisted approach to the prediction of the primary structures of regular glycopolymers is described. The analysis is based on comparing the calculated 13C NMR spectra of all the possible structures of the repeating unit (for the given monomeric composition) to an experimental 13C NMR spectrum. The spectra generation is based on the spectral database containing information on the 13C chemical shifts of monomers, di- and trimeric fragments. If the required data are missing from this database, the special database for average glycosylation effects is used. The analysis reveals those structures with the calculated 13C NMR spectrum most close to observed. The structures of repeating units of any topology containing up to six residues linked by glycosidic, amidic or phospho-diester bridges can be predicted. Unambiguous selection of the proper structure from the output list of possible structures may require additional experimental data. Testing the created program and databases on bacterial polysaccharides and their derivatives containing up to three non-sugar residues (alditols, amino acids, phosphate groups etc.) per repeating unit revealed the good convergence of prediction with independently obtained structural data.

  16. (13)C-Labeling the carbon-fixation pathway of a highly efficient artificial photosynthetic system.

    PubMed

    Liu, Chong; Nangle, Shannon N; Colón, Brendan C; Silver, Pamela A; Nocera, Daniel G

    2017-03-15

    Interfacing the CO2-fixing microorganism, Ralstonia eutropha, to the energy derived from hydrogen produced by water splitting is a viable approach to achieving renewable CO2 reduction at high efficiencies. We employ (13)C-labeling to report on the nature of CO2 reduction in the inorganic water splitting|R. eutropha hybrid system. Accumulated biomass in a reactor under a (13)C-enriched CO2 atmosphere may be sampled at different time points during CO2 reduction. Converting the sampled biomass into gaseous CO2 allows the (13)C/(12)C ratio to be determined by gas chromatography-mass spectrometry. After 2 hours of inoculation and the initiation of water splitting, the microbes adapted and began to convert CO2 into biomass. The observed time evolution of the (13)C/(12)C ratio in accumulated biomass is consistent with a Monod model for carbon fixation. Carbon dioxide produced by catabolism was found to be minimal. This rapid response of the bacteria to a hydrogen input and to subsequent CO2 reduction at high efficiency are beneficial to achieving artificial photosynthesis for the storage of renewable energy.

  17. Determination of the δ13C of dissolved inorganic carbon in water; RSIL lab code 1710

    USGS Publications Warehouse

    Singleton, Glenda L.; Revesz, Kinga; Coplen, Tyler B.

    2012-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1710 is to present a method to determine the δ13C of dissolved inorganic carbon (DIC) of water. The DIC of water is precipitated using ammoniacal strontium chloride (SrCl2) solution to form strontium carbonate (SrCO3). The δ13C is analyzed by reacting SrCO3 with 100-percent phosphoric acid (H3PO4) to liberate carbon quantitatively as carbon dioxide (CO2), which is collected, purified by vacuum sublimation, and analyzed by dual inlet isotope-ratio mass spectrometry (DI-IRMS). The DI-IRMS is a DuPont double-focusing mass spectrometer. One ion beam passes through a slit in a forward collector and is collected in the rear collector. The other measurable ion beams are collected in the front collector. By changing the ion-accelerating voltage under computer control, the instrument is capable of measuring mass/charge (m/z) 45 or 46 in the rear collector and m/z 44 and 46 or 44 and 45, respectively, in the front collector. The ion beams from these m/z values are as follows: m/z 44 = CO2 = 12C16O16O, m/z 45 = CO2 = 13C16O16O primarily, and m/z 46 = CO2 = 12C16O18O primarily. The data acquisition and control software calculates δ13C values.

  18. The 13C Neutron Source and s-Processing in AGB Stars

    NASA Astrophysics Data System (ADS)

    Trippella, Oscar; Busso, Maurizio; Palmerini, Sara; La Cognata, Marco

    The main component of the s-process accounts for about 50% of elements heavier than Kr, through n-captures occurring in asymptotic giant branch (AGB) stars, where the 13C(α, n)16O reaction is the main neutron source. Its activation below the convective envelope at third dredge-up (TDU) and its efficiency are still matters of debate, as: (i) the astrophysical factor is affected by a broad resonance near the reaction threshold and (ii) mixing mechanisms to locally produce 13C were so far mimicked mainly parametrically. We discuss both problems and, in particular, we adopt one of the recent model proposed for producing 13C and based on an exact multi-D analytical solution of MHD equations, where magnetic buoyancy induces partial mixing at the envelope border. The resulting distribution of 13C is used, together with our upgraded prescription for the reaction rate, to reproduce solar abundances through AGB models. It can account for the chemical evolution of s-elements and for the s/(C/O) ratios in low-metallicity post-AGB stars.

  19. /sup 1/H and /sup 13/C spin-lattice relaxation in gaseous benzene

    SciTech Connect

    Folkendt, M.M.; Weiss-Lopez, B.E.; True, N.S.

    1988-08-25

    The nuclear spin-lattice relaxation time, T/sub 1/, measured for benzene protons at densities between 0.81 and 54.4 mol/m/sup 3/ (15 and 980 Torr) at 381 K exhibits a characteristic nonlinear density dependence. Analysis of the density-dependent T/sub 1/ data yields a spin-rotation coupling constant, C/sub eff/, of /vert bar/182.6 (0.4)/vert bar/ Hz and an angular momentum reorientation cross section, sigma, of 131 (1) /Angstrom//sup 2/. The /sup 13/C spin-lattice relaxation time of singly labeled /sup 13/C benzene is a linear function of density over the density range 1.07-75.12 mol/m/sup 3/ (20-1330 Torr). /sup 13/C T/sub 1/ values are shorter than /sup 1/H T/sub 1/ values by a factor of ca. 100 at comparable densities. The nuclear Overhauser enhancement factor, /eta/, is 0.0 /plus minus/ 0.02 at densities between 11 and 85.3 mol/m/sup 3/ (200 and 1500 Torr), demonstrating that dipole-dipole relaxation is relatively inefficient in this region. The spin-rotation coupling constant, C/sub eff/, for /sup 13/C nuclei in benzene is estimated to be /vert bar/1602 (68)/vert bar/ Hz.

  20. 13C Tracking after 13CO2 Supply Revealed Diurnal Patterns of Wood Formation in Aspen.

    PubMed

    Mahboubi, Amir; Linden, Pernilla; Hedenström, Mattias; Moritz, Thomas; Niittylä, Totte

    2015-06-01

    Wood of trees is formed from carbon assimilated in the photosynthetic tissues. Determining the temporal dynamics of carbon assimilation, subsequent transport into developing wood, and incorporation to cell walls would further our understanding of wood formation in particular and tree growth in general. To investigate these questions, we designed a (13)CO2 labeling system to study carbon transport and incorporation to developing wood of hybrid aspen (Populus tremula × tremuloides). Tracking of (13)C incorporation to wood over a time course using nuclear magnetic resonance spectroscopy revealed diurnal patterns in wood cell wall biosynthesis. The dark period had a differential effect on (13)C incorporation to lignin and cell wall carbohydrates. No (13)C was incorporated into aromatic amino acids of cell wall proteins in the dark, suggesting that cell wall protein biosynthesis ceased during the night. The results show previously unrecognized temporal patterns in wood cell wall biosynthesis, suggest diurnal cycle as a possible cue in the regulation of carbon incorporation to wood, and establish a unique (13)C labeling method for the analysis of wood formation and secondary growth in trees.

  1. Optimal tracers for parallel labeling experiments and (13)C metabolic flux analysis: A new precision and synergy scoring system.

    PubMed

    Crown, Scott B; Long, Christopher P; Antoniewicz, Maciek R

    2016-11-01

    (13)C-Metabolic flux analysis ((13)C-MFA) is a widely used approach in metabolic engineering for quantifying intracellular metabolic fluxes. The precision of fluxes determined by (13)C-MFA depends largely on the choice of isotopic tracers and the specific set of labeling measurements. A recent advance in the field is the use of parallel labeling experiments for improved flux precision and accuracy. However, as of today, no systemic methods exist for identifying optimal tracers for parallel labeling experiments. In this contribution, we have addressed this problem by introducing a new scoring system and evaluating thousands of different isotopic tracer schemes. Based on this extensive analysis we have identified optimal tracers for (13)C-MFA. The best single tracers were doubly (13)C-labeled glucose tracers, including [1,6-(13)C]glucose, [5,6-(13)C]glucose and [1,2-(13)C]glucose, which consistently produced the highest flux precision independent of the metabolic flux map (here, 100 random flux maps were evaluated). Moreover, we demonstrate that pure glucose tracers perform better overall than mixtures of glucose tracers. For parallel labeling experiments the optimal isotopic tracers were [1,6-(13)C]glucose and [1,2-(13)C]glucose. Combined analysis of [1,6-(13)C]glucose and [1,2-(13)C]glucose labeling data improved the flux precision score by nearly 20-fold compared to widely use tracer mixture 80% [1-(13)C]glucose +20% [U-(13)C]glucose.

  2. Control of Mercury Accumulation And Mobility in a Forest Soil as Indicated by δ13C

    NASA Astrophysics Data System (ADS)

    Bajracharya, U.; Jackson, B.; Feng, X.

    2015-12-01

    Mobility and cycling of mercury (Hg) in soils is important. Hg leaching results in its transport to wetlands, where Hg methylates and bioaccumulates through aquatic food webs. It has been shown that Hg cycle in soil is controlled by organic matter (OM) quantity as well as quality. The latter is indicated by increase of Hg/C ratio as C/N decreases by decomposition. Here we investigate the Hg-C relationship in a temperate forest soil in Hanover, NH, with a focus of examining the control of OM quality on soil Hg accumulation and mobility. We use δ13C as an indicator of carbon quality. The soil samples from A, B and C horizons were separated into six particle size fractionations from <25 µm to 1 mm. Both the bulk soil and particle size separates were analyzed for Hg concentrations, carbon content (C%), δ13C, and Hg partition coefficient (Kd =mg gSoil-1/mg Lsolution-1). We found that the bulk Hg concentration decreases significantly with increasing δ13C (R2=0.90, p <0.0001), but Hg/C increases with δ13C (R2=0.59, p =0.009). Both Hg/C and δ13C increase with soil depth, and at a given horizon, they both increase with decreasing particle size. These results indicate that high Hg/C ratios are associated with aged, decomposed, and low quality OM. Mostly likely, this accumulation of Hg in older OM is a result of retention of Hg upon carbon loss during soil respiration. However, the relationship between particle size and Hg/C is significantly different among different horizons; the most prominent relationship occurs at the deepest C horizon. This cross effect of horizon and particle size cannot be explained by normal aging of the OM through decomposition, pointing to mechanisms of changing in Hg bonding characteristics with OM aging or particle aggregation. The measured Kd value decreased with increasing δ13C (R2=0.43, p =0.0031), indicating that Hg associated with older OM is more subject to leaching compared to younger, fresher OM. This association can also be

  3. Vertical δ13C and δ15N changes during pedogenesis

    NASA Astrophysics Data System (ADS)

    Brunn, Melanie; Spielvogel, Sandra; Wells, Andrew; Condron, Leo; Oelmann, Yvonne

    2015-04-01

    The natural abundance of soil organic matter (SOM) stable C and N isotope ratios are subjected to vertical changes throughout the soil profile. This vertical distribution is a widely reported phenomenon across varieties of ecosystems and constitutes important insights of soil carbon cycling. In most ecosystems, SOM becomes enriched in heavy isotopes by several per mill in the first few centimeters of the topsoil. The enrichment of 13C in SOM with soil depth is attributed to biological and physical-chemical processes in soil e.g., plant physiological impacts, microbial decomposition, sorption and transport processes. Such vertical trends in 13C and 15N abundance have rarely been related to SOM composition during pedogenesis. The aims of our study were to investigate short and long-term δ13C and δ15N depth changes and their interrelations under progressing pedogenesis and ecosystem development. We sampled soils across the well studied fordune progradation Haast-chronosequence, a dune ridge system under super-humid climate at the West Coast of New Zealand's South Island (43° 53' S, 169° 3' E). Soils from 11 sites with five replicates each covered a time span of around 2870 yr of soil development (from Arenosol to Podzol). Vertical changes of δ13C and δ15N values of SOM were investigated in the organic layers and in 1-cm depth intervals of the upper 10 cm of the mineral soil. With increasing soil depth SOM became enriched in δ13C by 1.9 ± SE 0.1 o and in δ15N by 6.0 ± 0.4 ‰˙Litter δ13C values slightly decreased with increasing soil age (r = -0.61; p = 0.00) likely due to less efficient assimilation linked to nutrient limitations. Fractionation processes during mycorrhizal transfer appeared to affect δ15N values in the litter. We found a strong decrease of δ15N in the early succession stages ≤ 300 yr B.P. (r = -0.95; p = 0.00). Positive relations of vertical 13C and 15N enrichment with soil age might be related to decomposition and appeared to be

  4. Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Dippold, Michaela; Glaser, Bruno; Kuzyakov, Yakov

    2017-01-01

    Microorganisms regulate the carbon (C) cycle in soil, controlling the utilization and recycling of organic substances. To reveal the contribution of particular microbial groups to C utilization and turnover within the microbial cells, the fate of 13C-labelled glucose was studied under field conditions. Glucose-derived 13C was traced in cytosol, amino sugars and phospholipid fatty acid (PLFA) pools at intervals of 3, 10 and 50 days after glucose addition into the soil. 13C enrichment in PLFAs ( ˜ 1.5 % of PLFA C at day 3) was an order of magnitude greater than in cytosol, showing the importance of cell membranes for initial C utilization. The 13C enrichment in amino sugars of living microorganisms at day 3 accounted for 0.57 % of total C pool; as a result, we infer that the replacement of C in cell wall components is 3 times slower than that of cell membranes. The C turnover time in the cytosol (150 days) was 3 times longer than in PLFAs (47 days). Consequently, even though the cytosol pool has the fastest processing rates compared to other cellular compartments, intensive recycling of components here leads to a long C turnover time. Both PLFA and amino-sugar profiles indicated that bacteria dominated in glucose utilization. 13C enrichment decreased with time for bacterial cell membrane components, but it remained constant or even increased for filamentous microorganisms. 13C enrichment of muramic acid was the 3.5 times greater than for galactosamine, showing a more rapid turnover of bacterial cell wall components compared to fungal. Thus, bacteria utilize a greater proportion of low-molecular-weight organic substances, whereas filamentous microorganisms are responsible for further C transformations. Thus, tracing 13C in cellular compounds with contrasting turnover rates elucidated the role of microbial groups and their cellular compartments in C utilization and recycling in soil. The results also reflect that microbial C turnover is not restricted to the death or

  5. Coral 13C/12C records of vertical seafloor displacement during megathrust earthquakes west of Sumatra

    NASA Astrophysics Data System (ADS)

    Gagan, Michael K.; Sosdian, Sindia M.; Scott-Gagan, Heather; Sieh, Kerry; Hantoro, Wahyoe S.; Natawidjaja, Danny H.; Briggs, Richard W.; Suwargadi, Bambang W.; Rifai, Hamdi

    2015-12-01

    The recent surge of megathrust earthquakes and tsunami disasters has highlighted the need for a comprehensive understanding of earthquake cycles along convergent plate boundaries. Space geodesy has been used to document recent crustal deformation patterns with unprecedented precision, however the production of long paleogeodetic records of vertical seafloor motion is still a major challenge. Here we show that carbon isotope ratios (δ13C) in the skeletons of massive Porites corals from west Sumatra record abrupt changes in light exposure resulting from coseismic seafloor displacements. Validation of the method is based on the coral δ13C response to uplift (and subsidence) produced by the March 2005 Mw 8.6 Nias-Simeulue earthquake, and uplift further south around Sipora Island during a M ∼ 8.4 megathrust earthquake in February 1797. At Nias, the average step-change in coral δ13C was 0.6 ± 0.1 ‰ /m for coseismic displacements of +1.8 m and -0.4 m in 2005. At Sipora, a distinct change in Porites microatoll growth morphology marks coseismic uplift of 0.7 m in 1797. In this shallow water setting, with a steep light attenuation gradient, the step-change in microatoll δ13C is 2.3 ‰ /m, nearly four times greater than for the Nias Porites. Considering the natural variability in coral skeletal δ13C, we show that the lower detection limit of the method is around 0.2 m of vertical seafloor motion. Analysis of vertical displacement for well-documented earthquakes suggests this sensitivity equates to shallow events exceeding Mw ∼ 7.2 in central megathrust and back-arc thrust fault settings. Our findings indicate that the coral 13C /12C paleogeodesy technique could be applied to convergent tectonic margins throughout the tropical western Pacific and eastern Indian oceans, which host prolific coral reefs, and some of the world's greatest earthquake catastrophes. While our focus here is the link between coral δ13C, light exposure and coseismic crustal deformation, the

  6. Sub-Doppler Measurements of the Rotational Spectrum of (13)C(16)O.

    PubMed

    Klapper; Lewen; Gendriesch; Belov; Winnewisser

    2000-05-01

    The five lowest J rotational transitions of (13)C(16)O have been measured by saturation-dip spectroscopy to an accuracy of about 2 kHz, employing phase-stabilized backward-wave oscillators (BWOs). These highly precise measurements cover the transitions from J = 2 <-- 1 to J = 6 <-- 5 with frequencies ranging from 220 to 661 GHz. For each of the five observed rotational transitions, the narrow linewidths of the saturation dips (about 20 kHz) permitted the resolution of the hyperfine splitting for the first time. This splitting is caused by the (13)C-nuclear spin-rotation interaction yielding a value for the nuclear spin-rotation coupling constant of C(I)((13)C(16)O). If combined with the beam measurements (C(I)((13)C(16)O) = 32.63(10) kHz), a slight J-dependence of the spin-rotation coupling constant can be determined (C(J) = 30 +/- 13 Hz). In addition, we have measured in the Doppler-limited mode several higher J rotational line positions of (13)C(16)O up to 991 GHz with an accuracy of 5 kHz. The two line positions (J = 12 <-- 11 and J = 14 <-- 13) were recorded by multiplying BWO frequency with an accuracy of 100 kHz. The rotational transitions J = 17 <-- 16 and J = 18 <-- 17 were measured with an accuracy between 15 and 25 kHz by using the Cologne sideband spectrometer for terahertz applications COSSTA. Copyright 2000 Academic Press.

  7. Microsolvation of methylmercury: structures, energies, bonding and NMR constants ((199)Hg, (13)C and (17)O).

    PubMed

    Flórez, Edison; Maldonado, Alejandro F; Aucar, Gustavo A; David, Jorge; Restrepo, Albeiro

    2016-01-21

    Hartree-Fock (HF) and second order perturbation theory (MP2) calculations within the scalar and full relativistic frames were carried out in order to determine the equilibrium geometries and interaction energies between cationic methylmercury (CH3Hg(+)) and up to three water molecules. A total of nine structures were obtained. Bonding properties were analyzed using the Quantum Theory of Atoms In Molecules (QTAIM). The analyses of the topology of electron densities reveal that all structures exhibit a partially covalent HgO interaction between methylmercury and one water molecule. Consideration of additional water molecules suggests that they solvate the (CH3HgOH2)(+) unit. Nuclear magnetic shielding constants σ((199)Hg), σ((13)C) and σ((17)O), as well as indirect spin-spin coupling constants J((199)Hg-(13)C), J((199)Hg-(17)O) and J((13)C-(17)O), were calculated for each one of the geometries. Thermodynamic stability and the values of NMR constants correlate with the ability of the system to directly coordinate oxygen atoms of water molecules to the mercury atom in methylmercury and with the formation of hydrogen bonds among solvating water molecules. Relativistic effects account for 11% on σ((13)C) and 14% on σ((17)O), which is due to the presence of Hg (heavy atom on light atom, HALA effect), while the relativistic effects on σ((199)Hg) are close to 50% (heavy atom on heavy atom itself, HAHA effect). J-coupling constants are highly influenced by relativity when mercury is involved as in J((199)Hg-(13)C) and J((199)Hg-(17)O). On the other hand, our results show that the values of NMR constants for carbon and oxygen, atoms which are connected through mercury (C-HgO), are highly correlated and are greatly influenced by the presence of water molecules. Water molecules introduce additional electronic effects to the relativistic effects due to the mercury atom.

  8. Microbial metabolism in soil at low temperatures: Mechanisms unraveled by position-specific 13C labeling

    NASA Astrophysics Data System (ADS)

    Bore, Ezekiel

    2016-04-01

    Microbial transformation of organic substances in soil is the most important process of the C cycle. Most of the current studies base their information about transformation of organic substances on incubation studies under laboratory conditions and thus, we have a profound knowledge on SOM transformations at ambient temperatures. However, metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5, -5 -20 oC. Soils were sampled after 1, 3 and 10 days and additionally after 30 days for samples at -20 °C. The 13C from individual molecule position was quantifed in respired CO2, bulk soil, extractable organic C and extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of microbial communities classified by 13C phospholipid fatty acid (PLFA) analysis. 13CO2 released showed a dominance of the flux from C-1 position at 5 °C. Consequently, at 5 °C, pentose phosphate pathway activity is a dominant metabolic pathway of glucose metabolization. In contrast to -5 °C and -20 oC, metabolic behaviors completely switched towards a preferential respiration of the glucose C-4 position. With decreasing temperature, microorganism strongly shifted towards metabolization of glucose via glycolysis which indicates a switch to cellular maintenance. High recoveries of 13C in extractable microbial biomass at -5 °C indicates optimal growth condition for the microorganisms. PLFA analysis showed high incorporation of 13C into Gram negative bacteria at 5 °C but decreased with temperature. Gram positive bacteria out-competed Gram negatives with decreasing temperature. This study revealed a remarkable microbial activity at temperatures below 0 °C, differing significantly from that at ambient

  9. A 13C mass isotopomer study of anaplerotic pyruvate carboxylation in perfused rat hearts.

    PubMed

    Comte, B; Vincent, G; Bouchard, B; Jetté, M; Cordeau, S; Rosiers, C D

    1997-10-17

    Anaplerotic pyruvate carboxylation was examined in hearts perfused with physiological concentrations of glucose, [U-13C3]lactate, and [U-13C3]pyruvate. Also, a fatty acid, [1-13C]octanoate, or ketone bodies were added at concentrations providing acetyl-CoA at a rate resulting in either low or substantial pyruvate decarboxylation. Relative contributions of pyruvate and fatty acids to citrate synthesis were determined from the 13C labeling pattern of effluent citrate by gas chromatography-mass spectrometry (see companion article, Comte, B., Vincent, G., Bouchard, B., and Des Rosiers, C. (1997) J. Biol. Chem. 272, 26117-26124). Precision on flux measurements of anaplerotic pyruvate carboxylation depended on the mix of substrates supplied to the heart. Anaplerotic fluxes were precisely determined under conditions where acetyl-CoA was predominantly supplied by beta-oxidation, as it occurred with 0.2 or 1 mM octanoate. Then, anaplerotic pyruvate carboxylation provided 3-8% of the OAA moiety of citrate and was modulated by concentrations of lactate and pyruvate in the physiological range. Also, the contribution of pyruvate to citrate formation through carboxylation was equal to or greater than through decarboxylation. Furthermore, 13C labeling data on tissue citric acid cycle intermediates and pyruvate suggest that (i) anaplerosis occurs also at succinate and (ii) cataplerotic malate decarboxylation is low. Rather, the presence of citrate in the effluent perfusate of hearts perfused with physiological concentrations of glucose, lactate, and pyruvate and concentrations of octanoate leading to maximal oxidative rates suggests a cataplerotic citrate efflux from mitochondria to cytosol. Taken altogether, our data raise the possibility of a link between pyruvate carboxylation and mitochondrial citrate efflux. In view of the proposed feedback regulation of glycolysis by cytosolic citrate, such a link would support a role of anaplerosis and cataplerosis in metabolic signal

  10. Single shot three‐dimensional pulse sequence for hyperpolarized 13C MRI

    PubMed Central

    Wang, Jiazheng; Wright, Alan J.; Hu, De‐en; Hesketh, Richard

    2016-01-01

    Purpose Metabolic imaging with hyperpolarized 13C‐labeled cell substrates is a promising technique for imaging tissue metabolism in vivo. However, the transient nature of the hyperpolarization, and its depletion following excitation, limits the imaging time and the number of excitation pulses that can be used. We describe here a single‐shot three‐dimensional (3D) imaging sequence and demonstrate its capability to generate 13C MR images in tumor‐bearing mice injected with hyperpolarized [1‐13C]pyruvate. Methods The pulse sequence acquires a stack‐of‐spirals at two spin echoes after a single excitation pulse and encodes the kz‐dimension in an interleaved manner to enhance robustness to B0 inhomogeneity. Spectral‐spatial pulses are used to acquire dynamic 3D images from selected hyperpolarized 13C‐labeled metabolites. Results A nominal spatial/temporal resolution of 1.25 × 1.25 × 2.5 mm3 × 2 s was achieved in tumor images of hyperpolarized [1‐13C]pyruvate and [1‐13C]lactate acquired in vivo. Higher resolution in the z‐direction, with a different k‐space trajectory, was demonstrated in measurements on a thermally polarized [1‐13C]lactate phantom. Conclusion The pulse sequence is capable of imaging hyperpolarized 13C‐labeled substrates at relatively high spatial and temporal resolutions and is robust to moderate system imperfections. Magn Reson Med 77:740–752, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26916384

  11. Large and unexpected enrichment in stratospheric 16O13C18O and its meridional variation

    PubMed Central

    Yeung, Laurence Y.; Affek, Hagit P.; Hoag, Katherine J.; Guo, Weifu; Wiegel, Aaron A.; Atlas, Elliot L.; Schauffler, Sue M.; Okumura, Mitchio; Boering, Kristie A.; Eiler, John M.

    2009-01-01

    The stratospheric CO2 oxygen isotope budget is thought to be governed primarily by the O(1D)+CO2 isotope exchange reaction. However, there is increasing evidence that other important physical processes may be occurring that standard isotopic tools have been unable to identify. Measuring the distribution of the exceedingly rare CO2 isotopologue 16O13C18O, in concert with 18O and 17O abundances, provides sensitivities to these additional processes and, thus, is a valuable test of current models. We identify a large and unexpected meridional variation in stratospheric 16O13C18O, observed as proportions in the polar vortex that are higher than in any naturally derived CO2 sample to date. We show, through photochemical experiments, that lower 16O13C18O proportions observed in the midlatitudes are determined primarily by the O(1D)+CO2 isotope exchange reaction, which promotes a stochastic isotopologue distribution. In contrast, higher 16O13C18O proportions in the polar vortex show correlations with long-lived stratospheric tracer and bulk isotope abundances opposite to those observed at midlatitudes and, thus, opposite to those easily explained by O(1D)+CO2. We believe the most plausible explanation for this meridional variation is either an unrecognized isotopic fractionation associated with the mesospheric photochemistry of CO2 or temperature-dependent isotopic exchange on polar stratospheric clouds. Unraveling the ultimate source of stratospheric 16O13C18O enrichments may impose additional isotopic constraints on biosphere–atmosphere carbon exchange, biosphere productivity, and their respective responses to climate change. PMID:19564595

  12. Entropy and the Magic Flute

    NASA Astrophysics Data System (ADS)

    Morowitz, Harold J.

    1996-10-01

    Harold Morowitz has long been highly regarded both as an eminent scientist and as an accomplished science writer. The essays in The Wine of Life , his first collection, were hailed by C.P. Snow as "some of the wisest, wittiest and best informed I have ever read," and Carl Sagan called them "a delight to read." In later volumes he established a reputation for a wide-ranging intellect, an ability to see unexpected connections and draw striking parallels, and a talent for communicating scientific ideas with optimism and wit. With Entropy and the Magic Flute , Morowitz once again offers an appealing mix of brief reflections on everything from litmus paper to the hippopotamus to the sociology of Palo Alto coffee shops. Many of these pieces are appreciations of scientists that Morowitz holds in high regard, while others focus on health issues, such as America's obsession with cheese toppings. There is also a fascinating piece on the American Type Culture Collection, a zoo or warehouse for microbes that houses some 11,800 strains of bacteria, and over 3,000 specimens of protozoa, algae, plasmids, and oncogenes. Here then are over forty light, graceful essays in which one of our wisest experimental biologists comments on issues of science, technology, society, philosophy, and the arts.

  13. <