Science.gov

Sample records for 13c hyperfine structure

  1. Hyperfine structure in the J = 1-0 transitions of DCO^+, DNC, and HN13C: astronomical observations and quantum-chemical calculations

    NASA Astrophysics Data System (ADS)

    van der Tak, F. F. S.; Müller, H. S. P.; Harding, M. E.; Gauss, J.

    2009-11-01

    Context: Knowledge of the hyperfine structure of molecular lines is useful for estimating reliable column densities from observed emission, and essential for the derivation of kinematic information from line profiles. Aims: Deuterium bearing molecules are especially useful in this regard, because they are good probes of the physical and chemical structure of molecular cloud cores on the verge of star formation. However, the necessary spectroscopic data are often missing, especially for molecules which are too unstable for laboratory study. Methods: We have observed the ground-state (J = 1{-}0) rotational transitions of DCO^+, HN13C and DNC with the IRAM 30 m telescope toward the dark cloud LDN 1512 which has exceptionally narrow lines permitting hyperfine splitting to be resolved in part. The measured splittings of 50-300 kHz are used to derive nuclear quadrupole and spin-rotation parameters for these species. The measurements are supplemented by high-level quantum-chemical calculations using coupled-cluster techniques and large atomic-orbital basis sets. Results: We find eQq = + 151.12 (400) kHz and CI = -1.12 (43) kHz for DCO^+, eQq = 272.5 (51) kHz for HN13C, and eQq(D) =265.9 (83) kHz and eQq(N) = 288.2 (71) kHz for DNC. The numbers for DNC are consistent with previous laboratory data, while our constants for DCO+ are somewhat smaller than previous results based on astronomical data. For both DCO+ and DNC, our results are more accurate than previous determinations. Our results are in good agreement with the corresponding best theoretical estimates, which amount to eQq = 156.0 kHz and CI = -0.69 kHz for DCO^+, eQq = 279.5 kHz for HN13C, and eQq(D) = 257.6 kHz and eQq(N) = 309.6 kHz for DNC. We also derive updated rotational constants for HN13C: B = 43 545.6000 (47) MHz and D = 93.7 (20) kHz. Conclusions: The hyperfine splittings of the DCO^+, DNC and HN13C J = 1{-}0 lines range over 0.47-1.28 km s-1, which is comparable to typical line widths in pre

  2. Characterization of hyperfine interaction between an NV electron spin and a first-shell 13C nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Rao, K. Rama Koteswara; Suter, Dieter

    2016-08-01

    The nitrogen-vacancy (NV) center in diamond has attractive properties for a number of quantum technologies that rely on the spin angular momentum of the electron and the nuclei adjacent to the center. The nucleus with the strongest interaction is the 13C nuclear spin of the first shell. Using this degree of freedom effectively hinges on precise data on the hyperfine interaction between the electronic and the nuclear spin. Here, we present detailed experimental data on this interaction, together with an analysis that yields all parameters of the hyperfine tensor, as well as its orientation with respect to the atomic structure of the center.

  3. Tungsten monocarbide, WC: Pure rotational spectrum and 13C hyperfine interaction

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Steimle, Timothy C.

    2012-01-01

    The J = 1 → 2 pure rotational transitions in the X3Δ1(v = 0) state of 186W12C and 184W12C were recorded using a pump/probe microwave optical double resonance (PPMODR) technique and analyzed to give fine structure parameters. The field-free [17.6]2← X3Δ1 (1, 0) bands of the W13C isotopologues were recorded using laser induced fluorescence and analyzed to produce the 13C(I = 1/2) magnetic hyperfine parameter. Bonding in the [17.6]2(v = 1) and X3Δ1(v = 0) states is discussed and a comparison of the experimentally determined properties of the X3Δ1(v = 0) state with those predicted as a prelude to the electron electric dipole moment (eEDM) measurements [J. Lee, E. R. Meyer, R. Paudel, J. L. Bohn, and A. E. Leanhardt, J. Mod. Opt. 56, 2005 (2009), 10.1080/09500340903349930] is given.

  4. Hyperfine structure parametrisation in Maple

    NASA Astrophysics Data System (ADS)

    Gaigalas, G.; Scharf, O.; Fritzsche, S.

    2006-02-01

    In hyperfine structure examinations, routine high resolution spectroscopy methods have to be combined with exact fine structure calculations. The so-called magnetic A and electric B factor of the fine structure levels allow to check for a correct fine structure analysis, to find errors in the level designation, to find new levels and to probe the electron wavefunctions and its mixing coefficients. This is done by parametrisation of these factors into different contributions of the subshell electrons, which are split further into their radial and spin-angular part. Due to the routine with which hyperfine structure measurements are done, a tool for keeping the necessary information together, performing checks online with the experiment and deriving standard quantities is of great help. MAPLE [Maple is a registered trademark of Waterloo Maple Inc.] is a highly-developed symbolic programming language, often referred to as the pocket calculator of the future. Packages for theoretical atomic calculation exist ( RACAH and JUCYS) and the language meets all the requirements to keep and present information accessible for the user in a fast and practical way. We slightly extended the RACAH package [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51] and set up an environment for experimental hyperfine structure calculations, the HFS package. Supplying the fine structure and nuclear data, one is in the position to obtain information about the hyperfine spectrum, the different contributions to the splitting and to perform a least square fit of the radial parameters based on the semiempirical method. Experimentalist as well as theoretical physicist can do a complete hyperfine structure analysis using MAPLE. Program summaryTitle of program: H FS Catalogue number: ADXD Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXD Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers for which the program is designed

  5. Application of 13C-labeling and 13C-13C COSY NMR experiments in the structure determination of a microbial natural product.

    PubMed

    Kwon, Yun; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2014-08-01

    The elucidation of the structures of complex natural products bearing many quaternary carbons remains challenging, even in this advanced spectroscopic era. (13)C-(13)C COSY NMR spectroscopy shows direct couplings between (13)C and (13)C, which comprise the backbone of a natural product. Thus, this type of experiment is particularly useful for natural products bearing consecutive quaternary carbons. However, the low sensitivity of (13)C-based NMR experiments, due to the low natural abundance of the (13)C nucleus, is problematic when applying these techniques. Our efforts in the (13)C labeling of a microbial natural product, cyclopiazonic acid (1), by feeding (13)C-labeled glucose to the fungal culture, enabled us to acquire (13)C-(13)C COSY NMR spectra on a milligram scale that clearly show the carbon backbone of the compound. This is the first application of (13)C-(13)C COSY NMR experiments for a natural product. The results suggest that (13)C-(13)C COSY NMR spectroscopy can be routinely used for the structure determination of microbial natural products by (13)C-enrichment of a compound with (13)C-glucose.

  6. Electron spin resonance spectra and hyperfine coupling constants of the [ 133C]α-tocopheroxyl (the [ 13C]vitamin E radical) and [ 13C]2,2,5,7,8-pentamethylchroman-6-oxyl radicals (Its model radical)

    NASA Astrophysics Data System (ADS)

    Matsuo, Mitsuyoshi; Matsumoto, Shigenobu; Urano, Shiro; Mukai, Kazuo

    The electron spin resonance spectra of the [5a-, 7a-, or 8b- 13C]2- ambo-α-tocopheroxyl and [5a-, 7a-, or 8b- 13C]2,2,5,7,8-pentamethylchroman-6-oxyl radicals were obtained from the oxidation of [ 13C]2- ambo-α-tocopherol ( 13C]vitamin E) and [ 13C]2,2,5,7,8-penta-methylchroman-6-ol (a [ 13C]vitamin E model compound), respectively, with 2,2-diphenyl-1-picrylhydrazyl. The 13C hyperfine coupling constants of the 5a-, 7a-, and 8b-methyl groups in these radicals were determined using spectrum simulation. Their magnitude was compared with that of the 1H hyperfine coupling constants of the methyl groups. It was found to be simply proportional to the π-spin density on aromatic carbon atoms bonded to the methyl groups: i.e., ajc = Qjc· ϱiπ. The Qjc value was empirically determined to be -1.62 ± 0.05 mT.

  7. HfS, Hyperfine Structure Fitting Tool

    NASA Astrophysics Data System (ADS)

    Estalella, Robert

    2017-02-01

    Hyperfine Structure Fitting (HfS) is a tool to fit the hyperfine structure of spectral lines with multiple velocity components. The HfS_nh3 procedures included in HfS simultaneously fit the hyperfine structure of the NH3 (J, K) = (1, 1) and (2, 2) transitions, and perform a standard analysis to derive {T}{ex}, NH3 column density, {T}{rot}, and {T}{{k}}. HfS uses a Monte Carlo approach for fitting the line parameters. Special attention is paid to the derivation of the parameter uncertainties. HfS includes procedures that make use of parallel computing for fitting spectra from a data cube.

  8. An improved 13C-tracer method for the study of lignin structure and reactions : differential 13C-NMR

    Treesearch

    Noritsugu Terashima; Dmitry Evtuguin; Carlos Pascoal Neto; Jim Parkas; Magnus Paulsson; Ulla Westermark; Sally Ralph; John Ralph

    2003-01-01

    The technique of selective 13C-enrichment of specific carbons in lignin combined with 13C-NMR differential spectrometry between spectra of 13C-enriched and unenriched lignins (Ä13C-NMR) provides definitive information on the structure of the lignin macromolecule. Improvements were made on, (1) specific 13C-enrichment of almost all carbons involved in inter-unit bonds...

  9. Effective Hyperfine-structure Functions of Ammonia

    NASA Astrophysics Data System (ADS)

    Augustovičová, L.; Soldán, P.; Špirko, V.

    2016-06-01

    The hyperfine structure of the rotation-inversion (v 2 = 0+, 0-, 1+, 1-) states of the 14NH3 and 15NH3 ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction. In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.

  10. NMR structure analysis of uniformly 13C-labeled carbohydrates.

    PubMed

    Fontana, Carolina; Kovacs, Helena; Widmalm, Göran

    2014-06-01

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.

  11. HDF and QCI studies on the heterosubstituted iminoxy radicals: substituent effect on the isotropic hyperfine couplings with 13C and 1H nuclei

    NASA Astrophysics Data System (ADS)

    Jaszewski, Adrian R.

    2001-07-01

    Isotropic hyperfine parameters of a set of iminoxy radicals are investigated using hybrid density functional and quadratic configuration interaction methods. The systems studied are R1R2CNO radicals, where R1H, BH 2, CH 3, NH 2, OH, F, AlH 2, SiH 3, PH 2, SH, Cl and R2H. Theoretical results indicate that magnitude of the hyperfine coupling with iminoxy 13C nucleus due to the particular isomer of the radical is strongly affected by electronegativity of the substituents R1 and R2. A iso( 13C) varies from 6.7 to 56.2 G for Z (and from 45.6 to 18.7 G for E) isomers of the iminoxyls depending on the substituent (AlH 2 and F, respectively).

  12. Hyperfine Structure measurements of 45Sc

    NASA Astrophysics Data System (ADS)

    Jones, K. D.; Rossi, D. M.; Minamisono, K.; Miller, A. J.; Asberry, H.; Mantica, P. F.

    2015-10-01

    A chain of charge radii shows discontinuity at nucleon magic numbers. This signature of the shell closure, however, is missing at the neutron magic number N = 20 for Ar, Ca and K isotopes. A collinear laser spectroscopy experiment on the stable 45Sc isotope, which is one proton added to Ca, was performed as a prerequisite of radioactive beam experiments on Sc across N = 20 to further investigate the abnormal behavior. The experiment was performed at BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL and a hyperfine spectrum was measured for the electronic transition of 3 d 4 s 3D1 --> 3 d 4 p 3F2 at λ = 364 . 3 nm in 45ScII. The magnetic dipole and electric quadrupole hyperfine coupling constants A and B of both the lower and upper states were obtained from the hyperfine structure by fitting a pseudo-Voigt profile. The results obtained from these data are in good agreement with previous values and have smaller statistical errors. The detail of experiment and analysis will be discussed. This work was supported in part by NSF Grant No. PHY-11-02511.

  13. Fourier Transform Microwave Spectroscopy of Sc13C2 and Sc12C13C: Establishing AN Accurate Structure of ScC2 (tilde{X}2A1)

    NASA Astrophysics Data System (ADS)

    Burton, Mark; Halfen, DeWayne T.; Min, Jie; Ziurys, Lucy M.

    2016-06-01

    Pure rotational spectra of Sc13C2 and Sc12C13C (tilde{X}2A1) have been obtained using Fourier Transform Microwave methods. These molecules were created from scandium vapor in combination with 13CH4 and/or 12CH4, diluted in argon, using a Discharge Assisted Laser Ablation Source (DALAS). Transitions in the frequency range of 14-30 GHz were observed for both species including hyperfine splitting due to the nuclear spin of Sc (I = 7/2) and 13C (I = 1/2). Rotational, spin-rotational, and hyperfine constants have been determined for Sc13C2 and Sc12C13C, as well as a refined structure for ScC2. In agreement with theoretical calculations and previous Sc12C2 results, these data confirm a cyclic (or T-shaped) structure for this molecule. Scandium carbides have been shown to form endohedral-doped fullerenes, which have unique electrical and magnetic properties due to electron transfer between the metal and the carbon-cage. Spectroscopy of ScC2 provides data on model systems for comparison with theory.

  14. Elucidating connectivity and metal-binding structures of unlabeled paramagnetic complexes by 13C and 1H solid-state NMR under fast magic angle spinning.

    PubMed

    Wickramasinghe, Nalinda P; Shaibat, Medhat A; Ishii, Yoshitaka

    2007-08-23

    Characterizing paramagnetic complexes in solids is an essential step toward understanding their molecular functions. However, methodologies to characterize chemical and electronic structures of paramagnetic systems at the molecular level have been notably limited, particularly for noncrystalline solids. We present an approach to obtain connectivities of chemical groups and metal-binding structures for unlabeled paramagnetic complexes by 13C and 1H high-resolution solid-state NMR (SSNMR) using very fast magic angle spinning (VFMAS, spinning speed >or=20 kHz). It is experimentally shown for unlabeled Cu(II)(Ala-Thr) that 2D 13C/1H correlation SSNMR under VFMAS provides the connectivity of chemical groups and assignments for the characterization of unlabeled paramagnetic systems in solids. We demonstrate that on the basis of the assignments provided by the VFMAS approach multiple 13C-metal distances can be simultaneously elucidated by a combination of measurements of 13C anisotropic hyperfine shifts and 13C T1 relaxation due to hyperfine interactions for this peptide-Cu(II) complex. It is also shown that an analysis of 1H anisotropic hyperfine shifts allows for the determination of electron-spin states in Fe(III)-chloroprotoporphyin-IX in solid states.

  15. Niobium hyperfine structure in crystal calcium tungstate

    NASA Technical Reports Server (NTRS)

    Tseng, D. L.; Kikuchi, C.

    1972-01-01

    A study of the niobium hyperfine structure in single crystal calcium tungstate was made by the combination of the technique of electron paramagnetic resonance and electron nuclear double resonance (EPR/ENDOR). The microwave frequency was about 9.4 GHz and the radio frequency from 20MHz to 70 MHz. The rare earth ions Nd(3+), U(3+), or Tm(3+) were added as the charge compensator for Nb(5+). To create niobium paramagnetic centers, the sample was irradiated at 77 deg K with a 10 thousand curie Co-60 gamma source for 1 to 2 hours at a dose rate of 200 K rads per hour and then transferred quickly into the cavity. In a general direction of magnetic field, the spectra showed 4 sets of 10 main lines corresponding to 4 nonequivalent sites of niobium with I = 9/2. These 4 sets of lines coalesced into 2 sets of 10 in the ab-plane and into a single set of 10 along the c-axis. This symmetry suggested that the tungsten ions are substituted by the niobium ions in the crystal.

  16. Hyperfine structure of S-states of muonic tritium

    NASA Astrophysics Data System (ADS)

    Martynenko, F. A.; Faustov, R. N.; Martynenko, A. P.

    2016-12-01

    On the basis of quasipotential method in quantum electrodynamics we carry out a precise calculation of hyperfine splitting of S-states in muonic tritium. The one-loop and two-loop vacuum polarization corrections, relativistic effects, nuclear structure corrections in first and second orders of perturbation theory are taken into account. The contributions to hyperfine structure are obtained in integral form and calculated analytically and numerically. Obtained results for hyperfine splitting can be used for a comparison with future experimental data of CREMA collaboration.

  17. Quantum Theory of Hyperfine Structure Transitions in Diatomic Molecules.

    ERIC Educational Resources Information Center

    Klempt, E.; And Others

    1979-01-01

    Described is an advanced undergraduate laboratory experiment in which radio-frequency transitions between molecular hyperfine structure states may be observed. Aspects of the quantum theory applied to the analysis of this physical system, are discussed. (Authors/BT)

  18. Quantum Theory of Hyperfine Structure Transitions in Diatomic Molecules.

    ERIC Educational Resources Information Center

    Klempt, E.; And Others

    1979-01-01

    Described is an advanced undergraduate laboratory experiment in which radio-frequency transitions between molecular hyperfine structure states may be observed. Aspects of the quantum theory applied to the analysis of this physical system, are discussed. (Authors/BT)

  19. Quadrupolar contact terms and hyperfine structure

    SciTech Connect

    Karl, G.; Novikov, V. A.

    2006-08-15

    In the interaction of two electric quadrupoles, there is at short range a contact term proportional to the second derivative of a {delta} function. This contact term contributes to the hyperfine splitting of bound states of two particles with spin one or higher -- for example, the bound state of {omega}{sup -} and a nucleus with spin one. The contact hyperfine splitting occurs in states with orbital angular momentum unity (P wave), in contrast to the Fermi contact interaction, which is in S states. We find that these contact splittings will be observable with {omega}{sup -} atoms and help measure the quadrupole moment and charge radius of the hyperon.

  20. Hyperfine structure studies of transition metals

    SciTech Connect

    Young, L.; Kurtz, C.; Hasegawa, S.

    1995-08-01

    This past year our studies of hyperfine structure (hfs) in metastable states of transition metals concentrated on the analysis of hfs in the four-valence electron system, Nb II. Earlier, we measured hfs intervals using the laser-rf double resonance and laser-induced fluorescence methods in a fast-ion beam of Nb{sup +}. The resulting experimental magnetic dipole and electric quadrupole interaction constants are compared to those calculated by a relativistic configuration interaction approach. These are the first hfs data on this refractory element. Theoretically, it is found that the most important contributions to the energy are the pair excitations, valence single excitations and core polarization from the shallow core. However, the inner core polarization is found to be crucial for hfs, albeit unimportant for energy. For the J=2 level at 12805 cm{sup -1}, 4d{sup 4} {sup 3}F. the theoretical relativistic configuration A-value is in agreement with the experimental result to an accuracy of 4%. Other calculated A-values are expected to be of the same accuracy. A paper describing these results was accepted for publication. Experimental studies of the four-valence electron system V{sup +} in the (4s+3d){sup 4} manifold are complete. The theoretical difficulties for the 3d manifold, noted earlier for the three-valence electron Ti{sup +}, as compared to the 4d manifold appear to be repeated in the case of the four-valence electron systems (Nb{sup +} and V{sup +}). Relativistic configuration interaction calculations are underway, after which a paper will be published.

  1. Proton-structure corrections to hyperfine splitting in muonic hydrogen

    SciTech Connect

    Carlson, Carl E.; Nazaryan, Vahagn; Griffioen, Keith

    2011-04-15

    We present the derivation of the formulas for the proton structure-dependent terms in the hyperfine splitting of muonic hydrogen. We use compatible conventions throughout the calculations to derive a consistent set of formulas that reconcile differences between our results and some specific terms in earlier work. Convention conversion corrections are explicitly presented, which reduce the calculated hyperfine splitting by about 46 ppm. We also note that using only modern fits to the proton elastic form factors gives a smaller than historical spread of Zemach radii and leads to a reduced uncertainty in the hyperfine splitting. Additionally, hyperfine splittings have an impact on the muonic hydrogen Lamb shift and proton radius measurement, however the correction we advocate has a small effect there.

  2. Spin-torsion effects in the hyperfine structure of methanol

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.

    2015-07-01

    The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling.

  3. Spin-torsion effects in the hyperfine structure of methanol

    SciTech Connect

    Coudert, L. H. Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.

    2015-07-28

    The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling.

  4. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide.

    PubMed

    Cai, Weiwei; Piner, Richard D; Stadermann, Frank J; Park, Sungjin; Shaibat, Medhat A; Ishii, Yoshitaka; Yang, Dongxing; Velamakanni, Aruna; An, Sung Jin; Stoller, Meryl; An, Jinho; Chen, Dongmin; Ruoff, Rodney S

    2008-09-26

    The detailed chemical structure of graphite oxide (GO), a layered material prepared from graphite almost 150 years ago and a precursor to chemically modified graphenes, has not been previously resolved because of the pseudo-random chemical functionalization of each layer, as well as variations in exact composition. Carbon-13 (13C) solid-state nuclear magnetic resonance (SSNMR) spectra of GO for natural abundance 13C have poor signal-to-noise ratios. Approximately 100% 13C-labeled graphite was made and converted to 13C-labeled GO, and 13C SSNMR was used to reveal details of the chemical bonding network, including the chemical groups and their connections. Carbon-13-labeled graphite can be used to prepare chemically modified graphenes for 13C SSNMR analysis with enhanced sensitivity and for fundamental studies of 13C-labeled graphite and graphene.

  5. Hyperfine structure of hydrogenlike thallium isotopes

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, Peter; Utter, Steven B.; Wong, Keith L.; Crespo López-Urrutia, José R.; Britten, Jerry A.; Chen, Hui; Harris, Clifford L.; Thoe, Robert S.; Thorn, Daniel B.; Träbert, Elmar; Gustavsson, Martin G. H.; Forssén, Christian; Mårtensson-Pendrill, Ann-Marie

    2001-09-01

    The hyperfine splitting of the 1s ground state of hydrogenlike Tl has been measured for the two stable isotopes using emission spectroscopy in the SuperEBIT electron-beam ion trap, giving 3858.22+/-0.30 Å for 203Tl80+ and 3821.84+/-0.34 Å for 205Tl80+ with a wavelength difference Δλ=36.38+/-0.35 Å. This difference is consistent with estimates based on hyperfine anomaly data for neutral Tl only if finite size effects are included in the calculation. By using previously determined nuclear magnetic moments, and applying appropriate corrections for the nuclear charge distribution and radiative effects, the experimental splittings can be interpreted in terms of nuclear magnetization radii 1/2=5.83(14) fm for 203Tl and 1/2=5.89(14) fm for 205Tl. These values are 10% larger than derived from single-particle nuclear magnetization models, and are slightly larger than the corresponding charge distributions.

  6. Structure of uniaxially aligned 13C labeled silk fibroin fibers with solid state 13C-NMR

    NASA Astrophysics Data System (ADS)

    Demura, Makoto; Yamazaki, Yasunobu; Asakura, Tetsuo; Ogawa, Katsuaki

    1998-01-01

    Carbon-13 isotopic labeling of B. mori silk fibroin was achieved biosynthetically with [1- 13C] glycine in order to determine the carbonyl bond orientation angle of glycine sites with the silk fibroin. Angular dependence of 13C solid state NMR spectra of uniaxially oriented silk fibroin fiber block sample due to the carbonyl 13C chemical shift anisotropy was simulated according to the chemical shift transformation with Euler angles, αF and βF, from principal axis system (PAS) to fiber axis system (FAS). The another Euler angles, αDCO and βDCO, for transformation from PAS to the molecular symmetry axis were determined from the [1- 13C] glycine sequence model compounds for the silk fibroin. By the combination of these Euler angles, the carbonyl bond orientation angle with respect to FAS of the [1- 13C] glycine sites of the silk fibroin was determined to be 90 ± 5°. This value is in agreement with the X-ray diffraction and our previous solid state NMR data of B. mori silk fibroin fiber (a typical β-pleated sheet) within experimental error.

  7. Hyperfine structure constants of atomic bromine (Br I)

    NASA Astrophysics Data System (ADS)

    Ni, Xue; Deng, Lunhua; Wang, Hailing

    2017-07-01

    The absorption spectrum of the neutral bromine (Br I), lying in the region from 11,300 cm-1 to 12,600 cm-1 has been investigated using concentration modulation absorption spectroscopy with a tunable Ti:Sapphire laser. The bromine atoms were excited by discharging the mixture of Helium and bromine vapour in a hollow discharge glass tube. The hyperfine structure spectra of 45 lines were analyzed. Hyperfine structure constants A and B were derived for 20 even and 27 odd levels amongst which constants for 12 even and 21 odd levels were newly reported.

  8. The NH2D hyperfine structure revealed by astrophysical observations

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Coudert, L. H.; Punanova, A.; Harju, J.; Faure, A.; Roueff, E.; Sipilä, O.; Caselli, P.; Güsten, R.; Pon, A.; Pineda, J. E.

    2016-02-01

    Context. The 111-101 lines of ortho- and para-NH2D (o/p-NH2D) at 86 and 110 GHz, respectively, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure that is due to the nitrogen (14N) nucleus is resolved. To date, this splitting is the only one that is taken into account in the NH2D column density estimates. Aims: We investigate how including the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH2D. Methods: We present 30 m IRAM observations of the above mentioned lines and APEX o/p-NH2D observations of the 101-000 lines at 333 GHz. The hyperfine patterns of the observed lines were calculated taking into account the splitting induced by the D nucleus. The analysis then relies on line lists that either neglect or include the splitting induced by the D nucleus. Results: The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting that is due to the 14N nucleus. We find inconsistencies between the line widths of the 101-000 and 111-101 lines, the latter being larger by a factor of ~1.6 ± 0.3. Such a large difference is unexpected because the two sets of lines probably originate from the same region. We next employed a newly computed line list for the o/p-NH2D transitions where the hyperfine structure induced by both nitrogen and deuterium nuclei was included. With this new line list, the analysis of the previous spectra leads to compatible line widths. Conclusions: Neglecting the hyperfine structure caused by D leads to overestimating the line widths of the o/p-NH2D lines at 3 mm. The error for a cold molecular core is about 50%. This error propagates directly to the column density estimate. We therefore recommend to take the hyperfine splittings caused by both the 14N and D nuclei into account in any analysis that relies on these lines. Based on observations carried out with the IRAM

  9. Simultaneous imaging of 13C metabolism and 1H structure: technical considerations and potential applications.

    PubMed

    Gordon, Jeremy W; Fain, Sean B; Niles, David J; Ludwig, Kai D; Johnson, Kevin M; Peterson, Eric T

    2015-05-01

    Real-time imaging of (13)C metabolism in vivo has been enabled by recent advances in hyperpolarization. As a result of the inherently low natural abundance of endogenous (13)C nuclei, hyperpolarized (13)C images lack structural information that could be used to aid in motion detection and anatomical registration. Motion before or during the (13)C acquisition can therefore result in artifacts and misregistration that may obscure measures of metabolism. In this work, we demonstrate a method to simultaneously image both (1)H and (13)C nuclei using a dual-nucleus spectral-spatial radiofrequency excitation and a fully coincident readout for rapid multinuclear spectroscopic imaging. With the appropriate multinuclear hardware, and the means to simultaneously excite and receive on both channels, this technique is straightforward to implement requiring little to no increase in scan time. Phantom and in vivo experiments were performed with both Cartesian and spiral trajectories to validate and illustrate the utility of simultaneous acquisitions. Motion compensation of dynamic metabolic measurements acquired during free breathing was demonstrated using motion tracking derived from (1)H data. Simultaneous multinuclear imaging provides structural (1)H and metabolic (13)C images that are correlated both spatially and temporally, and are therefore amenable to joint (1)H and (13)C analysis and correction of structure-function images.

  10. Hadronic deuteron polarizability contribution the hyperfine structure in muonic deuterium

    NASA Astrophysics Data System (ADS)

    Eskin, A. V.; Martynenko, A. P.; Elekina, E. N.

    2016-12-01

    The calculation of the contribution to the polarizability of the nucleus to hyperfine structure of muonic hydrogen is carried out within the unitary isobar model and on the basis of experimental data on the structure functions of deep inelastic lepton-proton and lepton-deuteron scattering. The calculation of virtual absorption cross sections of transversely and longitudinally polarized photons by nucleons in the resonance region is performed in the framework of the program MAID.

  11. Hadronic deuteron polarizability contribution the hyperfine structure in muonic deuterium

    NASA Astrophysics Data System (ADS)

    Eskin, A. V.; Martynenko, A. P.; Elekina, E. N.

    2017-01-01

    The calculation of the contribution to the polarizability of the nucleus to hyperfine structure of muonic hydrogen is carried out within the unitary isobar model and on the basis of experimental data on the structure functions of deep inelastic lepton-proton and lepton-deuteron scattering. The calculation of virtual absorption cross sections of transversely and longitudinally polarized photons by nucleons in the resonance region is performed in the framework of the program MAID.

  12. Measurement of hyperfine structure and isotope shifts in Gd II

    NASA Astrophysics Data System (ADS)

    Del Papa, Dylan F.; Rose, Christopher D. M.; Rosner, S. David; Holt, Richard A.

    2017-07-01

    We have applied fast-ion-beam laser-fluorescence spectroscopy to measure the isotope shifts of 73 optical transitions in the wavelength range 421.5-455.8 nm and the hyperfine structures of 35 even parity and 33 odd parity levels in Gd II. Many of the isotope shifts and hyperfine structure measurements are the first for these transitions and levels. These atomic data can be used to correct for saturation and blending in the analysis of stellar spectra to determine chemical abundances. As a result, they have an important impact on studies of the history of nucleosynthesis in the Universe and on the use of photospheric abundance anomalies in Chemically Peculiar stars to infer indirect information about stellar interiors.

  13. Deuterium hyperfine structure in interstellar C3HD

    NASA Technical Reports Server (NTRS)

    Bell, M. B.; Watson, J. K.; Feldman, P. A.; Matthews, H. E.; Madden, S. C.; Irvine, W. M.

    1987-01-01

    The deuterium nuclear quadrupole hyperfine structure of the transition 1(10)-1(01) of the ring molecule cyclopropenylidene-d1 (C3HD) has been observed in emission from interstellar molecular clouds. The narrowest linewidths (approximately 7 kHz) so far observed are in the cloud L1498. The derived D coupling constants Xzz = 186.9(1.4) kHz, eta=0.063(18) agree well with correlations based on other molecules.

  14. First Optical Hyperfine Structure Measurement in an Atomic Anion

    SciTech Connect

    Fischer, A.; Canali, C.; Warring, U.; Kellerbauer, A.; Fritzsche, S.

    2010-02-19

    We have investigated the hyperfine structure of the transition between the 5d{sup 7}6s{sup 2} {sup 4}F{sub 9/2}{sup e} ground state and the 5d{sup 6}6s{sup 2}6p {sup 6}D{sub J}{sup o} excited state in the negative osmium ion by high-resolution collinear laser spectroscopy. This transition is unique because it is the only known electric-dipole transition in atomic anions and might be amenable to laser cooling. From the observed hyperfine structure in {sup 187}Os{sup -} and {sup 189}Os{sup -} the yet unknown total angular momentum of the bound excited state was found to be J=9/2. The hyperfine structure constants of the {sup 4}F{sub 9/2}{sup e} ground state and the {sup 6}D{sub 9/2}{sup o} excited state were determined experimentally and compared to multiconfiguration Dirac-Fock calculations. Using the knowledge of the ground and excited state angular momenta, the full energy level diagram of {sup 192}Os{sup -} in an external magnetic field was calculated, revealing possible laser cooling transitions.

  15. Bent three-{alpha} linear-chain structure of {sup 13}C

    SciTech Connect

    Furutachi, N.; Kimura, M.

    2011-02-15

    The stability of the three-{alpha} linear-chain structure of {sup 13}C has been investigated with a microscopic 3{alpha}+n model. We have found two excited rotational bands that have developed a three-{alpha} cluster structure in {sup 13}C. The lower band built on 3/2{sub 2}{sup -} state at 11.4 MeV has the bent three-{alpha} linear-chain structure, and this structure is stable against the bending motion of three-{alpha} clusters.

  16. Structural analysis of uniformly (13)C-labelled solids from selective angle measurements at rotational resonance.

    PubMed

    Patching, Simon G; Edwards, Rachel; Middleton, David A

    2009-08-01

    We demonstrate that individual H-C-C-H torsional angles in uniformly labelled organic solids can be estimated by selective excitation of (13)C double-quantum coherences under magic-angle spinning at rotational resonance. By adapting a straightforward one-dimensional experiment described earlier [T. Karlsson, M. Eden, H. Luhman, M.H. Levitt, J. Magn. Reson. 145 (2000) 95-107], a double-quantum filtered spectrum selective for Calpha and Cbeta of uniformly labelled L-[(13)C,(15)N]valine is obtained with 25% efficiency. The evolution of Calpha-Cbeta double-quantum coherence under the influence of the dipolar fields of bonded protons is monitored to provide a value of the Halpha-Calpha-Cbeta-Hbeta torsional angle that is consistent with the crystal structure. In addition, double-quantum filtration selective for C6 and C1' of uniformly labelled [(13)C,(15)N]uridine is achieved with 12% efficiency for a (13)C-(13)C distance of 2.5A, yielding a reliable estimate of the C6-H and C1'-H projection angle defining the relative orientations of the nucleoside pyrimidine and ribose rings. This procedure will be useful, in favourable cases, for structural analysis of fully labelled small molecules such as receptor ligands that are not readily synthesised with labels placed selectively at structurally diagnostic sites.

  17. Structural analysis of uniformly 13C-labelled solids from selective angle measurements at rotational resonance

    NASA Astrophysics Data System (ADS)

    Patching, Simon G.; Edwards, Rachel; Middleton, David A.

    2009-08-01

    We demonstrate that individual H-C-C-H torsional angles in uniformly labelled organic solids can be estimated by selective excitation of 13C double-quantum coherences under magic-angle spinning at rotational resonance. By adapting a straightforward one-dimensional experiment described earlier [T. Karlsson, M. Eden, H. Luhman, M.H. Levitt, J. Magn. Reson. 145 (2000) 95-107], a double-quantum filtered spectrum selective for Cα and Cβ of uniformly labelled L-[ 13C, 15N]valine is obtained with 25% efficiency. The evolution of Cα-Cβ double-quantum coherence under the influence of the dipolar fields of bonded protons is monitored to provide a value of the Hα-Cα-Cβ-Hβ torsional angle that is consistent with the crystal structure. In addition, double-quantum filtration selective for C6 and C1' of uniformly labelled [ 13C, 15N]uridine is achieved with 12% efficiency for a 13C- 13C distance of 2.5 Å, yielding a reliable estimate of the C6-H and C1'-H projection angle defining the relative orientations of the nucleoside pyrimidine and ribose rings. This procedure will be useful, in favourable cases, for structural analysis of fully labelled small molecules such as receptor ligands that are not readily synthesised with labels placed selectively at structurally diagnostic sites.

  18. E0 transition strength and cluster structure in {sup 13}C

    SciTech Connect

    Yoshida, T.; Itagaki, N.; Otsuka, T.

    2008-05-21

    We study the structure of low-lying states of {sup 13}C with a microscopic cluster model. The second 0{sup +} state of {sup 12}C, which is known as the Hoyle state and is important for astrophysical reactions, has been clarified to have dilute {alpha}-cluster structure. On the basis of the {alpha}-cluster model, we discuss the effect of one valence neutron in {sup 13}C on the {alpha}-cluster configuration of the Hoyle state. For these purpose, we investigate the iso-scalar E0 transition probability from the ground 1/2{sup -} state to this excited states.

  19. Computer-assisted structural analysis of regular glycopolymers on the basis of 13C NMR data.

    PubMed

    Toukach, F V; Shashkov, A S

    2001-09-28

    A computer-assisted approach to the prediction of the primary structures of regular glycopolymers is described. The analysis is based on comparing the calculated 13C NMR spectra of all the possible structures of the repeating unit (for the given monomeric composition) to an experimental 13C NMR spectrum. The spectra generation is based on the spectral database containing information on the 13C chemical shifts of monomers, di- and trimeric fragments. If the required data are missing from this database, the special database for average glycosylation effects is used. The analysis reveals those structures with the calculated 13C NMR spectrum most close to observed. The structures of repeating units of any topology containing up to six residues linked by glycosidic, amidic or phospho-diester bridges can be predicted. Unambiguous selection of the proper structure from the output list of possible structures may require additional experimental data. Testing the created program and databases on bacterial polysaccharides and their derivatives containing up to three non-sugar residues (alditols, amino acids, phosphate groups etc.) per repeating unit revealed the good convergence of prediction with independently obtained structural data.

  20. Genius: a genetic algorithm for automated structure elucidation from 13C NMR spectra.

    PubMed

    Meiler, Jens; Will, Martin

    2002-03-06

    The automated structure elucidation of organic molecules from experimentally obtained properties is extended by an entirely new approach. A genetic algorithm is implemented that uses molecular constitution structures as individuals. With this approach, the structure of organic molecules can be optimized to meet experimental criteria, if in addition a fast and accurate method for the prediction of the used physical or chemical features is available. This is demonstrated using 13C NMR spectrum as readily obtainable information. By means of artificial neural networks a fast and accurate method for calculating the 13C NMR spectrum of the generated structures exists. The method is implemented and tested successfully for organic molecules with up to 18 non-hydrogen atoms.

  1. Analysis of defect structure in silicon. Characterization of samples from UCP ingot 5848-13C

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Guyer, T.; Stringfellow, G. B.

    1982-01-01

    Statistically significant quantitative structural imperfection measurements were made on samples from ubiquitous crystalline process (UCP) Ingot 5848 - 13 C. Important trends were noticed between the measured data, cell efficiency, and diffusion length. Grain boundary substructure appears to have an important effect on the conversion efficiency of solar cells from Semix material. Quantitative microscopy measurements give statistically significant information compared to other microanalytical techniques. A surface preparation technique to obtain proper contrast of structural defects suitable for QTM analysis was perfected.

  2. Synthesis of D-[U-{sup 13}C]Glucal, D-[U-{sup 13}C] Galactal, and L-[U-{sup 13}C]Fucose for NMR structure studies of oligosaccharides

    SciTech Connect

    Wu, R.; Unkefer, C.J.; Silks, L.A. III

    1996-12-31

    The role of carbohydrates is well recognized in a variety of important biological phenomena such as cell surface recognition. Recent advances in carbohydrate chemistry, including the development of solid phase synthesis methods, have helped to provide significant quantities of material by offering general protocols for synthesis of well-defined, pure material. However, the study of the solution structure of oligosaccharides by nuclear magnetic resonance techniques have been hampered by the lack of enriched {sup 13}C material. In an effort to help alleviate this situation, we have been interested in the construction of the title compounds from a single economical carbon source, D-[U-{sup 13}C]glucose. Details of the syntheses will be provided.

  3. Microsolvation of methylmercury: structures, energies, bonding and NMR constants ((199)Hg, (13)C and (17)O).

    PubMed

    Flórez, Edison; Maldonado, Alejandro F; Aucar, Gustavo A; David, Jorge; Restrepo, Albeiro

    2016-01-21

    Hartree-Fock (HF) and second order perturbation theory (MP2) calculations within the scalar and full relativistic frames were carried out in order to determine the equilibrium geometries and interaction energies between cationic methylmercury (CH3Hg(+)) and up to three water molecules. A total of nine structures were obtained. Bonding properties were analyzed using the Quantum Theory of Atoms In Molecules (QTAIM). The analyses of the topology of electron densities reveal that all structures exhibit a partially covalent HgO interaction between methylmercury and one water molecule. Consideration of additional water molecules suggests that they solvate the (CH3HgOH2)(+) unit. Nuclear magnetic shielding constants σ((199)Hg), σ((13)C) and σ((17)O), as well as indirect spin-spin coupling constants J((199)Hg-(13)C), J((199)Hg-(17)O) and J((13)C-(17)O), were calculated for each one of the geometries. Thermodynamic stability and the values of NMR constants correlate with the ability of the system to directly coordinate oxygen atoms of water molecules to the mercury atom in methylmercury and with the formation of hydrogen bonds among solvating water molecules. Relativistic effects account for 11% on σ((13)C) and 14% on σ((17)O), which is due to the presence of Hg (heavy atom on light atom, HALA effect), while the relativistic effects on σ((199)Hg) are close to 50% (heavy atom on heavy atom itself, HAHA effect). J-coupling constants are highly influenced by relativity when mercury is involved as in J((199)Hg-(13)C) and J((199)Hg-(17)O). On the other hand, our results show that the values of NMR constants for carbon and oxygen, atoms which are connected through mercury (C-HgO), are highly correlated and are greatly influenced by the presence of water molecules. Water molecules introduce additional electronic effects to the relativistic effects due to the mercury atom.

  4. Theoretical study of the structure of boron carbide B13C2

    NASA Astrophysics Data System (ADS)

    Shirai, Koun; Sakuma, Kyohei; Uemura, Naoki

    2014-08-01

    We have resolved long-standing discrepancies between the theoretical and experimental crystal structures of boron carbide B13C2. Theoretical studies predict that B13C2 should be stoichiometric and have the highest symmetry of the boron carbides. Experimentally, B13C2 is a semiconductor and many defect states have been reported, particularly in the CBC chain. Reconciling the disordered states of the chain, the chemical composition, and the lowest-energy state is problematic. We have solved this problem by constructing a structural model where approximately three-quarters of the unit cells contain (B11C)(CBC) and one-quarter of them contain (B12)(B4). This structural model explains many experimental results, such as the large thermal factors in x-ray diffraction and the broadening of the Raman spectra, without introducing unstable CBB chains. The model also solves the energy-gap problem. We show that there are many arrangements of these two types of unit cells, which are energetically almost degenerate. This demonstrates that boron carbides are well described by a geometrically frustrated system, similar to that proposed for β-rhombohedral boron.

  5. Full hyperfine structure analysis of singly ionized molybdenum

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa

    2017-03-01

    For a first time a parametric study of hyperfine structure of Mo II configuration levels is presented. The newly measured A and B hyperfine structure (hfs) constants values of Mo II 4d5, 4d45s and 4d35s2 configuration levels, for both 95 and 97 isotopes, using Fast-ion-beam laser-induced fluorescence spectroscopy [1] are gathered with other few data available in literature. A fitting procedure of an isolated set of these three lowest even-parity configuration levels has been performed by taking into account second-order of perturbation theory including the effects of closed shell-open shell excitations. Moreover the same study was done for Mo II odd-parity levels; for both parities two sets of fine structure parameters as well as the leading eigenvector percentages of levels and Landé-factor gJ, relevant for this paper are given. We present also predicted singlet, triplet and quintet positions of missing experimental levels up to 85000 cm-1. The single-electron hfs parameter values were extracted in their entirety for 97Mo II and for 95Mo II: for instance for 95Mo II, a4d01 =-133.37 MHz and a5p01 =-160.25 MHz for 4d45p; a4d01 =-140.84 MHz, a5p01 =-170.18 MHz and a5s10 =-2898 MHz for 4d35s5p; a5s10 =-2529 (2) MHz and a4d01 =-135.17 (0.44) MHz for the 4d45s. These parameter values were analysed and compared with diverse ab-initio calculations. We closed this work with giving predicted values of magnetic dipole and electric quadrupole hfs constants of all known levels, whose splitting are not yet measured.

  6. Isotope shift and hyperfine structure measurements in titanium I

    NASA Astrophysics Data System (ADS)

    Luc, P.; Vetter, R.; Bauche-Arnoult, C.; Bauche, J.

    1994-09-01

    High accuracy measurements of hyperfine structure due to47Ti and49Ti in the 3 d 2 4 s 2 a 3 F 2-3 d 2 4 s4 p z 5 D 1 absorption line at σ=18482.772 cm-1 have been performed by use of a Doppler-free experiment, where a beam of titanium atoms is crossed by a CW single mode tunable dye laser. They have allowed for the determination of isotope shifts between46Ti,47Ti,48Ti,49Ti and50Ti. By use of accurate values of mean square nuclear charge radii for the even isotopes, it has been possible to separate mass shifts from field shifts and to determine accurate values for the mean square nuclear charge radii of47Ti and49Ti. The field shift presents a marked odd-even staggering.

  7. Structural comparison of Gilsonite and Trinidad Lake Asphalt using 13C-NMR technique

    NASA Astrophysics Data System (ADS)

    Nciri, Nader; Cho, Namjun

    2017-04-01

    The recent increased importance of natural asphalt as an alternative binder for sustainable road pavement has dictated that more knowledge should be acquired about its structure and properties. Earlier, Carbon-13 NMR spectroscopy has been applied to very few natural bituminous materials. In this work, two types of raw binders namely Gilsonite and Trinidad Lake asphalt (TLA) have been subjected to an extensive investigation by using 13C-NMR technique. Results have shown that valuable chemical data can be readily withdrawn on aromatic ring structures and ring substituents in natural asphalts derived from different sources. The chemical significance of these findings will be discussed.

  8. Zeeman effects in the hyperfine structure of atomic iodine photodissociation laser emission.

    NASA Technical Reports Server (NTRS)

    Hwang, W. C.; Kasper, J. V. V.

    1972-01-01

    Observation of hyperfine structure in laser emission from CF3I and C2F5I photodissociation lasers. Constant magnetic fields affect the time behavior of the emission by changing the relative gains of the hyperfine transitions. Time-varying fields usually present in photodissociation lasers further complicate the emission.

  9. Zeeman effects in the hyperfine structure of atomic iodine photodissociation laser emission.

    NASA Technical Reports Server (NTRS)

    Hwang, W. C.; Kasper, J. V. V.

    1972-01-01

    Observation of hyperfine structure in laser emission from CF3I and C2F5I photodissociation lasers. Constant magnetic fields affect the time behavior of the emission by changing the relative gains of the hyperfine transitions. Time-varying fields usually present in photodissociation lasers further complicate the emission.

  10. Study of cluster structure in 13C with AMD+HON-constraint method

    NASA Astrophysics Data System (ADS)

    Chiba, Yohei; Kimura, Masaaki

    2014-12-01

    The 3α + n cluster states of 13C are discussed on the basis of antisymmetrized molecular dynamics with the constraint on the harmonic oscillator quanta. We predict two different kinds of the cluster states, the hoyle analogue state and the linear-chain state. The former is understood as the 0+2 state (Hoyle state) of 12C accompanied by a valence neutron occupying the s-wave. The latter constitute the parity doublet bands of Kπ = 1/2± owing to its parity asymmetric intrinsic structure.

  11. Hyperfine structure in the configuration 4 f 136 s7 s of Tm I

    NASA Astrophysics Data System (ADS)

    Kronfeldt, H.-D.; Kröger, S.

    1995-12-01

    Doppler-free saturation absorption spectroscopy was applied on an atomic thulium vapour in a see-through hollow cathode for the determination of precise values for the magnetic dipole hyperfine structure constants A of 6 levels of the configuration 4 f 13 6 s7 s. A parametric analysis of the hyperfine structure has been performed, using wave-functions from a fine structure calculation, which leads to one-electron hyperfine structure parameters a {4/f 01}=-500(6) MHz, a {6/s 10}=-5058(47) MHz, and a {7/s 10}=-1012 MHz.

  12. The molecular structure and vibrational, 1H and 13C NMR spectra of lidocaine hydrochloride monohydrate

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2016-01-01

    The structure, vibrational and NMR spectra of the local anesthetic drug lidocaine hydrochloride monohydrate salt were investigated by B3LYP/6-311G∗∗ calculations. The lidocaine·HCl·H2O salt is predicted to have the gauche structure as the predominant form at ambient temperature with NCCN and CNCC torsional angles of 110° and -123° as compared to 10° and -64°, respectively in the base lidocaine. The repulsive interaction between the two N-H bonds destabilized the gauche structure of lidocaine·HCl·H2O salt. The analysis of the observed vibrational spectra is consistent with the presence of the lidocaine salt in only one gauche conformation at room temperature. The 1H and 13C NMR spectra of lidocaine·HCl·H2O were interpreted by experimental and DFT calculated chemical shifts of the lidocaine salt. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine·HCl·H2O is 2.32 and 8.21 ppm, respectively.

  13. The molecular structure and vibrational, (1)H and (13)C NMR spectra of lidocaine hydrochloride monohydrate.

    PubMed

    Badawi, Hassan M; Förner, Wolfgang; Ali, Shaikh A

    2016-01-05

    The structure, vibrational and NMR spectra of the local anesthetic drug lidocaine hydrochloride monohydrate salt were investigated by B3LYP/6-311G(∗∗) calculations. The lidocaine·HCl·H2O salt is predicted to have the gauche structure as the predominant form at ambient temperature with NCCN and CNCC torsional angles of 110° and -123° as compared to 10° and -64°, respectively in the base lidocaine. The repulsive interaction between the two N-H bonds destabilized the gauche structure of lidocaine·HCl·H2O salt. The analysis of the observed vibrational spectra is consistent with the presence of the lidocaine salt in only one gauche conformation at room temperature. The (1)H and (13)C NMR spectra of lidocaine·HCl·H2O were interpreted by experimental and DFT calculated chemical shifts of the lidocaine salt. The RMSD between experimental and theoretical (1)H and (13)C chemical shifts for lidocaine·HCl·H2O is 2.32 and 8.21ppm, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The hyperfine structure in the rotational spectrum of CF+

    NASA Astrophysics Data System (ADS)

    Guzmán, V.; Roueff, E.; Gauss, J.; Pety, J.; Gratier, P.; Goicoechea, J. R.; Gerin, M.; Teyssier, D.

    2012-12-01

    Context. CF+ has recently been detected in the Horsehead and Orion Bar photo-dissociation regions. The J = 1-0 line in the Horsehead is double-peaked in contrast to other millimeter lines. The origin of this double-peak profile may be kinematic or spectroscopic. Aims: We investigate the effect of hyperfine interactions due to the fluorine nucleus in CF+ on the rotational transitions. Methods: We compute the fluorine spin rotation constant of CF+ using high-level quantum chemical methods and determine the relative positions and intensities of each hyperfine component. This information is used to fit the theoretical hyperfine components to the observed CF+ line profiles, thereby employing the hyperfine fitting method in GILDAS. Results: The fluorine spin rotation constant of CF+ is 229.2 kHz. This way, the double-peaked CF+ line profiles are well fitted by the hyperfine components predicted by the calculations. The unusually large hyperfine splitting of the CF+ line therefore explains the shape of the lines detected in the Horsehead nebula, without invoking intricate kinematics in the UV-illuminated gas.

  15. Hyperfine Structure in Rotational Spectra of Deuterated Molecules: the Hds and ND_3 Case Studies

    NASA Astrophysics Data System (ADS)

    Cazzoli, Gabriele; Puzzarini, Cristina

    2016-06-01

    The determination of hyperfine parameters (quadrupole-coupling, spin-spin coupling, and spin-rotation constants) is one of the aims of high-resolution rotational spectroscopy. These parameters are relevant not only from a spectroscopic point of view, but also from a physical and/or chemical viewpoint, as they might provide detailed information on the chemical bond, structure, etc. In addition, the hyperfine structure of rotational spectra is so characteristic that its analysis may help in assigning the spectra of unknown species. In astronomical observations, hyperfine structures of rotational spectra would allow us to gain information on column densities and kinematics, and the omission of taking them into account can lead to a misinterpretation of the line width of the molecular emission lines. Nevertheless, the experimental determination of hyperfine constants can be a challenge not only for actual problems in resolving hyperfine structures themselves, but also due to the lack of reliable estimates or the complexity of the hyperfine structure itself. It is thus important to be able to rely on good predictions for such parameters, which can nowadays be provided by quantum-chemical calculations. In fact, the fruitful interplay of experiment and theory will be demonstrated by means of two study cases: the hypefine structure of the rotational spectra of HDS and ND_3. From an experimental point of view, the Lamb-dip technique has been employed to improve the resolving power in themillimeter- and submillimeterwave frequency range by at least one order of magnitude, thus making it possible to perform sub-Doppler measurements as well as to resolve narrow hyperfine structures. Concerning theory, it will be demonstrated that high-level calculations can provide quantitative estimates for hyperfine parameters (quadrupole coupling constants, spin-rotation tensors, spin-spin couplings, etc.) and shown how theoretical predictions are often essential for a detailed analysis of

  16. ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE

    SciTech Connect

    Belluzzi, Luca; Landi Degl’Innocenti, Egidio; Bueno, Javier Trujillo

    2015-10-10

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.

  17. Isotropic Inelastic Collisions in a Multiterm Atom with Hyperfine Structure

    NASA Astrophysics Data System (ADS)

    Belluzzi, Luca; Landi Degl'Innocenti, Egidio; Trujillo Bueno, Javier

    2015-10-01

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron-atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D1 and D2 lines is presented.

  18. Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd

    Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  19. Relativistic Calculating the Spectral Lines Hyperfine Structure Parameters for Heavy Ions

    SciTech Connect

    Khetselius, O. Yu.

    2008-10-22

    The energies and constants of the hyperfine structure, derivatives of the one-electron characteristics on nuclear radius, nuclear electric quadrupole, magnetic dipole moments for some Li-like multicharged ions are calculated.

  20. Calculation of the hyperfine structure of the superheavy elements Z=119 and Z=120{sup +}

    SciTech Connect

    Dinh, T. H.; Dzuba, V. A.; Flambaum, V. V.

    2009-10-15

    The hyperfine-structure constants of the lowest s and p{sub 1/2} states of superheavy elements Z=119 and Z=120{sup +} are calculated using ab initio approach. Core polarization and dominating correlation effects are included to all orders. Breit and quantum electrodynamic effects are also considered. Similar calculations for Cs, Fr, Ba{sup +}, and Ra{sup +} are used to control the accuracy. The dependence of the hyperfine-structure constants on the nuclear radius is discussed.

  1. Hyperfine structure of the S- and P-wave states of muonic deuterium

    SciTech Connect

    Martynenko, A. P. Martynenko, G. A.; Sorokin, V. V.; Faustov, R. N.

    2016-03-15

    Corrections of order α{sup 5} and α{sup 6} to the hyperfine structure of the S- and P-wave states of muonic deuteriumwere calculated on the basis of the quasipotential approach in quantum electrodynamics. Relativistic corrections, vacuum-polarization and deuteron-structure effects, and recoil corrections were taken into account in this calculation. The resulting hyperfine-splitting values can be used in a comparison with experimental data obtained by the CREMA Collaboration.

  2. Lowest bending mode of 13C-substituted C3 and an experimentally derived structure

    NASA Astrophysics Data System (ADS)

    Breier, Alexander A.; Büchling, Thomas; Schnierer, Rico; Lutter, Volker; Fuchs, Guido W.; Yamada, Koichi M. T.; Mookerjea, Bhaswati; Stutzki, Jürgen; Giesen, Thomas F.

    2016-12-01

    The ν2 lowest bending mode of linear C3 and of all its 13C-substituted isotopologues was recorded using a terahertz-supersonic jet spectrometer in combination with a laser ablation source. Sixty-five ro-vibrational transitions between 1.8 and 1.9 THz have been assigned to linear 12C12C12C, 12C12C13, 12C13C12C, 13C13C12C, 13C12C13C, and 13C13C13. For each isotopologue, molecular parameters were obtained and the C-C-bond length was derived experimentally. All results are in excellent agreement with recent ab initio calculations [B. Schröder and P. Sebald, J. Chem. Phys. 144, 044307 (2016)]. The new measurements explain why the interstellar search for singly substituted 12C12C13C has failed so far. A spectral line list with recommended transition frequencies based on global data fits is given to foster future interstellar detections.

  3. On the hyperfine structures in the m-type hexaferrite

    NASA Astrophysics Data System (ADS)

    Bahgat, A. A.; Fayek, M. K.

    1980-04-01

    Mössbauer measurements have been made on polycrystalline barium and strontium hexaferrite samples. The subspectra corresponding to the iron ion in the bypyramid lattice site in the temperature range 4.2 to 293 K with and without externally applied magnetic field up to 25 kG have been considered particularly. The quadrupole shift is vanishing, and the five magnetic hyperfine fields related to the magnetic sites are equal at low temperature. Values of the hyperfine fields for the pentahedral site are discussed.

  4. VizieR Online Data Catalog: Spectroscopy of N2D+ hyperfine structur

    NASA Astrophysics Data System (ADS)

    Dore, L.; Caselli, P.; Beninati, S.; Bourke, T.; Myers, P. C.; Cazzoli, G.

    2003-11-01

    The analysis of the fully resolved Nitrogen hyperfine structure of N2D+ (1-0) observed toward L183, together with laboratory measurements of the same molecular transition, allowed an accurate determination of the hyperfine constants of both outer and inner Nitrogen. In addition, accurate rotational and centrifugal distortion constants were derived from submillimeter-wave laboratory measurements. The Tables list calculated hyperfine frequencies of J+1<--J transitions, with J in the range 1-11, which occur in the millimeter- and submillimeter-wave region. (5 data files).

  5. Theory of the hyperfine structure of the S states of muonic tritium

    NASA Astrophysics Data System (ADS)

    Martynenko, A. P.; Martynenko, F. A.; Faustov, R. N.

    2017-06-01

    The hyperfine structure of the energy spectrum of the S levels of muonic tritium has been calculated using the quasi-potential method in quantum electrodynamics (QED). The α5- and α6-order effects on the polarization of vacuum, the structure and recoil of the nucleus, and relativistic corrections have been taken into account. The obtained numerical values of hyperfine splittings of 239.819 meV (1S state) and 29.965 meV (2 S state) can be treated as reliable estimates for comparing with future experimental data of the CREMA collaboration, and hyperfine structure interval Δ12 = 8Δ E hfs (2 S)-Δ E hfs (1 S) =-0.100 meV can be used for verifying the QED predictions. The resultant precision values of hyperfine splitting are also important for calculating the rates of formation of (μ dt) mesomolecules in muonic catalysis reactions.

  6. On the Observability of Optically Thin Coronal Hyperfine Structure Lines

    NASA Astrophysics Data System (ADS)

    Chatzikos, M.; Ferland, G. J.; Williams, R. J. R.; Fabian, A. C.

    2014-06-01

    We present CLOUDY calculations for the intensity of coronal hyperfine lines in various environments. We model indirect collisional and radiative transitions, and quantify the collisionally excited line emissivity in the density-temperature phase space. As an observational aid, we also express the emissivity in units of that in the 0.4-0.7 keV band. For most hyperfine lines, knowledge of the X-ray surface brightness and the plasma temperature is sufficient for rough estimates. We find that the radiation fields of both Perseus A and Virgo A can enhance the populations of highly ionized species within 1 kpc. They can also enhance line emissivity within the cluster core. This could have implications for the interpretation of spectra around bright active galactic nuclei. We find the intensity of the 57Fe XXIV λ3.068 mm line to be about two orders of magnitude fainter than previously thought, at ~20 μK. Comparably bright lines may be found in the infrared. Finally, we find the intensity of hyperfine lines in the Extended Orion Nebula to be low, due to the shallow sightline. Observations of coronal hyperfine lines will likely be feasible with the next generation of radio and submillimeter telescopes.

  7. On the observability of optically thin coronal hyperfine structure lines

    SciTech Connect

    Chatzikos, M.; Ferland, G. J.; Williams, R. J. R.; Fabian, A. C.

    2014-06-01

    We present CLOUDY calculations for the intensity of coronal hyperfine lines in various environments. We model indirect collisional and radiative transitions, and quantify the collisionally excited line emissivity in the density-temperature phase space. As an observational aid, we also express the emissivity in units of that in the 0.4-0.7 keV band. For most hyperfine lines, knowledge of the X-ray surface brightness and the plasma temperature is sufficient for rough estimates. We find that the radiation fields of both Perseus A and Virgo A can enhance the populations of highly ionized species within 1 kpc. They can also enhance line emissivity within the cluster core. This could have implications for the interpretation of spectra around bright active galactic nuclei. We find the intensity of the {sup 57}Fe XXIV λ3.068 mm line to be about two orders of magnitude fainter than previously thought, at ∼20 μK. Comparably bright lines may be found in the infrared. Finally, we find the intensity of hyperfine lines in the Extended Orion Nebula to be low, due to the shallow sightline. Observations of coronal hyperfine lines will likely be feasible with the next generation of radio and submillimeter telescopes.

  8. Structural determination of Zn and Cd-DTPA complexes: MS, infrared, (13)C NMR and theoretical investigation.

    PubMed

    Silva, Vanézia L; Carvalho, Ruy; Freitas, Matheus P; Tormena, Cláudio F; Melo, Walclée C

    2007-12-31

    The joint application of MS, infrared and (13)C NMR techniques for the determination of metal-DTPA structures (metal=Zn and Cd; DTPA=diethylenetriaminepentacetic acid) is reported. Mass spectrometry allowed determining the 1:1 stoichiometry of the complexes, while infrared analysis suggested that both nitrogen and carboxyl groups are sites for complexation. The (13)C NMR spectrum for the cadmium-containing complex evidenced the existence of free and complexed carboxyl groups, due to a straight singlet at 179.0 ppm (free carboxylic (13)C) and to two broad singlets or a broad doublet at 178.3 ppm (complexed carboxylic (13)C, (2)J(Cd-C(=O))=45.2 Hz). A similar interpretation might be given for the zinc derivative and, with the aid of DFT calculations, structures for both complexes were then proposed.

  9. Hyperfine structure of the hydroxyl free radical (OH) in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Maeda, Kenji; Wall, Michael L.; Carr, Lincoln D.

    2015-05-01

    We investigate single-particle energy spectra of the hydroxyl free radical (OH) in the lowest electronic and rovibrational level under combined static electric and magnetic fields, as an example of heteronuclear polar diatomic molecules. In addition to the fine-structure interactions, the hyperfine interactions and centrifugal distortion effects are taken into account to yield the zero-field spectrum of the lowest 2Π3 / 2 manifold to an accuracy of less than 2kHz. We also examine level crossings and repulsions in the hyperfine structure induced by applied electric and magnetic fields. Compared to previous work, we found more than 10 percent reduction of the magnetic fields at level repulsions in the Zeeman spectrum subjected to a perpendicular electric field. In addition, we find new level repulsions, which we call Stark-induced hyperfine level repulsions, that require both an electric field and hyperfine structure. It is important to take into account hyperfine structure when we investigate physics of OH molecules at micro-Kelvin temperatures and below. This research was supported in part by AFOSR Grant No.FA9550-11-1-0224 and by the NSF under Grants PHY-1207881 and NSF PHY-1125915. We appreciate the Aspen Center for Physics, supported in part by the NSF Grant No.1066293, for hospitality.

  10. Semi-empirical predictions of even atomic energy levels and their hyperfine structure for the scandium atom

    SciTech Connect

    Dembczynski, J. . E-mail: Jerzy.Dembczynski@put.poznan.pl; Elantkowska, M.; Ruczkowski, J.; Stefanska, D.

    2007-01-15

    We report fine and hyperfine structure analysis of the system of even configurations of the Sc atom in a large multi-configuration basis. The complete energy scheme in the energy region up to about 50,000 cm{sup -1} has been established with the predicted values of the hyperfine cture constants A. The effects of the configuration interaction in the fine and hyperfine structure are discussed.

  11. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure.

    PubMed

    Engtrakul, Chaiwat; Irurzun, Veronica M; Gjersing, Erica L; Holt, Josh M; Larsen, Brian A; Resasco, Daniel E; Blackburn, Jeffrey L

    2012-03-14

    The atomic specificity afforded by nuclear magnetic resonance (NMR) spectroscopy could enable detailed mechanistic information about single-walled carbon nanotube (SWCNT) functionalization as well as the noncovalent molecular interactions that dictate ground-state charge transfer and separation by electronic structure and diameter. However, to date, the polydispersity present in as-synthesized SWCNT populations has obscured the dependence of the SWCNT (13)C chemical shift on intrinsic parameters such as diameter and electronic structure, meaning that no information is gleaned for specific SWCNTs with unique chiral indices. In this article, we utilize a combination of (13)C labeling and density gradient ultracentrifugation (DGU) to produce an array of (13)C-labeled SWCNT populations with varying diameter, electronic structure, and chiral angle. We find that the SWCNT isotropic (13)C chemical shift decreases systematically with increasing diameter for semiconducting SWCNTs, in agreement with recent theoretical predictions that have heretofore gone unaddressed. Furthermore, we find that the (13)C chemical shifts for small diameter metallic and semiconducting SWCNTs differ significantly, and that the full-width of the isotropic peak for metallic SWCNTs is much larger than that of semiconducting nanotubes, irrespective of diameter.

  12. Hyperfine structure of the ground state in muonic-lithium ions

    SciTech Connect

    Martynenko, A. P. Ulybin, A. A.

    2016-03-15

    Small intervals of the hyperfine structure of the ground state in the muonic-lithium ions (μe{sub 3}{sup 6,7}Li){sup +} were calculated by perturbation theory in the fine-structure constant and in the electronto- muon mass ratio. Vacuum-polarization, recoil, and nuclear-structure effects and electron vertex corrections were taken into account. The values obtained for the small hyperfine-splitting intervals can be used in a comparison with future experimental data and in tests of quantum electrodynamics.

  13. Galactic Chemical Evolution and Solar s-process Abundances: Dependence on the 13C-pocket Structure

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Travaglio, C.; Gallino, R.; Wiescher, M.; Käppeler, F.

    2014-05-01

    We study the s-process abundances (A >~ 90) at the epoch of the solar system formation. Asymptotic giant branch yields are computed with an updated neutron capture network and updated initial solar abundances. We confirm our previous results obtained with a Galactic chemical evolution (GCE) model: (1) as suggested by the s-process spread observed in disk stars and in presolar meteoritic SiC grains, a weighted average of s-process strengths is needed to reproduce the solar s distribution of isotopes with A > 130; and (2) an additional contribution (of about 25%) is required in order to represent the solar s-process abundances of isotopes from A = 90 to 130. Furthermore, we investigate the effect of different internal structures of the 13C pocket, which may affect the efficiency of the 13C(α, n)16O reaction, the major neutron source of the s process. First, keeping the same 13C profile adopted so far, we modify by a factor of two the mass involved in the pocket; second, we assume a flat 13C profile in the pocket, and we test again the effects of the variation of the mass of the pocket. We find that GCE s predictions at the epoch of the solar system formation marginally depend on the size and shape of the 13C pocket once a different weighted range of 13C-pocket strengths is assumed. We obtain that, independently of the internal structure of the 13C pocket, the missing solar system s-process contribution in the range from A = 90 to 130 remains essentially the same.

  14. 1H and 13C NMR characterization and secondary structure of the K2 polysaccharide of Klebsiella pneumoniae strain 52145.

    PubMed

    Corsaro, Maria Michela; De Castro, Cristina; Naldi, Teresa; Parrilli, Michelangelo; Tomás, Juan M; Regué, Miguel

    2005-09-26

    The complete (1)H and (13)C NMR characterization of the tetrasaccharide repeating unit from the K2 polysaccharide of Klebsiella pneumoniae strain 52145 is reported. [chemical structure] In addition a model for its secondary structure was suggested on the basis of dynamic and molecular calculations.

  15. Appraising nuclear-octupole-moment contributions to the hyperfine structures in 211Fr

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.

    2015-11-01

    Hyperfine structures of 211Fr due to the interactions of magnetic dipole (μ ), electric quadrupole (Q ), and magnetic octupole (Ω ) moments with the electrons are investigated using the relativistic coupled-cluster theory with the single, double, and important valence triple excitations approximations. The validity of our calculations is substantiated by comparing these values with the available experimental results. Its Q value has also been elevated by combining the measured hyper-fine-structure constant of the 7 p 2P3 /2 state with our improved calculation. Considering the preliminary value of Ω from the nuclear shell model, its contributions to the hyperfine structures up to the 7 d 2D5 /2 low-lying states in 211Fr are estimated. Hyperfine energy-level splittings of many states have been assessed to find the suitability for carrying out their precise measurements so that Ω of 211Fr can be inferred from them unambiguously.

  16. Theoretical and experimental investigation of magnetic resonance on the Cs hyperfine structure

    NASA Astrophysics Data System (ADS)

    Ding, Zhichao; Yuan, Jie; Wang, Guochen; Luo, Hui; Long, Xingwu

    2017-08-01

    When the influence of hyperfine structure is ignored for atomic magnetometers, it will lead to considerable measuring errors in some cases. Considering the Cs hyperfine structure, an analytical form of magnetic resonance spectrum of the exciting-field frequency response is obtained through theoretical derivation, which is verified by the experiment. Based on the results of the experimental scheme, the optimal frequency and intensity of pump light for a Cs atomic magnetometer with well-resolved magnetic resonance spectrum are found. Additional applications in minimizing the measuring error of atomic magnetometers and the study of optical pumping are explored.

  17. Partial 13C isotopic enrichment of nucleoside monophosphates: useful reporters for NMR structural studies.

    PubMed

    Kishore, Anita I; Mayer, Michael R; Prestegard, James H

    2005-10-27

    Analysis of the 13C isotopic labeling patterns of nucleoside monophosphates (NMPs) extracted from Escherichia coli grown in a mixture of C-1 and C-2 glucose is presented. By comparing our results to previous observations on amino acids grown in similar media, we have been able to rationalize the labeling pattern based on the well-known biochemistry of nucleotide biosynthesis. Except for a few notable absences of label (C4 in purines and C3' in ribose) and one highly enriched site (C1' in ribose), most carbons are randomly enriched at a low level (an average of 13%). These sparsely labeled NMPs give less complex NMR spectra than their fully isotopically labeled analogs due to the elimination of most 13C-13C scalar couplings. The spectral simplicity is particularly advantageous when working in ordered systems, as illustrated with guanosine diphosphate (GDP) bound to ADP ribosylation factor 1 (ARF1) aligned in a liquid crystalline medium. In this system, the absence of scalar couplings and additional long-range dipolar couplings significantly enhances signal to noise and resolution.

  18. Hyperfine structure in H13CO+ and 13CO: Measurement, analysis, and consequences for the study of dark clouds

    NASA Astrophysics Data System (ADS)

    Schmid-Burgk, J.; Muders, D.; Müller, H. S. P.; Brupbacher-Gatehouse, B.

    2004-06-01

    The magnetic moment of the 13C nucleus is shown to provide a potentially useful tool for analysing quiescent cold molecular clouds. We report discovery of hyperfine structure in the lowest rotational transition of H13CO+. The doublet splitting in H13CO+, observed to be of width 38.5±5.2 kHz or 0.133 km s-1, is confirmed by quantum chemical calculations which give a separation of 39.8 kHz and line strength ratio 3:1 when H and 13C nuclear spin-rotation and spin-spin coupling between both nuclei are taken into account. We improve the spectroscopic constants of H13CO+ and determine the hitherto uncertain frequencies of its low-J spectrum to better precision by analysing the dark cloud L 1512. Attention is drawn to potentially high optical depths (3 to 5 in L 1512) in quiescent clouds, and examples are given for the need to consider the (1-0) line's doublet nature when comparing to other molecular species, redirecting or reversing conclusions arrived at previously by single-component interpretations. We further confirm the hyperfine splitting in the (1-0) rotational transition of 13CO that had already been theoretically predicted, and measured in the laboratory, to be of width about 46 kHz or, again, 0.13 km s-1. By applying hyperfine analysis to the extensive data set of the first IRAM key-project we show that 13CO optical depths can as for H13CO+ be estimated in narrow linewidth regions without recourse to other transitions nor to assumptions on beam filling factors, and linewidth and velocity determinations can be improved. Thus, for the core of L 1512 we find an inverse proportionality between linewidth and column density, resp. linewidth and square root of optical depth, and a systematic inside-out increase of excitation temperature and of the 13CO:C18O abundance ratio. Overall motion toward the innermost region is suggested.

  19. Regio-selective detection of dynamic structure of transmembrane alpha-helices as revealed from (13)C NMR spectra of [3-13C]Ala-labeled bacteriorhodopsin in the presence of Mn2+ ion.

    PubMed

    Tuzi, S; Hasegawa, J; Kawaminami, R; Naito, A; Saitô, H

    2001-07-01

    13C Nuclear magnetic resonance (NMR) spectra of [3-(13)C]Ala-labeled bacteriorhodopsin (bR) were edited to give rise to regio-selective signals from hydrophobic transmembrane alpha-helices by using NMR relaxation reagent, Mn(2+) ion. As a result of selective suppression of (13)C NMR signals from the surfaces in the presence of Mn(2+) ions, several (13)C NMR signals of Ala residues in the transmembrane alpha-helices were identified on the basis of site-directed mutagenesis without overlaps from (13)C NMR signals of residues located near the bilayer surfaces. The upper bound of the interatomic distances between (13)C nucleus in bR and Mn(2+) ions bound to the hydrophilic surface to cause suppressed peaks by the presence of Mn(2+) ion was estimated as 8.7 A to result in the signal broadening to 100 Hz and consistent with the data based on experimental finding. The Ala C(beta) (13)C NMR peaks corresponding to Ala-51, Ala-53, Ala-81, Ala-84, and Ala-215 located around the extracellular half of the proton channel and Ala-184 located at the kink in the helix F were successfully identified on the basis of (13)C NMR spectra of bR in the presence of Mn(2+) ion and site-directed replacement of Ala by Gly or Val. Utilizing these peaks as probes to observe local structure in the transmembrane alpha-helices, dynamic conformation of the extracellular half of bR at ambient temperature was examined, and the local structures of Ala-215 and 184 were compared with those elucidated at low temperature. Conformational changes in the transmembrane alpha-helices induced in D85N and E204Q and its long-range transmission from the proton release site to the site around the Schiff base in E204Q were also examined.

  20. A computer-assisted structural analysis of regular polysaccharides on the basis of 13C-n.m.r. data.

    PubMed

    Lipkind, G M; Shashkov, A S; Knirel, Y A; Vinogradov, E V; Kochetkov, N K

    1988-04-01

    A computerised approach to the structural analysis of unbranched regular polysaccharides is described, which is based on an evaluation of the 13C-n.m.r. spectra for all possible primary structures within the additive scheme starting from the chemical shifts of the 13C resonances of the constituent monosaccharides and the average values of the glycosylation effects. The analysis reveals a structure (or structures), the evaluated spectrum of which resembles most closely that observed. The approach has been verified by using a series of bacterial polysaccharides of known structure and, in combination with methylation analysis data, for the determination of the presently unknown structures of the O-specific polysaccharides from Salmonella arizonae O59 and O63, and Proteus hauseri O19.

  1. Observation of molecular hyperfine structure in the extreme ultraviolet: The HF C-X spectrum.

    PubMed

    Philippson, Jeffrey N; Shiell, Ralph C; Reinhold, Elmar; Ubachs, Wim

    2008-11-07

    Clearly resolved hyperfine structure has been observed in the extreme ultraviolet (XUV) spectra of the C (1)Pi, v=0-X (1)Sigma(+), v=0 transition of H(19)F obtained through 1 XUV+1 UV resonance enhanced multiphoton ionization spectroscopy. The hyperfine splitting within the R-branch lines shows significant perturbations, which we attribute to mixing with the rotational levels of the nearby v=29 level of the B (1)Sigma(+) ion-pair state. A deperturbation analysis quantitatively explains the apparent variation of the fluorine magnetic hyperfine parameter a(F), for which a value of 4034(83) MHz was obtained by averaging over the values derived from the R(0)-R(4) lines, after correcting for the effects of the perturbations.

  2. Hyperfine structure constants for singly ionized manganese (Mn II) using Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Townley-Smith, Keeley; Nave, Gillian; Pickering, Juliet C.; Blackwell-Whitehead, Richard J.

    2016-09-01

    We expand on the comprehensive study of hyperfine structure (HFS) in Mn II conducted by Holt et al. (1999) by verifying hyperfine magnetic dipole constants (A) for 20 levels previously measured by Holt et al. (1999) and deriving A constants for 47 previously unstudied levels. The HFS patterns were measured in archival spectra from Fourier transform (FT) spectrometers at Imperial College London and the National Institute of Standards and Technology. Analysis of the FT spectra was carried out in XGREMLIN. Our A constant for the ground level has a lower uncertainty by a factor of 6 than that of Blackwell-Whitehead et al.

  3. Hyperfine structure of the odd-parity configuration 4f95d in singly ionized terbium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Furmann, B.

    2017-10-01

    Within this work experimental investigations of the hyperfine structure for the odd-parity levels belonging to the configuration 4f95d in Tb II were performed. Out of 15 known electronic levels in this configuration, 12 were examined in this context, 11 of them for the first time. Altogether 25 transitions were studied with the odd-parity levels under investigation involved as the lower levels and another 4 transitions involving the previously known odd-parity levels, belonging to the configuration 4f96s. As a by-product, also the hyperfine structure constants for the upper even-parity levels were determined, which in most cases could be compared to the earlier literature data. Semi-empirical calculations of the fine- and the hyperfine structure were performed in single configuration basis. Also ab initio calculations of the hyperfine structure parameters were carried out. Results of the semi-empirical analysis should be considered preliminary because of the scarcity of the available experimental data, in particular the low number of the known electronic levels in the configuration studied.

  4. The quadrupole coupling constant of HNC. [hydrogen isocyanide hyperfine structure measurements

    NASA Technical Reports Server (NTRS)

    Snyder, L. E.; Hollis, J. M.; Buhl, D.

    1977-01-01

    The letter reports resolved measurements of the quadrupole hyperfine structure of HNC (hydrogen isocyanide). These measurements were made in the direction of the cool interstellar dust cloud L134, and were used to make an experimental determination of a fundamental spectroscopic constant of HNC, its quadrupole coupling constant.

  5. β-Sheet 13C Structuring Shifts Appear only at the H-bonded Sites of Hairpins

    PubMed Central

    Shu, Irene; Stewart, James M.; Scian, Michele; Kier, Brandon L.

    2011-01-01

    The 13C chemical shifts measured for designed β hairpins indicate that the structuring shifts (upfield for Cα and C′, downfield for Cβ) previously reported as diagnostic for β structuring in protein appear only at the H-bonded strand residues. The resulting periodicity of structuring shift magnitudes is not, however, a consequence of H-bonding status; rather, it reflects a previously unrecognized alternation in the backbone torsion angles of β strands. This feature of hairpins is also likely to be present in proteins. The study provides reference values for the expectation shifts for 13C sites in β structures that should prove useful in the characterization of the folding equilibria of β sheet models. PMID:21214243

  6. Partial 13C isotopic enrichment of nucleoside monophosphates: useful reporters for NMR structural studies

    PubMed Central

    Kishore, Anita I.; Mayer, Michael R.; Prestegard, James H.

    2005-01-01

    Analysis of the 13C isotopic labeling patterns of nucleoside monophosphates (NMPs) extracted from Escherichia coli grown in a mixture of C-1 and C-2 glucose is presented. By comparing our results to previous observations on amino acids grown in similar media, we have been able to rationalize the labeling pattern based on the well-known biochemistry of nucleotide biosynthesis. Except for a few notable absences of label (C4 in purines and C3′ in ribose) and one highly enriched site (C1′ in ribose), most carbons are randomly enriched at a low level (an average of 13%). These sparsely labeled NMPs give less complex NMR spectra than their fully isotopically labeled analogs due to the elimination of most 13C–13C scalar couplings. The spectral simplicity is particularly advantageous when working in ordered systems, as illustrated with guanosine diphosphate (GDP) bound to ADP ribosylation factor 1 (ARF1) aligned in a liquid crystalline medium. In this system, the absence of scalar couplings and additional long-range dipolar couplings significantly enhances signal to noise and resolution. PMID:16254075

  7. Pursuing structure in microcrystalline solids with independent molecules in the unit cell using 1H- 13C correlation data

    NASA Astrophysics Data System (ADS)

    Harper, James K.; Strohmeier, Mark; Grant, David M.

    2007-11-01

    The 1H- 13C solid-state NMR heteronuclear correlation (HETCOR) experiment is demonstrated to provide shift assignments in certain powders that have two or more structurally independent molecules in the unit cell (i.e. multiple molecules per asymmetric unit). Although this class of solids is often difficult to characterize using other methods, HETCOR provides both the conventional assignment of shifts to molecular positions and associates many resonances with specific molecules in the asymmetric unit. Such assignments facilitate conformational characterization of the individual molecules of the asymmetric unit and the first such characterization solely from solid-state NMR data is described. HETCOR offers advantages in sensitivity over prior methods that assign resonances in the asymmetric unit by 13C- 13C correlations and therefore allows shorter average analysis times in natural abundance materials. The 1H- 13C analysis is demonstrated first on materials with known shift assignments from INADEQUATE data (santonin and Ca(OAc) 2 phase I) to verify the technique and subsequently is extended to a pair of unknown solids: (+)-catechin and Ca(OAc) 2 phase II. Sufficient sensitivity and resolution is achieved in the spectra to provide assignments to one of the specific molecules of the asymmetric unit at over 54% of the sites.

  8. Thallium hyperfine anomaly

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin G. H.; Forssén, Christian; Mårtensson Pendrill, Ann Marie

    2000-08-01

    Measurements of the hyperfine structure in the highly charged hydrogen like systems 203Tl80+ and 205Tl80+ are underway at the Super EBIT at LLNL. This work considers the effects of the nuclear magnetization distribution on the hyperfine structure. The difference in energy splitting due to hyperfine structure for 203Tl and 205Tl, respectively, is found to be 0.031 04(1) eV, which corresponds to a transition wavelength difference of 3.640(1) nm.

  9. Measurement of hyperfine splitting and determination of hyperfine structure constant of cesium 8S1/2 state by using of ladder-type EIT

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Junmin; Liu, Huifeng; Yang, Baodong; He, Jun

    2013-05-01

    The narrow electromagnetically-induced transparency (EIT) resonance peaks are observed with two low-power counter-propagating diode lasers in cesium (Cs) 6S1/2 - 6P1/2 - 8S1/2 ladder-type atomic system. To precisely determine the centers of resonance peaks, multiple background-free EIT signals are achieved using a novel scanning scheme in which the coupling laser driving Cs 6P1/2 - 8S1/2 transition is scanned and the probe laser driving Cs 6S1/2 - 6P1/2 is frequency locked. A temperature-stabilized fiber-pigtailed waveguide-type phase electro-optical modulator (EOM) and a stable confocal Fabry-Perot cavity are used as a precise frequency marker to measure the hyperfine splitting of Cs 8S1/2 state. The impact of the external magnetic field on the measurement is also investigated. Furthermore, the hyperfine structure constant (here it is the hyperfine magnetic dipole constant, A) of Cs 8S1/2 state is determined to be A = 219.06 MHz +/- 0.12 MHz based on the measured hyperfine splitting (Δhfs = 876.24 MHz +/- 0.50 MHz).

  10. Probing Medin Monomer Structure and its Amyloid Nucleation Using 13C-Direct Detection NMR in Combination with Structural Bioinformatics

    PubMed Central

    Davies, Hannah A.; Rigden, Daniel J.; Phelan, Marie M.; Madine, Jillian

    2017-01-01

    Aortic medial amyloid is the most prevalent amyloid found to date, but remarkably little is known about it. It is characterised by aberrant deposition of a 5.4 kDa protein called medin within the medial layer of large arteries. Here we employ a combined approach of ab initio protein modelling and 13C-direct detection NMR to generate a model for soluble monomeric medin comprising a stable core of three β-strands and shorter more labile strands at the termini. Molecular dynamics simulations suggested that detachment of the short, C-terminal β-strand from the soluble fold exposes key amyloidogenic regions as a potential site of nucleation enabling dimerisation and subsequent fibril formation. This mechanism resembles models proposed for several other amyloidogenic proteins suggesting that despite variations in sequence and protomer structure these proteins may share a common pathway for amyloid nucleation and subsequent protofibril and fibril formation. PMID:28327552

  11. Synthesis and incorporation of 13C-labeled DNA building blocks to probe structural dynamics of DNA by NMR

    PubMed Central

    Nußbaumer, Felix; Juen, Michael Andreas; Gasser, Catherina; Kremser, Johannes; Müller, Thomas; Tollinger, Martin

    2017-01-01

    Abstract We report the synthesis of atom-specifically 13C-modified building blocks that can be incorporated into DNA via solid phase synthesis to facilitate investigations on structural and dynamic features via NMR spectroscopy. In detail, 6-13C-modified pyrimidine and 8-13C purine DNA phosphoramidites were synthesized and incorporated into a polypurine tract DNA/RNA hybrid duplex to showcase the facile resonance assignment using site-specific labeling. We also addressed micro- to millisecond dynamics in the mini-cTAR DNA. This DNA is involved in the HIV replication cycle and our data points toward an exchange process in the lower stem of the hairpin that is up-regulated in the presence of the HIV-1 nucleocapsid protein 7. As another example, we picked a G-quadruplex that was earlier shown to exist in two folds. Using site-specific 8-13C-2′deoxyguanosine labeling we were able to verify the slow exchange between the two forms on the chemical shift time scale. In a real-time NMR experiment the re-equilibration of the fold distribution after a T-jump could be monitored yielding a rate of 0.012 min−1. Finally, we used 13C-ZZ-exchange spectroscopy to characterize the kinetics between two stacked X-conformers of a Holliday junction mimic. At 25°C, the refolding process was found to occur at a forward rate constant of 3.1 s−1 and with a backward rate constant of 10.6 s−1.

  12. Assessing the accuracy of protein structures by quantum mechanical computations of 13C(alpha) chemical shifts.

    PubMed

    Vila, Jorge A; Scheraga, Harold A

    2009-10-20

    Two major techniques have been used to determine the three-dimensional structures of proteins: X-ray diffraction and NMR spectroscopy. In particular, the validation of NMR-derived protein structures is one of the most challenging problems in NMR spectroscopy. Therefore, researchers have proposed a plethora of methods to determine the accuracy and reliability of protein structures. Despite these proposals, there is a growing need for more sophisticated, physics-based structure validation methods. This approach will enable us to (a) characterize the "quality" of the NMR-derived ensemble as a whole by a single parameter, (b) unambiguously identify flaws in the sequence at a residue level, and (c) provide precise information, such as sets of backbone and side-chain torsional angles, that we can use to detect local flaws. Rather than reviewing all of the existing validation methods, this Account describes the contributions of our research group toward a solution of the long-standing problem of both global and local structure validation of NMR-derived protein structures. We emphasize a recently introduced physics-based methodology that makes use of observed and computed (13)C(alpha) chemical shifts (at the density functional theory (DFT) level of theory) for an accurate validation of protein structures in solution and in crystals. By assessing the ability of computed (13)C(alpha) chemical shifts to reproduce observed (13)C(alpha) chemical shifts of a single structure or ensemble of structures in solution and in crystals, we accomplish a global validation by using the conformationally averaged root-mean-square deviation, ca-rmsd, as a scoring function. In addition, the method enables us to provide local validation by identifying a set of individual amino acid conformations for which the computed and observed (13)C(alpha) chemical shifts do not agree within a certain error range and may represent a nonreliable fold of the protein model. Although it is computationally

  13. Chemical structural studies of natural lignin by dipolar dephasing solid-state 13C nuclear magnetic resonance

    USGS Publications Warehouse

    Hatcher, P.G.

    1987-01-01

    Two natural lignins, one from a gymnosperm wood the other from angiosperm wood, were examined by conventional solid-state and dipolar dephasing 13C nuclear magnetic resonance (NMR) techniques. The results obtained from both techniques show that the structure of natural lignins is consistent with models of softwood and hardwood lignin. The dipolar dephasing NMR data provide a measure of the degree of substitution on aromatic rings which is consistent with the models. ?? 1987.

  14. Structural identifiability analysis of pharmacokinetic models using DAISY: semi-mechanistic gastric emptying models for 13C-octanoic acid.

    PubMed

    Ogungbenro, Kayode; Aarons, Leon

    2011-04-01

    Structural identifiability analysis is necessary for efficient parameter estimation and it is concerned with determination of whether the parameters in a model can be identified from specified experiments with perfect input-output data. Structural identifiability analysis is very important in mathematical modelling of biological and biomedical experiments and should be considered at the design stage of these experiments. There are three possible outcomes from a structural identifiability analysis; globally/uniquely identifiable, locally/non-uniquely identifiable or non-identifiable/unidentifiable. An ideal outcome is a globally/uniquely identifiable model, however a locally/non-uniquely identifiable outcome can help to identify areas of the model or experiment that need improvement. Despite the importance of structural identifiability analysis, it is still not widely used due to the heavy computational burden involved and the lack of software. A new software package, DAISY, that implemented differential algebra for identifiability analysis was recently released. DAISY is freely available, easy to use and does not require any high-level programming skill. The (13)C-octanoic acid breath test is now widely used for assessing the rate of gastric emptying in patients. Unlike scintigraphy, which is the gold standard and is a direct measure of the rate of gastric emptying, the (13)C-octanoic acid breath test is an indirect method for assessing the rate of gastric emptying. However the (13)C-octanoic acid breath test is cheaper, safer and easy to perform. Because the rate of excretion of (13)CO(2) in breath does not only reflect the rate of gastric emptying but other processes involved between the ingestion of (13)C-octanoic acid and elimination of (13)CO(2) in breath, the parameters commonly derived from the excretion data are not direct measures of gastric emptying. The aim of this paper was to propose a new semi-mechanistic model for the analysis of (13)C-octanoic acid

  15. Molecular structure and chemical property of a divalent metallofullerene Yb@C2(13)-C84.

    PubMed

    Zhang, Wenjun; Suzuki, Mitsuaki; Xie, Yunpeng; Bao, Lipiao; Cai, Wenting; Slanina, Zdenek; Nagase, Shigeru; Xu, Ming; Akasaka, Takeshi; Lu, Xing

    2013-08-28

    Endohedral metallofullerenes (EMFs) encapsulating divalent metal ions have received limited attention because of their low production yields. Here, we report the results of structural determination and chemical functionalization of a typical divalent metallofullerene, Yb@C84(II). Single-crystal X-ray crystallographic studies of Yb@C84/Ni(II)(OEP) cocrystals (OEP is the dianion of octaethylporphyrin) unambiguously established the chiral C2(13)-C84 cage structure and revealed multiple sites for Yb(2+), indicating a moving metal ion inside the cage. The chemical property of Yb@C2(13)-C84 was probed with the electrophillic adamantylidene carbene (1). Three monoadduct isomers were isolated and characterized. Crystallographic results of the major isomer (2b) revealed that, although the cycloaddition breaks a [5,6]-bond on the cage, Yb(2+) is localized under a hexagonal ring distant from the sites of addition. Thus, it is proved that the dynamic motion of the divalent metal ion in Yb@C84 has been effectively halted by exohedral functionalization. Spectroscopic results show that the electronic property of Yb@C2(13)-C84 is pertained in the derivatives, although the addend exerts a mild reduction effect on the electrochemical behavior of the EMF. Computational works demonstrated that addition of 1 to Yb@C2(13)-C84 is mainly driven by releasing the local strains of cage carbons rather than charge recombination, which is always prominent to the affinity of typical trivalent EMFs such as M@C2v(9)-C82 (M = Sc, Y, La, Ce, Gd) toward 1. Accordingly, it is speculated that the chemical behaviors of divalent EMFs more likely resemble those of empty fullerenes because both are closed-shell compounds, but they differ from those of trivalent EMFs, which have open-shell electronic configurations instead.

  16. Pursuing structure in microcrystalline solids with independent molecules in the unit cell using 1H–13C correlation data

    PubMed Central

    Harper, James K.; Strohmeier, Mark; Grant, David M.

    2007-01-01

    The 1H–13C solid-state NMR heteronuclear correlation (HETCOR) experiment is demonstrated to provide shift assignments in certain powders that have two or more structurally independent molecules in the unit cell (i.e. multiple molecules per asymmetric unit). Although this class of solids is often difficult to characterize using other methods, HETCOR provides both the conventional assignment of shifts to molecular positions and associates many resonances with specific molecules in the asymmetric unit. Such assignments facilitate conformational characterization of the individual molecules of the asymmetric unit and the first such characterization solely from solid-state NMR data is described. HETCOR offers advantages in sensitivity over prior methods that assign resonances in the asymmetric unit by 13C–13C correlations and therefore allows shorter average analysis times in natural abundance materials. The 1H–13C analysis is demonstrated first on materials with known shift assignments from INADEQUATE data (santonin and Ca(OAc)2 phase I) to verify the technique and subsequently is extended to a pair of unknown solids: (+)-catechin and Ca(OAc)2 phase II. Sufficient sensitivity and resolution is achieved in the spectra to provide assignments to one of the specific molecules of the asymmetric unit at over 54% of the sites. PMID:17869558

  17. Molecular structure of actein: 13C CPMAS NMR, IR, X-ray diffraction studies and theoretical DFT-GIAO calculations

    NASA Astrophysics Data System (ADS)

    Jamróz, Marta K.; Bąk, Joanna; Gliński, Jan A.; Koczorowska, Agnieszka; Wawer, Iwona

    2009-09-01

    Actein is a prominent triterpene glycoside occurring in Actaea racemosa. The triterpene glycosides are believed to be responsible for the estrogenic activity of an extract prepared from this herb. We determined in the crystal structure of actein by X-ray crystallography to be monoclinic P2(1) chiral space group. Refining the disorder, we determined 70% and 30% of contributions of ( S)- and ( R)-actein, respectively. The IR and Raman spectra suggest that actein forms at least four different types of hydrogen bonds. The 13C NMR spectra of actein were recorded both in solution and solid state. The 13C CPMAS spectrum of actein displays multiplet signals, in agreement with the crystallographic data. The NMR shielding constants were calculated for actein using GIAO approach and a variety of basis sets: 6-31G**, 6-311G**, 6-31+G**, cc-pVDZ, cc-pVDZ-su1 and 6-31G**-su1, as well as IGLO approach combined with the IGLO II basis set. The best results (RMSD of 1.6 ppm and maximum error of 3.4 ppm) were obtained with the 6-31G**-su1 basis set. The calculations of the shielding constants are helpful in the interpretation of the 13C CPMAS NMR spectra of actein and actein's analogues.

  18. Differential protonation and dynamic structure of doxylamine succinate in solution using 1H and 13C NMR.

    PubMed

    Somashekar, B S; Nagana Gowda, G A; Ramesha, A R; Khetrapal, C L

    2004-07-01

    A protonation and dynamic structural study of doxylamine succinate, a 1:1 salt of succinic acid with dimethyl-[2-(1-phenyl-1-pyridin-2-yl-ethoxy)ethyl]amine, in solution using one- and two-dimensional 1H and 13C NMR experiments at variable temperature and concentration is presented. The two acidic protons of the salt doxylamine succinate are in 'intermediate' exchange at room temperature, as evidenced by the appearance of a broad signal. This signal evolves into two distinct signals below about -30 degrees C. A two-dimensional 1H-1H double quantum filtered correlation experiment carried out at -55 degrees C shows protonation of one of the acidic protons to the dimethylamine nitrogen. A two-dimensional rotating frame 1H-1H NOE experiment at the same temperature reveals that the other proton remains with the succinate moiety. Comparison of the 1H and 13C chemical shifts and the 13C T1 relaxation times of the salt with those of the free base further substantiate the findings.

  19. Fine- and hyperfine structure investigations of even configuration system of atomic terbium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.

    2017-03-01

    In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).

  20. Use of solid-state 13C NMR in structural studies of humic acids and humin from Holocene sediments

    USGS Publications Warehouse

    Hatcher, P.G.; VanderHart, D.L.; Earl, W.L.

    1980-01-01

    13C NMR spectra of solid humic substances in Holocene sediments have been obtained using cross polarization with magic-angle sample spinning techniques. The results demonstrate that this technique holds great promise for structural characterizations of complex macromolecular substances such as humin and humic acids. Quantifiable distinctions can be made between structural features of aquatic and terrestrial humic substances. The aliphatic carbons of the humic substances are dominant components suggestive of input from lipid-like materials. An interesting resemblance is also noted between terrestrial humic acid and humin spectra. ?? 1980.

  1. New electron levels and classified lines in Pr II from hyperfine structure measurements

    SciTech Connect

    Furmann, B. . E-mail: furman@phys.put.poznan.pl; Stefanska, D.; Dembczynski, J.; Stachowska, E.

    2007-01-15

    Classification of 75 spectral lines (hitherto not classified) in singly ionized praseodymium (Pr II) with the use of 31 new electron levels belonging to odd configurations 4f{sup 3}5d and 4f{sup 3}6s and 14 new levels belonging to even configurations is presd. Hyperfine structure constant A and B for each new level were determined by using the method of laser-induced fluorescence in a hollow cathode discharge.

  2. Hyperfine structure measurements on some /sup 235/U levels by laser fluorescence spectroscopy

    SciTech Connect

    Demers, Y.; Gagne, J.; Dreze, C.; Pianarosa, P.

    1986-12-01

    Laser induced fluorescence from radiatively and collisionally populated states following optical pumping of the resonant transition at 5915 A has been used to investigate the hyperfine structure (hfs) of some /sup 235/U levels. From the fitting of the measured spectra, the hfs constants A and B were obtained for the levels at 6249, 23 543, 22 918, 22 862, and 22 754 cm/sup -1/.

  3. Isotope shifts and hyperfine structure in polonium isotopes by atomic-beam laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Kowalewska, D.; Bekk, K.; Göring, S.; Hanser, A.; Kälber, W.; Meisel, G.; Rebel, H.

    1991-08-01

    Laser-induced fluorescence spectroscopy in a collimated atomic beam has been applied to determine isotope shifts and the hyperfine structure of an isotopic chain of the radioactive element polonium (200Po, 202Po, 204-210Po). The relative isotope shifts show a striking similarity with results for other elements in the vicinity of Pb, even reproducing details of the odd-even staggering.

  4. Hyperfine structure and isotope shifts of transitions in neutral and singly ionized ytterbium

    NASA Technical Reports Server (NTRS)

    Berends, R. W.; Maleki, L.

    1992-01-01

    The present experimental investigation of the hyperfine structure and isotopic shifts of transitions in neutral and singly-ionized Yb, which constitute a system of some interest to microwave-frequency standards, used counterpropagating pump and probe laser beams directed through a hollow-cathode discharge lamp. The results obtained are in agreement with previous measurements except in the case of the Yb-173(+) 6 2P0 sub 3/2 state, which is more accurately determined.

  5. Transparency under double detuning-induced stimulated Raman adiabatic passage in atoms with hyperfine structure

    NASA Astrophysics Data System (ADS)

    Deng, Li; Nakajima, Takashi; Gong, Shangqing

    2017-06-01

    We theoretically study the transparency in the generalized two-level system with hyperfine structure by utilizing double detuning-induced stimulated Raman adiabatic passage (double D-STIRAP). The double D-STIRAP is carried out by sequentially applying the three pulses, one near-resonant pump pulse and two far-off resonant Stark pulses before and after the pump pulse. From the study of single-atom response we can roughly learn the transparency conditions, since the full recovery of the system to the initial state is associated with the perfect transparency. After the numerical calculations we find that, for the perfect transparency, the pulse intensities of double D-STIRAP for the generalized two-level systems with hyperfine structure has to be stronger than that for the ideal two-level system. More precisely, we find that the ratio of amplitude to time for the Rabi frequency of the pump pulse and the detuning induced by the Stark pulse have to be close to each other to satisfy the adiabatic conditions. The above conditions, however, are necessary conditions we can learn from the single-atom response, and to ensure that they are indeed sufficient for perfect transparency, we perform the propagation calculations to obtain the temporal profile of the pump pulse at arbitrary propagation depths to find that double D-STIRAP, when applied to the generalized two-level system with hyperfine structure, is indeed robust for perfect transparency.

  6. HYPERFINE STRUCTURE CONSTANTS OF ENERGETICALLY HIGH-LYING LEVELS OF ODD PARITY OF ATOMIC VANADIUM

    SciTech Connect

    Güzelçimen, F.; Yapıcı, B.; Demir, G.; Er, A.; Öztürk, I. K.; Başar, Gö.; Kröger, S.; Tamanis, M.; Ferber, R.; Docenko, D.; Başar, Gü. E-mail: sophie.kroeger@htw-berlin.de

    2014-09-01

    High-resolution Fourier transform spectra of a vanadium-argon plasma have been recorded in the wavelength range of 365-670 nm (15,000-27,400 cm{sup –1}). Optical bandpass filters were used in the experimental setup to enhance the sensitivity of the Fourier transform spectrometer. In total, 138 atomic vanadium spectral lines showing resolved or partially resolved hyperfine structure have been analyzed to determine the magnetic dipole hyperfine structure constants A of the involved energy levels. One of the investigated lines has not been previously classified. As a result, the magnetic dipole hyperfine structure constants A for 90 energy levels are presented: 35 of them belong to the configuration 3d {sup 3}4s4p and 55 to the configuration 3d {sup 4}4p. Of these 90 constants, 67 have been determined for the first time, with 23 corresponding to the configuration 3d {sup 3}4s4p and 44 to 3d {sup 4}4p.

  7. Hyperfine Structure, Scalar-pseudoscalar Interaction and Parity Non-Conservation Effect in Some Heavy Atoms and Ions

    NASA Astrophysics Data System (ADS)

    Khetselius, O. Yu.; Florko, T. A.; Nikola, L. V.; Svinarenko, A. A.; Serga, I. N.; Tkach, T. B.; Mischenko, E. V.

    2010-05-01

    The hyperfine structure parameters, scalar-pseudoscalar interaction constants and parity non-conservation effect in some heavy atomic systems are calculated and treated within the combined QED perturbation theory formalism and relativistic nuclear mean-field theory.

  8. Isotope shifts and hyperfine structure of the Fe I 372-nm resonance line

    SciTech Connect

    Krins, S.; Huet, N.; Bastin, T.; Oppel, S.; Zanthier, J. von

    2009-12-15

    We report measurements of the isotope shifts of the 3d{sup 6}4s{sup 2} a {sup 5}D{sub 4}-3d{sup 6}4s4p z {sup 5}F{sub 5}{sup o} Fe I resonance line at 372 nm between all four stable isotopes {sup 54}Fe, {sup 56}Fe, {sup 57}Fe, and {sup 58}Fe, as well as the complete hyperfine structure of that line for {sup 57}Fe, the only stable isotope having a nonzero nuclear spin. The field and specific mass shift coefficients of the transition have been derived from the data, as well as the experimental value for the hyperfine structure magnetic dipole coupling constant A of the excited state of the transition in {sup 57}Fe: A(3d{sup 6}4s4p z {sup 5}F{sub 5}{sup o})=81.69(86) MHz. The measurements were carried out by means of high-resolution Doppler-free laser saturated absorption spectroscopy in a Fe-Ar hollow cathode discharge cell using both natural and enriched iron samples. The measured isotope shifts and hyperfine constants are reported with uncertainties at the percent level.

  9. Structures, hyperfine parameters, and inversion barriers of cyclopropyl and oxiranyl radicals

    NASA Astrophysics Data System (ADS)

    Barone, Vincenzo; Adamo, Carlo; Brunel, Yvon; Subra, Robert

    1996-08-01

    A comparative post-Hartree-Fock study has been performed on cyclopropyl and oxiranyl radicals in order to ascertain the role of the oxygen atom in modifying the hyperfine structure and height of the barrier governing inversion at the radical center. The structural parameters and harmonic force fields obtained for the parent molecules using second-order many-body perturbation theory with a large basis set are in good agreement with experiment. The same approach points out significant distortions upon breaking of a CH bond and a larger pyramidality for the radical center in oxiranyl with respect to cyclopropyl. Also inversion barriers of both radicals are in remarkable agreement with experimental estimates. Isotropic hyperfine parameters in good agreement with those obtained from electron spin resonance spectra can be computed only when using purposely tailored basis sets in the framework of a coupled cluster approach and taking into account vibrational averaging effects induced by the inversion motion. Interpretation of the results in terms of direct and spin polarization effects points out a number of general trends for germinal and vicinal atoms. Furthermore, it is well evidenced that replacement of a methylenic group by an oxygen atom modifies the hyperfine parameters through geometric rather than direct electronic effects.

  10. Raman scattering in a four-level atomic system with hyperfine structure

    NASA Astrophysics Data System (ADS)

    Li, Jia-Hua; Yang, Wen-Xing; Peng, Ju-Cun

    2005-04-01

    We propose and analyse an efficient Raman scheme for suppressing the absorption of a weak probe beam in a typical four-level atomic system with a nearly hyperfine doublet structure of two higher-lying excited levels for the two cases of transient regime and steady-state process. For the transient process, using the numerical calculations by a nice MATHEMATICA code, we find that the magnitude of the probe absorption at line centre of the probe transition is small compared to the standard three-level atomic system based on electromagnetically induced transparency (EIT). In particular, our results show that the probe absorption can be completely eliminated under the condition of Raman resonance, i.e. we only require that two-photon detuning is zero within the range of the hyperfine two-level frequency gap for the case of the steady state. In contrast to the standard three-level EIT scheme, one of the key advantages of our four-level Raman scheme is that under the Raman resonance condition we can observe one transparency window without the need of exact vanishing of one- and two-photon detuning. As a consequence, the atomic hyperfine structure cannot be a hindrance for obtaining EIT.

  11. Comprehensive Wavelengths, Energy Levels, and Hyperfine Structure Parameters of Singly-Ionized Iron-Group Elements

    NASA Astrophysics Data System (ADS)

    Nave, Gillian

    We propose to measure wavelengths, energy levels, and hyperfine structure parameters of Ni II, Mn II, Sc II and other singly-ionized iron-group elements, covering the wavelength range 80 nm to 5500 nm. We shall use archival data from spectrometers at NIST and Kitt Peak National Observatory for spectra above 140 nm. Additional experimental observations will be taken if needed using Fourier transform spectrometers at NIST. Spectra will be taken using our normal incidence grating spectrograph to provide better sensitivity than the FT spectra and to extend the wavelength range down to 80 nm. We aim to produce a comprehensive description of the spectra of all singly-ionized iron- group elements. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. For most singly-ionized iron-group elements available laboratory data have uncertainties an order of magnitude larger than astronomical observations over wide spectra ranges. Some of these laboratory measurements date back to the 1960's. Since then, Fourier transform spectroscopy has made significant progress in improving the accuracy and quantity of data in the UV-vis-IR region, but high quality Fourier transform spectra are still needed for Mn II, Ni II and Sc II. Fourier transform spectroscopy has low sensitivity in the VUV region and is limited to wavelengths above 140 nm. Spectra measured with high-resolution grating spectrographs are needed in this region in order to obtain laboratory data of comparable quality to the STIS and COS spectrographs on the Hubble Space Telescope. Currently, such data exist only for Fe II and Cr II. Lines of Sc II, V II, and Mn II show hyperfine structure, but hyperfine structure parameters have been measured for relatively few lines of these elements. Significant errors can occur if hyperfine structure is neglected when abundances are determined from stellar spectra. Measurements of hyperfine structure parameters will be made using Fourier transform spectroscopy

  12. (13)C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling.

    PubMed

    Horitani, Masaki; Offenbacher, Adam R; Carr, Cody A Marcus; Yu, Tao; Hoeke, Veronika; Cutsail, George E; Hammes-Schiffer, Sharon; Klinman, Judith P; Hoffman, Brian M

    2017-02-08

    In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn(2+) as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. (13)C ENDOR then reveals the locations of (13)C10 and reactive (13)C11 of linoleic acid relative to the metal; (1)H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.

  13. Isotope shift and hyperfine structure in the atomic spectrum of hafnium by laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Zimmermann, D.; Baumann, P.; Kuszner, D.; Werner, A.

    1994-08-01

    The isotope shift and the hyperfine structure of 14 spectral lines of Hf i were investigated using high-resolution laser spectroscopy of a well-collimated beam of Hf atoms. The hyperfine splitting constants A and B of the electronic states 5G5,...,5G2,5F3 of the excited configuration 5d26s6p and of some electronic states of 5d6s26p were obtained for the two stable odd isotopes 177Hf and 179Hf. From these data one-electron hyperfine splitting parameters could be deduced, e.g., a6s=3.08(15) GHz for the magnetic dipole part in the case of 177Hf. Our accurate experimental values of the isotope shifts between the stable Hf isotopes 174, 176-180 allow a reliable separation of the effect of the specific mass shift and of the field shift for all observed spectral lines. Using the field shift of the 545.29-nm line, which corresponds to an almost pure 5d26s2-5d26s6p transition, the change in mean-square nuclear charge radius between 178Hf and 180Hf was determined to be δ=0.098(13) fm2. Values of δ for the Hf isotopes 174, 176, 177, and 179 referred to 178Hf are also available from the present work.

  14. Biosynthesis, molecular structure, and domain architecture of potato suberin: a (13)C NMR study using isotopically labeled precursors.

    PubMed

    Yan, B; Stark, R E

    2000-08-01

    Although suberin in potato wound periderm is known to be a polyester containing long-chain fatty acids and phenolics embedded within the cell wall, many aspects of its molecular structure and polymer-polymer connectivities remain elusive. The present work combines biosynthetic incorporation of site-specifically (13)C-enriched acetates and phenylalanines with one- and two-dimensional solid-state (13)C NMR spectroscopic methods to monitor the developing suberin polymer. Exogenous acetate is found to be incorporated preferentially at the carboxyl end of the aliphatic carbon chains, suggesting addition during the later elongation steps of fatty acid synthesis. Carboxyl-labeled phenylalanine precursors provide evidence for the concurrent development of phenolic esters and of monolignols typical of lignin. Experiments with ring-labeled phenylalanine precursors demonstrate a predominance of sinapyl and guaiacyl structures among suberin's phenolic moieties. Finally, the analysis of spin-exchange (solid-state NOESY) NMR experiments in ring-labeled suberin indicates distances of no more than 0.5 nm between pairs of phenolic and oxymethine carbons, which are attributed to the aromatic-aliphatic polyester and the cell wall polysaccharide matrix, respectively. These results offer direct and detailed molecular information regarding the insoluble intermediates of suberin biosynthesis, indicate probable covalent linkages between moieties of its polyester and polysaccharide domains, and yield a clearer overall picture of this agriculturally important protective material.

  15. Beta-alanine-oxalic acid (1:1) hemihydrate crystal: structure, 13C NMR and vibrational properties, protonation character.

    PubMed

    Godzisz, D; Ilczyszyn, M; Ilczyszyn, M M

    2003-03-01

    The crystal structure of beta-alanine-oxalic acid (1:1) hemihydrate complex has been reinvestigated by X-ray diffraction method at 293 K. Formation of monoclinic crystal system belonging to C2/c space group and consisting of semi-oxalate chains, diprotonated beta-alanine dimers and water molecules bonded to both these units is confirmed. New results are obtained for distances in the carboxylic groups and hydrogen bonds. These structural observations are used for protonation degree monitoring on the carboxylic oxygen atoms. They are in accordance with our vibrational study. The 13C NMR spectra provide insights into the solid structure of this complex, character of its hydrogen bonds and the beta-alanine protonation.

  16. Structural characterization of ion-vapor deposited hydrogenated amorphous carbon coatings by solid state {sup 13}C nuclear magnetic resonance

    SciTech Connect

    Xu, Jiao; Kato, Takahisa; Watanabe, Sadayuki; Hayashi, Hideo; Kawaguchi, Masahiro

    2014-01-07

    In the present study, unique structural heterogeneity was observed in ion-vapor deposited a-C:H coatings by performing {sup 13}C MAS and {sup 1}H-{sup 13}C CPMAS experiments on solid state nuclear magnetic resonance devices. Two distinct types of sp{sup 2} C clusters were discovered: one of them denoted as sp{sup 2} C′ in content of 3–12 at. % was non-protonated specifically localized in hydrogen-absent regions, while the other dominant one denoted as sp{sup 2} C″ was hydrogenated or at least proximate to proton spins. On basis of the notably analogous variation of sp{sup 2} C′ content and Raman parameters as function of substrate bias voltage in the whole range of 0.5 kV–3.5 kV, a model of nano-clustering configuration was proposed that the sp{sup 2} C′ clusters were embedded between sp{sup 2} C″ clusters and amorphous sp{sup 3} C matrix as trapped interfaces or boundaries where the sp{sup 2} carbon bonds were highly distorted. Continuous increase of bias voltage would promote the nano-clustering and re-ordering of dominant sp{sup 2} C″ clusters, thus results in a marked decrease of interspace and a change of the content of sp{sup 2} C′ clusters. Further investigation on the {sup 13}C magnetization recovery showed typical stretched-exponential approximation due to the prominent presence of paramagnetic centers, and the stretched power α varied within 0.6–0.9 from distinct types of sp{sup 2} C clusters. Differently, the magnetization recovery of {sup 1}H showed better bi-exponential approximation with long and short T{sub 1}(H) fluctuated within 40–60 ms and 0.1–0.3 ms approximately in content of 80% ± 5% and 20% ± 5%, respectively, varying with various bias voltages. Meanwhile, the interrupted {sup 13}C saturation recovery with an interval of short T{sub 1}(H) showed that most of quick-relaxing protons were localized in sp{sup 2} C″ clusters. Such a short T{sub 1}(H) was only possibly resulted from a relaxation mechanism

  17. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    SciTech Connect

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  18. 13C direct detected COCO-TOCSY: A tool for sequence specific assignment and structure determination in protonless NMR experiments

    NASA Astrophysics Data System (ADS)

    Balayssac, Stéphane; Jiménez, Beatriz; Piccioli, Mario

    2006-10-01

    A novel experiment is proposed to provide inter-residue sequential correlations among carbonyl spins in 13C detected, protonless NMR experiments. The COCO-TOCSY experiment connects, in proteins, two carbonyls separated from each other by three, four or even five bonds. The quantitative analysis provides structural information on backbone dihedral angles ϕ as well as on the side chain dihedral angles of Asx and Glx residues. This is the first dihedral angle constraint that can be obtained via a protonless approach. About 75% of backbone carbonyls in Calbindin D 9K, a 75 aminoacid dicalcium protein, could be sequentially connected via a COCO-TOCSY spectrum. 49 3J values were measured and related to backbone ϕ angles. Structural information can be extended to the side chain orientation of aminoacids containing carbonyl groups. Additionally, long range homonuclear coupling constants, 4JCC and 5JCC, could be measured. This constitutes an unprecedented case for proteins of medium and small size.

  19. Beta-alanine-hydrochloride (2:1) crystal: structure, 13C NMR and vibrational properties, protonation character.

    PubMed

    Godzisz, D; Ilczyszyn, M; Ciunik, Z

    2003-01-15

    The crystal structure of beta-alanine-hydrochloride (2:1) complex (2A-HCl) has been determined by X-ray diffraction method at 298 and 100 K as monoclinic, space group C2/c, Z=4. The crystal comprises chloride anions and protonated beta-alanine dimers: two beta-alanine zwitterions are joined by strong, symmetric (Ci) hydrogen bond with the O...O distance of 2.473 A at room temperature. Powder FT-IR and FT-Raman as well as solid state 13C NMR spectra provide insights into the solid structure of this complex, character of its hydrogen bonds and the beta-alanine protonation.

  20. Study of natural diamonds by dynamic nuclear polarization-enhanced 13C nuclear magnetic resonance spectroscopy.

    PubMed

    Zhou, J; Li, L; Hu, H; Yang, B; Dan, Z; Qiu, J; Guo, J; Chen, F; Ye, C

    1994-11-01

    The results of a study of two types of natural-diamond crystals by dynamic nuclear polarization (DNP)-enhanced high-resolution solid-state 13C nuclear magnetic resonance (NMR) are reported. The home-built DNP magic-angle spinning (MAS) 13C NMR spectrometer operates at 54 GHz for electrons and 20.2 MHz for carbons. The power of the microwave source was about 30 W and the highest DNP enhancement factor came near to 10(3). It was shown that in the MAS spectra the 13C NMR linewidths of the Ib-type diamond were broader than those of IaB3-type diamond. From the hyperfine structure of the DNP enhancement as a function of frequency, four kinds of nitrogen-centred and one kind of carbon-centred free radicals could be identified in the Ib-type diamond. The hyperfine structures of the DNP enhancement curve that originated from the anisotropic hyperfine interaction between electron and nuclei could be partially averaged out by MAS. The 13C polarization time of DNP was rather long, i.e. 1500 s, and the spin-lattice relaxation time (without microwave irradiation) was about 300 s, which was somewhat shorter than anticipated. Discussions on these experimental results have been made in this report.

  1. The {sup 13}C-pocket structure in AGB models: constraints from zirconium isotope abundances in single mainstream SiC grains

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Gallino, Roberto; Bisterzo, Sara; Savina, Michael R.

    2014-06-20

    We present postprocess asymptotic giant branch (AGB) nucleosynthesis models with different {sup 13}C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. and Barzyk et al. We show that higher-than-solar {sup 92}Zr/{sup 94}Zr ratios can be predicted by adopting a {sup 13}C-pocket with a flat {sup 13}C profile, instead of the previous decreasing-with-depth {sup 13}C profile. The improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat {sup 13}C profile based on barium isotopes in mainstream SiC grains by Liu et al.

  2. The 13C-Pocket Structure In AGB Models: Constraints From Zirconium Isotope Abundances In Single Mainstream SiC Grains

    DOE PAGES

    Liu, Nan; Gallino, Roberto; Bisterzo, Sara; ...

    2014-06-04

    In this paper, we present postprocess asymptotic giant branch (AGB) nucleosynthesis models with different 13C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. and Barzyk et al. We show that higher-than-solar 92Zr/94Zr ratios can be predicted by adopting a 13C-pocket with a flat 13C profile, instead of the previous decreasing-with-depth 13C profile. Finally, the improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat 13C profile based on barium isotopes in mainstream SiC grains by Liu et al.

  3. Galactic Chemical Evolution: The Impact of the 13C-pocket Structure on the s-process Distribution

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Travaglio, C.; Wiescher, M.; Käppeler, F.; Gallino, R.

    2017-01-01

    The solar s-process abundances have been analyzed in the framework of a Galactic Chemical Evolution (GCE) model. The aim of this work is to implement the study by Bisterzo et al., who investigated the effect of one of the major uncertainties of asymptotic giant branch (AGB) yields, the internal structure of the 13C pocket. We present GCE predictions of s-process elements computed with additional tests in the light of suggestions provided in recent publications. The analysis is extended to different metallicities, by comparing GCE results and updated spectroscopic observations of unevolved field stars. We verify that the GCE predictions obtained with different tests may represent, on average, the evolution of selected neutron-capture elements in the Galaxy. The impact of an additional weak s-process contribution from fast-rotating massive stars is also explored.

  4. Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2H and 13C NMR

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Chizuwa, M.; Umiyama, T.; Kumagai, Y.; Miyatou, T.; Ohashi, R.; Ida, T.; Tansho, M.; Shimizu, T.

    2015-04-01

    The local structure and molecular motion of the imidazolium hydrogen malonate crystal were investigated using solid-state 2H and 13C NMR. The imidazolium ion undergoes isotropic rotation, which is correlated with a defect in the crystal, as observed by 2H NMR broadline spectra above 263 K. A 180∘ flip of the imidazolium ion in the regular site was observed from 2H NMR quadrupole Carr-Purcell-Meiboom-Gill (QCPMG) spectra. The Grotthuss mechanism was accompanied by a 180∘ flip of the imidazolium ion in regular sites. Moreover, the proton transfer associated with the imidazolium ion of the defective crystal is important for proton conductivity of the imidazolium hydrogen malonate crystal.

  5. Hyperfine structure measurement of rubidium atom and tunable diode laser stabilization by using Sagnac interferometer.

    PubMed

    Kim, Jin-Tae; Zhen, Liu; Kapitanov, Venedikt; Kim, Hyun Su; Park, Jong Rak; Park, Si-Hyun

    2006-11-01

    The Rubidium saturated absorption spectra for D2 transition lines are used to measure the Fabry-Perot interferometer free spectral range (FSR). The scale linearity of the laser frequency tuning is determined. The Sagnac interferometer has been used for the laser stabilization. The result shows that the laser frequency is stabilized upto sub-mega Herz level. Also the hyperfine structure [5(2)S(1/2) F = 3 --> F' = 2, 3, 4 5(2)P(3/2) 85Rb] of the rubidium atom has been measured by using the tilt locking method, which shows the same result as the conventional saturation spectroscopy.

  6. Hyperfine structure and isotope-shift investigations of atomic nitrogen by saturation spectroscopy

    NASA Astrophysics Data System (ADS)

    Cangiano, P.; de Angelis, M.; Gianfrani, L.; Pesce, G.; Sasso, A.

    1994-08-01

    In this work we report a Doppler-free investigation of atomic nitrogen. As a laser source we used a narrow-band semiconductor diode laser emitting in the near infrared. Atomic nitrogen was produced by dissociating N2 molecules in a radio-frequency discharge sustained by helium as a buffer gas. Hyperfine structures and isotope shifts of the transitions 3p 4P1/2-5/2-3s 4Po1/2-5/2 were investigated for the two stable isotopes 14N and 15N by using absorption-saturated laser spectroscopy.

  7. New approach to hyperfine structure - Application to the Li ground state

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sucher, J.

    1980-01-01

    Global identities for delta functions, given by Hiller, Sucher and Feinberg (HSF) are applied to the calculation of the hyperfine structure (HFS) of the ground state of Li. It is shown that use of the HSF identity together with configuration interaction type wavefunctions can yield values of the HFS constant f which are comparable in accuracy to that obtained by Larsson with a 100-term Hylleraas-type wavefunction. The implications of this result for HFS calculations for atoms with many electrons are discussed.

  8. Investigations on computed 13C NMR one-dimensional non-refocused INEPT experiments for structural determinations in O-methylated glycosides

    NASA Astrophysics Data System (ADS)

    Pouységu, Laurent; Nobert, Philippe; Deffieux, Denis; De Jéso, Bernard; Lartigue, Jean-Claude; Pétraud, Michel; Ratier, Max

    1999-10-01

    A new one-dimensional 13C NMR approach for the determination of methoxyl substituents configuration in O-methylated glycosides is presented. Assignments are based on structural investigations by non-refocused INEPT experiments associated with numerical methods.

  9. Methyl [13C]glucopyranosiduronic acids: effect of COOH ionization and exocyclic structure on NMR spin-couplings.

    PubMed

    Zhang, Wenhui; Hu, Xiaosong; Carmichael, Ian; Serianni, Anthony S

    2012-11-02

    Methyl α- and β-D-glucopyranuronides singly labeled with (13)C at C1-C6 were prepared from the corresponding (13)C-labeled methyl D-glucopyranosides, and multiple NMR J-couplings (J(HH), J(CH), and J(CC)) were measured in their protonated and ionized forms in aqueous ((2)H(2)O) solution. Solvated density functional theory (DFT) calculations of J-couplings in structurally related model compounds were performed to determine how well the calculated J-couplings matched the experimental values in saccharides bearing an ionizable substituent. Intraring J(HH) values in both uronide anomers, including (3)J(H4,H5), are unaffected by solution pD, and COOH ionization exerts little effect on J(CH) and J(CC) except for (1)J(C1,H1), (1)J(C4,H4), (1)J(C5,H5), (1)J(C5,C6), and (2)J(C3,C5), where changes of up to 5 Hz were observed. Some of these changes are associated with changes in bond lengths upon ionization; in general, better agreement between theory and experiment was observed for couplings less sensitive to exocyclic C-O bond conformation. Titration of (1)H and (13)C chemical shifts, and some J-couplings, yielded a COOH pK(a) of 3.0 ± 0.1 in both anomers. DFT calculations suggest that substituents proximal to the exocyclic COOH group (i.e., the C4-O4 bond) influence the activation barrier to C5-C6 bond rotation due to transient intramolecular H-bonding. A comparison of J-couplings in the glucopyranuronides to corresponding J-couplings in the glucopyranosides showed that more pervasive changes occur upon conversion from a COOH to a CH(2)OH substituent at C6 than from COOH ionization within the uronides. Twelve J-couplings are affected, with the largest being (1)J(C5,C6) (∼18 Hz larger in the uronides), followed by (2)J(C6,H5) (∼2.5 Hz more negative in the uronides).

  10. Fine and hyperfine structure in three low-lying 3S+ states of molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Minaev, Boris; Loboda, Oleksandr; Rinkevicius, Zilvinas; Vahtras, Olav; Ågren, Hans

    The fine structure constant (electron spin-spin coupling) and the hyperfine structure parameters (electron-nuclear spin coupling, including spin-rotation and electron-nuclear quadrupole coupling) in the low-lying triplet states and of molecular hydrogen and deuterium are calculated using a recently developed technique with full configu-ration interaction and multiconfiguration self-consistent field wave functions. The second-order spin-orbit coupling contribution to the 3Σ+ states splitting is negligible, and the calculations therefore provide a good estimate of the zero-field splitting based only on the electron spin-spin coupling values. For the bound state a negligible zero-field splitting is found, in qualitative agreement with the e-a spectrum. The zero-field splitting parameter is considerable for the repulsive state (≃1 cm-1) and of intermediate size for the bound state. The isotropic hyperfine coupling constant is very large not only for the valence state (1580 MHz) but also for the Rydberg a and e triplet states (≃1400 MHz). The quadrupole coupling constants for the deuterium isotopes are negligible (0.04-0.07 MHz) for all studied triplet states. The electric dipole activity of the spin sublevels in the triplet-singlet transitions to the ground state is estimated by means of the quadratic response technique.

  11. Unlocking the molecular structure of fungal melanin using 13C biosynthetic labeling and solid-state NMR.

    PubMed

    Tian, Shiying; Garcia-Rivera, Javier; Yan, Bin; Casadevall, Arturo; Stark, Ruth E

    2003-07-15

    Melanins are enigmatic pigments found in all biological kingdoms that are associated with a variety of functions, including microbial virulence. Despite being ubiquitous in nature, melanin pigments have long resisted atomic-level structural examination because of their insolubility and amorphous organization. Cryptococcus neoformans is a human pathogenic fungus that melanizes only when provided with exogenous substrate, thus offering a unique system for exploring questions related to melanin structure at the molecular level. We have exploited the requirement for exogenous substrate in melanin synthesis as well as the capabilities of high-resolution solid-state nuclear magnetic resonance (NMR) to establish the predominantly aliphatic composition of l-dopa melanin and to introduce (13)C labels that permit the identification of proximal carbons in the developing biopolymer. By swelling solid melanin samples in organic solvents and using two-dimensional heteronuclear NMR in conjunction with magic-angle spinning, we have identified chemical bonding patterns typical of alkane, alkene, alcohol, ketone, ester, and indole functional groups. These findings demonstrate the feasibility of a novel approach to determining the structure of melanin using metabolic labeling and NMR spectroscopy.

  12. Electronic Structure and the Magnetic Hyperfine Interactions in Heme Unit of Metmyoglobin

    NASA Astrophysics Data System (ADS)

    Maharjan, N. B.; Badu, S. R.; Dubey, Archana; Scheicher, R. H.; Pink, R. H.; Chow, Lee; Schulte, A.; Saha, H. P.; Das, T. P.

    2008-03-01

    The ^14N and ^57mFe hyperfine interactions in the heme unit of metmyoglobin are available experimentally by electron-nuclear double resonance (ENDOR) and Mossbauer spectroscopic techniques. We have carried out electronic structure investigations on the heme system including the H2O and proximal imidazole ligands by the first-principles Hartree-Fock procedure and studied the magnetic hyperfine and nuclear quadrupole coupling constants for the ^57mFe nucleus and all the six ^14N nuclei on the four pyrrole and imidazole ligands as well as the ^17O nucleus on the H2O ligand. Comparison will be made with available experimental data [1, 2] and earlier theoretical investigations [3] by the approximate self-consistent charge Extended Huckel procedure. Results will also be presented for the optical frequencies and intensities from transitions between ligand-like and iron d-like states and the Fe-Nɛ vibrational frequency [1] G. Lang, Q. Rev. Biophys. 3, 1 (1970) [2] C.P. Scholes, R.A. Isaacson and G Feher, Biochim. Biophys. Acta 263,448(1972) [3] S.K. Mun, Jane C. Chang and T.P. Das J. Am. Chem. Soc. 101, 5562(1979)

  13. A Classical Description of the Hyperfine Structure of the Hydrogen Atom

    NASA Astrophysics Data System (ADS)

    Chaney, Andrea; Espinosa, James; Woodyard, James

    2010-10-01

    As stronger dispersion gratings are utilized, the Hydrogen spectrum is broken into small groupings. At first, the fine structure was successfully described by Sommerfeld by utilizing the special theory of relativity. The fine structure groupings are three orders of magnitude smaller than the series separations as described by Balmer and others. With even further powerful instruments, Michelson was the first to split these lines into further groupings which are a further two orders of magnitude smaller. It was almost fifty years before Breit used quantum mechanics to describe this hyperfine structure. It is almost universally believed that classical theory utterly fails to describe this phenomenon. We will show how our classical Hydrogen atom based on Ritz's magnetic model can account for the splitting of the 1s state, which is famous for its use by radio astronomers to map out the distribution of hydrogen in the universe.

  14. Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.

    PubMed

    Beloy, K

    2014-02-14

    We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.

  15. Ab Initio Investigation of the Structure of the X2A', A2A″ (1 2Π) Spectral System of HCO: Investigation of the Magnetic Hyperfine Effects

    NASA Astrophysics Data System (ADS)

    Staikova, M.; Peric, M.; Engels, B.; Peyerimhoff, S. D.

    1994-08-01

    Results of an ab initio study of the hyperfine structure of the X2A', A2A″ (1 2Π) system of the formyl radical are presented. Special attention is paid to the analysis of the interplay between the vibronic and magnetic hyperfine effects. The results of computations are in very good agreement with the available experimental findings. The values for the hyperfine coupling constants in lower bending levels of both electronic species are predicted.

  16. Recalcitrance and structural analysis by water-only flowthrough pretreatment of 13C enriched corn stover stem

    DOE PAGES

    Foston, Marcus B.; Trajanob, Heather L.; Samuel, Reichel; ...

    2015-08-28

    Here, this study presents high temperature water-only continuous flowthrough pretreatment coupled with nuclear magnetic resonance (NMR) as a promising analytical tool to examine the plant cell wall, to understand its recalcitrance (i.e., cell wall resistance to deconstruction), and to probe the chemistry occurring during batch pretreatment of biomass. 13C-enriched corn stover stems were pretreated at 170 °C for 60 min with a hot-water flow rate of 20 mL/min to control fractionation of the cell wall. This approach helped elucidate the nature of plant cell wall chemical recalcitrance and biomass pretreatment chemistry by tracking cell wall fragmentation as a function ofmore » time. Fractions of the reactor effluent were collected in a time-resolved fashion and characterized by various NMR techniques to determine the degree and sequence of fragments released, as well as, the chemical composition, molecular structure, and relative molecular weight of those released fragments.« less

  17. Fine and hyperfine structure of P-wave levels in muonic hydrogen

    SciTech Connect

    Martynenko, A. P.

    2008-01-15

    Corrections of order {alpha}{sup 5} and {alpha}{sup 6} are calculated for muonic hydrogen in the fine-structure interval {delta}E{sup fs} = E(2P{sub 3/2}) - E(2P{sub 1/2}) and in the hyperfine structure of the 2P{sub 1/2}-and 2P{sub 3/2}-wave energy levels. The resulting values of {delta}E{sup fs} = 8352.08 {mu}eV, {delta}E-tilde {sup hfs}(2P{sub 1/2}) = 7819.80 {mu}eV, and {delta}E-tilde {sup hfs}(2P{sub 3/2}) = 3248.03 {mu}eV provide reliable guidelines in performing a comparison with relevant experimental data and in more precisely extracting the experimental value of the (2P-2S) Lamb shift in the muonic-hydrogen atom.

  18. Changes in microbial structure and functional communities at different soil depths during 13C labelled root litter degradation

    NASA Astrophysics Data System (ADS)

    Sanaullah, Muhammad; Baumann, Karen; Chabbi, Abad; Dignac, Marie-France; Maron, Pierre-Alain; Kuzyakov, Yakov; Rumpel, Cornelia

    2014-05-01

    Soil organic matter turnover depends on substrate quality and microbial activity in soil but little is known about how addition of freshly added organic material modifies the diversity of soil microbial communities with in a soil profile. We took advantage of a decomposition experiment, which was carried out at different soil depths under field conditions and sampled litterbags with 13C-labelled wheat roots, incubated in subsoil horizons at 30, 60 and 90 cm depth for up to 36 months. The effect of root litter addition on microbial community structure, diversity and activity was studied by determining total microbial biomass, PLFA signatures, molecular tools (DNA genotyping and pyrosequencing of 16S and 18S rDNAs) and extracellular enzyme activities. Automated ribosomal intergenic spacer analysis (ARISA) was also carried out to determine the differences in microbial community structure. We found that with the addition of root litter, total microbial biomass as well as microbial community composition and structure changed at different soil depths and change was significantly higher at top 30cm soil layer. Moreover, in the topsoil, population of both gram-positive and gram-negative bacteria increased with root litter addition over time, while subsoil horizons were relatively dominated by fungal community. Extra-cellular enzyme activities confirmed relatively higher fungal community at subsoil horizons compared with surface soil layer with bacteria dominant microbial population. Bacterial-ARISA profiling illustrated that the addition of root litter enhanced the abundance of Actinobacteria and Proteobacteria, at all three soil depths. These bacteria correspond to copiotrophic attributes, which can preferentially consume of labile soil organic C pools. While disappearance of oligotrophic Acidobacteria confirmed the shifting of microbial communities due to the addition of readily available substrate. We concluded that root litter mixing altered microbial community

  19. Hyperfine Structure and Predissociation of the Odd TRIPLET-B-PI-PLUS(0) State of Bromine.

    NASA Astrophysics Data System (ADS)

    Booth, James Lawrence

    Investigations have been carried out in bromine of the hyperfine structure of the B ^3 prod_{0_sp{u}{+ }} and X ^1sum_sp {rm g}{+} electronic states and of the predissociation of the B ^3prod _{0_sp{rm u}{+} } state by the ^1prod _{rm 1u} dissociative level. The technique of laser induced fluoresence of a molecular beam was used. ^{79}rm Br^ {81}Br hyperfine spectra were recorded for various B-X vibrational bands (v^{ '}>=ts v^{'' }) with v^' = 11 through 17 and v^{' '} = 0, 1, and 2, and for various rotational transitions (rm J^' >=ts J^{''}) with J^' from 0 and 11 and J^{''} from 0 to 10. As well, the ^ {79}Br_2 and ^ {81}Br_2 hyperfine spectra of the (13^' - 0^{' '}) and (17^' - 2^{''}) bands over the same range of rotational states were measured. The spectra are well described using one X state parameter: the electric quadrupole coupling constant eqQ_ {rm X}; and two B state parameters: the electric quadrupole coupling constant eqQ_ {rm B} and the nuclear spin-rotation constant C_{rm sr}. The results show that eqQ_{rm B}( ^{79}rm Br) = (177.0+/- 0.6) MHz for v^{'} = 11 and increases by approximately 0.5 MHz per vibrational quantum up to (180.6 +/- 1.4) MHz for v^{'} = 17. Similarly the ground state electric quadrupole coupling constant, eqQ_{rm X}(^ {79}Br) = (808.1 +/- 1.4) MHz for v^{'' } = 0 and increases by about 1 MHz per vibrational quantum to (811.4 +/- 1.4) MHz for v^{''} = 2. The hyperfine data also provided a check on the accuracy of some of the published rovibronic constants ^1 for each isotopomer. In order to reproduce the observed relative spacings of the transitions for all three isotopomers, the published term values, T _{00}, have to be modified; this can be done by decreasing the published values of T_{00} for ^ {81}rm Br_2 and ^{79}Br^{81}Br by (177 +/- 8) MHz and (326 +/- 8) MHz, respectively. The phase shift technique was applied to the study of the predissociation of the v^' = 13 B ^3prod_{0 _sp{rm u}{+}} electronic state of bromine. The

  20. 15N and 13C abundances in the Antartic Ocean with emphasis on the biogeochemical structure of the food web

    NASA Astrophysics Data System (ADS)

    Wada, Eitaro; Terazaki, Makoto; Kabaya, Yuko; Nemoto, Takahisa

    1987-06-01

    Distributions of δ 15N and δ 13C for biogenic substances in the Antarctic Ocean were investigated to construct a biogeochemical framework for assessing the Antarctic ecosystem. Phytoplankton exhibited particularly low δ 15N (0.5%) and 13C (-26.9%) values in pelagic plankton samples. High nitrate concentrations, and high PCO 2 in the surface waters on the southern side of the polar front and the resulting slow growth rate of phytoplankton under low light intensity are suggested as possible factors in causing the low isotopic compositions. Mean fractionation factors of 1.029 and 1.006 were estimated for photosynthetic carbon fixation and for the assimilation of inorganic nitrogeneous compounds (ammonium plus nitrate) during algal growth, respectively. Enrichment of 15N with increasing trophic level was confirmed for Antarctic ecosystems: δ15N animal% = 3.3 (trophic level -1) + δ5N algae, whereas 13C content did not increase in the same manner. Differences in lipid content among animals may be the main factor in causing this δ 13C anomaly. 15N and 13C abundance of sedimentary organic nitrogen differed from phytoplankton and settling particles. An exact mechanism for explaining the high δ 15N (around 5%) is not known. The very high δ 13C value of -20.5% at Sta. 3B may originate in ice algae that had grown under CO 2-limited conditions. Particles collected by sediment traps gave characteristically low δ 15N values (-3.0 to 0.9%), strongly suggesting a phytoplankton origin. The δ 15N and δ 13C values of settling material showed similar vertical profiles with depth which might arise from temporal variation of algal growth.

  1. Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Riis, E.; Sinclair, A. G.; Poulsen, O.; Drake, G. W. F.; Rowley, W. R. C.; Levick, A. P.

    1994-01-01

    High-precision laser-resonance measurements accurate to +/-0.5 MHz or better are reported for transitions among the 1s2s 3S1-1s2p 3PJ hyperfine manifolds for each of J=0, 1, and 2 in both 6Li+ and 7Li+. A detailed analysis of hyperfine structure is performed for both the S and P states, using newly calculated values for the magnetic dipole and electric quadrupole coupling constants, and the hyperfine shifts subtracted from the measurements. The resulting transition frequencies are then analyzed on three different levels. First, the isotope shifts in the fine-structure splittings are calculated from the relativistic reduced mass and recoil terms in the Breit interaction, and compared with experiment at the +/-0.5-MHz level of accuracy. This comparison is particularly significant because J-independent theoretical uncertainties reduce through cancellation to the +/-0.01-MHz level. Second, the isotope shifts in the full transition frequencies are used to deduce the difference in rms nuclear radii. The result is Rrms(6Li)-Rrms(7Li)=0.15+/-0.01 fm, in agreement with nuclear scattering data, but with substantially improved accuracy. Third, high-precision calculations of the low-order non-QED contributions to the transition frequencies are subtracted from the measurements to obtain the residual QED shifts. The isotope-averaged and spin-averaged effective shift for 7Li+ is 37 429.40+/-0.39 MHz, with an additional uncertainty of +/-1.5 MHz due to finite nuclear size corrections. The accuracy of 11 parts per million is the best two-electron Lamb shift measurement in the literature, and is comparable to the accuracies achieved in hydrogen. Theoretical contributions to the two-electron Lamb shift are discussed, including terms of order (αZ)4 recently obtained by Chen, Cheng, and Johnson [Phys. Rev. A 47, 3692 (1993)], and the results used to extract a QED shift for the 2 3S1 state. The result of 30 254+/-12 MHz is shown to be in good accord with theory (30 250+/-30 MHz) when

  2. Quadrupole Hyperfine Structure in the Rotational Spectra of 1,2- and 1,3-Dichlorobenzene

    NASA Astrophysics Data System (ADS)

    Keussen, Ch.; Dreizler, H.; Merke, I.

    1990-12-01

    The high resolution of microwave Fourier transform spectroscopy was used to investigate the 35chlorine hyperfine structure of 1,2- and 1,3-dichlorobenzene, C6H435Cl2 , very accurately in the rotational spectrum of their ground vibrational state. The careful analysis with a new evaluation program also yielded the off-diagonal element of the coupling tensor. The tensor elements are χaa= -41.1153(35) MHz,χbb = 8.3415(96) MHz, χcc = 32.7738(61) MHz, and χab = ±52.41 (58) MHz for 1,2-dichlorobenzene and χaa= -44.174(12) MHz, χbb= 10.876(12) MHz, χcc = 33.298(12) MHz, and χab= ±48.181(39) MHz for 1,3-dichlorobenzene.

  3. (29)Si hyperfine structure of the E(')(alpha) center in amorphous silicon dioxide.

    PubMed

    Buscarino, G; Agnello, S; Gelardi, F M

    2006-09-29

    We report a study by electron paramagnetic resonance on the E'(alpha) point defect in amorphous silicon dioxide (a-SiO(2)). Our experiments were performed on gamma-ray irradiated oxygen-deficient materials and pointed out that the (29)Si hyperfine structure of the E'(alpha) consists of a pair of lines split by approximately 49 mT. On the basis of the experimental results, a microscopic model is proposed for the E'(alpha) center, consisting of a hole trapped in an oxygen vacancy with the unpaired electron sp(3) orbital pointing away from the vacancy in a back-projected configuration and interacting with an extra oxygen atom of the a-SiO(2) matrix.

  4. Relativistic extended-coupled-cluster method for the magnetic hyperfine structure constant

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudip; Pathak, Himadri; Nayak, Malaya K.; Vaval, Nayana; Pal, Sourav

    2015-02-01

    The article deals with the general implementation of the four-component spinor relativistic extended-coupled-cluster (ECC) method to calculate first-order property of atoms and molecules in their open-shell ground-state configuration. The implemented relativistic ECC is employed to calculate hyperfine structure constants of alkali metals (Li, Na, K, Rb, and Cs), singly charged alkaline-earth-metal atoms (Be+ ,Mg+,Ca+, and Sr+), and molecules (BeH, MgF, and CaH). We have compared our ECC results with the calculations based on the restricted active space configuration interaction (RAS-CI) method. Our results are in better agreement with the available experimental values than those of the RAS-CI values.

  5. Hyperfine structure of the odd parity level system in the terbium atom

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Furmann, B.

    2017-09-01

    Within this work new experimental results concerning the hyperfine structure (hfs) in the terbium atom are presented, concerning the odd parity levels system, hitherto only scarcely investigated (apart from the ground term). hfs constants A and B for 113 levels were determined for the first time, and for another 16 levels, which already occurred in our earlier works, supplementary results were obtained; additionally, our earlier results for 93 levels were compiled. The hfs of the odd parity levels was investigated using the method of laser induced fluorescence in a hollow cathode discharge. The hfs of 165 spectral lines, where the levels in question were involved as the upper levels, was recorded. Literature values of hfs constants of the even-parity lower levels (including our own earlier results) greatly facilitated the present data evaluation.

  6. Hyperfine structure measurement of 87Rb atoms injected into superfluid helium as highly energetic ion beam

    NASA Astrophysics Data System (ADS)

    Imamura, Kei; Furukawa, Takeshi; Yang, Xiaofei; Fujita, Tomomi; Wakui, Takashi; Mitsuya, Yousuke; Hayasaka, Miki; Ichikawa, Yuichi; Hatakeyama, Atsushi; Kobayashi, Tohru; Odashima, Hitoshi; Ueno, Hideki; Matsuo, Yukari; Orochi Collaboration

    2014-09-01

    We have developed a new nuclear laser spectroscopy technique that is called OROCHI (Optical RI-atoms Observation in Condensed Helium as Ioncatcher). In OROCHI, highly energetic ion beam is injected into superfluid helium (He II) and is trapped as atoms. Hyperfine structure (HFS) and Zeeman splitting of trapped atoms is measured using laser-microwave (MW)/radiofrequency (RF) double resonance method. We deduce nuclear moments and spin values from the measured splittings, respectively So far, we measured Zeeman splitting of 84-87Rb atoms To evaluate the validity of the OROCHI method, it is necessary to investigate the following two points not only for Zeeman but also for HFS splitings. (i) What is the accuracy in frequency in our measurement? (ii) How high beam intensity is necessary to observe resonance spectra? For this purpose we conducted online experiment using 87Rb beam and measured the HFS splitting of injected 87Rb atoms in He II.

  7. New insight in tholin chemical structure through 13C and 15N solid state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Derenne, S.; Coelho, C.; Anquetil, C.; Szopa, C.; Quirico, E.; Bonhomme, C.

    2011-10-01

    Tholins are complex materials synthesized in laboratory as models of the molecules occurring in the atmosphere of Titan. Using labeled gases, pure 13C and 15N-enriched tholins were synthesized and analyzed using 13C and 15N nuclear magnetic resonance. This study allowed confirming the presence of some functional groups (cyano, amino, imino) previously inferred from other techniques and to assess their relative contribution. It also indicated that some other functions (such as carbodiimide, protonated aromatic carbons) if present, only show a very low contribution and ruled out the occurrence of hydrazones.

  8. Structural characteristics for phase transitions of [N(CH3)4]2CuCl4 by (13)C CP/MAS NMR and (14)N NMR.

    PubMed

    Hee Kim, Nam; Lim, Ae Ran

    2015-09-01

    Structure geometry changes in [N(CH3)4]2CuCl4 near the phase transition temperature were studied by (13)C CP/MAS NMR and (14)N NMR spectrum. We distinguished the two chemically inequivalent N(1)(CH3)4 and N(2)(CH3)4 groups by (13)C CP/MAS NMR and (14)N NMR spectrum. The abrupt changes in chemical shifts and the split of the NMR signals near the phase transition temperatures for (13)C and (14)N are explained by a structural phase transition, implying that the structural geometry depends on the temperature. The mechanism behind this phase transition is based on ferroelasticity, and is also mainly related to the (14)N ions in N(CH3)4 ions. Furthermore, both phases III and IV exhibit ferroelastic properties with identical orientational domains. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Hyperfine structure in the (1, 0) band of the [17.9]4 - X3Φ4 transition of iridium monochloride, IrCl

    NASA Astrophysics Data System (ADS)

    Ma, T.; Linton, C.; Steimle, T. C.; Adam, A. G.

    2017-08-01

    Laser induced fluorescence spectra of the (1, 0) band of the [17.9]4 - X3Φ4 transition of iridium monochloride, Ir35Cl, have been obtained at near natural linewidth resolution using supersonic molecular beam techniques. The spectra show clearly resolved hyperfine structure which has significant contributions from the magnetic and nuclear electric quadrupole hyperfine terms in 193Ir and 191Ir, both with I = 3/2, but no resolved contribution from Cl hyperfine structure (I = 3/2). The spectra of both 193IrCl and 191IrCl isotopologues have been assigned and analyzed. The hyperfine structure, which was interpreted with the aid of atomic hyperfine parameters, showed that the configurational composition of the ground state of IrCl is similar to that determined previously for the ground state of the isovalent molecule IrF.

  10. Rotational spectrum of 13C chloromethanes

    NASA Astrophysics Data System (ADS)

    Kania, Patrik; Stříteská, Lucie Nová; Šimečková, Marie; Musil, Peter; Kolesniková, Lucie; Koubek, Jindřich; Urban, Štěpán

    2008-11-01

    Rotational spectra of 13 carbon chloromethane isotopologues 13CH 335Cl and 13CH 337Cl with resolved hyperfine structures were measured in the spectral region from 50 GHz to 275 GHz. An estimated uncertainty of individual well developed lines was better than 5 kHz. Ground state molecular parameters B, DJ, DJK, HJ, HJK, HKJ, eQq, and CN were derived. Determination mainly of the hyperfine constants is significantly better than in previous studies.

  11. Rotational spectra, nuclear quadrupole hyperfine tensors, and conformational structures of the mustard gas simulent 2-chloroethyl ethyl sulfide

    NASA Astrophysics Data System (ADS)

    Tubergen, M. J.; Lesarri, A.; Suenram, R. D.; Samuels, A. C.; Jensen, J. O.; Ellzy, M. W.; Lochner, J. M.

    2005-10-01

    Rotational spectra have been recorded for both the 35Cl and 37Cl isotopic forms of two structural conformations of 2-chloroethyl ethyl sulfide (CEES). The rotational constants of the 35Cl and 37Cl isotopomers were used to identify the conformational isomers. A total of 236 hyperfine transitions have been assigned for 47 rotational transitions of the 35Cl isotope of a GGT conformer, and 146 hyperfine have been assigned for 37 rotational transitions of the 37Cl isotopomer. For the second conformer, a total of 128 (110) hyperfine and 30 (28) rotational transitions have also been assigned to the 35Cl ( 37Cl) isotopes of a TGT conformation. The extensive hyperfine splitting data, measured to high resolution with a compact Fourier transform microwave spectrometer, were used to determine both the diagonal and off-diagonal elements of the 35Cl and 37Cl nuclear quadrupole coupling tensors in the inertial tensor principal axis system. The experimental rotational constant data, as well as the 35Cl and 37Cl nuclear quadrupole coupling tensors, were compared to the results from 27 optimized ab initio (HF/6-311++G ∗∗ and MP2/6-311++G ∗∗) model structures.

  12. ESR Investigations on 13C enriched Sc3@C82

    NASA Astrophysics Data System (ADS)

    Rahmer, J.; Mehring, M.; Dorn, H. C.

    2002-10-01

    13C enrichment of Sc3@C82 for the first time allows the resolution of 13C hyperfine satellite lines in the electron spin resonance (ESR) spectra of this material. A simple model is proposed to simulate the spectra. The ESR data is well reproduced under the assumption that two or three carbon atoms have a significantly stronger hyperfine coupling than all other atoms. Relating this result to the geometry of the C3υ cage leads to the conclusion that the electron density is concentrated on the upper hemisphere of the C82 cage.

  13. Selective {sup 2}H and {sup 13}C labeling in NMR analysis of solution protein structure and dynamics

    SciTech Connect

    LeMaster, D.M.

    1994-12-01

    Preparation of samples bearing combined isotope enrichment patterns has played a central role in the recent advances in NMR analysis of proteins in solution. In particular, uniform {sup 13}C, {sup 15}N enrichment has made it possible to apply heteronuclear multidimensional correlation experiments for the mainchain assignments of proteins larger than 30 KDa. In contrast, selective labeling approaches can offer advantages in terms of the directedness of the information provided, such as chirality and residue type assignments, as well as through enhancements in resolution and sensitivity that result from editing the spectral complexity, the relaxation pathways and the scalar coupling networks. In addition, the combination of selective {sup 13}C and {sup 2}H enrichment can greatly facilitate the determination of heteronuclear relaxation behavior.

  14. Analysis of the Rotational Structure in the High-Resolution Infrared Spectrum of TRANS-HEXATRIENE-1-13C1

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.; Tian, Hengfeng; Blake, Thomas A.

    2011-06-01

    Hexatriene-1-13C1 was synthesized by reaction of 2,4-pentadienal and (methyl-13C)-triphenylphosphonium iodide (Wittig reagent). The trans isomer was isolated by preparative gas chromatography, and the high-resolution (0.0015 Cm-1) infrared spectrum was recorded on a Bruker IFS 125HR instrument. The rotational structure in two C-type bands was analyzed. For this species the bands at 1010.7 and 893.740 Cm-1 yielded composite ground state rotational constants of A0 = 0.872820(1), B0 = 0.0435868(4), and C0 = 0.0415314(2) Cm-1. The ground state rotational constants for the 1-13C species were also predicted with Gaussian 03 software and the B3LYP/cc-pVTZ model. After scaling by the ratio of the observed and predicted ground state rotational constants for the normal species, the predicted ground state rotational constants for the 1-13C species agreed within 0.005 % with the observed values. Similar good agreement between observed and calculated values (0.016 %) was found for the three 13C species of the cis isomer. We conclude that ground state rotational constants for single heavy atom substitution can be calculated with adequate accuracy for use in determining semi-experimental equilibrium structures of small molecules. It will be unnecessary to synthesize the other two 13C species of trans-hexatriene. R. D. Suenram, B. H. Pate, A. Lesarri, J. L. Neill, S. Shipman, R. A. Holmes, M. C. Leyden, N. C. Craig J. Phys. Chem. A 113, 1864-1868 (2009).

  15. Structural analyses of experimental 13C edited amide I' IR and VCD for peptide β-sheet aggregates and fibrils using DFT-based spectral simulations.

    PubMed

    Welch, William R W; Keiderling, Timothy A; Kubelka, Jan

    2013-09-12

    In the preceding paper, computational models based on density functional theory (DFT) were presented to characterize the sensitivity of vibrational spectroscopic methods (IR, VCD, and Raman) to structural features of β-sheets. Isotopically edited amide I' IR for peptides labeled with (13)C in multiple different sites provides the most structurally distinct signatures of strand alignment, while VCD is sensitive to the sheet twist and intersheet stacking. In this report, we simulate the IR and VCD spectra for models approximating structures of four β-sheet forming peptides previously experimentally studied using these methods with (13)C isotopic editing. Various register alignments are tested. Agreement with experiment is evaluated based on frequency shifts of both the (12)C and (13)C IR amide I' signals, relative intensity patterns, and VCD spectra where available. While for the simulation of IR spectra canonical planar sheets provide a sufficient model system, for VCD simulation twisted, stacked sheets are required in order to reproduce strong couplet-like amide I' VCD. Effects of the solvent (water) and amino acid side chains are also tested by using a simplified, electrostatic solvent model and atomic partial charges for the side chains. Very good agreement with experimental spectra is obtained, particularly for the relative (12)C and (13)C band frequencies. All four peptide models are shown to be antiparallel as had previously been assumed. However, in some cases our simulations are consistent with different register alignment of strands than originally proposed.

  16. Wavelengths, energy levels and hyperfine structure of Mn II and Sc II.

    NASA Astrophysics Data System (ADS)

    Nave, Gillian; Pickering, Juliet C.; Townley-Smith, Keeley I. M.; Hala, .

    2015-08-01

    For many decades, the Atomic Spectroscopy Groups at the National Institute of Standards and Technology (NIST) and Imperial College London (ICL) have measured atomic data of astronomical interest. Our spectrometers include Fourier transform (FT) spectrometers at NIST and ICL covering the region 1350 Å to 5.5 μm and a 10.7-m grating spectrometer at NIST covering wavelengths from 300 - 5000 Å. Sources for these spectra include high-current continuous and pulsed hollow cathode (HCL) lamps, Penning discharges, and sliding spark discharges. Recent work has focused on the measurement and analysis of wavelengths, energy levels, and hyperfine structure (HFS) constants for iron-group elements. The analysis of FT spectra of Cr I, Mn I, and Mn II is being led by ICL and is described in a companion poster [1]. Current work being led by NIST includes the analysis of HFS in Mn II, analysis of Mn II in the vacuum ultraviolet, and a comprehensive analysis of Sc II.Comprehensive HFS constants for Mn II are needed for the interpretation of stellar spectra and incorrect abundances may be obtained when HFS is omitted. Holt et al. [2] have measured HFS constants for 59 levels of Mn II using laser spectroscopy. We used FT spectra of Mn/Ni and Mn/Cu HCLs covering wavelength ranges from 1350 Å to 5.4 μm to confirm 26 of the A constants of Holt et al. and obtain values for roughly 40 additional levels. We aim to obtain HFS constants for the majority of lines showing significant HFS that are observed in chemically-peculiar stars.Spectra of Sc HCLs have been recorded from 1800 - 6700 Å using a vacuum ultraviolet FT spectrometer at NIST. Additional measurements to cover wavelengths above 6700 Å and below 1800 Å are in progress. The spectra are being analyzed by NIST and Alighar Muslim University, India in order to derive improved wavelengths, energy levels, and hyperfine structure parameters.This work was partially supported by NASA, the STFC and PPARC (UK), the Royal Society of the UK

  17. Fine and hyperfine structure of P-wave levels in muonic hydrogen

    SciTech Connect

    Martynenko, A. P.

    2008-01-15

    Corrections of order {alpha}{sup 5} and {alpha}{sup 6} are calculated for muonic hydrogen in the fine-structure interval {Delta}E{sup fs} = E(2P{sub 3/2}) - E(2P{sub 1/2}) and in the hyperfine structure of the 2P{sub 1/2}-and 2P{sub 3/2}-wave energy levels. The resulting values of {Delta}E{sup fs} = 8352.08 Micro-Sign eV, {Delta}E-tilde {sup hfs}(2P{sub 1/2}) = 7819.80 Micro-Sign eV, and {Delta}E-tilde {sup hfs}(2P{sub 3/2}) = 3248.03 Micro-Sign eV provide reliable guidelines in performing a comparison with relevant experimental data and in more precisely extracting the experimental value of the (2P-2S) Lamb shift in the muonic-hydrogen atom.

  18. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    PubMed

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  19. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    PubMed Central

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

  20. Intra-annual variability of anatomical structure and δ13C values within tree rings of spruce and pine in alpine, temperate and boreal Europe

    PubMed Central

    Vaganov, Eugene A.; Skomarkova, Marina V.; Knohl, Alexander; Brand, Willi A.; Roscher, Christiane

    2009-01-01

    Tree-ring width, wood density, anatomical structure and 13C/12C ratios expressed as δ13C-values of whole wood of Picea abies were investigated for trees growing in closed canopy forest stands. Samples were collected from the alpine Renon site in North Italy, the lowland Hainich site in Central Germany and the boreal Flakaliden site in North Sweden. In addition, Pinus cembra was studied at the alpine site and Pinus sylvestris at the boreal site. The density profiles of tree rings were measured using the DENDRO-2003 densitometer, δ13C was measured using high-resolution laser-ablation-combustion-gas chromatography-infra-red mass spectrometry and anatomical characteristics of tree rings (tracheid diameter, cell-wall thickness, cell-wall area and cell-lumen area) were measured using an image analyzer. Based on long-term statistics, climatic variables, such as temperature, precipitation, solar radiation and vapor pressure deficit, explained <20% of the variation in tree-ring width and wood density over consecutive years, while 29–58% of the variation in tree-ring width were explained by autocorrelation between tree rings. An intensive study of tree rings between 1999 and 2003 revealed that tree ring width and δ13C-values of whole wood were significantly correlated with length of the growing season, net radiation and vapor pressure deficit. The δ13C-values were not correlated with precipitation or temperature. A highly significant correlation was also found between δ13C of the early wood of one year and the late wood of the previous year, indicating a carry-over effect of the growing conditions of the previous season on current wood production. This latter effect may explain the high autocorrelation of long-term tree-ring statistics. The pattern, however, was complex, showing stepwise decreases as well as stepwise increases in the δ13C between late wood and early wood. The results are interpreted in the context of the biochemistry of wood formation and its linkage

  1. Intra-annual variability of anatomical structure and delta(13)C values within tree rings of spruce and pine in alpine, temperate and boreal Europe.

    PubMed

    Vaganov, Eugene A; Schulze, Ernst-Detlef; Skomarkova, Marina V; Knohl, Alexander; Brand, Willi A; Roscher, Christiane

    2009-10-01

    Tree-ring width, wood density, anatomical structure and (13)C/(12)C ratios expressed as delta(13)C-values of whole wood of Picea abies were investigated for trees growing in closed canopy forest stands. Samples were collected from the alpine Renon site in North Italy, the lowland Hainich site in Central Germany and the boreal Flakaliden site in North Sweden. In addition, Pinus cembra was studied at the alpine site and Pinus sylvestris at the boreal site. The density profiles of tree rings were measured using the DENDRO-2003 densitometer, delta(13)C was measured using high-resolution laser-ablation-combustion-gas chromatography-infra-red mass spectrometry and anatomical characteristics of tree rings (tracheid diameter, cell-wall thickness, cell-wall area and cell-lumen area) were measured using an image analyzer. Based on long-term statistics, climatic variables, such as temperature, precipitation, solar radiation and vapor pressure deficit, explained <20% of the variation in tree-ring width and wood density over consecutive years, while 29-58% of the variation in tree-ring width were explained by autocorrelation between tree rings. An intensive study of tree rings between 1999 and 2003 revealed that tree ring width and delta(13)C-values of whole wood were significantly correlated with length of the growing season, net radiation and vapor pressure deficit. The delta(13)C-values were not correlated with precipitation or temperature. A highly significant correlation was also found between delta(13)C of the early wood of one year and the late wood of the previous year, indicating a carry-over effect of the growing conditions of the previous season on current wood production. This latter effect may explain the high autocorrelation of long-term tree-ring statistics. The pattern, however, was complex, showing stepwise decreases as well as stepwise increases in the delta(13)C between late wood and early wood. The results are interpreted in the context of the biochemistry

  2. MODELING MOLECULAR HYPERFINE LINE EMISSION

    SciTech Connect

    Keto, Eric; Rybicki, George

    2010-06-20

    In this paper, we discuss two approximate methods previously suggested for modeling hyperfine spectral line emission for molecules whose collisional transition rates between hyperfine levels are unknown. Hyperfine structure is seen in the rotational spectra of many commonly observed molecules such as HCN, HNC, NH{sub 3}, N{sub 2}H{sup +}, and C{sup 17}O. The intensities of these spectral lines can be modeled by numerical techniques such as {Lambda}-iteration that alternately solve the equations of statistical equilibrium and the equation of radiative transfer. However, these calculations require knowledge of both the radiative and collisional rates for all transitions. For most commonly observed radio frequency spectral lines, only the net collisional rates between rotational levels are known. For such cases, two approximate methods have been suggested. The first method, hyperfine statistical equilibrium, distributes the hyperfine level populations according to their statistical weight, but allows the population of the rotational states to depart from local thermal equilibrium (LTE). The second method, the proportional method, approximates the collision rates between the hyperfine levels as fractions of the net rotational rates apportioned according to the statistical degeneracy of the final hyperfine levels. The second method is able to model non-LTE hyperfine emission. We compare simulations of N{sub 2}H{sup +} hyperfine lines made with approximate and more exact rates and find that satisfactory results are obtained.

  3. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  4. /sup 13/C-/sup 13/C spin-spin coupling in structural investigations. VII. Substitution effects and direct carbon-carbon constants of the triple bond in acetyline derivatives

    SciTech Connect

    Krivdin, L.B.; Proidakov, A.G.; Bazhenov, B.N.; Zinchenko, S.V.; Kalabin, G.A.

    1989-01-10

    The effects of substitution on the direct /sup 13/C-/sup 13/C spin-spin coupling constants of the triple bond were studied in 100 derivatives of acetylene. It was established that these parameters exhibit increased sensitivity to the effect of substituents compared with other types of compounds. The main factor which determines their variation is the electronegativity of the substituting groups, and in individual cases the /pi/-electronic effects are appreciable. The effect of the substituents with an element of the silicon subgroup at the /alpha/ position simultaneously at the triple bond or substituent of the above-mentioned type and a halogen atom.

  5. Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional (13)C solid-state nuclear magnetic resonance spectroscopy.

    PubMed

    Wang, Tuo; Salazar, Andre; Zabotina, Olga A; Hong, Mei

    2014-05-06

    The polysaccharide structure and dynamics in the primary cell wall of the model grass Brachypodium distachyon are investigated for the first time using solid-state nuclear magnetic resonance (NMR). While both grass and non-grass cell walls contain cellulose as the main structural scaffold, the former contains xylan with arabinose and glucuronic acid substitutions as the main hemicellulose, with a small amount of xyloglucan (XyG) and pectins, while the latter contains XyG as the main hemicellulose and significant amounts of pectins. We labeled the Brachypodium cell wall with (13)C to allow two-dimensional (2D) (13)C correlation NMR experiments under magic-angle spinning. Well-resolved 2D spectra are obtained in which the (13)C signals of cellulose, glucuronoarabinoxylan (GAX), and other matrix polysaccharides can be assigned. The assigned (13)C chemical shifts indicate that there are a large number of arabinose and xylose linkages in the wall, and GAX is significantly branched at the developmental stage of 2 weeks. 2D (13)C-(13)C correlation spectra measured with long spin diffusion mixing times indicate that the branched GAX approaches cellulose microfibrils on the nanometer scale, contrary to the conventional model in which only unbranched GAX can bind cellulose. The GAX chains are highly dynamic, with average order parameters of ~0.4. Biexponential (13)C T1 and (1)H T1ρ relaxation indicates that there are two dynamically distinct domains in GAX: the more rigid domain may be responsible for cross-linking cellulose microfibrils, while the more mobile domain may fill the interfibrillar space. This dynamic heterogeneity is more pronounced than that of the non-grass hemicellulose, XyG, suggesting that GAX adopts the mixed characteristics of XyG and pectins. Moderate differences in cellulose rigidity are observed between the Brachypodium and Arabidopsis cell walls, suggesting different effects of the matrix polysaccharides on cellulose. These data provide the first

  6. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    SciTech Connect

    Cozar, O.; Filip, C.; Tripon, C.; Cioica, N.; Coţa, C.; Nagy, E. M.

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  7. Computer-assisted analysis of the structure of regular branched polysaccharides containing 2,3-disubstituted rhamnopyranose and mannopyranose residues on the basis of 13C NMR data.

    PubMed

    Lipkind, G M; Shashkov, A S; Nifant'ev, N E; Kochetkov, N K

    1992-12-31

    A computer-assisted approach to the analysis of the structure of branched polysaccharides that contain 2,3-di-O-glycosylated alpha-rhamnopyranose and alpha-mannopyranose residues is based on evaluation of the 13C NMR spectra, using glycosylation effects and their deviations from additivity (delta delta values) at the branch points. This approach, in combination with monosaccharide and methylation analysis data, has been verified on a series of bacterial polysaccharides of known structure.

  8. Structural, optical, hyperfine and magnetization studies of ZnO encapsulated α-Fe nanoparticles

    SciTech Connect

    Rathore, A.K.; Pati, S.P.; Roychowdhury, A.; Das, D.

    2014-12-15

    We report the successful preparation and characterization of magnetic-fluorescent nanoparticles (NPs) by overcoming the difficulty of handling α-Fe nanoparticles that are less stable and have high affinity to get oxidized in air even at room temperature. Nanocrystalline α-Fe particles embedded by ZnO have been synthesized by a two step chemical route. Concentration of α-Fe has been varied as 15, 30 and 50 wt% of the sample. Detailed investigations on structural, hyperfine, optical and magnetic characteristics have been carried out. X-ray diffraction, transmission electron microscopy and fourier transform infrared spectroscopy studies have been used to confirm the coexistence of Fe and ZnO phases in the nanocomposites (NCs). The presence of α-Fe is also confirmed by Mössbauer spectroscopy. However, other forms of iron are also detected in the sample. UV–vis spectrum of nanocomposites shows a red shift with respect to the pristine ZnO which is attributed to the electron transfer between Fe and ZnO that provides support to the formation of the Fe- ZnO NC. The photoluminescence (PL) spectra of Fe-ZnO nanocomposites exhibit blue shift of the UV and weaker visible emission lines compared to the pristine ZnO. Nanocomposites are found to be magnetically soft having high saturation magnetization with very low remanence. Low temperature coercivity enhancement due to freezing of uncompensated surface spins is also found in all samples.

  9. Soil anammox community structure in different land use soils treatment with (13)C urea as determined by analysis of phospholipid fatty acids.

    PubMed

    Zhou, Huifang; Zhang, Qichun; Gu, Chao; Jabeen, Salma; Li, Jiangye; Di, Hongjie

    2017-07-12

    The anaerobic ammonium oxidation (anammox) process is globally an important nitrogen-cycling process mediated by specialized microbes. However, still little information is documented about anammox microbial community structure under agricultural soils. The anaerobic incubation experiment was conducted to study the impacts of different land use soils fertilized by (13)C-urea on the activity and diversity of anammox bacteria using stable isotope to probe the phospholipid fatty acid (PLFA-SIP). The (13)C was preferentially incorporated in ratios PLFAs 16:1ω7c, 16:1ω5c, and 16:0. The results revealed that the abundance of the anammox bacteria (both hzs-β and hzo) were observed in vegetable soil V1 and paddy soils (R1 and R2) means that they were positively correlated with (13)C-urea but were negatively correlated with NO3(-)-N and NH4(+)-N concentrations. Thus, (13)C-PLFAs 16:1ω7c, 16:1ω5c, and 16:0 could be the biomarker as soil anammox. The anaerobic microbial community composition of soils under different land use systems was diverse, and V1, R1, and R2 had similar microbial diversity and higher microbial biomass. The principal component analysis between soil properties and gene abundance suggested that not only pH but also soil organic matter, available P, and available K were important factors for the anammox process. This study suggested that (13)C-Urea-PLFA for anaerobic incubation was a simple method to study anammox microbial community structure through affecting the soil nutrients, and the different land use systems played important roles in determining the microbial composition of soils.

  10. Configurational order-disorder induced metal-nonmetal transition in B13C2 studied with first-principles superatom-special quasirandom structure method

    NASA Astrophysics Data System (ADS)

    Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Alling, B.

    2015-07-01

    Due to a large discrepancy between theory and experiment, the electronic character of crystalline boron carbide B13C2 has been a controversial topic in the field of icosahedral boron-rich solids. We demonstrate that this discrepancy is removed when configurational disorder is accurately considered in the theoretical calculations. We find that while the ordered ground state B13C2 is metallic, the configurationally disordered B13C2 , modeled with a superatom-special quasirandom structure method, goes through a metal to nonmetal transition as the degree of disorder is increased with increasing temperature. Specifically, one of the chain-end carbon atoms in the CBC chains substitutes a neighboring equatorial boron atom in a B12 icosahedron bonded to it, giving rise to a B11Ce (BBC) unit. The atomic configuration of the substitutionally disordered B13C2 thus tends to be dominated by a mixture between B12(CBC) and B11Ce (BBC). Due to splitting of valence states in B11Ce (BBC), the electron deficiency in B12(CBC) is gradually compensated.

  11. Food web structure in two counter-rotating eddies based on δ15N and δ13C isotopic analyses

    NASA Astrophysics Data System (ADS)

    Waite, A. M.; Muhling, B. A.; Holl, C. M.; Beckley, L. E.; Montoya, J. P.; Strzelecki, J.; Thompson, P. A.; Pesant, S.

    2007-04-01

    We measured the natural inventories of nitrogen and carbon stable isotopes within various ecosystem fractions of two counter-rotating eddies associated with the poleward Leeuwin Current (LC), off Western Australia. Isotopic signatures ( δ15N and δ13C) were used as proxies for trophic transformation of inorganic and organic matter and are the basis for our discussion on food web functions in the two eddies. We present the first measurements of dissolved inorganic nitrogen (DIN) isotopic composition for the eastern Indian Ocean. We show that the large autotrophs (sampled within the >5-μm and >20-μm fractions of particulate organic matter (POM)), including a distinctive diatom population in the warm-core (WC) eddy, are likely to have taken up sources of DIN which were primarily nitrate, while the picoplankton are likely to have assimilated a large fraction of recycled ammonium. We show that phytoplankton in the cold-core (CC) eddy had distinctly more enriched δ15N signatures than in the WC eddy, probably due to the higher vertical fluxes of nitrate into the CC eddy. A clear negative correlation between mixed-layer depth and δ15N in POM across both eddies also supports the role of vertical nitrate fluxes in determining the primary δ15N signature of the autotrophs. Within the WC eddy, there was a significant δ13C-enrichment in comparison to the CC eddy across all size fractions of the mesozooplankton community, which, in combination with a low C:N molar ratio the >200- and >500-μm mesozooplankton size fractions, suggests a healthier mesozooplankton community, with greater lipid storage, in the WC eddy. This is consistent with the greater productivity and biomass of large diatoms in the WC eddy. Larval fish from the WC eddy also had an enriched δ13C signature compared to those from the CC eddy. The WC eddy had higher production rates than the CC eddy, and harboured a physiologically healthier population of zooplankton. Paradoxically, this seemed to occur

  12. NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations.

    PubMed

    Casabianca, Leah B; Shaibat, Medhat A; Cai, Weiwei W; Park, Sungjin; Piner, Richard; Ruoff, Rodney S; Ishii, Yoshitaka

    2010-04-28

    Chemically modified graphenes and other graphite-based materials have attracted growing interest for their unique potential as lightweight electronic and structural nanomaterials. It is an important challenge to construct structural models of noncrystalline graphite-based materials on the basis of NMR or other spectroscopic data. To address this challenge, a solid-state NMR (SSNMR)-based structural modeling approach is presented on graphite oxide (GO), which is a prominent precursor and interesting benchmark system of modified graphene. An experimental 2D (13)C double-quantum/single-quantum correlation SSNMR spectrum of (13)C-labeled GO was compared with spectra simulated for different structural models using ab initio geometry optimization and chemical shift calculations. The results show that the spectral features of the GO sample are best reproduced by a geometry-optimized structural model that is based on the Lerf-Klinowski model (Lerf, A. et al. Phys. Chem. B 1998, 102, 4477); this model is composed of interconnected sp(2), 1,2-epoxide, and COH carbons. This study also convincingly excludes the possibility of other previously proposed models, including the highly oxidized structures involving 1,3-epoxide carbons (Szabo, I. et al. Chem. Mater. 2006, 18, 2740). (13)C chemical shift anisotropy (CSA) patterns measured by a 2D (13)C CSA/isotropic shift correlation SSNMR were well reproduced by the chemical shift tensor obtained by the ab initio calculation for the former model. The approach presented here is likely to be applicable to other chemically modified graphenes and graphite-based systems.

  13. Molecular mobility and structure of elastin deduced from the solvent and temperature dependence of 13C magnetic resonance relaxation data.

    PubMed

    Lyerla, J R; Torchia, D A

    1975-11-18

    13C relaxation parameters, T1, line width, and NOE, have been determined for backbone carbons of ligamentum nuchae elastin swollen by 0.15 M NaCl, 0.15 M NaCl-formamide, 0.15 M NaCl-ethanol, dimethyl sulfoxide, and formamide. The data have been analyzed in terms of (a) a single correlation time model and (b) a model employing a log-chi2 distribution of correlation times used by Schaefer (1973) to analyze solid cis-polyisoprene 13C relaxation data. Employing the latter mode, one obtains an approximately self-consistent quantitative analysis of all the elastin data. An average backbone correlation time, tau, of ca. 2 nsec is calculated for elastin swollen in the presence of polar organic solvents at 37 degrees, in approximate agreement with tau of 0.4 nsec obtained for bulk cis-polyisoprene at 35 degrees. The influence of solvent and temperature on elastin spectra indicate that the larger tau value (approximately 80 nsec) obtained for elastin swollen by 0.15 M NaCl at 37 degrees is a consequence of weak interchain polar and hydrophobic interactions, a result which is in accord with the reported viscoelastic behavior exhibited by water-swollen elastin at 37 degrees. The results obtained further suggest that Gly, Pro, and Val residues are significantly more mobile than Ala residues, which are located in the cross-link regions. Hence, the NMR data support the view that water-swollen elastin is composed of a network of mobile chains, except possibly in the cross-link regions.

  14. Rotational Spectroscopy of CF_2ClCCl_3 and Analysis of Hyperfine Structure from Four Quadrupolar Nuclei

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Bialkowska-Jaworska, Ewa; Uriarte, Iciar; Basterretxea, Francisco J.; Cocinero, Emilio J.

    2016-06-01

    CF_2ClCCl_3 has recently been identified among several new ozone- depleting substances in the atmosphere. There are no literature reports concerning rotational spectroscopy of this molecule, although we were recently able to report its first chirped pulse, supersonic expansion spectrum. CF_2ClCCl_3 has a rather small dipole moment so that the spectrum is weak and each transition displays very complex nuclear quadrupole hyperfine structure resulting from the presence of four chlorine nuclei. We have presently been able to carry out a complete analysis of the hyperfine structure by combining the information from chirped pulse spectra with dedicated higher resolution measurements made with a cavity supersonic expansion instrument. The hyperfine analysis was carried out with Pickett's SPFIT/SPCAT package and the sizes of Hamiltonian matrices are sufficiently large to require the use of 64-bit compilation of these programs (made available for both Windows and Linux systems on the PROSPE website). The resulting fit is to within experimental accuracy and is supported by ab initio calculations. The precise values of off-diagonal hyperfine constants for all nuclei lead to useful angular information that is complementary to direct structural information from moments of inertia. J.C.Laube, M.J.Newland, C.Hogan, et al., Nature Geoscience 7, 266 (2014). Z.Kisiel, E.Białkowska-Jaworska, L.Pszczółkowski, I.Uriarte, P.Ejica, F.J.Basterretxea, E.J.Cocinero, 70th ISMS, Champaign-Urbana, Illinois, RF-11 (2015). Z.Kisiel, E.Białkowska-Jaworska, L.Pszczółkowski, J.Chem.Phys. 109, 10263 (1998).

  15. Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling

    PubMed Central

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M. Francesca

    2014-01-01

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components

  16. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant isotope labeling.

    PubMed

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M Francesca

    2014-01-16

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as (13)C with (15)N, (18)O or (2)H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation(1-4). From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage(5-7). The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing (13)C and (15)N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous (13)C and (15)N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%(13)C and 6.7 atom%(15)N uniform plant label, or material that is differentially labeled by up to 1.29 atom%(13)C and 0.56 atom%(15)N in its metabolic and structural components (hot water extractable and hot water

  17. Study of coupled-cluster correlations on electromagnetic transitions and hyperfine structure constants of W VI

    NASA Astrophysics Data System (ADS)

    Bhowmik, Anal; Roy, Sourav; Nath Dutta, Narendra; Majumder, Sonjoy

    2017-06-01

    This work presents precise calculations of important electromagnetic transition amplitudes along with details of their many-body correlations using the relativistic coupled-cluster method. Studies of hyperfine interaction constants, useful for plasma diagnostics, with this correlation exhaustive many-body approach, are another important area of this work. The calculated oscillator strengths of allowed transitions, amplitudes of forbidden transitions and lifetimes are compared with the other theoretical results wherever available and they show a good agreement. Hyperfine constants of different isotopes of W VI, presented in this paper, will be helpful in gaining an accurate picture of the abundances of this element in different astronomical bodies.

  18. Mixing of {0}^{+} and {0}^{-} observed in the hyperfine and Zeeman structure of ultracold {{Rb}}_{2} molecules

    NASA Astrophysics Data System (ADS)

    Deiß, Markus; Drews, Björn; Hecker Denschlag, Johannes; Tiemann, Eberhard

    2015-08-01

    We study the combination of the hyperfine and Zeeman structure in the spin-orbit coupled {A}1{Σ }u+-{b}3{\\Pi }u complex of {}87{{Rb}}2. For this purpose, absorption spectroscopy at a magnetic field around B=1000 G is carried out. We drive optical dipole transitions from the lowest rotational state of an ultracold Feshbach molecule to various vibrational levels with {0}+ symmetry of the A-b complex. In contrast to previous measurements with rotationally excited alkali-dimers, we do not observe equal spacings of the hyperfine levels. In addition, the spectra vary substantially for different vibrational quantum numbers, and exhibit large splittings of up to 160 MHz, unexpected for {0}+ states. The level structure is explained to be a result of the repulsion between the states {0}+ and {0}- of {b}3{\\Pi }u, coupled via hyperfine and Zeeman interactions. In general, {0}- and {0}+ have a spin-orbit induced energy spacing Δ, that is different for the individual vibrational states. From each measured spectrum we are able to extract Δ, which otherwise is not easily accessible in conventional spectroscopy schemes. We obtain values of Δ in the range of +/- 100 GHz which can be described by coupled channel calculations if a spin-orbit coupling is introduced that is different for {0}- and {0}+ of {b}3{\\Pi }u.

  19. Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls

    SciTech Connect

    Dick-Perez, Marilu; Wang, Tuo; Salazar, Andre; Zabotina, Olga A.; Hong, Mei

    2012-07-08

    Plant cell wall (CW) polysaccharides are responsible for the mechanical strength and growth of plant cells; however, the high-resolution structure and dynamics of the CW polysaccharides are still poorly understood because of the insoluble nature of these molecules. Here, we use 2D and 3D magic-angle-spinning (MAS) solid-state NMR (SSNMR) to investigate the structural role of pectins in the plant CW. Intact and partially depectinated primary CWs of Arabidopsis thaliana were uniformly labeled with 13C and their NMR spectra were compared. Recent 13C resonance assignment of the major polysaccharides in Arabidopsis thaliana CWs allowed us to determine the effects of depectination on the intermolecular packing and dynamics of the remaining wall polysaccharides. 2D and 3D correlation spectra show the suppression of pectin signals, confirming partial pectin removal by chelating agents and sodium carbonate. Importantly, higher cross peaks are observed in 2D and 3D 13C spectra of the depectinated CW, suggesting higher rigidity and denser packing of the remaining wall polysaccharides compared with the intact CW. 13C spin–lattice relaxation times and 1H rotating-frame spin–lattice relaxation times indicate that the polysaccharides are more rigid on both the nanosecond and microsecond timescales in the depectinated CW. Taken together, these results indicate that pectic polysaccharides are highly dynamic and endow the polysaccharide network of the primary CW with mobility and flexibility, which may be important for pectin functions. This study demonstrates the capability of multidimensional SSNMR to determine the intermolecular interactions and dynamic structures of complex plant materials under near-native conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by 13C cross polarization/magic angle spinning NMR.

    PubMed

    Yang, Mingying; Nakazawa, Yasumoto; Yamauchi, Kazuo; Knight, David; Asakura, Tetsuo

    2005-01-01

    To obtain detailed structural information for spider dragline spidroin (MaSp1), we prepared three versions of the consensus peptide GGLGGQGAGAAAAAAGGAGQGGYGGLGSQGAGR labeled with 13C at six different sites. The 13C CP/MAS NMR spectra were observed after treating the peptides with different reagents known to alter silk protein conformations. The conformation-dependent 13C NMR chemical shifts and peak deconvolution were used to determine the local structure and the fractional compositions of the conformations, respectively. After trifluoroacetic acid (solvent)/diethyl ether (coagulant) treatment, the N-terminal region of poly-Ala (PLA) sequence, Ala8 and Ala10, adopted predominantly the alpha-helix with a substantial amount of beta-sheet. The central region, Ala15, Ala18, and Leu26, and C-terminal region, Ala31, of the peptide were dominated by either 3(1)-helix or alpha-helix. There was no indication of beta-sheet, although peak broadening indicates that the torsion angle distribution is relatively large. After 9 M LiBr/dialysis treatment, three kinds of conformation, beta-sheet, random coil, and 3(1)-helix, appeared, in almost equal amounts of beta-sheet and random coil conformations for Ala8 and Ala10 residues and distorted 3(1)-helix at the central region of the peptide. In contrast, after formic acid/methanol and 8 M urea/acetonitrile treatments, all of the local structure tends to beta-sheet, although small amounts of random coil are also observed. The peak pattern of the Ala Cbeta carbon after 8 M urea/acetonitrile treatment is similar to the corresponding patterns of silk fiber from Bombyx mori and Samia cynthia ricini. We also synthesized a longer 13C-labeled peptide containing two PLA blocks and three Gly-rich blocks. After 8 M urea/acetonitrile treatment, the conformation pattern was closely similar to that of the shorter peptide.

  1. Direct Observation of Cell Wall Structure in Living Plant Tissues by Solid-State 13C NMR Spectroscopy

    PubMed Central

    Jarvis, Michael C.; Apperley, David C.

    1990-01-01

    Solid-state 13C nuclear magnetic resonance (NMR) spectra of the following intact plant tissues were recorded by the crosspolarization magic-angle spinning technique: celery (Apium graveolens L.) collenchyma; carob bean (Ceratonia siliqua L.), fenugreek (Trigonella foenum-graecum L.), and nasturtium (Tropaeolum majus L.) endosperm; and lupin (Lupinus polyphyllus Lindl.) seed cotyledons. All these tissues had thickened cell walls which allowed them to withstand the centrifugal forces of magic angle spinning and which, except in the case of lupin seeds, dominated the NMR spectra. The celery collenchyma cell walls gave spectra typical of dicot primary cell walls. The carob bean and fenugreek seed spectra were dominated by resonances from galactomannans, which showed little sign of crystalline order. Resonances from β(1,4′)-d galactan were visible in the lupin seed spectrum, but there was much interference from protein. The nasturtium seed spectrum was largely derived from a xyloglucan, in which the conformation of the glucan core chain appeared to be intermediate between the solution form and solid forms of cellulose. PMID:16667266

  2. Hyperfine field and magnetic structure in the B phase of CeCoIn5

    SciTech Connect

    Graf, Matthias J; Curro, Nicholas J; Young, Ben - Li; Urbano, Ricardo R

    2009-01-01

    We re-analyze Nuclear Magnetic Resonance (NMR) spectra observed at low temperatures and high magnetic fields in the field-induced B-phase of CeCoIn{sub 5}. The NMR spectra are consistent with incommensurate antiferromagnetic order of the Ce magnetic moments. However, we find that the spectra of the In(2) sites depend critically on the direction of the ordered moments, the ordering wavevector and the symmetry of the hyperfine coupling to the Ce spins. Assuming isotropic hyperfine coupling, the NMR spectra observed for H {parallel} [100] are consistent with magnetic order with wavevector Q = {pi}(1+{delta}/a, 1/a, 1/c) and Ce moments ordered antiferromagnetically along the [100] direction in real space. If the hyperfine coupling has dipolar symmetry, then the NMR spectra require Ce moments along the [001] direction. The dipolar scenario is also consistent with recent neutron scattering measurements that find an ordered moment of 0.15{micro}{sub B} along [001] and Q{sub n} = {pi}(1+{delta}/a, 1+{delta}c, 1/c) with incommensuration {delta} = 0.12 for field H {parallel} [1{bar 1}0]. Using these parameters, we find that the hyperfine field is consistent with both experiments. We speculate that the B phase of CeCoIn{sub 5} represents an intrinsic phase of modulated superconductivity and antiferromagnetism that can only emerge in a highly clean system.

  3. Nuclear radiative recoil corrections to the hyperfine structure of S-states in muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.

    2017-09-01

    Nuclear radiative recoil corrections of order α( Zα)5 to the hyperfine splitting of S-states in muonic hydrogen are calculated on the basis of quasipotential method in quantum electrodynamics. The calculation is performed in the infrared safe Fried-Yennie gauge. Modern experimental data on the proton form factors are used.

  4. Hyperfine structure constants of singly ionized manganese obtained from analysis of Fourier Transform spectra

    NASA Astrophysics Data System (ADS)

    Townley-Smith, Keeley; Nave, Gillian; Imperial College London

    2016-01-01

    There is an on-going project in the Atomic Spectroscopy Group at NIST to obtain comprehensive spectral data for all of the singly ionized iron group elements and acquire more accurate energy levels, wavelengths and hyperfine structure (HFS) constants. The heavy abundance of the iron group elements and their contributions to a wide range of stellar spectra makes them of interest for astrophysical observations.Existing spectroscopic data for Mn are insufficient to model spectra obtained from HgMn stars such as HD 175640. Since manganese has an odd number of nucleons, its spectral lines generally exhibit HFS, a relativistic effect due to interaction between the magnetic moment of the nucleus and the orbiting electrons. If proper treatment of line broadening effects such as HFS is not taken, there is a poor fit of the lines in stellar spectra, leading to an overestimate of the abundance of Mn. The abnormally high abundance of manganese in HgMn stars means both weak and strong transitions are important. Weak lines may not be observed in the laboratory, but HFS constants for them can be derived from stronger transitions that combine with the two levels involved in the weak transition.Holt et al. (1999) measured HFS constants for 56 energy levels using laser spectroscopy. We have analyzed Fourier Transform spectra of a high current Mn/Ni hollow cathode lamp to obtain magnetic dipole A constants levels of Mn II. The A constants of Holt et al. (1999, MNRAS 306, 1007) for the z5P, z7P2, a5P and z5F levels were the starting point for our analysis, from which we derived A constants for 71 energy levels, including 51 previously unstudied levels. Our A constant for the a7S3 ground level differs by 5x10-4 cm-1 from that of Blackwell-Whitehead et al. (2005, ApJS 157, 402) and has a factor of 6 lower uncertainty.

  5. (13)C NMR Metabolomics: INADEQUATE Network Analysis.

    PubMed

    Clendinen, Chaevien S; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S

    2015-06-02

    The many advantages of (13)C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, (13)C NMR offers a straightforward measurement of these compounds. Two-dimensional (13)C-(13)C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semiautomated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE data sets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures.

  6. Heritability of the structures and 13C fractionation in tomato leaf wax alkanes: a genetic model system to inform paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Bender, Amanda L. D.; Chitwood, Daniel H.; Bradley, Alexander S.

    2017-06-01

    Leaf wax n-alkanes are broadly used to reconstruct paleoenvironmental information. However, the utility of n-alkanes as a paleoenvironmental proxy may be modulated by the extent to which biological as well as environmental factors influence the structural and isotopic variability of leaf waxes. In paleoclimate applications, there is usually an implicit assumption that most variation of leaf wax traits through a time series can be attributed to environmental change and that biological sources of variability within plant communities are small. For example, changes in hydrology affect the δ2H of waxes via rainwater and the δ13C of leaf waxes by changing plant communities. We measured the degree of genetic control over δ13C variation in leaf waxes within closely related species with an experimental greenhouse growth study. We measured the proportion of variability in structural and isotopic leaf wax traits that is attributable to genetic variation using a set of 76 introgression lines (ILs) between two interfertile Solanum (tomato) species: S. lycopersicum cv M82 (hereafter cv M82) and S. pennellii. Leaves of S. pennellii, a wild desert tomato relative, produced significantly more iso-alkanes than cv M82, a domesticated tomato cultivar adapted to water-replete conditions. We report a methylation index to summarize the ratio of branched (iso- and anteiso-) to total alkanes. Between S. pennellii and cv M82, the iso-alkanes were found to be enriched in 13C by 1.2-1.4‰ over n-alkanes. The broad-sense heritability values (H2) of leaf wax traits describe the degree to which genetic variation contributes to variation of these traits. Variation of individual carbon isotopic compositions of alkanes were of low heritability (H2 = 0.13-0.19), suggesting that most variation in δ13C of leaf waxes in this study can be attributed to environmental variance. This supports the interpretation that variation in the δ13C of wax compounds recorded in sediments reflects

  7. Elucidation of electronic structure by the analysis of hyperfine interactions: The MnH A 7Π-X 7Sigma + (0,0) band

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.

    1991-08-01

    We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.

  8. 1H, 13C, and 15N backbone assignment and secondary structure of the receptor-binding domain of vascular endothelial growth factor.

    PubMed Central

    Fairbrother, W. J.; Champe, M. A.; Christinger, H. W.; Keyt, B. A.; Starovasnik, M. A.

    1997-01-01

    Nearly complete sequence-specific 1H, 13C, and 15N resonance assignments are reported for the backbone atoms of the receptor-binding domain of vascular endothelial growth factor (VEGF), a 23-kDa homodimeric protein that is a major regulator of both normal and pathological angiogenesis. The assignment strategy relied on the use of seven 3D triple-resonance experiments [HN(CO)CA, HNCA, HNCO, (HCA)CONH, HN(COCA)HA, HN(CA)HA, and CBCA-(CO)NH] and a 3D 15N-TOCSY-HSQC experiment recorded on a 0.5 mM (12 mg/mL) sample at 500 MHz, pH 7.0, 45 degrees C. Under these conditions, 15N relaxation data show that the protein has a rotational correlation time of 15.0 ns. Despite this unusually long correlation time, assignments were obtained for 94 of the 99 residues; 8 residues lack amide 1H and 15N assignments, presumably due to rapid exchange of the amide 1H with solvent under the experimental conditions used. The secondary structure of the protein was deduced from the chemical shift indices of the 1H alpha, 13C alpha, 13C beta, and 13CO nuclei, and from analysis of backbone NOEs observed in a 3D 15N-NOESY-HSQC spectrum. Two helices and a significant amount of beta-sheet structure were identified, in general agreement with the secondary structure found in a recently determined crystal structure of a similar VEGF construct [Muller YA et al., 1997, Proc Natl Acad Sci USA 94:7192-7197]. PMID:9336848

  9. Frequency tuning of the optical delay in cesium D{sub 2} line including hyperfine structure

    SciTech Connect

    Anderson, Monte D.; Perram, Glen P.

    2010-03-15

    The frequency dependence of optical delays in both the wings and core of the cesium 6 {sup 2}S{sub 1/2}-6 {sup 2}P{sub 3/2} transition have been observed and modeled with a Voigt line shape convolved with the six hyperfine components. Tunable delays of 0-37 ns are achieved by tuning the laser frequency through resonance at various vapor pressures of 0.15-5.28 mTorr.

  10. Dipolar-dephasing 13C NMR studies of decomposed wood and coalified xylem tissue: Evidence for chemical structural changes associated with defunctionalization of lignin structural units during coalification

    USGS Publications Warehouse

    Hatcher, P.G.

    1988-01-01

    A series of decomposed and coalified gymnosperm woods was examined by conventional solid-state 13C nuclear magnetic resonance (NMR) and by dipolar-dephasing NMR techniques. The results of these NMR studies for a histologically related series of samples provide clues as to the nature of codification reactions that lead to the defunctionalization of lignin-derived aromatic structures. These reactions sequentially involve the following: (1) loss of methoxyl carbons from guaiacyl structural units with replacement by hydroxyls and increased condensation; (2) loss of hydroxyls or aryl ethers with replacement by hydrogen as rank increases from lignin to high-volatile bituminous coal; (3) loss of alkyl groups with continued replacement by hydrogen. The dipolar-dephasing data show that the early stages of coalification in samples examined (lignin to lignite) involve a decreasing degree of protonation on aromatic rings and suggest that condensation is significant during coalification at this early stage. An increasing degree of protonation on aromatic rings is observed as the rank of the sample increases from lignite to anthracite.

  11. Solid state structure by X-ray and 13C CP/MAS NMR of new 5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarins

    NASA Astrophysics Data System (ADS)

    Ostrowska, Kinga; Maciejewska, Dorota; Dobrzycki, Łukasz; Socha, Pawel

    2016-05-01

    5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (1) and 6-acetyl-5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (2), structurally related, were synthesized using both conventional and microwave-assisted approach. An impact of acetyl groups on the molecular structure of coumarin derivatives has been examined. Crystals of 2 were investigated using single crystal and powder X-ray diffraction techniques. Compound 2 crystallizes forming two polymorphs (denoted as 2_1 and 2_2), both belonging to P21/c space group. Both polymorphs are comparably stable and can be formed simultaneously during crystallization process. The solid state structure was also analysed using the fully resolved 13C CP/MAS NMR. The double signals with the intensity ratio of about 1:1 which were observed in the 13C CP/MAS NMR spectrum of compound 1 must arise due to the presence of two conformers of 1. In contrast, NMR spectrum recorded for powder mixture of two polymorphs of compound 2 displays no signal splitting. This is related to structural similarities of molecules in both polymorphs.

  12. Structure and dynamics in the methylated exopyridine anthracene rotaxane: 13C, 1H and 19F solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Bourdon, X.; Leupold, J.; Mehring, M.; Thies, J.; Kidd, T.; Loontjens, T.

    2000-11-01

    We report on the structural and dynamic characterization by solid state NMR of a new rotaxane consisting of a thread molecule enclosed by a macrocycle, which can eventually shuttle or rotate along/around the thread. Different kinds of slow and fast motions are detected in the methylated exopyridine anthracene rotaxane by 1H, 13C and 19F relaxation time versus temperature measurements. Analysis of the proton decoupled and temperature dependent 19F NMR spectra gives some indications of the possible motions of the macrocycle and breaking of the hydrogen bond in the solid-state at temperatures above 360 K.

  13. Hyperfine-induced hysteretic funnel structure in spin blockaded tunneling current of coupled vertical quantum dots at low magnetic field

    SciTech Connect

    Leary, A.; Wicha, A.; Harack, B.; Coish, W. A.; Hilke, M.; Yu, G.; Gupta, J. A.; Payette, C.; Austing, D. G.

    2013-12-04

    We outline the properties of the hyperfine-induced funnel structure observed in the two-electron spin blockade region of a weakly coupled vertical double quantum dot device. Hysteretic steps in the leakage current occur due to dynamic nuclear polarization when either the bias voltage or the magnetic field is swept up and down. When the bias voltage is swept, an intriguing ∼3 mT wide cusp near 0 T appears in the down-sweep position, and when the magnetic field is swept, the current at 0 T can be switched from 'low' to 'high' as the bias is increased.

  14. Quantitative comparison of structure and dynamics of elastin following three isolation schemes by 13C solid state NMR and MALDI mass spectrometry.

    PubMed

    Papaioannou, A; Louis, M; Dhital, B; Ho, H P; Chang, E J; Boutis, G S

    2015-05-01

    Methods for isolating elastin from fat, collagen, and muscle, commonly used in the design of artificial elastin based biomaterials, rely on exposing tissue to harsh pH levels and temperatures that usually denature many proteins. At present, a quantitative measurement of the modifications to elastin following isolation from other extracellular matrix constituents has not been reported. Using magic angle spinning (13)C NMR spectroscopy and relaxation methodologies, we have measured the modification in structure and dynamics following three known purification protocols. Our experimental data reveal that the (13)C spectra of the hydrated samples appear remarkably similar across the various purification methods. Subtle differences in the half maximum widths were observed in the backbone carbonyl suggesting possible structural heterogeneity across the different methods of purification. Additionally, small differences in the relative signal intensities were observed between purified samples. Lyophilizing the samples results in a reduction of backbone motion and reveals additional differences across the purification methods studied. These differences were most notable in the alanine motifs indicating possible changes in cross-linking or structural rigidity. The measured correlation times of glycine and proline moieties are observed to also vary considerably across the different purification methods, which may be related to peptide bond cleavage. Lastly, the relative concentration of desmosine cross-links in the samples quantified by MALDI mass spectrometry is reported.

  15. Models of steroid binding based on the minimum deviation of structurally assigned 13C NMR spectra analysis (MiDSASA).

    PubMed

    Beger, Richard D; Harris, Stephen; Xie, Qian

    2004-01-01

    This paper develops a quantitative k-nearest neighbors modeling technique. The technique is used to demonstrate that a compound's biological binding activity to a receptor can be calculated from the minimum of the square root of the sum of squared deviations (SSSD) of a structurally assigned chemical shift on a template between the unknown compound to be predicted and a set of known compounds with known activities. When building models of biological activity, nonlinear relationships are built into the input training data. If a model is developed by selecting only compounds with minimum structurally assigned chemical shift deviations from the unknown compound, some of the nonlinear relationships can be removed. The smaller the total chemical shift deviation between a compound with known activity and another compound with unknown activity, the more likely it will have similar biological, chemical, and physical properties. This means that a model can be produced without rigorous statistics or neural networks. This technique is similar to structure-activity relationship (SAR) modeling, but instead of relying on substructure fragments to produce a model, this new model is based on minimum chemical shift differences on those substructure fragments. We refer to this method as minimum deviation of structurally assigned spectra analysis (MiDSASA) modeling. Modeling by the minimum deviation concept can be applied to other chemoinformatic data analyses such as metabolite concentrations in metabolic pathways for metabolomics research. A MiDSASA template model for 30 steroids binding the corticosterone binding globulin based on the activity factors of the two nearest compounds had a correlation of 0.88. A MiDSASA template model for 50 steroids binding the aromatse enzyme based on the average activity of the four nearest compounds had a correlation of 0.71.

  16. Structural characterization and molecular order of rodlike mesogens with three- and four-ring core by XRD and 13C NMR spectroscopy.

    PubMed

    Reddy, M Kesava; Reddy, K Subramanyam; Yoga, K; Prakash, M; Narasimhaswamy, T; Mandal, A B; Lobo, Nitin P; Ramanathan, K V; Rao, D S Shankar; Prasad, S Krishna

    2013-05-09

    Structural characterizations using XRD and (13)C NMR spectroscopy of two rodlike mesogens consisting of (i) three phenyl ring core with a polar cyano terminal and (ii) four phenyl ring core with flexible dodecyl terminal chain are presented. The three-ring-core mesogen with cyano terminal exhibits enantiotropic smectic A phase while the four-ring mesogen reveals polymesomorphism and shows enantiotropic nematic, smectic C, and tilted hexatic phases. The molecular organization in the three-ring mesogen is found to be partial bilayer smectic Ad type, and the interdigitation of the molecules in the neighboring layers is attributed to the presence of the polar terminal group. For the four-ring mesogen, the XRD results confirm the existence of the smectic C and the tilted hexatic mesophases. A thermal variation of the layer spacing across the smectic C phase followed by a discrete jump at the transition to the tilted hexatic phase is also observed. The tilt angles have been estimated to be about 45° in the smectic C phase and about 40° in tilted hexatic phase. (13)C NMR results indicate that in the mesophase the molecules are aligned parallel to the magnetic field. From the (13)C-(1)H dipolar couplings determined from the 2D experiments, the overall order parameter for the three-ring mesogen in its smectic A phase has been estimated to be 0.72 while values ranging from 0.88 to 0.44 have been obtained for the four-ring mesogen as it passes from the tilted hexatic to the nematic phase. The orientations of the different rings of the core unit with respect to each other and also with respect to the long axis of the molecule have also been obtained.

  17. Modification of structure and digestibility of chestnut starch upon cooking: a solid state (13)C CP MAS NMR and enzymatic degradation study.

    PubMed

    Pizzoferrato, L; Rotilio, G; Paci, M

    1999-10-01

    The modification of starch, which is the major component of the polysaccharide fraction of chestnuts (Castanea sativa), has been studied from the point of view of structure and digestibility to understand the modifications induced by cooking and, specifically, by the Maillard reaction. The study was carried out by enzymatic degradation kinetics, monitoring the glucose released upon time, and by solid state (13)C CP MAS NMR, which has the potential of monitoring the solid state phase changes occurring upon chemical modification due to the cooking process. Results obtained reveal that large changes are induced in the macromolecular structure of starchy materials and that these changes are correlated with changes of digestibility in terms of enzymatic degradation resistance. In the system studied, the extension of the Maillard reaction is not such as to exert a significant influence on structure and/or digestibility of chestnut starch.

  18. Dermostatin A and B: chromatography, structural and configurational studies using HPLC, CCD, 13C (125 MHz) and 1H (500 MHz) NMR spectroscopy.

    PubMed

    Swamy, M B; Sastry, M K; Nanda, R K

    1994-01-01

    HPLC of crude Dermostatin indicated presence of three pairs of components. Hence, attempts were made to purify Dermostatin. Purification of crude Dermostatin has been carried out using column chromatography and counter current distribution methods. Each of these fractions were tested for activity. The major fraction which showed greater activity was taken for the preparation of Dermostatin nona-acetate. Structural characterisation of Dermostatin nona-acetate has been carried out using UV-visible spectroscopy in different solvents to obtain the characteristic spectrum of a carbonyl conjugated hexaene at room temperature. Structural and configurational studies of Dermostatin nona-acetate using 500 MHz 1H NMR and 125 MHz 13C NMR has been used in the assignment of various functional groups in Dermostatin A and B as well as to provide corroboration to the earlier structural elucidation.

  19. Electronic spectroscopy of jet-cooled HCP+: molecular structure, phosphorus hyperfine structure, and Renner-Teller analysis.

    PubMed

    Sunahori, Fumie X; Zhang, Xiaopeng; Clouthier, Dennis J

    2007-09-14

    Laser-induced fluorescence spectra of jet-cooled HCP(+) and DCP(+) have been obtained with the pulsed discharge technique using HCPDCP and argon precursor mixtures. Transitions involving all of the excited state vibrations have been observed and a set of vibrational constants has been obtained. High-resolution spectra of the (2)Pi(32) components of the 0(0) (0) bands of both isotopomers have been recorded, and these spectra show resolved phosphorus hyperfine structure which allowed the determination of the excited state Fermi contact parameter. The B values were used to obtain the ground and excited state effective geometric parameters as r(0) (")(CH)=1.077(2) A, r(0) (")(CP)=1.6013(3) A, r(0) (')(CH)=1.082(2) A, and r(0) (')(CP)=1.5331(3) A. A Renner-Teller analysis of the ground state vibrational energy levels obtained from the literature was attempted. All of the observed levels of DCP(+) and the majority of those of HCP(+) were satisfactorily fitted with a standard Renner-Teller model, but three HCP(+) levels showed large systematic deviations which could not be accommodated by reassignments or improvements in the Fermi resonance Hamiltonian. Further improvements in the theory or in the experimental data will be needed to resolve this discrepancy.

  20. Microscopic structure of heterogeneous lipid-based formulations revealed by 13C high-resolution solid-state and 1H PFG NMR methods.

    PubMed

    Guillermo, Armel; Gerbaud, Guillaume; Bardet, Michel

    2010-03-01

    Lipid-based formulations such as lip glosses that are very alike on the base of their components may have significant differences in their expected macroscopic properties as cosmetics. To differentiate such formulations, high-resolution (13)C NMR was performed under magic angle spinning to investigate the properties at both molecular and microscopic levels. Temperature studies were carried out and no polymorphism in the solid domains could be evidenced after the thermal treatment performed for obtaining the commercial lip glosses. (13)C NMR spectra also showed that some waxes remain partially solubilized in the oils of formulations. The microscopic structure of the wax-oil liquid domains was worked out on the basis of restricted diffusion properties obtained with proton pulsed-field gradient NMR. Changing a single wax component, in two identical formulations, yields significant morphological differences. In the first one the liquid phase appears as a continuum whereas in the second one, the liquid phase is fractionated into micrometric droplets. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.

    2010-01-01

    We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.

  2. Analysis of the Rotational Structure in the High-Resolution Infrared Spectrum of trans-Hexatriene-1-13C1; a Semiexperimental Equilibrium Structure for the C6 Backbone for trans-Hexatriene

    SciTech Connect

    Craig, Norman C.; Tian, Hengfeng; Blake, Thomas A.

    2012-03-29

    trans-Hexatriene-1-13C1 (tHTE-1-13C1) has been synthesized, and its high-resolution (0.0015 cm-1) infrared spectrum has been recorded. The rotational structure in the C-type bands for v26 at 1011 cm-1 and v30 at 894 cm-1 has been analyzed. To the 1458 ground state combination differences from these bands, ground state rotational constants were fitted to a Watson-type Hamiltonian to give A0 = 0.8728202(9), B0 = 0.0435868(4), and C0 = 0.0415314(2) cm-1. Upper state rotational constants for the v30 band were also fitted. Predictions of the ground state rotational constants for t-HTE-1-13C1 from a B3LYP/cc-pVTZ model with scale factors based on the normal species were in excellent agreement with observations. Similar good agreement was found between predicted and observed ground state rotational constants for the three 13C1 isotopologues of cis-hexatriene (cHTE), as determined from microwave spectroscopy. Equilibrium rotational constants for tHTE and its three 13C1 isotopologues, of which two were predicted, were used to find a semiexperimental equilibrium structure for the C6 backbone of tHTE. This structure shows increased structural effects of pi-electron delocalization in comparison with butadiene.

  3. Food web structure of the epibenthic and infaunal invertebrates on the Catalan slope (NW Mediterranean): Evidence from δ 13C and δ 15N analysis

    NASA Astrophysics Data System (ADS)

    Fanelli, E.; Papiol, V.; Cartes, J. E.; Rumolo, P.; Brunet, C.; Sprovieri, M.

    2011-01-01

    The food-web structure of the epibenthic and infaunal invertebrates on the continental slope of the Catalan Sea (Balearic basin, NW Mediterranean) was investigated using carbon and nitrogen stable isotopes on a total of 34 species, and HPLC pigment analyses for three key species. Samples were collected close to Barcelona (NE Iberian Peninsula), between 650 and 800 m depth and between February 2007 and February 2008. Mean δ 13C values ranged from -21.0‰ (small Calocaris macandreae and Amphipholis squamata) to -14.5‰ ( Sipunculus norvegicus). Values of δ 15N ranged from 4.0‰ ( A. squamata) to 12.1‰ ( Molpadia musculus). The stable isotope ratios of benthic fauna displayed a continuum of values (e.g. δ 15N range of 8‰), confirming a wide spectrum of feeding strategies (from active suspension feeders to predators) and complex food webs. According to the available information on diets of benthic fauna, the lowest values were found for surface deposit feeders (small C. macandrae and the two ophiuroids A. squamata and Amphiura chiajei) and active suspension feeders ( Abra longicallus and Scalpellum scalpellum) feeding on different sizes of particulate organic matter (POM), among which small particles may exhibit lower δ 15N. High annual mean δ 15N values were found among sub-surface deposit feeders, exploiting refractory or frequently recycled organic matter that is enriched in δ 15N. Carnivorous polychaetes ( Nephtys spp., Oenonidae and Polynoidae) and large decapods ( Geryon longipes and Paromola cuvieri) also displayed high δ 15N values. δ 13C ranges were particularly wide among surface deposit feeders (ranging from -21.0‰ to -16.4‰), suggesting exploitation of POM of both terrigenous and oceanic origins. Correlation between δ 13C and δ 15N was generally weak, indicating multiple carbon sources, likely due to the consumption of different kinds of sinking particles (e.g. marine snow, phytodetritus, etc.), sedimented and frequently recycled POM

  4. Where Millimeter Wave Spectra are Sensitive to Small Electric Fields: High Rydberg States of Xenon and Their Hyperfine Structures

    NASA Astrophysics Data System (ADS)

    Schäfer, Martin; Raunhardt, Matthias; Merkt, Frédéric

    2009-06-01

    In the range 0-45 cm^{-1} below the ionization limit, the separation between adjacent electronic states (Rydberg states with principal quantum number n>50) of atoms and molecules is smaller than 2 cm^{-1}. In order to resolve the fine or hyperfine structure of these states, it is necessary to combine high-resolution vacuum ultraviolet (VUV) laser radiation, which is required to access the Rydberg states from the ground state, with millimeter wave radiation. Such double-resonance experiments have been used to study the hyperfine structure of high Rydberg states of ^{83}Kr, H_2 or D_2. Millimeter wave transitions (240-350 GHz) between nℓ (52≤ n≤64, ℓ≤3) Rydberg states of different xenon isotopes were detected by pulsed field ionization followed by mass-selective detection of the cations. Because of the high polarizability of high-n Rydberg states (∝ n^7, ˜10^4 MHz cm^{2} V^{-2} for n≈ 50), it is necessary to reduce the electric stray fields to values of the order of mV/cm (or less) in order to minimize the (quadratic) Stark shift of the millimeter wave transitions. Some p and d Rydberg states of Xe are nearly degenerate and efficiently mixed by small stray fields, making it possible to observe transitions forbidden by the Δℓ=±1 selection rule or transitions exhibiting a linear Stark effect, which is typical for the degenerate high-ℓ Rydberg states. Multichannel quantum defect theory (MQDT) was used to analyze the millimeter wave data and to determine the hyperfine structures of the ^2P_{3/2} ground electronic states of ^{129}Xe^+ and ^{131}Xe^+. C. Fabre, P. Goy, S. Haroche, J. Phys. B: Atom. Mol. Phys. 10, L183-189 (1977). F. Merkt, A. Osterwalder, Int. Rev. Phys. Chem. 21, 385-403 (2002). M. Schäfer, M. Andrist, H. Schmutz, F. Lewen, G. Winnewisser, F. Merkt, J. Phys. B: At. Mol. Opt. Phys. 39, 831-845 (2006) M. Schäfer, F. Merkt, Phys. Rev. A, 74, 062506 (2006). A. Osterwalder, A. Wüest, F. Merkt, Ch. Jungen, J. Chem. Phys., 121, 11810

  5. 1H, 13C and 15N resonance assignments and secondary structure analysis of CmPI-II, a serine protease inhibitor isolated from marine snail Cenchritis muricatus.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Alonso-del-Rivero Antigua, Maday; Pires, José Ricardo

    2016-04-01

    A protease inhibitor (CmPI-II) (UNIPROT: IPK2_CENMR) from the marine mollusc Cenchritis muricatus, has been isolated and characterized. It is the first member of a new group (group 3) of non-classical Kazal-type inhibitors. CmPI-II is a tight-binding inhibitor of serine proteases: trypsin, human neutrophil elastase (HNE), subtilisin A and pancreatic elastase. This specificity is exceptional in the members of Kazal-type inhibitor family. Several models of three-dimensional structure of CmPI-II have been constructed by homology with other inhibitors of the family but its structure has not yet been solved experimentally. Here we report the (1)H, (15)N and (13)C chemical shift assignments of CmPI-II as basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified three β-strands β1: residues 14-19, β2: 23-35 and β3: 43-45 and one helix α1: 28-37 arranged in the sequential order β1-β2-α1-β3. These secondary structure elements suggest that CmPI-II adopts the typical scaffold of a Kazal-type inhibitor.

  6. (1)H, (13)C and (15)N resonance assignments and secondary structure analysis of translation initiation factor 1 from Pseudomonas aeruginosa.

    PubMed

    Bernal, Alejandra; Hu, Yanmei; Palmer, Stephanie O; Silva, Aaron; Bullard, James; Zhang, Yonghong

    2016-10-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen and a primary cause of infection in humans. P. aeruginosa can acquire resistance against multiple groups of antimicrobial agents, including β-lactams, aminoglycosides and fluoroquinolones, and multidrug resistance is increasing in this organism which makes treatment of the infections difficult and expensive. This has led to the unmet need for discovery of new compounds distinctly different from present antimicrobials. Protein synthesis is an essential metabolic process and a validated target for the development of new antibiotics. Translation initiation factor 1 from P. aeruginosa (Pa-IF1) is the smallest of the three initiation factors that acts to establish the 30S initiation complex to initiate translation during protein biosynthesis, and its structure is unknown. Here we report the (1)H, (13)C and (15)N chemical shift assignments of Pa-IF1 as the basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified five β-strands with an unusually extended β-strand at the C-terminal end of the protein and one short α-helix arranged in the sequential order β1-β2-β3-α1-β4-β5. This is further supported by (15)N-{(1)H} hetero NOEs. These secondary structure elements suggest the Pa-IF1 adopts the typical β-barrel structure and is composed of an oligomer-binding motif.

  7. Hyperfine structures of the 2 (3)Sigma(g) (+), 3 (3)Sigma(g) (+), and 4 (3)Sigma(g) (+) states of Na(2).

    PubMed

    Liu, Yaoming; Li, Li; Lazarov, Guenadiy; Lazoudis, Angelos; Lyyra, A Marjatta; Field, Robert W

    2004-09-22

    The hyperfine structures of the 2 (3)Sigma(g) (+), 3 (3)Sigma(g) (+), and 4 (3)Sigma(g) (+) states of Na(2) have been resolved with sub-Doppler continuous wave perturbation facilitated optical-optical double resonance spectroscopy via A (1)Sigma(u) (+) approximately b (3)Pi(u) mixed intermediate levels. The hyperfine patterns of these three states are similar. The hyperfine splittings of the low rotational levels are all very close to the case b(betaS) limit. As the rotational quantum number increases, the hyperfine splittings become more complicated and the coupling cases become intermediate between cases b(betaS) and b(beta J) due to spin-rotation interaction. We present a detailed analysis of the hyperfine structures of these three (3)Sigma(g) (+) states, employing both case b(betaS) and b(beta J) coupling basis sets. The results show that the hyperfine splittings of the (3)Sigma(g) (+) states are mainly due to the Fermi-contact interaction. The Fermi contact constants for the two d sigma Rydberg states, the 2 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+), are 245+/-5 MHz and 225+/-5 MHz, respectively, while the Fermi contact constant of the s sigma 3 (3)Sigma(g) (+) Rydberg state is 210+/-5 MHz. The diagonal spin-spin and spin-rotation constants, and nuclear spin-electronic spin dipolar interaction parameters of the 3 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+) states are also obtained.

  8. Structural characterisation of macromolecular organic material in air particulate matter using Py-GC-MS and solid state 13C-NMR.

    PubMed

    Subbalakshmi, Y; Patti, A F; Lee, G S; Hooper, M A

    2000-12-01

    Organic air particulate matter was analysed by applying the techniques of Py-GC-MS (pyrolysis-gas chromatography-mass spectrometry) and solid state 13C-NMR (nuclear magnetic resonance). Particles dislodged from air particulate filters and humic acid extracted from these filters were studied for structural components. The structural components of the air particles and extracted humic acid consisted of compounds originating from biomacromolecules, namely, lignin, carbohydrates, protein and lipids. The main components identified for each class included: (1) methoxyphenols originating from lignin; (2) furans, aldehydes and ketones from carbohydrates; (3) pyrrole, indoles from protein; and (4) many hydrocarbons from lipid structures. Single ion monitoring (SIM) and tetramethyl ammonium hydroxide (TMAH) methylation were utilised for detection of aliphatic hydrocarbons and acidic components, respectively. Hydrocarbons ranging from C9 to C28 were detected by SIM analysis, while aliphatic acids ranged from C9 to C18. The majority of components analysed directly in the air particles were similar to those from the humic acid extracts. Many of the structural components of air particles were typical of humic substances of soil and aqueous systems and these were attributed to both biogenic and anthropogenic sources.

  9. Two-dimensional IR spectroscopy and segmental 13C labeling reveals the domain structure of human γD-crystallin amyloid fibrils

    PubMed Central

    Moran, Sean D.; Woys, Ann Marie; Buchanan, Lauren E.; Bixby, Eli; Decatur, Sean M.; Zanni, Martin T.

    2012-01-01

    The structural eye lens protein γD-crystallin is a major component of cataracts, but its conformation when aggregated is unknown. Using expressed protein ligation, we uniformly 13C labeled one of the two Greek key domains so that they are individually resolved in two-dimensional (2D) IR spectra for structural and kinetic analysis. Upon acid-induced amyloid fibril formation, the 2D IR spectra reveal that the C-terminal domain forms amyloid β-sheets, whereas the N-terminal domain becomes extremely disordered but lies in close proximity to the β-sheets. Two-dimensional IR kinetics experiments show that fibril nucleation and extension occur exclusively in the C-terminal domain. These results are unexpected because the N-terminal domain is less stable in the monomer form. Isotope dilution experiments reveal that each C-terminal domain contributes two or fewer adjacent β-strands to each β-sheet. From these observations, we propose an initial structural model for γD-crystallin amyloid fibrils. Because only 1 μg of protein is required for a 2D IR spectrum, even poorly expressing proteins can be studied under many conditions using this approach. Thus, we believe that 2D IR and protein ligation will be useful for structural and kinetic studies of many protein systems for which IR spectroscopy can be straightforwardly applied, such as membrane and amyloidogenic proteins. PMID:22328156

  10. Two-dimensional IR spectroscopy and segmental 13C labeling reveals the domain structure of human γD-crystallin amyloid fibrils.

    PubMed

    Moran, Sean D; Woys, Ann Marie; Buchanan, Lauren E; Bixby, Eli; Decatur, Sean M; Zanni, Martin T

    2012-02-28

    The structural eye lens protein γD-crystallin is a major component of cataracts, but its conformation when aggregated is unknown. Using expressed protein ligation, we uniformly (13)C labeled one of the two Greek key domains so that they are individually resolved in two-dimensional (2D) IR spectra for structural and kinetic analysis. Upon acid-induced amyloid fibril formation, the 2D IR spectra reveal that the C-terminal domain forms amyloid β-sheets, whereas the N-terminal domain becomes extremely disordered but lies in close proximity to the β-sheets. Two-dimensional IR kinetics experiments show that fibril nucleation and extension occur exclusively in the C-terminal domain. These results are unexpected because the N-terminal domain is less stable in the monomer form. Isotope dilution experiments reveal that each C-terminal domain contributes two or fewer adjacent β-strands to each β-sheet. From these observations, we propose an initial structural model for γD-crystallin amyloid fibrils. Because only 1 μg of protein is required for a 2D IR spectrum, even poorly expressing proteins can be studied under many conditions using this approach. Thus, we believe that 2D IR and protein ligation will be useful for structural and kinetic studies of many protein systems for which IR spectroscopy can be straightforwardly applied, such as membrane and amyloidogenic proteins.

  11. New insights into the structure and chemistry of Titan's tholins via 13C and 15N solid state nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Derenne, S.; Coelho, C.; Anquetil, C.; Szopa, C.; Quirico, E.; Bonhomme, C.

    2012-09-01

    Titan, the largest moon of Saturn, is characterized by a dense atmosphere, mainly composed of N2 (ca. 97 %) and CH4 (ca. 2 %). In the upper atmosphere, methane and nitrogen molecules undergo dissociation under the influence of solar UV radiation and electron impacts, followed by recombination reactions leading to a large variety of organic molecules. Some of these compounds form a thick, orange-coloured haze composed of solid organic aerosols that subsequently fall to the surface or remain in suspension in the atmosphere. To gain insight into the chemical composition and structural nature of these complex organic compounds, analogous materials, termed Titan's tholins, are produced in the laboratory, in particular using plasma discharge in gaseous N2 - CH4 mixtures with similar proportions as in Titan's atmosphere. Titan's tholins have been analysed using a wide variety of techniques which provided a wealth of information about potential functional groups and structural building blocks present within the tholin samples. Taken together, the results converge on a structure based on a CxHyNz chemistry that can contain a variety of C-C, C-N, N-H etc single or multiple bonds. It is now necessary to build on that information to refine the chemical and structural models for the Titan's tholins. Here we used solid state NMR techniques to investigate the carbon and nitrogen bonding environments in a 13C- and 15Nenriched sample.

  12. Re-appraisal of the hyperfine-structure constants in YbF: relativistic configuration interaction approach

    NASA Astrophysics Data System (ADS)

    Naik, Deepali; Sikarwar, Manu; Nayak, Malaya K.; Ghosh, Swapan K.

    2014-11-01

    Ab initio calculation of the spin rotational Hamiltonian parameters A and Ad has been performed using a fully-relativistic restricted active space (RAS) configuration interaction (CI) method for the YbF molecule. These calculations lead to the results for the hyperfine-structure constants as A = 6725 MHz, and Ad = 86 MHz, which agree favorably well with some previous correlated calculations and experimental findings. The convergence behavior of the parameters A and Ad with respect to the size of the active space and basis set has been tested satisfactorily for the reliability of the present results (within an uncertainty of ˜7%). Further, we believe that the theoretical estimates of some symmetry violating interaction constants like Wd can also be predicted with similar accuracy using the RASCI method.

  13. Trace analysis of rubidium hyperfine structure in a flame atomizer using sub-Doppler laser wave-mixing spectroscopy.

    PubMed

    Weed, Kenneth M; Tong, William G

    2003-12-01

    Nonlinear laser wave mixing is a versatile spectroscopic method for trace elemental analysis at high spectral resolution. Sub-Doppler spectral resolution allows isotope and hyperfine structure measurements of some of the elements even when using a room-pressure analytical flame (i.e., sub-Doppler but Lorentzian broadened spectra). A non-planar wave-mixing optical setup offers some advantages as compared to the conventional planar wave-mixing setup including better signal collection efficiency and easier optical alignment. Using our absorption-based wave mixing, a detection limit of 0.05 ng/mL (i.e., 50 parts-per-trillion) is reported for Rb in an air/acetylene flame, while still maintaining sub-Doppler spectral resolution for the infrared 780.0-nm Rb transition line.

  14. Relativistically corrected hyperfine structure constants calculated with the regular approximation applied to correlation corrected ab initio theory

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2004-09-01

    The infinite-order regular approximation (IORA) and IORA with modified metric (IORAmm) is used to develop an algorithm for calculating relativistically corrected isotropic hyperfine structure (HFS) constants. The new method is applied to the calculation of alkali atoms Li-Fr, coinage metal atoms Cu, Ag, and Au, the Hg+ radical ion, and the mercury containing radicals HgH, HgCH3, HgCN, and HgF. By stepwise improvement of the level of theory from Hartree-Fock to second-order Møller-Plesset theory and to quadratic configuration interaction theory with single and double excitations, isotropic HFS constants of high accuracy were obtained for atoms and for molecular radicals. The importance of relativistic corrections is demonstrated.

  15. 1H, 13C NMR spectral and single crystal structural studies of toxaphene congeners. Quantum chemical calculations for preferred conformers of 2,5- endo,6- exo,8,9,9,10,10-octachloro-2-bornene and their DFT/GIAO 13C chemical shifts

    NASA Astrophysics Data System (ADS)

    Laihia, K.; Valkonen, A.; Kolehmainen, E.; Suontamo, R.; Nissinen, M.; Nikiforov, V.; Selivanov, S.

    2005-11-01

    The 1H and 13C NMR chemical shifts for six toxaphene congeners: 2- exo,3- endo,6- exo,8,9,10-hexachloro- ( 1), 2- exo,3- endo,5- exo,9,9,10,10-heptachloro- ( 2), 2- exo,3- endo,6- exo,8,9,10,10-heptachloro- ( 3), 2- exo,3- endo,5- exo,6- endo,8,9,10-heptachloro- ( 4), 2- exo,3- endo,5- exo,6- endo,8,9,9,10-octachlorobornane ( 5) and 2,5- endo,6- exo,8,9,9,10,10-octachloro-2-bornene ( 6) are reported. Their chemical shift assignments have been obtained by means of Pulsed Field Gradient (PFG) Double Quantum Filtered (DQF) 1H, 1H correlation spectroscopy (COSY), PFG 1H, 13C Heteronuclear Multiple Quantum Coherence (HMQC) and PFG 1H, 13C Heteronuclear Multiple Bond Correlation (HMBC) experiments. A single crystal X-ray structural analysis was made for compounds 1, 3, 4 and 6. The prevalences of two octachlorobornene rotamers ( 6 a, 6 b) were elucidated by ab initio MO method and single point DFT/GIAO calculations for 13C chemical shifts. Theoretical calculations proved that the single crystal structure of 6 corresponds its most stable conformer in solution.

  16. Hidden sector hydrogen as dark matter: Small-scale structure formation predictions and the importance of hyperfine interactions

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Kaplinghat, Manoj; Kwa, Anna; Peter, Annika H. G.

    2016-12-01

    We study the atomic physics and the astrophysical implications of a model in which the dark matter is the analog of hydrogen in a secluded sector. The self-interactions between dark matter particles include both elastic scatterings as well as inelastic processes due to a hyperfine transition. The self-interaction cross sections are computed by numerically solving the coupled Schrödinger equations for this system. We show that these self-interactions exhibit the right velocity dependence to explain the low dark matter density cores seen in small galaxies while being consistent with all constraints from observations of clusters of galaxies. For a viable solution, the dark hydrogen mass has to be in the 10-100 GeV range and the dark fine-structure constant has to be larger than 0.01. This range of model parameters requires the existence of a dark matter-antimatter asymmetry in the early universe to set the relic abundance of dark matter. For this range of parameters, we show that significant cooling losses may occur due to inelastic excitations to the hyperfine state and subsequent decays, with implications for the evolution of low-mass halos and the early growth of supermassive black holes. Cooling from excitations to higher n levels of dark hydrogen and subsequent decays is possible at the cluster scale, with a strong dependence on halo mass. Finally, we show that the minimum halo mass is in the range of 1 03.5 to 1 07M⊙ for the viable regions of parameter space, significantly larger than the typical predictions for weakly interacting dark matter models. This pattern of observables in cosmological structure formation is unique to this model, making it possible to rule in or rule out hidden sector hydrogen as a viable dark matter model.

  17. Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    EPA Science Inventory

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  18. Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    EPA Science Inventory

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  19. Trophic structure of two intertidal Fucus spp. communities along a vertical gradient: Similarity and seasonal stability evidenced with δ13C and δ15N

    NASA Astrophysics Data System (ADS)

    Bordeyne, François; Davoult, Dominique; Migné, Aline; Bertaud du Chazaud, Euriell; Leroux, Cédric; Riera, Pascal

    2017-02-01

    Intertidal communities dominated by canopy-forming macroalgae typically exhibit some differences in their specific composition that are related to their location along the emersion gradient of rocky shores. Tidal level is also expected to affect resource availability for both primary producers and consumers, potentially leading to divergence in the trophic structure of these communities. Furthermore, in temperate areas, the alternation of seasons has usually a large influence on the primary production and on life-history traits of numerous species, which may induce some changes in the food webs of intertidal communities. Thus, this study aimed to investigate the trophic structure of two intertidal communities located at different tidal levels, over several seasons. Focusing on the dominant species of primary producers and consumers, the food webs of the Fucus vesiculosus Linnaeus and Fucus serratus Linnaeus communities were studied during four successive seasons, using an isotopic (δ13C and δ15N) approach. Due to the diversity of primary producers and consumers living in these two communities, food webs were relatively complex and composed of several trophic pathways. These food webs remained rather conserved over the successive seasons, even though some variability in isotopic signature and in diet has been highlighted for several species. Finally, despite their location at different tidal levels, the two Fucus spp. communities exhibited nearly the same trophic structure, with common consumer species displaying similar isotopic signature in both of them.

  20. LETTER TO THE EDITOR: ? hyperfine structure of the ? interface defect in thermal ?

    NASA Astrophysics Data System (ADS)

    Stesmans, A.; Nouwen, B.; Afanas'ev, V. V.

    1998-07-01

    The observation of the electron spin resonance hyperfine (hf) spectra associated with the unpaired electron of the 0953-8984/10/27/004/img4 interface defect in thermal 0953-8984/10/27/004/img5 shows that the dominant interaction arises from a single 0953-8984/10/27/004/img6 isotope. The hf tensor displays weakly monoclinic I (nearly axial) symmetry, with the principal axes of the g and hf tensors coinciding. A molecular orbital analysis indicates that the unpaired electron resides for 0953-8984/10/27/004/img7 in a single unpaired Si hybrid orbital, found to be 14% s-like and 86% p-like, with the p-orbital markedly pointing closely along a 0953-8984/10/27/004/img8 direction at 0953-8984/10/27/004/img9 with the [100] interface normal. With oxygen not constituting an immediate part of the defect, the results firmly establish the key part of the 0953-8984/10/27/004/img4 defect as a tilted (0953-8984/10/27/004/img11 about 0953-8984/10/27/004/img12) 0953-8984/10/27/004/img13 unit.

  1. Calculation of the {sup 13}C NMR chemical shift of ether linkages in lignin derived geopolymers: Constraints on the preservation of lignin primary structure with diagenesis

    SciTech Connect

    Cody, G.D.; Saghi-Szabo, G.

    1999-01-01

    Methodology for the calculation of {sup 13}C NMR shielding on molecular organic fragments, representative of monomers in a type 3 kerogen, is presented. Geometry optimization of each molecular fragment was carried out using Density Functional Theory employing the generalized gradient approximation. NMR shieldings were calculated using the Individual Gauge for Localized orbital Method. Convincing agreement was obtained between calculated and experimentally derived isotropic chemical shielding values over a broad frequency range. Shielding calculations employing the localized orbitals/local origin method resulted in nearly identical results. NMR chemical shift static powder patterns also exhibit excellent agreement with experimental values. These quantum mechanical calculations were applied to determine the extent of lignin primary structure preservation with diagenesis. Specifically, the calculations were used to assess whether inhomogeneous spectral broadening due to both functional group variation and local configurational variability may inhibit the detection of otherwise significant quantities of alkyl-aryl ethers in lignin derived geopolymers. Determination of the chemical-shielding tensor principle axis values reveals a strong correlation between anisotropy and asymmetry with local configuration effects such as dihedral rotation, phenyl group rotation, and bond angle variation. These results indicate that a range of 9 ppm in the isotropic chemical shift can be ascribed to local configuration. Consequently, an upper limit of 5% alkyl-aryl-linkages may go undetected using NMR spectroscopy on lignin-derived geopolymers at the liginite-sub-bituminous transition. It is concluded that the primary structure of lignin does not persist in kerogens even at relatively low thermal maturities.

  2. Calculation of the 13C NMR chemical shift of ether linkages in lignin derived geopolymers: . Constraints on the preservation of lignin primary structure with diagenesis

    NASA Astrophysics Data System (ADS)

    Cody, G. D.; Sághi-Szabó, G.

    1999-01-01

    Methodology for the calculation of 13C NMR shieldings on molecular organic fragments, representative of monomers in a type III kerogen, is presented. Geometry optimization of each molecular fragment was carried out using Density Functional Theory employing the generalized gradient approximation. NMR shieldings were calculated using the Individual Gauge for Localized Orbital Method. Convincing agreement was obtained between calculated and experimentally derived isotropic chemical shielding values over a broad frequency range. Shielding calculations employing the localized orbitals/local origin method resulted in nearly identical results. NMR chemical shift static powder patterns also exhibit excellent agreement with experimental values. These quantum mechanical calculations were applied to determine the extent of lignin primary structure preservation with diagenesis. Specifically, the calculations were used to assess whether inhomogeneous spectral broadening due to both functional group variation and local configurational variability may inhibit the detection of otherwise significant quantities of alkyl-aryl ethers in lignin derived geopolymers. Determination of the chemical-shielding tensor principle axis values reveals a strong correlation between anisotropy and asymmetry with local configuration effects such as dihedral rotation, phenyl group rotation, and bond angle variation. These results indicate that a range of 9 ppm in the isotropic chemical shift can be ascribed to local configuration. Consequently, an upper limit of 5% alkyl-aryl-linkages may go undetected using NMR spectroscopy on lignin-derived geopolymers at the liginite-sub-bituminous transition. It is concluded that the primary structure of lignin does not persist in kerogens even at relatively low thermal maturities.

  3. 1H, 13C and 15N resonance assignments and second structure information of Fag s 1: Fagales allergen from Fagus sylvatica.

    PubMed

    Moraes, A H; Asam, C; Batista, A; Almeida, F C L; Wallner, M; Ferreira, F; Valente, A P

    2016-04-01

    Fagales allergens belonging to the Bet v 1 family account responsible for the majority of spring pollinosis in the temperate climate zones in the Northern hemisphere. Among them, Fag s 1 from beech pollen is an important trigger of Fagales pollen associated allergic reactions. The protein shares high similarity with birch pollen Bet v 1, the best-characterized member of this allergen family. Of note, recent work on Bet v 1 and its homologues found in Fagales pollen demonstrated that not all allergenic members of this family have the capacity to induce allergic sensitization. Fag s 1 was shown to bind pre-existing IgE antibodies most likely primarily directed against other members of this multi-allergen family. Therefore, it is especially interesting to compare the structures of Bet v 1-like pollen allergens, which have the potential to induce allergic sensitization with allergens that are mainly cross-reactive. This in the end will help to identify allergy eliciting molecular pattern on Bet v 1-like allergens. In this work, we report the (1)H, (15)N and (13)C NMR assignment of beech pollen Fag s 1 as well as the secondary structure information based on backbone chemical shifts.

  4. Optimization of {sup 1}H and {sup 13}C NMR methods for structural characterization of acetone and pyridine soluble/insoluble fractions of a coal tar pitch

    SciTech Connect

    Trevor J. Morgan; Anthe George; David B. Davis; Alan A. Herod; Rafael Kandiyoti

    2008-05-15

    {sup 1}H and {sup 13}C high-resolution liquid-state NMR methods were used for the quantitative characterization of different molecular weight fractions of a coal tar pitch (CTP). Three fractions were studied: pitch acetone solubles (PAS), pitch pyridine soluble-acetone insolubles (PPS), and pitch pyridine insolubles (PPI). Standard liquid-state NMR methods were modified and calibrated for use with undeuterated quinoline or undeuterated 1-methyl-2-pyrrolidinone (NMP) as the solvent. This made it possible to calculate the average structural parameters for the higher molecular weight (MW) fractions of the coal tar pitch. Quantitative comparisons of structural differences between the solubility-separated fractions of the pitch are reported. The aromaticity and the average number of aromatic rings per polynuclear aromatic structure were both found to decrease with increasing solubility. Similarly, pericondensed and all other quaternary carbon species were found to decrease with increasing solubility. This suggests that 'continental' type structures become more dominant as the solvent solubility of these coal derived fractions diminishes. The estimated average number of aromatic rings ranged from 1 to 2 rings in the PAS fraction, 4 to 21 rings in the PPS fraction, and 11 to 210 rings in the PPI fraction. These ring-numbers were directly related to the number average molecular mass (M{sub n}) assigned to the particular fraction in the average structural parameter (ASP) calculations. The lower-limit of the M{sub n} values was derived from the ASP calculations as 200, 450, and 6200 u for the PAS, PPS, and PPI fractions, respectively. 66 refs., 7 figs., 15 tabs.

  5. 1H, 13C and 15N resonance assignments and secondary structure analysis of translation initiation factor 1 from Pseudomonas aeruginosa

    PubMed Central

    Bernal, Alejandra; Hu, Yanmei; Palmer, Stephanie O.; Silva, Aaron; Bullard, James; Zhang, Yonghong

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen and a primary cause of infection in humans. P. aeruginosa can acquire resistance against multiple groups of antimicrobial agents, including β-lactams, aminoglycosides and fluoroquinolones, and multidrug resistance is increasing in this organism which makes treatment of the infections difficult and expensive. This has led to the unmet need for discovery of new compounds distinctly different from present antimicrobials. Protein synthesis is an essential metabolic process and a validated target for the development of new antibiotics. Translation initiation factor 1 from P. aeruginosa (Pa-IF1) is the smallest of the three initiation factors that acts to establish the 30S initiation complex to initiate translation during protein biosynthesis, and its structure is unknown. Here we report the 1H, 13C and 15N chemical shift assignments of Pa-IF1 as the basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified five β-strands with an unusually extended β-strand at the C-terminal end of the protein and one short α-helix arranged in the sequential order β1–β2–β3–α1–β4–β5. This is further supported by 15N–{1H} hetero NOEs. These secondary structure elements suggest the Pa-IF1 adopts the typical β-barrel structure and is composed of an oligomer-binding motif. PMID:26983940

  6. Electric dipole moment of 13C

    NASA Astrophysics Data System (ADS)

    Yamanaka, Nodoka; Yamada, Taiichi; Hiyama, Emiko; Funaki, Yasuro

    2017-06-01

    We calculate for the first time the electric dipole moment (EDM) of 13C generated by the isovector charge conjugation-parity (CP)-odd pion exchange nuclear force in the α -cluster model, which describes well the structures of low-lying states of the 13C nucleus. The linear dependence of the EDM of 13C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be d13C=-0.33 dn-0.0020 G¯π(1 ) . The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the 1 /21- state and the opposite-parity (1 /2+ ) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of 13C in determining the new physics beyond the standard model.

  7. Structure and Metabolic-Flow Analysis of Molecular Complexity in a (13) C-Labeled Tree by 2D and 3D NMR.

    PubMed

    Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Kikuchi, Jun

    2016-05-10

    Improved signal identification for biological small molecules (BSMs) in a mixture was demonstrated by using multidimensional NMR on samples from (13) C-enriched Rhododendron japonicum (59.5 atom%) cultivated in air containing (13) C-labeled carbon dioxide for 14 weeks. The resonance assignment of 386 carbon atoms and 380 hydrogen atoms in the mixture was achieved. 42 BSMs, including eight that were unlisted in the spectral databases, were identified. Comparisons between the experimental values and the (13) C chemical shift values calculated by density functional theory supported the identifications of unlisted BSMs. Tracing the (13) C/(12) C ratio by multidimensional NMR spectra revealed faster and slower turnover ratios of BSMs involved in central metabolism and those categorized as secondary metabolites, respectively. The identification of BSMs and subsequent flow analysis provided insight into the metabolic systems of the plant.

  8. Photo-CIDNP 13C magic angle spinning NMR on bacterial reaction centres: exploring the electronic structure of the special pair and its surroundings.

    PubMed

    Matysik, J; Schulten, E; Alia; Gast, P; Raap, J; Lugtenburg, J; Hoff, A J; de Groot, H J

    2001-08-01

    Photochemically induced dynamic nuclear polarisation (photo-CIDNP) in intact bacterial reaction centres has been observed by 13C-solid state NMR under continuous illumination with white light. Strong intensity enhancement of 13C NMR signals of the aromatic rings allows probing the electronic ground state of the two BChl cofactors of the special pair at the molecular scale with atomic selectivity. Differences between the two BChl cofactors are discussed. Several aliphatic 13C atoms of cofactors, as well as 13C atoms of the imidazole ring of histidine residue(s), show nuclear-spin polarisation to the same extent as the aromatic nuclei of the cofactors. Mechanisms and applications of polarisation transfer are discussed.

  9. Proton-detected 3D (1)H/(13)C/(1)H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz.

    PubMed

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-28

    A proton-detected 3D (1)H/(13)C/(1)H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of (13)C-(1)H connectivities, and proximities of (13)C-(1)H and (1)H-(1)H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including (1)H-(1)H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) (1)H/(1)H and 2D (13)C/(1)H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of (1)H-(1)H proximity and (13)C-(1)H connectivity. In addition, the 2D (F1/F2) (1)H/(13)C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of (1)H-(1)H dipolar couplings, enables the measurement of proximities between (13)C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of (1)H-(1)H-(13)C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H2O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  10. Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-01

    A proton-detected 3D 1H/13C/1H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of 13C-1H connectivities, and proximities of 13C-1H and 1H-1H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including 1H-1H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) 1H/1H and 2D 13C/1H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of 1H-1H proximity and 13C-1H connectivity. In addition, the 2D (F1/F2) 1H/13C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of 1H-1H dipolar couplings, enables the measurement of proximities between 13C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of 1H-1H-13C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ṡ H2O ṡ HCl demonstrate the efficiency of the 3D experiment.

  11. Complexity of the food web structure of the Ascophyllum nodosum zone evidenced by a δ13C and δ15N study

    NASA Astrophysics Data System (ADS)

    Golléty, Claire; Riera, Pascal; Davoult, Dominique

    2010-10-01

    Rocky shores dominated by canopy-forming macroalgae are characterized by complex communities making it difficult to assess whether the most abundant primary producers are at the base of the food web. This difficulty is exacerbated by the seasonal- and regional-scale variations of environmental and biotic factors that can affect the main trophic pathways. The food web structure of the Ascophyllum nodosum zone was studied during three seasons and at two sites separated by several 100s of kilometers by measuring the δ13C and δ15N of the major food sources and the dominant consumers of the zone. Despite the variability in isotopic compositions, both sites underwent similar significant seasonal variations. The main primary producers of the zone, A.nodosum, Fucus vesiculosus and Fucus serratus, were not at the base of the main trophic pathway but part of the diverse number of basal resources supporting the food web. The use of community-wide metric indices allowed further defining the food web structure of the A. nodosum zone as one characterized by trophic redundancy and numerous major trophic pathways. Indeed, grazers were dominated by generalists, filter-feeders utilized both planktonic and benthic organic matter, and predators displayed a high degree of omnivory. The range of values in δ15N showed a high spatiotemporal variability within and an important overlap between trophic groups. This prevented establishing distinctive trophic levels and further emphasized the complexity of the food web structure. The spatiotemporal stability of the relative isotopic composition of the dominant consumers within trophic groups and the low variability of the community-wide indices suggested a stability of the food web structure of the A.nodosum zone at a regional scale.

  12. Syntheses, structures, and 1H, 13C{1H} and 119Sn{1H} NMR chemical shifts of a family of trimethyltin alkoxide, amide, halide and cyclopentadienyl compounds

    DOE PAGES

    Lichtscheidl, Alejandro G.; Janicke, Michael T.; Scott, Brian L.; ...

    2015-08-21

    The synthesis and full characterization, including Nuclear Magnetic Resonance (NMR) data (1H, 13C{1H} and 119Sn{1H}), for a series of Me3SnX (X = O-2,6-tBu2C6H3 (1), (Me3Sn)N(2,6-iPr2C6H3) (3), NH-2,4,6-tBu3C6H2 (4), N(SiMe3)2 (5), NEt2, C5Me5 (6), Cl, Br, I, and SnMe3) compounds in benzene-d6, toluene-d8, dichloromethane-d2, chloroform-d1, acetonitrile-d3, and tetrahydrofuran-d8 are reported. The X-ray crystal structures of Me3Sn(O-2,6-tBu2C6H3) (1), Me3Sn(O-2,6-iPr2C6H3) (2), and (Me3Sn)(NH-2,4,6-tBu3C6H2) (4) are also presented. As a result, these compiled data complement existing literature data and ease the characterization of these compounds by routine NMR experiments.

  13. Crystal structure and theoretical study of IR and 1H and 13C NMR spectra of cordatin, a natural product with antiulcerogenic activity

    NASA Astrophysics Data System (ADS)

    Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Muller, Adolfo H.; Secco, Ricardo De S.; Peris, Gabriel; Llusar, Rosa

    Cordatin is a furan diterpenoid with a clerodane skeleton isolated from Croton palanostigma Klotzsch (Euphorbiaceae). This natural product shows significant antiulcerogenic activity, similar to cimetidine (Tagamet®), a compound used for the treatment of peptic ulcers. The crystal structure of cordatin was obtained by X-ray diffraction and its geometrical parameters were compared with theoretical calculations at the B3LYP theory level. The IR and NMR (1H and 13C chemical shifts and coupling constants) spectra were obtained and compared with the theoretical calculations. The B3LYP theory level, with the 6-31G(d,p) and 6-311G(d,p) basis set, provided IR absorption values close to the experimental data. Moreover, theoretical NMR parameters obtained in both gas phase and chloroform solvent at the B3PW91/DGDZVP, B3LYP/6-311+G(2d,p), and B3PW91/6-311+G(2d,p) levels showed good correlations with the experimental results.

  14. Insight into Understanding Dielectric Behavior of a Zn-MOF Using Variable-Temperature Crystal Structures, Electrical Conductance, and Solid-State (13)C NMR Spectra.

    PubMed

    Tong, Yuan-Bo; Liu, Shao-Xian; Zou, Yang; Xue, Chen; Duan, Hai-Bao; Liu, Jian-Lan; Ren, Xiao-Ming

    2016-11-21

    A Zn-based metal-organic framework (MOF)/porous coordination polymer (PCP), (EMIM)[Zn(SIP)] (1) (SIP(3-) = 5-sulfoisophthalate, EMIM(+) = 1-ethyl-3-methylimidazolium), was synthesized using the ionothermal reaction. The Zn(2+) ion adopts distorted square pyramid coordination geometry with five oxygen atoms from three carboxylates and one sulfo group. One of two carboxylates in SIP(3-) serves as a μ2-bridge ligand to link two Zn(2+) ions and form the dinuclear SBU, and such SBUs are connected by SIP(3-) ligands to build the three-dimensional framework with rutile (rtl) topology. The cations from the ion-liquid fill the channels. This MOF/PCP shows two-step dielectric anomalies together with two-step dielectric relaxations; the variable-temperature single-crystal structure analyses disclosed the dielectric anomaly occurring at ca. 280 K is caused by an isostructural phase transition. Another dielectric anomaly is related to the dynamic disorder of the cations in the channels. Electric modulus, conductance, and variable-temperature solid-state (13)C CP/MAS NMR spectra analyses revealed that two-step dielectric relaxations result from the dynamic motion of the cations as well as the direct-current conduction and electrode effect, respectively.

  15. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  16. Four Decades of Hyperfine Anomalies

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin G. H.; Mårtensson-Pendrill, Ann-Marie

    Isotopic differences in the distribution of nuclear charge and magnetization give rise to "hyperfine structure anomalies" which were observed already in the 1950s. More recently, the distribution of nuclear magnetization has been found to complicate the interpretation of the measured hyperfine splittings in highly charged hydrogen-like ions. In this paper, results of numerical calculations for a few hydrogen-like systems (133Cs, 165Ho, 185,187Re and 209Bi) of current experimental interest are presented in terms of moments of the nuclear charge and magnetization distribution, thereby displaying directly the sensitivity and emphasizing the need for a better understanding of nuclear wavefunctions. In addition, we also present results of many-body perturbation theory calculations for Cs hyperfine anomalies, in connection with experiments planned at ISOLDE.

  17. Correlation between structure and fluidity of coal tar pitch fractions studied by ambient {sup 13}C and high temperature in-situ {sup 1}H nuclear magnetic resonance

    SciTech Connect

    Andresen, J.M.; Schober, H.H.; Rusinko, F.J. Jr.

    1999-07-01

    The unique properties of coal tar pitches have resulted in numerous applications for carbon products, such as binders for carbon artifacts. However, as the number of by-product coke ovens is diminishing, the design of superior binders from alternative materials or processes is sought by the carbon industry. Accordingly, structural characterization of coal tar pitches and their solvent fractions, using quantitative analytical techniques is required to successfully obtain this goal. Quantitative solid state {sup 13}C NMR has previously been shown to be a powerful technique to study the overall aromatic ring-size for coal tar pitches and their toluene insoluble (TI) fractions. The TI fraction can further be separated into its quinoline soluble part (beta-resin) and insoluble fraction (QI). Both these fractions affect the overall coking yield and especially the fluidity of the pitches. The assessment of fluidity interactions between coal tar pitch solvent fractions during heating is therefore important for the future design of pitches from untraditional sources or processes. High temperature {sup 1}H NMR is a useful technique to investigate the fluid and rigid components of pitches, especially with its interaction with coal and to quantify mesophase. However, very little work has been performed to correlate the overall fluidity behavior of pitch with the mobility of its different solubility fractions and their structure. Accordingly, this paper addresses the fluidity interactions between different pitch solvent fractions (TS, beta-resin and QI) by high temperature {sup 1}H NMR. Particularly, the fluidity studies on the beta-resin alone can verify whether this fraction becomes plastic during heating.

  18. Spatial and temporal dynamics of size-structured photosynthetic parameters (PAM) and primary production (13C) of pico- and nano-phytoplankton in an atoll lagoon.

    PubMed

    Lefebvre, Sébastien; Claquin, Pascal; Orvain, Francis; Véron, Benoît; Charpy, Loïc

    2012-01-01

    Atoll lagoons display a high diversity of trophic states due mainly to their specific geomorphology, and probably to their level and mode of human exploitation. We investigated the functioning of the Ahe atoll lagoon, utilized for pearl oyster farming, through estimations of photosynthetic parameters (pulse amplitude modulation fluorometry) and primary production ((13)C incorporation) measurements of the size structured phytoplankton biomass (<2 μm and >2 μm). Spatial and temporal scales of variability were surveyed during four seasons, over 16 months, at four sites within the lagoon. While primary production (P) was dominated by the picophytoplankton, its biomass specific primary productivity (P(B)) was lower than in other atoll lagoons. The variables size fraction of the phytoplankton, water temperature, season, the interaction term station*fraction and site, explained significantly the variance of the data set using redundancy analysis. No significant trends over depth were observed in the range of 0-20 m. A clear spatial pattern was found which was persistent over the seasons: south and north sites were different from the two central stations for most of the measured variables. This pattern could possibly be explained by the existence of water cells showing different water residence time within the lagoon. Photoacclimation strategies of the two size fractions differed through their light saturation coefficient (higher for picophytoplankton), but not through their maximum photosynthetic capacity (ETR(max)). Positive linear relationships between photosynthetic parameters indicated that their dynamic was independent of light availability in this ecosystem, but most probably dependent on nutrient availability and/or rapid changes in the community structure. Spatial and temporal patterns of the measured processes are then further discussed in the context of nutrient availability and the possible role of cultured oysters in nutrient recycling.

  19. High-resolution millimeter wave spectroscopy and multichannel quantum defect theory of the hyperfine structure in high Rydberg states of molecular hydrogen H2

    NASA Astrophysics Data System (ADS)

    Osterwalder, A.; Wüest, A.; Merkt, F.; Jungen, Ch.

    2004-12-01

    Experimental and theoretical methodologies have been developed to determine the hyperfine structure of molecular ions from detailed studies of the Rydberg spectrum and have been tested on molecular hydrogen. The hyperfine structure in l=0-3 Rydberg states of H2 located below the X2Σg+(v+=0,N+=1) ground state of ortho H2+ has been measured in the range of principal quantum number n=50-65 at sub-MHz resolution by millimeter wave spectroscopy following laser excitation to np and nd Rydberg states using a variety of single-photon and multiphoton excitation sequences. The np11, nd11, and the nf10-3 Rydberg states were found to be metastable and to have lifetimes of more than 5 μs beyond n=50. Members of other series, such as the nd12, nd13, and the np10 series, were found to have lifetimes of more than 1 μs. Local perturbations induced by low-n Rydberg states belonging to series converging on rovibrationally excited levels of H2+ reduce the lifetimes in narrow ranges of n values. The hyperfine structure is strongly dependent on the value of the orbital angular momentum l. In the penetrating s and p states at n≈50 the exchange interaction dominates over the hyperfine interaction and the levels can be labeled by the total electron spin angular momentum quantum number S (S=0 or 1). In the less penetrating d and f Rydberg states, the hyperfine interaction between the core nuclear and electron spins is larger than the exchange interaction and the Rydberg states are of mixed singlet and triplet character. A procedure based on the Stark effect and on the systematic analysis of selection rules and combination differences was developed to determine the orbital and the total angular momentum quantum numbers l and F and to construct an energy map of p and f Rydberg levels between n=54 and 64 with relative positions of an accuracy of better than 1 MHz. Multichannel quantum defect theory (MQDT) was extended to treat the hyperfine structure in molecular Rydberg states and was

  20. First-principles study of boron oxygen hole centers in crystals: Electronic structures and nuclear hyperfine and quadrupole parameters

    SciTech Connect

    Li Zucheng; Pan Yuanming

    2011-09-15

    The electronic structures, nuclear hyperfine coupling constants, and nuclear quadrupole parameters of fundamental boron oxygen hole centers (BOHCs) in zircon (ZrSiO{sub 4}, I4{sub 1}/amd) and calcite (CaCO{sub 3}, R3c) have been investigated using ab initio Hartree-Fock (HF) and various density functional theory (DFT) methods based on the supercell models with all-electron localized basis sets. Both exact HF exchange and appropriate correlation functionals are important in describing the BOHCs, and the parameter-free hybrid method based on Perdew, Burke, and Ernzerhof density functionals (PBE0) turns out to be the best DFT method in reproducing the electron paramagnetic resonance (EPR) data. Our results reveal three distinct types of simple-spin (S = 1/2) [BO{sub 3}]{sup 2-} centers in calcite: (i) the classic [BO{sub 3}]{sup 2-} radical with the D{sub 3h} symmetry and the unpaired spin equally distributed on the three oxygen atoms (i.e. the O{sub 3}{sup 5-} type); (ii) the previously reported [BO{sub 2}]{sup 0} center with the unpaired spin equally distributed on two of the three oxygen atoms (O{sub 2}{sup 3-}); and (iii) a new variety with {approx}90% of its unpaired spin localized on one (O{sup -}) of the three oxygen atoms with a long B-O bond (1.44 A). Calculations confirm the unusual [BO{sub 4}]{sup 0} center in zircon and show it to arise from a highly distorted configuration with 90% of the unpaired spin on one oxygen atom that has a considerably longer B-O bond (1.68 A) than its three counterparts (1.45 A). The calculated magnitudes and directions of {sup 11}B and {sup 17}O hyperfine coupling constants and nuclear quadrupole constants for the [BO{sub 4}]{sup 0} center in zircon are in excellent agreement with the 15 K EPR experimental data. These BOHCs are all characterized by a small negative spin density on the central B atom arising from spin polarization. Our calculations also demonstrate that the spin densities on BOHCs are affected substantially by

  1. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state 13C nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Cao, X.; Mastalerz, Maria; Chappell, M.A.; Miller, L.F.; Li, Y.; Mao, J.

    2011-01-01

    Four lithotypes (vitrain, bright clarain, clarain, and fusain) of a high volatile bituminous Springfield Coal from the Illinois Basin were characterized using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The NMR techniques included quantitative direct polarization/magic angle spinning (DP/MAS), cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CHn selection, and recoupled C-H long-range dipolar dephasing techniques. The lithotypes that experienced high-pressure CO2 adsorption isotherm analysis were also analyzed to determine possible changes in coal structure as a result of CO2 saturation at high pressure and subsequent evacuation. The main carbon functionalities present in original vitrain, bright clarain, clarain and fusain were aromatic carbons (65.9%-86.1%), nonpolar alkyl groups (9.0%-28.9%), and aromatic C-O carbons (4.1%-9.5%). Among these lithotypes, aromaticity increased in the order of clarain, bright clarain, vitrain, and fusain, whereas the fraction of alkyl carbons decreased in the same order. Fusain was distinct from other three lithotypes in respect to its highest aromatic composition (86.1%) and remarkably small fraction of alkyl carbons (11.0%). The aromatic cluster size in fusain was larger than that in bright clarain. The lithotypes studied responded differently to high pressure CO2 saturation. After exposure to high pressure CO2, vitrain and fusain showed a decrease in aromaticity but an increase in the fraction of alkyl carbons, whereas bright clarain and clarain displayed an increase in aromaticity but a decrease in the fraction of alkyl carbons. Aromatic fused-rings were larger for bright clarain but smaller for fusain in the post-CO2 adsorption samples compared to the original lithotypes. These observations suggested chemical CO2-coal interactions at high pressure and the selectivity of lithotypes in response to CO2 adsorption. ?? 2011 Elsevier B.V.

  2. Stochastic hyperfine interactions modeling library

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When

  3. Shifts in Ross Sea food web structure as indicated by δ15N and δ13C values of fossil Antarctic seals

    NASA Astrophysics Data System (ADS)

    Leopold, A.; Brault, E.; McMahon, K.

    2013-12-01

    As climate change continues to mount, there is a growing need for understanding its effects on biological-physical interactions of marine ecosystems. Assessing the effects of anthropogenic activities on the coastal marine ecosystem involves understanding the underlying mechanisms driving these changes as well as establishing baselines of the natural system. Preliminary findings have indicated shifts in bulk carbon (C) and nitrogen (N) isotopic values of southern elephant seal (Mirounga leonina) samples, collected in the Dry Valleys of Antarctica in the Ross Sea region, over approximately the last 7,000 years. These shifts could result from 1) seals changing their foraging location and/or diet over this time, 2) climate change-induced shifts in the biogeochemistry at the base of the food web, or 3) some combination of both processes. We explored the patterns of long-term change in Ross Sea food web structure by examining the stable isotope values of three top predators in this system, Weddell seals (Leptonychotes weddellii), leopard seals (Hydrurga leptonyx), and crabeater seals (Lobodon carcinophagus). Fossil seal samples were collected in the Dry Valleys during the austral summer of 2012/13 and then analyzed for bulk C and N isotopes via an elemental analyzer/isotope-ratio mass spectrometer (EA/IRMS). Our initial findings indicate that C isotopic values of fossil seal samples from Weddell, leopard, and crabeater seals were more enriched than isotopic values of modern seals of the same species (e.g., δ13C = -22.79 × 0.92 ‰ and -26.71 × 0.50 ‰ for fossil and modern crabeater seals, respectively). Given the relatively consistent diet of crabeater seals, these findings suggest a shift in baseline food web structure occurred over the last 10,000 years, either through changes in foraging location or local shifts in biogeochemistry. For all species, N isotopic values are widely variable (e.g., 7.28 to 16.0 δ15N ‰ for the Weddell seal), which may be a result of

  4. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant tissue isotope labeling

    USDA-ARS?s Scientific Manuscript database

    Tracing heavy stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O o...

  5. A Discovery-Based Hydrochlorination of Carvone Utilizing a Guided-Inquiry Approach to Determine the Product Structure from [superscript 13]C NMR Spectra

    ERIC Educational Resources Information Center

    Pelter, Michael W.; Walker, Natalie M.

    2012-01-01

    This experiment describes a discovery-based method for the regio- and stereoselective hydrochlorination of carvone, appropriate for a 3-h second-semester organic chemistry laboratory. The product is identified through interpretation of the [superscript 13]C NMR and DEPT spectra are obtained on an Anasazi EFT-60 at 15 MHz as neat samples. A…

  6. A Discovery-Based Hydrochlorination of Carvone Utilizing a Guided-Inquiry Approach to Determine the Product Structure from [superscript 13]C NMR Spectra

    ERIC Educational Resources Information Center

    Pelter, Michael W.; Walker, Natalie M.

    2012-01-01

    This experiment describes a discovery-based method for the regio- and stereoselective hydrochlorination of carvone, appropriate for a 3-h second-semester organic chemistry laboratory. The product is identified through interpretation of the [superscript 13]C NMR and DEPT spectra are obtained on an Anasazi EFT-60 at 15 MHz as neat samples. A…

  7. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  8. Glacial water mass structure and rapid δ18O and δ13C changes during the last glacial termination in the Southwest Pacific

    NASA Astrophysics Data System (ADS)

    Sikes, Elisabeth L.; Elmore, Aurora C.; Allen, Katherine A.; Cook, Mea S.; Guilderson, Thomas P.

    2016-12-01

    Changes in ocean circulation are thought to have contributed to lowering glacial atmospheric CO2 levels by enhancing deep ocean sequestration of carbon that was returned to the atmosphere during glacial terminations. High-resolution benthic foraminiferal δ13C and δ18O records from a depth transect of cores in the Southwest Pacific Ocean presented here provide evidence that both wind- and thermohaline-driven circulation drove CO2 from the ocean during the last deglaciation. Shallow geochemical stratification in the glacial Southern Ocean was followed by a short pulse of rapid δ13C enrichment to intermediate water depths during Heinrich Stadial 1, indicative of better-ventilated intermediate waters co-occurring with documented wind-driven upwelling in the Southern Ocean. Intermediate depth δ13C enrichment paused at the start of the Antarctic Cold Reversal (∼14.7 ka), implying a brief shallow restratification, while deeper layers were progressively flushed of δ13C-depleted and δ18O-enriched waters, likely caused by the increasing influence of deep waters sourced from the North Atlantic. The coincidence of atmospheric CO2 increases with these geochemical shifts in both shallow and deep cores suggests that shifts in both atmospheric and oceanic circulation contributed to the deglacial rise of CO2.

  9. Investigations of the g factors and hyperfine structure parameters for Er3+ ion in zircon-type compounds.

    PubMed

    Shao-Yi, Wu; Wen-Chen, Zheng

    2002-12-01

    The electron paramagnetic resonance (EPR) g factors g(parallel), g(perpendicular) and hyperfine structure parameters A(parallel), A(perpendicular) of the tetragonal Er3+ centers in zircon-type compounds YXO4 (X = As, P, V), ScVO4 and RSiO4 (R = Zr, Hf, Th) are calculated from the perturbation formulas of EPR parameters for 4f11 ion in tetragonal symmetry. In these formulas, the second-order perturbation contributions are included in addition to the first-order perturbation contributions considered in the previous papers. The crystal-field parameters used in the calculations are obtained by analyzing the optical spectral data from the superposition model. Although the superposition model intrinsic parameters An(R0) used in this paper for Er3+ in various zircon-type compounds are not as scattered as those in the previous paper, the calculated results of both the optical spectra and EPR parameters show better agreement than those in the previous paper with the observed values, suggesting that the above calculation method and parameters are more reasonable. The contributions of the second-order perturbation terms to EPR parameters are also discussed.

  10. The NaK 1 1,3delta states: theoretical and experimental studies of fine and hyperfine structure of rovibrational levels near the dissociation limit.

    PubMed

    Wilkins, A D; Morgus, L; Hernandez-Guzman, J; Huennekens, J; Hickman, A P

    2005-09-22

    Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational levels of the 1 3delta state of NaK have been extended to include high lying rovibrational levels with v < or = 59, of which the highest levels lie within approximately 4 cm(-1) of the dissociation limit. A potential curve is determined using the inverted perturbation approximation method that reproduces these levels to an accuracy of approximately 0.026 cm(-1). For the largest values of v, the outer turning points occur near R approximately 12.7 angstroms, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The fine and hyperfine structure of the 1 3delta rovibrational levels has been fit using the matrix diagonalization method that has been applied to other states of NaK, leading to values of the spin-orbit coupling constant A(v) and the Fermi contact constant b(F). New values determined for v < or = 33 are consistent with values determined by a simpler method and reported earlier. The measured fine and hyperfine structure for v in the range 44 < or = v < or = 49 exhibits anomalous behavior whose origin is believed to be the mixing between the 1 3delta and 1 1delta states. The matrix diagonalization method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. The analysis leads to accurate values for A(v) and b(F) for all values of v < or = 49. For higher v (50 < or = v < or = 59), several rovibrational levels have been assigned, but the pattern of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from effects not included in the current model.

  11. Effects of hydration on the acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Chan-Huot, Monique; Limbach, Hans-Heinrich

    2010-09-21

    Using high resolution solid state (15)N and (13)C NMR spectroscopy we have studied the effects of successive hydration on the (15)N labeled side chain amino groups of solid poly-L-lysine (PLL) in the presence of acids. Generally, hydration leads to the formation of local "ionic fluid" phases composed by flexible side chain ammonium groups, acid anions and small amounts of water. The associated local dynamics reduces the widths of the inhomogeneously broadened (15)N amino signals found for the dry states. The hydration of free base PLL--which consists of mixtures of alpha-helices and beta-pleated sheets--is monitored by a small low-field shift of the amino group signal arising from hydrogen bonding with water, reaching eventually the value of PLL in water at pH 13. No difference for the two conformations is observed. PLL x HF adopts a similar secondary structure with isolated NHF hydrogen bonds; hydration leads only to small low-field shifts which are nevertheless compatible with the formation of ammonium groups in aqueous solution. PLL doped with small amounts of HCl contains ammonium groups which are internally solvated by neighboring free amino groups. Both nitrogen environments are characterized by different chemical shifts. Hydration with less than one water molecule per amino group leads already to a chemical shift averaging arising from fast proton motions along NHN-hydrogen bonds and fast side chain and anion motions.By contrast, the hydration of fully doped PLL x HBr and PLL x HCl is more complex. These systems exist only in beta-pleated sheet conformations forming alkyl ammonium salt structures. Separate (15)N signal components are observed for (i) the dry states, for (ii) wet beta-pleated sheets and for (iii) wet alpha-helices which are successively formed upon hydration. Exchange between these environments is slow, but water motions lead to averaged amino group signals within each of the two wet environments. These results indicate that the different

  12. Energy, fine structure, hyperfine structure, and radiative transition rates of the high-lying multi-excited states for B-like neon

    NASA Astrophysics Data System (ADS)

    Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin

    2015-04-01

    The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.

  13. Study of the hyperfine structure of emission lines of I{sub 2} molecules by the method of three-level laser spectroscopy

    SciTech Connect

    Matyugin, Yu A; Okhapkin, M V; Skvortsov, M N; Ignatovich, S M; Bagaev, S N

    2008-08-31

    It is proposed to use narrow optical resonances, corresponding to the hyperfine structure components of emission transitions in I{sub 2}, as frequency references to stabilise laser radiation frequency in the spectral range from 0.8 to 1.3 {mu}m. To obtain such resonances and investigate the hyperfine structure of emission transitions, an experimental setup is built which consists of a saturated absorption laser spectrometer and a three-level laser spectrometer. Excitation is performed by the second harmonic of a cw Nd:YAG laser and probe radiation in the range from 968 to 998 nm is generated by an external cavity diode laser. The radiation beams from both lasers are combined in a cell with iodine vapour, excitation in the cell being performed in the regime of two counterpropagating waves. It is shown that upon phase modulation of exciting radiation, narrow resonances, having the form of the dispersion dependence, appear at the centre of Doppler lines in absorption and emission. These resonances can be used as references to stabilise the laser frequency. The results of the study of the hyperfine structure of emission lines at the (J' = 57, v' = 32) {yields} (J'' = 58, v'' = 48) transition upon excitation at the (J'' = 56, v'' = 0) {yields} (J' = 57, v'' = 32) transition are presented. (laser spectroscopy)

  14. Accurate measurements of 13C-13C distances in uniformly 13C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Khaneja, Navin; Nielsen, Niels Chr.

    2014-09-01

    Application of sets of 13C-13C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important 13C-13C distances in uniformly 13C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl (13C') and aliphatic (13Caliphatic) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly 13C,15N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of 13C'-13Caliphatic distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform 13C,15N-labeling on the FGAIL fragment.

  15. S100A13-C2A binary complex structure-a key component in the acidic fibroblast growth factor for the non-classical pathway

    SciTech Connect

    Mohan, Sepuru K.; Rani, Sandhya G.; Kumar, Sriramoju M.; Yu Chin

    2009-03-13

    pathway, we have studied the interactions of S100A13 with C2A by {sup 1}H-{sup 15}N HSQC titration and 3D-filtered NOESY experiments. We characterized the binary complex structure of S100A13-C2A by using a variety of multi-dimensional NMR experiments. This complex acts as a template for FGF-1 dimerization and multiprotein complex formation.

  16. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  17. J dependences of the isotope shift and hyperfine structure in the Sm i 4f65d6s 9H term

    NASA Astrophysics Data System (ADS)

    Jin, W. G.; Horiguchi, T.; Yang, W.; Endo, I.

    1994-06-01

    Isotope shifts and hyperfine structures of twelve transitions from the high-lying metastable 9HJ (J=1-7) states of the 4f65d6s configuration in Sm i have been measured for the stable isotopes by means of atomic-beam laser spectroscopy. Hyperfine constants A and B for the odd-mass isotopes 147Sm and 149Sm are determined for the 9HJ (J=1-7) states and six upper levels of the transitions in Sm i. $J- dependences of the isotope shifts are observed for the 4f65d6s 9H term. Parameters z5d of the crossed-second-order effect are derived for the 4f65d6s configuration, and z5d/λ is found to be 165(10) MHz/fm2. It has been verified that the field shift is dominant in the crossed-second-order effect.

  18. Structure and equilibria of Ca 2+-complexes of glucose and sorbitol from multinuclear ( 1H, 13C and 43Ca) NMR measurements supplemented with molecular modelling calculations

    NASA Astrophysics Data System (ADS)

    Pallagi, A.; Dudás, Cs.; Csendes, Z.; Forgó, P.; Pálinkó, I.; Sipos, P.

    2011-05-01

    Ca 2+-complexation of D-glucose and D-sorbitol have been investigated with the aid of multinuclear ( 1H, 13C and 43Ca) NMR spectroscopy and ab initio quantum chemical calculations. Formation constants of the forming 1:1 complexes have been estimated from one-dimensional 13C NMR spectra obtained at constant ionic strength (1 M NaCl). Binding sites were identified from 2D 1H- 43Ca NMR spectra. 2D NMR measurements and ab initio calculations indicated that Ca 2+ ions were bound in a tridentate manner via the glycosidic OH, the ethereal oxygen in the ring and the OH on the terminal carbon for the α- and β-anomers of glucose and for sorbitol simultaneous binding of four hydroxide moieties (C1, C2, C4 and C6) was suggested.

  19. Structure in solid state of 3,3‧-diindolylmethane derivatives, potent cytotoxic agents against human tumor cells, followed X-ray diffraction and 13C CP/MAS NMR analyses

    NASA Astrophysics Data System (ADS)

    Maciejewska, Dorota; Wolska, Irena; Niemyjska, Maria; Żero, Paweł

    2005-10-01

    The 5,5'-disubstituted-3,3'-diindolylmethanes 1, 2 have been prepared and their structure was analyzed by X-ray and NMR techniques. The X-ray diffraction studies revealed interesting C-H⋯ π intermolecular interactions which may play role in characterization of their biological features. In 1H and 13C NMR spectra in solution and in 13C CPMAS NMR spectra in solid state only a single pattern of signals was observed. Both compounds reduce the growth of MCF7 (breast), NCI-H460 (lung), and SF-268 (NCS) cells dramatically.

  20. The hyperfine structure in the rotational spectra of D2(17)O and HD(17)O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen.

    PubMed

    Puzzarini, Cristina; Cazzoli, Gabriele; Harding, Michael E; Vázquez, Juana; Gauss, Jürgen

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing (17)O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined (17)O spin-rotation constants of D2 (17)O and HD(17)O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H2 (17)O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].

  1. Carbon flow and trophic structure of an Antarctic coastal benthic community as determined by δ 13C and δ 15N

    NASA Astrophysics Data System (ADS)

    Gillies, C. L.; Stark, J. S.; Johnstone, G. J.; Smith, S. D. A.

    2012-01-01

    Stable isotopes of carbon and nitrogen were used to determine the different carbon pathways and trophic assemblages amongst coastal benthic fauna of the Windmill Islands, East Antarctica. Macroalgae, pelagic POM, sediment POM and sea ice POM had well-separated δ 13C signatures, which ranged from -36.75‰ for the red alga Phyllophora antarctica, to -10.35‰ for sea ice POM. Consumers were also well separated by δ 13C, ranging from -21.42‰ for the holothurian Staurocucumis sp. up to -7.47‰ for the urchin Sterechinus neumayeri. Analysis of δ 13C and δ 15N revealed distinct groups for suspension feeders, grazer/herbivores and deposit feeders, whilst predators and predator/scavengers showed less grouping. Consumers spanned a δ 15N range of 8.71‰, equivalent to four trophic levels, although δ 15N ratios amongst consumers were continuous, rather than grouped into discrete trophic levels. The study has built a trophic model for the Windmill Islands and summarises three main carbon pathways utilised by the benthos: (1) pelagic POM; (2) macroalgae/epiphytic/benthic diatoms and (3) sediment POM/benthic diatoms. The movement of carbon within the coastal benthic community of the Windmill Islands is considered complex, and stable isotopes of carbon and nitrogen were valuable tools in determining specific feeding guilds and in tracing carbon flow, particularly amongst lower-order consumers.

  2. Doping effects on the structural, magnetic, and hyperfine properties of Gd-doped SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Coelho-Júnior, H.; Aquino, J. C. R.; Aragón, F. H.; Hidalgo, P.; Cohen, R.; Nagamine, L. C. C. M.; Coaquira, J. A. H.; da Silva, S. W.; Brito, H. F.

    2014-12-01

    In this work we present the study of the structural, magnetic, and hyperfine properties of Gd-doped SnO2 nanoparticles synthesized by a polymer precursor method. The X-ray diffraction data analysis shows the formation of the rutile-type structure in all samples with Gd content from 1.0 to 10.0 mol%. The mean crystallite size is 11 nm for the 1.0 mol% Gd-doped samples and it shows a decreasing tendency as the Gd content is increased. The analysis of magnetic measurements indicates the coexistence of ferromagnetic and paramagnetic phases for the 1.0 mol% Gd-doped sample; however, above that content, only a paramagnetic phase is observed. The ferromagnetic phase observed in the 1.0 mol% Gd-doped sample has been assigned to the presence of bound magnetic polarons which overlap to create a spin-split impurity band. Room-temperature 119Sn Mössbauer measurements reveal the occurrence of strong electric quadrupole interactions. It has been determined that the absence of magnetic interactions even for 1.0 mol% Gd-doped sample has been related to the weak magnetic field associated to the exchange interaction between magnetic ions and the donor impurity band. The broad distribution of electric quadrupole interactions are attributed to the several non-equivalent surroundings of Sn4+ ions provoked by the entrance of Gd3+ ions and to the likely presence of Sn2+ ions. The isomer shift seems to be nearly independent of the Gd content for samples with Gd content below 7.5 mol%.

  3. Calculation of vibrational branching ratios and hyperfine structure of 24Mg19F and its suitability for laser cooling and magneto-optical trapping

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Yin, Yanning; Wei, Bin; Xia, Yong; Yin, Jianping

    2016-01-01

    More recently, laser cooling of the diatomic radical magnesium monofluoride (24Mg19F ) is being experimentally preformed [Appl. Phys. Express 8, 092701 (2015), 10.7567/APEX.8.092701 and Opt. Express 22, 28645 (2014), 10.1364/OE.22.028645] and was also studied theoretically [Phys. Rev. A 91, 042511 (2015), 10.1103/PhysRevA.91.042511]. However, some important problems still remain unsolved, so, in our paper, we perform further theoretical study for the feasibility of laser cooling and trapping the 24Mg19F molecule. At first, the highly diagonal Franck-Condon factors of the main transitions are verified by the closed-form approximation, Morse approximation, and Rydberg-Klein-Rees inversion methods, respectively. Afterwards, we investigate the lower X 2Σ1/2 + hyperfine manifolds using a quantum effective Hamiltonian approach and obtain the zero-field hyperfine spectrum with an accuracy of less than 30 kHz ˜5 μ K compared with the experimental results, and then find out that one cooling beam and one or two repumping beams with their first-order sidebands are enough to implement an efficient laser slowing and cooling of 24Mg19F . Meanwhile, we also calculate the accurate hyperfine structure magnetic g factors of the rotational state (X 2Σ1/2 +,N =1 ) and briefly discuss the influence of the external fields on the hyperfine structure of 24Mg19F as well as its possibility of preparing three-dimensional magneto-optical trapping. Finally we give an explanation for the difference between the Stark and Zeeman effects from the perspective of parity and time reversal symmetry. Our study shows that, besides appropriate excitation wavelengths, the short lifetime for the first excited state A 2Π1 /2 , and lighter mass, the 24Mg19F radical could be a good candidate molecule amenable to laser cooling and magneto-optical trapping.

  4. Introducing NMR to a General Chemistry Audience: A Structural-Based Instrumental Laboratory Relating Lewis Structures, Molecular Models, and [superscript 13]C NMR Data

    ERIC Educational Resources Information Center

    Pulliam, Curtis R.; Pfeiffer, William F.; Thomas, Alyssa C.

    2015-01-01

    This paper describes a first-year general chemistry laboratory that uses NMR spectroscopy and model building to emphasize molecular shape and structure. It is appropriate for either a traditional or an atoms-first curriculum. Students learn the basis of structure and the use of NMR data through a cooperative learning hands-on laboratory…

  5. Introducing NMR to a General Chemistry Audience: A Structural-Based Instrumental Laboratory Relating Lewis Structures, Molecular Models, and [superscript 13]C NMR Data

    ERIC Educational Resources Information Center

    Pulliam, Curtis R.; Pfeiffer, William F.; Thomas, Alyssa C.

    2015-01-01

    This paper describes a first-year general chemistry laboratory that uses NMR spectroscopy and model building to emphasize molecular shape and structure. It is appropriate for either a traditional or an atoms-first curriculum. Students learn the basis of structure and the use of NMR data through a cooperative learning hands-on laboratory…

  6. 13 C solid-state NMR study of the 13 C-labeled peptide, (E)8 GGLGGQGAG(A)6 GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning.

    PubMed

    Yazawa, Koji; Yamaguchi, Erika; Knight, David; Asakura, Tetsuo

    2012-06-01

    We prepared the water soluble model peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG, to throw light on the local structure of spidroin 1 (MaSpl) protein in spider dragline silk of Nephila clavipes before and after spinning. Solution (13) C NMR showed that the conformation of the peptide in aqueous solution was essentially random coil. Solid-state NMR was used to follow conformation-dependent (13) C chemical shifts in (13) C selectively labeled versions of the peptide. The peptide lyophilized from an aqueous solution at neutral pH (hereafter referred to as "without acid treatment)"was used to mimic the state of the spidroin stored in the spider's silk gland while the peptide precipitated from the acidic solution ("with acid treatment") was used to simulate the role of acid treatment in inducing conformation change in the natural spinning process. In without acid treatment, the fraction of random coil conformation was lowest in the N-terminal region (residues 15-18) when compared with the C-terminus. The conformational change produced by the acid treatment occurred in the sequence, G(15) AG(A)(6) GGAG(27), interposed between pairs of Gly residues pairs, Gly(12,13), and Gly(29,30). The acid treated peptide showed a remarkable decrease in the fraction of random coil conformation from A(20) to A(23) in the poly-Ala region when compared with the peptide without acid treatment. These observations taken together suggest that the peptide can be used as a model for studying the localization of the conformation change in spider silk fibroin in the natural spinning and the role of acid treatment in this process.

  7. Optical Spectroscopic Measurements of Isotope Shift and Hyperfine Structure in BISMUTH-207, BISMUTH-208 and LEAD-205.

    NASA Astrophysics Data System (ADS)

    Barboza Flores, Marcelino

    The isotope shift and hyperfine structure (hfs) of 38-yr ^{207}Bi and 3.7 times 10^5 -yr ^{208}Bi were measured, in the 6p^3 ^4S_ {1/2} - 6p^2 7s ^4P_{1/2} 306.7-nm resonance line, as well as the isotope shift of 1.4 times 10^7-yr ^ {205}Pb in the 6p^2 ^3P_0 - 6p7s ^3P_1 283.3-nm transition. A 9.1-m focal-length Czerny-Turner grating monochromator with a 25-cm wide diffraction grating (resolving power ~10^6) was used to obtain high resolution absorption spectra of an atomic vapor of lead and bismuth. The spectra were recorded photoelectrically using a signal-averaging spectrum scanning technique. The measured isotope shifts are IS(^ {207}Bi-^{209} Bi) = 0.0999(20) cm^{-1} , IS(^{208}Bi- ^{209}Bi) = 0.072(6) cm ^{-1} and IS(^ {205}Pb-^{208} Pb) = -123.9(2.0) times 10^{-3} cm ^{-1}. The derived magnetic dipole (A) and electric quadrupole (B) hfs interaction constants are A(^4P_{1/2})= 0.1630(3) cm^{-1}, B( ^4S_{3/2}) = -0.016(3) cm^{-1} for ^{207}Bi and A( ^4P_{1/2}) = 0.1639(20) cm^{-1} for ^ {208}Bi. The nuclear magnetic dipole (mu) and electric quadrupole moment (Q) were found to be mu(^{207 }Bi) = 4.051(7)mu_{N }, Q(^{207}Bi) = -0.60(11)b and mu(^ {208}Bi) = 4.52(6)mu_ {N}. The magnetic dipole moments agree with theoretical predictions based on the nuclear shell model including configuration mixing and meson exchange contributions.

  8. Polarization quantum beat spectroscopy of HCF(A1A"). I. 19F and 1H hyperfine structure and Zeeman effect.

    PubMed

    Fan, Haiyan; Ionescu, Ionela; Xin, Ju; Reid, Scott A

    2004-11-08

    To further investigate the (19)F and (1)H nuclear hyperfine structure and Zeeman effect in the simplest singlet carbene, HCF, we recorded polarization quantum beat spectra (QBS) of the pure bending levels 2(0) (n) with n = 0-7 and combination bands 1(0) (1)2(0) (n) with n = 1-6 and 2(0) (n)3(0) (1) with n = 0-3 in the HCF A(1)A(")<--X(1)A(') system. The spectra were measured under jet-cooled conditions using a pulsed discharge source, both at zero field and under application of a weak magnetic field (<30 G). Analysis yielded the nuclear spin-rotation constants C(aa) and weak field Lande g(aa) factors. Consistent with a two-state model, the majority of observed vibrational levels exhibit a linear correlation of C(aa) and g(aa), and our analysis yielded effective (a) hyperfine constants for the (19)F and (1)H nuclei (in MHz) of 728(23) and 55(2), respectively. The latter was determined here owing to the high resolving power of QBS. The vibrational state selectivity of the (19)F hyperfine constants is discussed, and we suggest that the underlying Renner-Teller interaction may play an important role. Copyright 2004 American Institute of Physics.

  9. Laser Induced Optical Pumping Measurements of Cross Sections for Fine and Hyperfine Structure Transitions in Sodium Induced by Collisions with Helium Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1998-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections for (Delta)F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), (Delta)F cross sections. The hyperfine cross sections measured using this method, which is thought to be novel, are compared with cross sections for transitions involving polarized magnetic substates, m(sub F), measured previously using polarization sensitive absorption. Also, fine structure transition ((Delta)J) cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  10. Laser-Induced Optical Pumping Measurements of Cross Section for Fine- and Hyperfine-Structure Transitions in Sodium Induced by Collisions with Helium and Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1999-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections lor DELTA.F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), DELTA.F cross sections. The hyperfine cross sections measured using this method, which to our knowledge is novel, are compared with cross sections for transitions involving polarized magnetic substates m(sub F) measured previously using polarization sensitive absorption. Also, fine-structure transition cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  11. Laser-Induced Optical Pumping Measurements of Cross Section for Fine- and Hyperfine-Structure Transitions in Sodium Induced by Collisions with Helium and Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1999-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections lor DELTA.F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), DELTA.F cross sections. The hyperfine cross sections measured using this method, which to our knowledge is novel, are compared with cross sections for transitions involving polarized magnetic substates m(sub F) measured previously using polarization sensitive absorption. Also, fine-structure transition cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  12. 13C metabolic flux analysis.

    PubMed

    Wiechert, W

    2001-07-01

    Metabolic flux analysis using 13C-labeled substrates has become an important tool in metabolic engineering. It allows the detailed quantification of all intracellular fluxes in the central metabolism of a microorganism. The method has strongly evolved in recent years by the introduction of new experimental procedures, measurement techniques, and mathematical data evaluation methods. Many of these improvements require advanced skills in the application of nuclear magnetic resonance and mass spectrometry techniques on the one hand and computational and statistical experience on the other hand. This minireview summarizes these recent developments and sketches the major practical problems. An outlook to possible future developments concludes the text.

  13. A study of structure and dynamics of poly(aspartic acid) sodium/poly(vinyl alcohol) blends by 13C CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Wang, P.; Ando, I.

    1999-09-01

    Solid state 13C CP/MAS NMR measurements have been carried out on poly(aspartic acid) sodium (PAANa)/poly(vinyl alcohol) (PVA) blends over a wide range of temperatures. From these experimental results, it is found that the main-chain conformations of PAANa in PAANa/PVA blends take the α-helix form over a wide range of blend ratios, and, in contrast, the conformation and dynamics of the side chains of PAANa are strongly influenced by the formation of an intermolecular hydrogen bond between the carboxyl group of the side chains and the hydroxyl group of PVA. The behavior of the proton spin-lattice relaxation times in the rotating frame ( T1 ρ(H)) and the laboratory frame ( T1(H)) indicates that when the blend ratio of PAANa and PVA is 1:1, they are miscible.

  14. Molecular organization in the native state of woody tissue: Studies of tertiary structure using the Raman microprobe Solid State [sup 13]C NMR and biomimetic tertiary aggregates

    SciTech Connect

    Atalla, R.H.

    1992-01-01

    A number of new approaches to the study of native wood tissue complementary to our earlier Raman spectroscopy including solid state [sup 13]C NMR and X-ray diffractometry. A wide variety of native cellulosic tissues were examined which led to the generation of biomimetic tertiary aggregates which simulate states of aggregation characteristic of cell walls. We have also explored charge transport characteristics of lignified tissue. Our Raman spectroscopic studies have advanced our understanding of key spectral features and confirmed the variability of the patterns of orientation of lignin reported earlier. A major effort was dedicated to assessing the contributions of electronic factors such as conjugation and the resonance Raman effect to enhancement of the spectra features associated with lignin. We have now established a solid foundation for spectral mapping of different regions in cell walls.

  15. Distinguishing tautomerism in the crystal structure of (Z)-N-(5-ethyl-2,3-di-hydro-1,3,4-thiadiazol-2-ylidene) -4-methylbenzenesulfonamide using DFT-D calculations and {sup 13}C solid-state NMR

    SciTech Connect

    Li, Xiaozhou; Bond, Andrew D.; Johansson, Kristoffer E.; Van de Streek, Jacco

    2014-08-01

    The crystal structure of (Z)-N-(5-ethyl-2,3-di-hydro-1,3,4-thiadiazol-2-ylidene) -4-methylbenzenesulfonamide contains an imine tautomer, rather than the previously reported amine tautomer. The tautomers can be distinguished using dispersion-corrected density functional theory calculations and by comparison of calculated and measured {sup 13}C solid-state NMR spectra. The crystal structure of the title compound, C{sub 11}H{sub 13}N{sub 3}O{sub 2}S{sub 2}, has been determined previously on the basis of refinement against laboratory powder X-ray diffraction (PXRD) data, supported by comparison of measured and calculated {sup 13}C solid-state NMR spectra [Hangan et al. (2010 ▶). Acta Cryst. B66, 615–621]. The mol@@ecule is tautomeric, and was reported as an amine tautomer [systematic name: N-(5-ethyl-1,3,4-thia@@diazol-2-yl)-p-toluene@@sulfonamide], rather than the correct imine tautomer. The protonation site on the mol@@ecule’s 1,3,4-thia@@diazole ring is indicated by the inter@@molecular contacts in the crystal structure: N—H⋯O hydrogen bonds are established at the correct site, while the alternative protonation site does not establish any notable inter molecular inter@@actions. The two tautomers provide essentially identical Rietveld fits to laboratory PXRD data, and therefore they cannot be directly distinguished in this way. However, the correct tautomer can be distinguished from the incorrect one by previously reported qu@@anti@@tative criteria based on the extent of structural distortion on optimization of the crystal structure using dispersion-corrected density functional theory (DFT-D) calculations. Calculation of the {sup 13}C SS-NMR spectrum based on the correct imine tautomer also provides considerably better agreement with the measured {sup 13}C SS-NMR spectrum.

  16. sup 15 N and sup 13 C NMR studies of ligands bound to the 280,000-dalton protein porphobilinogen synthase elucidate the structures of enzyme-bound product and a Schiff base intermediate

    SciTech Connect

    Jaffe, E.K.; Rajagopalan, J.S. ); Markham, G.D. )

    1990-09-11

    Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). Despite the 280,000-dalton size of PBGS, much can be learned about the reaction mechanism through {sup 13}C and {sup 15}N NMR. The authors knowledge, these studies represent the largest protein complex for which individual nuclei have been characterized by {sup 13}C or {sup 15}N NMR. Here they extend their {sup 13}C NMR studies to PBGS complexes with (3,3-{sup 2}H{sub 2},3-{sup 13}C)ALA and report {sup 15}N NMR studies of ({sup 15}N)ALA bound to PBGS. As in their previous {sup 13}C NMR studies, observation of enzyme-bound {sup 15}N-labeled species was facilitated by deuteration at nitrogens that are attached to slowly exchanging hydrogens. For holo-PBGS at neutral pH, the NMR spectra reflect the structure of the enzyme-bound product porphobilinogen (PBG), whose chemical shifts are uniformly consistent with deprotonation of the amino group whose solution pK{sub a} is 11. Despite this local environment, the protons of the amino group are in rapid exchange with solvent. For methyl methanethiosulfonate (MMTS) modified PBGS, the NMR spectra reflect the chemistry of an enzyme-bound Schiff base intermediate that is formed between C{sub 4} of ALA and an active-site lysine. The {sup 13}C chemical shift of (3,3-{sup 2}H{sub 2},3-{sup 13}C)ALA confirms that the Schiff base is an imine of E stereochemistry. By comparison to model imines formed between ({sup 15}N)ALA and hydrazine or hydroxylamine, the {sup 15}N chemical shift of the enzyme-bound Schiff base suggests that the free amino group is an environment resembling partial deprotonation. Deprotonation of the amino group would facilitate formation of a Schiff base between the amino group of the enzyme-bound Schiff base and C{sub 4} of the second ALA substrate. This is the first evidence supporting carbon-nitrogen bond formation as the initial site of interaction between the two substrate molecules.

  17. Distinguishing tautomerism in the crystal structure of (Z)-N-(5-ethyl-2,3-dihydro-1,3,4-thiadiazol-2-ylidene)-4-methylbenzenesulfonamide using DFT-D calculations and (13)C solid-state NMR.

    PubMed

    Li, Xiaozhou; Bond, Andrew D; Johansson, Kristoffer E; Van de Streek, Jacco

    2014-08-01

    The crystal structure of the title compound, C11H13N3O2S2, has been determined previously on the basis of refinement against laboratory powder X-ray diffraction (PXRD) data, supported by comparison of measured and calculated (13)C solid-state NMR spectra [Hangan et al. (2010). Acta Cryst. B66, 615-621]. The molecule is tautomeric, and was reported as an amine tautomer [systematic name: N-(5-ethyl-1,3,4-thiadiazol-2-yl)-p-toluenesulfonamide], rather than the correct imine tautomer. The protonation site on the molecule's 1,3,4-thiadiazole ring is indicated by the intermolecular contacts in the crystal structure: N-H...O hydrogen bonds are established at the correct site, while the alternative protonation site does not establish any notable intermolecular interactions. The two tautomers provide essentially identical Rietveld fits to laboratory PXRD data, and therefore they cannot be directly distinguished in this way. However, the correct tautomer can be distinguished from the incorrect one by previously reported quantitative criteria based on the extent of structural distortion on optimization of the crystal structure using dispersion-corrected density functional theory (DFT-D) calculations. Calculation of the (13)C SS-NMR spectrum based on the correct imine tautomer also provides considerably better agreement with the measured (13)C SS-NMR spectrum.

  18. 13C NMR Metabolomics: Applications at Natural Abundance

    PubMed Central

    2015-01-01

    13C NMR has many advantages for a metabolomics study, including a large spectral dispersion, narrow singlets at natural abundance, and a direct measure of the backbone structures of metabolites. However, it has not had widespread use because of its relatively low sensitivity compounded by low natural abundance. Here we demonstrate the utility of high-quality 13C NMR spectra obtained using a custom 13C-optimized probe on metabolomic mixtures. A workflow was developed to use statistical correlations between replicate 1D 13C and 1H spectra, leading to composite spin systems that can be used to search publicly available databases for compound identification. This was developed using synthetic mixtures and then applied to two biological samples, Drosophila melanogaster extracts and mouse serum. Using the synthetic mixtures we were able to obtain useful 13C–13C statistical correlations from metabolites with as little as 60 nmol of material. The lower limit of 13C NMR detection under our experimental conditions is approximately 40 nmol, slightly lower than the requirement for statistical analysis. The 13C and 1H data together led to 15 matches in the database compared to just 7 using 1H alone, and the 13C correlated peak lists had far fewer false positives than the 1H generated lists. In addition, the 13C 1D data provided improved metabolite identification and separation of biologically distinct groups using multivariate statistical analysis in the D. melanogaster extracts and mouse serum. PMID:25140385

  19. Oxygen-17 hyperfine structures in the pure rotational spectra of SrO, SnO, BaO, HfO and ThO.

    PubMed

    Dewberry, Christopher T; Etchison, Kerry C; Grubbs Ii, Garry S; Powoski, Robert A; Serafin, Michal M; Peebles, Sean A; Cooke, Stephen A

    2007-11-28

    Hyperfine structures arising from the couplings of the nuclear spin angular momentum of (17)O (I = 5/2) with the end over end rotation of several metal-containing diatomic monoxides have been observed using a Fourier transform microwave spectrometer. The molecules have been produced by reacting (17)O(2) with laser ablated metal atoms. The oxygen-17 nuclear quadrupole coupling constants have been determined for the title molecules and are interpreted in terms of a simple Townes-Dailey model. Also, the oxygen-17 nuclear spin-rotation constants have been determined and used to calculate the oxygen-17 shieldings for each molecule.

  20. Effect of particle size distribution on the structure, hyperfine, and magnetic properties of Ni0.5Zn0.5Fe2O4 nanopowders

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Kaustav; Pati, Satya P.; Das, G. C.; Das, D.; Chattopadhyay, K. K.

    2014-12-01

    Ni0.5Zn0.5Fe2O4 nano powders were synthesized by an auto combustion method and then heat treated at different temperatures in air for a fixed time. As a consequence, a distribution in particle size and strain was incorporated within the specimens, as estimated from the Rietveld refinement analysis of the powder x-ray diffraction data. The changes in the microstructure and crystal structure parameters were carefully extracted through the refinement analysis. Thermal annealing causes increment in the dispersion and mean of the size distribution. Reallocation of cations in the lattice sites occur as a consequence of the heat treatment which was manifested in their altered unit cell length (a), r.m.s. strain (⟨ɛ2⟩1/2), oxygen positional parameter (u), metal-oxygen bond lengths ( RO A and RO B ), and the band positions (ν1and ν2) in the vibrational spectroscopy. We also investigate the hyperfine and magnetic properties of the samples using different instrumental techniques (with different operating time scales) like Mössbauer spectroscopy, electron paramagnetic resonance spectroscopy, and superconducting quantum interference device magnetometry. Results show that the effect of particle size distribution was manifested in their hyperfine field distribution profile, paramagnetic resonance spectra, and magnetic anisotropy energy distribution profile. Co-existence of superparamagnetic and ferrimagnetic phase was recorded at room temperature in the samples when annealed at lower temperature. However, with increase in annealing temperature, the nature of the size distribution changes and ferrimagnetic ordering predominates for the larger size nanoparticles. Thus, the effect of particle size distribution on the structural, hyperfine, and magnetic properties of various Ni0.5Zn0.5Fe2O4 nanoparticles was investigated herein which hitherto has not been discussed in the literature.

  1. Conformational stability, molecular structure, vibrational, electronic, 1H and 13C spectral analysis of 3-pyridinemethanol using ab-initio/DFT method

    NASA Astrophysics Data System (ADS)

    Sivaranjani, T.; Periandy, S.; Xavier, S.

    2016-03-01

    The FT-IR and FT-Raman spectra of 3-pyridinemethanol (3PYRM) have been recorded in the regions 4000-400 and 4000-100 cm-1 respectively. The vibrational analysis of 3PYRM was carried out using wavenumbers computed by HF and DFT (B3LYP) methods with 6-311++G (d, p) basis set, along with experimental values. The conformational analyses were performed and the energies of the different possible conformers were determined. The total electron density and MESP surfaces of the molecules were constructed using B3LYP/6-311++G (d, p) method to display nucleophilic and electrophilic region globally. The HOMO and LUMO energies were measured and different reactivity descriptors are discussed the active sites of the molecule. Natural Bond Orbital Analysis is discussed and possible transition are correlated with the electronic transitions. Milliken's net charges and the atomic natural charges are also predicted. The 13C and 1H NMR chemical shifts were computed at the B3LYP/6-311++G (2d, p) level by applying GIAO theory and compared with the experimental spectra recorded using the high resolution of 100 MHz and 400 MHz NMR spectrometer with electromagnetic field strength 9.1T, respectively. The temperature dependence of the thermodynamic properties; heat capacity, entropy and enthalpy for the title compounds were also determined by B3LYP/6-311++G (d, p) method.

  2. Application of /sup 13/C NMR, fluorescence, and light-scattering techniques for structural studies of oil-in-water microemulsions

    SciTech Connect

    Tricot, Y.; Kiwi, J.; Niederberger, W.; Graetzel, M.

    1981-04-02

    The nature of the microdroplets present in oil-in-water microemulsions was examined by using the 4-component model system water-hexadecane-sodium hexadecyl sulfate-pentanol. Three compositions were selected corresponding to regions in the pahse diagram where the content of water, cosurfactant, and oil, respectively, approached the tolerable limit to yield clear isotropic solutions. In the water-side microemulsion, the radius of the droplets is 127A as determined from quasi-elastic light-scattering measurements. Fluorescence experiments showed that the core of the microspheres has a microviscosity similar to hexadecane at room temperature. /sup 13/C NMR shift analysis was applied to test the partitioning of cosurfactant between the surface and the interior of the droplet. For all three compositions significant fractions of the cosurfactant are present in the interior. This is corroborated by results obtained from T/sub 1/ relaxation-time analysis at different field strengths. The influence of the field strength on T/sub 1/ is explained in terms of a model based on a distribution of correlation times. In particular, the importance of taking into account slower rotational modes such as the tumbling of the whole microsphere is illustrated.

  3. POLARIZED SCATTERING OF LIGHT FOR ARBITRARY MAGNETIC FIELDS WITH LEVEL-CROSSINGS FROM THE COMBINATION OF HYPERFINE AND FINE STRUCTURE SPLITTINGS

    SciTech Connect

    Sowmya, K.; Nagendra, K. N.; Sampoorna, M.; Stenflo, J. O. E-mail: knn@iiap.res.in E-mail: stenflo@astro.phys.ethz.ch

    2015-12-01

    Interference between magnetic substates of the hyperfine structure states belonging to different fine structure states of the same term influences the polarization for some of the diagnostically important lines of the Sun's spectrum, like the sodium and lithium doublets. The polarization signatures of this combined interference contain information on the properties of the solar magnetic fields. Motivated by this, in the present paper, we study the problem of polarized scattering on a two-term atom with hyperfine structure by accounting for the partial redistribution in the photon frequencies arising due to the Doppler motions of the atoms. We consider the scattering atoms to be under the influence of a magnetic field of arbitrary strength and develop a formalism based on the Kramers–Heisenberg approach to calculate the scattering cross section for this process. We explore the rich polarization effects that arise from various level-crossings in the Paschen–Back regime in a single scattering case using the lithium atomic system as a concrete example that is relevant to the Sun.

  4. Synthesis, structural, spectral (FT-IR, 1H and 13C NMR and UV-Vis), NBO and first order hyperpolarizability analysis of N-(4-nitrophenyl)-2, 2-dibenzoylacetamide by density functional theory

    NASA Astrophysics Data System (ADS)

    Yalçın, Şerife Pınar; Ceylan, Ümit; Sarıoğlu, Ahmet Oral; Sönmez, Mehmet; Aygün, Muhittin

    2015-10-01

    The title compound, C22H16N2O5, was synthesized and characterized by experimental techniques (FT-IR, 1H NMR, 13C NMR, UV-Vis and X-Ray single crystal determination) and theoretical calculations. The molecular geometry, vibrational frequencies, molecular electrostatic potential (MEP), thermodynamic properties, the dipole moments, HOMO-LUMO energy has been calculated by using the Density Functional Theory (DFT) method with 6-311G(d,p) and 6-311++G(d,p) basis sets. 1H and 13C NMR chemical shifts show good agreement with experimental values. According to calculated results, the 6-311G(d,p) and 6-311++G(d,p) basis sets have showed similar results. The optimized geometry can well reproduce the crystal structure parameters.

  5. High-resolution 13C NMR studies of high-pressure-polymerized C60: Evidence for the [2+2] cycloaddition structure in the rhombohedral two-dimensional C60 polymer

    NASA Astrophysics Data System (ADS)

    Goze, C.; Rachdi, F.; Hajji, L.; Núñez-Regueiro, M.; Marques, L.; Hodeau, J.-L.; Mehring, M.

    1996-08-01

    We report on 13C NMR measurements of a rhombohedral two-dimensional polymer of C60 obtained under high pressure. By spinning the sample up to 12 kHz, we were able to identify six resonances at 149.1, 147.9, 145.2, 139.6, 134.8, and 73.5 ppm. The static distortion of the C60 molecules induced by the transformation under pressure must be at the origin of the observed inequivalent carbons in the polymer. The 13C NMR line shape simulation of the obtained spectrum is compatible with the suggested polymeric structures where the C60 molecules are connected by [2+2] cycloadditions.

  6. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates

    NASA Astrophysics Data System (ADS)

    Azurmendi, Hugo F.; Freedberg, Darón I.

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very

  7. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates.

    PubMed

    Azurmendi, Hugo F; Freedberg, Darón I

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for (1)D(CC) determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a (13)C-(13)C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield (1)J(CC) and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for J(HH) determinations, but adapted and extended to applications where, like in sugars, large one-bond (13)C-(13)C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and

  8. NMR study of non-structural proteins--part I: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Mayaro virus (MAYV).

    PubMed

    Melekis, Efstathios; Tsika, Aikaterini C; Lichière, Julie; Chasapis, Christos T; Margiolaki, Irene; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-04-01

    Macro domains are ADP-ribose-binding modules present in all eukaryotic organisms, bacteria and archaea. They are also found in non-structural proteins of several positive strand RNA viruses such as alphaviruses. Here, we report the high yield expression and preliminary structural analysis through solution NMR spectroscopy of the macro domain from New World Mayaro Alphavirus. The recombinant protein was well-folded and in a monomeric state. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure determined by TALOS+.

  9. Development of a (13)C NMR Chemical Shift Prediction Procedure Using B3LYP/cc-pVDZ and Empirically Derived Systematic Error Correction Terms: A Computational Small Molecule Structure Elucidation Method.

    PubMed

    Xin, Dongyue; Sader, C Avery; Chaudhary, Om; Jones, Paul-James; Wagner, Klaus; Tautermann, Christofer S; Yang, Zheng; Busacca, Carl A; Saraceno, Reginaldo A; Fandrick, Keith R; Gonnella, Nina C; Horspool, Keith; Hansen, Gordon; Senanayake, Chris H

    2017-05-19

    An accurate and efficient procedure was developed for performing (13)C NMR chemical shift calculations employing density functional theory with the gauge invariant atomic orbitals (DFT-GIAO). Benchmarking analysis was carried out, incorporating several density functionals and basis sets commonly used for prediction of (13)C NMR chemical shifts, from which the B3LYP/cc-pVDZ level of theory was found to provide accurate results at low computational cost. Statistical analyses from a large data set of (13)C NMR chemical shifts in DMSO are presented with TMS as the calculated reference and with empirical scaling parameters obtained from a linear regression analysis. Systematic errors were observed locally for key functional groups and carbon types, and correction factors were determined. The application of this process and associated correction factors enabled assignment of the correct structures of therapeutically relevant compounds in cases where experimental data yielded inconclusive or ambiguous results. Overall, the use of B3LYP/cc-pVDZ with linear scaling and correction terms affords a powerful and efficient tool for structure elucidation.

  10. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  11. A novel tridentate Schiff base dioxo-molybdenum(VI) complex: Synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra

    NASA Astrophysics Data System (ADS)

    Saheb, Vahid; Sheikhshoaie, Iran; Stoeckli-Evans, Helen

    2012-09-01

    A new dioxo-molybdenum(VI) complex [MoO2(L)(H2O)] has been synthesized, using 5-methoxy 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H2L) and MoO2(acac)2. The yellow crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FTIR), UV-visible, 1H NMR and 13C NMR spectra. Electronic structure calculations at the B3LYP and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the UV-visible, FTIR, 1H NMR and 13C NMR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TDDFT) method is used to calculate the electronic transitions of the complex. All theoretical methods can well reproduce the structure of the compound. The 1H NMR shielding tensors computed at the B3LYP/DGDZVP level of theory is in agreement with experimental 1H NMR spectra. However, the 13C NMR shielding tensors computed at the B3LYP level, employing a combined basis set of DGDZVP for Mo and 6 - 31 + G(2df,p) for other atoms, are in better agreement with experimental 13C NMR spectra. The electronic transitions calculated at the B3LYP/DGDZVP level by using TD-DFT method is in accordance with the observed UV-visible spectrum of the compound.

  12. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Synthesis of exemestane labelled with (13)C.

    PubMed

    Fontana, Erminia; Pignatti, Alberto; Giribone, Danilo; Di Salle, Enrico

    2008-08-01

    The synthesis of exemestane Aromasin, an irreversible steroidal aromatase inhibitor, specifically labelled with (13)C is reported. The preparation of [(13)C(3)]exemestane was achieved according to an eight-step procedure starting from the commercially available testosterone.

  14. Probing structural patterns of ion association and solvation in mixtures of imidazolium ionic liquids with acetonitrile by means of relative (1)H and (13)C NMR chemical shifts.

    PubMed

    Marekha, Bogdan A; Kalugin, Oleg N; Bria, Marc; Idrissi, Abdenacer

    2015-09-21

    Mixtures of ionic liquids (ILs) with polar aprotic solvents in different combinations and under different conditions (concentration, temperature etc.) are used widely in electrochemistry. However, little is known about the key intermolecular interactions in such mixtures depending on the nature of the constituents and mixture composition. In order to systematically address the intermolecular interactions, the chemical shift variation of (1)H and (13)C nuclei has been followed in mixtures of imidazolium ILs 1-n-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4), 1-n-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6), 1-n-butyl-3-methylimidazolium trifluoromethanesulfonate (BmimTfO) and 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) with molecular solvent acetonitrile (AN) over the entire composition range at 300 K. The concept of relative chemical shift variation is proposed to assess the observed effects on a unified and unbiased scale. We have found that hydrogen bonds between the imidazolium ring hydrogen atoms and electronegative atoms of anions are stronger in BmimBF4 and BmimTfO ILs than those in BmimTFSI and BmimPF6. Hydrogen atom at position 2 of the imidazolium ring is substantially more sensitive to interionic hydrogen bonding than those at positions 4-5 in the case of BmimTfO and BmimTFSI ILs. These hydrogen bonds are disrupted upon dilution in AN due to ion dissociation which is more pronounced at high dilutions. Specific solvation interactions between AN molecules and IL cations are poorly manifested.

  15. Sub-Doppler millimetre-wave spectroscopy of DBS and HBS: accurate values of nuclear electric and magnetic hyperfine structure constants.

    PubMed

    Bizzocchi, Luca; Esposti, Claudio Degli; Dore, Luca

    2008-02-07

    The unstable thioborine molecule and its deuterated variant have been produced by a high-temperature reaction between hydrogen sulfide and crystalline boron at 1100 degrees C in a flow system. Five rotational transitions from J = 2 <-- 1, to J = 6 <-- 5 have been recorded with sub-Doppler resolution for the vibrational ground state of H10/11BS and D10/11BS using the Lamb-dip technique. The hyperfine structure due to the electric quadrupole interaction of deuterium nucleus has been resolved yielding the first experimental determination of the deuterium quadrupole coupling constant in thioborine, which is 0.1403(75) MHz in D11 BS and 0.1360(38) MHz in D10BS. Fairly accurate values of 10/11B spin-rotation coupling constants and of the hydrogen-boron spin-spin coupling constants have also been determined. Additionally, the hyperfine structure of the rotational lines for the nu2 = 1 excited state has been investigated, thus obtaining information on the asymmetry of the electric field gradient at the B nucleus in the bending state.

  16. Microscopic structural analysis of fractured silk fibers from Bombyx mori and Samia cynthia ricini using 13C CP/MAS NMR with a 1mm microcoil MAS NMR probehead.

    PubMed

    Yamauchi, Kazuo; Yamasaki, Shizuo; Takahashi, Rui; Asakura, Tetsuo

    2010-07-01

    Conformational changes have been studied in silk fibers from the domestic silkworm Bombyx mori and a wild silkworm Samia cynthia ricini as a result of fractured by stretching. About 300 samples consisting of only the fractured regions of [1-13C]Ala or [1-13C]Gly labeled silk fibers were collected and observed by 13C CP/MAS NMR spectra. The total amount of these fractured fibers is only about 1mg and therefore we used a home-built 1mm microcoil MAS NMR probehead. A very small increase in the fraction of random coil was noted for the alanine regions of both silk fibroins and for the glycine region of B. mori silk fibroin. However, there is no difference in the spectra before and after fractured for the glycine region of S. c. ricini silk fibroin. Thus, the influence of fracture occurs exclusively at the Ala region for S. c. ricini. The relationship between sequence, fracture and structure is discussed.

  17. Density functional calculations of (55)Mn, (14)N and (13)C electron paramagnetic resonance parameters support an energetically feasible model system for the S(2) state of the oxygen-evolving complex of photosystem II.

    PubMed

    Schinzel, Sandra; Schraut, Johannes; Arbuznikov, Alexei V; Siegbahn, Per E M; Kaupp, Martin

    2010-09-10

    Metal and ligand hyperfine couplings of a previously suggested, energetically feasible Mn(4)Ca model cluster (SG2009(-1)) for the S(2) state of the oxygen-evolving complex (OEC) of photosystem II (PSII) have been studied by broken-symmetry density functional methods and compared with other suggested structural and spectroscopic models. This was carried out explicitly for different spin-coupling patterns of the S=1/2 ground state of the Mn(III)(Mn(IV))(3) cluster. By applying spin-projection techniques and a scaling of the manganese hyperfine couplings, computation of the hyperfine and nuclear quadrupole coupling parameters allows a direct evaluation of the proposed models in comparison with data obtained from the simulation of EPR, ENDOR, and ESEEM spectra. The computation of (55)Mn hyperfine couplings (HFCs) for SG2009(-1) gives excellent agreement with experiment. However, at the current level of spin projection, the (55)Mn HFCs do not appear sufficiently accurate to distinguish between different structural models. Yet, of all the models studied, SG2009(-1) is the only one with the Mn(III) site at the Mn(C) center, which is coordinated by histidine (D1-His332). The computed histidine (14)N HFC anisotropy for SG2009(-1) gives much better agreement with ESEEM data than the other models, in which Mn(C) is an Mn(IV) site, thus supporting the validity of the model. The (13)C HFCs of various carboxylates have been compared with (13)C ENDOR data for PSII preparations with (13)C-labelled alanine.

  18. Structural study of (±) ethyl 3-acyloxy-1-azabicyclo[2.2.2]octane-3-carboxylates by 1H, 13C NMR spectroscopy, X-ray crystallography and DFT calculations

    NASA Astrophysics Data System (ADS)

    Arias-Pérez, M. S.; Cosme, A.; Gálvez, E.; Morreale, A.; Sanz-Aparicio, J.; Fonseca, I.

    2006-05-01

    1H, 13C NMR spectroscopy and DFT/B3LYP calculations were applied to investigate the conformational preferences of the ethoxycarbonyl and acyloxy groups of some α-acyloxyesters derived from (±) ethyl 3-hydroxy-1-azabicyclo[2.2.2]octane-3-carboxylate. The crystal structure of (±) ethyl 3-diphenylacetoxy-1-azabicyclo[2.2.2]octane-3-carboxylate was determined by X-ray diffraction. To correlate between calculated conformations and the structure in solution, NMR chemical shifts calculations were also performed using the GIAO approach. It has been found that the lowest energetic conformer computed gives the greatest correspondance with experimental solution and solid state data.

  19. Canopy structure and atmospheric flows in relation to the δ13C of respired CO2 in a subalpine coniferous forest

    USGS Publications Warehouse

    Schaeffer, Sean M.; Anderson, Dean E.; Burns, Sean P.; Monson, Russell K.; Sun, Jielun; Bowling, David R.

    2008-01-01

    Stable isotopes provide insight into ecosystem carbon cycling, plant physiological processes, atmospheric boundary-layer dynamics, and are useful for the integration of processes over multiple scales. Of particular interest is the carbon isotope content (δ13C) of nocturnal ecosystem-respired CO2 (δR). Recent advances in technology have made it possible to continuously examine the variation in δR within a forest canopy over relatively long time-scales (months–years). We used tunable diode laser spectroscopy to examine δR at within- and below-canopy spatial locations in a Colorado subalpine forest (the Niwot Ridge AmeriFlux site). We found a systematic pattern of increased δR within the forest canopy (δR-c) compared to that near the ground (δR-g). Values of δR-c were weakly correlated with the previous day's mean maximum daytime vapor pressure deficit (VPD). Conversely, there was a negative but still weak correlation between δR-g and time-lagged (0–5 days) daily mean soil moisture. The topography and presence of sustained nightly drainage flows at the Niwot Ridge forest site suggests that, on nights with stable atmospheric conditions, there is little mixing of air near the ground with that in the canopy. Atmospheric stability was assessed using thresholds of friction velocity, stability above the canopy, and bulk Richardson number within the canopy. When we selectively calculated δR-g and δR-c by removing time periods when ground and canopy air were well mixed, we found stronger correlations between δR-c and VPD, and δR-g and soil moisture. This suggests that there may be fundamental differences in the environmental controls on δR at sub-canopy spatial scales. These results may help explain the wide variance observed in the correlation of δR with different environmental parameters in other studies.

  20. Production of Hydrolysable Tannin-Like Structures During the Microbial Demethylation of lignin: An Assessment Using13C-Labeled Tetramethylammonium Hydroxide Thermochemolysis.

    NASA Astrophysics Data System (ADS)

    Filley, T.; Blanchette, R.; Nierop, K.; Gamblin, D.

    2003-12-01

    Phenolic compounds in soils are important mediators of microbial activity, metal mobility, soil redox, and soil organic matter building processes. Direct tannin input and the microbial decomposition of lignin in litter and soil are important contributors to this pool of phenols. The ability to accurately assess the relative differences in lignin decay (which are initiated by demethylation and side chain oxidation) among synapyl, coniferyl, and p-coumaryl components of detrital lignin requires the ability to determine microbial demethylation within the complex soil residues. Differentiating between hydrolysable tannins and contributions from advanced lignin decay can be problematic for many of the most common molecular techniques such as alkaline CuO oxidation, pyrolysis GC, and tetramethylammonium hydroxide thermochemolysis because of either the masking effects of derivatizing agents, oxidative damage to ortho-phenols or low volatility of lignin monomers. In this study we investigate lignin demethylation and polyhydroxyl-aromatic production in BC and C horizons of sandy forest soils dominated by oak, the A horizon from a red spruce forest, and controlled microbial inoculation studies of woody tissue using in-line 13C-labeled tetramethylammonium hydroxide thermochemolysis. Both white-rot and brown-rot decay resulted in syringyl demethylation, with the latter exhibiting more aggressive demethylation chemistry, while coniferyl monomer demethylation was essentially restricted to brown-rot decay. In a typical brown-rot sequence demethylation of syringyl components occurs more rapidly than coniferyl units within the same tissue and lower molecular weight fragments are likewise more demethylated than lignin monomers containing the full glycerol side chain. Demethylation of both methoxyl groups in the syringyl monomer is evident in soil horizons as well as laboratory inoculations. The latter may suggest demethylation after lignin depolymerization. Low molecular weight

  1. High-precision, systematic study of hyperfine structure in the 4f/sup N/6s/sup 2/ configuration of the neutral rare earths

    SciTech Connect

    Childs, W.J.; Goodman, L.S.; Pfeufer, V.

    1983-01-01

    Although the hyperfine structure (hfs) of many-electron atoms has been studied intensively in recent years, it is still difficult to distinguish between the competing effects of relativity and configuration interaction. The 4f/sup N/6s/sup 2/ configuration of the neutral rare earths is of particular interest because (a) the low-lying terms are relatively free of configuration interaction, and (b) trends can be examined systematically as one proceeds through the long 4f-shell. The procedure is to deduce, from the measured hfs constants of low levels, the underlying hyperfine radial integrals for comparison with ab initio predictions. Since some of these integrals are extremely sensitive to any configuration interaction and others are not, it is possible to determine both the extent and type of configuration interaction present in some cases. Prior to the start of the present research no precise hfs information existed for the entire second half of the 4f shell of the rare earths. The present measurements were designed both to provide such data and to make possible a systematic study of the hfs throughout the 4f shell. The atomic-beam, laser-rf, double-resonance method was used for the measurements. With this technique, the occurrence of a radiofrequency transition between atomic hfs levels is detected by noting an increase in the laser-induced fluorescence.

  2. Sub-Doppler two-photon-excitation Rydberg spectroscopy of atomic xenon: mass-selective studies of isotopic and hyperfine structure

    NASA Astrophysics Data System (ADS)

    Kono, Mitsuhiko; He, Yabai; Baldwin, Kenneth G. H.; Orr, Brian J.

    2016-03-01

    Mass-selective sub-Doppler two-photon excitation (TPE) spectroscopy is employed to resolve isotopic contributions for transitions to high-energy Rydberg levels of xenon in an atomic beam, using narrowband pulses of coherent ultraviolet light at 205-213 nm generated by nonlinear-optical conversion processes. Previous research (Kono et al 2013 J. Phys. B: At. Mol. Opt. Phys. 46 35401), has determined isotope energy shifts and hyperfine structure for 33 high-energy Rydberg levels of gas-phase xenon and accessed Rydberg levels at TPE energies in the range of 94 100-97 300 cm-1 with unprecedented spectroscopic resolution. The new isotopic-mass-resolved results were obtained by adding a pulsed free-jet atomic-beam source and a mass-selective time-of-flight detector to the apparatus in order to discern individual xenon isotopes and extract previously unresolved spectroscopic information. Resulting isotope energy shifts and hyperfine-coupling parameters are examined with regard to trends in principal quantum number n and in atomic angular-momentum quantum numbers, together with empirical and theoretical precedents for such trends.

  3. The Semiquinone at the Qi Site of the bc1 Complex Explored Using HYSCORE Spectroscopy and Specific Isotopic Labeling of Ubiquinone in Rhodobacter sphaeroides via 13C Methionine and Construction of a Methionine Auxotroph

    PubMed Central

    2015-01-01

    Specific isotopic labeling at the residue or substituent level extends the scope of different spectroscopic approaches to the atomistic level. Here we describe 13C isotopic labeling of the methyl and methoxy ring substituents of ubiquinone, achieved through construction of a methionine auxotroph in Rhodobacter sphaeroides strain BC17 supplemented with l-methionine with the side chain methyl group 13C-labeled. Two-dimensional electron spin echo envelope modulation (HYSCORE) was applied to study the 13C methyl and methoxy hyperfine couplings in the semiquinone generated in situ at the Qi site of the bc1 complex in its membrane environment. The data were used to characterize the distribution of unpaired spin density and the conformations of the methoxy substituents based on density functional theory calculations of 13C hyperfine tensors in the semiquinone of the geometry-optimized X-ray structure of the bc1 complex (Protein Data Bank entry 1PP9) with the highest available resolution. Comparison with other proteins indicates individual orientations of the methoxy groups in each particular case are always different from the methoxy conformations in the anion radical prepared in a frozen alcohol solution. The protocol used in the generation of the methionine auxotroph is more generally applicable and, because it introduces a gene deletion using a suicide plasmid, can be applied repeatedly. PMID:25184535

  4. Observation and analysis of the hyperfine structure of near-dissociation levels of the NaCs c +3Σ state below the dissociation limit 3 S1 /2+6 P3 /2

    NASA Astrophysics Data System (ADS)

    Liu, Wenliang; Wu, Jizhou; Ma, Jie; Li, Peng; Sovkov, Vladimir B.; Xiao, Liantuan; Jia, Suotang

    2016-09-01

    We report photoassociation (PA) of ultracold Na and Cs atoms in a dual-species magneto-optical trap. Trap loss spectroscopy of the ultracold polar NaCs molecules formed by PA, which carries information about relative PA transition strengths, has been experimentally obtained by using highly sensitive modulation spectroscopy technique. The fine and hyperfine effects at near-dissociation levels of NaCs molecular c +3Σ state are observed and modeled. The interaction Hamiltonian is described in terms of the Hund's case (a ) coupling scheme. The molecular hyperfine structure of near-dissociation levels is simulated within a simplified model of four interacting vibrational levels belonging to different initially unperturbed electronic states. The results of the simulation infer that the interaction parameters of the observed near-dissociation levels are close to the asymptotic parameters of the pair of atoms. The coupling of the electronic states is essential for forming the hyperfine structure.

  5. Control of coherence among the spins of a single electron and the three nearest neighbor {sup 13}C nuclei of a nitrogen-vacancy center in diamond

    SciTech Connect

    Shimo-Oka, T.; Miwa, S.; Suzuki, Y.; Mizuochi, N.; Kato, H.; Yamasaki, S.; Jelezko, F.

    2015-04-13

    Individual nuclear spins in diamond can be optically detected through hyperfine couplings with the electron spin of a single nitrogen-vacancy (NV) center; such nuclear spins have outstandingly long coherence times. Among the hyperfine couplings in the NV center, the nearest neighbor {sup 13}C nuclear spins have the largest coupling strength. Nearest neighbor {sup 13}C nuclear spins have the potential to perform fastest gate operations, providing highest fidelity in quantum computing. Herein, we report on the control of coherences in the NV center where all three nearest neighbor carbons are of the {sup 13}C isotope. Coherence among the three and four qubits are generated and analyzed at room temperature.

  6. Distinct fungal and bacterial δ13C signatures can drive the increase in soil δ13C with depth

    NASA Astrophysics Data System (ADS)

    Kohl, Lukas; Laganièrea, Jérôme; Edwards, Kate A.; Billings, Sharon A.; Morrill, Penny L.; Van Biesen, Geert; Ziegler, Susan E.

    2015-04-01

    results suggest that soil microorganisms primarily consume substrates that exhibit constant δ13C values throughout the soil profile, like root litter or dissolved organic carbon from litter leachates or root exudates that percolates through the soil column. δ13C values of PLFA produced by both fungi and bacteria, in contrast to the group specific PLFA, strongly increased with depth and were tightly correlated to F:B ratios (R2 > 0.84), which decreased with depth. Because group-specific PLFA did not exhibit increased δ13C with depth, the increase observed in the general biomarker δ13C values, associated with the aggregated microbial community, was not the consequence of microbial incorporation of more 13C enriched SOC at greater depth. Rather, the increase in community δ13C reflects a shift in community structure towards more 13C enriched bacteria with depth. Our results indicate that, higher δ13C values associated with microbial biomass at a greater depth likely contributes to the increase in δ13CSOC with depth via more 13C enriched contributions from necromass to SOC.

  7. Magnetic hyperfine structure of the ground-state doublet in highly charged ions 89+,87+229Th and the Bohr-Weisskopf effect

    NASA Astrophysics Data System (ADS)

    Tkalya, E. V.; Nikolaev, A. V.

    2016-07-01

    Background: The search for new opportunities to investigate the low-energy level in the 229Th nucleus, which is nowadays intensively studied experimentally, has motivated us to theoretical studies of the magnetic hyperfine (MHF) structure of the 5 /2+ (0.0 eV) ground state and the low-lying 3 /2+ (7.8 eV) isomeric state in highly charged 89+229Th and 87+229Th ions. Purpose: The aim is to calculate, with the maximal precision presently achievable, the energy of levels of the hyperfine structure of the 229Th ground-state doublet in highly charged ions and the probability of radiative transitions between these levels. Methods: The distribution of the nuclear magnetization (the Bohr-Weisskopf effect) is accounted for in the framework of the collective nuclear model with Nilsson model wave functions for the unpaired neutron. Numerical calculations using precise atomic density functional theory methods, with full account of the electron self-consistent field, have been performed for the electron structure inside and outside the nuclear region. Results: The deviations of the MHF structure for the ground and isomeric states from their values in a model of a pointlike nuclear magnetic dipole are calculated. The influence of the mixing of the states with the same quantum number F on the energy of sublevels is studied. Taking into account the mixing of states, the probabilities of the transitions between the components of the MHF structure are calculated. Conclusions: Our findings are relevant for experiments with highly ionized 229Th ions in a storage ring at an accelerator facility.

  8. Hyperfine structures, isotope shifts, and transition rates of C II, N III, and O IV from relativistic configuration interaction calculations

    SciTech Connect

    Joensson, Per Li Jiguang; Gaigalas, Gediminas; Dong Chenzhong

    2010-05-15

    Energy levels, specific mass shift parameters, hyperfine interaction constants, Landeg{sub J} factors, and transition probabilities between computed levels are reported for C II, N III, and O IV. Results include levels belonging to 2s{sup 2}2p,2s2p{sup 2},2p{sup 3},2s{sup 2}3s,2s{sup 2}3p,2s{sup 2}3d,2s2p3s and, in the case of C II, the 2s{sup 2}4s and 2s{sup 2}4p configurations. Wavefunctions were determined using the multiconfiguration Dirac-Hartree-Fock method and account for valence, core-valence, and core-core correlation effects.

  9. Hyperfine structure and nuclear hyperpolarization observed in the bound exciton luminescence of Bi donors in natural Si.

    PubMed

    Sekiguchi, T; Steger, M; Saeedi, K; Thewalt, M L W; Riemann, H; Abrosimov, N V; Nötzel, N

    2010-04-02

    As the deepest group-V donor in Si, Bi has by far the largest hyperfine interaction and also a large I = 9/2 nuclear spin. At zero field this splits the donor ground state into states having total spin 5 and 4, which are fully resolved in the photoluminescence spectrum of Bi donor bound excitons. Under a magnetic field, the 60 expected allowed transitions cannot be individually resolved, but the effects of the nuclear spin distribution, -9/2 < or = I(z) < or = 9/2, are clearly observed. A strong hyperpolarization of the nuclear spin towards I(z) = -9/2 is observed to result from the nonresonant optical excitation. This is very similar to the recently reported optical hyperpolarization of P donors observed by EPR at higher magnetic fields. We introduce a new model to explain this effect, and predict that it may be very fast.

  10. Sequential assignment of 1H, 15N, 13C resonances and secondary structure of human calmodulin-like protein determined by NMR spectroscopy.

    PubMed Central

    Qian, H.; Rogers, M. S.; Schleucher, J.; Edlund, U.; Strehler, E. E.; Sethson, I.

    1998-01-01

    Human calmodulin-like protein (CLP) is closely related to vertebrate calmodulin, yet its unique cell specific expression pattern, overlapping but divergent biochemical properties, and specific target proteins suggest that it is not an isoform of calmodulin. To gain insight into the structural differences that may underlie the difference target specificities and biochemical properties of CLP when compared to calmodulin, we determined the sequential backbone assignment and associated secondary structure of 144 out of the 148 residues of Ca2+-CLP by using multinuclear multidimensional NMR spectroscopy. Despite a very high overall degree of structural similarity between CLP and calmodulin, a number of significant differences were found mainly in the length of alpha-helices and in the central nonhelical flexible region. Interestingly, the regions of greatest primary sequence divergence between CLP and calmodulin in helices III and VIII displayed only minor secondary structure differences. The data suggest that the distinct differences in target specificity and biochemical properties of CLP and calmodulin result from the sum of several minor structural and side-chain changes spread over multiple domains in these proteins. PMID:9828009

  11. A novel Zn(4)O-based triazolyl benzoate MOF: synthesis, crystal structure, adsorption properties and solid state 13C NMR investigations.

    PubMed

    Lincke, Jörg; Lässig, Daniel; Stein, Karolin; Moellmer, Jens; Kuttatheyil, Anusree Viswanath; Reichenbach, Christian; Moeller, Andreas; Staudt, Reiner; Kalies, Grit; Bertmer, Marko; Krautscheid, Harald

    2012-01-21

    The newly synthesized Zn(4)O-based MOF (3)(∞)[Zn(4)(μ(4)-O){(Metrz-pba)(2)mPh}(3)]·8 DMF (1·8 DMF) of rare tungsten carbide (acs) topology exhibits a porosity of 43% and remarkably high thermal stability up to 430 °C. Single crystal X-ray structure analyses could be performed using as-synthesized as well as desolvated crystals. Besides the solvothermal synthesis of single crystals a scalable synthesis of microcrystalline material of the MOF is reported. Combined TG-MS and solid state NMR measurements reveal the presence of mobile DMF molecules in the pore system of the framework. Adsorption measurements confirm that the pore structure is fully accessible for nitrogen molecules at 77 K. The adsorptive pore volume of 0.41 cm(3) g(-1) correlates well with the pore volume of 0.43 cm(3) g(-1) estimated from the single crystal structure.

  12. EFFECTS OF CLIMATE CHANGE ON LABILE AND STRUCTURAL CARBON IN DOUGLAS-FIR NEEDLES AS ESTIMATED BY DELTA 13C AND C AREA MEASUREMENTS

    EPA Science Inventory

    Isotopic measurements may provide new insights into levels in leaves of labile and structural carbon (C) under climate change. In a 4-year climate change experiment using Pseudotsuga menziesii (Douglas-fir) seedlings and a 2x2 factorial design in enclosed chambers (n=3), atmosph...

  13. Successful combination of computationally inexpensive GIAO 13C NMR calculations and artificial neural network pattern recognition: a new strategy for simple and rapid detection of structural misassignments.

    PubMed

    Sarotti, Ariel M

    2013-08-07

    GIAO NMR chemical shift calculations coupled with trained artificial neural networks (ANNs) have been shown to provide a powerful strategy for simple, rapid and reliable identification of structural misassignments of organic compounds using only one set of both computational and experimental data. The geometry optimization, usually the most time-consuming step in the overall procedure, was carried out using computationally inexpensive methods (MM+, AM1 or HF/3-21G) and the NMR shielding constants at the affordable mPW1PW91/6-31G(d) level of theory. As low quality NMR prediction is typically obtained with such protocols, the decision making was foreseen as a problem of pattern recognition. Thus, given a set of statistical parameters computed after correlation between experimental and calculated chemical shifts the classification was done using the knowledge derived from trained ANNs. The training process was carried out with a set of 200 molecules chosen to provide a wide array of chemical functionalities and molecular complexity, and the results were validated with a set of 26 natural products that had been incorrectly assigned along with their 26 revised structures. The high prediction effectiveness observed makes this method a suitable test for rapid identification of structural misassignments, preventing not only the publication of wrong structures but also avoiding the consequences of such a mistake.

  14. Crystal structure and thermodynamic analysis of diagnostic mAb 106.3 complexed with BNP 5-13 (C10A)

    SciTech Connect

    Longenecker, Kenton L.; Ruan, Qiaoqiao; Fry, Elizabeth H.; Saldana, Sylvia C.; Brophy, Susan E.; Richardson, Paul L.; Tetin, Sergey Y.

    2010-09-02

    B-type natriuretic peptide (BNP) is a naturally secreted regulatory hormone that influences blood pressure and vascular water retention in human physiology. The plasma BNP concentration is a clinically recognized biomarker for various cardiovascular diseases. Quantitative detection of BNP can be achieved in immunoassays using the high-affinity monoclonal IgG1 antibody 106.3, which binds an epitope spanning residues 5-13 of the mature bioactive peptide. To understand the structural basis of this molecular recognition, we crystallized the Fab fragment complexed with the peptide epitope and determined the three-dimensional structure by X-ray diffraction to 2.1 {angstrom} resolution. The structure reveals the detailed interactions that five of the complementarity-determining regions make with the partially folded peptide. Thermodynamic measurements using fluorescence spectroscopy suggest that the interaction is enthalpy driven, with an overall change in free energy of binding, {Delta}G = -54 kJ/mol, at room temperature. The parameters are interpreted on the basis of the structural information. The kinetics of binding suggest a diffusion-limited mechanism, whereby the peptide easily adopts a bound conformation upon interaction with the antibody. Moreover, comparative analysis with alanine-scanning results of the epitope explains the basis of selectivity for BNP over other related natriuretic peptides.

  15. EFFECTS OF CLIMATE CHANGE ON LABILE AND STRUCTURAL CARBON IN DOUGLAS-FIR NEEDLES AS ESTIMATED BY DELTA 13C AND C AREA MEASUREMENTS

    EPA Science Inventory

    Isotopic measurements may provide new insights into levels in leaves of labile and structural carbon (C) under climate change. In a 4-year climate change experiment using Pseudotsuga menziesii (Douglas-fir) seedlings and a 2x2 factorial design in enclosed chambers (n=3), atmosph...

  16. Backbone and side-chain (1)H, (15)N, (13)C assignment and secondary structure of BPSL1445 from Burkholderia pseudomallei.

    PubMed

    Quilici, Giacomo; Berardi, Andrea; Gaudesi, Davide; Gourlay, Louise J; Bolognesi, Martino; Musco, Giovanna

    2015-10-01

    BPSL1445 is a lipoprotein produced by the Gram-negative bacterium Burkholderia pseudomallei (B. pseudomallei), the etiological agent of melioidosis. Immunodetection assays against sera patients using protein microarray suggest BPSL1445 involvement in melioidosis. Herein we report backbone, side chain NMR assignment and secondary structure for the recombinant protein.

  17. The NaK 1(b) 3Pi(Omega=0) state hyperfine structure and the 1(b) 3Pi(Omega=0) approximately 2(A) 1Sigma+ spin-orbit interaction.

    PubMed

    Burns, P; Wilkins, A D; Hickman, A P; Huennekens, J

    2005-02-15

    We have measured the hyperfine structure of mutually perturbing rovibrational levels of the 1(b) 3Pi0 and 2(A) 1Sigma+ states of the NaK molecule, using the perturbation-facilitated optical-optical double resonance method with copropagating lasers. The unperturbed 1(b) 3Pi0 levels are split into four hyperfine components by the Fermi contact interaction bFIS. Mixing between the 1(b) 3Pi0 and 2(A) 1Sigma+ levels imparts hyperfine structure to the nominally singlet component of the perturbed levels and reduces the hyperfine splitting of the nominally triplet component. Theoretical analysis relates these observations to the hyperfine splitting that each 1(b) 3Pi0 level would have if it were not perturbed by a 2(A) 1Sigma+ level. Using this analysis, we demonstrate that significant hyperfine splitting arises because the 1(b) 3Pi0 state cannot be described as pure Hund's case (a). We determine bF for the 1(b) 3Pi0 levels and also a more accurate value for the magnitude of the singlet-triplet spin-orbit coupling HSO=[1(b) 3Pi0(vb,J)(H(SO))2(A) 1Sigma+(vA,J). Using the known spectroscopic constants of the 1(b) 3Pi state, we obtain bF=0.009 89+/-0.000 27 cm(-1). The values of (H(SO)) are found to be between 2 and 3 cm(-1), depending on vb, vA, and J. Dividing (H(SO)) by calculated vibrational overlap integrals, and taking account of the 1(b) 3Pi(Omega) rotational mixing, we can determine the magnitude of the electronic part H(el) of H(SO). Our results yield (H(el))=(16.33+/-0.15) cm(-1), consistent with our previous determinations using different techniques.

  18. Assignments, secondary structure, global fold, and dynamics of chemotaxis Y protein using three- and four-dimensional heteronuclear (13C,15N) NMR spectroscopy.

    PubMed

    Moy, F J; Lowry, D F; Matsumura, P; Dahlquist, F W; Krywko, J E; Domaille, P J

    1994-09-06

    NMR spectroscopy has been used to study recombinant Escherichia coli CheY, a 128-residue protein involved in regulating bacterial chemotaxis. Heteronuclear three- and four-dimensional (3D and 4D) experiments have provided sequence-specific resonance assignments and quantitation of short-, medium-, and long-range distance restraints from nuclear Overhauser enhancement (NOE) intensities. These distance restraints were further supplemented with measurements of three-bond scalar coupling constants to define the local dihedral angles, and with the identification of amide protons undergoing slow solvent exchange from which hydrogen-bonding patterns were identified. The current model structure shows the same global fold of CheY as existing X-ray structures (Volz & Matsumura, 1991; Stock et al. 1993) with a (beta/alpha)5 motif of five parallel beta-strands at the central core surrounded by three alpha-helices on one face and with two on the opposite side. Heteronuclear 15N-1H relaxation experiments are interpreted to show portions of the protein structure in the Mg2+ binding loop are ill-defined because of slow motion (chemical exchange) on the NMR time scale. Moreover, the presence of Mg2+ disrupts the salt bridge between the highly conserved Lys-109 and Asp-57, the site of phosphorylation.

  19. Experimental investigation of the hyperfine spectra of Pr I-lines: Discovery of new fine structure levels with high angular momentum

    NASA Astrophysics Data System (ADS)

    Siddiqui, Imran; Khan, Shamim; Windholz, Laurentius

    2014-05-01

    We present 66 even and 58 odd parity newly discovered fine structure levels of Pr I with high angular momentum: J = 15/2, 17/2 and 19/2 and 21/2. Spectral lines in the range 4200 Å to 7500 Å were experimentally investigated using laser induced fluorescence spectroscopy in a hollow cathode discharge lamp. The levels were discovered by analysis of the recorded hyperfine patterns of the investigated transitions. More than 800 spectral lines could be classified with help of these levels. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2014-50025-7

  20. Calculation of the magnetic hyperfine structure constant of alkali metals and alkaline-earth-metal ions using the relativistic coupled-cluster method

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudip

    2017-07-01

    The Z -vector method in the relativistic coupled-cluster framework is used to calculate the magnetic hyperfine structure constant (AJ) of alkali metals and singly charged alkaline earth metals in their ground state electronic configuration. The Z -vector results are in very good agreement with the experiment. The AJ values of Li, Na, K, Rb, Cs, Be+, Mg+, Ca+, and Sr+ obtained in the Z -vector method are compared with the extended coupled-cluster results taken from Phys. Rev. A 91, 022512 (2015), 10.1103/PhysRevA.91.022512. The same basis and cutoff are used for the comparison purpose. The comparison shows that the Z -vector method with the single and double approximation can produce a more precise wave function in the nuclear region than the ECC method.

  1. THE HYPERFINE STRUCTURE OF THE ROTATIONAL SPECTRUM OF HDO AND ITS EXTENSION TO THE THz REGION: ACCURATE REST FREQUENCIES AND SPECTROSCOPIC PARAMETERS FOR ASTROPHYSICAL OBSERVATIONS

    SciTech Connect

    Cazzoli, Gabriele; Lattanzi, Valerio; Puzzarini, Cristina; Alonso, José Luis; Gauss, Jürgen

    2015-06-10

    The rotational spectrum of the mono-deuterated isotopologue of water, HD{sup 16}O, has been investigated in the millimeter- and submillimeter-wave frequency regions, up to 1.6 THz. The Lamb-dip technique has been exploited to obtain sub-Doppler resolution and to resolve the hyperfine (hf) structure due to the deuterium and hydrogen nuclei, thus enabling the accurate determination of the corresponding hf parameters. Their experimental determination has been supported by high-level quantum-chemical calculations. The Lamb-dip measurements have been supplemented by Doppler-limited measurements (weak high-J and high-frequency transitions) in order to extend the predictive capability of the available spectroscopic constants. The possibility of resolving hf splittings in astronomical spectra has been discussed.

  2. Structure and reactivity of lithium amides. /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies and colligative measurements of lithium diphenylamide and lithium diphenylamide-lithium bromide complex solvated by tetrahydrofuran

    SciTech Connect

    DePue, J.S.; Collum, D.B.

    1988-08-03

    /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies of lithium diphenylamide in THF/hydrocarbon solutions (THF = tetrahydrofuran) detected two different species. /sup 6/Li and /sup 15/N NMR spectroscopic studies of (/sup 6/Li, /sup 15/N)lithium diphenylamide showed the species observed at low THF concentrations to be a cyclic oligomer. Structural analogies provided strong support for a dimer while colligative measurements at 0/degrees/C indicated the dimer to be di- or trisolvated. On the basis of the observed mass action effects, the species appearing at intermediate THF concentrations is assigned as a contact or solvent-separated ion-paired monomer. Lithium diphenylamide forms a 1:1 adduct with lithium bromide at low THF concentrations. A combination of /sup 6/Li-/sup 15/N double labeling studies and colligative measurements supports a trisolvated cyclic mixed dimer structure. Although detailed spectroscopic studies at elevated THF concentrations were precluded by high fluctionality, the similarity of the /sup 13/C chemical shifts of lithium diphenylamide in the presence and absence of lithium bromide provide indirect evidence that the mixed dimer undergoes a THF concentration dependent dissociation to the monomeric amide and free lithium bromide. 24 references, 9 figures, 2 tables.

  3. Defining fish community structure in Lake Winnipeg using stable isotopes (δ(13)C, δ(15)N, δ(34)S): implications for monitoring ecological responses and trophodynamics of mercury & other trace elements.

    PubMed

    Ofukany, Amy F A; Wassenaar, Leonard I; Bond, Alexander L; Hobson, Keith A

    2014-11-01

    The ecological integrity of freshwater lakes is influenced by atmospheric and riverine deposition of contaminants, shoreline development, eutrophication, and the introduction of non-native species. Changes to the trophic structure of Lake Winnipeg, Canada, and consequently, the concentrations of contaminants and trace elements measured in tissues of native fishes, are likely attributed to agricultural runoff from the 977,800 km(2) watershed and the arrival of non-native zooplankters and fishes. We measured δ(13)C, δ(15)N, and δ(34)S along with concentrations of 15 trace elements in 17 native fishes from the north and south basins of Lake Winnipeg in 2009 and 2010. After adjusting for differences in isotopic baseline values between the two basins, fishes in the south basin had consistently higher δ(13)C and δ(34)S, and lower δ(15)N. We found little evidence of biomagnification of trace elements at the community level, but walleye (Sander vitreus) and freshwater drum (Aplodinotus grunniens) had higher mercury and selenium concentrations with increased trophic position, coincident with increased piscivory. There was evidence of growth dilution of cobalt, copper, manganese, molybdenum, thallium, and vanadium, and bioaccumulation of mercury, which could be explained by increases in algal (and consequently, lake and fish) productivity. We conclude that the north and south basins of Lake Winnipeg represent very different communities with different trophic structures and trace element concentrations.

  4. Biosynthesis of curdlan from culture media containing 13C-labeled glucose as the carbon source.

    PubMed

    Kai, A; Ishino, T; Arashida, T; Hatanaka, K; Akaike, T; Matsuzaki, K; Kaneko, Y; Mimura, T

    1993-02-24

    13C-Labeled curdlans were biosynthesized by Agrobacterium sp. (ATCC 31749) from culture media containing D-(1-13C)glucose, D-(6-13C)glucose, or D-(2-13C)glucose as the carbon source, and their structures were analyzed by 13C NMR spectroscopy. The labeling was mainly found in the original position, that is, C-1, C-6, or C-2, indicating direct polymerization of introduced glucose. In addition, C-3 in curdlan obtained from D-(1-13C)glucose, C-1 in curdlan obtained from D-(6-13C)glucose, and C-1 and C-3 in curdlan obtained from D-(2-13)glucose were labeled. From analysis of this labeling, the biosynthesis of curdlan was interpreted as involving five routes: (1) direct synthesis from glucose; (2) rearrangement (1-13C-->3-13C); and (3) isomerization (6-13C-->1-13C) of cleaved trioses by the Embden-Meyerhof pathway, followed by neogenesis of glucose and formation of curdlan; (4) from fructose 6-phosphate formed in the pentose cycle (2-13C-->1-13C, 3-13C); and (5) neogenesis of glucose from fragments produced in various pathways of glycolysis. The 13C-labeling at C-6 and C-2 in the starting glucoses is well preserved in the C-6 carbon and the C-1 to C-3 carbons, respectively, in the curdlan produced.

  5. The rotational spectra, potential function, Born-Oppenheimer breakdown, and hyperfine structure of GeSe and GeTe

    NASA Astrophysics Data System (ADS)

    Giuliano, Barbara M.; Bizzocchi, Luca; Sanchez, Raquel; Villanueva, Pablo; Cortijo, Vanessa; Sanz, M. Eugenia; Grabow, Jens-Uwe

    2011-08-01

    The pure rotational spectra of 18 and 21 isotopic species of GeSe and GeTe have been measured in the frequency range 5-24 GHz using a Fabry-Pérot-type resonator pulsed-jet Fourier-transform microwave spectrometer. Gaseous samples of both chalcogenides were prepared by a combined dc discharge/laser ablation technique and stabilized in supersonic jets of Ne. Global multi-isotopologue analyses of the derived rotational data, together with literature high-resolution infrared data, produced very precise Dunham parameters, as well as rotational constant Born-Oppenheimer breakdown (BOB) coefficients (δ01) for Ge, Se, and Te. A direct fit of the same datasets to an appropriate radial Hamiltonian yielded analytic potential-energy functions and BOB radial functions for the X1Σ+ electronic state of both GeSe and GeTe. Additionally, the electric quadrupole and magnetic hyperfine interactions produced by the nuclei 73Ge, 77Se, and 125Te were observed, yielding much improved quadrupole coupling constants and first determinations of the spin-rotation parameters.

  6. New guidelines for δ13C measurements

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Gehre, Matthias; Groning, Manfred; Meijer, Harro A. J.; Toman, Blaza; Verkouteren, R. Michael

    2006-01-01

    Consistency of δ13C measurements can be improved 39−47% by anchoring the δ13C scale with two isotopic reference materials differing substantially in 13C/12C. It is recommended thatδ13C values of both organic and inorganic materials be measured and expressed relative to VPDB (Vienna Peedee belemnite) on a scale normalized by assigning consensus values of −46.6‰ to L-SVEC lithium carbonate and +1.95‰ to NBS 19 calcium carbonate. Uncertainties of other reference material values on this scale are improved by factors up to two or more, and the values of some have been notably shifted:  the δ13C of NBS 22 oil is −30.03%.

  7. Combined experimental and theoretical studies on the X-ray crystal structure, FT-IR, 1H NMR, 13C NMR, UV-Vis spectra, NLO behavior and antimicrobial activity of 2-hydroxyacetophenone benzoylhydrazone.

    PubMed

    Sheikhshoaie, Iran; Ebrahimipour, S Yousef; Sheikhshoaie, Mahdeyeh; Rudbari, Hadi Amiri; Khaleghi, Moj; Bruno, Giuseppe

    2014-04-24

    A Schiff base ligand, 2-hydroxyacetophenone benzoylhydrazone (HL) was synthesized and fully characterized with FT-IR, elemental analyses, UV-Vis, (1)H NMR and (13)C NMR spectra. DFT calculations using B3LYP/6-31+G(d,p) and PW91/DZP are performed to optimize the molecular geometry. Optimized structures are used to calculate FT-IR, UV-Vis, (1)H NMR and (13)C NMR spectra of the compound. Also the energies of the frontier molecular orbitals (FMOs) have been determined. The results obtained from the optimization and spectral analyses are in good agreement with the experimental data. To investigate non-linear optical properties, the electric dipole moment (μ), polarizability (α) and molecular first hyperpolarizability (β) were computed. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the compound can be a good candidate of nonlinear optical materials. In addition, the minimal inhibitory concentration (MIC) of this compound against Staphylococcus aureus, and Candida albicans was determined.

  8. Solving the Tautomeric Equilibrium of Purine Through the Analysis of the Complex Hyperfine Structure of the Four 14N Nuclei

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Uriarte, Iciar; Ecija, Patricia; Favero, Laura B.; Spada, Lorenzo; Calabrese, Camilla; Caminati, Walther

    2016-06-01

    Microwave spectroscopy has been restricted to the investigation of small molecules in the last years. However, with the advent of FTMW and CP-FTMW spectroscopies coupled with laser vaporization techniques it has turned into a very competitive methodology in the studies of moderate-size biomolecules. Here, we present the study of purine, characterized by two aromatic rings, one six- and one five-membered, fused together to give a planar aromatic bicycle. Biologically, it is the mainframe of two of the five nucleobases of DNA and RNA. Two tautomers were observed by FTMW spectroscopy coupled to UV ultrafast laser vaporization system. The population ratio of the two main tautomers [N(7)H]/[N(9)H] is about 1/40 in the gas phase. It contrasts with the solid state where only the N(7)H species is present, or in solution where a mixture of both tautomers is observed. For both species, a full quadrupolar hyperfine analysis has been performed. This has led to the determination of the full sets of diagonal quadrupole coupling constants of the four 14N atoms, which have provided crucial information for the unambiguous identification of both species. T. J. Balle and W. H. Flygare Rev. Sci. Instrum. 52, 33-45, 1981 J.-U. Grabow, W. Stahl and H. Dreizler Rev. Sci. Instrum. 67, 4072-4084, 1996 G. G. Brown, B. D. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman and B. H. Pate Rev. Sci. Instrum. 79, 0531031/1-053103/13, 2008 E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012

  9. NMR study of non-structural proteins--part II: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Venezuelan equine encephalitis virus (VEEV).

    PubMed

    Makrynitsa, Garyfallia I; Ntonti, Dioni; Marousis, Konstantinos D; Tsika, Aikaterini C; Lichière, Julie; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-10-01

    Macro domains consist of 130-190 amino acid residues and appear to be highly conserved in all kingdoms of life. Intense research on this field has shown that macro domains bind ADP-ribose and other similar molecules, but their exact function still remains intangible. Macro domains are highly conserved in the Alphavirus genus and the Venezuelan equine encephalitis virus (VEEV) is a member of this genus that causes fatal encephalitis to equines and humans. In this study we report the high yield recombinant expression and preliminary solution NMR study of the macro domain of VEEV. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure predicted by TALOS+. The protein shows a unique mixed α/β-fold.

  10. Biomagnification profiles of polycyclic aromatic hydrocarbons, alkylphenols and polychlorinated biphenyls in Tokyo Bay elucidated by delta13C and delta15N isotope ratios as guides to trophic web structure.

    PubMed

    Takeuchi, Ichiro; Miyoshi, Noriko; Mizukawa, Kaoruko; Takada, Hideshige; Ikemoto, Tokutaka; Omori, Koji; Tsuchiya, Kotaro

    2009-05-01

    Biomagnification profiles of polycyclic aromatic hydrocarbons (PAHs), alkylphenols, and polychlorinated biphenyls (PCBs) from the innermost part of Tokyo Bay, Japan were analyzed using stable carbon (delta(13)C) and nitrogen (delta(15)N) isotope ratios as guides to trophic web structure. delta(15)N analysis indicated that all species of mollusks tested were primary consumers, while decapods and fish were secondary consumers. Higher concentrations of PCBs occurred in decapods and fish than in mollusks. In contrast, concentrations of PAHs and alkylphenols were lower in decapods and fish than in mollusks. Unlike PCBs, whose concentrations largely increased with increasing delta(15)N (i.e. increasing trophic level), all PAHs and alkylphenols analyzed followed a reverse trend. Molecular weights of PAHs are lower than those of PCBs, therefore low membrane permeability caused by large molecular size is an unlikely factor in the "biodilution" of PAHs. Organisms at higher trophic levels may rapidly metabolize PAHs or they may assimilate less of them.

  11. Uniform {sup 15}N- and {sup 15}N/{sup 13}C-labeling of proteins in mammalian cells and solution structure of the amino terminal fragment of u-PA

    SciTech Connect

    Hansen, A.P.; Petros, A.M.; Meadows, R.P.; Mazar, A.P.; Nettesheim, D.G.; Pederson, T.M.; Fesik, S.W.

    1994-12-01

    Urokinase-type plasminogen activator (u-PA) is a 54-kDa glycoprotein that catalyzes the conversion of plasminogen to plasmin, a broad-specificity protease responsible for the degradation of fibrin clots and extracellular matrix components. The u-PA protein consists of three individual modules: a growth factor domain (GFD), a kringle, and a serine protease domain. The amino terminal fragment (ATF) includes the GFD-responsible for u-PA binding to its receptor-and the kringle domains. This protein was expressed and uniformly {sup 15}N-and {sup 15}N/{sup 13}C-labeled in mammalian cells by methods that will be described. In addition, we present the three-dimensional structure of ATF that was derived from 1299 NOE-derived distance restraints along with the {phi} angle and hydrogen bonding restraints. Although the individual domains in the structures were highly converged, the two domains are structurally independent. The overall structures of the individual domains are very similar to the structures of homologous proteins. However, important structural differences between the growth factor domain of u-PA and other homologous proteins were observed in the region that has been implicated in binding the urokinase receptor. These results may explain, in part, why other growth factors show no appreciable affinity for the urokinase receptor.

  12. FT-IR, UV-vis, 1H and 13C NMR spectra and the equilibrium structure of organic dye molecule disperse red 1 acrylate: a combined experimental and theoretical analysis.

    PubMed

    Cinar, Mehmet; Coruh, Ali; Karabacak, Mehmet

    2011-12-01

    This study reports the characterization of disperse red 1 acrylate compound by spectral techniques and quantum chemical calculations. The spectroscopic properties were analyzed by FT-IR, UV-vis, (1)H NMR and (13)C NMR techniques. FT-IR spectrum in solid state was recorded in the region 4000-400 cm(-1). The UV-vis absorption spectrum of the compound that dissolved in methanol was recorded in the range of 200-800 nm. The (1)H and (13)C NMR spectra were recorded in CDCl(3) solution. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. A satisfactory consistency between the experimental and theoretical spectra was obtained and it shows that the hybrid DFT method is very useful in predicting accurate vibrational structure, especially for high-frequency region. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties were performed by timedependent DFT (TD-DFT) and CIS(D) approach. To investigate non linear optical properties, the electric dipole moment μ, polarizability α, anisotropy of polarizability Δα and molecular first hyperpolarizability β were computed. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the compound can be a good candidate of nonlinear optical materials.

  13. Photochemically induced nuclear spin polarization in reaction centers of photosystem II observed by 13C-solid-state NMR reveals a strongly asymmetric electronic structure of the P680.+ primary donor chlorophyll

    PubMed Central

    Matysik, Jörg; Alia; Gast, Peter; van Gorkom, Hans J.; Hoff, Arnold J.; de Groot, Huub J. M.

    2000-01-01

    We report 13C magic angle spinning NMR observation of photochemically induced dynamic nuclear spin polarization (photo- CIDNP) in the reaction center (RC) of photosystem II (PS2). The light-enhanced NMR signals of the natural abundance 13C provide information on the electronic structure of the primary electron donor P680 (chlorophyll a molecules absorbing around 680 nm) and on the pz spin density pattern in its oxidized form, P680⨥. Most centerband signals can be attributed to a single chlorophyll a (Chl a) cofactor that has little interaction with other pigments. The chemical shift anisotropy of the most intense signals is characteristic for aromatic carbon atoms. The data reveal a pronounced asymmetry of the electronic spin density distribution within the P680⨥. PS2 shows only a single broad and intense emissive signal, which is assigned to both the C-10 and C-15 methine carbon atoms. The spin density appears shifted toward ring III. This shift is remarkable, because, for monomeric Chl a radical cations in solution, the region of highest spin density is around ring II. It leads to a first hypothesis as to how the planet can provide itself with the chemical potential to split water and generate an oxygen atmosphere using the Chl a macroaromatic cycle. A local electrostatic field close to ring III can polarize the electronic charge and associated spin density and increase the redox potential of P680 by stabilizing the highest occupied molecular orbital, without a major change of color. This field could be produced, e.g., by protonation of the keto group of ring V. Finally, the radical cation electronic structure in PS2 is different from that in the bacterial RC, which shows at least four emissive centerbands, indicating a symmetric spin density distribution over the entire bacteriochlorophyll macrocycle. PMID:10944191

  14. Monomeric and dimeric structures analysis and spectroscopic characterization of 3,5-difluorophenylboronic acid with experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV) techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Kose, Etem; Atac, Ahmet; Asiri, Abdullah M.; Kurt, Mustafa

    2014-01-01

    The spectroscopic properties of 3,5-difluorophenylboronic acid (3,5-DFPBA, C6H3F2B(OH)2) were investigated by FT-IR, FT-Raman UV-Vis, 1H and 13C NMR spectroscopic techniques. FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-10 cm-1) in the solid phase and 1H and 13C NMR spectra in DMSO solution were recorded. The UV spectra that dissolved in ethanol and water were recorded in the range of 200-400 nm for each solution. The structural and spectroscopic data of the molecule have been obtained for possible three conformers from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Hydrogen-bonded dimer of title molecule, optimized by counterpoise correction, was also studied B3LYP at the 6-311++G(d,p) level and the effects of molecular association through O-H⋯O hydrogen bonding have been discussed. 1H and 13C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. The effects due to the substitutions of boric acid group and halogen were investigated. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP), nonlinear optical properties (NLO) and thermodynamic features were performed.

  15. 13C NMR of tunnelling methyl groups

    NASA Astrophysics Data System (ADS)

    Detken, A.

    The dipolar interactions between the protons and the central 13C nucleus of a 13CH3 group are used to study rotational tunnelling and incoherent dynamics of such groups in molecular solids. Single-crystal 13C NMR spectra are derived for arbitrary values of the tunnel frequency upsilon t. Similarities to ESR and 2H NMR are pointed out. The method is applied to three different materials. In the hydroquinone/acetonitrile clathrate, the unique features in the 13C NMR spectra which arise from tunnelling with a tunnel frequency that is much larger than the dipolar coupling between the methyl protons and the 13C nucleus are demonstrated, and the effects of incoherent dynamics are studied. The broadening of the 13C resonances is related to the width of the quasi-elastic line in neutron scattering. Selective magnetization transfer experiments for studying slow incoherent dynamics are proposed. For the strongly hindered methyl groups of L-alanine, an upper limit for upsilon is derived from the 13C NMR spectrum. In aspirinTM (acetylsalicylic acid), incoherent reorientations dominate the spectra down to the lowest temperatures studied; their rate apparently increases with decreasing temperature below 25K.

  16. Glucogenesis in an insect, Manduca sexta L., estimated from the 13C isotopomer distribution in trehalose synthesized from [1,3-13C2]glycerol.

    PubMed

    Thompson, S N

    1997-07-19

    Glucogenesis from [3-13C]alanine and [1,3-13C2]glycerol was demonstrated in the insect Manduca sexta by examining the 13C enrichment of trehalose, a non-reducing disaccharide of glucose synthesized in the insect fat body and released into the blood or hemolymph. In insects maintained on a low carbohydrate diet, trehalose synthesized from [3-13C]alanine was selectively enriched at C1 and C6, and C2 and C5. The 13C-labelling pattern indicated the carboxylation of [3-13C]pyruvate, formed by transamination of the [3-13C]alanine followed by randomization of the label at the fumarate step of the tricarboxylic acid cycle and glucose synthesis via the gluconeogenic pathway. 13C enrichment of trehalose was absent in similarly maintained insect larvae administered 3-mercaptopicolinic acid, an inhibitor of hepatic phosphoenolpyruvate carboxykinase. Insects on the low carbohydrate diet also synthesized trehalose from [1,3-13C2]glycerol. 13C multiplets were observed in trehalose C3 and C4 demonstrating the synthesis of three 13C enriched glucose isotopomers from the 13C-labelled glycerol. The relative contributions of 13C-labelled glycerol and unlabelled 3 carbon substrates to the synthesis of the 13C enriched trehalose isotopomers were determined from the multiplet structure at C3, and calculation of minimal rates of glucogenesis were based on the 13C enrichment of C4. The C4/C3 13C enrichment ratio in trehalose synthesized from [1,3-13C2]glycerol was close to unity, and total glucogenesis was calculated after estimation of the expected contribution of unlabelled trehalose synthesis from 3 carbon substrates by comparison of the ratio of unlabelled and labelled contributions to the 13C enriched trehalose isotopomers with the 13C enrichment of [1,3-13C2]glycerol-3-phosphate. The estimated total rates of glucogenesis varied from 0.33 to 2.80 micromol glucose/g fresh weight/h. The blood sugar level of M. sexta was also highly variable. Although the potential importance of

  17. Global ocean climatology of the 13C Suess effect and preindustrial δ13C

    NASA Astrophysics Data System (ADS)

    Eide, Marie; Olsen, Are; Ninnemann, Ulysses; Eldevik, Tor; Johannessen, Truls

    2017-04-01

    We present the first observationally based estimate of the full global ocean 13C Suess effect since preindustrial times. This was constructed by using Olsen and Ninnemann's [2010] back-calculation method to calculate the 13C Suess effect with data from 29 cruises spanning the world ocean. We find a strong 13C Suess effect in the upper 1000 m of all basins, with strongest decrease in the Subtropical Gyres of the Northern Hemisphere, where δ13C has decreased by more than 0.8‰ since the industrial revolution. At greater depths, a significant 13C Suess effect can only be detected in the northern parts of the North Atlantic Ocean. The magnitude of the 13C Suess effect is correlated with the concentration of anthropogenic carbon, but their relationship varying strongly between water masses, reflecting the degree to which source waters are equilibrated with the atmospheric 13C Suess effect before sinking. From the 13C Suess effect estimates, we have estimated the preindustrial δ13C (δ13CPI) along the 29 sections. Further, we developed regional multilinear regression equations, which were applied on the World Ocean Atlas data to construct the δ13CPI climatology, which reveals the natural δ13C distribution in the global ocean. Compared to the modern distribution, the preindustrial δ13C spans a larger range of values, and we find that in some regions in the high northern latitudes, the gradient in modern ocean δ13C is completely reversed compared to the preindustrial. Maximum δ13CPI, of up to 1.8‰, are found in the subtropical gyres of all basins, in the upper and intermediate waters of the North Atlantic, as well as in mode waters with a Southern Ocean origin. Particularly strong gradients occur at intermediate depths, revealing a strong potential for using δ13C as a tracer for changes in water mass geometry at these levels. Further, we identify a much tighter relationship between δ13C and Apparent Oxygen Utilization (AOU) than between δ13C and phosphate that

  18. The Fourier transform microwave spectrum of the arsenic dicarbide radical (CCAs: X~ 2Π1/2) and its 13C isotopologues

    NASA Astrophysics Data System (ADS)

    Sun, M.; Clouthier, D. J.; Ziurys, L. M.

    2009-12-01

    The pure rotational spectrum of the CCAs radical in its ground electronic and spin state, X˜Π1/22, has been measured using Fourier transform microwave techniques in the frequency range of 12-40GHz. This species was created in a supersonic expansion from a reaction mixture of AsCl3 and C2H2 or CH4 diluted in high pressure argon, using a pulsed nozzle containing a dc discharge source. Three rotational transitions were measured for the main isotopologue, C12C12As, in the Ω =1/2 ladder; both lambda-doubling and arsenic (I=3/2) hyperfine interactions were observed in these spectra. In addition, two to four rotational transitions were recorded for the C13C13As, C13C12As, and C12C13As species. In these three isotopologues, hyperfine splittings were also resolved arising from the C13 nuclei (I=1/2), creating complex spectral patterns. The CCAs spectra were analyzed with a case (a) Hamiltonian, and effective rotational, lambda-doubling, and arsenic and carbon-13 hyperfine constants were determined for the Ω =1/2 ladder. From the effective rotational constants of the four isotopologues, an rm(1) structure has been derived with rC -C=1.287Å and rC -As=1.745Å. These bond lengths indicate that the predominant structure for arsenic dicarbide is C CAsṡ, with some contributing C C and C As triple bond characters. The hyperfine constants established in this work indicate that about 2/3 of the unpaired electron density lies on the arsenic atom, with the remaining percentage on the terminal carbon. The value of the arsenic quadrupole coupling constant (eqQ=-202MHz) suggests that the As-C bond has a mixture of covalent and ionic characters, consistent with theoretical predictions that both π backbonding and electron transfer play a role in creating a linear, as opposed to a cyclic, structure for certain heteroatom dicarbides.

  19. Vanadium bisimide bonding investigated by X-ray crystallography, 51V and 13C nuclear magnetic resonance spectroscopy, and V L(3,2)-edge X-ray absorption near-edge structure spectroscopy.

    PubMed

    La Pierre, Henry S; Minasian, Stefan G; Abubekerov, Mark; Kozimor, Stosh A; Shuh, David K; Tyliszczak, Tolek; Arnold, John; Bergman, Robert G; Toste, F Dean

    2013-10-07

    Syntheses of neutral halide and aryl vanadium bisimides are described. Treatment of VCl2(NtBu)[NTMS(N(t)Bu)], 2, with PMe3, PEt3, PMe2Ph, or pyridine gave vanadium bisimides via TMSCl elimination in good yield: VCl(PMe3)2(N(t)Bu)2 3, VCl(PEt3)2(N(t)Bu)2 4, VCl(PMe2Ph)2(N(t)Bu)2 5, and VCl(Py)2(N(t)Bu)2 6. The halide series (Cl-I) was synthesized by use of TMSBr and TMSI to give VBr(PMe3)2(N(t)Bu)2 7 and VI(PMe3)2(N(t)Bu)2 8. The phenyl derivative was obtained by reaction of 3 with MgPh2 to give VPh(PMe3)2(N(t)Bu)2 9. These neutral complexes are compared to the previously reported cationic bisimides [V(PMe3)3(N(t)Bu)2][Al(PFTB)4] 10, [V(PEt3)2(N(t)Bu)2][Al(PFTB)4] 11, and [V(DMAP)(PEt3)2(N(t)Bu)2][Al(PFTB)4] 12 (DMAP = dimethylaminopyridine, PFTB = perfluoro-tert-butoxide). Characterization of the complexes by X-ray diffraction, (13)C NMR, (51)V NMR, and V L(3,2)-edge X-ray absorption near-edge structure (XANES) spectroscopy provides a description of the electronic structure in comparison to group 6 bisimides and the bent metallocene analogues. The electronic structure is dominated by π bonding to the imides, and localization of electron density at the nitrogen atoms of the imides is dictated by the cone angle and donating ability of the axial neutral supporting ligands. This phenomenon is clearly seen in the sensitivity of (51)V NMR shift, (13)C NMR Δδ(αβ), and L3-edge energy to the nature of the supporting phosphine ligand, which defines the parameters for designing cationic group 5 bisimides that would be capable of breaking stronger σ bonds. Conversely, all three methods show little dependence on the variable equatorial halide ligand. Furthermore, this analysis allows for quantification of the electronic differences between vanadium bisimides and the structurally analogous mixed Cp/imide system CpV(N(t)Bu)X2 (Cp = C5H5(1-)).

  20. Hyperfine interaction in hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Garcia, Noel; Melle, Manuel; Fernandez-Rossier, Joaquin

    We study the hyperfine interaction of Hydrogen chemisorbed in graphene nanostructures with a gap in their spectrum, such as islands and ribbons. Chemisorption of Hydrogen on graphene results in a bound in-gap state that hosts a single electron localized around the adatom. Using both density functional theory and a four-orbital tight-binding model we study the hyperfine interaction between the hydrogen nuclear spin and the conduction electrons in graphene. We find that the strength of the hyperfine interaction decreases for larger nanostructures for which the energy gap is smaller. We then compare the results of the hyperfine interaction for large nanostructures with those of graphene 2D crystal with a periodic arrangement of chemisorbed Hydrogen atoms, obtaining very similar results. The magnitude of the hyperfine interaction is about 150 MHz, in line with that of Si:P. We acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH.

  1. Multistep approach for the structural identification of biotransformation products of iodinated X-ray contrast media by liquid chromatography/hybrid triple quadrupole linear ion trap mass spectrometry and (1)H and (13)C nuclear magnetic resonance.

    PubMed

    Kormos, Jennifer Lynne; Schulz, Manoj; Wagner, Manfred; Ternes, Thomas A

    2009-11-15

    This study investigated the application of a hybrid triple quadrupole linear ion trap mass spectrometer (Qq-LIT-MS) in combination with NMR to elucidate the chemical structures of 27 biotransformation products (TPs) of the nonionic iodinated X-ray contrast media (ICM), iohexol, iomeprol, and iopamidol, formed in contact with soil. The combination of MS(2) and MS(3) spectra with Qq-LIT-MS was essential to determine the MS fragmentation pathways crucial for structural elucidation. (1)H and (13)C NMR analyses were needed to confirm the chemical structures of TPs proposed by MS fragmentation. Biotransformation occurred exclusively at the side chains of the iodinated X-ray contrast media, while the iodinated benzene ring remained unaltered. Several of the newly identified TPs of the ICM were found in surface water, groundwater, and even drinking water. Concentrations as high as 1450 +/- 110 ng/L (iomeprol TP629) were detected in groundwater that is influenced by wastewater infiltration, and as high as 289 +/- 41 ng/L (iomeprol TP643) in drinking water.

  2. 3D 13C- 13C- 13C correlation NMR for de novo distance determination of solid proteins and application to a human α-defensin

    NASA Astrophysics Data System (ADS)

    Li, Shenhui; Zhang, Yuan; Hong, Mei

    2010-02-01

    The de novo structure of an antimicrobial protein, human α-defensin 1 (HNP-1), is determined by combining a 3D 13C- 13C- 13C (CCC) magic-angle spinning (MAS) correlation experiment with standard resonance assignment experiments. Using a short spin diffusion mixing time to assign intra-residue cross peaks and a long mixing time to detect inter-residue correlation peaks, we show that the 3D CCC experiment not only reduces the ambiguity of resonance assignment, but more importantly yields two orders of magnitude more long-range distances without recourse to existing crystal structures. Most of these distance constraints could not be obtained in a de novo fashion from 2D correlation spectra due to significant resonance overlap. Combining the distance constraints from the 3D CCC experiment and the chemical-shift-derived torsion angles, we obtained a de novo high-resolution NMR structure of HNP-1, with a heavy-atom RMSD of 3.4 Å from the crystal structure of the analogous HNP-3. The average energy of the minimum-energy ensemble is less than of 40 kcal/mol. Thus, the 3D CCC experiment provides a reliable means of restraining the three-dimensional structure of insoluble proteins with unknown conformations.

  3. 3D (13)C-(13)C-(13)C correlation NMR for de novo distance determination of solid proteins and application to a human alpha-defensin.

    PubMed

    Li, Shenhui; Zhang, Yuan; Hong, Mei

    2010-02-01

    The de novo structure of an antimicrobial protein, human alpha-defensin 1 (HNP-1), is determined by combining a 3D (13)C-(13)C-(13)C (CCC) magic-angle spinning (MAS) correlation experiment with standard resonance assignment experiments. Using a short spin diffusion mixing time to assign intra-residue cross peaks and a long mixing time to detect inter-residue correlation peaks, we show that the 3D CCC experiment not only reduces the ambiguity of resonance assignment, but more importantly yields two orders of magnitude more long-range distances without recourse to existing crystal structures. Most of these distance constraints could not be obtained in a de novo fashion from 2D correlation spectra due to significant resonance overlap. Combining the distance constraints from the 3D CCC experiment and the chemical-shift-derived torsion angles, we obtained a de novo high-resolution NMR structure of HNP-1, with a heavy-atom RMSD of 3.4A from the crystal structure of the analogous HNP-3. The average energy of the minimum-energy ensemble is less than of 40kcal/mol. Thus, the 3D CCC experiment provides a reliable means of restraining the three-dimensional structure of insoluble proteins with unknown conformations. Copyright 2009 Elsevier Inc. All rights reserved.

  4. Electroelastic hyperfine tuning of phosphorus donors in silicon.

    PubMed

    Dreher, L; Hilker, T A; Brandlmaier, A; Goennenwein, S T B; Huebl, H; Stutzmann, M; Brandt, M S

    2011-01-21

    We demonstrate an electroelastic control of the hyperfine interaction between nuclear and electronic spins opening an alternative way to address and couple spin-based qubits. The hyperfine interaction is measured by electrically detected magnetic resonance in phosphorus-doped silicon epitaxial layers employing a hybrid structure consisting of a silicon-germanium virtual substrate and a piezoelectric actuator. By applying a voltage to the actuator, the hyperfine interaction is changed by up to 0.9 MHz, which would be enough to shift the phosphorus donor electron spin out of resonance by more than one linewidth in isotopically purified 28Si.

  5. Hyperfine structure and magnetic properties of Zn doped Co{sub 2}Z hexaferrite investigated by high-field Mössbauer spectroscopy

    SciTech Connect

    Lim, Jung Tae; Kim, Chul Sung

    2015-05-07

    The polycrystalline samples of Ba{sub 3}Co{sub 2−x}Zn{sub x}Fe{sub 24}O{sub 41} (x = 0.0, 0.5, 1.0, 1.5, and 2.0) were synthesized by the standard solid-state-reaction method. Based on the XRD patterns analyzed by Rietveld refinement, the structure was determined to be single-phased hexagonal with space group of P6{sub 3}/mmc. With increasing Zn ion concentration, the unit cell volume (V{sub u}) of samples was increased, as the sites of Fe{sup 3+} ions changed from tetrahedral to octahedral sites. We have obtained zero-field Mössbauer spectra of all samples at various temperatures ranging from 4.2 to 750 K. The measured spectra below T{sub C} were analyzed with six distinguishable sextets due to the superposition of ten-sextets for Fe sites, corresponding to the Z-type hexagonal ferrite. Also, the hyperfine field (H{sub hf}) and electric quadrupole shift (E{sub Q}) have shown abrupt changes around spin transition temperature (T{sub S}). In addition, Mössbauer spectra of all samples at 4.2 K were taken with an applied field ranging from 0 to 50 kOe, which indicates the decrease in the canting angle between applied field and H{sub hf} of samples with increasing Zn concentration.

  6. Hyperfine structure analysis in the intense spectral lines of the neutral Cu atom falling in the 353-809 nm wavelength region using a Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Ankush, B. K.; Deo, M. N.

    2014-02-01

    Hyperfine structure analyses have been performed in the high-resolution spectrum of the neutral copper atom covering the wavelength region of 353-809 nm using Fourier transform spectroscopy. A DC discharge of natural copper produced in a liquid nitrogen cooled hollow cathode lamp used as a light source and a photomultiplier tube as well as Si photodiodes were employed as the light detectors. The hfs studies in 17 transitions of the neutral copper atom originating from 17 energy levels for 63Cu have been reported here. The present investigation has provided the magnetic dipole coupling constant A and electric quadrupole coupling constant B for the first time for the following 6 even-parity levels lying at 49,935, 49,942 cm-1, of 3d104d configuration, 52,848 cm-1 of 3d106 s configuration, 55,387, 55,391 cm-1 3d105d configuration and 71,978 cm-1 of 3d104s4d configuration. The sign convention of the previously-reported hfs A value amounting to 1920 MHz for the level at 44,963 cm-1 of 3d94s4p configuration has been revised to -1920 MHz. Measurements reported earlier of A and B hfs constants for the 11 odd-parity energy levels also have been confirmed.

  7. IMPROVED V II log(gf) VALUES, HYPERFINE STRUCTURE CONSTANTS, AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect

    Wood, M. P.; Lawler, J. E.; Den Hartog, E. A.; Sneden, C.; Cowan, J. J. E-mail: jelawler@wisc.edu E-mail: chris@verdi.as.utexas.edu

    2014-10-01

    New experimental absolute atomic transition probabilities are reported for 203 lines of V II. Branching fractions are measured from spectra recorded using a Fourier transform spectrometer and an echelle spectrometer. The branching fractions are normalized with radiative lifetime measurements to determine the new transition probabilities. Generally good agreement is found between this work and previously reported V II transition probabilities. Two spectrometers, independent radiometric calibration methods, and independent data analysis routines enable a reduction in systematic uncertainties, in particular those due to optical depth errors. In addition, new hyperfine structure constants are measured for selected levels by least squares fitting line profiles in the FTS spectra. The new V II data are applied to high resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to determine new, more accurate V abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. Very good agreement is found between our new solar photospheric V abundance, log ε(V) = 3.95 from 15 V II lines, and the solar-system meteoritic value. In HD 84937, we derive [V/H] = –2.08 from 68 lines, leading to a value of [V/Fe] = 0.24.

  8. Structure and function of quinones in biological solar energy transduction: a differential pulse voltammetry, EPR, and hyperfine sublevel correlation (HYSCORE) spectroscopy study of model benzoquinones.

    PubMed

    Weyers, Amanda M; Chatterjee, Ruchira; Milikisiyants, Sergey; Lakshmi, K V

    2009-11-19

    Quinones are widely used electron transport cofactors in photosynthetic reaction centers. Previous studies have suggested that the structure of the quinone cofactors and the protein interactions or "smart" matrix effects from the surrounding environment govern the redox potential and hence the function of quinones in photosynthesis. In the present study, a series of 1,4-benzoquinone models are examined via differential pulse voltammetry to provide relative redox potentials. In parallel, CW and pulsed EPR methods are used to directly determine the electronic properties of each benzoquinone in aprotic and protic environments. The shifts in the redox potential of the quinones are found to be dependent on the nature of the substituent group and the number of substituent groups on the quinone molecule. Further, we establish a direct correlation between the nature of the substituent group and the change in electronic properties of the benzosemiquinone by analysis of the isotropic and anisotropic components of the electron-nuclear hyperfine interactions observed by CW and pulsed EPR studies, respectively. Examination of an extensive library of model quinones in both aprotic and protic solvents indicates that hydrogen-bonding interactions consistently accentuate the effects of the substituent groups of the benzoquinones. This study provides direct support for the tuning and control of quinone cofactors in biological solar energy transduction through interactions with the surrounding protein matrix.

  9. (13) C dynamic nuclear polarization using isotopically enriched 4-oxo-TEMPO free radicals.

    PubMed

    Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Lumata, Lloyd

    2016-12-01

    The nitroxide-based free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) is a widely used polarizing agent in NMR signal amplification via dissolution dynamic nuclear polarization (DNP). In this study, we have thoroughly investigated the effects of (15) N and/or (2) H isotopic labeling of 4-oxo-TEMPO free radical on (13) C DNP of 3 M [1-(13) C] sodium acetate samples in 1 : 1 v/v glycerol : water at 3.35 T and 1.2 K. Four variants of this free radical were used for (13) C DNP: 4-oxo-TEMPO, 4-oxo-TEMPO-(15) N, 4-oxo-TEMPO-d16 and 4-oxo-TEMPO-(15) N,d16 . Our results indicate that, despite the striking differences seen in the electron spin resonance (ESR) spectral features, the (13) C DNP efficiency of these (15) N and/or (2) H-enriched 4-oxo-TEMPO free radicals are relatively the same compared with (13) C DNP performance of the regular 4-oxo-TEMPO. Furthermore, when fully deuterated glassing solvents were used, the (13) C DNP signals of these samples all doubled in the same manner, and the (13) C polarization buildup was faster by a factor of 2 for all samples. The data here suggest that the hyperfine coupling contributions of these isotopically enriched 4-oxo-TEMPO free radicals have negligible effects on the (13) C DNP efficiency at 3.35 T and 1.2 K. These results are discussed in light of the spin temperature model of DNP. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Rotational and Hyperfine Structure in the [17.6]2.5 - X2.5 and [23.3]2.5 - X2.5 Transitions of Iridium Monoxide

    NASA Astrophysics Data System (ADS)

    Linton, C.; Tokaryk, D. W.; Adam, A. G.; Daigle, J. A.; Esson, L. M.; Granger, A. D.; Smith, A. M.; Steimle, T. C.

    2013-06-01

    Laser induced fluorescence spectra of two electronic transitions, [17.6]2.5 - X2.5 and [23.3]2.5 - X2.5, of IrO have been obtained at high resolution by using a single mode ring dye laser to excite IrO molecules in a laser-ablation molecular beam source. From spectra taken at the University of New Brunswick at a linewidth of 180 MHz, the ^{193}IrO - ^{191}IrO isotope shifts in the rotational lines established the vibrational assignment of the [23.3]2.5 - X2.5 band as 1 - 0 and confirmed previous 0 - 0 assignments of the [17.6]2.5 - X2.5 band. The higher J rotational lines of both transitions are observed to split into closely spaced doublets resulting from quadrupole hyperfine structure caused by the I = 3/2 nuclear spin on both Ir isotopes. Higher resolution [17.6]2.5 - X2.5 spectra with an approximate linewidth of 30 MHz, were taken at Arizona State University and showed clearly resolved hyperfine structure in the low J lines. The results of the hyperfine structure analysis will be discussed as well as (hopefully) Stark and Zeeman effect experiments to determine the permanent electric and the magnetic dipole moments of IrO.

  11. Proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-10-28

    A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  12. Absolute frequency measurements for hyperfine structure determination of the R(26) 62-0 transition at 501.7 nm in molecular iodine

    NASA Astrophysics Data System (ADS)

    Goncharov, Andrei; Lopez, Olivier; Amy-Klein, Anne; Du Burck, Frédéric

    2007-10-01

    The absolute frequencies of the hyperfine components of the R(26) 62-0 transition in molecular iodine at 501.7 nm are measured for the first time with an optical clockwork based on a femtosecond laser frequency comb generator. The set-up is composed of an Ar+ laser locked to a hyperfine component of the R(26) 62-0 transition detected in a continuously pumped low-pressure cell (0.33 Pa). The detected resonances show a linewidth of 45 kHz (half-width at half-maximum). The uncertainty of the frequency measurement is estimated to be 250 Hz.

  13. The hyperfine structure in the rotational spectra of D{sub 2}{sup 17}O and HD{sup 17}O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen

    SciTech Connect

    Puzzarini, Cristina Cazzoli, Gabriele; Harding, Michael E.; Vázquez, Juana; Gauss, Jürgen

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O and HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].

  14. The optical depth of the 158 micrometer (C-12 II) line: Detection of the F=1 yields 0 (C-13 III) hyperfine-structure component

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Poglitsch, A.; Madden, S. C.; Jackson, J. M.; Herrmann, F.; Genzel, R.; Geis, N.

    1991-01-01

    The first detection of the F = 1 yields 0 hyperfine component of the 158 micrometer (C-13 II) fine structure line in the interstellar medium is reported. A twelve point intensity map was obtained of the (C-13 II) distribution over the inner 190 inch (right ascension) by 190 inch (declination) regions of the Orion nebula using an imaging Fabry-Perot interferometer. The (C-12 II)/(C-13 II) line intensity ratio varied significantly over the region mapped. It is highest (86 plus or minus 9) in the core of the Orion H II region and significantly lower (62 plus or minus 7) in the outer regions of the map, reflecting higher optical depth in the (C-12 II) line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin (C-13 II) line at the edges of the bowl-shaped H II region blister. If the C-12/C-13 abundance ratio is 43, the (C-12 II) line in the inner regions of the Orion nebula, has a low optical depth: tau sub 12 approximately = 0.75 plus or minus 0.25. The optical depth together with the large brightness temperature of the (C-12 II) line (approximately 160 K) requires that the excitation temperature of the P-2 sub 3/2 level be approximately 310 K, in very good agreement with the previous analysis of the physical conditions of the Orion interface region based on fine structure line intensity ratios and photodissociation region models. If the C-12/C-13 abundance ratio is 67, the line optical depth is somewhat larger (tau sub 12 approximately = 1.85), and the transition excitation temperature is somewhat smaller (approximately 190 K) than that predicted by these models. The present results therefore support values approximately = 43 for the C-12/C-13 abundance ratio in the Orion nebula.

  15. The optical depth of the 158 micrometer (C-12 II) line: Detection of the F=1 yields 0 (C-13 III) hyperfine-structure component

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Poglitsch, A.; Madden, S. C.; Jackson, J. M.; Herrmann, F.; Genzel, R.; Geis, N.

    1991-01-01

    The first detection of the F = 1 yields 0 hyperfine component of the 158 micrometer (C-13 II) fine structure line in the interstellar medium is reported. A twelve point intensity map was obtained of the (C-13 II) distribution over the inner 190 inch (right ascension) by 190 inch (declination) regions of the Orion nebula using an imaging Fabry-Perot interferometer. The (C-12 II)/(C-13 II) line intensity ratio varied significantly over the region mapped. It is highest (86 plus or minus 9) in the core of the Orion H II region and significantly lower (62 plus or minus 7) in the outer regions of the map, reflecting higher optical depth in the (C-12 II) line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin (C-13 II) line at the edges of the bowl-shaped H II region blister. If the C-12/C-13 abundance ratio is 43, the (C-12 II) line in the inner regions of the Orion nebula, has a low optical depth: tau sub 12 approximately = 0.75 plus or minus 0.25. The optical depth together with the large brightness temperature of the (C-12 II) line (approximately 160 K) requires that the excitation temperature of the P-2 sub 3/2 level be approximately 310 K, in very good agreement with the previous analysis of the physical conditions of the Orion interface region based on fine structure line intensity ratios and photodissociation region models. If the C-12/C-13 abundance ratio is 67, the line optical depth is somewhat larger (tau sub 12 approximately = 1.85), and the transition excitation temperature is somewhat smaller (approximately 190 K) than that predicted by these models. The present results therefore support values approximately = 43 for the C-12/C-13 abundance ratio in the Orion nebula.

  16. Comparative absorption of [13C]glucose and [13C]lactose by premature infants.

    PubMed

    Murray, R D; Boutton, T W; Klein, P D; Gilbert, M; Paule, C L; MacLean, W C

    1990-01-01

    Oxidation of orally administered [13C]glucose and [13C]lactose and fecal recovery of malabsorbed substrates were determined in two groups of premature infants. Eighteen studies were performed with six infants at Johns Hopkins Hospital (JHH); 24 studies were performed with nine infants at Columbus Children's Hospital (CCH). The two groups differed in that JHH infants had shorter gestations but were older when studied. Fecal 13C loss after [13C]glucose administration did not differ between the two groups. Compared with glucose, the metabolism of lactose appeared to involve more malabsorption and colonic fermentation in JHH infants than in CCH infants and resulted in higher fecal losses of substrate carbon. Maturation appeared to involve increased proximal intestinal absorption and greater retention of absorbed carbohydrate. Simultaneous absorption of substrate from the small and large intestine may limit the usefulness of breath tests for 13C in the premature infant.

  17. Fluctuating hyperfine interactions: computational implementation

    NASA Astrophysics Data System (ADS)

    Zacate, M. O.; Evenson, W. E.

    2010-04-01

    A library of computational routines has been created to assist in the analysis of stochastic models of hyperfine interactions. We call this library the stochastic hyperfine interactions modeling library (SHIML). It provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental hyperfine interaction measurements can be calculated. Example model calculations are included in the SHIML package to illustrate its use and to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A22 can be neglected.

  18. The Cyanide Ligands of [FeFe] Hydrogenase: Pulse EPR Studies of 13C and 15N-Labeled H-Cluster

    PubMed Central

    2015-01-01

    The two cyanide ligands in the assembled cluster of [FeFe] hydrogenase originate from exogenous l-tyrosine. Using selectively labeled tyrosine substrates, the cyanides were isotopically labeled via a recently developed in vitro maturation procedure allowing advanced electron paramagnetic resonance techniques to probe the electronic structure of the catalytic core of the enzyme. The ratio of the isotropic 13C hyperfine interactions for the two CN– ligands—a reporter of spin density on their respective coordinating iron ions—collapses from ≈5.8 for the Hox form of hydrogenase to <2 for the CO-inhibited form. Additionally, when the maturation was carried out using [15N]-tyrosine, no features previously ascribed to the nitrogen of the bridging dithiolate ligand were observed suggesting that this bridge is not sourced from tyrosine. PMID:25133957

  19. Appearance of cluster states in {sup 13}C

    SciTech Connect

    Yoshida, T.; Itagaki, N.; Otsuka, T.

    2009-03-15

    We study the structure of low-lying states of {sup 13}C with a microscopic cluster model. In addition to the 3{alpha}-n model space, the breaking effect of one of the {alpha} clusters due to the spin-orbit interaction is also taken into account. The isoscalar E0 transition probabilities from the ground 1/2{sup -} state to the excited ones are discussed associated with the cluster structure of these states.

  20. 13C nuclear magnetic resonance data of lanosterol derivatives—Profiling the steric topology of the steroid skeleton via substituent effects on its 13C NMR

    NASA Astrophysics Data System (ADS)

    Dias, Jerry Ray; Gao, Hongwu

    2009-12-01

    The 13C NMR spectra of over 24 tetracyclic triterpenoid derivatives have been structurally analyzed. The 13C NMR chemical shifts allow one to probe the steric topology of the rigid steroid skeleton and inductive effects of its substituents. Use of deuterium labeling in chemical shift assignment and B-ring aromatic terpenoids are also featured.

  1. Spectroscopy of {sup 127}I{sub 2} hyperfine structure near 532 mm using frequency - doubled diode - laser - pumped Nd:YAG lasers

    SciTech Connect

    Guellati, S.; Elandaloussi, H.; Fretel, E.

    1994-12-31

    Frequency - doubled diode - laser - pumped Nd : Yag laser can constitute an interesting optical standard around 532 nm. More than ten of {sup 127}I{sub 2} lines can be observed inside the laser spectral range. Two independent systems, stabilized on one {sup 127}I{sub 2} hyperfine component, are used to check the frequency long term stability for metrological purpose.

  2. 13C NMR of Nephila clavipes major ampullate silk gland.

    PubMed

    Hijirida, D H; Do, K G; Michal, C; Wong, S; Zax, D; Jelinski, L W

    1996-12-01

    The major ampullate glands of the spider Nephila clavipes contain approximately 0.2 microliter each of a highly concentrated (approximately 50%) solution of silk fibroin. Therefore, the reservoir of silk in these glands presents an ideal opportunity to observe prefolded conformations of a protein in its native state. To this end, the structure and conformation of major ampullate gland silk fibroin within the glands of the spider N. clavipes were examined by 13C NMR spectroscopy. These results were compared to those from silk protein first drawn from the spinneret and then denatured. The 13C NMR chemical shifts, along with infrared and circular dichroism data, suggest that the silk fibroin in the glands exists in dynamically averaged helical conformations. Furthermore, there is no evidence of proline residues in U-(13)C-D-glucose-labeled silk. This transient prefolded "molten fibril" state may correspond to the silk I form found in Bombyx mori silk. There is no evidence of the final beta-sheet structure in the ampullate gland silk fibroin before final silk processing. However, the conformation of silk in the glands appears to be in a highly metastable state, as plasticization with water produces the beta-sheet structure. Therefore, the ducts connecting the ampullate glands to the spinnerets play a larger role in silk processing than previously thought.

  3. In Vivo13C Spectroscopy in the Rat Brain using Hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate

    PubMed Central

    Marjańska, Małgorzata; Iltis, Isabelle; Shestov, Alexander A.; Deelchand, Dinesh K.; Nelson, Christopher; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-01-01

    The low sensitivity of 13C spectroscopy can be enhanced using dynamic nuclear polarization. Detection of hyperpolarized [1-13C]pyruvate and its metabolic products has been reported in kidney, liver, and muscle. In this work, the feasibility of measuring 13C signals of hyperpolarized 13C metabolic products in the rat brain in vivo following the injection of hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate is investigated. Injection of [2-13C]pyruvate led to the detection of [2-13C]lactate, but no other downstream metabolites such as TCA cycle intermediates were detected. Injection of [1-13C]pyruvate enabled the detection of both [1-13C]lactate and [13C]bicarbonate. A metabolic model was used to fit the hyperpolarized 13C time courses obtained during infusion of [1-13C]pyruvate and to determine the values of VPDH and VLDH. PMID:20685141

  4. Structure of the 2:1 complex of 1-piperidineacetic acid and p-hydroxybenzoic acid studied by X-ray, FTIR, 1H, 13C NMR, and DFT methods

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.; Szafran, M.

    2007-11-01

    The crystals of the 2:1 complex of piperidineacetic acid with p-hydroxybenzoic acid, (PAA) 2·HBA, are monoclinic, space group C2 and Z = 4, a = 29.666(4), b = 6.1208(10), c = 14.200(2) Å, β = 117.755(16)°, R = 0.035. The crystals of the complex contain molecules of three types: 1-piperidiniumacetate (zwitterion, ZPAA), protonated piperidineacetic acid (HPAA), and p-hydroxybenzoate anion (AHBA). Two piperidiniumacetate moieties, ZPAA, and HPAA, form a non-symmetric cyclic dimer through two N +sbnd H···O sbnd C hydrogen bonds of the lengths of 2.773(3) and 2.820(3) Å. The COOH group of the cation HPAA is engaged in the O sbnd H···O hydrogen bond of 2.519(2) Å with the carboxylate group of p-hydroxybenzoate anion (AHBA), while the COO - group of the zwitterion ZPAA interacts with the OH group of p-hydroxybenzoate anion (AHBA) of the neighboring complex molecule through the O···H sbnd O hydrogen bond of 2.589(2) Å, which links molecules into infinite chains. The structures of two complexes, denoted as A and B, have been optimized by the B3LYP/6-31G(d,p) method. In both complexes two molecules of ZPAA form a cyclic dimer. In A one molecule of ZPAA interacts with the carboxylic group of HBA via the O···H sbnd O hydrogen bond of 2.582 Å, without the proton transfer, while in B with the phenolic group of HBA via the O···H sbnd O hydrogen bond of 2.629 Å. Complex B is more stable than A by 1.55 kcal/mol. The FTIR spectrum shows a broad band in the 3120-2070 cm -1 region assigned to the νNH vibrations and a broad absorption in the 1750-800 cm -1 region corresponding to the short O sbnd H···O hydrogen bonds. Three bands: one attributed to the νC dbnd O and two ones to the νasCOO vibrations at 1675, 1634, and 1606 cm -1, respectively, are observed in the second-derivative spectrum, which is in agreement with the X-ray results. The 1H and 13C NMR spectra have been analyzed to elucidate the complex structure in solution.

  5. Characterization of uniformly and atom-specifically 13C-labeled heparin and heparan sulfate polysaccharide precursors using 13C NMR spectroscopy and ESI mass spectrometry

    PubMed Central

    Nguyen, Thao K. N.; Tran, Vy M.; Victor, Xylophone V.; Skalicky, Jack J.; Kuberan, Balagurunathan

    2010-01-01

    The biological actions of heparin and heparan sulfate, two structurally related glycosaminoglycans, depend on the organization of the complex heparanome. Due to the structural complexity of the heparanome, the sequence of variably sulfonated uronic acid and glucosamine residues is usually characterized by the analysis of smaller oligosaccharide and disaccharide fragments. Even characterization of smaller heparin/heparan sulfate oligosaccharide or disaccharide fragments using simple 1D 1H NMR spectroscopy is often complicated by the extensive signal overlap. 13C NMR signals, on the other hand, overlap less and therefore, 13C NMR spectroscopy can greatly facilitate the structural elucidation of the complex heparanome and provide finer insights into the structural basis for biological functions. This is the first report of the preparation of anomeric carbon-specific 13C-labeled heparin/heparan sulfate precursors from the Escherichia coli K5 strain. Uniformly 13C- and 15N-labeled precursors were also produced and characterized by 13C NMR spectroscopy. Mass spectrometric analysis of enzymatically fragmented disaccharides revealed that anomeric carbon-specific labeling efforts resulted in a minor loss/scrambling of 13C in the precursor backbone, whereas uniform labeling efforts resulted in greater than 95% 13C isotope enrichment in the precursor backbone. These labeled precursors provided high-resolution NMR signals with great sensitivity and set the stage for studying the heparanome–proteome interactions. PMID:20832774

  6. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  7. Accurate measurements of {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    SciTech Connect

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Nielsen, Niels Chr.; Khaneja, Navin

    2014-09-21

    Application of sets of {sup 13}C-{sup 13}C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ({sup 13}C′) and aliphatic ({sup 13}C{sub aliphatic}) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly {sup 13}C,{sup 15}N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of {sup 13}C′-{sup 13}C{sub aliphatic} distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform {sup 13}C,{sup 15}N-labeling on the FGAIL fragment.

  8. Synthesis, NMR spectroscopic characterization and structure of a divinyldisilazane-(triphenylphosphine)platinum(0) complex: observation of isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt).

    PubMed

    Wrackmeyer, Bernd; Klimkina, Elena V; Schmalz, Thomas; Milius, Wolfgang

    2013-05-01

    Tetramethyldivinyldisilazane-(triphenylphosphine)platinum(0) was prepared, characterized in solid state by X-ray crystallography and in solution by multinuclear magnetic resonance spectroscopy ((1)H, (13)C, (15)N, (29)Si, (31)P and (195)Pt NMR). Numerous signs of spin-spin coupling constants were determined by two-dimensional heteronuclear shift correlations (HETCOR) and two-dimensional (1)H/(1)H COSY experiments. Isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt) were measured from (195)Pt NMR spectra of the title compound as well as of other Pt(0), Pt(II) and Pt(IV) compounds for comparison. In contrast to other heavy nuclei such as (199)Hg or (207)Pb, the "normal" shifts of the heavy isotopomers to low frequencies are found, covering a range of >500 ppb.

  9. Determination of the hyperfine magnetic field in magnetic carbon-based materials: DFT calculations and NMR experiments

    PubMed Central

    Freitas, Jair C. C.; Scopel, Wanderlã L.; Paz, Wendel S.; Bernardes, Leandro V.; Cunha-Filho, Francisco E.; Speglich, Carlos; Araújo-Moreira, Fernando M.; Pelc, Damjan; Cvitanić, Tonči; Požek, Miroslav

    2015-01-01

    The prospect of carbon-based magnetic materials is of immense fundamental and practical importance, and information on atomic-scale features is required for a better understanding of the mechanisms leading to carbon magnetism. Here we report the first direct detection of the microscopic magnetic field produced at 13C nuclei in a ferromagnetic carbon material by zero-field nuclear magnetic resonance (NMR). Electronic structure calculations carried out in nanosized model systems with different classes of structural defects show a similar range of magnetic field values (18–21 T) for all investigated systems, in agreement with the NMR experiments. Our results are strong evidence of the intrinsic nature of defect-induced magnetism in magnetic carbons and establish the magnitude of the hyperfine magnetic field created in the neighbourhood of the defects that lead to magnetic order in these materials. PMID:26434597

  10. A new salen base 5-(phenylazo)-N-(2-amino pyridine) salicyliden Schiff base ligand: synthesis, experimental and density functional studies on its crystal structure, FTIR, 1H NMR and 13C NMR spectra.

    PubMed

    Sheikhshoaie, Iran; Saheb, Vahid

    2010-12-01

    A novel Schiff base ligand 5-(phenylazo)-N-(2-amino pyridine) salicyliden is prepared through the condensation of 5-(phenylazo) salicylaldehyde and 2-amino pyridine in methanol at room temperature. The orange crystalline precipitate is used for X-ray crystallography and measuring Fourier transform (FTIR), 1H NMR and 13C NMR spectra. Density functional theory (DFT) calculations at the B3LYP, MPWB1K and B3PW91 levels of theory is used to optimize the geometry and calculate the FTIR, 1H NMR and 13C NMR spectra of the compound. The vibrational frequencies determined experimentally are compared with those obtained theoretically and a vibrational assignment and analysis of the fundamental modes of the compound is performed. We found that the MPWB1K method predicts low vibrational frequencies better than the commonly used B3LYP method. Although the B3PW91 method overestimates the 1H NMR chemical shifts, the values computed at the B3LYP level of theory are in accordance with experimental 1H NMR spectrum. However, both B3LYP and B3PW91 methods tend to overestimate 13C NMR chemical shifts. In addition, a few quantum descriptors of the molecule are calculated and conformational analysis is performed and the result was compared with crystallographic data.

  11. Effect of particle size distribution on the structure, hyperfine, and magnetic properties of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanopowders

    SciTech Connect

    Bhattacharjee, Kaustav; Das, G. C.; Pati, Satya P.; Das, D.

    2014-12-21

    Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nano powders were synthesized by an auto combustion method and then heat treated at different temperatures in air for a fixed time. As a consequence, a distribution in particle size and strain was incorporated within the specimens, as estimated from the Rietveld refinement analysis of the powder x-ray diffraction data. The changes in the microstructure and crystal structure parameters were carefully extracted through the refinement analysis. Thermal annealing causes increment in the dispersion and mean of the size distribution. Reallocation of cations in the lattice sites occur as a consequence of the heat treatment which was manifested in their altered unit cell length (a), r.m.s. strain (〈ε{sup 2}〉{sup 1/2}), oxygen positional parameter (u), metal-oxygen bond lengths (R{sub OA} and R{sub OB}), and the band positions (ν{sub 1}and ν{sub 2}) in the vibrational spectroscopy. We also investigate the hyperfine and magnetic properties of the samples using different instrumental techniques (with different operating time scales) like Mössbauer spectroscopy, electron paramagnetic resonance spectroscopy, and superconducting quantum interference device magnetometry. Results show that the effect of particle size distribution was manifested in their hyperfine field distribution profile, paramagnetic resonance spectra, and magnetic anisotropy energy distribution profile. Co-existence of superparamagnetic and ferrimagnetic phase was recorded at room temperature in the samples when annealed at lower temperature. However, with increase in annealing temperature, the nature of the size distribution changes and ferrimagnetic ordering predominates for the larger size nanoparticles. Thus, the effect of particle size distribution on the structural, hyperfine, and magnetic properties of various Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles was investigated herein which hitherto has not been discussed in the literature.

  12. Preparation of Mo-Re-C samples containing Mo7Re13C with the β-Mn-type structure by solid state reaction of planetary-ball-milled powder mixtures of Mo, Re and C, and their crystal structures and superconductivity

    NASA Astrophysics Data System (ADS)

    Oh-ishi, Katsuyoshi; Nagumo, Kenta; Tateishi, Kazuya; Takafumi, Ohnishi; Yoshikane, Kenta; Sugiyama, Machiko; Oka, Kengo; Kobayashi, Ryota

    2017-01-01

    Mo-Re-C compounds containing Mo7Re13C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo7Re13C with the β-Mn structure using the solid state method. Almost single-phase Mo7Re13C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with a pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K.

  13. Nagaoka's atomic model and hyperfine interactions.

    PubMed

    Inamura, Takashi T

    2016-01-01

    The prevailing view of Nagaoka's "Saturnian" atom is so misleading that today many people have an erroneous picture of Nagaoka's vision. They believe it to be a system involving a 'giant core' with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka's model is exactly the same as Rutherford's. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure.

  14. Towards hyperpolarized 13C-succinate imaging of brain cancer

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2007-05-01

    We describe a novel 13C enriched precursor molecule, sodium 1- 13C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1- 13C-glutamate, 5- 13C-glutamate, 1- 13C-glutamine and 5- 13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images.

  15. Towards hyperpolarized 13C-succinate imaging of brain cancer

    PubMed Central

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2009-01-01

    We describe a novel 13C enriched precursor molecule, sodium 1-13C acetylenedicarboxylate, which after hydrogenation by PASADE-NA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1-13C-glutamate, 5-13C-glutamate, 1-13C-glutamine and 5-13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood–brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images. PMID:17303454

  16. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2009-09-01

    The present invention is directed to labeled compounds, of the formulae ##STR00001## wherein C* is each independently selected from the group consisting of .sup.13C and .sup.12C with the proviso that at least one C* is .sup.13C, each hydrogen of the methylene group can independently be either hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is from the group of sulfide, sulfinyl, and sulfone, Z is an aryl group from the group of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently from the group of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group from the group of NH.sub.2, NHR and NRR' where R and R' are each independently from the group of a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms.

  17. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    NASA Astrophysics Data System (ADS)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  18. Calculation of total meal d13C from individual food d13C.

    USDA-ARS?s Scientific Manuscript database

    Variations in the isotopic signature of carbon in biological samples can be used to distinguish dietary patterns and monitor shifts in metabolism. But for these variations to have meaning, the isotopic signature of the diet must be known. We sought to determine if knowledge of the 13C isotopic abund...

  19. Sub-Doppler Measurements of the Rotational Spectrum of (13)C(16)O.

    PubMed

    Klapper; Lewen; Gendriesch; Belov; Winnewisser

    2000-05-01

    The five lowest J rotational transitions of (13)C(16)O have been measured by saturation-dip spectroscopy to an accuracy of about 2 kHz, employing phase-stabilized backward-wave oscillators (BWOs). These highly precise measurements cover the transitions from J = 2 <-- 1 to J = 6 <-- 5 with frequencies ranging from 220 to 661 GHz. For each of the five observed rotational transitions, the narrow linewidths of the saturation dips (about 20 kHz) permitted the resolution of the hyperfine splitting for the first time. This splitting is caused by the (13)C-nuclear spin-rotation interaction yielding a value for the nuclear spin-rotation coupling constant of C(I)((13)C(16)O). If combined with the beam measurements (C(I)((13)C(16)O) = 32.63(10) kHz), a slight J-dependence of the spin-rotation coupling constant can be determined (C(J) = 30 +/- 13 Hz). In addition, we have measured in the Doppler-limited mode several higher J rotational line positions of (13)C(16)O up to 991 GHz with an accuracy of 5 kHz. The two line positions (J = 12 <-- 11 and J = 14 <-- 13) were recorded by multiplying BWO frequency with an accuracy of 100 kHz. The rotational transitions J = 17 <-- 16 and J = 18 <-- 17 were measured with an accuracy between 15 and 25 kHz by using the Cologne sideband spectrometer for terahertz applications COSSTA. Copyright 2000 Academic Press.

  20. Observation of the hyperfine spectrum of antihydrogen

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2017-08-01

    The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger’s relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen—the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

  1. Electron spin resonance investigations of /sup 11/B/sup 12/C, /sup 11/B/sup 13/C, and /sup 10/B/sup 12/C in neon, argon, and krypton matrices at 4 K: Comparison with theoretical results

    SciTech Connect

    Knight L.B. Jr.; Cobranchi, S.T.; Petty, J.T.; Earl, E.; Feller, D.; Davidson, E.R.

    1989-01-15

    The first spectroscopic study of the diatomic radical BC is reported which confirms previous theoretical predictions of a /sup 4/summation/sup -/ electronic ground state. The nuclear hyperfine interactions (A tensors) obtained for /sup 11/B, /sup 10/B, and /sup 13/C from the electron spin resonance (ESR) measurements are compared with extensive ab initio CI calculations. The BC molecule is one of the first examples of a small high spin radical for such an in-depth experimental--theoretical comparison. The electronic structure of BC obtained from an analysis of the nuclear hyperfine interaction (hfi) is compared to that obtained from a Mulliken-type population analysis conducted on a CI wave function which yields A/sub iso/ and A/sub dip/ results in good agreement with the observed values. The BC radical was generated by the laser vaporization of a boron--carbon mixture and trapped in neon, argon, and krypton matrices at 4 K for a complete ESR characterization. The magnetic parameters (MHz) obtained for /sup 11/B/sup 13/C in solid neon are: g/sub parallel/ = 2.0015(3); g/sub perpendicular/ = 2.0020(3); D(zfs) = 1701(2); /sup 11/B: chemically bondA/sub parallel/chemically bond = 100(1); chemically bondA/sub perpendicular/chemically bond = 79(1); /sup 13/C: chemically bondA/sub parallel/chemically bond = 5(2) and chemically bondA/sub perpendicular/chemically bond = 15(1). Based on comparison with the theoretical results, the most likely choice of signs is that all A values are positive.

  2. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  3. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  4. Observation of the hyperfine structure of the {sup 2}S{sub 1/2}-{sup 2}D{sub 5/2} transition in {sup 87}Sr{sup +}

    SciTech Connect

    Barwood, G.P.; Gao, K.; Gill, P.; Huang, G.; Klein, H.A.

    2003-01-01

    The hyperfine structure of the {sup 2}S{sub 1/2}-{sup 2}D{sub 5/2} quadrupole transition at 674 nm in {sup 87}Sr{sup +} has been observed. The ion was confined in a Paul trap and cooled using laser radiation at 422 and 1092 nm. The quadrupole transition was observed by monitoring quantum jumps in the 422-nm fluorescence. The odd isotope of strontium has 'clock' transitions independent of the first-order Zeeman shift and the {sup 2}D{sub 5/2} state hyperfine structure constants have been determined as A{sub D{sub 5/2}}=2.1743(14) MHz and B{sub D{sub 5/2}}=49.11(6) MHz. Standard uncertainties have been added in parentheses. These values allow the second-order Zeeman shifts to be calculated. The {sup 88}Sr{sup +}-{sup 87}Sr{sup +} isotope shift for the 674-nm quadrupole transition has been measured to be 247.99(4) MHz.

  5. Four-dimensional sup 13 C/ sup 13 C-edited nuclear Overhauser Enhancement Spectroscopy of a protein in solution: Application to interleukin 1. beta

    SciTech Connect

    Clore, G.M.; Kay, L.E.; Bax, A.; Gronenborn, A.M. )

    1991-01-01

    A four-dimensional {sup 13}C/{sup 13}C-edited NOESY experiment is described which dramatically improves the resolution of protein NMR spectra and enables the straightforward assignment of nuclear Overhauser effects involving aliphatic and/or aromatic protons in larger proteins. The experiment is demonstrated for uniformly (>95{percent}) {sup 13}C-labeled interleukin 1{beta}, a protein of 153 residues and 17.4 kDa, which plays a key role in the immune response. NOEs between aliphatic and/or aromatic protons are first spread out into a third dimension by the {sup 13}C chemical shift of the carbon atom attached to the originating proton and subsequently into a fourth dimension by the {sup 13}C chemical shift of the carbon atom attached to the destination proton. Thus, each NOE cross peak is labeled by four chemical shifts. By this means, ambiguities in the assignment of NOEs that arise from chemical shift overlap and degeneracy are completely removed. Further, NOEs between protons with the same chemical shifts can readily be detected providing their attached carbon atoms have different {sup 13}C chemical shifts. The design of the pulse sequence requires special care to minimize the level of artifacts arising from undesired coherence transfer pathways, and in particular those associated with diagonal peaks which correspond to magnetization that has not been transferred from one proton to another. The 4D {sup 13}C/{sup 13}C-edited NOESY experiment is characterized by high sensitivity as the through-bond transfer steps involve the large {sup 1}J{sub CH} (130 Hz) couplings, and it is possible to obtain high-quality spectra on 1-2 mM samples of {sup 13}C-labeled protein in as little as 3 days. This experiment should open up the application of protein structure determination by NMR to a large number of medium-sized proteins (150-300 residues) of biological interest.

  6. The 13C nuclear magnetic resonance in graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Resing, H. A.

    1985-01-01

    The (13)C NMR chemical shifts of graphite intercalation compounds were calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about -140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.

  7. Hyperfine rather than spin splittings dominate the fine structure of the B {sup 4}Σ{sup −}–X {sup 4}Σ{sup −} bands of AlC

    SciTech Connect

    Clouthier, Dennis J. Kalume, Aimable

    2016-01-21

    Laser-induced fluorescence and wavelength resolved emission spectra of the B {sup 4}Σ{sup −}–X {sup 4}Σ{sup −} band system of the gas phase cold aluminum carbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high pressure argon. High resolution spectra show that each rotational line of the 0-0 and 1-1 bands of AlC is split into at least three components, with very similar splittings and intensities in both the P- and R-branches. The observed structure was reproduced by assuming b{sub βS} magnetic hyperfine coupling in the excited state, due to a substantial Fermi contact interaction of the unpaired electron in the aluminum 3s orbital. Rotational analysis has yielded ground and excited state equilibrium bond lengths in good agreement with the literature and our own ab initio values. Small discrepancies in the calculated intensities of the hyperfine lines suggest that the upper state spin-spin constant λ′ is of the order of ≈0.025–0.030 cm{sup −1}.

  8. Magnetic blackbody shift of hyperfine transitions for atomic clocks

    SciTech Connect

    Berengut, J. C.; Flambaum, V. V.; King-Lacroix, J.

    2009-12-15

    We derive an expression for the magnetic blackbody shift of hyperfine transitions such as the cesium primary reference transition which defines the second. The shift is found to be a complicated function of temperature, and has a T{sup 2} dependence only in the high-temperature limit. We also calculate the shift of ground-state p{sub 1/2} hyperfine transitions which have been proposed as new atomic clock transitions. In this case interaction with the p{sub 3/2} fine-structure multiplet may be the dominant effect.

  9. Magnetic hyperfine coupling of a methyl group undergoing internal rotation: a case study of methyl formate.

    PubMed

    Tudorie, M; Coudert, L H; Huet, T R; Jegouso, D; Sedes, G

    2011-02-21

    The hyperfine structure of methyl formate was recorded in the 2-20 GHz range. A molecular beam coupled to a Fourier transform microwave spectrometer having an instrumental resolution of 0.46 kHz and limited by a Doppler width of a few kHz was used. A-type lines were found split by the magnetic hyperfine coupling while no splittings were observed for E-type lines. Symmetry considerations were used to account for the internal rotation of the methyl top and to derive effective hyperfine coupling Hamiltonians. Neglecting the spin-rotation magnetic coupling, the vanishing splittings of the E-type lines could be understood and analyses of the hyperfine patterns of the A-type lines were performed. The results are consistent with a hyperfine structure dominated by the magnetic spin-spin coupling due to the three hydrogen atoms of the methyl group.

  10. Refined Analysis of Brain Energy Metabolism Using In Vivo Dynamic Enrichment of 13C Multiplets.

    PubMed

    Dehghani M, Masoumeh; Lanz, Bernard; Duarte, João M N; Kunz, Nicolas; Gruetter, Rolf

    2016-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy in combination with the infusion of (13)C-labeled precursors is a unique approach to study in vivo brain energy metabolism. Incorporating the maximum information available from in vivo localized (13)C spectra is of importance to get broader knowledge on cerebral metabolic pathways. Metabolic rates can be quantitatively determined from the rate of (13)C incorporation into amino acid neurotransmitters such as glutamate and glutamine using suitable mathematical models. The time course of multiplets arising from (13)C-(13)C coupling between adjacent carbon atoms was expected to provide additional information for metabolic modeling leading to potential improvements in the estimation of metabolic parameters.The aim of the present study was to extend two-compartment neuronal/glial modeling to include dynamics of (13)C isotopomers available from fine structure multiplets in (13)C spectra of glutamate and glutamine measured in vivo in rats brain at 14.1 T, termed bonded cumomer approach. Incorporating the labeling time courses of (13)C multiplets of glutamate and glutamine resulted in elevated precision of the estimated fluxes in rat brain as well as reduced correlations between them. © The Author(s) 2016.

  11. Refined Analysis of Brain Energy Metabolism Using In Vivo Dynamic Enrichment of 13C Multiplets

    PubMed Central

    Dehghani M., Masoumeh; Duarte, João M. N.; Kunz, Nicolas; Gruetter, Rolf

    2016-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy in combination with the infusion of 13C-labeled precursors is a unique approach to study in vivo brain energy metabolism. Incorporating the maximum information available from in vivo localized 13C spectra is of importance to get broader knowledge on cerebral metabolic pathways. Metabolic rates can be quantitatively determined from the rate of 13C incorporation into amino acid neurotransmitters such as glutamate and glutamine using suitable mathematical models. The time course of multiplets arising from 13C-13C coupling between adjacent carbon atoms was expected to provide additional information for metabolic modeling leading to potential improvements in the estimation of metabolic parameters. The aim of the present study was to extend two-compartment neuronal/glial modeling to include dynamics of 13C isotopomers available from fine structure multiplets in 13C spectra of glutamate and glutamine measured in vivo in rats brain at 14.1 T, termed bonded cumomer approach. Incorporating the labeling time courses of 13C multiplets of glutamate and glutamine resulted in elevated precision of the estimated fluxes in rat brain as well as reduced correlations between them. PMID:26969691

  12. 7P1/2 hyperfine splitting in 206 , 207 , 209 , 213Fr and the hyperfine anomaly

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Orozco, L. A.; Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Gomez, E.; Aubin, S.

    2013-05-01

    We perform precision measurements on francium, the heaviest alkali with no stable isotopes, at the recently commissioned Francium Trapping Facility at TRIUMF. A combination of RF and optical spectroscopy allows better than 10 ppm (statistical) measurements of the 7P1 / 2 state hyperfine splitting for the isotopes 206 , 207 , 209 , 213Fr, in preparation for weak interaction studies. Together with previous measurements of the ground state hyperfine structure, it is possible to extract the hyperfine anomaly. This is a correction to the point interaction of the nuclear magnetic moment and the electron wavefunction, known as the Bohr Weisskopf effect. Our measurements extend previous measurements to the neutron closed shell isotope (213) as well as further in the neutron deficient isotopes (206, 207). Work supported by NSERC and NRC from Canada, NSF and DOE from USA, CONYACT from Mexico.

  13. 13C isotopic fractionation during biodegradation of agricultural wastes.

    PubMed

    Chalk, Phillip M; Inácio, Caio T; Urquiaga, Segundo; Chen, Deli

    2015-01-01

    Significant differences in δ(13)C signatures occur within and between plant tissues and their constituent biochemical entities, and also within and between heterotrophic bacteria and fungi and their metabolic products. Furthermore, (13)C isotopic fractionation occurs during the biodegradation of organic molecules as seen in the substrate, respired CO(2) and the microbial biomass, which could be related to substrate composition and/or microbial metabolism. The (13)C isotopic fractionation observed during the decomposition of a single defined C substrate appears to be due to the intra-molecular heterogeneity in (13)C in the substrate and to (13)C isotopic fractionation during microbial metabolism. Very limited data suggest that the latter may be quantitatively more important than the former. Studies with defined fungi in culture media have highlighted the complexities associated with the interpretation of the observed patterns of (13)C isotopic fractionation when a single defined C source is added to the culture medium which itself contains one or more C sources. Techniques involving (13)C enrichment or paired treatments involving an equivalent C(3)- and C(4)-derived substrate have been devised to overcome the problem of background C in the culture medium and (13)C isotopic fractionation during metabolism. Studies with complex substrates have shown an initial (13)C depletion phase in respired CO(2) followed by a (13)C enrichment phase which may or may not be followed by another (13)C depletion phase. Basic studies involving an integrated approach are required to gain a new insight into (13)C isotopic fractionation during organic residue decomposition, by simultaneous measurements of δ(13)C in all C moieties. New analytical tools to measure real-time changes in δ(13)CO(2) and the intra-molecular δ(13)C distribution within plant biochemical entities offer new opportunities for unravelling the complex interactions between substrate and microbial metabolism with

  14. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    PubMed Central

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ,ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1–40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1–40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16–21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1–40 fibrils in 4 hr or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples. PMID:23562665

  15. Are accurate computations of the 13C' shielding feasible at the DFT level of theory?

    PubMed

    Vila, Jorge A; Arnautova, Yelena A; Martin, Osvaldo A; Scheraga, Harold A

    2014-02-05

    The goal of this study is twofold. First, to investigate the relative influence of the main structural factors affecting the computation of the (13)C' shielding, namely, the conformation of the residue itself and the next nearest-neighbor effects. Second, to determine whether calculation of the (13)C' shielding at the density functional level of theory (DFT), with an accuracy similar to that of the (13)C(α) shielding, is feasible with the existing computational resources. The DFT calculations, carried out for a large number of possible conformations of the tripeptide Ac-GXY-NMe, with different combinations of X and Y residues, enable us to conclude that the accurate computation of the (13)C' shielding for a given residue X depends on the: (i) (ϕ,ψ) backbone torsional angles of X; (ii) side-chain conformation of X; (iii) (ϕ,ψ) torsional angles of Y; and (iv) identity of residue Y. Consequently, DFT-based quantum mechanical calculations of the (13)C' shielding, with all these factors taken into account, are two orders of magnitude more CPU demanding than the computation, with similar accuracy, of the (13)C(α) shielding. Despite not considering the effect of the possible hydrogen bond interaction of the carbonyl oxygen, this work contributes to our general understanding of the main structural factors affecting the accurate computation of the (13)C' shielding in proteins and may spur significant progress in effort to develop new validation methods for protein structures.

  16. First-principles hyperfine tensors for electrons and holes in silicon and GaAs

    NASA Astrophysics Data System (ADS)

    Philippopoulos, Pericles; Chesi, Stefano; Coish, William

    Knowing (and controlling) hyperfine interactions in silicon and III-V semiconductor nanostructures is important for quantum information processing with electron and nuclear spin states. We have performed density-functional theory (DFT) calculations that fully account for spin structure of the Bloch states (in contast with approaches that rely on the density alone). Using this method, we confirm the known value for the contact hyperfine coupling in the conduction band of silicon, but find a significant deviation in the value for the conduction band of GaAs relative to the accepted value, estimated in ref.. Moreover, this method can be used to calculate the full hyperfine tensor for the valence band, where spin-orbit effects may be strong, precluding methods that determine hyperfine couplings from the density alone. This general method can be applied to a broad class of materials with strong combined spin-orbit and hyperfine interactions.

  17. First-principles hyperfine tensors for electrons and holes in silicon and GaAs

    NASA Astrophysics Data System (ADS)

    Philippopoulos, Pericles; Chesi, Stefano; Coish, William

    Knowing (and controlling) hyperfine interactions in silicon and III-V semiconductor nanostructures is important for quantum information processing with electron and nuclear spin states. We have performed density-functional theory (DFT) calculations that fully account for spin structure of the Bloch states (in contast with approaches that rely on the density alone). Using this method, we confirm the known value for the contact hyperfine coupling in the conduction band of silicon, but find a significant deviation in the value for the conduction band of GaAs relative to the accepted value, estimated in ref.. Moreover, this method can be used to calculate the full hyperfine tensor for the valence band, where spin-orbit effects may be strong, precluding methods that determine hyperfine couplings from the density alone. This general method can be applied to a broad class of materials with strong combined spin-orbit and hyperfine interactions

  18. 13C metabolic flux analysis in complex systems.

    PubMed

    Zamboni, Nicola

    2011-02-01

    Experimental determination of in vivo metabolic rates by methods of (13)C metabolic flux analysis is a pivotal approach to unravel structure and regulation of metabolic networks, in particular with microorganisms grown in minimal media. However, the study of real-life and eukaryotic systems calls for the quantification of fluxes also in cellular compartments, rich media, cell-wide metabolic networks, dynamic systems or single cells. These scenarios drastically increase the complexity of the task, which is only partly dealt by existing approaches that rely on rigorous simulations of label propagation through metabolic networks and require multiple labeling experiments or a priori information on pathway inactivity to simplify the problem. Albeit qualitative and largely driven by human interpretation, statistical analysis of measured (13)C-patterns remains the exclusive alternative to comprehensively handle such complex systems. In the future, this practice will be complemented by novel modeling frameworks to assay particular fluxes within a network by stable isotopic tracer for targeted validation of well-defined hypotheses.

  19. Structure elucidation of the designer drug N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-3-(4-fluorophenyl)-pyrazole-5-carboxamide and the relevance of predicted (13) C NMR shifts - a case study.

    PubMed

    Girreser, Ulrich; Rösner, Peter; Vasilev, Andrej

    2016-07-01

    The detailed structure elucidation process of the new cannabimimetic designer drug, N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-3-(4-fluorophenyl)-pyrazole-5-carboxamide, with a highly substituted pyrazole skeleton, using nuclear magnetic resonance (NMR) spectroscopic and mass spectrometric (MS) techniques is described. After a first analysis of the NMR spectra and comparison with 48 possible pyrazole and imidazole structures, a subset of six positional isomeric pyrazoles and six imidazoles remained conceivable. Four substituents of the heterocyclic skeleton were identified: a proton bound to a pyrazole ring carbon atom; a 5-fluoropentyl group; a 4-fluorophenyl substituent; and a carbamoyl group, which is N-substituted with a methyl residue carrying a tert.-butyl and a carbamoyl substituent. The 5-fluoropentyl residue is situated at the nitrogen ring atom. Additional NMR experiments like the (1) H,(13) C HMBC were performed, but due to the small number of signals based on long-range couplings, the comparison of predicted and observed (13) C chemical shifts became necessary. The open access Internet shift prediction programs NMRDB, NMRSHIFTDB2, and CSEARCH were employed for the prediction of (13) C shift values which allowed an efficient and unambiguous structure determination. For the identified N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-3-(4-fluorophenyl)-pyrazole-5-carboxamide, the best agreement between predicted (13) C shifts and the observed chemical shifts and long-range couplings for the pyrazole ring carbon atoms, with a standard error of about 2 ppm, was found with each of the predictions. For the comparison of measured and predicted chemical shifts model compounds with simple substituents proved helpful. The identified compound is a homologue of AZ-037 which is offered by Internet suppliers. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Hyperfine magnetic fields in substituted Finemet alloys

    NASA Astrophysics Data System (ADS)

    Brzózka, K.; Sovák, P.; Szumiata, T.; Gawroński, M.; Górka, B.

    2016-12-01

    Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.

  1. 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline.

    PubMed

    Hannula, S E; Boschker, H T S; de Boer, W; van Veen, J A

    2012-05-01

    • The aim of this study was to gain understanding of the carbon flow from the roots of a genetically modified (GM) amylopectin-accumulating potato (Solanum tuberosum) cultivar and its parental isoline to the soil fungal community using stable isotope probing (SIP). • The microbes receiving (13)C from the plant were assessed through RNA/phospholipid fatty acid analysis with stable isotope probing (PLFA-SIP) at three time-points (1, 5 and 12 d after the start of labeling). The communities of Ascomycota, Basidiomycota and Glomeromycota were analysed separately with RT-qPCR and terminal restriction fragment length polymorphism (T-RFLP). • Ascomycetes and glomeromycetes received carbon from the plant as early as 1 and 5 d after labeling, while basidiomycetes were slower in accumulating the labeled carbon. The rate of carbon allocation in the GM variety differed from that in its parental variety, thereby affecting soil fungal communities. • We conclude that both saprotrophic and mycorrhizal fungi rapidly metabolize organic substrates flowing from the root into the rhizosphere, that there are large differences in utilization of root-derived compounds at a lower phylogenetic level within investigated fungal phyla, and that active communities in the rhizosphere differ between the GM plant and its parental cultivar through effects of differential carbon flow from the plant. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  2. Di-n-butyltin(IV) complexes derived from heterocyclic beta-diketones and N-phthaloyl amino acids: preparation, biological evaluation, structural elucidation based upon spectral [IR, NMR (1H, 13C, 19F and 119Sn)] studies.

    PubMed

    Joshi, Anurag; Verma, Shashi; Gaurb, R B; Sharma, R R

    2005-01-01

    Stable, six coordinated Bu(2)SnLA type complexes have been prepared [where LH = RCOC:C(OH)N(C(6) H(5))N:CCH(3); R = -4-F-C(6)H(4)-(L(1)H), R = -4-Cl-C(6)H(4)-(L(2)H), R= -4-Br-C(6)H(4)-(L(3)H), R=-CF(3)(L(4)H) and AH = C(O)C(6) H(4) C(O)NCHR'COOH; R'= -H(A(1)H), -CH(3)(A(2)H), -CH(CH(3))(2)(A(3)H)] by the interaction of 1:1:1 molar ratios of di-n-butyltin(IV) dichloride with corresponding organic moieties in refluxing benzene using two moles of Et(3)N as a base. In these complexes LH and AH behave as bidentate and coordination is taking place through oxygen, this is inferred from IR and (13)C NMR studies. These complexes possess tin atoms in skew trapezoidal bipyramidal geometry with the C-Sn-C angles ranging from 149.88( degrees ) to 156.84( degrees ). Some of these complexes with their corresponding organic moieties (LH, AH) were tested for their antimicrobial activities.

  3. Di-n-butyltin(IV) Complexes Derived from Heterocyclic β-diketones and N-Phthaloyl Amino Acids: Preparation, Biological Evaluation, Structural Elucidation Based upon Spectral [IR, NMR (1H, 13C, 19F and 119Sn)] Studies

    PubMed Central

    Verma, Shashi; Gaurb, R. B.; Sharma, R. R.

    2005-01-01

    Stable, six coordinated Bu2SnLA type complexes have been prepared [where LH = RCOC:C(OH)N(C6 H5)N:CCH3; R = -4-F-C6H4-(L1H), R = -4-Cl-C6H4-(L2H), R= -4-Br-C6H4-(L3H), R=-CF3(L4H) and AH = C(O)C6 H4 C(O)NCHR'COOH; R'= -H(A1H), -CH3(A2H), -CH(CH3)2(A3H)] by the interaction of 1:1:1 molar ratios of di-n-butyltin(IV) dichloride with corresponding organic moieties in refluxing benzene using two moles of Et3N as a base. In these complexes LH and AH behave as bidentate and coordination is taking place through oxygen, this is inferred from IR and 13C NMR studies. These complexes possess tin atoms in skew trapezoidal bipyramidal geometry with the C-Sn-C angles ranging from 149.88° to 156.84°. Some of these complexes with their corresponding organic moieties (LH, AH) were tested for their antimicrobial activities. PMID:18365100

  4. The optical depth of the 158 micron forbidden C-12 II line - Detection of the F = 1 - 0 forbidden C-13 II hyperfine-structure component. [in Orion nebula

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Geis, N.; Madden, S. C.; Herrmann, F.; Genzel, R.; Poglitsch, A.; Jackson, J. M.

    1991-01-01

    The detection of the F = 1 - 0 hyperfine component of the 158-micron forbidden C-13 II fine-structure line in the interstellar medium is reported. A 12-point intensity map was obtained of the forbidden C-13 distribution over the inner 190-arcsec (R.A.) X 190-arcsec (decl.) regions of the Orion Nebula using an imaging Fabry-Perot interferometer. The forbidden C-12 II/C-13 II line intensity ratio varies significantly over the region mapped. It is highest (86 +/-0) in the core of the Orion H II region, and significantly lower (62 +/-7) in the outer regions of the map, reflecting higher optical depth in the forbidden C-12 II line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin forbidden C-13 II line at the edges of the bowl-shaped H II region blister.

  5. Experimental investigation of the hyperfine spectra of Pr I-lines: discovery of new fine structure energy levels of Pr I using LIF spectroscopy with medium angular momentum quantum number between 7/2 and 13/2

    NASA Astrophysics Data System (ADS)

    Siddiqui, Imran; Khan, Shamim; Windholz, Laurentius

    2016-03-01

    We present 39 even and 60 odd parity newly discovered fine structure levels of Pr I with angular momentum quantum numbers J = 7 / 2, 9/2, 11/2 and 13/2. Spectral lines in the wavelength range of 4200 Å to 7500 Å were investigated experimentally using laser-induced fluorescence spectroscopy or optogalvanic spectroscopy. Free Pr atoms were produced in a hollow cathode discharge. A high resolution Fourier transform spectrum of Pr was used to extract excitation wavelengths. From an analysis of the recorded hyperfine patterns, together with excitation and fluorescence wavelengths, we were able to find the unknown levels involved in the formation of the investigated lines. More than 500 spectral lines could be classified by the new levels. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-60485-2

  6. Hyperfine-structure study of the 3d10 5p 2P3/2 level of neutral copper using pulsed level-crossing spectroscopy at short laser wavelengths

    NASA Astrophysics Data System (ADS)

    Bengtsson, J.; Larsson, J.; Svanberg, S.; Wahlstrom, C.-G.

    1990-01-01

    A hyperfine-structure study of the strongly perturbed 3d10 5p 2P3/2 state of neutral copper was performed using pulsed level-crossing spectroscopy. Excitation was accomplished at the short wavelength of 202 nm, where intense laser pulses were obtained using frequency tripling of dye laser radiation. For Cu-63, a = 61.7(9) MHz, b = 4.9(7) MHz, and tau = 25,5(10) ns were obtained for the magnetic dipole and the electric quadrupoles interaction constants and the lifetime, respectively. A comparison with theoretical calculations based on the multiconfiguration Hartree-Fock method is made. A discussion of the usefulness of level-crossing, quantum-beat, and radio-frequency techniques for high-resolution spectroscopy at wavelengths in the UV and vacuum-UV region is presented.

  7. The optical depth of the 158 micron forbidden C-12 II line - Detection of the F = 1 - 0 forbidden C-13 II hyperfine-structure component. [in Orion nebula

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Geis, N.; Madden, S. C.; Herrmann, F.; Genzel, R.; Poglitsch, A.; Jackson, J. M.

    1991-01-01

    The detection of the F = 1 - 0 hyperfine component of the 158-micron forbidden C-13 II fine-structure line in the interstellar medium is reported. A 12-point intensity map was obtained of the forbidden C-13 distribution over the inner 190-arcsec (R.A.) X 190-arcsec (decl.) regions of the Orion Nebula using an imaging Fabry-Perot interferometer. The forbidden C-12 II/C-13 II line intensity ratio varies significantly over the region mapped. It is highest (86 +/-0) in the core of the Orion H II region, and significantly lower (62 +/-7) in the outer regions of the map, reflecting higher optical depth in the forbidden C-12 II line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin forbidden C-13 II line at the edges of the bowl-shaped H II region blister.

  8. Hyperfine structure and Zeeman tuning of the A {sup 2}PI-X {sup 2}SIGMA{sup +}(0,0) band system of the odd isotopologue of strontium monofluoride {sup 87}SrF

    SciTech Connect

    Le, Anh T.; Wang Hailing; Steimle, Timothy C.

    2009-12-15

    The low-rotational lines of the A {sup 2}PI-X {sup 2}SIGMA{sup +}(0,0) band system of the odd isotopologue of strontium monofluoride, {sup 87}SrF, were recorded and analyzed. The {sup 87}Sr(I=9/2) magnetic hyperfine interaction is significant only in the |OMEGA|=1/2 spin-orbit component of the A {sup 2}PI state. Optical transitions appropriate for monitoring ultracold samples of {sup 87}SrF are identified. The determined fine-structure parameters were used to predict the anisotropic magnetic g factor, g{sub l}, for the X {sup 2}SIGMA{sup +}(v=0) state. The g factors were used to predict the magnetic tuning of the N=0 (+parity) and N=1 (-parity) levels of the X {sup 2}SIGMA{sup +}(v=0) state. A comparison to spectroscopic parameters for the {sup 88}SrF isotopologue is given.

  9. [Determination of 13C enrichment in soil amino acid enantiomers by gas chromatogram/mass spectrometry].

    PubMed

    He, Hong-Bo; Zhang, Wei; Ding, Xue-Li; Bai, Zhen; Liu, Ning; Zhang, Xu-Dong

    2008-06-01

    The transformation and renewal of amino acid enantiomers is of significance in indicating the turnover mechanism of soil organic matter. In this paper, a method of gas chromatogram/mass spectrometry combined with U-13 C-glucose incubation was developed to determine the 13C enrichment in soil amino acid enantiomers, which could effectively differentiate the original and the newly synthesized amino acids in soil matrix. The added U-13 C-glucose was utilized rapidly to structure the amino acid carbon skeleton, and the change of relative abundance of isotope ions could be determined by mass spectrometry. The direct incorporation of U-13 C glucose was estimated by the intensity increase of m/z (F + n) to F (F was parent fragment, and n was the carbon number in the fragment), while the total isotope incorporation from the added 13C could be calculated according to the abundance ratio increment summation from m/z (Fa + 1) through (Fa + T) (Fa was the fragment containing all original skeleton carbons, and T was the carbon number in the amino acid molecule). The 13C enrichment in the target compound was expressed as atom percentage excess (APE), and that of D-amino acid needed to be corrected by the coefficient of hydrolysis-induced racemization. The 13C enrichment reflected the carbon turnover velocity of individual amino acid enantiomers, and was powerful to investigate the dynamics of soil amino acids.

  10. /sup 13/C nuclear magnetic resonance studies of cardiac metabolism

    SciTech Connect

    Seeholzer, S.H.

    1985-01-01

    The last decade has witnessed the increasing use of Nuclear Magnetic Resonance (NMR) techniques for following the metabolic fate of compounds specifically labeled with /sup 13/C. The goals of the present study are: (1) to develop reliable quantitative procedures for measuring the /sup 13/C enrichment of specific carbon sites in compounds enriched by the metabolism of /sup 13/C-labeled substrates in rat heart, and (2) to use these quantitative measurements of fractional /sup 13/C enrichment within the context of a mathematical flux model describing the carbon flow through the TCA cycle and ancillary pathways, as a means for obtaining unknown flux parameters. Rat hearts have been perfused in vitro with various combinations of glucose, acetate, pyruvate, and propionate to achieve steady state flux conditions, followed by perfusion with the same substrates labeled with /sup 13/C in specific carbon sites. The hearts were frozen at different times after addition of /sup 13/C-labeled substrates and neutralized perchloric acid extracts were used to obtain high resolution proton-decoupled /sup 13/C NMR spectra at 90.55 MHz. The fractional /sup 13/C enrichment (F.E.) of individual carbon sites in different metabolites was calculated from the area of the resolved resonances after correction for saturation and nuclear Overhauser effects. These F.E. measurements by /sup 13/C NMR were validated by the analysis of /sup 13/C-/sup 1/H scalar coupling patterns observed in /sup 1/H NMR spectra of the extracted metabolites. The results obtained from perfusion of hearts glucose plus either (2-/sup 13/C) acetate or (3-/sup 13/C) pyruvate are similar to those obtained by previous investigators using /sup 14/C-labeled substrates.

  11. Variability of 13C-labeling in plant leaves.

    PubMed

    Nguyen Tu, Thanh Thuy; Biron, Philippe; Maseyk, Kadmiel; Richard, Patricia; Zeller, Bernd; Quénéa, Katell; Alexis, Marie; Bardoux, Gérard; Vaury, Véronique; Girardin, Cyril; Pouteau, Valérie; Billiou, Daniel; Bariac, Thierry

    2013-09-15

    Plant tissues artificially labeled with (13)C are increasingly used in environmental studies to unravel biogeochemical and ecophysiological processes. However, the variability of (13)C-content in labeled tissues has never been carefully investigated. Hence, this study aimed at documenting the variability of (13)C-content in artificially labeled leaves. European beech and Italian ryegrass were subjected to long-term (13)C-labeling in a controlled-environment growth chamber. The (13)C-content of the leaves obtained after several months labeling was determined by isotope ratio mass spectrometry. The (13)C-content of the labeled leaves exhibited inter- and intra-leaf variability much higher than those naturally occurring in unlabeled plants, which do not exceed a few per mil. This variability was correlated with labeling intensity: the isotope composition of leaves varied in ranges of ca 60‰ and 90‰ for experiments that led to average leaf (13)C-content of ca +15‰ and +450‰, respectively. The reported variability of isotope composition in (13)C-enriched leaves is critical, and should be taken into account in subsequent experimental investigations of environmental processes using (13)C-labeled plant tissues. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of 21Na with improved laser trapping techniques

    SciTech Connect

    Rowe, Mary Anderson

    1999-05-01

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive 21Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88 in. cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of 21Na to the experiment. Efficient manipulation of the 21Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of 21Na. She measured the 3S1/2(F=1,m=0)-3S1/2(F=2,m=0) atomic level splitting of 21Na to be 1,906,471,870±200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  13. Clinical NOE 13C MRS for neuropsychiatric disorders of the frontal lobe

    NASA Astrophysics Data System (ADS)

    Sailasuta, Napapon; Robertson, Larry W.; Harris, Kent C.; Gropman, Andrea L.; Allen, Peter S.; Ross, Brian D.

    2008-12-01

    In this communication, a scheme is described whereby in vivo 13C MRS can safely be performed in the frontal lobe, a human brain region hitherto precluded on grounds of SAR, but important in being the seat of impaired cognitive function in many neuropsychiatric and developmental disorders. By combining two well known features of 13C NMR—the use of low power NOE and the focus on 13C carbon atoms which are only minimally coupled to protons, we are able to overcome the obstacle of SAR and develop means of monitoring the 13C fluxes of critically important metabolic pathways in frontal brain structures of normal volunteers and patients. Using a combination of low-power WALTZ decoupling, variants of random noise for nuclear overhauser effect enhancement it was possible to reduce power deposition to 20% of the advised maximum specific absorption rate (SAR). In model solutions 13C signal enhancement achieved with this scheme were comparable to that obtained with WALTZ-4. In human brain, the low power procedure effectively determined glutamine, glutamate and bicarbonate in the posterior parietal brain after [1- 13C] glucose infusion. The same 13C enriched metabolites were defined in frontal brain of human volunteers after administration of [1- 13C] acetate, a recognized probe of glial metabolism. Time courses of incorporation of 13C into cerebral glutamate, glutamine and bicarbonate were constructed. The results suggest efficacy for measurement of in vivo cerebral metabolic rates of the glutamate-glutamine and tricarboxylic acid cycles in 20 min MR scans in previously inaccessible brain regions in humans at 1.5T. We predict these will be clinically useful biomarkers in many human neuropsychiatric and genetic conditions.

  14. Crystal structure solid-state cross polarization magic angle spinning 13C NMR correlation in luminescent d10 metal-organic frameworks constructed with the 1,2-Bis(1,2,4-triazol-4-yl)ethane ligand.

    PubMed

    Habib, Hesham A; Hoffmann, Anke; Höppe, Henning A; Steinfeld, Gunther; Janiak, Christoph

    2009-03-02

    Hydrothermal reactions of 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) with copper(II), zinc(II), and cadmium(II) salts have yielded the dinuclear complexes [Zn2Cl4(mu2-btre)2] (1) and [Zn2Br4(mu2-btre)2] (2), the one-dimensional coordination polymer infinity1[Zn(NCS)2(2-btre)] (3), the two-dimensional networks infinity2[Cu2(mu2-Cl)2(mu4-btre)] (4), infinity2[Cu2(mu2-Br)2(mu4-btre)] (5), and infinity2{[Cd6(mu3-OH)2(mu3-SO4)4(mu4-btre)3(H2O)6](SO4).6H2O} (6), and the three-dimensional frameworks infinity3{[Cu(mu4-btre)]ClO4.0.25H2O} (7), 3{[Zn(mu4-btre)(mu2-btre)](ClO4)2} (8), infinity3{[Cd(mu4-btre)(mu2-btre)](ClO4)2} (9), and infinity3[Cu2(mu2-CN)2(mu4-btre)] (10, 2-fold 3D interpenetrated framework). The copper-containing products 4, 5, 7, and 10 contain the metal in the +1 oxidation state, from a simultaneous redox and self-assembly reaction of the Cu(II) starting materials. The cyanide-containing framework 10 has captured the CN- ions from the oxidative btre decomposition. The perchlorate frameworks 7, 8, or 9 react in an aqueous NH4+PF6- solution with formation of the related PF6--containing frameworks. The differences in the metal-btre bridging mode (mu2-kappaN1:N1', mu2-kappaN1:N2 or mu4-kappaN1:N2:N1':N2') and the btre ligand symmetry can be correlated with different signal patterns in the 13C cross polarization magic angle spinning (CPMAS) NMR spectra. Compounds 2, 4, 5 and 7 to 10 exhibit fluorescence at 403-481 nm upon excitation at 270-373 nm which is not seen in the free btre ligand.

  15. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  16. Proton, muon and ¹³C hyperfine coupling constants of C₆₀X and C₇₀X (X = H, Mu).

    PubMed

    Brodovitch, Jean-Claude; Addison-Jones, Brenda; Ghandi, Khashayar; McKenzie, Iain; Percival, Paul W

    2015-01-21

    The reaction of H atoms with fullerene C70 has been investigated by identifying the radical products formed by addition of the atom muonium (Mu) to the fullerene in solution. Four of the five possible radical isomers of C70Mu were detected by avoided level-crossing resonance (μLCR) spectroscopy, using a dilute solution of enriched (13)C70 in decalin. DFT calculations were used to predict muon and (13)C isotropic hyperfine constants as an aid to assigning the observed μLCR signals. Computational methods were benchmarked against previously published experimental data for (13)C60Mu in solution. Analysis of the μLCR spectrum resulted in the first experimental determination of (13)C hyperfine constants in either C70Mu or C70H. The large number of values confirms predictions that the four radical isomers have extended distributions of unpaired electron spin.

  17. A chemical synthesis of a multiply (13) C-labeled hexasaccharide: a high-mannose N-glycan fragment.

    PubMed

    Zhang, Wenhui; Pan, Qingfeng; Serianni, Anthony S

    2016-12-01

    As covalent modifiers of proteins, high-mannose N-glycans are important in maintaining protein structure and function in vivo. The conformations of these glycans can be studied by nuclear magnetic resonance spectroscopy using spin-spin couplings (J-couplings; scalar couplings) and other nuclear magnetic resonance parameters that are sensitive to the geometries of their constituent glycosidic linkages and other mobile elements in their structures. These analyses often require (13) C-labeling at specific carbon atoms, especially when measurements of (13) C-(13) C J-couplings are of interest. The selection of particular (13) C isotopomers of a glycan depends on the type of question under scrutiny. A chemical synthesis of a mannose-containing hexasaccharide, α[1-(13) C]Man(1→2)α[1,2-(13) C2 ]Man(1→6)[α[1-(13) C]Man(1→2)α[1,2-(13) C2 ]Man(1→3)]α[1,2-(13) C2 ]Man(1→6)βManOCH3 , which is a nested fragment of the high-mannose N-glycans of human glycoproteins and contains eight (13) C-enriched carbon sites, is described in this report. The selected (13) C isotopomer was chosen to maximize the measurement of J-couplings sensitive to linkage conformations. This work demonstrates that chemical syntheses of multiply (13) C-labeled oligosaccharides are technically feasible and practical using present synthetic methods. The availability of this and other multiply (13) C-labeled mannose-containing oligosaccharides will promote future studies of their conformations in solution and in the bound state. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Functional groups identified by solid state 13C NMR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  19. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Treesearch

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  20. Hyperfine interactions in titanates: Study of orbital ordering and local magnetic properties

    SciTech Connect

    Agzamova, P. A. Leskova, Yu. V.; Nikiforov, A. E.

    2013-05-15

    Hyperfine magnetic fields induced on the nuclei of nonmagnetic ions {sup 139}La and {sup 89}Y in LaTiO{sub 3} and YTiO{sub 3}, respectively, have been microscopically calculated. The dependence of the hyperfine fields on the orbital and magnetic structures of the compounds under study has been analyzed. The comparative analysis of the calculated and known experimental data confirms the existence of the static orbital structure in lanthanum and yttrium titanates.

  1. Surface dynamics of bacteriorhodopsin as revealed by (13)C NMR studies on [(13)C]Ala-labeled proteins: detection of millisecond or microsecond motions in interhelical loops and C-terminal alpha-helix.

    PubMed

    Yamaguchi, S; Tuzi, S; Yonebayashi, K; Naito, A; Needleman, R; Lanyi, J K; Saitô, H

    2001-03-01

    We have recorded (13)C NMR spectra of [2-(13)C]-, [1-(13)C]-, [3-(13)C],- and [1,2,3-(13)C(3)]Ala-labeled bacteriorhodopsin (bR), and its mutants, A196G, A160G, and A103C, by means of cross polarization-magic angle spinning (CP-MAS) and dipolar decoupled-magic angle spinning (DD-MAS) techniques, to reveal the conformation and dynamics of bR, with emphasis on the loop and C-terminus structures. The (13)C NMR signals of the loop (C-D, E-F, and F-G) regions were almost completely suppressed from [2-(13)C]-, [1-(13)C]Ala-, and [1-(13)C]Gly-labeled bR, due to the presence of conformational fluctuation with correlation times of 10(-4) s that interfered with the peak-narrowing by magic angle spinning. The observation of such suppressed peaks for specific residues provides a unique means of detecting intermediate frequency motions on the time scale of ms or micros in the surface loops of membrane proteins. Instead, the three well-resolved (13)C CP-MAS NMR signals of [2-(13)C]Ala-bR, at 50.38, 49.90, and 47.96 ppm, were ascribed to the C-terminal alpha-helix previously proposed from the data for [3-(13)C]Ala-bR: the former two peaks were assigned to Ala 232 and 238, in view of the results of successive proteolysis experiments, while the highest-field peak was ascribed to Ala 235 prior to Pro 236. Even such (13)C NMR signals were substantially broadened when (13)C NMR spectra of fully labeled [1,2,3-(13)C]Ala-bR were recorded, because the broadening and splitting of peaks due to the accelerated transverse relaxation rate caused by the increased number of relaxation pathways through a number of (13)C-(13)C homo-nuclear dipolar interactions and scalar J couplings, respectively, are dominant among (13)C-labeled nuclei. In addition, approximate correlation times for local conformational fluctuations of different domains, including the C-terminal tail, C-terminal alpha-helix, loops, and transmembrane alpha-helices, were estimated by measurement of the spin-lattice relaxation

  2. Linking Biogeochemistry to Microbial Diversity Using New 13C Approaches

    NASA Astrophysics Data System (ADS)

    Baggs, E. M.

    2005-12-01

    The use of 13C enables us to overcome uncertainties associated with soil C processes and to assess the links between species diversity and ecosystem function. Recent advances in stable isotope techniques enable determination of process rates, for example CH4 oxidation by direct measurement of 13C-CH4 and 13C-CO2. This overcomes uncertainties associated with reliance on changes in net CH4 emission, which may have compromised some earlier studies as both methanogenesis and CH4 oxidation may occur simultaneously in soil, providing significant advances in our understanding of the process of CH4 oxidation. These stable isotope techniques can be combined with molecular techniques (analysis of gene expression, stable isotope probing (SIP)) to relate the measured process to the microbial populations responsible. Here we will give a synthesis of results from experiments in which we applied 13C-CH4 to accurately determine CH4 oxidation rates in soils, and also present results of 13C-SIP from which we can identify the key players in the microbial population that are using the applied 13C substrate. With the 13C-CH4 technique we were able to provide direct evidence of inhibition of CH4 oxidation following fertiliser application (50-300 kg N ha-1) that was less under elevated pCO2, and evidence for anaerobic CH4 oxidation occurring in soil at 75% soil water filled pore space that would not have been apparent from changes in net CH4 emissions. 13C-SIP both through plants (using 13C-CO2) and directly into soil (using 13C-methane and -organic substrates) has revealed how key players in C utilisation vary under different soil conditions, for example, under improved and unimproved grasslands.

  3. Towards an inhalative 13C breath test method.

    PubMed

    Krumbiegel, P; Rolle-Kampczyk, U; Liebergeld, P; Herbarth, O; Köbrich, R

    2002-06-01

    Customary 13CO2 breath tests--and also 15N urine tests--always start with an oral administration of a test substrate. The test person swallows a stable isotope labelled diagnostic agent. This technique has been used to study several pathophysiological changes in gastrointestinal organs. However, to study pathophysiological changes of the bronchial and lung epithelium, the inhalative administration of a stable isotope labelled agent appeared more suitable to us. [1-13C]Hexadecanol and [1-13C]glucose were chosen. Inhaled [1-13C]hexadecanol did not yield 13CO2 in the exhaled air, but [1-13C]glucose did. To study the practicability of the [1-13C]glucose method and the reproducibility of the results, 18 inhalation tests were performed with healthy subjects. In 6 self-tests, the optimum inhalative dose of [13C]glucose was determined to be 205 mg. Using the APS aerosol provocation system with the nebulizer 'Medic Aid' (Erich Jaeger Würzburg), a 25% aqueous solution was inhaled. Then, breath samples were collected at 15 min. intervals and analysed for 13CO2. 75-120 min after the end of inhalation a well-reproducible maximum delta13C value of 6%o over baseline (DOB) was detected for 12 healthy probands. Speculating that the pulmonary resorption of the [13C]glucose is the rate-limiting step of elimination, decompensations in the epithelium ought to be reflected in changed [1-13C]glucose resorption rates and changed 13CO2 output. Therefore, we speculate that the inhalation of suitable 13C-labelled substrates will pave the way for a new group of 13CO2 breath tests aiding investigations of specific pathophysiological changes in the pulmonary tract, such as inflammations of certain sections and decompensations of cell functions.

  4. Multispectral plasmon-induced transparency in hyperfine terahertz meta-molecules

    NASA Astrophysics Data System (ADS)

    Yang, Shengyan; Xia, Xiaoxiang; Liu, Zhe; Yiwen, E.; Wang, Yujin; Tang, Chengchun; Li, Wuxia; Li, Junjie; Wang, Li; Gu, Changzhi

    2016-11-01

    We experimentally and theoretically demonstrated an approach to achieve multispectral plasmon-induced transparency (PIT) by utilizing meta-molecules that consist of hyperfine terahertz meta-atoms. The feature size of such hyperfine meta-atoms is 400 nm, which is one order smaller than that of normal terahertz metamaterials. The hyperfine meta-atoms with close eigenfrequencies and narrow resonant responses introduce different metastable energy levels, which makes the multispectral PIT possible. In the triple PIT system, the slow light effect is further confirmed as the effective group delay at three transmission windows can reach 7.3 ps, 7.4 ps and 4.5 ps, respectively. Precisely controllable manipulation of the PIT peaks in such hyperfine meta-molecules was also proven. The new hyperfine planar design is not only suitable for high-integration applications, but also exhibits significant slow light effect, which has great potential in advanced multichannel optical information processing. Moreover, it reveals the possibility to construct hyperfine N-level energy systems by artificial hyperfine plasmonic structures, which brings a significant prospect for applications on miniaturized plasmonic devices.

  5. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  6. Determination of the (13)C/(12)C Carbon Isotope Ratio in Carbonates and Bicarbonates by (13)C NMR Spectroscopy.

    PubMed

    Pironti, Concetta; Cucciniello, Raffaele; Camin, Federica; Tonon, Agostino; Motta, Oriana; Proto, Antonio

    2017-10-09

    This paper is the first study focused on the innovative application of (13)C NMR (nuclear magnetic resonance) spectroscopy to determine the bulk (13)C/(12)C carbon isotope ratio, at natural abundance, in inorganic carbonates and bicarbonates. In the past, (13)C NMR spectroscopy (irm-(13)C NMR) was mainly used to measure isotope ratio monitoring with the potential of conducting (13)C position-specific isotope analysis of organic molecules with high precision. The reliability of the newly developed methodology for the determination of stable carbon isotope ratio was evaluated in comparison with the method chosen in the past for these measurements, i.e., isotope ratio mass spectrometry (IRMS), with very encouraging results. We determined the (13)C/(12)C ratio of carbonates and bicarbonates (∼50-100 mg) with a precision on the order of 1‰ in the presence of a relaxation agent, such as Cr(acac)3, and CH3(13)COONa as an internal standard. The method was first applied to soluble inorganic carbonates and bicarbonates and then extended to insoluble carbonates by converting them to Na2CO3, following a simple procedure and without observing isotopic fractionation. Here, we demonstrate that (13)C NMR spectroscopy can also be successfully adopted to characterize the (13)C/(12)C isotope ratio in inorganic carbonates and bicarbonates with applications in different fields, such as cultural heritage and geological studies.

  7. Metabolism of uniformly labeled (13)C-eicosapentaenoic acid and (13)C-arachidonic acid in young and old men.

    PubMed

    Léveillé, Pauline; Chouinard-Watkins, Raphaël; Windust, Anthony; Lawrence, Peter; Cunnane, Stephen C; Brenna, J Thomas; Plourde, Mélanie

    2017-08-01

    Background: Plasma eicosapentaenoic acid (EPA) and arachidonic acid (AA) concentrations increase with age.Objective: The aim of this study was to evaluate EPA and AA metabolism in young and old men by using uniformly labeled carbon-13 ((13)C) fatty acids.Design: Six young (∼25 y old) and 6 old (∼75 y old) healthy men were recruited. Each participant consumed a single oral dose of 35 mg (13)C-EPA and its metabolism was followed in the course of 14 d in the plasma and 28 d in the breath. After the washout period of ≥28 d, the same participants consumed a single oral dose of 50 mg (13)C-AA and its metabolism was followed for 28 d in plasma and breath.Results: There was a time × age interaction for (13)C-EPA (Ptime × age = 0.008), and the shape of the postprandial curves was different between young and old men. The (13)C-EPA plasma half-life was ∼2 d for both young and old men (P = 0.485). The percentage dose recovered of (13)C-EPA per hour as (13)CO2 and the cumulative β-oxidation of (13)C-EPA did not differ between young and old men. At 7 d, however, old men had a >2.2-fold higher plasma (13)C-DHA concentration synthesized from (13)C-EPA compared with young men (Page = 0.03). (13)C-AA metabolism was not different between young and old men. The (13)C-AA plasma half-life was ∼4.4 d in both young and old participants (P = 0.589).Conclusions: The metabolism of (13)C-AA was not modified by age, whereas (13)C-EPA metabolism was slightly but significantly different in old compared with young men. The higher plasma (13)C-DHA seen in old men may be a result of slower plasma DHA clearance with age. This trial was registered at clinicaltrials.gov as NCT02957188. © 2017 American Society for Nutrition.

  8. Quality assurance of PASADENA hyperpolarization for 13C biomolecules

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Tran, Thao T.; Bhattacharya, Pratip

    2009-01-01

    Object Define MR quality assurance procedures for maximal PASADENA hyperpolarization of a biological 13C molecular imaging reagent. Materials and methods An automated PASADENA polarizer and a parahydrogen generator were installed. 13C enriched hydroxyethyl acrylate, 1-13C, 2,3,3-d3 (HEA), was converted to hyperpolarized hydroxyethyl propionate, 1-13C, 2,3,3-d3 (HEP) and fumaric acid, 1-13C, 2,3-d2 (FUM) to hyperpolarized succinic acid, 1-13C, 2,3-d2 (SUC), by reaction with parahydrogen and norbornadiene rhodium catalyst. Incremental optimization of successive steps in PASADENA was implemented. MR spectra and in vivo images of hyperpolarized 13C imaging agents were acquired at 1.5 and 4.7 T. Results Application of quality assurance (QA) criteria resulted in incremental optimization of the individual steps in PASADENA implementation. Optimal hyperpolarization of HEP of P = 20% was achieved by calibration of the NMR unit of the polarizer (B0 field strength ± 0.002 mT). Mean hyperpolarization of SUC, P = [15.3 ± 1.9]% (N = 16) in D2O, and P = [12.8 ± 3.1]% (N = 12) in H2O, was achieved every 5–8 min (range 13–20%). An in vivo 13C succinate image of a rat was produced. Conclusion PASADENA spin hyperpolarization of SUC to 15.3% in average was demonstrated (37,400 fold signal enhancement at 4.7 T). The biological fate of 13C succinate, a normally occurring cellular intermediate, might be monitored with enhanced sensitivity. PMID:19067009

  9. Study of Urban environmental quality through Isotopes δ13C

    NASA Astrophysics Data System (ADS)

    González-Sosa, E.; Mastachi-Loza, C.; Becerril-Piña, R.; Ramos-Salinas, N. M.

    2012-04-01

    Usually, trees with similar pH values on their bark develop epiphytes of similar species, the acidity to be a factor for growth. The aim of the study was evaluate the air quality through isotope δ13C in order to define the levels of environmental quality in the city of Queretaro, Mexico. In this work were collected at least 4 epiphytes positioned in trees of the species Prosopis Laevigata at 25 sites of Queretaro City. The samples were analyzed for trace elements with an inductively coupled plasma atomic emission spectroscopy (ICP). The collecting took place during dry period, in May and early rain June 2011 period, and on four sectors to identify the spatial distribution of pollution, using isotopic analysis of concentration of δ 13C. According with the results there are significant differences among the species in each of the sampled areas. The 5 February Avenue presented greater diversity and richness of δ13C, followed by those who were surveyed in the proximity of the UAQ and finally in the middle-east area. An average value of δ13C-17.92%, followed by those surveyed in the vicinity of the UAQ that correspond to sector I and II with an concentration of δ13C-17.55% and δ13C-17.22%, and finally the samples collected in trees scattered in the East-Sector II and IV with a value of δ13C-17.02% and δ13C-15.62%, respectively. Also were observed differences between the dry and wet period. It is likely that these results of δ 13C in moist period reflect the drag of the isotopes due to rain events that could mark a trend in the dilution of this element, however there is a trend in terms of abundance and composition of finding more impact in those species sampled in dry period, in May and early June 2011.

  10. Hyperfine structures and Landé g{sub J}-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    SciTech Connect

    Verdebout, S.; Nazé, C.; Rynkun, P.; Godefroid, M.

    2014-09-15

    Energy levels, hyperfine interaction constants, and Landé g{sub J}-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core–valence, and core–core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature.

  11. The hyperfine properties of iron-gallium alloys

    NASA Astrophysics Data System (ADS)

    Elzain, M.; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Al-Azri, Maya; Al-Barwani, M.

    2016-12-01

    The hyperfine properties at Fe site in iron-gallium alloy are calculated using the full-potential linear-augmented-plane-waves method. We have calculated the Fermi contact field (Bhf) and isomer shift ( δ) at the Fe site versus the number of neighbouring Ga atoms. We found that Bhf decrease whereas δ increases with increasing number of neighbouring G atom. In addition we have calculated the hyperfine properties of FeGa system with DO3 structure, where various distributions of 4 the Ga atoms in the conventional unit cell are considered (including the regular DO3 structure). We found that the DO3 structure has the lowest energy as compared to the other configurations. The two distinct A and D sites of the ordered DO3 conventional unit cell have two distinct values for Bhf and δ. On changing the atomic arrangement of the Ga atoms within the conventional unit cell, the configuration of the A site is maintained whereas that of the D site becomes imperfect. The contact magnetic hyperfine fields of the D-like sites in the imperfect structures are lower than that of the DO3D site.

  12. Determination of [{sup 13}C]pyrene sequestration in sediment microcosms using flash pyrolysis--GC--MS and {sup 13}C NMR

    SciTech Connect

    Guthrie, E.A.; Bortiatynski, J.M.; Hardy, K.S.; Kovach, E.M.; Van Heemst, J.D.H.; Hatcher, P.G.; Richman, J.E.

    1999-01-01

    In this study, the use of a {sup 13}C-labeled pollutant probe, [{sup 13}C]pyrene, and the application of flash pyrolysis--GC--MS and CPMAS {sup 13}C NMR provided analytical capabilities to study pyrene interactions with soluble and insoluble compartments of sedimentary organic matter (S{sub D}OM) during whole sediments incubations in aerated microcosms. Surface sediments were collected from a site of previous hydrocarbon contamination in New Orleans, LA. Over a period of 60 days, humic acid and humin fractions of S{sub D}OM accumulated increasing amounts of pyrene that were resistant to exhaustive extraction with organic solvents. The sequestered pyrene was evident in CPMAS {sup 13}C NMR spectra of humin fractions. The amount of sequestered pyrene in humic materials was quantified by flash pyrolysis--GC--MS, a technique that destroys the three-dimensional structure of macromolecular S{sub D}OM. Noncovalent binding of pyrene to humic materials in S{sub D}OM was greater in sediments incubated with biological activity than biocide-treated sediments. The combined analytical approaches demonstrate that the sequestered pyrene, or bound residue, is noncovalently associated with S{sub D}OM and has not undergone structural alteration. Implications of these data are discussed in reference to S{sub D}OM diagenesis and long-term availability of bound pollutant residues in sediments.

  13. NMR study of non-structural proteins-part III: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Chikungunya virus (CHIKV).

    PubMed

    Lykouras, Michail V; Tsika, Aikaterini C; Lichière, Julie; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2017-09-05

    Macro domains are conserved protein domains found in eukaryotic organisms, bacteria, and archaea as well as in certain viruses. They consist of 130-190 amino acids and can bind ADP-ribose. Although the exact role of these domains is not fully understood, the conserved binding affinity for ADP-ribose indicates that this ligand is important for the function of the domain. Such a macro domain is also present in the non-structural protein 3 (nsP3) of Chikungunya Alphavirus (CHIKV) and consists of 160 amino acids. In this study we describe the high yield expression of the macro domain from CHIKV and its preliminary structural analysis via solution NMR spectroscopy. The macro domain seems to be folded in solution and an almost complete backbone assignment was achieved. In addition, the α/β/α sandwich topology with 4 α-helices and 6 β-strands was predicted by TALOS+.

  14. 13C isotope effects on 1H chemical shifts: NMR spectral analysis of 13C-labelled D-glucose and some 13C-labelled amino acids.

    PubMed

    Tiainen, Mika; Maaheimo, Hannu; Soininen, Pasi; Laatikainen, Reino

    2010-02-01

    The one- and two-bond (13)C isotope shifts, typically -1.5 to -2.5 ppb and -0.7 ppb respectively, in non-cyclic aliphatic systems and up to -4.4 ppb and -1.0 ppb in glucose cause effects that need to be taken into account in the adaptive NMR spectral library-based quantification of the isotopomer mixtures. In this work, NMR spectral analyses of some (13)C-labelled amino acids, D-glucose and other small compounds were performed in order to obtain rules for prediction of the (13)C isotope effects on (1)H chemical shifts. It is proposed that using the additivity rules, the isotope effects can be predicted with a sufficient accuracy for amino acid isotopomer applications. For glucose the effects were found strongly non-additive. The complete spectral analysis of fully (13)C-labelled D-glucose made it also possible to assign the exocyclic proton signals of the glucose. Copyright 2009 John Wiley & Sons, Ltd.

  15. Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine

    PubMed Central

    Najac, Chloé; Chaumeil, Myriam M.; Kohanbash, Gary; Guglielmetti, Caroline; Gordon, Jeremy W.; Okada, Hideho; Ronen, Sabrina M.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are highly prevalent inflammatory cells that play a key role in tumor development and are considered therapeutic targets. MDSCs promote tumor growth by blocking T-cell-mediated anti-tumoral immune response through depletion of arginine that is essential for T-cell proliferation. To deplete arginine, MDSCs express high levels of arginase, which catalyzes the breakdown of arginine into urea and ornithine. Here, we developed a new hyperpolarized 13C probe, [6-13C]-arginine, to image arginase activity. We show that [6-13C]-arginine can be hyperpolarized, and hyperpolarized [13C]-urea production from [6-13C]-arginine is linearly correlated with arginase concentration in vitro. Furthermore we show that we can detect a statistically significant increase in hyperpolarized [13C]-urea production in MDSCs when compared to control bone marrow cells. This increase was associated with an increase in intracellular arginase concentration detected using a spectrophotometric assay. Hyperpolarized [6-13C]-arginine could therefore serve to image tumoral MDSC function and more broadly M2-like macrophages. PMID:27507680

  16. Constraining 3-PG with a new δ13C submodel: a test using the δ13C of tree rings.

    PubMed

    Wei, Liang; Marshall, John D; Link, Timothy E; Kavanagh, Kathleen L; DU, Enhao; Pangle, Robert E; Gag, Peter J; Ubierna, Nerea

    2014-01-01

    A semi-mechanistic forest growth model, 3-PG (Physiological Principles Predicting Growth), was extended to calculate δ(13)C in tree rings. The δ(13)C estimates were based on the model's existing description of carbon assimilation and canopy conductance. The model was tested in two ~80-year-old natural stands of Abies grandis (grand fir) in northern Idaho. We used as many independent measurements as possible to parameterize the model. Measured parameters included quantum yield, specific leaf area, soil water content and litterfall rate. Predictions were compared with measurements of transpiration by sap flux, stem biomass, tree diameter growth, leaf area index and δ(13)C. Sensitivity analysis showed that the model's predictions of δ(13)C were sensitive to key parameters controlling carbon assimilation and canopy conductance, which would have allowed it to fail had the model been parameterized or programmed incorrectly. Instead, the simulated δ(13)C of tree rings was no different from measurements (P > 0.05). The δ(13)C submodel provides a convenient means of constraining parameter space and avoiding model artefacts. This δ(13)C test may be applied to any forest growth model that includes realistic simulations of carbon assimilation and transpiration.

  17. Synthesis of Site-Specifically (13)C Labeled Linoleic Acids.

    PubMed

    Offenbacher, Adam R; Zhu, Hui; Klinman, Judith P

    2016-10-12

    Soybean lipoxygenase-1 (SLO-1) catalyzes the C-H abstraction from the reactive carbon (C-11) in linoleic acid as the first and rate-determining step in the formation of alkylhydroperoxides. While previous labeling strategies have focused on deuterium labeling to ascertain the primary and secondary kinetic isotope effects for this reaction, there is an emerging interest and need for selectively enriched (13)C isotopologues. In this report, we present synthetic strategies for site-specific (13)C labeled linoleic acid substrates. We take advantage of a Corey-Fuchs formyl to terminal (13)C-labeled alkyne conversion, using (13)CBr4 as the labeling source, to reduce the number of steps from a previous fatty acid (13)C synthetic labeling approach. The labeled linoleic acid substrates are useful as nuclear tunneling markers and for extracting active site geometries of the enzyme-substrate complex in lipoxygenase.

  18. (13)C metabolic flux analysis of recombinant expression hosts.

    PubMed

    Young, Jamey D

    2014-12-01

    Identifying host cell metabolic phenotypes that promote high recombinant protein titer is a major goal of the biotech industry. (13)C metabolic flux analysis (MFA) provides a rigorous approach to quantify these metabolic phenotypes by applying isotope tracers to map the flow of carbon through intracellular metabolic pathways. Recent advances in tracer theory and measurements are enabling more information to be extracted from (13)C labeling experiments. Sustained development of publicly available software tools and standardization of experimental workflows is simultaneously encouraging increased adoption of (13)C MFA within the biotech research community. A number of recent (13)C MFA studies have identified increased citric acid cycle and pentose phosphate pathway fluxes as consistent markers of high recombinant protein expression, both in mammalian and microbial hosts. Further work is needed to determine whether redirecting flux into these pathways can effectively enhance protein titers while maintaining acceptable glycan profiles.

  19. Anomalous 13C enrichment in modern marine organic carbon

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Claypool, G.E.

    1985-01-01

    Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, ??13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) ??13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter ??13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower PCO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4. ?? 1985 Nature Publishing Group.

  20. Epr Hyperfine Structure Of Radiation Defect In Oxyfluoride Glass Ceramics/ Radiācijas Defekta Epr Hipersīkstruktūra Oksifluorīdu Stikla Keramikā

    NASA Astrophysics Data System (ADS)

    Běrziņš, D.; Fedotovs, A.; Rogulis, U.

    2012-12-01

    We have investigated the samples of thermally treated oxyfluoride glass ceramics 50SiO2-25LiO2-20YF3-3ErF3-2YbF2 by means of electron paramagnetic resonance (EPR) techniques. After irradiation of the samples with X-rays, in the EPR spectra a hyperfine structure characteristic of F-centres could be observed in different fluoride crystals. The structure of F-centre in the oxyfluoride glass ceramics containing LiYF4 crystallites is discussed. Oksifluorīdu stiklu keramikas 50SiO2-25LiO2-20YF3-3ErF3-2YbF2 radiācijas defektu īpašības pētītas, izmantojot elektronu paramagnētiskās rezonanses (EPR) metodi. Pēc paraugu apstarošanas ar rentgen stariem, EPR spektros tika novērota vairāku fluorīdu kristālu F-centriem raksturīga hipersīkstruktūra. Šajā darbā apskatīta F-centra struktūra oksifluorīdu stiklu keramikā, kura satur LiYF4 kristalītus.

  1. Comparison of structure in solid state of new 1,5- bis(4-cyano-2,6-dimethoxyphenoxy)alkanes by means of 13C CP/MAS NMR and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Żabiński, Jerzy; Wolska, Irena; Maciejewska, Dorota

    2007-05-01

    The synthesis and structural studies in solid state of new 1,5- bis(4-cyano-2,6-dimethoxyphenoxy)-3-oxapentane 1 and 1,5- bis(4-cyano-2,6-methoxyphenoxy)pentane 2 are presented. The observed complicated network of intermolecular interaction with participation of nitrile groups could play a role in their interaction with the biological target. In vitro screen against 60 human tumor cell lines revealed that compound 1 has promising growth inhibitory power GI 50 against SR (leukemia) and HOP-92 (non-small lung cancer) equal to 4.33 ×10 -6 and 1.03 ×10 -5 M, respectively.

  2. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 2 - hydrogenative and hydrothermal pretreatments and spectroscopic characterization using pyrolysis-GC-MS, CPMAS {sup 13}C NMR and FT-IR

    SciTech Connect

    Chunshan Song; Hatcher, P.G.; Saini, A.K.; Wenzel, K.A.

    1998-01-01

    It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminous coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.

  3. Hyperfine interaction and magnetoresistance in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Nguyen, T. D.; Veeraraghavan, G.; Mermer, Ö.; Wohlgenannt, M.; Qiu, S.; Scherf, U.

    2006-07-01

    We explore the possibility that hyperfine interaction causes the recently discovered organic magnetoresistance (OMAR) effect. We deduce a simple fitting formula from the hyperfine Hamiltonian that relates the saturation field of the OMAR traces to the hyperfine coupling constant. We compare the fitting results to literature values for this parameter. Furthermore, we apply an excitonic pair mechanism model based on hyperfine interaction, previously suggested by others to explain various magnetic-field effects in organics, to the OMAR data. Whereas this model can explain a few key aspects of the experimental data, we uncover several fundamental contradictions as well. By varying the injection efficiency for minority carriers in the devices, we show experimentally that OMAR is only weakly dependent on the ratio between excitons formed and carriers injected, likely excluding any excitonic effect as the origin of OMAR.

  4. Molecular hyperfine fields in organic magnetoresistance devices

    NASA Astrophysics Data System (ADS)

    Giro, Ronaldo; Rosselli, Flávia P.; dos Santos Carvalho, Rafael; Capaz, Rodrigo B.; Cremona, Marco; Achete, Carlos A.

    2013-03-01

    We calculate molecular hyperfine fields in organic magnetoresistance (OMAR) devices using ab initio calculations. To do so, we establish a protocol for the accurate determination of the average hyperfine field Bhf and apply it to selected molecular ions: NPB, TPD, and Alq3. Then, we make devices with precisely the same molecules and perform measurements of the OMAR effect, in order to address the role of hole-transport layer in the characteristic magnetic field B0 of OMAR. Contrary to common belief, we find that molecular hyperfine fields are not only caused by hydrogen nuclei. We also find that dipolar contributions to the hyperfine fields can be comparable to the Fermi contact contributions. However, such contributions are restricted to nuclei located in the same molecular ion as the charge carrier (intramolecular), as extramolecular contributions are negligible.

  5. An in Vivo 13C NMR Analysis of the Anaerobic Yeast Metabolism of 1-13C-Glucose

    NASA Astrophysics Data System (ADS)

    Giles, Brent J.; Matsche, Zenziwe; Egeland, Ryan D.; Reed, Ryan A.; Morioka, Scott S.; Taber, Richard L.

    1999-11-01

    A biochemistry laboratory experiment that studies the dynamics of the anaerobic yeast metabolism of 1-13C-D-glucose via NMR is described. Fleischmann's Active Dry yeast, under anaerobic conditions, produces primarily 2-13C-ethanol and some 1-13C-glycerol as end products. An experiment is described in which the yeast is subjected to osmotic shock from an increasing sodium chloride concentration. Under these conditions, the yeast increases the ratio of glycerol to ethanol. The experiment can be accomplished in a single laboratory period.

  6. Effects of varying water adsorption on a Cu3(BTC)2 metal-organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy.

    PubMed

    Gul-E-Noor, Farhana; Jee, Bettina; Pöppl, Andreas; Hartmann, Martin; Himsl, Dieter; Bertmer, Marko

    2011-05-07

    The process of water adsorption on a dehydrated Cu(3)(BTC)(2) (copper (II) benzene 1,3,5-tricarboxylate) metal-organic framework (MOF) was studied with (1)H and (13)C solid-state NMR. Different relative amounts of water (0.5, 0.75, 1, 1.5, 2, and 5 mole equivalents with respect to copper) were adsorbed via the gas phase. (1)H and (13)C MAS NMR spectra of dehydrated and water-loaded Cu(3)(BTC)(2) samples gave evidence on the structural changes due to water adsorption within the MOF material as well as information on water dynamics. The analysis of (1)H spinning sideband intensities reveals differences in the (1)H-(63/65)Cu hyperfine coupling between dehydrated and water-loaded samples. The investigation was continued for 60 days to follow the stability of the Cu(3)(BTC)(2) network under humid conditions. NMR data reveal that Cu(3)(BTC)(2) decomposes quite fast with the decomposition being different for different water contents. This journal is © the Owner Societies 2011

  7. 13C-detected NMR experiments for measuring chemical shifts and coupling constants in nucleic acid bases.

    PubMed

    Fiala, Radovan; Sklenár, Vladimír

    2007-10-01

    The paper presents a set of two-dimensional experiments that utilize direct (13)C detection to provide proton-carbon, carbon-carbon and carbon-nitrogen correlations in the bases of nucleic acids. The set includes a (13)C-detected proton-carbon correlation experiment for the measurement of (13)C-(13)C couplings, the CaCb experiment for correlating two quaternary carbons, the HCaCb experiment for the (13)C-(13)C correlations in cases where one of the carbons has a proton attached, the HCC-TOCSY experiment for correlating a proton with a network of coupled carbons, and a (13)C-detected (13)C-(15)N correlation experiment for detecting the nitrogen nuclei that cannot be detected via protons. The IPAP procedure is used for extracting the carbon-carbon couplings and/or carbon decoupling in the direct dimension, while the S(3)E procedure is preferred in the indirect dimension of the carbon-nitrogen experiment to obtain the value of the coupling constant. The experiments supply accurate values of (13)C and (15)N chemical shifts and carbon-carbon and carbon-nitrogen coupling constants. These values can help to reveal structural features of nucleic acids either directly or via induced changes when the sample is dissolved in oriented media.

  8. Laboratory measurements and analysis for two molecules of astrophysical interest: 13C-ethanol and n-butyl cyanide

    NASA Astrophysics Data System (ADS)

    Walters, A.; Ordu, M.; Bouchez, A.; Muller, H.; Nuñez, M.; Lewen, F.; Bottinelli, S.; Schlemmer, S.

    2011-05-01

    Ethanol is a complex organic molecule (COM), observed principally in hot core regions in the interstellar medium (e.g. Sgr B2, W51M, Orion KL, G34.3+0.15). The 13C isotopologues have not been identified in the ISM and prior to this work only scarce low-frequency laboratory data were available. Absorption spectra of both 13C isotopologues of ethanol were recorded at Cologne. We measured around 350 lines for the trans configuration of each of the two 13C isotopologues: CH_3^13CH_2OH and ^13CH_3CH_3OH. Measurements were taken in the range 80-600 GHz and a few lines between 700-800 GHz. A comparison between the abundance of the 12C and both 13C species in the ISM could give valuable clues as to the formation of this COM. Furthermore, 13C-ethanol is a potential line pollutant in particular for high-sensitivity instruments such as ALMA. We are currently investigating possible candidates for an astronomical detection of these species. n-propyl cyanide is one of the largest molecules detected in the massive star forming region Sgr B2. The next stage in complexity is n-butyl cyanide CH_3 (CH_2) _3CN for which very high-resolution laboratory data was available (1) but only up to 22 GHz. We hence decided to measure the spectrum between 75 and 130 GHz in order to make accurate predictions over the frequency band of ground-based instruments. Measurements were taken in Cologne using a new solid-state double-pass cell with total path of 44m. We assigned around 3000 transitions corresponding to three conformers (anti-anti, gauche(CN end)-anti, anti-gauche(methyl end) in fits including the lower-frequency hyperfine split data. Lines of the gauche-gauche conformer are also present in the spectra.

  9. Isolation and structural characterization of unusual pyranoanthocyanins and related anthocyanins from Staghorn sumac (Rhus typhina L.) via UPLC-ESI-MS, (1)H, (13)C, and 2D NMR spectroscopy.

    PubMed

    Kirby, Christopher W; Wu, Tao; Tsao, Rong; McCallum, Jason L

    2013-10-01

    The six major anthocyanins found in the burgundy coloured fruits of Staghorn sumac (Rhus typhina L.) were isolated and the structures of four compounds were determined by NMR spectroscopic methods as being: 7-O-methyl-delphinidin-3-O-(2″galloyl)-β-d-galactopyranoside; 7-O-methyl-cyanidin-3-O-(2″galloyl)-β-d-galactopyranoside; 7-O-methyl-delphinidin-3-O-(2″'galloyl)-β-d-galactopyranoside-4-vinyl-catechol-3″-O-β-d-glucopyranoside; and 7-O-methyl-cyanidin-3-O-(2″'galloyl)-β-d-galactopyranoside-4-vinyl-catechol-3″-O-β-d-glucopyranoside, respectively. Additionally, two related anthocyanin compounds, cyanidin-3-O-(2″galloyl)-β-d-galactopyranoside and 7-O-methyl-cyanidin-3-O-β-d-galactopyranoside were also recovered, with NMR spectroscopic values closely matching previous reports from other plant species. The prevalence of 7-O-methyl anthocyanins and their galloylated derivatives in sumac is highly unusual, and warrants special attention. Additionally, the in planta occurrence of two 7-O-methyl-pyranoanothocyanin-vinyl-catechol aglycones, Sumadin A and Sumadin B, and their derivatives is noted. To our knowledge, E-ring glycosylated vinyl-catechol pyranoanthocyanins were previously unknown.

  10. Hyperfine-field spectrum of epitaxially grown bcc cobalt

    NASA Astrophysics Data System (ADS)

    Riedi, P. C.; Dumelow, T.; Rubinstein, M.; Prinz, G. A.; Qadri, S. B.

    1987-09-01

    The hyperfine-field spectrum of the bcc phase of a 357-romanÅ-thick metallic cobalt film, epitaxially grown on a GaAs substrate, has been determined by spin-echo nuclear magnetic resonance. The peak of the distribution of hyperfine fields in bcc Co occurs at 167 MHz, much lower than the value found for fcc Co (217 MHz), suggesting that the moment in the bcc phase is lower than that of the fcc phase, in agreement with the measurements of Prinz, but in disagreement with recent theoretical calculations (assuming that no significant structural differences exist between theory and experiment). The full width of the distribution is 75 MHz, seven times greater than that found in thin fcc Co films. X-ray rocking-curve measurements yield a linewidth of 118 arc seconds, implying too low a dislocation density to explain the observed NMR line broadening.

  11. Hadronic light-by-light scattering in muonium hyperfine splitting

    SciTech Connect

    Karshenboim, S. G.; Shelyuto, V. A.; Vainshtein, A. I.

    2008-09-15

    We consider an impact of hadronic light-by-light scattering on the muonium hyperfine structure. A shift of the hyperfine interval {delta}{nu}(Mu){sub HLBL} is calculated with the light-by-light scattering approximated by the exchange of pseudoscalar and pseudovector mesons. Constraints from the operator product expansion in QCD are used to fix parameters of the model similar to the one used earlier for the hadronic light-by-light scattering in calculations of the muon anomalous magnetic moment. The pseudovector exchange is dominant in the resulting shift, {delta}{nu}(Mu){sub HLBL}=-0.0065(10) Hz. Although the effect is tiny it is useful in understanding the level of hadronic uncertainties.

  12. Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish

    NASA Astrophysics Data System (ADS)

    Thorrold, Simon R.; Campana, Steven E.; Jones, Cynthia M.; Swart, Peter K.

    1997-07-01

    Fish otoliths are aragonitic accretions located within the inner ear of teleost fish. The acellular nature of otoliths, along with taxon-specific shapes, chronological growth increments, and abundance in the fossil record suggest that the stable isotope chemistry of these structures may be unique recorders of environmental conditions experienced by fish in both modern and ancient water masses. To assess the factors determining δ 13C and δ 18O fractionation in fish otoliths, we reared Atlantic croaker ( Micropogonias undulatus) larvae under controlled environmental conditions. Metabolic effects apparently generated large isotopic disequilibria in the δ 13C values of M. undulatus otoliths. We found evidence of a negative regression between δ 13C- carbonate-δ 13C water (δ 13C) and temperature: δ 13C = -1.78 - 0.18 T °C However, this relationship was aliased to a degree by a positive correlation between δ 13C and somatic growth and otolith precipitation rates. Oxygen isotopes were deposited close to equilibrium with the ambient water. The relationship between temperature and the 18O/ 16O fractionation factor (α) was determined empirically to be: 1000 ln α = 18.56(10 3T K -1) - 32.54 The fractionation factor was not affected by either otolith precipitation or fish growth rates. Reconstruction of water temperature histories should, therefore, be possible from the δ 18O values of M. undulatus otoliths with a precision of 1°C, providing the δ 18O of the ambient water can be estimated.

  13. Increased Resolution of Aromatic Cross Peaks Using Alternate 13C Labeling and TROSY

    PubMed Central

    Milbradt, Alexander G.; Arthanari, Haribabu; Takeuchi, Koh; Boeszoermenyi, Andras; Hagn, Franz; Wagner, Gerhard

    2016-01-01

    For typical globular proteins, contacts involving aromatic side chains would constitute the largest number of distance constraints that could be used to define the structure of proteins and protein complexes based on NOE contacts. However, the 1H NMR signals of aromatic side chains are often heavily overlapped, which hampers extensive use of aromatic NOE cross peaks. Some of this overlap can be overcome by recording 13C-dispersed NOESY spectra. However, the resolution in the carbon dimension is rather low due to the narrow dispersion of the carbon signals, large one-bond carbon-carbon (C-C) couplings, and line broadening due to chemical shift anisotropy (CSA). Although it has been noted that the CSA of aromatic carbons could be used in TROSY experiments for enhancing resolution, this has not been used much in practice because of complications arising from large aromatic one-bond C-C couplings, and 3D or 4D carbon dispersed NOESY are typically recorded at low resolution hampering straightforward peak assignments. Here we show that the aromatic TROSY effect can optimally be used when employing alternate 13C labeling using 2-13C glycerol, 2-13C pyruvate, or 3-13C pyruvate as carbon source. With the elimination of the strong one-bond C-C coupling, the TROSY effect can easily be exploited. We show that 1H-13C TROSY spectra of alternately 13C labeled samples can be recorded at high resolution, and we employ 3D NOESY aromatic-TROSY spectra to obtain valuable intramolecular and intermolecular cross peaks on a protein complex. PMID:25957757

  14. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  15. Geochemical Approach to Archaeal Ecology: δ13C of GDGTs

    NASA Astrophysics Data System (ADS)

    Lichtin, S.; Warren, C.; Pearson, A.; Pagani, M.

    2015-12-01

    Over the last decade and a half, glycerol dialkyl glycerol tetraethers (GDGTs) have increasingly been used to reconstruct environmental temperatures; proxies like TEX86 that correlate the relative abundance of these archaeal cell membrane lipids to sea surface temperature are omnipresent in paleoclimatology literature. While it has become common to make claims about past temperatures using GDGTs, our present understanding of the organisms that synthesize the compounds is still quite limited. The generally accepted theory states that microorganisms like the Thaumarchaeota modify the structure of membrane lipids to increase intermolecular interactions, strengthening the membrane at higher temperatures. Yet to date, culture experiments have been largely restricted to a single species, Nitrosopumilus maritimes, and recent studies on oceanic archaeal rRNA have revealed that these biomarkers are produced in diverse, heterogeneous, and site-specific communities. This brings up questions as to whether different subclasses of GDGTs, and all subsequent proxies, represent adaptation within a single organismal group or a shift in community composition. To investigate whether GDGTs with different chain structures, from the simple isoprenoidal GDGT-0 to Crenarchaeol with its many cyclopentane groups, are sourced from archaea with similar or disparate metabolic pathways—and if that information is inherited in GDGTs trapped in marine sediments—this study examines the stable carbon isotope values (δ13C) of GDGTs extracted from the uppermost meters of sediment in the Orca Basin, Gulf of Mexico, using spooling-wire microcombustion isotope-ratio mass spectrometer (SWiM-IRMS), tackling a fundamental assumption of the TEX86 proxy that influences the way we perceive the veracity of existing temperature records.

  16. 13C-based metabolic flux analysis: fundamentals and practice.

    PubMed

    Yang, Tae Hoon

    2013-01-01

    Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo.

  17. A scientific workflow framework for (13)C metabolic flux analysis.

    PubMed

    Dalman, Tolga; Wiechert, Wolfgang; Nöh, Katharina

    2016-08-20

    Metabolic flux analysis (MFA) with (13)C labeling data is a high-precision technique to quantify intracellular reaction rates (fluxes). One of the major challenges of (13)C MFA is the interactivity of the computational workflow according to which the fluxes are determined from the input data (metabolic network model, labeling data, and physiological rates). Here, the workflow assembly is inevitably determined by the scientist who has to consider interacting biological, experimental, and computational aspects. Decision-making is context dependent and requires expertise, rendering an automated evaluation process hardly possible. Here, we present a scientific workflow framework (SWF) for creating, executing, and controlling on demand (13)C MFA workflows. (13)C MFA-specific tools and libraries, such as the high-performance simulation toolbox 13CFLUX2, are wrapped as web services and thereby integrated into a service-oriented architecture. Besides workflow steering, the SWF features transparent provenance collection and enables full flexibility for ad hoc scripting solutions. To handle compute-intensive tasks, cloud computing is supported. We demonstrate how the challenges posed by (13)C MFA workflows can be solved with our approach on the basis of two proof-of-concept use cases.

  18. Synthesis and applications of {sup 13}C glycerol

    SciTech Connect

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  19. Bioaccumulation and Toxicity of (13)C-Skeleton Labeled Graphene Oxide in Wheat.

    PubMed

    Chen, Lingyun; Wang, Chenglong; Li, Hongliang; Qu, Xiulong; Yang, Sheng-Tao; Chang, Xue-Ling

    2017-09-05

    Graphene nanomaterials have many diverse applications, but are considered to be emerging environmental pollutants. Thus, their potential environmental risks and biosafety are receiving increased attention. Bioaccumulation and toxicity evaluations in plants are essential for biosafety assessment. In this study, (13)C-stable isotope labeling of the carbon skeleton of graphene oxide (GO) was applied to investigate the bioaccumulation and toxicity of GO in wheat. Bioaccumulation of GO was accurately quantified according to the (13)C/(12)C ratio. Wheat seedlings were exposed to (13)C-labeled GO at 1.0 mg/mL in nutrient solution for 15 d. (13)C-GO accumulated predominantly in the root with a content of 112 μg/g at day 15, hindered the development and growth of wheat plants, disrupted root structure and cellular ultrastructure, and promoted oxidative stress. The GO that accumulated in the root showed extremely limited translocation to the stem and leaves. During the experimental period, GO was excreted slowly from the root. GO inhibited the germination of wheat seeds at high concentrations (≥0.4 mg/mL). The mechanism of GO toxicity to wheat may be associated with oxidative stress induced by GO bioaccumulation, reflected by the changes of malondialdehyde concentration, catalase activity, and peroxidase activity. The results demonstrate that (13)C labeling is a promising method to investigate environmental impacts and fates of carbon nanomaterials in biological systems.

  20. A predictive tool for assessing (13)C NMR chemical shifts of flavonoids.

    PubMed

    Burns, Darcy C; Ellis, David A; March, Raymond E

    2007-10-01

    Herein are presented the (1)H and (13)C NMR data for seven monohydroxyflavones (3-, 5-, 6-, 7-, 2'-, 3'-, and 4'-hydroxyflavone), five dihydroxyflavones (3,2'-, 3,3'-, 3,4'-, 3,6-, 2',3'-dihydroxyflavone), a trihydroxyflavone (apigenin; 5,7,4'-trihydroxyflavone), a tetrahydroxyflavone (luteolin; 5,7,3',4'-tetrahydroxyflavone), and three glycosylated hydroxyflavones (orientin; luteolin-6C-beta-D-glucoside, homoorientin; luteolin-8C-beta-D-glucoside, vitexin; apigenin-8C-beta-D-glucoside). When these NMR spectra are compared, it is possible to assess the impact of flavone modification and to elucidate detailed structural and electronic information for these flavonoids. A simple predictive tool for assigning flavonoid (13)C chemical shifts, which is based on the cumulative differences between the monohydroxyflavones and flavone (13)C chemical shifts, is demonstrated. The tool can be used to accurately predict (13)C flavonoid chemical shifts and it is expected to be useful for rapid assessment of flavonoid (13)C NMR spectra and for assigning substitution patterns in newly isolated flavonoids.

  1. Probing crystal packing of uniformly (13)C-enriched powder samples using homonuclear dipolar coupling measurements.

    PubMed

    Mollica, Giulia; Dekhil, Myriam; Ziarelli, Fabio; Thureau, Pierre; Viel, Stéphane

    2015-02-01

    The relationship between the crystal packing of powder samples and long-range (13)C-(13)C homonuclear dipolar couplings is presented and illustrated for the case of uniformly (13)C-enriched L-alanine and L-histidine·HCl·H2O. Dipolar coupling measurement is based on the partial reintroduction of dipolar interactions by spinning the sample slightly off-magic-angle, while the coupling of interest for a given spin pair is isolated with a frequency-selective pulse. A cost function is used to correlate the so-derived dipolar couplings to trial crystal structures of the samples under study. This procedure allowed for the investigation of the l-alanine space group and L-histidine·HCl·H2O space group and unit-cell parameters.

  2. Increasing 13C CP-MAS NMR resolution using single crystals: application to model octaethyl porphyrins.

    PubMed

    Dugar, Sneha; Fu, Riqiang; Dalal, Naresh S

    2012-08-02

    Octaethyl porphyrin (OEP) and its Ni and Zn derivatives are considered as model compounds in biochemical, photophysical, and fossil fuel chemistry. They have thus been investigated by high-resolution solid-state (13)C NMR using powders, but peak assignment has been difficult because of large line widths. Arguing that a significant cause of broadening might be the anisotropic bulk magnetic susceptibility, we utilized single crystals in our (13)C cross-polarization magic angle spinning (CP-MAS) measurements and observed a nearly 2-fold line narrowing. This enhanced resolution enabled us to assign chemical shifts to each carbon for all the three compounds. The new assignments are now in agreement with X-ray structural data and allowed us to probe the motional dynamics of the methyl and methylene carbons of the OEP side chains. It is apparent that the use of single crystals in (13)C CP-MAS measurements has a significantly wider impact than previously thought.

  3. 13C-labeled D-ribose: chemi-enzymic synthesis of various isotopomers.

    PubMed

    Serianni, A S; Bondo, P B

    1994-04-01

    Current interest in the use of heteronuclear multidimensional NMR methods to assess the structures, conformations and/or dynamics of oligonucleotides in solution has created an immediate need for nucleosides and their derivatives labeled in various ways with stable isotopes (13C, 2H, 15N and/or 17,18O). This short review focuses exclusively on chemienzymic methods to introduce one or more 13C labels into D-ribose, a precursor to ribo- and 2'-deoxyribonucleosides. It will be demonstrated that five convenient reactions, applied in specific sequences, provide access to 26 of the 32 13C-labeled isotopomers of D-ribose in acceptable yields. While not explicitly discussed herein, these same reactions, appropriately modified, can also be used to insert one or more 2H and/or 17,18O isotopes into this aldopentose.

  4. Antiferromagnetic nuclear spin helix and topological superconductivity in 13C nanotubes

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2015-12-01

    We investigate the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction arising from the hyperfine coupling between localized nuclear spins and conduction electrons in interacting 13C carbon nanotubes. Using the Luttinger liquid formalism, we show that the RKKY interaction is sublattice dependent, consistent with the spin susceptibility calculation in noninteracting carbon nanotubes, and it leads to an antiferromagnetic nuclear spin helix in finite-size systems. The transition temperature reaches up to tens of mK, due to a strong boost by a positive feedback through the Overhauser field from ordered nuclear spins. Similar to GaAs nanowires, the formation of the helical nuclear spin order gaps out half of the conduction electrons, and is therefore observable as a reduction of conductance by a factor of 2 in a transport experiment. The nuclear spin helix leads to a density wave combining spin and charge degrees of freedom in the electron subsystem, resulting in synthetic spin-orbit interaction, which induces nontrivial topological phases. As a result, topological superconductivity with Majorana fermion bound states can be realized in the system in the presence of proximity-induced superconductivity without the need of fine tuning the chemical potential. We present the phase diagram as a function of system parameters, including the pairing gaps, the gap due to the nuclear spin helix, and the Zeeman field perpendicular to the helical plane.

  5. Nuclear magnetic resonance line shapes of Wigner crystals in 13C-enriched graphene

    NASA Astrophysics Data System (ADS)

    Côté, R.; Parent, Jean-Michel

    2017-06-01

    Assuming that the nuclear magnetic resonance (NMR) signal from a 13C-isotope-enriched layer of graphene can be made sufficiently intense to be measured, we compute the NMR line shape of the different crystals' ground states that are expected to occur in graphene in a strong magnetic field. We first show that in nonuniform states there is, in addition to the frequency shift due to the spin hyperfine interaction, a second contribution of equal importance from the coupling between the orbital motion of the electrons and the nuclei. We then show that if the linewidth of the bare signal can be made sufficiently small, the Wigner and bubble crystals have line shapes that differ qualitatively from that of the uniform state at the same density while crystal states that have spin or valley pseudospin textures do not. Finally, we find that a relatively small value of the bare linewidth is sufficient to wash out the distinctive signature of the crystal states in the NMR line shape.

  6. Study of molecular interactions with 13C DNP-NMR

    NASA Astrophysics Data System (ADS)

    Lerche, Mathilde H.; Meier, Sebastian; Jensen, Pernille R.; Baumann, Herbert; Petersen, Bent O.; Karlsson, Magnus; Duus, Jens Ø.; Ardenkjær-Larsen, Jan H.

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct 13C NMR ligand binding studies at natural isotopic abundance of 13C gets feasible in this way. Resultant screens are easy to interpret and can be performed at 13C concentrations below μM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands.

  7. δ(13)C values of some succulent plants from Madagascar.

    PubMed

    Winter, Klaus

    1979-01-01

    δ(13)C values were determined in 20 succulents from Madagascar. The values were indicative of Crassulacean Acid Metabolism in 10 species of the Didiereaceae, 4 species of the Euphorbiaceae, 2 species of the Crassulaceae and 1 species of the Cucurbitaceae. The Didiereaceae and Euphorbiaceae studied are major components of a high biomass xerophytic flora in the semi-arid southwest and south of Madagascar. Three species of the Euphorbiaceae with succulent stems and non-succulent leaves, which were cultivated outdoors in the Tananarive Botanic Garden, showed C3 like δ(13)C values for both leaves and stems. δ(13)C values of leaf and stem material from a similar species, collected in the south of Madagascar, indicated Crassulacean Acid Metabolism.

  8. {sup 13}C relaxation in an RNA hairpin

    SciTech Connect

    King, G.C. |; Akratos, C.; Xi, Z.; Michnica, M.J.

    1994-12-01

    This initial survey of {sup 13}C relaxation in the {triangle}TAR RNA element has generated a number of interesting results that should prove generally useful for future studies. The most readily comparable study in the literature monitored {sup 13}C relaxation of the methyl groups from unusual bases in tRNA{sup Phe}. The study, which used T{sub 1} and NOE data only, reported order parameters for the methyl group axis that ranged between 0.51 and 0.97-a range similar to that observed here. However, they reported a breakdown of the standard order parameter analysis at higher (118-MHz {sup 13}C) frequencies, which should serve to emphasize the need for a thorough exploration of suitable motional models.

  9. Hyperpolarized 13C Metabolic Magnetic Resonance Spectroscopy and Imaging.

    PubMed

    Kubala, Eugen; Muñoz-Álvarez, Kim A; Topping, Geoffrey; Hundshammer, Christian; Feuerecker, Benedikt; Gómez, Pedro A; Pariani, Giorgio; Schilling, Franz; Glaser, Steffen J; Schulte, Rolf F; Menzel, Marion I; Schwaiger, Markus

    2016-12-30

    In the past decades, new methods for tumor staging, restaging, treatment response monitoring, and recurrence detection of a variety of cancers have emerged in conjunction with the state-of-the-art positron emission tomography with (18)F-fluorodeoxyglucose ([(18)F]-FDG PET). (13)C magnetic resonance spectroscopic imaging ((13)CMRSI) is a minimally invasive imaging method that enables the monitoring of metabolism in vivo and in real time. As with any other method based on (13)C nuclear magnetic resonance (NMR), it faces the challenge of low thermal polarization and a subsequent low signal-to-noise ratio due to the relatively low gyromagnetic ratio of (13)C and its low natural abundance in biological samples. By overcoming these limitations, dynamic nuclear polarization (DNP) with subsequent sample dissolution has recently enabled commonly used NMR and magnetic resonance imaging (MRI) systems to measure, study, and image key metabolic pathways in various biological systems. A particularly interesting and promising molecule used in (13)CMRSI is [1-(13)C]pyruvate, which, in the last ten years, has been widely used for in vitro, preclinical, and, more recently, clinical studies to investigate the cellular energy metabolism in cancer and other diseases. In this article, we outline the technique of dissolution DNP using a 3.35 T preclinical DNP hyperpolarizer and demonstrate its usage in in vitro studies. A similar protocol for hyperpolarization may be applied for the most part in in vivo studies as well. To do so, we used lactate dehydrogenase (LDH) and catalyzed the metabolic reaction of [1-(13)C]pyruvate to [1-(13)C]lactate in a prostate carcinoma cell line, PC3, in vitro using (13)CMRSI.

  10. Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd

    2015-03-01

    Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.

  11. 1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy

    USGS Publications Warehouse

    Abidi, S.L.; Adams, B.R.

    1987-01-01

    Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.

  12. Hyperfine Splittings in the Near-Infrared Spectrum of 14NH_3

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Sylvestre; Sears, Trevor; Hall, Gregory

    2016-06-01

    Sub-Doppler, saturation dip, measurements of transitions in the ν_1 + ν_3 band of 14NH_3 have been made by frequency comb-referenced diode laser absorption spectroscopy. The observed spectra exhibit either resolved or partially-resolved hyperfine splittings that are primarily determined by the 14N quadrupole coupling in the molecule. Modeling of the line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the upper state level has splittings similar to that of the same rotational level in the ground state. The data provide accurate frequencies for the line positions and the observed hyperfine splittings can be used to make or confirm rotational assignments. Of all the measurements, one transition, pP(5,4)_a at 195 994.73457 GHz, exhibits hyperfine structure which does not conform to that expected based on extrapolation from the known lower state hyperfine splittings. Examination of the known vibration-rotation level structure near the upper state energy shows that there exists a near degeneracy between this level and one in the ν_1 + 2ν_4 manifold which is of the appropriate symmetry to be mixed by magnetic hyperfine terms that couple ortho- and para- modifications of the molecule. It is possible that the unusual hyperfine splittings are a consequence of ortho-paro mixing, which has been predicted, but not previously seen in ammonia and further experimental measurements to investigate this possibility are ongoing. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences.

  13. Quantitative 13C NMR characterization of fast pyrolysis oils

    DOE PAGES

    Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.

    2016-10-20

    Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.

  14. Modeling of the 2007 JET ^13C migration experiments

    NASA Astrophysics Data System (ADS)

    Strachan, J. D.; Likonen, J.; Hakola, A.; Coad, J. P.; Widdowson, A.; Koivuranta, S.; Hole, D. E.; Rubel, M.

    2010-11-01

    Using the last run day of the 2007 JET experimental campaign, ^13CH4 was introduced repeatedly from the vessel top into a single plasma type (H-mode, Ip= 1.6 MA, Bt= 1.6 T). Similar experiments were performed in 2001 (vessel top into L-Mode) and 2004 (outer divertor into H-Mode). Divertor and wall tiles were removed and been analysed using secondary ion mass spectrometry (SIMS) and Rutherford backscattering (RBS) to determine the ^13C migration. ^13C was observed to migrate both to the inner (largest deposit), outer divertor (less) , and the floor tiles (least). This paper reports the EDGE2D/NIMBUS based modelling of the carbon migration. The emphasis is on the comparison of the 2007 results with the 2001 results where both injections were from the machine top but ELMs were present in 2007 but not present in 2001. The ELMs seemed to cause more ^13C re-erosion near the inner strike point. Also of interest is the difference in the Private Flux Region deposits where the changes in divertor geometry between 2004 and 2007 caused differences in the deposits. In 2007, the tilting of the load bearing tile caused regions of the PFR to be shadowed from the inner strike point which were not shadowed in 2004, indicating ^13C neutrals originated from the OSP.

  15. Metabolic flux analysis using 13C peptide label measurements

    USDA-ARS?s Scientific Manuscript database

    13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate cellular metabolism. MFA has established flux maps of central metabolism for dozens of microbes, cell cultures, and plant seeds. Steady-state MFA utilizes isotopic labeling measurements of amino acids obtai...

  16. Complete 1H and 13C spectral assignment of floridoside.

    PubMed

    Simon-Colin, Christelle; Kervarec, Nelly; Pichon, Roger; Deslandes, Eric

    2002-02-11

    Floridoside (2-O-alpha-D-galactopyranosylglycerol) was extracted from the red marine alga Rhodymenia palmata, and purified by ion-exchange chromatography: 1D and 2D NMR spectroscopy experiments were used to unambiguously assign the complete 1H and 13C spectra.

  17. Kinetic modeling of hyperpolarized 13C 1-pyruvate metabolism in normal rats and TRAMP mice

    NASA Astrophysics Data System (ADS)

    Zierhut, Matthew L.; Yen, Yi-Fen; Chen, Albert P.; Bok, Robert; Albers, Mark J.; Zhang, Vickie; Tropp, Jim; Park, Ilwoo; Vigneron, Daniel B.; Kurhanewicz, John; Hurd, Ralph E.; Nelson, Sarah J.

    2010-01-01

    PurposeTo investigate metabolic exchange between 13C 1-pyruvate, 13C 1-lactate, and 13C 1-alanine in pre-clinical model systems using kinetic modeling of dynamic hyperpolarized 13C spectroscopic data and to examine the relationship between fitted parameters and dose-response. Materials and methodsDynamic 13C spectroscopy data were acquired in normal rats, wild type mice, and mice with transgenic prostate tumors (TRAMP) either within a single slice or using a one-dimensional echo-planar spectroscopic imaging (1D-EPSI) encoding technique. Rate constants were estimated by fitting a set of exponential equations to the dynamic data. Variations in fitted parameters were used to determine model robustness in 15 mm slices centered on normal rat kidneys. Parameter values were used to investigate differences in metabolism between and within TRAMP and wild type mice. ResultsThe kinetic model was shown here to be robust when fitting data from a rat given similar doses. In normal rats, Michaelis-Menten kinetics were able to describe the dose-response of the fitted exchange rate constants with a 13.65% and 16.75% scaled fitting error (SFE) for kpyr→lac and kpyr→ala, respectively. In TRAMP mice, kpyr→lac increased an average of 94% after up to 23 days of disease progression, whether the mice were untreated or treated with casodex. Parameters estimated from dynamic 13C 1D-EPSI data were able to differentiate anatomical structures within both wild type and TRAMP mice. ConclusionsThe metabolic parameters estimated using this approach may be useful for in vivo monitoring of tumor progression and treatment efficacy, as well as to distinguish between various tissues based on metabolic activity.

  18. Gram-scale synthesis and efficient purification of 13C-labeled levoglucosan from 13C glucose.

    PubMed

    Alexander, Lisa; Hoyt, Caroline; Michalczyk, Ryszard; Wu, Ruilian; Thorn, Dave L; Silks, L A Pete

    2013-01-01

    (13)C-Labeled levoglucosan has been synthesized and purified in good yield, and on the gram scale in one step from commercially available (13)C glucose. This one-step protocol uses 2-chloro-1,3-dimethylimidazolinium chloride that serves to selectively activate the anomeric carbon toward substitution reactions. The labeled glucose is then smoothly converted to the anhydroglucose. Purification is efficiently achieved on large scale by chromatography on silica gel. Published 2012. This article is a US Government work and is in the public domain in the USA.

  19. Recent insights into intramolecular 13C isotope composition of biomolecules

    NASA Astrophysics Data System (ADS)

    Gilbert, A.; Yamada, K.; Julien, M.; Yoshida, N.; Remaud, G.; Robins, R.

    2016-12-01

    In 1961 Abelson & Hoering shown that the intramolecular 13C distribution in amino acids was not homogeneous, namely the carboxylic acid positions were 13C-enriched compared with the mean of the remaining C-atoms in the molecule [1]. Nearly 20 years later, Monson & Hayes were able to demonstrate that even and odd positions in acetogenic fatty acids also showed non-statistical 13C isotope distributions, and that the pattern varied depending on the organism [2]. It took a further decade for the intramolecular 13C distribution in the key metabolite, glucose, to be defined [3]. Although informative, much of this work was incomplete, a number of positions having to be deduced by difference. This limitation arose mainly due to the lack of techniques enabling the separation and quantification of 13C isotopomers of the target molecule. In the past decade, quantitative 13C NMR has been developed for the determination of the intramolecular isotope composition of a given molecule with a precision of 1‰ or better [4]. This breakthrough has made possible a comprehensive view of the determinants governing intramolecular isotope composition of biological molecules. In particular, it can be shown that intramolecular pattern in sugars is influenced by the C-assimilation pathway and by post-photosynthetic fractionation associated with carbohydrate metabolism [5]. In addition, analysis by NMR of the alkyl chain of acetogenic lipids (fatty acids, n-alkanes) shows an alternation between odd and even C-atom positions, as observed by Monson& Hayes [2], throughout the molecule [6]. Overall, it is becoming apparent that this pattern is influenced by two principal metabolic factors: (i) the 13C pattern extant in the starting compounds; (ii) isotope fractionation associated with the enzymes involved in the biosynthetic pathway. On the whole, the determination of intramolecular isotope patterns in biomolecules allows better insights into the conditions and pathways by which they are formed

  20. Does the Shuram δ13C excursion record Ediacaran oxygenation?

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Maloof, A. C.; Schoene, B.; Higgins, J. A.

    2013-12-01

    The most negative carbon isotope excursion in Earth history is found in carbonate rocks of the Ediacaran Period (635-542 Ma). Known colloquially as the the 'Shuram' excursion, workers have long noted its tantalizing, broad concordance with the rise of abundant macro-scale fossils in the rock record, variously interpreted as animals, giant protists, macro-algae and lichen, and known as the 'Ediacaran Biota.' Thus, the Shuram excursion has been interpreted by many in the context of a dramatically changing redox state of the Ediacaran oceans - e.g., a result of methane cycling in a low O2 atmosphere, the final destruction of a large pool of recalcitrant dissolved organic carbon (DOC), and the step-wise oxidation of the Ediacaran oceans. More recently, diagenetic interpretations of the Shuram excursion - e.g. sedimentary in-growth of very δ13C depleted authigenic carbonates, meteoric alteration of Ediacaran carbonates, late-stage burial diagenesis - have challenged the various Ediacaran redox models. A rigorous geologic context is required to discriminate between these explanatory models, and determine whether the Shuram excursion can be used to evaluate terminal Neoproterozoic oxygenation. Here, we present chemo-stratigraphic data (δ13C, δ18O, δ44/42Ca and redox sensitive trace element abundances) from 12 measured sections of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia that require a syn-depositional age for the extraordinary range of δ13C values (-12 to +4‰) observed in the formation. In some locations, the Wonoka Fm. is ~700 meters (m) of mixed shelf limestones and siliclastics that record the full 16 ‰ δ13C excursion in a remarkably consistent fashion across 100s of square kilometers of basin area. Fabric-altering diagenesis, where present, occurs at the sub-meter vertical scale, only results in sub-permil offsets in δ13C and cannot be used to explain the full δ13C excursion. In other places, the Wonoka Fm. is host to deep (1 km

  1. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  2. Understanding heme proteins with hyperfine spectroscopy

    NASA Astrophysics Data System (ADS)

    Van Doorslaer, Sabine

    2017-07-01

    Heme proteins are versatile proteins that are involved in a large number of biological processes. Many spectroscopic methods are used to gain insight into the different mechanistic processes governing heme-protein functions. Since many (intermediate) states of heme proteins are paramagnetic, electron paramagnetic resonance (EPR) methods, such as hyperfine spectroscopy, offer unique tools for these investigations. This perspective gives an overview of the use of state-of-the-art hyperfine spectroscopy in heme research, focusing on the advantages, limits and challenges of the different techniques.

  3. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    DOEpatents