Science.gov

Sample records for 13c isotope effects

  1. Deuterium isotope effects in 13C NMR spectra of trans-azobenzene

    NASA Astrophysics Data System (ADS)

    Vikić-Topić, Draz̆en; Novak, Predrag; Smrec̆ki, Vilko; Meić, Zlatko

    1997-06-01

    Deuterium isotope effects on 13C chemical shifts have been determined in a series of deuteriated trans-azobenzene isotopomers. The longest effect observed is the one over ten bonds ( 10Δ) in 4- 2H-isotopomer at C-4' atom amounting to 3.3 ppb. The magnitude and the extent of isotope effects in trans-azobenzene are related to those observed in isoelectronic and conformationally similar trans-stilbene. The sign alternation pattern of the long-range isotope effects in trans-azobenzene parallels that in isoelectronic trans-stilbene, cis-stilbene and trans-N-benzylideneaniline.

  2. Deuterium isotope effect on 13C chemical shifts of tetrabutylammonium salts of Schiff bases amino acids.

    PubMed

    Rozwadowski, Z

    2006-09-01

    Deuterium isotope effects on 13C chemical shift of tetrabutylammonium salts of Schiff bases, derivatives of amino acids (glycine, L-alanine, L-phenylalanine, L-valine, L-leucine, L-isoleucine and L-methionine) and various ortho-hydroxyaldehydes in CDCl3 have been measured. The results have shown that the tetrabutylammonium salts of the Schiff bases amino acids, being derivatives of 2-hydroxynaphthaldehyde and 3,5-dibromosalicylaldehyde, exist in the NH-form, while in the derivatives of salicylaldehyde and 5-bromosalicylaldehyde a proton transfer takes place. The interactions between COO- and NH groups stabilize the proton-transferred form through a bifurcated intramolecular hydrogen bond.

  3. sup 13 C and sup 18 O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects

    SciTech Connect

    McConnaughey, T. )

    1989-01-01

    Biological carbonates are built largely from CO{sub 2}, which diffuses across the skeletogenic membrane and reacts to form HCO{sub 3}{sup {minus}}. Kinetic discrimination against the heavy isotopes {sup 18}O and {sup 13}C during CO{sub 2} hydration and hydroxylation apparently causes most of the isotopic disequilibrium observed in biological carbonates. These kinetic isotope effects are expressed when the extracytosolic calcifying solution is thin and alkaline, and HCO{sub 3}{sup {minus}} precipitates fairly rapidly as CaCO{sub 3}. In vitro simulation of the calcifying environment produced heavy isotope depletions qualitatively similar to, but somewhat more extreme than, those seen in biological carbonates. Isotopic equilibration during biological calcification occurs through CO{sub 2} exchange across the calcifying membrane and by admixture ambient waters (containing HCO{sub 3}{sup {minus}}) into the calcifying fluids. Both mechanisms tend to produce linear correlations between skeletal {delta}{sup 13}C and {delta}{sup 18}O.

  4. Quantitative analysis of deuterium using the isotopic effect on quaternary (13)C NMR chemical shifts.

    PubMed

    Darwish, Tamim A; Yepuri, Nageshwar Rao; Holden, Peter J; James, Michael

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual (1)H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D2O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary (13)C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing (13)C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve (13)C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ((1)H, (2)H) resolves closely separated quaternary (13)C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up.

  5. Dissecting the mechanisms of a class of chemical glycosylation using primary 13C kinetic isotope effects

    NASA Astrophysics Data System (ADS)

    Huang, Min; Garrett, Graham E.; Birlirakis, Nicolas; Bohé, Luis; Pratt, Derek A.; Crich, David

    2012-08-01

    Although arguably the most important reaction in glycoscience, chemical glycosylations are among the least well understood of organic chemical reactions, resulting in an unnecessarily high degree of empiricism and a brake on rational development in this critical area. To address this problem, primary 13C kinetic isotope effects have now been determined for the formation of β- and α-manno- and glucopyranosides using a natural abundance NMR method. In contrast to the common current assumption, for three of the four cases studied the experimental and computed values are indicative of associative displacement of the intermediate covalent glycosyl trifluoromethanesulfonates. For the formation of the α-mannopyranosides, the experimentally determined KIE differs significantly from that computed for an associative displacement, which is strongly suggestive of a dissociative mechanism that approaches the intermediacy of a glycosyl oxocarbenium ion. The application of analogous experiments to other glycosylation systems should shed further light on their mechanisms and thus assist in the design of better reactions conditions with improved stereoselectivity.

  6. Dissecting the Mechanisms of a Class of Chemical Glycosylation Using Primary 13C Kinetic Isotope Effects

    PubMed Central

    Huang, Min; Garrett, Graham E.; Birlirakis, Nicolas; Bohé, Luis

    2012-01-01

    Although arguably the most important reaction in glycoscience, chemical glycosylations are among the least well understood of organic chemical reactions resulting in an unnecessarily high degree of empiricism and a brake on rational development in this critical area. To address this problem primary 13C kinetic isotope effects now have been determined for the formation of β- and α-manno- and glucopyranosides by a natural abundance NMR method. In contrast to the common current assumption, for three of the four cases studied the experimental values concur with those computed for associative displacement of the intermediate covalent glycosyl trifluoromethanesulfonates. For the formation of the α-mannopyranosides the experimentally determined KIE differs significantly from that computed for an associative displacement, which is strongly suggestive of a dissociative mechanism that approaches the intermediacy of a glycosyl oxocarbenium ion. The application of comparable experiments to other glycosylation systems should shed further light on their glycosylation mechanisms and thus assist in the design of better reactions conditions with improved stereoselectivity. PMID:22824899

  7. Modeling δ 13C and δ D of Stratospheric Methane: Implications for Kinetic Isotope Effects and the Isotopic Composition of Tropospheric Methane

    NASA Astrophysics Data System (ADS)

    McCarthy, M. C.; Boering, K. A.; Boering, K. A.; Rice, A. L.; Tyler, S. C.; Connell, P.; Atlas, E.

    2001-12-01

    New measurements of δ D and δ 13C in stratospheric CH4 from 78 whole air samples collected aboard the NASA ER-2 aircraft during the STRAT, POLARIS, and SOLVE field campaigns are compared with model results from the Lawrence Livermore National Laboratory 2-D model. Although uncertainties in stratospheric transport are not small, the effect of these uncertainties on the isotopic compositions is likely small compared to the current range of experimental values for the kinetic isotope effects (KIEs) for the 13C and D isotopomers of CH4 and their associated experimental uncertainties. Thus, by comparing the new δ 13C and δ D observations from the stratosphere with various model scenarios that vary the KIEs for OH, Cl, and O(1D), the uncertainty in the laboratory KIEs may be reduced. Furthermore, latitudinal and seasonal trends in the observations are compared with modeled variability. In addition, model results predict the influence of the KIEs of stratospheric sinks on the δ 13C and δ D of CH4 in the free troposphere, which is of importance in inverse models that use isotopic compositions to derive the magnitude and distribution of methane sources to the atmosphere.

  8. Geometries and tautomerism of OHN hydrogen bonds in aprotic solution probed by H/D isotope effects on (13)C NMR chemical shifts.

    PubMed

    Tolstoy, Peter M; Guo, Jing; Koeppe, Benjamin; Golubev, Nikolai S; Denisov, Gleb S; Smirnov, Sergei N; Limbach, Hans-Heinrich

    2010-10-14

    The (1)H and (13)C NMR spectra of 17 OHN hydrogen-bonded complexes formed by CH(3)(13)COOH(D) with 14 substituted pyridines, 2 amines, and N-methylimidazole have been measured in the temperature region between 110 and 150 K using CDF(3)/CDF(2)Cl mixture as solvent. The slow proton and hydrogen bond exchange regime was reached, and the H/D isotope effects on the (13)C chemical shifts of the carboxyl group were measured. In combination with the analysis of the corresponding (1)H chemical shifts, it was possible to distinguish between OHN hydrogen bonds exhibiting a single proton position and those exhibiting a fast proton tautomerism between molecular and zwitterionic forms. Using H-bond correlations, we relate the H/D isotope effects on the (13)C chemical shifts of the carboxyl group with the OHN hydrogen bond geometries.

  9. [Carbon isotope (13C/12C) effect of photorespiration in photosynthetic organisms. Evidence for existence, probable mechanism].

    PubMed

    Ivlev, A A

    2002-01-01

    Experimental evidence in favor of the new phenomenon predicted for photosynthesizing organisms, the fractionation of carbon isotopes in photorespiration is presented. A possible mechanism of this process is discussed. The fractionation of carbon in isotopes photorespiration occurs in the oxygenase phase of the functioning of ribulosebisphosphate carboxylase/oxygenase (rubisco), the key enzyme of photosynthesis, which is capable to act as carboxylase and oxygenase. Which function of the enzyme is active depends on CO2/O2 concentration ratio, which periodically changes in a cell. The key reaction in the mechanism of carbon isotope fractionation in photorespiration is glycine decarboxylation, which results in the splitting and removal from the cell of CO2 enriched with 12C and the accumulation of 13C photorespiratory carbon flow. The coupling of photorespiration and CO2 photoassimilation gives rise to two isotopically different carbon flows, which fill up separate carbohydrate pools, which are the sources of carbon in the following syntheses in the dark phase of photosynthesis. This enables one to identify, from the carbon isotope ratio of metabolites, their involvement in the photorespiratory and assimilatory carbon flows, to investigate the pathways of carbon metabolism, and to estimate more thoroughly the biosynthetic role of photorespiration.

  10. The effects of sex, tissue type, and dietary components on stable isotope discrimination factors (Δ13C and Δ15N) in mammalian omnivores.

    PubMed

    Kurle, Carolyn M; Koch, Paul L; Tershy, Bernie R; Croll, Donald A

    2014-01-01

    We tested the effects of sex, tissue, and diet on stable isotope discrimination factors (Δ(13)C and Δ(15)N) for six tissues from rats fed four diets with varied C and N sources, but comparable protein quality and quantity. The Δ(13)C and Δ(15)N values ranged from 1.7-4.1‰ and 0.4-4.3‰, respectively. Females had higher Δ(15)N values than males because males grew larger, whereas Δ(13)C values did not differ between sexes. Differences in Δ(13)C values among tissue types increased with increasing variability in dietary carbon sources. The Δ(15)N values increased with increasing dietary δ(15)N values for all tissues except liver and serum, which have fast stable isotope turnover times, and differences in Δ(15)N values among tissue types decreased with increasing dietary animal protein. Our results demonstrate that variability in dietary sources can affect Δ(13)C values, protein source affects Δ(15)N values even when protein quality and quantity are controlled, and the isotope turnover rate of a tissue can influence the degree to which diet affects Δ(15)N values.

  11. The 13C-excess: a new dual-element stable isotopic approach for detrending the effects of evaporation on lake carbonates

    NASA Astrophysics Data System (ADS)

    Horton, T. W.; Oze, C.

    2012-12-01

    Stable isotope-based proxy methods enhance our ability to interpret paleohydrology, paleoelevation, climate change, and biogeochemical cycles. In ancient carbonate lakes, these methods often require that the unmodified isotopic composition of meteoric water, or local carbon reservoirs, or both, are recorded by authigenic minerals. Surprisingly, these critical assumptions have not been tested across wide-ranging environmental contexts. Here, we show that globally distributed Quaternary lake carbonate oxygen isotope compositions are not strongly, nor significantly, correlated with local meteoric-derived water compositions due to the modification of in-flow waters following entry into the lake environment. These modifications are largely caused by surface water evaporation, and can result in dubious reconstructions of ancient hydrological conditions and water source effects such as the strength of prevailing air-mass trajectory, >3km errors in paleoelevation estimates, unrealistic shifts in lake water temperature, and misleading interpretations of local carbon cycle conditions if not accounted for. However, our analysis suggests that positive shifts in surface water δ18O are accompanied by similar magnitude shifts in δ13C-DIC during lake residence. This positive co-variation in δ18O and δ13C may be used to detrend lake carbonate compositions for the effects of surface water evaporation using a parameter we define here as the '13C-excess'. This approach uses the isotopic covariant trend between in-flow waters and lake waters, rather than lacustrine covariation alone, to better constrain ancient meteoric-derived water compositions. To demonstrate the potential strength of the 13C-excess approach over single element methods, we compare the paleoelevation estimates derived from lake carbonate compositions using both approaches. When Tibetan lakes are excluded from the dataset, 13C-excess values are significantly correlated with mean up-slope hypsometric altitude with

  12. Hydrogen bond geometries and proton tautomerism of homoconjugated anions of carboxylic acids studied via H/D isotope effects on 13C NMR chemical shifts.

    PubMed

    Guo, Jing; Tolstoy, Peter M; Koeppe, Benjamin; Golubev, Nikolai S; Denisov, Gleb S; Smirnov, Sergei N; Limbach, Hans-Heinrich

    2012-11-26

    Ten formally symmetric anionic OHO hydrogen bonded complexes, modeling Asp/Glu amino acid side chain interactions in nonaqueous environment (CDF(3)/CDF(2)Cl solution, 200-110 K) have been studied by (1)H, (2)H, and (13)C NMR spectroscopy, i.e. intermolecularly H-bonded homoconjugated anions of acetic, chloroacetic, dichloroacetic, trifluoroacetic, trimethylacetic, and isobutyric acids, and intramolecularly H-bonded hydrogen succinate, hydrogen rac-dimethylsuccinate, hydrogen maleate, and hydrogen phthalate. In particular, primary H/D isotope effects on the hydrogen bond proton signals as well as secondary H/D isotope effects on the (13)C signals of the carboxylic groups are reported and analyzed. We demonstrate that in most of the studied systems there is a degenerate proton tautomerism between O-H···O(-) and O(-)···H-O structures which is fast in the NMR time scale. The stronger is the proton donating ability of the acid, the shorter and more symmetric are the H-bonds in each tautomer of the homoconjugate. For the maleate and phthalate anions exhibiting intramolecular hydrogen bonds, evidence for symmetric single well potentials is obtained. We propose a correlation between H/D isotope effects on carboxylic carbon chemical shifts and the proton transfer coordinate, q(1) = ½(r(OH) - r(HO)), which allows us to estimate the desired OHO hydrogen bond geometries from the observed (13)C NMR parameters, taking into account the degenerate proton tautomerism.

  13. The 13C-excess: a new dual element stable isotopic approach for de-trending the effects of evaporation on lake carbonates

    NASA Astrophysics Data System (ADS)

    Horton, T. W.; Oze, C.

    2013-12-01

    Stable isotope based proxy methods enhance our ability to interpret paleohydrology, paleoelevation, climate change, and biogeochemical cycles. In ancient carbonate lakes, these methods often require that the unmodified isotopic composition of meteoric water or local carbon reservoirs, or both, are recorded by authigenic minerals. Surprisingly, these critical assumptions have not been tested across wide-ranging environmental contexts. A review of globally distributed Quaternary records reveals that lake carbonate oxygen isotope compositions are not strongly, nor significantly, correlated with local meteoric-derived water compositions due to the modification of in-flow waters following entry into the lake environment. These modifications are largely caused by surface water evaporation, and can result in dubious reconstructions of ancient environmental conditions if not accounted for. However, our analysis suggests that positive shifts in surface water δ18O are accompanied by similar magnitude shifts in δ13C-DIC during lake residence. This positive co-variation in δ18O and δ13C may be used to de-trend lake carbonate compositions for the effects of surface water evaporation using a parameter we define as the ';13C-excess'. This approach uses the isotopic covariant trend between in-flow waters and lake waters, rather than lacustrine covariation alone, to better constrain ancient meteoric-derived water compositions. In Quaternary lake systems, 13C-excess values are significantly correlated with modern mean up-slope hypsometric altitude with an error of ×500m. Application of the 13C-excess approach to Cenozoic lake carbonate records from the western U.S. Cordillera both challenges and reinforces previous paleoelevational interpretations based on δ18O alone, while application of the 13C-excess approach to Middle Miocene laminated lacustrine carbonates from California and New Zealand provides important insights into the paleohydrologies of these two highly debated

  14. Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (δ (13)C and δ (15)N).

    PubMed

    Stallings, Christopher D; Nelson, James A; Rozar, Katherine L; Adams, Charles S; Wall, Kara R; Switzer, Theodore S; Winner, Brent L; Hollander, David J

    2015-01-01

    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ (13)C and δ (15)N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ (15)N values in nearly all comparisons. Ethanol also had strong effects on the δ (13)C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and

  15. The C-13/C-12 kinetic isotope effect for soil oxidation of methane at ambient atmospheric concentrations

    NASA Technical Reports Server (NTRS)

    King, Stagg L.; Quay, Paul D.; Lansdown, John M.

    1989-01-01

    During a survey of the Alaskan North Slope to estimate the isotopic composition and fluxes of methane (CH4) from the tundra, two sites were encountered that showed net methane consumption within flux chambers. Methane concentrations decreased from ambient (1.78 ppmv) by up to 50 percent, and the delta C-13 increased by up to 10 percent in the two chamber deployments showing CH4 consumption. CH4 consumption rates were measured to be 1.2 and 0.6 mg CH4/sq m per day; the corresponding carbon kinetic isotope effects (k13/k12) were 0.974 and 0.984, respectively.

  16. Effect of age and ration on diet-tissue isotopic13C, Δ15N) discrimination in striped skunks (Mephitis mephitis).

    PubMed

    Hobson, Keith A; Quirk, Travis W

    2014-01-01

    An important prerequisite for the effective use of stable isotopes in animal ecology is the accurate assessment of isotopic discrimination factors linking animals to their diets for a multitude of tissue types. Surprisingly, these values are poorly known in general and especially for mammalian carnivores and omnivores in particular. Also largely unknown are the factors that influence diet-tissue isotopic discrimination such as nutritional quality and age. We raised adult and juvenile striped skunks (Mephitis mephitis) in captivity on a constant omnivore diet (Mazuri Omnivore A 5635). Adults (n=6) and juveniles (n=3) were kept for 7 months and young (n=7) to the age of 50 days. We then examined individuals for stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values of hair, nails, lipid, liver, muscle, bone collagen and the plasma, and cellular fractions of blood. Discrimination values differed among age groups and were significantly higher for young compared with their mothers, likely due to the effects of weaning. Δ(15)N isotopic discrimination factors ranged from 3.14 (nails) to 5.6‰ (plasma) in adults and 4.3 (nails) to 5.8‰ (liver) for young. For Δ(13)C, values ranged from-3.3 (fat) to 3.0‰ (collagen) in adults and from-3.3 (fat) to 2.0‰ (collagen) in young. Our data provide an important tool for predicting diets and source of feeding for medium-sized mammalian omnivorous adults integrated over short (e.g. liver, plasma) through long (e.g. collagen) periods and underline the potential effects of age on isotopic values in omnivore diets.

  17. Study of Urban environmental quality through Isotopes δ13C

    NASA Astrophysics Data System (ADS)

    González-Sosa, E.; Mastachi-Loza, C.; Becerril-Piña, R.; Ramos-Salinas, N. M.

    2012-04-01

    Usually, trees with similar pH values on their bark develop epiphytes of similar species, the acidity to be a factor for growth. The aim of the study was evaluate the air quality through isotope δ13C in order to define the levels of environmental quality in the city of Queretaro, Mexico. In this work were collected at least 4 epiphytes positioned in trees of the species Prosopis Laevigata at 25 sites of Queretaro City. The samples were analyzed for trace elements with an inductively coupled plasma atomic emission spectroscopy (ICP). The collecting took place during dry period, in May and early rain June 2011 period, and on four sectors to identify the spatial distribution of pollution, using isotopic analysis of concentration of δ 13C. According with the results there are significant differences among the species in each of the sampled areas. The 5 February Avenue presented greater diversity and richness of δ13C, followed by those who were surveyed in the proximity of the UAQ and finally in the middle-east area. An average value of δ13C-17.92%, followed by those surveyed in the vicinity of the UAQ that correspond to sector I and II with an concentration of δ13C-17.55% and δ13C-17.22%, and finally the samples collected in trees scattered in the East-Sector II and IV with a value of δ13C-17.02% and δ13C-15.62%, respectively. Also were observed differences between the dry and wet period. It is likely that these results of δ 13C in moist period reflect the drag of the isotopes due to rain events that could mark a trend in the dilution of this element, however there is a trend in terms of abundance and composition of finding more impact in those species sampled in dry period, in May and early June 2011.

  18. Effects of roasting conditions on the changes of stable carbon isotope ratios (δ13 C) in sesame oil and usefulness of δ13 c to differentiate blended sesame oil from corn oil.

    PubMed

    Seol, Nam Gyu; Jang, Eun Yeong; Kim, Mi-Ja; Lee, Jaehwan

    2012-12-01

    Differentiating blended sesame oils from authentic sesame oil (SO) is a critical step in protecting consumer rights. Stable carbon isotope ratios (δ(13) C), color, fluorescence intensity, and fatty acid profiles were analyzed in SO prepared from sesame seeds with different roasting conditions and in corn oil blended with SO. Sesame seeds were roasted at 175, 200, 225, or 250 °C for 15 or 30 min at each temperature. SO was mixed with corn oil at varying ratios. Roasting conditions ranging from175 to 250 °C at the 30 min time point did not result in significant changes in δ(13) C (P > 0.05). Values of δ(13) C in corn oil and SO from sesame seeds roasted at 250 °C for 15 min were -17.55 and -32.13 ‰, respectively. Fatty acid ratios, including (O + L)/(P × Ln) and (L × L)/O, where O, L, P, and Ln were oleic, linoleic, palmitic, and linolenic acids, respectively, showed good discriminating abilities among the SO blended with corn oil. Therefore, using different combinations of stable carbon isotope ratios and some fatty acid ratios can allow successful differentiation of authentic SO from SO blended with corn oil.

  19. Isotopic 13C NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: site-specific 13C content of aspirin and paracetamol.

    PubMed

    Silvestre, Virginie; Mboula, Vanessa Maroga; Jouitteau, Catherine; Akoka, Serge; Robins, Richard J; Remaud, Gérald S

    2009-10-15

    Isotope profiling is a well-established technique to obtain information about the chemical history of a given compound. However, the current methodology using IRMS can only determine the global (13)C content, leading to the loss of much valuable data. The development of quantitative isotopic (13)C NMR spectrometry at natural abundance enables the measurement of the (13)C content of each carbon within a molecule, thus giving simultaneous access to a number of isotopic parameters. When it is applied to active pharmaceutical ingredients, each manufactured batch can be characterized better than by IRMS. Here, quantitative isotopic (13)C NMR is shown to be a very promising and effective tool for assessing the counterfeiting of medicines, as exemplified by an analysis of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) samples collected from pharmacies in different countries. It is proposed as an essential complement to (2)H NMR and IRMS.

  20. sup 13 C and sup 18 O isotopic disequilibrium in biological carbonates: I. Patterns

    SciTech Connect

    McConnaughey, T. )

    1989-01-01

    Biological carbonates frequently precipitate out of {sup 18}O and {sup 13}C equilibrium with ambient waters. Two patterns of isotopic disequilibrium are particularly common. Kinetic disequilibria, so designated because they apparently result from kinetic isotope effects during CO{sub 2} hydration and hydroxylation, involve simultaneous depletions of {sup 18}O and {sup 13}C as large as 4{per thousand} and 10 to 15{per thousand}, respectively. Rapid skeletogenesis favors strong kinetic effects, and approximately linear correlations between skeletal {delta}{sup 18}O and {delta}{sup 13}C are common in carbonates showing mainly the kinetic pattern. Metabolic effects involve additional positive or negative modulation of skeletal {delta}{sup 13}C, reflecting changes in the {delta}{sup 13}C of dissolved inorganic carbon, caused mainly by photosynthesis and respiration. Kinetic isotope disequilibria tend to be fairly consistent in rapidly growing parts of photosynthetic corals, and time dependent isotopic variations therefore reflect changes in environmental conditions. {delta}{sup 18}O variations from Galapagos corals yields meaningful clues regarding seawater temperature, while {delta}{sup 13}C variations reflect changes in photosynthesis, modulated by cloudiness.

  1. /sup 18/O isotope effect in /sup 13/C nuclear magnetic resonance spectroscopy. Part 9. Hydrolysis of benzyl phosphate by phosphatase enzymes and in acidic aqueous solutions

    SciTech Connect

    Parente, J.E.; Risley, J.M.; Van Etten, R.L.

    1984-12-26

    The /sup 18/O isotope-induced shifts in /sup 13/C and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy were used to establish the position of bond cleavage in the phosphatase-catalyzed and acid-catalyzed hydrolysis reactions of benzyl phosphate. The application of the /sup 18/O-isotope effect in NMR spectroscopy affords a continuous, nondestructive assay method for following the kinetics and position of bond cleavage in the hydrolytic process. The technique provides advantages over most discontinuous methods in which the reaction components must be isolated and converted to volatile derivatives prior to analysis. In the present study, (..cap alpha..-/sup 13/C,ester-/sup 18/O)benzyl phosphate and (ester-/sup 18/O)benzyl phosphate were synthesized for use in enzymatic and nonenzymatic studies. Hydrolysis reactions catalyzed by the alkaline phosphatase from E. coli and by the acid phosphatases isolated from human prostate and human liver were all accompanied by cleavage of the substrate phosphorus-oxygen bond consistent with previously postulated mechanisms involving covalent phosphoenzyme intermediates. An extensive study of the acid-catalyzed hydrolysis of benzyl phosphate at 75/sup 0/C revealed that the site of bond cleavage is dependent on pH. At pH less than or equal to 1.3, the hydrolysis proceeds with C-O bond cleavage; at 1.3 < pH < 2.0, there is a mixture of C-O and P-O bond scission, the latter progressively predominating as the pH is raised; at pH greater than or equal to 2.0, the hydrolysis proceeds with exclusive P-O bond scission. (S)-(+)-(..cap alpha..-/sup 2/H)Benzyl phosphate was also synthesized. Hydrolysis of this chiral benzyl derivative demonstrated that the acid-catalyzed C-O bond scission of benzyl phosphate proceeds by an A-1 (S/sub N/1) mechanism with 70% racemization and 30% inversion at carbon. 37 references, 4 figures, 2 tables.

  2. The effects of preservation methods, dyes and acidification on the isotopic values (δ15N and δ13C) of two zooplankton species from the KwaZulu-Natal Bight, South Africa.

    PubMed

    de Lecea, Ander M; Cooper, Rachel; Omarjee, Aadila; Smit, Albertus J

    2011-07-15

    Stable isotope measurements are an important tool for ecosystem trophic linkage studies. Ideally, fresh samples should be used for isotopic analysis, but in many cases organisms must be preserved and analysed later. In some cases dyes must be used to help distinguish organisms from detritus. Since preservatives and dyes are carbon-based, their addition could influence isotopic readings. This study aims to improve understanding of the effects of sample storage method, dye addition and acidification on the δ(15)N and δ(13)C values of zooplankton (Euphasia frigida and Undinula vulgaris). Zooplankton was collected and preserved by freezing, or by the addition of 5% formalin, 70% ethanol, or 5% formalin with added Phloxine B or Rose Bengal, and stored for 1 month before processing. Samples in 5% formalin and 70% ethanol were also kept and processed after 3 and 9 months to study changes over time. Formalin caused the largest enrichment for δ(13)C and a slight enrichment for δ(15)N, while ethanol produced a slight depletion for δ(13)C, and different effects on δ(15)N depending on the species. In formalin, dyes depleted the δ(13)C values, but had variable effects on δ(15)N, relative to formalin alone. Acidification had no significant effect on δ(15)N or δ(13)C for either species. Long-term storage showed that the effects of the preservatives were species-dependent. Although the effects on δ(15)N varied, a relative enrichment in (13)C of samples occurred with time. This can have important consequences for the understanding of the organic flow within a food web and for trophic studies. .

  3. (13) C dynamic nuclear polarization using isotopically enriched 4-oxo-TEMPO free radicals.

    PubMed

    Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Lumata, Lloyd

    2016-12-01

    The nitroxide-based free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) is a widely used polarizing agent in NMR signal amplification via dissolution dynamic nuclear polarization (DNP). In this study, we have thoroughly investigated the effects of (15) N and/or (2) H isotopic labeling of 4-oxo-TEMPO free radical on (13) C DNP of 3 M [1-(13) C] sodium acetate samples in 1 : 1 v/v glycerol : water at 3.35 T and 1.2 K. Four variants of this free radical were used for (13) C DNP: 4-oxo-TEMPO, 4-oxo-TEMPO-(15) N, 4-oxo-TEMPO-d16 and 4-oxo-TEMPO-(15) N,d16 . Our results indicate that, despite the striking differences seen in the electron spin resonance (ESR) spectral features, the (13) C DNP efficiency of these (15) N and/or (2) H-enriched 4-oxo-TEMPO free radicals are relatively the same compared with (13) C DNP performance of the regular 4-oxo-TEMPO. Furthermore, when fully deuterated glassing solvents were used, the (13) C DNP signals of these samples all doubled in the same manner, and the (13) C polarization buildup was faster by a factor of 2 for all samples. The data here suggest that the hyperfine coupling contributions of these isotopically enriched 4-oxo-TEMPO free radicals have negligible effects on the (13) C DNP efficiency at 3.35 T and 1.2 K. These results are discussed in light of the spin temperature model of DNP. Copyright © 2016 John Wiley & Sons, Ltd.

  4. The Effect of Parasite Infection on Stable Isotope Turnover Rates of δ15N, δ13C and δ34S in Multiple Tissues of Eurasian Perch Perca fluviatilis

    PubMed Central

    Yohannes, Elizabeth; Grimm, Claudia; Rothhaupt, Karl-Otto; Behrmann-Godel, Jasminca

    2017-01-01

    Stable isotope analysis of commercially and ecologically important fish can improve understanding of life-history and trophic ecology. However, accurate interpretation of stable isotope values requires knowledge of tissue-specific isotopic turnover that will help to describe differences in the isotopic composition of tissues and diet. We performed a diet-switch experiment using captive-reared parasite-free Eurasian perch (Perca fluviatilis) and wild caught specimens of the same species, infected with the pike tapeworm Triaenophorus nodulosus living in host liver tissue. We hypothesize that metabolic processes related to infection status play a major role in isotopic turnover and examined the influence of parasite infection on isotopic turn-over rate of carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) in liver, blood and muscle. The δ15N and δ13C turnovers were fastest in liver tissues, followed by blood and muscle. In infected fish, liver and blood δ15N and δ13C turnover rates were similar. However, in infected fish, liver and blood δ13C turnover was faster than that of δ15N. Moreover, in infected subjects, liver δ15N and δ13C turnover rates were three to five times faster than in livers of uninfected subjects (isotopic half-life of ca.3-4 days compared to 16 and 10 days, respectively). Blood δ34S turnover rate were about twice faster in non-infected individuals implying that parasite infection could retard the turnover rate of δ34S and sulphur containing amino acids. Slower turnover rate of essential amino acid could probably decrease individual immune function. These indicate potential hidden costs of chronic and persistent infections that may have accumulated adverse effects and might eventually impair life-history fitness. For the first time, we were able to shift the isotope values of parasites encapsulated in the liver by changing the dietary source of the host. We also report variability in isotopic turnover rates between tissues, elements and

  5. The Effect of Parasite Infection on Stable Isotope Turnover Rates of δ15N, δ13C and δ34S in Multiple Tissues of Eurasian Perch Perca fluviatilis.

    PubMed

    Yohannes, Elizabeth; Grimm, Claudia; Rothhaupt, Karl-Otto; Behrmann-Godel, Jasminca

    2017-01-01

    Stable isotope analysis of commercially and ecologically important fish can improve understanding of life-history and trophic ecology. However, accurate interpretation of stable isotope values requires knowledge of tissue-specific isotopic turnover that will help to describe differences in the isotopic composition of tissues and diet. We performed a diet-switch experiment using captive-reared parasite-free Eurasian perch (Perca fluviatilis) and wild caught specimens of the same species, infected with the pike tapeworm Triaenophorus nodulosus living in host liver tissue. We hypothesize that metabolic processes related to infection status play a major role in isotopic turnover and examined the influence of parasite infection on isotopic turn-over rate of carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) in liver, blood and muscle. The δ15N and δ13C turnovers were fastest in liver tissues, followed by blood and muscle. In infected fish, liver and blood δ15N and δ13C turnover rates were similar. However, in infected fish, liver and blood δ13C turnover was faster than that of δ15N. Moreover, in infected subjects, liver δ15N and δ13C turnover rates were three to five times faster than in livers of uninfected subjects (isotopic half-life of ca.3-4 days compared to 16 and 10 days, respectively). Blood δ34S turnover rate were about twice faster in non-infected individuals implying that parasite infection could retard the turnover rate of δ34S and sulphur containing amino acids. Slower turnover rate of essential amino acid could probably decrease individual immune function. These indicate potential hidden costs of chronic and persistent infections that may have accumulated adverse effects and might eventually impair life-history fitness. For the first time, we were able to shift the isotope values of parasites encapsulated in the liver by changing the dietary source of the host. We also report variability in isotopic turnover rates between tissues, elements and

  6. Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd

    2015-03-01

    Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.

  7. Beneficial effects of sustained activity on the use of dietary protein and carbohydrate traced with stable isotopes 15N and 13C in gilthead sea bream (Sparus aurata).

    PubMed

    Felip, O; Blasco, J; Ibarz, A; Martin-Perez, M; Fernández-Borràs, J

    2013-02-01

    To determine the effects of sustained swimming on the use and fate of dietary nutrients in gilthead sea bream, a group of fish were forced to undertake moderate and sustained swimming (1.5 BL s(-1)) for 3 weeks and compared with a control group undertaking voluntary activity. The exercise group showed a significant increase in specific growth rate (C: 1.13 ± 0.05; E: 1.32 ± 0.06 % day(-1), P < 0.05) with no significant change in food intake (C: 3.56 ± 0.20; E: 3.84 ± 0.03 % of body weight). The addition of (13)C-starch and (15)N-protein to a single meal of 1 % ration allowed analysis of the fate of both nutrients in several tissues and in their components, 6 and 24 h after force-feeding. In exercised fish improved redistribution of dietary components increased the use of carbohydrates and lipid as fuels. Gilthead sea bream have a considerable capacity for carbohydrate absorption irrespective of swimming conditions, but in trained fish (13)C rose in all liver fractions with no changes in store contents. This implies higher nutrient turnover with exercise. Higher retention of dietary protein (higher (15)N uptake into white muscle during the entire post-prandial period) was found under sustained exercise, highlighting the protein-sparing effect. The combined effects of a carbohydrate-rich, low-protein diet plus sustained swimming enhanced amino acid retention and also prevented excessive lipid deposition in gilthead sea bream.

  8. 13C-18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Eagle, Robert A.; Thiagarajan, Nivedita; Gagnon, Alexander C.; Bauch, Henning; Halloran, Paul R.; Eiler, John M.

    2010-10-01

    Accurate constraints on past ocean temperatures and compositions are critical for documenting climate change and resolving its causes. Most proxies for temperature are not thermodynamically based, appear to be subject to biological processes, require regional calibrations, and/or are influenced by fluid composition. As a result, their interpretation becomes uncertain when they are applied in settings not necessarily resembling those in which they were empirically calibrated. Independent proxies for past temperature could provide an important means of testing and/or expanding on existing reconstructions. Here we report measurements of abundances of stable isotopologues of calcitic and aragonitic benthic and planktic foraminifera and coccoliths, relate those abundances to independently estimated growth temperatures, and discuss the possible scope of equilibrium and kinetic isotope effects. The proportions of 13C- 18O bonds in these samples exhibits a temperature dependence that is generally similar to that previously been reported for inorganic calcite and other biologically precipitated carbonate-containing minerals (apatite from fish, reptile, and mammal teeth; calcitic brachiopods and molluscs; aragonitic coral and mollusks). Most species that exhibit non-equilibrium 18O/ 16O (δ 18O) and 13C/ 12C (δ 13C) ratios are characterized by 13C- 18O bond abundances that are similar to inorganic calcite and are generally indistinguishable from apparent equilibrium, with possible exceptions among benthic foraminiferal samples from the Arctic Ocean where temperatures are near-freezing. Observed isotope ratios in biogenic carbonates can be explained if carbonate minerals generally preserve a state of ordering that reflects the extent of isotopic equilibration of the dissolved inorganic carbon species.

  9. The forensic analysis of office paper using carbon isotope ratio mass spectrometry. Part 3: Characterizing the source materials and the effect of production and usage on the δ13C values of paper.

    PubMed

    Jones, Kylie; Benson, Sarah; Roux, Claude

    2013-12-10

    When undertaking any study of the isotope abundance values of a bulk material, consideration should be given to the source materials and how they are combined to reach the final product being measured. While it is demonstrative to measure and record the values of clean papers, such as the results published as part one of this series, the majority of forensic casework samples would have undergone some form of writing or printing process prior to examination. Understanding the effects of these processes on the δ(13)C values of paper is essential for interpretation and comparison with clean samples, for example in cases where printed documents need to be compared to paper from an unprinted suspect ream. This study was undertaken so that the source materials, the effects of the production process and the effects of printing and forensic testing could be observed with respect to 80 gsm white office papers. Samples were taken sequentially from the paper production facility at the Australian Paper Mill (Maryvale, VIC). These samples ranged from raw wood chips through the pulping, whitening and refinement steps to the final formed and packed paper. Cellulose was extracted from each sample to observe both fractionation and mixing steps and their effect on the δ(13)C values. Overall, the mixing steps were observed to have a larger effect on the isotopic values of the bulk materials than any potential fractionation. Printing of papers using toner and inkjet printing processes and forensic testing were observed to have little effect on δ(13)C. These experiments highlighted considerations for sampling and confirmed the need for a holistic understanding of sample history to inform the interpretation of results.

  10. Evolution of E. coli on [U-13C]Glucose Reveals a Negligible Isotopic Influence on Metabolism and Physiology

    PubMed Central

    Sandberg, Troy E.; Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.; Antoniewicz, Maciek R.; Palsson, Bernhard O.

    2016-01-01

    13C-Metabolic flux analysis (13C-MFA) traditionally assumes that kinetic isotope effects from isotopically labeled compounds do not appreciably alter cellular growth or metabolism, despite indications that some biochemical reactions can be non-negligibly impacted. Here, populations of Escherichia coli were adaptively evolved for ~1000 generations on uniformly labeled 13C-glucose, a commonly used isotope for 13C-MFA. Phenotypic characterization of these evolved strains revealed ~40% increases in growth rate, with no significant difference in fitness when grown on either labeled (13C) or unlabeled (12C) glucose. The evolved strains displayed decreased biomass yields, increased glucose and oxygen uptake, and increased acetate production, mimicking what is observed after adaptive evolution on unlabeled glucose. Furthermore, full genome re-sequencing revealed that the key genetic changes underlying these phenotypic alterations were essentially the same as those acquired during adaptive evolution on unlabeled glucose. Additionally, glucose competition experiments demonstrated that the wild-type exhibits no isotopic preference for unlabeled glucose, and the evolved strains have no preference for labeled glucose. Overall, the results of this study indicate that there are no significant differences between 12C and 13C-glucose as a carbon source for E. coli growth. PMID:26964043

  11. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    PubMed Central

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  12. Measurement of 13C/12C of chloroacetic acids by gas chromatography/combustion/isotope ratio mass spectrometry.

    PubMed

    Wong, Charles S; Muir, Derek C G; Mabury, Scott A

    2003-02-01

    This paper describes a novel analytical methodology using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to measure the 13C/12C ratios of chloroacetic acids (CAAs). CAAs are a major class of environmental pollutants that are widely distributed throughout the world, often at relatively high concentrations, and are of concern due to their toxic effects, particularly on plants. The 13C/12C of CAA reagents was measured by IRMS subsequent to offline combustion. Aqueous solutions of these CAAs were derivatized to the corresponding methyl chloroacetates (MCAAs) with acidic methanol with a known isotopic composition, extracted into pentane, and analyzed by GC/C/IRMS. Measured 13C/12C ratios of derivatized MCAAs were in agreement with calculated values within 1 per thousand for monochloroacetic acid and trichloroacetic acid and within 2 per thousand for dichloroacetic acid, suggesting that methylation and other analytical methodology steps do not isotopically fractionate derivatized MCAAs. 13C/12C ratios of reagent CAAs from different sources had varying isotopic signatures suggesting differences in source carbon and/or production methods. Our results underscore the potential of stable isotopes to serve as tracers of environmental sources of CAAs.

  13. Isotopic variability of cave bears (δ15N, δ13C) across Europe during MIS 3

    NASA Astrophysics Data System (ADS)

    Krajcarz, Magdalena; Pacher, Martina; Krajcarz, Maciej T.; Laughlan, Lana; Rabeder, Gernot; Sabol, Martin; Wojtal, Piotr; Bocherens, Hervé

    2016-01-01

    Collagen, the organic fraction of bone, records the isotopic parameters of consumed food for carbon (δ13C) and nitrogen (δ15N). This relationship of isotopic signature between diet and tissue is an important tool for the study of dietary preferences of modern and fossil animal species. Since the first information on the isotopic signature of cave bear was reported, numerous data from Europe have become available. The goal of this work is to track the geographical variation of cave bear collagen isotopic values in Europe during Marine Isotopic Stage 3 (about 60,000-25,000 yr BP). In this study the results of new δ13C and δ15N isotopic analyses of cave bear collagen from four Central-Eastern European sites are presented, as well as a review of all published isotopic data for cave bears of the same period. The main conclusion is a lack of geographical East-West pattern in the variations of δ13C and δ15N values of cave bear collagen. Moreover, no relationship was found between cave bear taxonomy and isotopic composition. The cave bears from Central-Eastern Europe exhibit δ13C and δ15N values near the average of the range of Central, Western and Southern European cave bears. Despite the fact that most cave bear sites follow an altitudinal gradient, separate groups of sites exhibit shift in absolute values of δ13C, what disturbs an altitude-related isotopic pattern. The most distinct groups are: high Alpine sites situated over 1500 m a.s.l. - in terms of δ13C; and two Romanian sites Peştera cu Oase and Urşilor - in case of δ15N. Although the cave bear isotopic signature is driven by altitude, the altitudinal adjustment of isotopic data is not enough to explain the isotopic dissimilarity of these cave bears. The unusually high δ15N signature of mentioned Romanian sites is an isolated case in Europe. Cave bears from relatively closely situated Central-Eastern European sites and other Romanian sites are more similar to Western European than to Romanian

  14. Metabolic Flux Elucidation for Large-Scale Models Using 13C Labeled Isotopes

    PubMed Central

    Suthers, Patrick F.; Burgard, Anthony P.; Dasika, Madhukar S.; Nowroozi, Farnaz; Van Dien, Stephen; Keasling, Jay D.; Maranas, Costas D.

    2007-01-01

    A key consideration in metabolic engineering is the determination of fluxes of the metabolites within the cell. This determination provides an unambiguous description of metabolism before and/or after engineering interventions. Here, we present a computational framework that combines a constraint-based modeling framework with isotopic label tracing on a large-scale. When cells are fed a growth substrate with certain carbon positions labeled with 13C, the distribution of this label in the intracellular metabolites can be calculated based on the known biochemistry of the participating pathways. Most labeling studies focus on skeletal representations of central metabolism and ignore many flux routes that could contribute to the observed isotopic labeling patterns. In contrast, our approach investigates the importance of carrying out isotopic labeling studies using a more comprehensive reaction network consisting of 350 fluxes and 184 metabolites in Escherichia coli including global metabolite balances on cofactors such as ATP, NADH, and NADPH. The proposed procedure is demonstrated on an E. coli strain engineered to produce amorphadiene, a precursor to the anti-malarial drug artemisinin. The cells were grown in continuous culture on glucose containing 20% [U-13C]glucose; the measurements are made using GC-MS performed on 13 amino acids extracted from the cells. We identify flux distributions for which the calculated labeling patterns agree well with the measurements alluding to the accuracy of the network reconstruction. Furthermore, we explore the robustness of the flux calculations to variability in the experimental MS measurements, as well as highlight the key experimental measurements necessary for flux determination. Finally, we discuss the effect of reducing the model, as well as shed light onto the customization of the developed computational framework to other systems. PMID:17632026

  15. Isotopic ((13)C) fractionation during plant residue decomposition and its implications for soil organic matter studies.

    PubMed

    Schweizer; Fear; Cadisch

    1999-07-01

    Carbon isotopic fractionations in plant materials and those occurring during decomposition have direct implications in studies of short-and longer-term soil organic matter dynamics. Thus the products of decomposition, the evolved CO(2) and the newly formed soil organic matter, may vary in their (13)C signature from that of the original plant material. To evaluate the importance of such fractionation processes, the variations in (13)C signatures between and within plant parts of a tropical grass (Brachiaria humidicola) and tropical legume (Desmodium ovalifolium) were measured and the changes in (13)C content (signatures) during decomposition were monitored over a period of four months. As expected the grass materials were less depleted in (13)C (-11.4 to -11.9 per thousand) than those of the legume (-27.3 to -25.8 per thousand). Root materials of the legume were less (1.5 per thousand) depleted in (13)C compared with the leaves. Plant lignin-C was strongly depleted in (13)C compared with the bulk material by up to 2.5 per thousand in the legume and up to 4.7 per thousand in the grass. Plant materials were subsequently incubated in a sand/nutrient-solution/microbial inoculum mixture. The respiration product CO(2) was trapped in NaOH and precipitated as CaCO(3), suitable for analysis using an automated C/N analyser coupled to an isotope ratio mass spectrometer. Significant depletion in (13)C of the evolved CO(2) was observed during the initial stages of decomposition probably as a result of microbial fractionation as it was not associated with the (13)C signatures of the measured more decomposable fractions (non-acid detergent fibre and cellulose). While the cumulative CO(2)-(13)C signatures of legume materials became slightly enriched with ongoing decomposition, the CO(2)-C of the grass materials remained depleted in (13)C. Associated isotopic fractionation correction factors for source identification of CO(2-)C varied with time and suggested errors of 2-19% in the

  16. Analogy between mission critical detection in distributed systems and 13C isotope separation column

    NASA Astrophysics Data System (ADS)

    Boca, Maria L.; Secara, Mihai

    2015-02-01

    Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13 Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [2]. Distributed systems are increasingly being applied in critical real-time applications and their complexity forces programmers to use design methods which guarantee correctness and increase the maintainability of the products. Objectoriented methodologies are widely used to cope with complexity in any kind of system, but most of them lack a formal foundation to allow the analysis and verification of designs, which is one of the main requirements for dealing with concurrent and reactive systems. This research is intended to make an analogy between two tips of industrial processes, one 13C Isotope Separation Column and other one distributed systems. We try to highlight detection of "mission critical "situations for this two processes and show with one is more critical and needs deeply supervisyon [1], [3].

  17. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.

    PubMed

    Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation.

  18. Site-specific 13C content by quantitative isotopic 13C nuclear magnetic resonance spectrometry: a pilot inter-laboratory study.

    PubMed

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Pagelot, Alain; Moskau, Detlef; Moreno, Aitor; Schleucher, Jürgen; Reniero, Fabiano; Holland, Margaret; Guillou, Claude; Silvestre, Virginie; Akoka, Serge; Remaud, Gérald S

    2013-07-25

    Isotopic (13)C NMR spectrometry, which is able to measure intra-molecular (13)C composition, is of emerging demand because of the new information provided by the (13)C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic (13)C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular (13)C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic (13)C NMR was then assessed on vanillin from three different origins associated with specific δ (13)Ci profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ (13)Ci in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results.

  19. Effects of foliar boron application on seed composition, cell wall boron, and seed delta 15N and delta 13C isotopes in soybean are influenced by water stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the effect of foliar boron (B) application on yield and quality is well established for crops, limited information and controversial results still exist on the effects of foliar B application on soybean seed composition (seed protein, oil, fatty acids, and sugars). The objective of this res...

  20. Effects of drought and elevated atmospheric carbon dioxide on seed nutrition and 15N and 13C natural abundance isotopes in soybean cultivars under controlled environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change resulting from global warming is expected to affect crop production and seed quality. The objective of this research was to evaluate the response of soybean cultivars to the effect of drought and elevated temperature on seed composition and mineral nutrition. In a repeated growth cham...

  1. 13C/12C isotope ratio MS analysis of testosterone, in chemicals and pharmaceutical preparations.

    PubMed

    de la Torre, X; González, J C; Pichini, S; Pascual, J A; Segura, J

    2001-02-01

    The 13C/12C ratio can be used to detect testosterone misuse in sport because (semi)-synthetic testosterone is supposed to have a 13C abundance different from that of endogenous natural human testosterone. In this study, gas chromatography/combustion isotope ratio mass spectrometry (GC/C/IRMS) analysis for the measurement of the delta 13C/1000 value of testosterone from esterified forms of 13 pharmaceutical preparations, six reagent grade chemicals and three bulk materials (raw materials used in pharmaceutical proarations) obtained world-wide was investigated after applying a strong acidic solvolytic procedure. Mean delta 13C/1000 values of non esterified (free) testosterone from chemicals and bulk materials of several testosterone esters were in the range: -25.91/-32.82/1000 while the value obtained for a (semi)-synthetic, reagent grade, free testosterone was -27.36/1000. The delta 13C/1000 results obtained for testosterone from the pharmaceuticals investigated containing testosterone esters were quite homogeneous (mean and S.D. of delta 13C/1000 values of free testosterone: 27.43 +/- 0.76/1000), being the range between -26.18 and -30.04/1000. Values described above were clearly different from those reported by several authors for endogenous natural human testosterone and its main metabolites excreted into the urine in non-consumers of testosterone (delta 13C/1000 range: from -21.3 to -24.4/1000), while they were similar to those of urinary testosterone and metabolites from individuals treated with testosterone esters and testosterone precursors. This finding justifies the fact that administration of these pharmaceutical formulations led to a statistical decrease of carbon isotope ratio of urinary testosterone and its main metabolites in treated subjects.

  2. Evaluating North Sea carbon sources using radiogenic (224Ra and 228Ra) and stable carbon isotope (DI13C) tracers

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Paetsch, Johannes; Clargo, Nikki

    2015-04-01

    In the North Sea, much uncertainty still exists regarding the role of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) in the overall biogeochemical cycling of the system. The stable carbon isotope signature of dissolved inorganic carbon (δ13C-DIC) is a common tool for following transformations of carbon in the water column and identifying carbon sources and sinks. Here, analyses of the first basin-wide observations of δ13C-DIC reveal that a balance between biological production and respiration, as well as a freshwater input near the European continental coast, predominantly control surface distributions in the North Sea. A strong relationship between the biological component of DIC (DICbio) and δ13C-DIC is then used to quantify the metabolic DIC flux associated with changes in the carbon isotopic signature. Correlations are also found between δ13C-DIC and naturally-occurring Radium isotopes (224Ra and 228Ra), which have well-identified sources from the seafloor and coastal boundaries. The relationship between δ13C-DIC and the longer-lived 228Ra isotope (half-life = 5.8 years) is used to derive a metabolic DIC flux from the European continental coastline. 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (TA) compared to the more conventional use of salinity as a tracer. Coastal alkalinity inputs are calculated using relationships with 228Ra, and ratios of DIC and TA suggest denitrification as the main metabolic pathway for the formation of these coastal inputs. Finally, coastal TA inputs are translated into inputs of protons to quantify their impact on the buffering capacity of the Southern North Sea.

  3. OpenMebius: an open source software for isotopically nonstationary 13C-based metabolic flux analysis.

    PubMed

    Kajihata, Shuichi; Furusawa, Chikara; Matsuda, Fumio; Shimizu, Hiroshi

    2014-01-01

    The in vivo measurement of metabolic flux by (13)C-based metabolic flux analysis ((13)C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a (13)C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model to the isotopic labeling enrichment of intracellular metabolites measured by mass spectrometry. Whereas (13)C-MFA is conventionally performed under isotopically constant conditions, isotopically nonstationary (13)C metabolic flux analysis (INST-(13)C-MFA) has recently been developed for flux analysis of cells with photosynthetic activity and cells at a quasi-steady metabolic state (e.g., primary cells or microorganisms under stationary phase). Here, the development of a novel open source software for INST-(13)C-MFA on the Windows platform is reported. OpenMebius (Open source software for Metabolic flux analysis) provides the function of autogenerating metabolic models for simulating isotopic labeling enrichment from a user-defined configuration worksheet. Analysis using simulated data demonstrated the applicability of OpenMebius for INST-(13)C-MFA. Confidence intervals determined by INST-(13)C-MFA were less than those determined by conventional methods, indicating the potential of INST-(13)C-MFA for precise metabolic flux analysis. OpenMebius is the open source software for the general application of INST-(13)C-MFA.

  4. Process Model for Studying Regional 13C Stable Isotope Exchange between Vegetation and Atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, B.; Huang, L.; Tans, P.; Worthy, D.; Ishizawa, M.; Chan, D.

    2007-12-01

    The variation of the stable isotope 13CO2 in the air in exchange with land ecosystems results from fractionation processes in both plants and soil during photosynthesis and respiration. Its diurnal and seasonal variations therefore contain information on the carbon cycle. We developed a model (BEPS-iso) to simulate its exchange between vegetation and the atmosphere. To be useful for regional carbon cycle studies, the model has the following characteristics: (i) it considers the turbulent mixing in the vertical profile from the soil surface to the top of the planetary boundary layer (PBL); (ii) it scales individual leaf photosynthetic discrimination to the whole canopy through the separation of sunlit and shaded leaf groups; (iii) through simulating leaf-level photosynthetic processes, it has the capacity to mechanistically examine isotope discrimination resulting from meteorological forcings, such as radiation, precipitation and humidity; and (iv) through complete modeling of radiation, energy and water fluxes, it also simulates soil moisture and temperature needed for estimating ecosystem respiration and the 13C signal from the soil. After validation using flask data acquired at 20 m level on a tower near Fraserdale, Ontario, Canada, during intensive campaigns (1998-2000), the model has been used for several purposes: (i) to investigate the diurnal and seasonal variations in the disequilibrium in 13C fractionation between ecosystem respiration and photosynthesis, which is an important step in using 13C measurements to separate these carbon cycle components; (ii) to quantify the 13C rectification in the PBL, which differs significantly from CO2 rectification because of the diurnal and seasonal disequilibriums; and (iii) to model the 13C spatial and temporal variations over the global land surface for the purpose of CO2 inversion using 13C as an additional constraint.

  5. Photobioreactor design for isotopic non-stationary 13C-metabolic flux analysis (INST 13C-MFA) under photoautotrophic conditions.

    PubMed

    Martzolff, Arnaud; Cahoreau, Edern; Cogne, Guillaume; Peyriga, Lindsay; Portais, Jean-Charles; Dechandol, Emmanuel; Le Grand, Fabienne; Massou, Stéphane; Gonçalves, Olivier; Pruvost, Jérémy; Legrand, Jack

    2012-12-01

    Adaptive metabolic behavior of photoautotrophic microorganisms toward genetic and environmental perturbations can be interpreted in a quantitative depiction of carbon flow through a biochemical reaction network using isotopic non-stationary (13) C-metabolic flux analysis (INST (13) C-MFA). To evaluate (13) C-metabolic flux maps for Chlamydomonas reinhardtii, an original experimental framework was designed allowing rapid, reliable collection of high-quality isotopomer data against time. It involved (i) a short-time (13) C labeling injection device based on mixing control in a torus-shaped photobioreactor with plug-flow hydrodynamics allowing a sudden step-change in the (13) C proportion in the substrate feed and (ii) a rapid sampling procedure using an automatic fast filtration method coupled to a manual rapid liquid nitrogen quenching step. (13) C-substrate labeling enrichment was controlled through the total dissolved inorganic carbon concentration in the pulsed solution. First results were obtained from steady-state continuous culture measurements allowing the characterization of the kinetics of label incorporation into light-limited growing cells cultivated in a photobioreactor operating at the maximal biomass productivity for an incident photon flux density of 200 µmol m(-2) s(-1). (13)C label incorporation was measured for 21 intracellular metabolites using IC-MS/MS in 58 samples collected across a labeling experiment duration of 7 min. The fastest labeling rate was observed for 2/3-phosphoglycerate with an apparent isotopic stationary state reached after 300 s. The labeling rate was consistent with the optimized mixing time of about 4.9 s inside the reactor and the shortest reliable sampling period assessed at 5 s.

  6. Paleoclimate record from Zidita Cave (Romania) using guano-derived δ13C isotopic data

    NASA Astrophysics Data System (ADS)

    Forray, Ferenc L.; Giurgiu, Alexandra; Onac, Bogdan P.; Tămaş, Tudor

    2014-05-01

    In this study, we measured the carbon isotopic composition of a core taken from a bat guano deposit in Zidita Cave (Metaliferi Mountains, Romania). The cave develops in Late Jurassic limestones, has a total length of 547 m, and its entrance was fortified during the XIV - XVIII centuries. The cave is a fossil maze with a filling represented by limestone blocks, clay sediments, and scarce calcite speleothems. The guano accumulation, 1.5 m thick, is located in a small room towards the end of the cave, under a Rhinolophus euryale roost site.The core was recovered with a Russian peat corer. 14C dating performed on the guano indicates a continuous deposition since ca. 500 years BP, but however, the upper first meter of the core has a modern age and high radiocarbon activity acquired from atmospheric radiocarbon bomb pulse. The core was sampled at 2 cm ± 2 mm intervals for δ13C analyses (76 samples) and at 5 cm for pollen. The investigations were carried out using a Picarro G2121-i δ13C analyzer (Combustion Module coupled with a Cavity Ring Down Spectroscopy technique) at the Stable Isotope Laboratory of the Department of Geology, Babes-Bolyai University (Cluj-Napoca, Romania). The result shows that guano δ13C range from -24.07 to -27.61 o‰The carbon isotopic profile indicates two major wet periods and 2 to 3 shorter periods characterized by drier climate.

  7. On the status of IAEA delta-13C stable isotope reference materials.

    NASA Astrophysics Data System (ADS)

    Assonov, Sergey; Groening, Manfred; Fajgelj, Ales

    2016-04-01

    For practical reasons all isotope measurements are performed on relative scales realized through the use of international, scale-defining primary standards. In fact these standards were materials (artefacts, similar to prototypes of meter and kg) selected based on their properties. The VPDB delta-13C scale is realised via two highest-level reference materials NBS19 and LSVEC, the first defining the scale and the second aimed to normalise lab-to-lab calibrations. These two reference materials (RMs) have been maintained and distributed by IAEA and NIST. The priority task is to maintain these primary RMs at the required uncertainty level, thus ensuring the long-term scale consistency. The second task is to introduce replacements when needed (currently for exhausted NBS19, work in progress). The next is to produce a family of lower level RMs (secondary, tertiary) addressing needs of various applications (with different delta values, in different physical-chemical forms) and their needs for the uncertainty; these RMs should be traceable to the highest level RMs. Presently three is a need for a range of RMs addressing existing and newly emerging analytical techniques (e.g. optical isotopic analysers) in form of calibrated CO2 gases with different delta-13C values. All that implies creating a family of delta-13C stable isotope reference materials. Presently IAEA works on replacement for NBS19 and planning new RMs. Besides, we found that LSVEC (introduced as second anchor for the VPDB scale in 2006) demonstrate a considerable scatter of its delta-13C value which implies a potential bias of the property value and increased value uncertainty which may conflict with uncertainty requirements for atmospheric monitoring. That is not compatible with the status of LSVEC, and therefore it should be replaced as soon as possible. The presentation will give an overview of the current status, the strategic plan of developments and the near future steps.

  8. Mechanisms linking metabolism of Helicobacter pylori to (18)O and (13)C-isotopes of human breath CO2.

    PubMed

    Som, Suman; De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Ghosh, Chiranjit; Pal, Mithun; Daschakraborty, Sunil B; Chaudhuri, Sujit; Jana, Subhra; Pradhan, Manik

    2015-06-03

    The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 ((18)O) and carbon-13 ((13)C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of (18)O/(16)O and (13)C/(12)C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections exhibited significantly higher isotopic enrichments of (18)O in breath CO2 during the 2h-glucose metabolism regardless of the isotopic nature of the substrate, while no significant enrichments of (18)O in breath CO2 were manifested in individuals without the infections. In contrast, the (13)C-isotopic enrichments of breath CO2 were significantly higher in individuals with Helicobacter pylori compared to individuals without infections in response to (13)C-enriched glucose uptake, whereas a distinguishable change of breath (13)C/(12)C-isotope ratios was also evident when Helicobacter pylori utilize natural glucose. Moreover, monitoring the (18)O and (13)C-isotopic exchange in breath CO2 successfully diagnosed the eradications of Helicobacter pylori infections following a standard therapy. Our findings suggest that breath (12)C(18)O(16)O and (13)C(16)O(16)O can be used as potential molecular biomarkers to distinctively track the pathogenesis of Helicobacter pylori and also for eradication purposes and thus may open new perspectives into the pathogen's physiology along with isotope-specific non-invasive diagnosis of the infection.

  9. Continuous flow stable isotope methods for study of δ13C fractionation during halomethane production and degradation

    USGS Publications Warehouse

    Kalin, Robert M.; Hamilton, John T.G.; Harper, David B.; Miller, Laurence G.; Lamb, Clare; Kennedy, James T.; Downey, Angela; McCauley, Sean; Goldstein, Allen H.

    2001-01-01

    Gas chromatography/mass spectrometry/isotope ratio mass spectrometry (GC/MS/IRMS) methods for δ13C measurement of the halomethanes CH3Cl, CH3Br, CH3I and methanethiol (CH3SH) during studies of their biological production, biological degradation, and abiotic reactions are presented. Optimisation of gas chromatographic parameters allowed the identification and quantification of CO2, O2, CH3Cl, CH3Br, CH3I and CH3SH from a single sample, and also the concurrent measurement of δ13C for each of the halomethanes and methanethiol. Precision of δ13C measurements for halomethane standards decreased (±0.3, ±0.5 and ±1.3‰) with increasing mass (CH3Cl, CH3Br, CH3I, respectively). Given that carbon isotope effects during biological production, biological degradation and some chemical (abiotic) reactions can be as much as 100‰, stable isotope analysis offers a precise method to study the global sources and sinks of these halogenated compounds that are of considerable importance to our understanding of stratospheric ozone destruction. 

  10. Measurement of position-specific 13C isotopic composition of propane at the nanomole level

    NASA Astrophysics Data System (ADS)

    Gilbert, Alexis; Yamada, Keita; Suda, Konomi; Ueno, Yuichiro; Yoshida, Naohiro

    2016-03-01

    We have developed a novel method for analyzing intramolecular carbon isotopic distribution of propane as a potential new tracer of its origin. The method is based on on-line pyrolysis of propane followed by analysis of carbon isotope ratios of the pyrolytic products methane, ethylene and ethane. Using propane samples spiked with 13C at the terminal methyl carbon, we characterize the origin of the pyrolytic fragments. We show that the exchange between C-atoms during the pyrolytic process is negligible, and thus that relative intramolecular isotope composition can be calculated. Preliminary data from 3 samples show that site-preference (SP) values, defined as the difference of δ13C values between terminal and sub-terminal C-atom positions of propane, range from -1.8‰ to -12.9‰. In addition, SP value obtained using our method for a thermogenic natural gas sample is consistent with that expected from theoretical models of thermal cracking, suggesting that the isotope fractionation associated with propane pyrolysis is negligible. The method will provide novel insights into the characterization of the origin of propane and will help better understand the biogeochemistry of natural gas deposits.

  11. The effect of chemical processing on the δ 13C value of plant tissue

    NASA Astrophysics Data System (ADS)

    Van de Water, Peter K.

    2002-04-01

    The effect of standard processing techniques on the δ 13C value of plant tissue was tested using species representing the three photosynthetic pathways, including angiosperms and gymnosperms within the C 3 taxonomic division. The species include Cowania mexicana (C 3 angiosperm), Juniperus osteosperma (C 3 gymnosperm), Opuntia spp. (crassulacean acid metabolism [CAM] angiosperm), and Atriplex canescens (C 4 angiosperm). Each species is represented by 5 plants collected at two different sites, for a total of 10 samples. The samples were processed to whole plant tissue, holocellulose, α-cellulose, and nitrocellulose. An additional process was added with the discovery of residual Ca-oxalate crystals in holocellulose samples. Both C 3 species show δ 13C values becoming 13C enriched with increased processing. The CAM representative shows the opposite trend, with 13C depletion during the progression of treatments. The greatest range of values and most inconsistent trends occur in the C 4 representative. Removal of the Ca-oxalate fraction resulted in different mean weight percentages and δ 13C values among the species. Calculated δ 13C values of the Ca-oxalate crystals show depletion from the tissue values in the two C 3 species and enrichment in the C 4 and CAM representatives. The C. mexicana samples show the greatest change between the tissue and Ca-oxalates (7.3‰) but the least mean weight percentage (11%), whereas A. canescens shows the greatest overall change, with a -2.8‰ isotopic shift and over 48% mean weight percentage. Variability within the samples undergoing each treatment remained relatively unchanged even with increased cellulose purity. This paper provides estimates of isotopic offsets necessary to correct from one treatment to another. Significant differences in δ 13C among different treatments confirm the need to state the tissue fraction analyzed when reporting δ 13C results.

  12. Aspects regarding at 13C isotope separation column control using Petri nets system

    NASA Astrophysics Data System (ADS)

    Boca, M. L.; Ciortea, M. E.

    2015-11-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.

  13. Soil compaction effects on water status of ponderosa pine assessed through 13C/12C composition.

    PubMed

    Gomez, G Armando; Singer, Michael J; Powers, Robert F; Horwath, William R

    2002-05-01

    Soil compaction is a side effect of forest reestablishment practices resulting from use of heavy equipment and site preparation. Soil compaction often alters soil properties resulting in changes in plant-available water. The use of pressure chamber methods to assess plant water stress has two drawbacks: (1) the measurements are not integrative; and (2) the method is difficult to apply extensively to establish seasonal soil water status. We evaluated leaf carbon isotopic composition (delta13C) as a means of assessing effects of soil compaction on water status and growth of young ponderosa pine (Pinus ponderosa var. ponderosa Dougl. ex Laws) stands across a range of soil textures. Leaf delta13C in cellulose and whole foliar tissue were highly correlated. Leaf delta13C in both whole tissue and cellulose (holocellulose) was up to 1.0 per thousand lower in trees growing in non-compacted (NC) loam or clay soils than in compacted (SC) loam or clay soils. Soil compaction had the opposite effect on leaf delta13C in trees growing on sandy loam soil, indicating that compaction increased water availability in this soil type. Tree growth response to compaction also varied with soil texture, with no effect, a negative effect and a positive effect as a result of compaction of loam, clay and sandy loam soils, respectively. There was a significant correlation between 13C signature and tree growth along the range of soil textures. Leaf delta13C trends were correlated with midday stem water potentials. We conclude that leaf delta13C can be used to measure retrospective water status and to assess the impact of site preparation on tree growth. The advantage of the leaf delta13C approach is that it provides an integrative assessment of past water status in different aged leaves.

  14. Carbon isotope ratio (13C/12C) of pine honey and detection of HFCS adulteration.

    PubMed

    Çinar, Serap B; Ekşi, Aziz; Coşkun, İlknur

    2014-08-15

    Carbon isotope ratio ((13)C/(12)C=δ(13)C) of 100 pine honey samples collected from 9 different localities by Mugla region (Turkey) in years 2006, 2007 and 2008 were investigated. The δ(13)Cprotein value of honey samples ranged between -23.7 and -26.6‰, while the δ(13)Choney value varied between -22.7 and -27‰. For 90% of the samples, the difference in the C isotope ratio of protein and honey fraction (δ(13)Cpro-δ(13)Chon) was -1.0‰ and/or higher. Therefore, it can be said that the generally anticipated minimum value of C isotope difference (-1.0‰) for honey is also valid for pine honey. On the other hand, C4 sugar value (%), which was calculated from the δ(13)Cpro-δ(13)Chon difference, was found to be linearly correlated with the amount of adulterant (HFCS) in pine honey. These results indicate that C4 sugar value is a powerful criteria for detecting HFCS adulteration in pine honey. The δ(13)Choney and δ(13)Cprotein-δ(13)Choney values of the samples did not show any significant differences in terms of both year and locality (P>0.05), while the δ(13)Cprotein values showed significant differences due to year (P<0.05) but not due to locality (P>0.05).

  15. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  16. Comparing isotope signatures of prey fish: does gut removal affect δ13C or δ15N?

    USGS Publications Warehouse

    Chipps, Steven R.; Fincel, Mark J.; VanDeHey, Justin A.; Wuestewald, Andrew

    2011-01-01

    Stable isotope analysis is a quick and inexpensive method to monitor the effects of food web changes on aquatic communities. Traditionally, whole specimens have been used when determining isotope composition of prey fish or age-0 recreational fishes. However, gut contents of prey fish could potentially alter isotope composition of the specimen, especially when recent foraging has taken place or when the gut contains non-assimilated material that would normally pass through fishes undigested. To assess the impacts of gut content on prey fish isotope signatures, we examined the differences in isotopic variation of five prey fish species using whole fish, whole fish with the gut contents removed, and dorsal muscle only. We found significant differences in both δ15N and δ13C between the three tissue treatments. In most cases, muscle tissue was enriched compared to whole specimens or gut-removed specimens. Moreover, differences in mean δ15N within a species were up to 2‰ among treatments. This would result in a change of over half a trophic position (TP) based on a 3.4‰ increase per trophic level. However, there were no apparent relationships between tissue isotope values in fish with increased gut fullness (more prey tissue present). We suggest that muscle tissue should be used as the standard tissue for determining isotope composition of prey fish or age-0 recreational fishes, especially when determining enrichment for mixing models, calculating TP, or constructing aquatic food webs.

  17. Quinone-based stable isotope probing for assessment of 13C substrate-utilizing bacteria

    NASA Astrophysics Data System (ADS)

    Kunihiro, Tadao; Katayama, Arata; Demachi, Toyoko; Veuger, Bart; Boschker, Henricus T. S.; van Oevelen, Dick

    2015-04-01

    13C abundance in the quinone. In this study, we verified carbon stable isotope of quinone compared with bulk carbon stable isotope of bacterial culture. Results indicated a good correlation between carbon stable isotope of quinone compared with bulk carbon stable isotope. However, our measurement conditions for detection of quinone isotope-ions incurred underestimation of 13C abundance in the quinone. The quinone-SIP technique needs further optimization for measurement conditions of LC-MS/MS.

  18. Correction algorithm for online continuous flow δ13C and δ18O carbonate and cellulose stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Evans, M. N.; Selmer, K. J.; Breeden, B. T.; Lopatka, A. S.; Plummer, R. E.

    2016-09-01

    We describe an algorithm to correct for scale compression, runtime drift, and amplitude effects in carbonate and cellulose oxygen and carbon isotopic analyses made on two online continuous flow isotope ratio mass spectrometry (CF-IRMS) systems using gas chromatographic (GC) separation. We validate the algorithm by correcting measurements of samples of known isotopic composition which are not used to estimate the corrections. For carbonate δ13C (δ18O) data, median precision of validation estimates for two reference materials and two calibrated working standards is 0.05‰ (0.07‰); median bias is 0.04‰ (0.02‰) over a range of 49.2‰ (24.3‰). For α-cellulose δ13C (δ18O) data, median precision of validation estimates for one reference material and five working standards is 0.11‰ (0.27‰); median bias is 0.13‰ (-0.10‰) over a range of 16.1‰ (19.1‰). These results are within the 5th-95th percentile range of subsequent routine runtime validation exercises in which one working standard is used to calibrate the other. Analysis of the relative importance of correction steps suggests that drift and scale-compression corrections are most reliable and valuable. If validation precisions are not already small, routine cross-validated precision estimates are improved by up to 50% (80%). The results suggest that correction for systematic error may enable these particular CF-IRMS systems to produce δ13C and δ18O carbonate and cellulose isotopic analyses with higher validated precision, accuracy, and throughput than is typically reported for these systems. The correction scheme may be used in support of replication-intensive research projects in paleoclimatology and other data-intensive applications within the geosciences.

  19. Thz Spectroscopy of 13C Isotopic Species of a "weed": Acetaldehyde

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.

    2011-06-01

    Our studies of the isotopic species of 13C and D isotopologues of methyl formate (HCOOCH_3), have allowed the detection of more than 600 lines in Orion. This confirms that many observed U-lines are coming from isotopic species of one of the most abundant molecules in space. Since its first detection in 1976 in SgrB2 and in Orion A, acetaldehyde (CH_3CHO) was detected in many other numerous objects. If its deuterated species (CD_3CHO and CH_3CDO) have been previously studied in the millimeterwave range, the data concerning the 13C species are limited to few lines measured in 1957 up to 40 GHz. In this context we decided to study the 13C species of acetaldehyde. Acetaldehyde molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with the Rho Axis Method. Recent versions of the codes include high orders term in order to reproduce the observed frequencies for large quantum numbers values as J-values as high as 70a,b,. Measurements and analysis of the rotational spectra of 13C isotopic species are in progress in Lille with a solid-state submillimetre-wave spectrometer (50-950 GHz), the first results will be presented. This work is supported by the contract ANR-08-BLAN-0054 and by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS). Carvajal, M.; Margulès, L.; Tercero, B.; et al.A&A 500, (2009) 1109 Margulès, L.; Huet, T. R.; Demaison J.; et al.,ApJ 714, (2010) 1120. Ikeda, M.; Ohishi, M.; Nummelin, A.; et al., ApJ, 560, (2001) 792 Kleiner, I.; Lopez, J.-C.; Blanco, S.; et al.J. Mol. Spectrosc. 197, (1999) 275 Elkeurti M.; Coudert, L. H.; Medvedev, I. R.; et al.J. Mol. Spectrosc. 263, (2010) 145 Kilb, R.W.; Lin, C.C.; and Wilson, E.B.J. Chem. Phys. 26, (1957) 1695 Kleiner, I. J. Mol. Spectrosc. 260, (2010) 1 Ilyushin, V.V.; Kryvda, A; and Alekseev, E;J. Mol. Spectrosc. 255, (2009) 32

  20. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    NASA Astrophysics Data System (ADS)

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-09-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes.

  1. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    PubMed Central

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-01-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes. PMID:27678172

  2. Understanding carbon isotope behaviour during combustion processes: a pre-requisite to using d13C in the field of air pollution.

    NASA Astrophysics Data System (ADS)

    Negrel, P.; Widory, D.

    2006-12-01

    Recent studies have demonstrated the effectiveness of stable isotopes in the field of air pollution research, especially their success in clearly discriminating the different sources of pollution in urban environments, and in tracing their respective impacts for a given sampling location. Among them, carbon isotopes have been used to track the origin of both gases (i.e. CO2; Widory &Javoy, 2003) and particulate matter (i.e. PM2 .5 and PM10; Widory et al., 2004). But understanding the carbon isotope behaviour that leads to this discrimination during combustion processes is a pre-requisite to using them as tracers of pollution sources in the atmosphere. d13C in fuels has been extensively used as an indicator of the processes leading to the generation of their parent crude-oil. Here, we isotopically characterise fuels and combustibles sold in Paris (France), and characterise the isotopic relations existing with their combustion by-products, i.e. gases (CO2) and particles (bulk carbon). Results show that d13C in fuels is clearly related to their physical state, with natural gas being strongly depleted in 13C while coal yields the highest d13C, and liquid fuels display intermediate values. This relation is also valid for exhaust gases, though d13C values of combustion particles form a homogeneous range within which no clear distinction is observed. Combustion processes are accompanied by carbon-isotope fractionation resulting from the combustion being incomplete. Carbon-isotope fractionation is strictly negative ( 1.3‰) during the formation of combustion gases, but generally positive in particle formation even if values close to zero are observed. This study helps understanding the processes leading to the d13C discrimination observed in pollution sources' exhausts, and definitely validates the use of carbon isotopes as tracers of atmospheric pollution.

  3. Ca and Mg isotope constraints on the origin of Earth's deepest δ13 C excursion

    NASA Astrophysics Data System (ADS)

    Husson, Jon M.; Higgins, John A.; Maloof, Adam C.; Schoene, Blair

    2015-07-01

    Understanding the extreme carbon isotope excursions found in carbonate rocks of the Ediacaran Period (635-541 Ma), where δ13 C of marine carbonates (δ13 Ccarb) reach their minimum (- 12 ‰) for Earth history, is one of the most vexing problems in Precambrian geology. Known colloquially as the 'Shuram' excursion, the event has been interpreted by many as a product of a profoundly different Ediacaran carbon cycle. More recently, diagenetic processes have been invoked, with the very negative δ13 C values of Ediacaran carbonates explained via meteoric alteration, late-stage burial diagenesis or growth of authigenic carbonates in the sediment column, thus challenging models which rely upon a dramatically changing redox state of the Ediacaran oceans. Here we present 257 δ 44 / 40 Ca and 131 δ26 Mg measurements, along with [Mg], [Mn] and [Sr] data, from carbonates of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia to bring new isotope systems to bear on understanding the 'Shuram' excursion. Data from four measured sections spanning the basin reveal stratigraphically coherent trends, with variability of ∼1.5‰ in δ26 Mg and ∼1.2‰ in δ 44 / 40 Ca. This Ca isotope variability dwarfs the 0.2-0.3 ‰ change seen coeval with the Permian-Triassic mass extinction, the largest recorded in the rock record, and is on par with putative changes in the δ 44 / 40 Ca value of seawater seen over the Phanerozoic Eon. Changes in both isotopic systems are too large to explain with changes in the isotopic composition of Ca and Mg in global seawater given modern budgets and residence times, and thus must be products of alternative processes. Relationships between δ 44 / 40 Ca and [Sr] and δ26 Mg and [Mg] are consistent with mineralogical control (e.g., aragonite vs. calcite, limestone vs. dolostone) on calcium and magnesium isotope variability. The most pristine samples in the Wonoka dataset, preserving Sr concentrations (in the 1000s of ppm range) and δ 44 / 40

  4. [Distribution of carbon isotopes ((13)C/(12)C) in cells and temporal organization of cellular processes].

    PubMed

    Ivlev, A A

    1991-01-01

    Recent studies on fractionation of carbon isotopes in biological systems are reviewed. It follows that direct experimental proofs have been obtained that 1) basic fractionation of carbon isotopes in the cell is related to isotope effect in pyruvate decarboxylation; 2) fractionation of carbon isotopes in the above reaction in vivo proceeds with exhausting substrate pool. The latter provides natural relationship between metabolites isotope distribution and sequence of their synthesis in the cell cycle, or with the temporal organization of cellular metabolism. The non-steady and periodic pattern of pyruvate decarboxylation due to the exhausting substrate pool well agrees with the existing notions on reciprocal oscillations in the cell glycolytic chain. Experimental data are presented corroborating indirectly the existence of oscillations in bacterial cells. Earlier proposed model of the mechanism of carbon isotope fractionation based on the above principles can be used for analysing changes in isotopic characteristics of the organisms and interpreting their relations with metabolic processes.

  5. Mechanisms linking metabolism of Helicobacter pylori to 18O and 13C-isotopes of human breath CO2

    PubMed Central

    Som, Suman; De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Ghosh, Chiranjit; Pal, Mithun; Daschakraborty, Sunil B.; Chaudhuri, Sujit; Jana, Subhra; Pradhan, Manik

    2015-01-01

    The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 (18O) and carbon-13 (13C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of 18O/16O and 13C/12C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections exhibited significantly higher isotopic enrichments of 18O in breath CO2 during the 2h-glucose metabolism regardless of the isotopic nature of the substrate, while no significant enrichments of 18O in breath CO2 were manifested in individuals without the infections. In contrast, the 13C-isotopic enrichments of breath CO2 were significantly higher in individuals with Helicobacter pylori compared to individuals without infections in response to 13C-enriched glucose uptake, whereas a distinguishable change of breath 13C/12C-isotope ratios was also evident when Helicobacter pylori utilize natural glucose. Moreover, monitoring the 18O and 13C-isotopic exchange in breath CO2 successfully diagnosed the eradications of Helicobacter pylori infections following a standard therapy. Our findings suggest that breath 12C18O16O and 13C16O16O can be used as potential molecular biomarkers to distinctively track the pathogenesis of Helicobacter pylori and also for eradication purposes and thus may open new perspectives into the pathogen’s physiology along with isotope-specific non-invasive diagnosis of the infection. PMID:26039789

  6. Pre-treatment Effects on Coral Skeletal δ 13C and δ 18O

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.; Gibb, O.; Wellington, G. M.

    2003-12-01

    Pre-treatment protocols for coral skeletal stable carbon (δ 13C) and oxygen (δ 18O) isotope analyses include no treatment, bleach (NaOH), hydrogen peroxide (H2O2), or vacuum roasting prior to analysis. Such pre-treatments are used to remove organic material prior to isotopic analyses. Researchers that do not pre-treat samples argue that such treatments result in non-linear shifts in coral skeletal δ 13C and δ 18O thus increasing the analytical error in the δ 13C and δ 18O values. Vacuum roasting does cause isotopic shifts and is no longer practiced. However, both no pre-treatment and pre-treatment (with either NaOH or H2O2) coral δ 13C and δ 18O values continue to be published in the literature. In all previous studies of the effects of NaOH and H2O2 pre-treatments on coral δ 13C and δ 18O, the samples sizes were typically small and the exact time interval being sampled and compared was not specifically controlled. Here, we evaluated the effects of NaOH and H2O2 pre-treatments on coral skeletal δ 13C and δ 18O in Pavona clavus and Pavona gigantea from Panama, and Porites compressa from Hawaii. In Panama, at least five coral fragments from five different colonies of each species were stained on November 1978 and April 1979 then collected in November 1979. In Hawaii, at least five coral fragments from five different colonies at 1.7 and 7 m depths were stained on 1 September and 21 November 1996 then collected 2 March 1997. For each fragment, a bulk skeletal sample was extracted representing the entire growth interval between the two stain lines yielding at least 24 mg of material. Sampling between the stain lines ensured that all of the fragments from a given site and species were sampled over the same time interval and avoided any potential contamination from the tissue layer. Eight milligram subsamples from each fragment were subjected to 24 hours of the following treatments: NaOH, H2O2, Milli-Q filtered water (control), or no pre-treatment (control

  7. Transfer of (13) C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas.

    PubMed

    Pickles, Brian J; Wilhelm, Roland; Asay, Amanda K; Hahn, Aria S; Simard, Suzanne W; Mohn, William W

    2017-04-01

    Processes governing the fixation, partitioning, and mineralization of carbon in soils are under increasing scrutiny as we develop a more comprehensive understanding of global carbon cycling. Here we examined fixation by Douglas-fir seedlings and transfer to associated ectomycorrhizal fungi, soil microbes, and full-sibling or nonsibling neighbouring seedlings. Stable isotope probing with 99% (13) C-CO2 was applied to trace (13) C-labelled photosynthate throughout plants, fungi, and soil microbes in an experiment designed to assess the effect of relatedness on (13) C transfer between plant pairs. The fixation and transfer of the (13) C label to plant, fungal, and soil microbial tissue was examined in biomass and phospholipid fatty acids. After a 6 d chase period, c. 26.8% of the (13) C remaining in the system was translocated below ground. Enrichment was proportionally greatest in ectomycorrhizal biomass. The presence of mesh barriers (0.5 or 35 μm) between seedlings did not restrict (13) C transfer. Fungi were the primary recipients of (13) C-labelled photosynthate throughout the system, representing 60-70% of total (13) C-enriched phospholipids. Full-sibling pairs exhibited significantly greater (13) C transfer to recipient roots in two of four Douglas-fir families, representing three- and fourfold increases (+ c. 4 μg excess (13) C) compared with nonsibling pairs. The existence of a root/mycorrhizal exudation-hyphal uptake pathway was supported.

  8. Capillary Absorption Spectrometer for 13C Isotopic Composition of Pico to Subpico Molar Sample Quantities

    NASA Astrophysics Data System (ADS)

    Moran, J.; Kelly, J.; Sams, R.; Newburn, M.; Kreuzer, H.; Alexander, M.

    2011-12-01

    Quick incorporation of IR spectroscopy based isotope measurements into cutting edge research in biogeochemical cycling attests to the advantages of a spectroscopy versus mass spectrometry method for making some 13C measurements. The simple principles of optical spectroscopy allow field portability and provide a more robust general platform for isotope measurements. We present results with a new capillary absorption spectrometer (CAS) with the capability of reducing the sample size required for high precision isotopic measurements to the picomolar level and potentially the sub-picomolar level. This work was motivated by the minute sample size requirements for laser ablation isotopic studies of carbon cycling in microbial communities but has potential to be a valuable tool in other areas of biological and geological research. The CAS instrument utilizes a capillary waveguide as a sample chamber for interrogating CO2 via near IR laser absorption spectroscopy. The capillary's small volume (~ 0.5 mL) combined with propagation and interaction of the laser mode with the entire sample reduces sample size requirements to a fraction of that accessible with commercially available IR absorption including those with multi-pass or ring-down cavity systems. Using a continuous quantum cascade laser system to probe nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 permits sample measurement at low analyte pressures (as low as 2 Torr) for further sensitivity improvement. A novel method to reduce cw-fringing noise in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level after averaging 1,000 scans in 10 seconds. Detection limits down to the 20 picomoles have been observed, a concentration of approximately 400 ppm at 2 Torr in the waveguide with precision and accuracy at or better than 1 %. Improvements in detection and signal averaging electronics and laser power and mode quality are

  9. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics

    NASA Astrophysics Data System (ADS)

    Chen, Daizhao; Qing, Hairuo; Li, Renwei

    2005-06-01

    A severe biotic crisis occurred during the Late Devonian Frasnian-Famennian (F/F) transition (± 367 Myr). Here we present δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics, from identical samples of two sections across F/F boundary in South China, which directly demonstrate large and frequent climatic fluctuations (˜200 kyr) from warming to cooling during the F/F transition. These climate fluctuations are interpreted to have been induced initially by increased volcanic outgassing, and subsequent enhanced chemical weathering linked to the rapid expansion of vascular plants on land, which would have increased riverine delivery to oceans and primary bioproductivity, and subsequent burial of organic matter, thereby resulting in climate cooling. Such large and frequent climatic fluctuations, together with volcanic-induced increases in nutrient (e.g., biolimiting Fe), toxin (sulfide) and anoxic water supply, and subsequent enhanced riverine fluxes and microbial bloom, were likely responsible for the stepwise faunal demise of F/F biotic crisis.

  10. Isotopic (13C) response of ponderosa pine ecosystem respiration to atmospheric stress events

    NASA Astrophysics Data System (ADS)

    Bowling, D. R.; McDowell, N. G.; Anthoni, P. M.; Law, B. E.; Bond, B. J.; Ehleringer, J. R.

    2001-12-01

    The carbon isotopic composition of ecosystem respiration (\\delta13CR) reflects several biological and physical factors influencing ecosystem physiology. Recent experiments in several Oregon coniferous forests have shown a link between annual precipitation, short-term atmospheric moisture deficit, air temperature, and \\delta13CR. This link appears to be driven by changes in photosynthetic discrimination associated with changes in soil or atmospheric moisture deficit (or both), and suggests there can be substantial variation in \\delta13CRon a time scale of days. Our objective was to investigate the response of ecosystem respiration to the passage of synoptic-scale air masses and accompanying weather changes, to see if such short-term changes occur. We examined the carbon isotopic content of ecosystem respiration every night for 13 consecutive nights (summer 2001), at the Metolius AmeriFlux site, a 50-250 year old ponderosa pine forest in central Oregon, USA. Additionally, the 13C contents of the soil and branch components of the ecosystem respiration flux were measured with soil chambers and branch bags. Mean daytime atmospheric moisture deficit during this period ranged from minimal to very dry (0.36 to 3.3 kPa), and minimum nocturnal air temperature varied from 0.2 to 16.4 C. A single near-freezing event was followed by enriched \\delta13CR for several days afterwards, moderating the expected humidity response. \\delta13CR changed only marginally (-25.1 to -25.9 \\permil), but the soil and branch fluxes showed larger night-to-night variation (-23.8 to -25.3 and -23.5 to -26.4 \\permil, respectively). Based on preliminary analyses, both the soil flux and branch flux were more enriched in 13C than the whole-ecosystem flux, indicating an inconsistency in terms of mass conservation. Possible reasons for this contradiction will be discussed. These data will be further evaluated relative to meteorological and eddy flux data collected during the same time period.

  11. Synthesis of isotopically labeled R- or S-[.sup.13C, .sup.2H] glycerols

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2008-01-22

    The present invention is directed to asymmetric chiral labeled glycerols including at least one chiral atom, from one to two .sup.13C atoms and from zero to four deuterium atoms bonded directly to a carbon atom, e.g., (2S) [1,2-.sup.13C.sub.2]glycerol and (2R) [1,2-.sup.13C.sub.2]glycerol, and to the use of such chiral glycerols in the preparation of labeled amino acids.

  12. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    PubMed

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  13. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Somes, C. J.

    2016-06-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the model's Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient

  14. Isotopic discrimination of stable isotopes of nitrogen (δ15N) and carbon (δ13C) in a host-specific holocephalan tapeworm.

    PubMed

    Navarro, J; Albo-Puigserver, M; Coll, M; Saez, R; Forero, M G; Kutcha, R

    2014-09-01

    During the past decade, parasites have been considered important components of their ecosystems since they can modify food-web structures and functioning. One constraint to the inclusion of parasites in food-web models is the scarcity of available information on their feeding habits and host-parasite relationships. The stable isotope approach is suggested as a useful methodology to determine the trophic position and feeding habits of parasites. However, the isotopic approach is limited by the lack of information on the isotopic discrimination (ID) values of parasites, which is pivotal to avoiding the biased interpretation of isotopic results. In the present study we aimed to provide the first ID values of δ(15)N and δ(13)C between the gyrocotylidean tapeworm Gyrocotyle urna and its definitive host, the holocephalan Chimaera monstrosa. We also test the effect of host body size (body length and body mass) and sex of the host on the ID values. Finally, we illustrate how the trophic relationships of the fish host C. monstrosa and the tapeworm G. urna could vary relative to ID values. Similar to other studies with parasites, the ID values of the parasite-host system were negative for both isotopic values of N (Δδ(15)N = - 3.33 ± 0.63‰) and C (Δδ(13)C = - 1.32 ± 0.65‰), independent of the sex and size of the host. By comparing the specific ID obtained here with ID from other studies, we illustrate the importance of using specific ID in parasite-host systems to avoid potential errors in the interpretation of the results when surrogate values from similar systems or organisms are used.

  15. Organic vs. conventional grassland management: do (15)N and (13)C isotopic signatures of hay and soil samples differ?

    PubMed

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ(15)N and δ(13)C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ(15)N (δ(15)N plant - δ(15)N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ(13)C in hay and δ(15)N in both soil and hay between management types, but showed that δ(13)C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ(15)N values implied that management types did not substantially differ in nitrogen cycling. Only δ(13)C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently

  16. Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    PubMed Central

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N (δ15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice

  17. LASER BIOLOGY AND MEDICINE: Laser analysis of the 13C/12C isotope ratio in CO2 in exhaled air

    NASA Astrophysics Data System (ADS)

    Stepanov, E. V.

    2002-11-01

    Tunable diode lasers (TDLs) are applied to the diagnostics of gastroenterological diseases using respiratory tests and preparations enriched with the stable 13C isotope. This method of the analysis of the 13C/12C isotope ratio in CO2 in exhaled air is based on the selective measurement of the resonance absorption at the vibrational — rotational structure of 12CO2 and 13CO2. The CO2 transmission spectra in the region of 4.35 μm were measured with a PbEuSe double-heterostructure TDL. The accuracy of carbon isotope ratio measurements in CO2 of exhaled air performed with the TDL was ~0.5%. The data of clinical tests of the developed laser-based analyser are presented.

  18. Stratigraphic significance and global distribution of the δ13C Suess effect during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Paul, André; Mulitza, Stefan

    2015-04-01

    The Anthropocene is the proposed term for the present geological epoch (from the time of the Industrial Revolution onwards), during which human influence significantly impacts the environment. We argue that the burning of isotopically light fossil fuel that causes the so-called 'δ13C Suess effect' leaves such a strong imprint on marine sediments that it may serve to define the onset of this geological epoch, at least since the so-called 'Great Acceleration', i.e., the second half of the 20th century. Sediment data with high temporal resolution from the recent past indeed reveal a trend that corresponds to a negative carbon isotope excursion of the order of one permil, comparable to carbon isotope excursions in the deep past that define stratigraphic boundaries such as the Paleocene-Eocene Thermal Maximum (PETM). A global carbon cycle model based on the MIT general circulation model (MITgcm), fitted with carbon isotopes 13C and 14C and forced with observed changes in the atmospheric carbon dioxide partial pressure and carbon isotopic ratio 13C/12C, allows to investigate the temporal evolution and three-dimensional structure of the anomaly. We show the carbon isotopic ratios of fossil shells of benthic foraminifera (δ13Cc) from two ocean sediment cores GeoB6008 (31° N) und GeoB9501 (17° N) over the Anthropocene (mainly the 20th century). The decrease in δ13Cc at 31° N is about 0.8 permil; off Mauretania (at 17° N in the shadow zone of the subtropical gyre) it still amounts to about 0.4 permil. While the magnitude of the change in the global carbon cycle model is similar, the difference is smaller: The decrease in the model is around 0.9 permil near the location of the northern core and around 0.8 permil near the location of the southern core. The smaller difference of only about 0.1 permil points to a bias in the simulated as opposed to the observed ventilation of the thermocline. We further use a carbon cycle multi-box model to extrapolate this change in δ13

  19. 2H/(1)H and (13)C/(12)C isotope ratios of trans-anethole using gas chromatography-isotope ratio mass spectrometry.

    PubMed

    Bilke, Steffi; Mosandl, Armin

    2002-07-03

    Authenticity assessment of trans-anethole is deduced from (2)H/(1)H and (13)C/(12)C isotope ratios, determined by gas chromatography-isotope ratio mass spectrometry (GC-IRMS). For that purpose, self-prepared anise and fennel oils, and synthetic and "natural" samples of trans-anethole, as well as commercially available anise and fennel oils have been investigated. Authenticity ranges of (2)H/(1)H and (13)C/(12)C isotope ratios of trans-anethole were defined. Scope and limitations of the applied online GC-IRMS techniques are discussed.

  20. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Assonov, Sergey S.

    2010-01-01

    Measurements of δ(13C) determined on CO2 with an isotope-ratio mass spectrometer (IRMS) must be corrected for the amount of 17O in the CO2. For data consistency, this must be done using identical methods by different laboratories. This report aims at unifying data treatment for CO2 IRMS by proposing (i) a unified set of numerical values, and (ii) a unified correction algorithm, based on a simple, linear approximation formula. Because the oxygen of natural CO2 is derived mostly from the global water pool, it is recommended that a value of 0.528 be employed for the factor λ, which relates differences in 17O and 18O abundances. With the currently accepted N(13C)/N(12C) of 0.011 180(28) in VPDB (Vienna Peedee belemnite) reevaluation of data yields a value of 0.000 393(1) for the oxygen isotope ratio N(17O)/N(16O) of the evolved CO2. The ratio of these quantities, a ratio of isotope ratios, is essential for the 17O abundance correction: [N(17O)/N(16O)]/[N(13C)/N(12C)] = 0.035 16(8). The equation [δ(13C) ≈ 45δVPDB-CO2 + 2 17R/13R (45δVPDB-CO2 – λ46δVPDB-CO2)] closely approximates δ(13C) values with less than 0.010 ‰ deviation for normal oxygen-bearing materials and no more than 0.026 ‰ in extreme cases. Other materials containing oxygen of non-mass-dependent isotope composition require a more specific data treatment. A similar linear approximation is also suggested for δ(18O). The linear approximations are easy to implement in a data spreadsheet, and also help in generating a simplified uncertainty budget.

  1. Variations in growth, survival and carbon isotope composition (delta(13)C) among Pinus pinaster populations of different geographic origins.

    PubMed

    Correia, Isabel; Almeida, Maria Helena; Aguiar, Alexandre; Alía, Ricardo; David, Teresa Soares; Pereira, João Santos

    2008-10-01

    To evaluate differences in growth and adaptability of maritime pine (Pinus pinaster Ait.), we studied growth, polycyclism, needle tissue carbon isotope composition (delta(13)C) as an estimate of water-use efficiency (WUE) and survival of seven populations at 10 years of age growing in a performance trial at a provenance test site in Escaroupim, Portugal. Six populations were from relatively high rainfall sites in Portugal and southwestern France (Atlantic group), and one population was from a more arid Mediterranean site in Spain. There were significant differences between some populations in total height, diameter at breast height, delta(13)C of bulk needle tissue, polycyclism and survival. A population from central Portugal (Leiria, on the Atlantic coast) was the tallest and had the lowest delta(13)C. Overall, the variation in delta(13)C was better explained by the mean minimum temperatures of the coldest month than by annual precipitation at the place of origin. Analyses of the relationships between delta(13)C and growth or survival revealed a distinct pattern for the Mediterranean population, with low delta(13)C (and WUE) associated with the lowest growth potential and reduced survival. There were significant negative correlations between delta(13)C and height or survival in the Atlantic group. Variation in polycyclism was correlated with annual precipitation at the place of origin. Some Atlantic populations maintained a high growth potential while experiencing moderate water stress. A detailed knowledge of the relationships between growth, survival and delta(13)C in contrasting environments will enhance our ability to select populations for forestry or conservation.

  2. Tracing the diet of the monitor lizard Varanus mabitang by stable isotope analyses (δ15N, δ13C)

    NASA Astrophysics Data System (ADS)

    Struck, Ulrich; Altenbach, Alexander; Gaulke, Maren; Glaw, Frank

    2002-09-01

    In this study, we used analyses of stable isotopes of nitrogen (δ15N) and carbon (δ13C) to determine the trophic ecology of the monitor lizard Varanus mabitang. Stable isotopes from claws, gut contents, and soft tissues were measured from the type specimen. Samples from Varanus olivaceus, Varanus prasinus, Varanus salvator, the herbivorous agamid lizard Hydrosaurus pustulatus, and some plant matter were included for comparison. Our data show a rapid decrease in δ13C (about10‰) from food plants towards gut contents and soft tissues of herbivorous species. For the varanids, we found a significant linear correlation of decreasing δ13C and increasing δ15N from herbivorous towards carnivorous species. In terms of trophic isotope ecology, the type specimen of V. mabitang is a strict herbivore. Thus it differs significantly in its isotopic composition from the morphologically next closest related species V. olivaceus. The most highly carnivorous species is V. salvator, while δ15N values for V. prasinus and V. olivaceus are intermediate. Claws provide very valuable samples for such measurements, because they can be sampled from living animals without harm. Additionally, their range of variability is relatively small in comparison with measurements from soft tissues.

  3. Modelling aspects regarding the control in 13C isotope separation column

    NASA Astrophysics Data System (ADS)

    Boca, M. L.

    2016-08-01

    Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [9] A manufacturing control system manages the internal logistics in a production system and determines the routings of product instances, the assignment of workers and components, the starting of the processes on not-yet-finished product instances. Manufacturing control does not control the manufacturing processes themselves, but has to cope with the consequences of the processing results (e.g. the routing of products to a repair station). In this research it was fulfilled some UML (Unified Modelling Language) diagrams for modelling the C13 Isotope Separation column, implement in STARUML program. Being a critical process and needing a good control and supervising, the critical parameters in the column, temperature and pressure was control using some PLC (Programmable logic controller) and it was made some graphic analyze for this to observe some critical situation than can affect the separation process. The main parameters that need to be control are: -The liquid nitrogen (N2) level in the condenser. -The electrical power supplied to the boiler. -The vacuum pressure.

  4. Methane concentration and isotopic composition (δ13C-CH4) in the Nerja Cave system (South Spain)

    NASA Astrophysics Data System (ADS)

    Vadillo, Iñaki; Etiope, Giuseppe; Benavente, José; Ojeda, Lucia; Liñán, Cristina; Carrasco, Francisco

    2016-04-01

    Air in underground caves often has methane (CH4) concentrations below the atmospheric level, due to methanotrophic or other unkown CH4 consuming processes. Caves are thus considered a potential sink for atmospheric methane. If globally important, this underground CH4 oxidation should be taken into account in the atmospheric methane budget, in addition to the known soil methanotrophy and tropospheric/stratospheric sinks. A large set of data is however necessary to understand how and how much methane from external atmospheric air is consumed in the caves. While methane concentration data are available for several caves worldwide, its isotopic composition and variations in space and time are poorly documented. We measured methane concentration and stable C isotope composition (δ13C) in the Nerja cave (Southern Spain) air during two surveys in March and April 2015. CH4 concentration decreases progressively from the more external cave rooms, with atmospheric levels of 1.9 ppmv, to the more internal and isolated rooms down to 0.5 ppmv. δ13C increases correspondingly from -47 ‰ to -41 ‰ (VPDB). CH4 is systematically 13C-enriched (δ13C > -45) in areas of the cave where the concentration is below 1.4 ppmv. This combination of concentration decrease and 13C-enrichment towards the more internal and isolated zones of the cave confirms the importance of CH4 oxidation, likely driven by methanotrophic bacteria. Further data, including stable H isotope composition of sub-atmospheric CH4 concentrations, CO2 and microbial analyses, shall be acquired over time to assess the actual role of methanotrophic bacteria and seasonal controls in the CH4 consumption process.

  5. Investigating the influence of sulphur dioxide (SO 2) on the stable isotope ratios (δ 13C and δ 18O) of tree rings

    NASA Astrophysics Data System (ADS)

    Rinne, K. T.; Loader, N. J.; Switsur, V. R.; Treydte, K. S.; Waterhouse, J. S.

    2010-04-01

    This study reports the influence of a 20th century pollution signal recorded in the δ 13C and δ 18O of absolutely dated tree rings from Quercus robur and Pinus sylvestris from southern England. We identify a correspondence between the inter-relationship and climate sensitivity of stable isotope series that appears to be linked to recent trends in local SO 2 emissions. This effect is most clearly exhibited in the broadleaved trees studied but is also observed in the δ 13C values of the (less polluted) pine site at Windsor. The SO 2 induced stomatal closure leads to a maximum increase of 2.5‰ in the isotope values (δ 13C). The combined physiological response to high pollution levels is less in δ 18O than δ 13C. The SO 2 signal also seems to be present as a period of reduced growth in the two ring-width chronologies. Direct, quantitative correction for the SO 2 effect represents a significant challenge owing to the nature of the records and likely local plant response to environmental pollution. Whilst it appears that this signal is both limited to the late industrial period and demonstrates a recovery in line with improvements in air quality, the role of atmospheric pollution during the calibration period should not be underestimated and adequate consideration needs to be taken when calibrating biological environmental proxies in order to avoid development of biased reconstructions.

  6. A capillary absorption spectrometer for stable carbon isotope ratio (13C/12C) analysis in very small samples

    NASA Astrophysics Data System (ADS)

    Kelly, J. F.; Sams, R. L.; Blake, T. A.; Newburn, M.; Moran, J.; Alexander, M. L.; Kreuzer, H.

    2012-02-01

    A capillary absorption spectrometer (CAS) suitable for IR laser isotope analysis of small CO2 samples is presented. The system employs a continuous-wave (cw) quantum cascade laser to study nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 (4.34 μm). This initial CAS system can achieve relative isotopic precision of about 10 ppm 13C, or ˜1‰ (per mil in delta notation relative to Vienna Pee Dee Belemnite) with 20-100 picomoles of entrained sample within the hollow waveguide for CO2 concentrations ˜400-750 ppm. Isotopic analyses of such gas fills in a 1-mm ID hollow waveguide of 0.8 m overall physical path length can be carried out down to ˜2 Torr. Overall 13C/12C ratios can be calibrated to ˜2‰ accuracy with diluted CO2 standards. A novel, low-cost method to reduce cw-fringing noise resulting from multipath distortions in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level (peak-to-rms) after 1000 scans are co-added in ˜10 s. The CAS is meant to work directly with converted CO2 samples from a laser ablation-catalytic combustion micro-sampler to provide 13C/12C ratios of small biological isolates currently operating with spatial resolutions ˜50 μm.

  7. Validating the Incorporation of 13C and 15N in a Shorebird That Consumes an Isotopically Distinct Chemosymbiotic Bivalve

    PubMed Central

    van Gils, Jan A.; Ahmedou Salem, Mohamed Vall

    2015-01-01

    The wealth of field studies using stable isotopes to make inferences about animal diets require controlled validation experiments to make proper interpretations. Despite several pleas in the literature for such experiments, validation studies are still lagging behind, notably in consumers dwelling in chemosynthesis-based ecosystems. In this paper we present such a validation experiment for the incorporation of 13C and 15N in the blood plasma of a medium-sized shorebird, the red knot (Calidris canutus canutus), consuming a chemosymbiotic lucinid bivalve (Loripes lucinalis). Because this bivalve forms a symbiosis with chemoautotrophic sulphide-oxidizing bacteria living inside its gill, the bivalve is isotopically distinct from ‘normal’ bivalves whose food has a photosynthetic basis. Here we experimentally tested the hypothesis that isotope discrimination and incorporation dynamics are different when consuming such chemosynthesis-based prey. The experiment showed that neither the isotopic discrimination factor, nor isotopic turnover time, differed between birds consuming the chemosymbiotic lucinid and a control group consuming a photosynthesis-based bivalve. This was true for 13C as well as for 15N. However, in both groups the 15N discrimination factor was much higher than expected, which probably had to do with the birds losing body mass over the course of the experiment. PMID:26458005

  8. The aspartate metabolism pathway is differentiable in human hepatocellular carcinoma: transcriptomics and (13) C-isotope based metabolomics.

    PubMed

    Darpolor, Moses M; Basu, Sankha S; Worth, Andrew; Nelson, David S; Clarke-Katzenberg, Regina H; Glickson, Jerry D; Kaplan, David E; Blair, Ian A

    2014-04-01

    Hepatocellular carcinoma (HCC), the primary form of human adult liver malignancy, is a highly aggressive tumor with average survival rates that are currently less than a year following diagnosis. Although bioinformatic analyses have indicated differentially expressed genes and cancer related mutations in HCC, integrated genetic and metabolic pathway analyses remain to be investigated. Herein, gene (i.e. messenger RNA, mRNA) enrichment analysis was performed to delineate significant alterations of metabolic pathways in HCC. The objective of this study was to investigate the pathway of aspartate metabolism in HCC of humans. Coupled with transcriptomic (i.e. mRNA) and NMR based metabolomics of human tissue extracts, we utilized liquid chromatography mass spectrometry based metabolomics analysis of stable [U-(13) C6 ]glucose metabolism or [U-(13) C5 ,(15) N2 ]glutamine metabolism of HCC cell culture. Our results indicated that aspartate metabolism is a significant and differentiable metabolic pathway of HCC compared with non-tumor liver (p value < 0.0001). In addition, branched-chain amino acid metabolism (p value < 0.0001) and tricarboxylic acid metabolism (p value < 0.0001) are significant and differentiable. Statistical analysis of measurable NMR metabolites indicated that at least two of the group means were significantly different for the metabolites alanine (p value = 0.0013), succinate (p value = 0.0001), lactate (p value = 0.0114), glycerophosphoethanolamine (p value = 0.015), and inorganic phosphate (p value = 0.0001). However, (13) C isotopic enrichment analysis of these metabolites revealed less than 50% isotopic enrichment with either stable [U-(13) C6 ]glucose metabolism or [U-(13) C5 ,(15) N2 ]glutamine. This may indicate the differential account of total metabolite pool versus de novo metabolites from a (13) C labeled substrate. The ultimate translation of these findings will be to determine putative enzyme activity via

  9. Use of isotope ratio mass spectrometry to detect doping with oral testosterone undecanoate: inter-individual variability of 13C/12C ratio.

    PubMed

    Baume, Norbert; Saudan, Christophe; Desmarchelier, Aurélien; Strahm, Emmanuel; Sottas, Pierre-Edouard; Bagutti, Carlo; Cauderay, Michel; Schumacher, Yorck Olaf; Mangin, Patrice; Saugy, Martial

    2006-05-01

    The metabolic effect of multiple oral testosterone undecanoate (TU) doses over 4 weeks was assessed in seven voluntary men. The protocol was designed to detect accumulation of the substance by choosing the appropriate spot urines collections time and to study the urinary clearance of the substance after weeks of treatment. Urines were analysed by a new GC/C/isotope ratio mass spectrometry (IRMS) method to establish the delta(13)C-values of testosterone metabolites (androsterone and etiocholanolone) together with an endogenous reference compound (16(5alpha)-androsten-3alpha-ol). The significant differences in inter-individual metabolism following TU intake was illustrated by large variations in delta(13)C-values of both T metabolites (maximum Deltadelta(13)C-values = 5.5 per thousand), as well as by very stable longitudinal T/E profiles and carbon isotopic ratios in the first hours following administration. According to T/E ratios and delta(13)C-values, the washout period after 80 mg TU intake was less than 48 h for all subjects and no accumulation phenomenon was observed upon chronic oral administration.

  10. A twenty year record of the 13C isotopic composition of methane from Cape Meares, Oregon (1978-1998)

    NASA Astrophysics Data System (ADS)

    Teama, D.; Rice, A. L.

    2009-12-01

    Methane is an important greenhouse gas, second only to carbon dioxide in its radiative forcing since the industrial revolution. Over this time, the concentration of methane has increased by ~150% , primarily as a result of anthropogenic practices such as fossil fuel production, rice cultivation, biomass burning and waste management. In 1980s and through the 1990s, direct measurements of atmospheric methane from several global monitoring networks showed that the growth rate slowed from its previous ~1% per year climb. The year 2000 was the first year to record a negative annual growth. However, interannual variations are large and there remains considerable uncertainty regarding future trends in the global burden of methane due, in part, to poorly quantified trends of sources and sinks. One tool to better understand trends in sources and sinks of methane is through the use of stable isotopes. By comparing trends in the13C/12C and D/H content of atmospheric methane in time series to the isotopic signatures of sources, we can potentially disentangle trends in methane sources and sinks. Here we report preliminary measurements of 13C/12C ratios in atmospheric methane from a rare historic archive of whole air collected at Cape Meares, Oregon (45.5 °N, 124 °W) during the period 1978-1998 as part of the global monitoring program at the Oregon Graduate Institute. This unique dataset is the only direct time series of methane isotopic composition in the northern hemisphere prior to the late 1980s and early 1990s. The measurements reveal an increasing trend in the δ13C of methane consistent with more recent time series and firn air results (0.2-0.4‰ year-1). The increase in δ 13C over this time reflects an increase in fossil (~ -40‰) and pyrogenic (~ -25‰) sources of methane, which are enriched relative to biogenic sources (~ -60‰), and the relaxation of δ13C associated with isotopic disequilibrium. We discuss the long term trend in δ13C, its shorter term

  11. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by (13)C nuclear magnetic resonance spectrometry.

    PubMed

    Julien, Maxime; Nun, Pierrick; Höhener, Patrick; Parinet, Julien; Robins, Richard J; Remaud, Gérald S

    2016-01-15

    In forensic environmental investigations the main issue concerns the inference of the original source of the pollutant for determining the liable party. Isotope measurements in geochemistry, combined with complimentary techniques for contaminant identification, have contributed significantly to source determination at polluted sites. In this work we have determined the intramolecular (13)C profiles of several molecules well-known as pollutants. By giving additional analytical parameters, position-specific isotope analysis performed by isotope ratio monitoring by (13)C nuclear magnetic resonance (irm-(13)C NMR) spectrometry gives new information to help in answering the major question: what is the origin of the detected contaminant? We have shown that isotope profiling of the core of a molecule reveals both the raw materials and the process used in its manufacture. It also can reveal processes occurring between the contamination site 'source' and the sampling site. Thus, irm-(13)C NMR is shown to be a very good complement to compound-specific isotope analysis currently performed by mass spectrometry for assessing polluted sites involving substantial spills of pollutant.

  12. Carbon isotope compositions (δ(13) C) of leaf, wood and holocellulose differ among genotypes of poplar and between previous land uses in a short-rotation biomass plantation.

    PubMed

    Verlinden, M S; Fichot, R; Broeckx, L S; Vanholme, B; Boerjan, W; Ceulemans, R

    2015-01-01

    The efficiency of water use to produce biomass is a key trait in designing sustainable bioenergy-devoted systems. We characterized variations in the carbon isotope composition (δ(13) C) of leaves, current year wood and holocellulose (as proxies for water use efficiency, WUE) among six poplar genotypes in a short-rotation plantation. Values of δ(13) Cwood and δ(13) Cholocellulose were tightly and positively correlated, but the offset varied significantly among genotypes (0.79-1.01‰). Leaf phenology was strongly correlated with δ(13) C, and genotypes with a longer growing season showed a higher WUE. In contrast, traits related to growth and carbon uptake were poorly linked to δ(13) C. Trees growing on former pasture with higher N-availability displayed higher δ(13) C as compared with trees growing on former cropland. The positive relationships between δ(13) Cleaf and leaf N suggested that spatial variations in WUE over the plantation were mainly driven by an N-related effect on photosynthetic capacities. The very coherent genotype ranking obtained with δ(13) C in the different tree compartments has some practical outreach. Because WUE remains largely uncoupled from growth in poplar plantations, there is potential to identify genotypes with satisfactory growth and higher WUE.

  13. 13C nuclear magnetic resonance data of lanosterol derivatives—Profiling the steric topology of the steroid skeleton via substituent effects on its 13C NMR

    NASA Astrophysics Data System (ADS)

    Dias, Jerry Ray; Gao, Hongwu

    2009-12-01

    The 13C NMR spectra of over 24 tetracyclic triterpenoid derivatives have been structurally analyzed. The 13C NMR chemical shifts allow one to probe the steric topology of the rigid steroid skeleton and inductive effects of its substituents. Use of deuterium labeling in chemical shift assignment and B-ring aromatic terpenoids are also featured.

  14. Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling

    PubMed Central

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M. Francesca

    2014-01-01

    , respectively). Challenges lie in maintaining proper temperature, humidity, CO2 concentration, and light levels in an airtight 13C-CO2 atmosphere for successful plant production. This chamber description represents a useful research tool to effectively produce uniformly or differentially multi-isotope labeled plant material for use in experiments on ecosystem biogeochemical cycling. PMID:24457314

  15. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant isotope labeling.

    PubMed

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M Francesca

    2014-01-16

    residual components, respectively). Challenges lie in maintaining proper temperature, humidity, CO2 concentration, and light levels in an airtight (13)C-CO2 atmosphere for successful plant production. This chamber description represents a useful research tool to effectively produce uniformly or differentially multi-isotope labeled plant material for use in experiments on ecosystem biogeochemical cycling.

  16. NOTE The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  17. The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  18. Methylamphetamine synthesis: does an alteration in synthesis conditions affect the δ(13) C, δ(15) N and δ(2) H stable isotope ratio values of the product?

    PubMed

    Salouros, Helen; Collins, Michael; Cawley, Adam; Longworth, Mitchell

    2012-05-01

    Conventional chemical profiling of methylamphetamine has long been employed by national forensic laboratories to determine the synthetic route and where possible the precursor chemicals used in its manufacture. This laboratory has been studying the use of stable isotope ratio mass spectrometry (IRMS) analysis as a complementary technique to conventional chemical profiling of fully synthetic illicit drugs such as methylamphetamine. As part of these investigations the stable carbon (δ(13) C), nitrogen (δ(15) N), and hydrogen (δ(2) H) isotope values in the precursor chemicals of ephedrine and pseudoephedrine and the resulting methylamphetamine end-products have been measured to determine the synthetic origins of methylamphetamine. In this study, results are presented for δ(13) C, δ(15) N, and δ(2) H values in methylamphetamine synthesized from ephedrine and pseudoephedrine by two synthetic routes with varying experimental parameters. It was demonstrated that varying parameters, such as stoichiometry, reaction temperature, reaction time, and reaction pressure, had no effect on the δ(13) C, δ(15) N, and δ(2) H isotope values of the final methylamphetamine product, within measurement uncertainty. Therefore the value of the IRMS technique in identifying the synthetic origin of precursors, such as ephedrine and pseudoephedrine, is not compromised by the potential variation in synthetic method that is expected from one batch to the next, especially in clandestine laboratories where manufacture can occur without stringent quality control of reactions.

  19. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry for Applications in Stable Isotope Probing.

    PubMed

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L; Mohn, William W

    2014-12-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating (13)C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography-tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% (13)C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation.

  20. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry for Applications in Stable Isotope Probing

    PubMed Central

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L.

    2014-01-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating 13C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography–tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% 13C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation. PMID:25217022

  1. Evaporation induced 18O and 13C enrichment in lake systems: A global perspective on hydrologic balance effects

    NASA Astrophysics Data System (ADS)

    Horton, Travis W.; Defliese, William F.; Tripati, Aradhna K.; Oze, Christopher

    2016-01-01

    Growing pressure on sustainable water resource allocation in the context of global development and rapid environmental change demands rigorous knowledge of how regional water cycles change through time. One of the most attractive and widely utilized approaches for gaining this knowledge is the analysis of lake carbonate stable isotopic compositions. However, endogenic carbonate archives are sensitive to a variety of natural processes and conditions leaving isotopic datasets largely underdetermined. As a consequence, isotopic researchers are often required to assume values for multiple parameters, including temperature of carbonate formation or lake water δ18O, in order to interpret changes in hydrologic conditions. Here, we review and analyze a global compilation of 57 lacustrine dual carbon and oxygen stable isotope records with a topical focus on the effects of shifting hydrologic balance on endogenic carbonate isotopic compositions. Through integration of multiple large datasets we show that lake carbonate δ18O values and the lake waters from which they are derived are often shifted by >+10‰ relative to source waters discharging into the lake. The global pattern of δ18O and δ13C covariation observed in >70% of the records studied and in several evaporation experiments demonstrates that isotopic fractionations associated with lake water evaporation cause the heavy carbon and oxygen isotope enrichments observed in most lakes and lake carbonate records. Modeled endogenic calcite compositions in isotopic equilibrium with lake source waters further demonstrate that evaporation effects can be extreme even in lake records where δ18O and δ13C covariation is absent. Aridisol pedogenic carbonates show similar isotopic responses to evaporation, and the relevance of evaporative modification to paleoclimatic and paleotopographic research using endogenic carbonate proxies are discussed. Recent advances in stable isotope research techniques present unprecedented

  2. Stimulated Raman scattering-active isotopically pure 12C and 13C diamond crystals: A milestone in the development of diamond photonics

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Ral'chenko, V. G.; Yoneda, H.; Bol'shakov, A. P.; Inyushkin, A. V.

    2016-09-01

    Isotopically pure 12C and 13C diamonds are synthesized by chemical vapor deposition and impulsive stimulated Raman scattering in these crystals is investigated. The thermal conductivity of 12C isotopically pure damond and natC diamond with natural isotopic composition is measured. Phonon-nondegenerate Stokes lasing based on the χ(3) nonlinearity in the 12C, 13C, and natC diamond "triad" is attained, which opens a new stage in the development of diamond photonics.

  3. Isotope dilution/mass spectrometry of serum cholesterol with (3,4-/sup 13/C)cholesterol: proposed definitive method

    SciTech Connect

    Pelletier, O.; Wright, L.A.; Breckenridge, W.C.

    1987-08-01

    We describe a new gas-chromatographic/mass-spectrometric (GC/MS) isotope-dilution method for determination of serum cholesterol. The method has been fully optimized and documented to provide the high accuracy and precision expected for a Definitive Method. In the presence of (3,4-/sup 13/C)cholesterol, cholesteryl esters in serum are hydrolyzed under optimum conditions and the entire cholesterol pool is extracted and derivatized to silyl ethers. The cholesterol derivatives are resolved from other sterols by gas-liquid chromatography on a fused silica column, and selected ions characteristic of cholesterol and the (3,4-/sup 13/C)cholesterol are monitored with a GC/MS quandrupole system. We estimated the cholesterol content of samples by bracketing each sample with standards of comparable cholesterol concentration that also contained the (3,4-/sup 13/C)cholesterol. The procedure was highly reproducible (CV less than 0.5%), better accuracy and precision being obtained with (3,4-/sup 13/C)cholesterol than with heptadeuterated cholesterol. Mean values per gram of dry serum for one serum pool assayed by this method and that of the National Bureau of Standards differed by 0.5%. We conclude that the method satisfies the criteria for a Definitive Method.

  4. Determination of 13C/12C Isotope Ratio in Alcohols of Different Origin by 1н Nuclei NMR-Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dzhimak, S. S.; Basov, A. A.; Buzko, V. Yu.; Kopytov, G. F.; Kashaev, D. V.; Shashkov, D. I.; Shlapakov, M. S.; Baryshev, M. G.

    2017-02-01

    A new express method of indirect assessment of 13C/12C isotope ratio on 1H nuclei is developed to verify the authenticity of ethanol origin in alcohol-water-based fluids and assess the facts of various alcoholic beverages falsification. It is established that in water-based alcohol-containing systems, side satellites for the signals of ethanol methyl and methylene protons in the NMR spectra on 1H nuclei, correspond to the protons associated with 13C nuclei. There is a direct correlation between the intensities of the signals of ethanol methyl and methylene protons' 1H- NMR and their side satellites, therefore, the data obtained can be used to assess 13C/12C isotope ratio in water-based alcohol-containing systems. The analysis of integrated intensities of main and satellite signals of methyl and methylene protons of ethanol obtained by NMR on 1H nuclei makes it possible to differentiate between ethanol of synthetic and natural origin. Furthermore, the method proposed made it possible to differentiate between wheat and corn ethanol.

  5. Stable Oxygen (δ 18O) and Carbon (δ 13C) Isotopes in the Skeleton of Bleached and Recovering Corals From Hawaii

    NASA Astrophysics Data System (ADS)

    Rodrigues, L. J.; Grottoli, A. G.

    2004-12-01

    Coral skeletal stable oxygen isotopes (δ 18O) reflect changes in seawater temperature and salinity, while stable carbon isotopes13C) reflect a combination of both metabolic (photosynthesis and feeding) and kinetic fractionation. Together, the two isotopic signatures may be used as a proxy for past bleaching events. During bleaching, increased seawater temperatures often contribute to a decline in zooxanthellae and/or chlorophyll concentrations, resulting in a decrease in photosynthesis. We experimentally investigated the effect of bleaching and subsequent recovery on the δ 13C and δ 18O values of coral skeleton. Fragments from two coral species (Montipora capitata and Porites compressa) from Kaneohe Bay, Hawaii were bleached in outdoor tanks by raising the seawater temperature to 30° C. Additional fragments from the same parent colonies were maintained at ambient seawater temperatures (27° C) in separate tanks as controls. After one month in the tanks, a subset of the fragments was frozen and all remaining fragments were placed back on the reef to recover. All coral fragments were analyzed for their skeletal δ 13C and δ 18O compositions at five time intervals: before, immediately after, 1.5, 4, and 8 months after bleaching. In addition, rates of photosynthesis, calcification, and heterotrophy were also measured. Immediately after bleaching, δ 18O decreased in bleached M. capitata relative to controls, reflecting their exposure to increased seawater temperatures. During recovery, δ 18O values in the treatment M. capitata were not different from the controls. In P. compressa, δ 18O did not significantly differ in bleached and control corals at any time during the experiment. Immediately after bleaching, δ 13C decreased in the bleached fragments of both species relative to controls reflecting decreased photosynthetic rates. However, during recovery δ 13C in both species was greater in bleached than control fragments despite photosynthesis remaining

  6. Optimization of 13C dynamic nuclear polarization: isotopic labeling of free radicals

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Parish, Christopher; Kiswandi, Andhika; Lumata, Lloyd

    Dynamic nuclear polarization (DNP) is a physics technique that amplifies the nuclear magnetic resonance (NMR) signals by transferring the high polarization of the electrons to the nuclear spins. Thus, the choice of free radical is crucial in DNP as it can directly affect the NMR signal enhancement levels, typically on the order of several thousand-fold in the liquid-state. In this study, we have investigated the efficiency of four variants of the well-known 4-oxo-TEMPO radical (normal 4-oxo-TEMPO plus its 15N-enriched and/or perdeuterated variants) for use in DNP of an important metabolic tracer [1-13C]acetate. Though the variants have significant differences in electron paramagnetic resonance (EPR) spectra, we have found that changing the composition of the TEMPO radical through deuteration or 15N doping yields no significant difference in 13C DNP efficiency at 3.35 T and 1.2 K. On the other hand, deuteration of the solvent causes a significant increase of 13C polarization that is consistent over all the 4-oxo-TEMPO variants. These findings are consistent with the thermal mixing model of DNP. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  7. Stable isotope analysis (δ (13)C and δ (15)N) of soil nematodes from four feeding groups.

    PubMed

    Melody, Carol; Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis ((13)C/(12)C and (15)N/(14)N, expressed as δ (13)C and δ (15)N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis-isotopic ratio mass spectrometry (μEA-IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ (15)N (p = 0.290) or δ (13)C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ (15)N = 1.08 to 3.22 mUr‰, δ (13)C = -29.58 to -27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ (15)N between the plant feeder and the predator group (δ (15)N = 9.89 to 12.79 mUr, δ (13)C = -27.04 to -25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr(2)) and the predators (1.73 mUr(2)), but largest for

  8. Stable isotope analysis (δ13C and δ15N) of soil nematodes from four feeding groups

    PubMed Central

    Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis (13C/12C and 15N/14N, expressed as δ13C and δ15N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis–isotopic ratio mass spectrometry (μEA–IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ15N (p = 0.290) or δ13C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ15N = 1.08 to 3.22 mUr‰, δ13C = –29.58 to –27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ15N between the plant feeder and the predator group (δ15N = 9.89 to 12.79 mUr, δ13C = –27.04 to –25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr2) and the predators (1.73 mUr2), but largest for omnivores (3.83 mUr2

  9. Measurements of the D/H and 13C/12C Isotope Ratios in Stratospheric CH4 from the POLARIS, STRAT, and SOLVE Campaigns

    NASA Astrophysics Data System (ADS)

    Rice, A. L.; Tyler, S. C.; McCarthy, M. C.; Boering, K. A.; Boering, K. A.; Atlas, E.

    2001-12-01

    We report δ D and δ 13C measurements of stratospheric CH4 from 78 air samples collected aboard the NASA ER-2 aircraft during the SOLVE (2000), POLARIS (1997), and STRAT (1996) campaigns. These measurements are the first to be reported using continuous flow gas chromatography isotope mass spectrometry, which provides for high precision of measurement on 63 ml of air. The δ D-CH4 data comprise the only high precision data set of this kind to date. Precision of measurement is +/-1.5‰ for δ D (vs. V-SMOW) and +/-0.07‰ for δ 13C (vs. V-PDB) on samples with as little as 700 ppb CH4. The samples cover latitudes ranging from 1° S to 89° N and altitudes ranging from 11 to 21 km. Values of δ D range from -89.8‰ for CH4 near the tropical tropopause to +26.4‰ for CH4 in the polar vortex. Similarly, values of δ 13C range from -47.3‰ to -34.0‰ . The isotopic enrichment in CH4 with decreasing mixing ratio is a result of kinetic isotope effects in CH4 loss processes, i.e. chemical reaction with OH, Cl, and O(1D), as the air mass ages. Our measurement data have been compared to calculated values using the LLNL 2-D chemical-radiative-transport model of the atmosphere. We discuss the observed trends in δ D and δ 13C of CH4 and their implications for stratospheric chemistry.

  10. Similarities and differences in 13C and 15N stable isotope ratios in two non-lethal tissue types from shovelnose sturgeon Scaphirhynchus platorynchus (Rafinesque, 1820)

    USGS Publications Warehouse

    DeVries, R. J.; Schramm, Harold L.

    2015-01-01

    We tested the hypothesis that δ13C and δ15N signatures of pectoral spines would provide measures of δ13C and δ15N similar to those obtained from fin clips for adult shovelnose sturgeon Scaphirhynchus platorynchus. Thirty-two shovelnose sturgeon (fork length [FL] = 500–724 mm) were sampled from the lower Mississippi River, USA on 23 February 2013. Isotopic relationships between the two tissue types were analyzed using mixed model analysis of covariance. Tissue types differed significantly for both δ13C (P < 0.01; spine: mean = −23.83, SD = 0.62; fin clip: mean = −25.74, SD = 0.97) and δ15N (P = 0.01; spine: mean = 17.01, SD = 0.51; fin clip: mean = 17.19, SD = 0.62). Neither FL nor the FL × tissue type interaction had significant (P > 0.05) effects on δ13C. Fin clip δ13C values were highly variable and weakly correlated (r = 0.16, P = 0.40) with those from pectoral spines. We found a significant FL-tissue type interaction for δ15N, reflecting increasing δ15N with FL for spines and decreasing δ15N with FL for fin clips. These results indicate that spines are not a substitute for fin clip tissue for measuring δ13C and δ15N for shovelnose sturgeon in the lower Mississippi River, but the two tissues have different turnover rates they may provide complementary information for assessing trophic position at different time scales.

  11. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant tissue isotope labeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tracing heavy stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O o...

  12. The {sup 13}C-pocket structure in AGB models: constraints from zirconium isotope abundances in single mainstream SiC grains

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Gallino, Roberto; Bisterzo, Sara; Savina, Michael R.

    2014-06-20

    We present postprocess asymptotic giant branch (AGB) nucleosynthesis models with different {sup 13}C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. and Barzyk et al. We show that higher-than-solar {sup 92}Zr/{sup 94}Zr ratios can be predicted by adopting a {sup 13}C-pocket with a flat {sup 13}C profile, instead of the previous decreasing-with-depth {sup 13}C profile. The improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat {sup 13}C profile based on barium isotopes in mainstream SiC grains by Liu et al.

  13. Carbon isotopic composition (δ(13)C and (14)C activity) of plant samples in the vicinity of the Slovene nuclear power plant.

    PubMed

    Sturm, Martina; Vreča, Polona; Krajcar Bronić, Ines

    2012-08-01

    δ(13)C values of various plants (apples, wheat, and maize) collected in the vicinity of the Krško Nuclear Power Plant (Slovenia) during 2008 and 2009 were determined. By measuring dried samples and their carbonized counterparts we showed that no significant isotopic fractionation occurs during the carbonization phase of the sample preparation process in the laboratory. The measured δ(13)C values of the plants were used for δ(13)C correction of their measured (14)C activities.

  14. [Carbon stable isotope composition (delta 13C) of lichen thalli in the forests in the vicinity of the Chernobyl atomic power station].

    PubMed

    Biazrov, L G; Gongal'skiĭ, K B; Pel'gunova, L A; Tiunov, A V

    2010-01-01

    The stable isotope abundance of carbon in the lichens Cladina mitis, Cladonia crispata Hypogymnia physodes, Parmelia sulcata has been investigated in a study relating these values with known levels of 106Ru, 134Cs, 137Cs and 144Ce defined activity in their thalli in the pine forests of region within a 30-km radius of the Chernobyl atomic power station and beyond it (37 km). All 63 samples of the lichens were obtained from 7 different sites. Small effects on delta 13C values in the lichens Cladina mitis, Hypogymnia physodes were found to be associated with distance from CNPP, activity level of radionuclides in them thalli whereas at Cladonia crispata is observed weighting of carbon with increase in values of 134Cs and 137Cs activity in thalli. Values of delta 13C the investigated lichen species more depends on habitat conditions rather than from levels of thalli radioactivity. In our study we didn't reveal the isotope specificity of any one species as it was not possible to establish a correlation between values of delta 13C and a particular species.

  15. The δ13C evolution of cave drip water along discreet flow paths in a central Texas cave: Quantifying kinetic isotope fractionation factors

    NASA Astrophysics Data System (ADS)

    Mickler, P. J.; Carlson, P. E.; Banner, J.; Breecker, D.; Stern, L. A.; Baseman, A.

    2015-12-01

    Gaps remain in our understanding of in-cave processes that influence cave water chemistry during speleothem formation. Quantifying environmental controls on the isotopic and chemical evolution of karst groundwater would improve the accuracy of speleothem-based paleoclimate reconstructions. In this study, drip water chemical evolution along flow paths was sampled monthly at two locations in Inner Space Cavern, Texas, over a period of 8 months. In each of the two locations, cave water drips off a stalactite, flows along a flowstone and subsequently drips off a lower stalactite, allowing cave water to be sampled at two points, 1-2 meters apart, along each flow path. The chemical and isotopic evolution of drip water along its flow path shows seasonality, where 1) summer months (high cave-air pCO2) have small variations in δ13C values along the flow paths, high and relatively invariant DIC and Ca values,; and 2) winter months (low cave-air pCO2) generally have large increases in DIC δ13C values along the flow paths, lower DIC and Ca values. The magnitude of the increase in DIC δ13C values along the flow paths, <~1‰ to ~4‰, is controlled by the extent of DIC loss to CO2 degassing and calcite precipitation which is controlled by the pCO2 gradient between drip water and cave air. If the DIC loss is less than 15%, then the evolution of the δ13C value of the DIC reservoir can be modelled using a Rayleigh distillation model and equilibrium fractionation factors between (CO2(g)-HCO3-(aq)) and (CaCO3-HCO3-(aq)). As the loss of the DIC reservoir increases above 15% the DIC δ13C values become progressively higher such that the ɛ (CO2(g)-HCO3-(aq)) values needed to model the observed results change from equilibrium values of ~8‰ to non-equilibrium values up to ~25‰. The variance in magnitude of carbon isotope fractionation during CO2 degassing cannot be attributed to changes in temperature, and thus we infer significant kinetic isotope effects at higher rates of DIC

  16. Characterising ontogenetic niche shifts in Nile crocodile using stable isotope13C, δ15N) analyses of scute keratin.

    PubMed

    Radloff, Frans G T; Hobson, Keith A; Leslie, Alison J

    2012-09-01

    Nile crocodiles undergo a three to five order of magnitude increase in body size during their lifespan. This shift coincides with a change in resource and habitat use which influences the strength, type and symmetry of interactions with other species. Identifying size-specific crocodile groups displaying similar traits is important for conservation planning. Here, we illustrate how stable carbon (δ(13) C) and nitrogen (δ(15) N) isotope analysis of scute keratin, together with breakpoint modelling analysis can be used to characterise ontogenetic niche shifts. Using a sample set of 238 crocodiles from the Okavango Delta, Botswana (35-463 cm total length), we found prominent size-related changes in the scute keratin δ(13) C and δ(15) N profiles close to 40 and 119 cm snout-vent length. The first shift corroborated the findings of a traditional stomach-content study conducted on the same population at the same time, and the second conformed to known crocodile ecology. This approach can be used as a first approximation to identify size-specific groups within crocodile populations, and these can then be investigated further using isotopic or other methods.

  17. Effect of body size and body mass on δ 13 C and δ 15 N in coastal fishes and cephalopods

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Máguas, C.; Cabral, H. N.; Costa, M. J.

    2011-11-01

    Carbon and nitrogen isotopes have been widely used in the investigation of trophic relations, energy pathways, trophic levels and migrations, under the assumption that δ 13C is independent of body size and that variation in δ 15N occurs exclusively due to ontogenetic changes in diet and not body size increase per se. However, several studies have shown that these assumptions are uncertain. Data from food-webs containing an important number of species lack theoretical support on these assumptions because very few species have been tested for δ 13C and δ 15N variation in captivity. However, if sampling comprises a wide range of body sizes from various species, the variation of δ 13C and δ 15N with body size can be investigated. While correlation between body size and δ 13C and δ 15N can be due to ontogenetic diet shifts, stability in such values throughout the size spectrum can be considered an indication that δ 13C and δ 15N in muscle tissues of such species is independent of body size within that size range, and thus the basic assumptions can be applied in the interpretation of such food webs. The present study investigated the variation in muscle δ 13C and δ 15N with body size and body mass of coastal fishes and cephalopods. It was concluded that muscle δ 13C and δ 15N did not vary with body size or mass for all bony fishes with only one exception, the dragonet Callionymus lyra. Muscle δ 13C and δ 15N also did not vary with body size or mass in cartilaginous fishes and cephalopods, meaning that body size/mass per se have no effect on δ 13C or δ 15N, for most species analysed and within the size ranges sampled. The assumption that δ 13C is independent of body size and that variation in δ 15N is not affected by body size increase per se was upheld for most organisms and can be applied to the coastal food web studied taking into account that C. lyra is an exception.

  18. Molecular Effects of 13C/DIM in Prostate Cancer

    DTIC Science & Technology

    2007-04-01

    2004), suggesting that I3C and DIM could have some beneficial effects on pancreatic cancer. Curcumin Curcumin is a compound from Curcuma longa ...tumeric). C. longa is a plant widely cultivated in tropical regions of Asia and Central America. Curcumin has recently received considerable attention due

  19. Experimental assessment of the purity of α-cellulose produced by variations of the Brendel method: Implications for stable isotope13C, δ18O) dendroclimatology

    NASA Astrophysics Data System (ADS)

    Brookman, Tom; Whittaker, Thomas

    2012-09-01

    Stable isotope dendroclimatology using α-cellulose has unique potential to deliver multimillennial-scale, sub-annually resolved, terrestrial climate records. However, lengthy processing and analytical methods often preclude such reconstructions. Variants of the Brendel extraction method have reduced these limitations, providing fast, easy methods of isolating α-cellulose in some species. Here, we investigate application of Standard Brendel (SBrendel) variants to resinous soft-woods by treating samples of kauri (Agathis australis), ponderosa pine (Pinus ponderosa) and huon pine (Lagarastrobus franklinii), varying reaction vessel, temperature, boiling time and reagent volume. Numerous samples were visibly `under-processed' and Fourier Transform infrared spectroscopic (FTIR) investigation showed absorption peaks at 1520 cm-1 and ˜1600 cm-1 in those fibers suggesting residual lignin and retained resin respectively. Replicate analyses of all samples processed at high temperature yielded consistent δ13C and δ18O despite color and spectral variations. Spectra and isotopic data revealed that α-cellulose δ13C can be altered during processing, most likely due to chemical contamination from insufficient acetone removal, but is not systematically affected by methodological variation. Reagent amount, temperature and extraction time all influence δ18O, however, and our results demonstrate that different species may require different processing methods. FTIR prior to isotopic analysis is a fast and cost effective way to determine α-cellulose extract purity. Furthermore, a systematic isotopic test such as we present here can also determine sensitivity of isotopic values to methodological variables. Without these tests, isotopic variability introduced by the method could obscure or `create' climatic signals within a data set.

  20. Molecular Effects of 13C/DIM in Prostate Cancer

    DTIC Science & Technology

    2006-04-01

    cells.50 Sierens et al.51 have found that isoflavone supplementation reduces hydrogen peroxide -induced DNA damage in sperm, suggesting the antioxidant...tetradecanoylphorbol-13-acetate induced hydrogen peroxide production in human polymorphonuclear leukocytes and HL-60 cells, sug- gesting the inhibitory effect...inhibits lipid peroxidation in rat brain, liver, and lens, suggesting its antiox- idant properties.78–80 Chuang et al.81 have shown that curcumin inhibits

  1. Effect of petroleum products on the decomposition of soil organic matter as assessed by 13C natural abundance

    NASA Astrophysics Data System (ADS)

    Stelmach, Wioleta; Szarlip, Paweł; Trembaczowski, Andrzej; Bieganowski, Andrzej

    2016-04-01

    Petroleum products are common contaminants in soils due to human activities. They are toxic for microorganisms and threat their functions, including decomposition of soil organic matter (SOM). The direct estimation of altered SOM decomposition - based on the CO2 emission - is impossible after oil contamination, because oil decomposition also contributes to the CO2 release. We used the natural differences in the isotopic signature (δ13C) of SOM and of oil products to partition the total CO2 for both sources and to analyze the suppression of SOM decomposition. The dynamics of 13C fractionation during the mineralization of gasoline and diesel was measured during 42 days. The 13C fractionation varied between -8.8‰ and +3.6‰ within the first 10 days, and stabilized thereafter at about -5.3‰ for gasoline and +3.2‰ for diesel. These 13C fractionations and δ13C values of CO2 emitted from the soil were used for correct partitioning of the total CO2. Contamination with gasoline reduced the CO2 efflux from SOM decomposition by a factor of 25 (from 151 to 6 mg C-CO2 kg-1 soil during 42 days). The negative effect of diesel was much lower: the CO2 efflux from SOM was decreased by less than a factor of 2. The strong effect of gasoline versus diesel reflects the lower absorption of gasoline to mineral particles and the development of a thin film on water surfaces, leading to toxicity for microorganisms. We conclude that the small differences of 13C of SOM and of organic pollutants can be used to partition CO2 fluxes and analyze pollutant effects on SOM decomposition.

  2. Measurement of insulin sensitivity indices using 13C-glucose and gas chromatography/combustion/isotope ratio mass spectrometry.

    PubMed

    Clapperton, Allan T; Coward, W Andrew; Bluck, Leslie J C

    2002-01-01

    Important aspects of glucose metabolism can be quantified by using the minimal model of glucose kinetics to interpret the results of intravenous glucose tolerance tests. The power of this methodology can be greatly increased by the addition of stable isotopically labelled tracer to the glucose bolus dose. This allows the separation of glucose disposal from endogenous glucose production and also increases the precision of the estimates of the physiological parameters measured. Until now the tracer of choice has been deuteriated glucose and the analytical technique has been gas chromatography/mass spectrometry (GC/MS). The consequence of this choice is that nearly 2 g of labelled material are needed and this makes the test expensive. We have investigated the use of (13)C-labelled glucose as the tracer in combination with gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as the analytical technique. This methodology offers superior analytical precision when compared with the conventional method and so the amount of tracer used, and hence the cost, can be reduced considerably. Healthy non-obese male volunteers were recruited for a standard intravenous glucose tolerance test (IVGTT) protocol but 6,6-(2)H-glucose and 1-(13)C-glucose were administered simultaneously. Tracer/tracee ratios were derived from isotope ratio measurements of plasma glucose using both GC/MS and GC/C/IRMS. The results of these determinations indicated that the two tracers behaved identically under the test protocol. The combination of these results with plasma glucose and insulin concentration data allowed determination of the minimal model parameters S*g and S*i. The parameter relating to insulin-assisted glucose disposal, S*i, was found to be the same in the two techniques, but this was not the case for the non-insulin-dependent parameter S*g.

  3. Positional Enrichment by Proton Analysis (PEPA): A One-Dimensional (1) H-NMR Approach for (13) C Stable Isotope Tracer Studies in Metabolomics.

    PubMed

    Vinaixa, Maria; Rodríguez, Miguel A; Aivio, Suvi; Capellades, Jordi; Gómez, Josep; Canyellas, Nicolau; Stracker, Travis H; Yanes, Oscar

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of (13) C-satellite peaks using 1D-(1) H-NMR spectra. In comparison with (13) C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of (13) C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of (1) H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts.

  4. δD and δ13C analyses of atmospheric volatile organic compounds by thermal desorption gas chromatography isotope ratio mass spectrometry.

    PubMed

    von Eckstaedt, Christiane Vitzthum; Grice, Kliti; Ioppolo-Armanios, Marisa; Chidlow, Geoff; Jones, Mark

    2011-09-16

    This paper describes the establishment of a robust method to determine compound specific δD and δ(13)C values of volatile organic compounds (VOCs) in a standard mixture ranging between C(6) and C(10) and was applied to various complex emission samples, e.g. from biomass combustion and car exhaust. A thermal desorption (TD) unit was linked to a gas chromatography isotope ratio mass spectrometer (GC-irMS) to enable compound specific isotope analysis (CSIA) of gaseous samples. TenaxTA was used as an adsorbent material in stainless steel TD tubes. We determined instrument settings to achieve a minimal water background level for reliable δD analysis and investigated the impact of storage time on δD and δ(13)C values of collected VOCs (176 days and 40 days of storage, respectively). Most of the standard compounds investigated showed standard deviations (SD)<6‰ (δD) when stored for 148 days at 4 °C. However, benzene revealed occasionally D depleted values (21‰ SD) for unknown reasons. δ(13)C analysis demonstrated that storage of 40 days had no effect on VOCs investigated. We also showed that breakthrough (benzene and toluene, 37% and 7%, respectively) had only a negligible effect (0.7‰ and 0.4‰, respectively) on δ(13)C values of VOCs on the sample tube. We established that the sample portion collected at the split flow effluent of the TD unit can be used as a replicate sample for isotope analysis saving valuable sampling time and resources. We also applied TD-GC-irMS to different emission samples (biomass combustion, petrol and diesel car engines exhaust) and for the first time δD values of atmospheric VOCs in the above range are reported. Significant differences in δD of up to 130‰ were observed between VOCs in emissions from petrol car engine exhaust and biomass combustion (Karri tree). However, diesel car emissions showed a high content of highly complex unresolved mixtures thus a baseline separation of VOCs was not achieved for stable hydrogen

  5. Intrapopulation variation in gray wolf isotope (delta(15)N and delta(13)C) profiles: implications for the ecology of individuals.

    PubMed

    Urton, Erin J M; Hobson, Keith A

    2005-09-01

    Trophic relationships among organisms in terrestrial boreal ecosystems define ecological communities and are important in determining dynamics of energy flow and ecosystem function. We examined trophic relationships between the gray wolf (Canis lupus) and 18 mammalian species from the boreal forest of central Saskatchewan, Canada, using delta(13)C and delta(15)N stable isotope values measured in guard hair samples. Variance in isotope values for wolves and other carnivores was investigated as a proxy for variation in diet among individuals. Isosource, an isotopic source partitioning model, quantified the relative range in proportions of five most-likely prey items in the diets of wolves. The distribution of feasible contributions from each source was dominated by elk (Cervus elaphus; mean: 48%, range:11-75%), followed by white-tailed deer (Odocoileus virginianus; mean: 21%, range: 0-54%), moose (Alces alces; mean:14%, range: 0-41%), beaver (Castor canadensis; mean: 8%, range:0-25%) and snowshoe hare (Lepus americanus; mean: 8%, range: 0-24%). Despite social foraging, our results indicate highly variable diets among individuals and we discuss this in terms of individual versus group ecology of boreal wolves.

  6. Correlation between the synthetic origin of methamphetamine samples and their 15N and 13C stable isotope ratios.

    PubMed

    Billault, Isabelle; Courant, Frédérique; Pasquereau, Léo; Derrien, Solène; Robins, Richard J; Naulet, Norbert

    2007-06-12

    The active ingredient of ecstasy, N-methyl-3,4-methyldioxyphenylisopropylamine (MDMA) can be manufactured by a number of easy routes from simple precursors. We have synthesised 45 samples of MDMA following the five most common routes using N-precursors from 12 different origins and three different precursors for the aromatic moiety. The 13C and 15N contents of both the precursors and the MDMA samples derived therefrom were measured by isotope ratio mass spectrometry coupled to an elemental analyser (EA-IRMS). We show that within-pathway correlation between the 15N content of the precursor and that of the derived MDMA can be strong but that no general pattern of correlation can be defined. Rather, it is evident that the delta15N values of MDMA are strongly influenced by a combination of the delta15N values of the source of nitrogen used, the route by which the MDMA is synthesised, and the experimental conditions employed. Multivariate analysis (PCA) based on the delta15N values of the synthetic MDMA and of the delta15N and delta13C values of the N-precursors leads to good discrimination between the majority of the reaction conditions tested.

  7. Apportioning carbon sources of authigenic carbonate of extremely 13C-depleted foraminifera from the western North Pacific sediments: Implication from the coupled 13C and 14C isotopic mass balance approach

    NASA Astrophysics Data System (ADS)

    Uchida, M.; Ohkushi, K.; Ahagon, N.; Kimoto, K.; Inagaki, F.; Shibata, Y.

    2005-12-01

    Recently, Uchida et al. (G-cubed, 2004) and Ohkushi et al. (G-cubed, 2005) interprete /delta 13C variations of planktonic and benthic foraminifera found in Last Glacial sediments in off Shimokita Peninsula and Tokachi as evidence for periodic releases of methane, arising from the dissociation of methane hydrate, and its subsequent oxidation in bottom- and/or surface-water environments. According to recent observations of anomalous bottom-simulating reflections, northwest Pacific marginal sediments around Japan main islands bear large abundances of methane hydrate. In this study, analyzed piston cores (42° 21.42' N, 144° 13.36' E) at a water depth 1066-m was retrieved from the off Tokachi continental slope in the Oyashio current region, where recently is found to bear immense amounts of methane hydrate. The piston core covered past 22 ka with high-resolution. Here we showed that carbon isotope signals indicated that planktonic and benthic foraminifera in several glacial sediment layers in the core were highly depleted in13 C; both the planktonic and benthic foraminiferal /delta 13C values ranged from about -10/permil to -2/permil. Most foraminiferal tests in these horizons were brown as a result of postdepositional alteration. Foraminiferal oxygen isotopes fluctuated abnormally in the glacial sediment layers, showing small (about 0.5/permil) positive shifts relative to normal glacial values. We attributed the positive shifts to authigenic carbonate formation in the foraminiferal tests. In order to decipher the relation between foraminifera carbon isotopic signal and methane release from the seafloor, we have apportioned carbon sources (methane from methane hydrate or not) of foraminiferal carbon isotopic anomalies using dual mass balance isotopic model (14C/ 12C and 13C/ 12C). It has been suggested that sulfate-dependent anaerobic methane oxidation (AOM) dominates carbon oxidation and attendant authigenic carbonate precipitation to foraminifera. To this assumption

  8. Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes ( δ18O, δ13C)

    NASA Astrophysics Data System (ADS)

    Lukeneder, Alexander; Harzhauser, Mathias; Müllegger, Stefan; Piller, Werner E.

    2010-07-01

    Stable isotope ( δ18O and δ13C) ratios were measured in successive aragonitic shell sequences of ammonoids (class Cephalopoda) to determine whether their depth distributions changed within ontogeny and whether stable isotope values differ in various morphological groups (e.g. Leiostraca vs. Trachyostraca). We concentrate mainly on δ18O for temperature results and added δ13C data to obtain information on the ontogenetic history, for which full spiral measurements were undertaken for the first time. To obtain valid stable isotope data from ammonoid shells, we measured ontogenetic sequences (full shell) within different genera. Data sets from the Jurassic ( Cadoceras) and Cretaceous ( Hypacanthoplites, Nowakites) were chosen due to the pure primary aragonitic shell preservation. The study was designed to extract better information on the habitat and life cycle of fossil cephalopods (e.g. ammonoids) in comparison with recent cephalopods (e.g. Nautilus, Spirula, Sepia) possessing equivalent or comparable hard parts. The data from three genera suggest different modes of life in at least two morphological groups. We detected and established two main groups with different ontogenetic strategies based on the δ18O data. The wcw-type (warm-cool-warm type) of Cadoceras resembles strategies in Nautilus and Sepia, which migrate from shallow into deeper environments and back in ontogeny ( wc-type, warm-cool-type), and the cw-type (cool-warm type) of Hypacanthoplites resembling the first two migration phases of Spirula ( cwc-type), which migrates from deeper into shallower and back again into deeper habitats. The main (three) phases revealed by both δ18O and δ13C data sets most probably reflect diet changes in juvenile to mid-aged individuals, followed by a habitat change for spawning adults. In Cadoceras the temperatures range from 21.2 °C for juveniles down to 12.1 °C for mid-aged individuals and back up 16.9 °C in adults. The cw- type strategy of Hypacanthoplites

  9. The stable isotopic composition of a phosphorite deposit: δ13C, δ34S, and δ18O

    USGS Publications Warehouse

    Piper, D.Z.; Kolodny, Y.

    1987-01-01

    The stable isotopes of carbon and sulfur in a major marine sedimentary phosphate deposit from the northwestern United States (the Phosphoria Formation of Permian age) characterize the chemical properties of the depositional environment. The δ34S and δ13C analyses suggest deposition under conditions of variable redox from a solution the acidity of which was controlled by reaction with carbonate rocks and exchange with seawater. The δ18O concentration of apetite indicates phosphatization in a shallow sea, during three glacial and intervening interglacial stages. These data tend to corroborate the interpretation of field studies by others, that the apatite formed on a continental shelf in an area of intense oceanic upwelling during several episodes of sea level change. 

  10. Congener-specific concentrations and carbon stable isotope ratios (delta13C) of two technical toxaphene products (Toxaphene and Melipax).

    PubMed

    Vetter, Walter; Gleixner, Gerd; Armbruster, Wolfgang; Ruppe, Steffen; Stern, Gary A; Braekevelt, Eric

    2005-01-01

    In this study we compared the contribution of individual congeners and the ratios of stable carbon isotopes of two technical toxaphene products. The former US-American product Toxaphene was from 1978 and the East-German product Melipax from 1979. Both technical products showed the known complexity in GC/ECD measurements. Contributions of 24 peaks to each of the technical products were determined by gas chromatography in combination high resolution electron capture negative ion mass spectrometry (GC/ECNI-HRMS). The percentages of the compounds studied in the technical mixtures ranged from approximately 0.05% to approximately 2.5% but showed some individual differences. 2,2,5,5,8,9,9,10,10-nonachlorobornane (B9-1025 or P-62) was identified as a major congener in both mixtures. 2-Endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (B8-1413 or P26) and 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-nonachlorobornane (B9-1679 or P-50) were found at similar concentration in both technical products. Identical amounts of Melipax or Toxaphene were combusted to CO2 in an element analyzer and their delta13C values were determined relative to the international standard Vienna PeeDee belemnite (VPDB). The mean delta13C values of both products varied by 2.8% (determined at two different locations) which is roughly one order of magnitude more than the precision obtained in repetitive analyses of the individual products. Thus, both investigated products could be unequivocally distinguished by stable isotope ratio mass spectrometry (IRMS). IRMS analyses may thus be a suitable tool for tracing back toxaphene residues in environmental and food samples to the one or both of the products.

  11. Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation

    DOE PAGES

    Ma, Fangfang; Jazmin, Lara J.; Young, Jamey D.; ...

    2014-11-03

    Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has been previously applied to map carbon fluxes in photoautotrophic bacteria, which involves model-based regression of transient 13C-labeling patterns of intracellular metabolites. However, experimental and computational difficulties have hindered its application to terrestrial plant systems. Here, we performed in vivo isotopic labeling of Arabidopsis thaliana rosettes with 13CO2 and estimated fluxes throughout leafmore » photosynthetic metabolism by INST-MFA. Plants grown at 200 µmol m$-$2s$-$1 light were compared with plants acclimated for 9 d at an irradiance of 500 µmol∙m$-$2∙s$-$1. Approximately 1,400 independent mass isotopomer measurements obtained from analysis of 37 metabolite fragment ions were regressed to estimate 136 total fluxes (54 free fluxes) under each condition. The results provide a comprehensive description of changes in carbon partitioning and overall photosynthetic flux after long-term developmental acclimation of leaves to high light. Despite a doubling in the carboxylation rate, the photorespiratory flux increased from 17 to 28% of net CO2 assimilation with high-light acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively). In conclusion, this study highlights the potential of 13C INST-MFA to describe emergent flux phenotypes that respond to environmental conditions or plant physiology and cannot be obtained by other complementary approaches.« less

  12. delta 13C analyses of vegetable oil fatty acid components, determined by gas chromatography--combustion--isotope ratio mass spectrometry, after saponification or regiospecific hydrolysis.

    PubMed

    Woodbury, S E; Evershed, R P; Rossell, J B

    1998-05-01

    The delta 13C values of the major fatty acids of several different commercially important vegetable oils were measured by gas chromatography--combustion--isotope ratio mass spectrometry. The delta 13C values obtained were found to fall into two distinct groups, representing the C3 and C4 plants classes from which the oils were derived. The delta 13C values of the oils were measured by continuous flow elemental isotope ratio mass spectrometry and were found to be similar to their fatty acids, with slight differences between individual fatty acids. Investigations were then made into the influence on the delta 13C values of fatty acids of the position occupied on the glycerol backbone. Pancreatic lipase was employed to selectively hydrolyse fatty acids from the 1- and 3-positions with the progress of the reaction being followed by high-temperature gas chromatography in order to determine the optimum incubation time. The 2-monoacylglycerols were then isolated by thin-layer chromatography and fatty acid methyl esters prepared. The delta 13C values obtained indicate that fatty acids from any position on the glycerol backbone are isotopically identical. Thus, whilst quantification of fatty acid composition at the 2-position and measurement of delta 13C values of oils and their major fatty acids are useful criteria in edible oil purity assessment, measurement of delta 13C values of fatty acids from the 2-position does not assist with oil purity assignments.

  13. The Titan 14N/ 15N and 12C/ 13C isotopic ratios in HCN from Cassini/CIRS

    NASA Astrophysics Data System (ADS)

    Vinatier, Sandrine; Bézard, Bruno; Nixon, Conor A.

    2007-11-01

    We report the detection of H 13CN and HC 15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/ 13C and 14N/ 15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm -1 resolution. The spectral range 1210-1310 cm -1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H 12C 14N, H 13CN and HC 15N from their bands at 713, 706 and 711 cm -1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find C12/C13=89-18+22 at 15° S, and 68-12+16 at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/ 13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane ( 82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/ 15N isotopic ratio is found equal to 56-13+16 at 15° S and 56-9+10 at 83° N. Combining the two values yields 14N/ 15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/ 14N ratio found in HCN is ˜3 times higher than in N 2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779

  14. C4 plant isotopic composition (delta13C) evidence for urban CO2 pollution in the city of Cotonou, Benin (West Africa).

    PubMed

    Kèlomé, Nelly C; Lévêque, Jean; Andreux, Francis; Milloux, Marie-Jeanne; Oyédé, Lucien-Marc

    2006-08-01

    The carbon isotopic composition (delta13C) of plants can reveal the isotopic carbon content of the atmosphere in which they develop. The delta13C values of air and plants depend on the amount of atmospheric fossil fuel CO2, which is chiefly emitted in urban areas. A new indicator of CO2 pollution is tested using the delta13C variation in a C4 grass: Eleusine indica. A range of about 4 per thousand delta units was observed at different sites in Cotonou, the largest city in the Republic of Benin. The highest delta13C values, from -12 per thousand to -14 per thousand, were found in low traffic zones; low delta13C values, from -14 per thousand to -16 per thousand, were found in high traffic zones. The amount of fossil fuel carbon assimilated by plants represented about 20% of the total plant carbon content. An overall decrease in plant delta13C values was observed over a four-year monitoring period. This decrease was correlated with increasing vehicle traffic. The delta13C dataset and the corresponding geographical database were used to map and define zones of high and low 13C-depleted CO2 emissions in urban and sub-urban areas. The spatial distribution follows dominant wind directions, with the lowest emission zones found in the southwest of Cotonou. High CO2 emissions occurred in the north, the east and the center, providing evidence of intense anthropogenic activity related to industry and transportation.

  15. Combining position-specific 13C labeling with compound-specific isotope analysis: first steps towards soil fluxomics

    NASA Astrophysics Data System (ADS)

    Dippold, Michaela; Kuzyakov, Yakov

    2015-04-01

    Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino

  16. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species

    PubMed Central

    Salmon, Yann; Buchmann, Nina; Barnard, Romain L.

    2016-01-01

    Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes. PMID:27010947

  17. Effects of heat treatment on Raman spectra of two-layer 12C/13C graphene.

    PubMed

    Kalbac, Martin; Frank, Otakar; Kavan, Ladislav

    2012-10-22

    The Raman spectra of two-layered graphene on a silicon substrate were studied in the temperature range from 298 to 1073 K in an inert atmosphere. Isotopic engineering was used to fabricate two-layer graphene specimens containing (13)C atoms in the top layer and (12)C atoms in the bottom layer, which allowed the behavior of each particular layer to be distinguished as a function of temperature. It is demonstrated that the top layer exhibits much lower Raman temperature coefficients than the bottom one for both the G and the G' modes. We suggest that the changes in the Raman spectra of graphene observed during thermal cycling are predominantly caused by a superposition of two effects, namely, the mechanical stress in graphene exerted by the substrate and the intrinsic changes in the graphene lattice caused by the temperature itself. The top graphene layer is proposed to be more relaxed than the bottom graphene layer and thus reflects almost exclusively the temperature variations as a freestanding graphene layer would.

  18. Investigation of amino acid δ 13C signatures in bone collagen to reconstruct human palaeodiets using liquid chromatography-isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Choy, Kyungcheol; Smith, Colin I.; Fuller, Benjamin T.; Richards, Michael P.

    2010-11-01

    This research presents the individual amino acid δ 13C values in bone collagen of humans ( n = 9) and animals ( n = 27) from two prehistoric shell midden sites in Korea. We obtained complete baseline separation of 16 of the 18 amino acids found in bone collagen by using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). The isotopic results reveal that the humans and animals in the two sites had similar patterns in essential amino acids (EAAs) and non-essential amino acids (NEAAs). The EAA and NEAA δ 13C values in humans are intermediate between those in marine and terrestrial animals. However, the threonine δ 13C values in humans and animals measured in this study are more highly enriched than those of other amino acids. At both sites, all amino acids in marine animals are 13C-enriched relative to those of the terrestrial animals. The isotopic evidence suggests that the Tongsamdong human had EAAs and NEAAs from marine food resources, while the Nukdo humans mainly had EAAs from terrestrial food resources but obtained NEAAs from both terrestrial and marine resources. The δ 13C isotopic differences in amino acids between marine and terrestrial animals were the largest for glycine (NEAA) and histidine (EAA) and the smallest for tyrosine (NEAA) and phenylalanine (EAA). In addition, threonine among the EAAs also had a large difference (˜8‰) in δ 13C values between marine and terrestrial animals, and has the potential to be used as an isotopic marker in palaeodietary studies. Threonine δ 13C values were used in conjunction with the established Δ 13C Glycine-phenylalanine values and produced three distinct dietary groups (terrestrial, omnivorous, and marine). In addition, threonine δ 13C values and Δ 13C Serine-phenylalanine values were discovered to separate between two dietary groups (terrestrial vs. marine), and these δ 13C values may provide a potential new indicator for investigating the distinction between marine and terrestrial protein

  19. 13C-isotopic fingerprint of Pinus pinaster Ait. and Pinus sylvestris L. wood related to the quality of standing tree mass in forests from NW Spain.

    PubMed

    Fernandez, Irene; González-Prieto, Serafin J; Cabaneiro, Ana

    2005-01-01

    Pine forest plantations of Pinus pinaster Ait. and P. sylvestris L. located in Galicia, NW Spain, were selected to study the 13C/12C-isotopic fingerprint in wood core samples in order to find possible relationships between the delta(13)C at natural abundance levels and the quality of the standing tree mass. For each pine species, 24 forests growing on acidic soils were studied: half developed over granite and half over schists. Two dominant trees from each plot, corresponding to all possible combinations of forest stands with high or low site index and with adults or young trees, were drilled at the basal part of trunks using a Pressler drill to obtain tree ring samples. The C-isotopic compositions of the litter and the soil organic matter from different soil depths were also determined and statistically significant correlations between these values and the 13C content of the wood were observed. Despite internal variations due to the influence of site index, tree age and parent material, the isotopic fingerprint of P. pinaster wood (mean value delta13C=-26.2+/-0.8 per thousand) significantly differed (P<0.001) from that of P. sylvestris (mean value delta13C=-24.6+/-0.7 per thousand). Relationships between the quality of the stand and the C-isotopic composition of the wood were observed, high quality stands having trees more 13C-depleted than low quality ones. A high correlation between wood delta13C and site index values for P. pinaster stands (r=-0.667, P<0.001) was found, this correlation being even clearer when only P. pinaster growing over schists (r=-0.833, P<0.001) are considered. Again, the correlation between the site index and the wood delta13C of young P. pinaster trees is higher when plots over granite or schists are separately considered. A similar fact occurs for adult P. sylvestris trees from schists stands, high quality specimens being 13C-depleted compared with low quality ones. On the other hand, 13C natural abundance of wood from P. sylvestris

  20. Calcium isotope constraints on the marine carbon cycle and CaCO3 deposition during the late Silurian (Ludfordian) positive δ13C excursion

    NASA Astrophysics Data System (ADS)

    Farkaš, Juraj; Frýda, Jiří; Holmden, Chris

    2016-10-01

    reservoir, but rather some local processes in the Prague Basin. These can be related to restricted elemental/sediment cycling involving mixing of isotopically distinct Ca sources and carbonate polymorphs (calcite vs. aragonite), and/or possible kinetic Ca isotope effects due to changes in the rate of marine carbonate formation. Evidence supporting the 'kinetic' effect in the studied mid-Ludfordian carbonates is indicated by correlated δ 44 / 40Ca and Sr-concentration data (rs = - 0.76, p < 0.001, n = 41) yielding a slope of -0.00097, which is indistinguishable from the 'kinetic' slope of abiotic calcite precipitation. Kinetic processes are integral to the model of rapid carbonate precipitation recently proposed by Kozłowski (2015), to explain the origin of the mid-Ludfordian CIE, involving intense methanogenesis/photosynthesis in near shore settings coupled with rapid CaCO3 precipitation (i.e., massive whitings events) and eustatically-controlled carbonate hypersaturation of seawater. More Ca isotope studies are needed to shed light on the question of whether kinetics or mineralogy controls the coupled variations in carbonate δ 44 / 40Ca and δ13 C records observed in this study and other large positive CIEs in geological record.

  1. Food partitioning of leaf-eating mangrove crabs ( Sesarminae): Experimental and stable isotope ( 13C and 15N) evidence

    NASA Astrophysics Data System (ADS)

    Kristensen, Ditte K.; Kristensen, Erik; Mangion, Perrine

    2010-05-01

    The feasibility of mangrove leaves as a full diet for sesarmid crabs has been questioned for decades. Since these leaves are nitrogen-poor, sesarmids probably obtain nitrogen from other sources to sustain growth. The aim of this study was to assess the food partitioning of the sesarmid species Neoepisesarma versicolor with emphasis on nitrogen allocation. The preference for animal tissue when crabs were pre-fed diets of different nitrogen content was determined in the laboratory. Furthermore, the possible in situ diet composition of N. versicolor was established from carbon and nitrogen stable isotope signature ( δ13C and δ15N) of freshly caught individuals and their potential food sources, using a concentration-dependent mixing model. N. versicolor showed significantly higher feeding preferences for fish meat when pre-fed leaf material without than with access to meat, indicating that this crab species can meet its nitrogen demand by ingesting animal tissue. The stable isotope mixing model based on in situ materials suggests that the diet of N. versicolor consists of ˜60% leaves in terms of biomass, leaving ˜40% for other sources such as animal tissue and benthic microorganisms. The biomass contribution from animal tissues, in form of e.g. other crustaceans and fish carcasses, was found to account for ˜15%. Despite the relative low biomass fraction, animal food sources may contribute with up to half of the nitrogen in the diet of N. versicolor. The quantity of ingested sediment most likely exceeds that of animal tissues. However, due to the low concentration of assimilable microalgae and other microorganism, we propose that sediment associated sources are less important as a nitrogen source for N. versicolor than hitherto presumed.

  2. Magnetic susceptibility effects on 13C MAS NMR spectra of carbon materials and graphite.

    PubMed

    Freita, J C; Emmerich, F G; Cernicchiaro, G R; Sampaio, L C; Bonagamba, T J

    2001-01-01

    13C high-resolution solid-state nuclear magnetic resonance (NMR) was employed to study carbon materials prepared through the thermal decomposition of four different organic precursors (rice hulls, endocarp of babassu coconut, peat, and PVC). For heat treatment temperatures (HTTs) above about 600 C, all materials presented 13C NMR spectra composed of a unique resonance line associated with carbon atoms in aromatic planes. With increasing HTT a continuous broadening of this resonance and a diamagnetic shift in its central frequency were verified for all samples. The evolution of the magnitude and anisotropy of the magnetic susceptibility of the heat-treated carbon samples with HTT explains well these findings. It is shown that these results are better understood when a comparison is made with the features of the 13C NMR spectrum of polycrystalline graphite, for which the magnetic susceptibility effect is also present and is much more pronounced.

  3. Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis method.

    PubMed

    Tosun, Murat

    2013-06-01

    Honey can be adulterated in various ways. One of the adulteration methods is the addition of different sugar syrups during or after honey production. Starch-based sugar syrups, high fructose corn syrup (HFCS), glucose syrup (GS) and saccharose syrups (SS), which are produced from beet or canes, can be used for adulterating honey. In this study, adulterated honey samples were prepared with the addition of HFCS, GS and SS (beet sugar) at a ratio of 0%, 10%, 20%, 40% and 50% by weight. (13)C/(12)C analysis was conducted on these adulterated honey samples using an isotope ratio mass spectrometer in combination with an elemental analyser (EA-IRMS). As a result, adulteration using C(4) sugar syrups (HFCS and GS) could be detected to a certain extent while adulteration of honey using C(3) sugar syrups (beet sugar) could not be detected. Adulteration by using SS (beet sugar) still has a serious detection problem, especially in countries in which beet is used in manufacturing sugar. For this reason, practice and analysis methods are needed to meet this deficit and to detect the adulterations precisely in the studies that will be conducted.

  4. Neuroprotective effects of caffeine in MPTP model of Parkinson's disease: A (13)C NMR study.

    PubMed

    Bagga, Puneet; Chugani, Anup N; Patel, Anant B

    2016-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of nigrostriatal dopaminergic neurons with an accompanying neuroinflammation leading to loss of dopamine in the basal ganglia. Caffeine, a well-known A2A receptor antagonist is reported to slow down the neuroinflammation caused by activated microglia and reduce the extracellular glutamate in the brain. In this study, we have evaluated the neuroprotective effect of caffeine in the MPTP model of PD by monitoring the region specific cerebral energy metabolism. Adult C57BL6 mice were treated with caffeine (30 mg/kg, i.p.) 30 min prior to MPTP (25 mg/kg, i.p.) administration for 8 days. The paw grip strength of mice was assessed in order to evaluate the motor function after various treatments. For metabolic studies, mice were infused with [1,6-(13)C2]glucose, and (13)C labeling of amino acids was monitored using ex vivo(1)H-[(13)C]-NMR spectroscopy. The paw grip strength was found to be reduced following the MPTP treatment. The caffeine pretreatment showed significant protection against the reduction of paw grip strength in MPTP treated mice. The levels of GABA and myo-inositol were found to be elevated in the striatum of MPTP treated mice. The (13)C labeling of GluC4, GABAC2 and GlnC4 from [1,6-(13)C2]glucose was decreased in the cerebral cortex, striatum, olfactory bulb, thalamus and cerebellum suggesting impaired glutamatergic and GABAergic neuronal activity and neurotransmission of the MPTP treated mice. Most interestingly, the pretreatment of caffeine maintained the (13)C labeling of amino acids to the control values in cortical, olfactory bulb and cerebellum regions while it partially retained in striatal and thalamic regions in MPTP treated mice. The pretreatment of caffeine provides a partial neuro-protection against severe striatal degeneration in the MPTP model of PD.

  5. Monitoring the bio-stimulation of hydrocarbon-contaminated soils by measurements of soil electrical properties, and CO2 content and its 13C/12C isotopic signature

    NASA Astrophysics Data System (ADS)

    Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.

    2013-12-01

    Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and

  6. Assessing waterbird habitat use in coastal evaporative systems using stable isotopes13C, δ 15N and δD) as environmental tracers

    NASA Astrophysics Data System (ADS)

    Ramírez, Francisco; Abdennadher, Aida; Sanpera, Carola; Jover, Lluís; Wassenaar, Leonard I.; Hobson, Keith A.

    2011-04-01

    Isotopic patterns of biota across salinity gradients in man-made evaporative systems could assist in determining the use of these habitats by animals. Here we report δ 13C, δ 15N and δD measurements of a euryhaline fish, the Mediterranean toothcarp ( Aphanius fasciatus), inhabiting a range of salinities in the Thyna saltworks near Sfax (Tunisia). The contribution of these salinity niches to egg formation of two typically piscivorous bird species breeding in the area and feeding within saltworks, Little Tern ( Sternula albifrons) and Little Egret ( Egretta garzetta), was inferred trough a triple-isotope13C, δ 15N and δD) Bayesian mixing model. Isotopic trends for fish δ 15N and δD across the salinity gradient followed the equations: δ 15N = e (1.1 + 47.68/Salinity) and δD = -175.74 + Salinity + Salinity 2; whereas fish δ 13C increased as salinity rose (δ 13C = -10.83 + 0.02·Salinity), after a sudden drop in fish isotopic values for salinities >60 (Practical Salinity Scale) (average fish δ 13C for salinities <60 = -5.92‰). Both bird species fed largely on low hypersalinity ponds (salinity = 43; average contribution = 37% and 22% for Little Egrets and Little Terns, respectively), although the use of intermediate hypersalinities (salinities 63 and 70) by Little Terns also occurred (16% and 21%, respectively). Isotopic patterns across salinity gradients allow the use of isotopic measurements to inform studies of habitat occupancy within evaporative systems and provide further insights into how wildlife communities interact with them.

  7. Optimization of automated gas sample collection and isotope ratio mass spectrometric analysis of delta(13)C of CO(2) in air.

    PubMed

    Zeeman, Matthias J; Werner, Roland A; Eugster, Werner; Siegwolf, Rolf T W; Wehrle, Günther; Mohn, Joachim; Buchmann, Nina

    2008-12-01

    The application of (13)C/(12)C in ecosystem-scale tracer models for CO(2) in air requires accurate measurements of the mixing ratios and stable isotope ratios of CO(2). To increase measurement reliability and data intercomparability, as well as to shorten analysis times, we have improved an existing field sampling setup with portable air sampling units and developed a laboratory setup for the analysis of the delta(13)C of CO(2) in air by isotope ratio mass spectrometry (IRMS). The changes consist of (a) optimization of sample and standard gas flow paths, (b) additional software configuration, and (c) automation of liquid nitrogen refilling for the cryogenic trap. We achieved a precision better than 0.1 per thousand and an accuracy of 0.11 +/- 0.04 per thousand for the measurement of delta(13)C of CO(2) in air and unattended operation of measurement sequences up to 12 h.

  8. 13C/12C and 15N/14N Isotope Analysis to Characterize Natural Degradation of Atrazine: Evidence from Parent and Daughter Compound Values

    NASA Astrophysics Data System (ADS)

    Elsner, Martin; Meyer, Armin

    2013-04-01

    The mobile and still herbicidal metabolites desethylatrazine (DEA) and desisopropylatrazine (DIA) are frequently detected together with its parent compound atrazine (Atz) in the aquatic environment. Interpretation of their transformation state is often difficult with current methods, which are mainly measuring concentrations. Alternatively, compound specific isotope analyses (CSIA) has become a novel tool to detect degradation processes of contaminants in groundwater. The aim of our study was to investigate on the lab scale 13C/12C and 15N/14N isotope trends in parent and daughter compounds associated with different degradation scenarios of atrazine likely to occur in the environment. Thus atrazine was dealkylated with (i) permanganate and (ii) the bacterium Rhodococcus sp. NI86/21. In both transformations, 13C/12C ratios of atrazine increased strongly (epsilon carbon/permanganate = -4.6 ± 0.6 ‰ and epsilon carbon/Rhodoccoccus = -3.8 ± 0.2 ‰) whereas nitrogen isotope fractionation was small. 13C/12C ratios of DEA showed the following trends. (i) When DEA was formed as only product (Atz + permanganate) 13C/12C remained constant, close to the initial value of Atz. (ii) When DEA was formed together with deisopropylatrazine (biodegradation of Atz) 13C/12C increased, but only within 2‰. (iii) When DEA and DIA was further biodegraded, 13C/12C increased for both metabolites up to 9‰. Thus strong enrichment of 13C/12C in the metabolites in comparison to Atz can give strong testimony for further breakdown of the metabolite.

  9. Quantitative twoplex glycan analysis using (12)C6 and (13)C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry.

    PubMed

    Váradi, Csaba; Mittermayr, Stefan; Millán-Martín, Silvia; Bones, Jonathan

    2016-12-01

    Capillary electrophoresis (CE) offers excellent efficiency and orthogonality to liquid chromatographic (LC) separations for oligosaccharide structural analysis. Combination of CE with high resolution mass spectrometry (MS) for glycan analysis remains a challenging task due to the MS incompatibility of background electrolyte buffers and additives commonly used in offline CE separations. Here, a novel method is presented for the analysis of 2-aminobenzoic acid (2-AA) labelled glycans by capillary electrophoresis coupled to mass spectrometry (CE-MS). To ensure maximum resolution and excellent precision without the requirement for excessive analysis times, CE separation conditions including the concentration and pH of the background electrolyte, the effect of applied pressure on the capillary inlet and the capillary length were evaluated. Using readily available (12/13)C6 stable isotopologues of 2-AA, the developed method can be applied for quantitative glycan profiling in a twoplex manner based on the generation of extracted ion electropherograms (EIE) for (12)C6 'light' and (13)C6 'heavy' 2-AA labelled glycan isotope clusters. The twoplex quantitative CE-MS glycan analysis platform is ideally suited for comparability assessment of biopharmaceuticals, such as monoclonal antibodies, for differential glycomic analysis of clinical material for potential biomarker discovery or for quantitative microheterogeneity analysis of different glycosylation sites within a glycoprotein. Additionally, due to the low injection volume requirements of CE, subsequent LC-MS analysis of the same sample can be performed facilitating the use of orthogonal separation techniques for structural elucidation or verification of quantitative performance.

  10. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  11. Stable isotopes (δD and δ(13)C) are geographic indicators of natal origins of monarch butterflies in eastern North America.

    PubMed

    Hobson, Keith A; Wassenaar, Leonard I; Taylor, Orley R

    1999-08-01

    Wing membranes of laboratory and field-reared monarch butterflies (Danaus plexippus) were analyzed for their stable-hydrogen (δD) and carbon (δ(13)C) isotope ratios to determine whether this technique could be used to identify their natal origins. We hypothesized that the hydrogen isotopic composition of monarch butterfly wing keratin would reflect the hydrogen isotope patterns of rainfall in areas of natal origin where wings were formed. Monarchs were reared in the laboratory on milkweed plants (Asclepias sp.) grown with water of known deuterium content, and, with the assistance of volunteers, on native milkweeds throughout eastern North America. The results show that the stable hydrogen isotopic composition of monarch butterflies is highly correlated with the isotopic composition of the milkweed host plants, which in turn corresponds closely with the long-term geographic patterns of deuterium in rainfall. Stable-carbon isotope values in milkweed host plants were similarly correlated with those values in monarch butterflies and showed a general pattern of enrichment along a southwest to northeast gradient bisecting the Great Lakes. These findings indicate that natal origins of migratory and wintering monarchs in Mexico can be inferred from the combined δD and δ(13)C isotopic signatures in their wings. This relationship establishes that analysis of hydrogen and carbon isotopes can be used to answer questions concerning the biology of migratory monarch butterflies and provides a new approach to tracking similar migratory movements of other organisms.

  12. Mangrove isotopic (δ15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient

    USGS Publications Warehouse

    Mckee, Karen L.; Feller, Ilka C.; Popp, Marianne; Wanek, Wolfgang

    2002-01-01

    Mangrove islands in Belize are characterized by a unique switching from nitrogen (N) to phosphorus (P) limitation to tree growth from shoreline to interior. Fertilization has previously shown that Rhizophora mangle (red mangrove) fringe trees (5–6 m tall) growing along the shoreline are N limited; dwarf trees (!1.5 m tall) in the forestinterior are P limited; and transition trees (2–4 m tall) are co-limited by both N and P.  Growth patterns paralleled a landward decrease in soil flushing by tides and an increase in bioavailable N, but P availability remained consistently low across the gradient. Stable isotopic composition was measured in R. mangle leaves to aid in explaining this nutrient switching pattern and growth variation. Along control transects, leaf !15N decreased from "0.10‰ (fringe) to #5.38‰ (dwarf). The !15N of N-fertilized trees also varied spatially, but the values were consistently more negative (by $3‰) compared to control trees. Spatial variation in !15N values disappeared when the trees were fertilized with P, and values averaged "0.12‰, similar to that in control fringe trees. Neither variation in source inputs nor microbial fractionation could fully account for the observed patterns in !15N. The results instead suggest that the lower !15N values in transition and dwarf control trees were due to plant fractionation as a consequence of slower growth and lower N demand. P fertilization increased N demand and decreased fractionation. Although leaf !13C was unaffected by fertilization, values increased from fringe (#28.6‰) to transition (#27.9‰) to dwarf (#26.4‰) zones, indicating spatial variation in environmental stresses affecting stomatal conductance or carboxylation. The results thus suggest an interaction of external supply, internal demand, and plant ability to acquire nutrients under different hydro-edaphic conditions that vary across this tree-height gradient. The findings not only aid in understanding

  13. Abundance Anomaly of the 13C Isotopic Species of c-C3H2 in the Low-mass Star Formation Region L1527

    NASA Astrophysics Data System (ADS)

    Yoshida, Kento; Sakai, Nami; Tokudome, Tomoya; López-Sepulcre, Ana; Watanabe, Yoshimasa; Takano, Shuro; Lefloch, Bertrand; Ceccarelli, Cecilia; Bachiller, Rafael; Caux, Emmanuel; Vastel, Charlotte; Yamamoto, Satoshi

    2015-07-01

    The rotational spectral lines of c-C3H2 and two kinds of the 13C isotopic species, c-{}13{{CCCH}}2 ({C}2v symmetry) and c-{{CC}}13{{CH}}2 (Cs symmetry), have been observed in the 1-3 mm band toward the low-mass star-forming region L1527. We have detected 7, 3, and 6 lines of c-C3H2, c-{}13{{CCCH}}2, and c-{{CC}}13{{CH}}2, respectively, with the Nobeyama 45 m telescope and 34, 6, and 13 lines, respectively, with the IRAM 30 m telescope, where seven, two, and two transitions, respectively, are observed with both telescopes. With these data, we have evaluated the column densities of the normal and 13C isotopic species. The [c-C3H2]/[c-{}13{{CCCH}}2] ratio is determined to be 310 ± 80, while the [c-C3H2]/[c-{{CC}}13{{CH}}2] ratio is determined to be 61 ± 11. The [c-C3H2]/[c-{}13{{CCCH}}2] and [c-C3H2]/[c-{{CC}}13{{CH}}2] ratios expected from the elemental 12C/13C ratio are 60-70 and 30-35, respectively, where the latter takes into account the statistical factor of 2 for the two equivalent carbon atoms in c-C3H2. Hence, this observation further confirms the dilution of the 13C species in carbon-chain molecules and their related molecules, which are thought to originate from the dilution of 13C+ in the gas-phase C+ due to the isotope exchange reaction: {}13{{{C}}}++{CO}\\to {}13{CO}+{{{C}}}+. Moreover, the abundances of the two 13C isotopic species are different from each other. The ratio of c-{}13{{CCCH}}2 species relative to c-{{CC}}13{{CH}}2 is determined to be 0.20 ± 0.05. If 13C were randomly substituted for the three carbon atoms, the [c-{}13{{CCCH}}2]/[c-{{CC}}13{{CH}}2] ratio would be 0.5. Hence, the observed ratio indicates that c-{{CC}}13{{CH}}2 exists more favorably. Possible origins of the different abundances are discussed. Based on observations carried out with the IRAM 30 m Telescope and the NRO 45 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). NRO is a branch of the National Astronomical Observatory of Japan

  14. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    PubMed

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  15. Benthic macroinvertebrates and the use of stable isotopes13C and δ15N) in the impact assessment of peatland use on boreal stream ecosystems

    NASA Astrophysics Data System (ADS)

    Nieminen, Mika L.; Daza Secco, Emmanuela; Nykänen, Hannu; Meissner, Kristian

    2013-04-01

    Stable isotope analysis (SIA) can provide insights into carbon flow dynamics and trophic positions of consumers in food webs. SIA is used in this study, where we assess the possible changes in the basal resources of Finnish boreal stream ecosystems and differences in the impact of two forms of peatland use, forestry and peat mining. About 30% of the total land area of Finland is classified as peatland, of which about 55% has been drained for forestry and about 0.6% is in peat production. Unlike forestry, peat production is regionally less scattered and can thus have measurable local impacts although the total area of peat production is small. Three watersheds were used as study areas. Within each watershed, one stream drains a subcatchment affected only by peat mining, whereas the other stream flows through a subcatchment affected by forestry. The two subcatchment streams merge to form a single stream flowing into a lake. Studied watersheds were subject to no other forms of land use. In addition to the impacted sites, we used two pristine natural mire and two natural forest catchments as controls. We analysed the stable isotopes of carbon (δ13C) and nitrogen (δ15N) from benthic macroinvertebrates, stream bank soil, stream sediment, and dissolved organic carbon (DOC) in stream water. Samples for stable isotope analyses were collected in the summer of 2011 and samples for invertebrate community analyses in the autumn of 2011. Upon sampling we measured several physical parameters at each sampling site. In addition, stream water samples collected in summer and autumn 2012 were analysed for CH4 and CO2 gas concentrations and autumn gas samples also for their δ13C values. Our initial SIA results of invertebrates suggest some degree of discrimination between different sources of OM and possible effects on feeding habits, presumably due to the quality of the basal resources. We will explore this result further by examining not only taxonomical structure, but also the

  16. Coral skeletal carbon isotopes13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico

    USGS Publications Warehouse

    Moyer, R.P.; Grottoli, A.G.

    2011-01-01

    Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world's oceans. However, few historical records of land-ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (δ13C) and radiocarbon (Δ14C) isotopes of coastal DIC are influenced by the δ13C and Δ14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, δ13C and Δ14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the δ13C and Δ14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both δ13C and Δ14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in δ13C and Δ14C than seawater DIC, and (3) the correlation of δ13C and Δ14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal δ13C and Δ14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land-ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land-ocean carbon flux in the context of land-use change and global climate change.

  17. Coral skeletal carbon isotopes13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico

    USGS Publications Warehouse

    Moyer, R.P.; Grottoli, A.G.

    2011-01-01

    Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world's oceans. However, few historical records of land-ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (??13C) and radiocarbon (??14C) isotopes of coastal DIC are influenced by the ??13C and ??14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, ??13C and ??14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the ??13C and ??14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both ??13C and ??14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in ??13C and ??14C than seawater DIC, and (3) the correlation of ??13C and ??14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal ??13C and ??14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land-ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land-ocean carbon flux in the context of land-use change and global climate change. ?? 2011 United States Geological Survey.

  18. Positional Enrichment by Proton Analysis (PEPA): A One‐Dimensional 1H‐NMR Approach for 13C Stable Isotope Tracer Studies in Metabolomics

    PubMed Central

    Rodríguez, Miguel A.; Aivio, Suvi; Capellades, Jordi; Gómez, Josep; Canyellas, Nicolau; Stracker, Travis H.

    2017-01-01

    Abstract A novel metabolomics approach for NMR‐based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of 13C‐satellite peaks using 1D‐1H‐NMR spectra. In comparison with 13C‐NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of 13C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high‐throughput of 1H‐NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D‐NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. PMID:28220994

  19. Effect of seasonal changes in the pathways of methanogenesis on the δ13C values of pore water methane in a Michigan peatland

    NASA Astrophysics Data System (ADS)

    Avery, G. Brooks; Shannon, Robert D.; White, Jeffrey R.; Martens, Christopher S.; Alperin, Marc J.

    1999-06-01

    The δ13C value of pore water methane produced in a Michigan peatland varied by 11‰ during the year. This isotopic shift resulted from large seasonal changes in the pathways of methane production. On the basis of mass balance calculations, the δ13C value of methane from CO2 reduction (average = -71.4 ± 1.8‰) was depleted in 13C compared to that produced from acetate (-44.4 ± 8.2‰). The dissolved methane at the site remained heavy (approximately -51‰) during most of the year. Tracer experiments using 14C-labeled CO2 indicated that during January 110 ± 25% of the methane was produced by CO2 reduction. Because of low-methane production rates during the winter, this 13C-depleted methane had only a slight effect on the isotopic composition of the methane pool. In early spring when peat temperatures and methane production rates increased, the δ13C value of the dissolved methane in shallow peat was influenced by the isotopically light methane and approached -61‰. Peat incubation experiments conducted at 15°C in May and June (when the peat reaches its maximum temperature) indicated that an average of 84 ± 9% of the methane production was from acetate and had an average δ13C value of -48.7 ± 5.6‰. Rising acetate concentrations during April-May (approaching 1 mmol L-1(mM)) followed by a rapid decrease in acetate concentrations during May-June reflected the shift toward methane production dominated by acetate fermentation. During this period, dissolved methane in shallow peat at the site returned to heavier values (approximately -51‰) similar to that produced in the incubation experiments.

  20. Effects of Ergot Alkaloids on Liver Function of Piglets as Evaluated by the 13C-Methacetin and 13C-α-Ketoisocaproic Acid Breath Test

    PubMed Central

    Dänicke, Sven; Diers, Sonja

    2013-01-01

    Ergot alkaloids (the sum of individual ergot alkaloids are termed as total alkaloids, TA) are produced by the fungus Claviceps purpurea, which infests cereal grains commonly used as feedstuffs. Ergot alkaloids potentially modulate microsomal and mitochondrial hepatic enzymes. Thus, the aim of the present experiment was to assess their effects on microsomal and mitochondrial liver function using the 13C-Methacetin (MC) and 13C-α-ketoisocaproic acid (KICA) breath test, respectively. Two ergot batches were mixed into piglet diets, resulting in 11 and 22 mg (Ergot 5-low and Ergot 5-high), 9 and 14 mg TA/kg (Ergot 15-low and Ergot 15-high) and compared to an ergot-free control group. Feed intake and live weight gain decreased significantly with the TA content (p < 0.001). Feeding the Ergot 5-high diet tended to decrease the 60-min-cumulative 13CO2 percentage of the dose recovery (cPDR60) by 26% and 28% in the MC and KICA breath test, respectively, compared to the control group (p = 0.065). Therefore, both microsomal and mitochondrial liver function was slightly affected by ergot alkaloids. PMID:23322130

  1. Spatial and temporal variations in stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopic composition of symbiotic scleractinian corals.

    PubMed

    Nahon, Sarah; Richoux, Nicole B; Kolasinski, Joanna; Desmalades, Martin; Ferrier Pages, Christine; Lecellier, Gael; Planes, Serge; Berteaux Lecellier, Véronique

    2013-01-01

    Tropical scleractinian corals are considered autotrophic as they rely mainly on photosynthesis-derived nutrients transferred from their photosymbionts. Corals are also able to capture and ingest suspended particulate organic matter, so heterotrophy can be an important supplementary trophic pathway to optimize coral fitness. The aim of this in situ study was to elucidate the trophic status of 10 coral species under contrasted environmental conditions in a French Polynesian lagoon. Carbon (δ(13)C) and nitrogen (δ(15)N) isotopic compositions of coral host tissues and photosymbionts were determined at 3 different fringing reefs during wet and dry seasons. Our results highlighted spatial variability in stable isotopic compositions of both coral host tissues and photosymbionts. Samples from the site with higher level of suspended particulate matter were (13)C-depleted and (15)N-enriched relative to corals and photosymbionts from less turbid sites. However, differences in both δ(13)C and δ(15)N between coral host tissues and their photosymbionts (Δ(host-photosymbionts 13)C and Δ(host-photosymbionts 15)N) were small (0.27 ± 0.76‰ and 1.40 ± 0.90‰, respectively) and similar at all sites, thus indicating no general increases in the heterotrophic pathway. Depleted δ(13)C and enriched δ(15)N values of coral host tissues measured at the most turbid site were explained by changes in isotopic composition of the inorganic nutrients taken up by photosymbionts and also by changes in rate of isotopic fractionation with environmental conditions. Our results also highlighted a lack of significant temporal variations in δ(13)C and δ(15)N values of coral host and photosymbiont tissues and in Δ(host-photosymbionts 13)C and Δ(host-photosymbionts 15)N values. This temporal stability indicated that corals remained principally autotrophic even during the wet season when photosymbiont densities were lower and the concentrations of phytoplankton were higher. Increased coral

  2. Study of the diet effect on δ 13C of shell carbonate of the land snail Helix aspersa in experimental conditions

    NASA Astrophysics Data System (ADS)

    Metref, S.; Rousseau, D.-D.; Bentaleb, I.; Labonne, M.; Vianey-Liaud, M.

    2003-06-01

    This study aims to demonstrate the influence of the metabolic CO 2 derived from the diet and of the atmospheric CO 2 on the shell carbonate δ 13C of the pulmonate snail Helix aspersa maxima raised under controlled conditions. Adult snails were analyzed and compared with three hatching and 1-day old young snails stemming from the same breeding. One day after, the 2-day old individuals were raised during 1 month. Three groups of gastropods were fed with fresh lettuce (C 3 plant, δ 13C=-27.49‰), three groups with corn (C 4 plant, δ 13C=-11.7‰), and three groups ate alternately both (C 3+C 4). The difference between the average δ 13C values of the adult snails on the one hand and the hatched and 1-day old snails on the other hand indicates a depletion of 2.47‰. Therefore, the isotopic parents-offspring signal is not preserved. The depleted ingested albumen by the snail embryo in the egg during the building of the shell could explain this depletion. The C 3 diet experiment gave the expected isotopic composition difference between the diet (lettuce) and the shells (average Δ 13C shell-lettuce=13.75‰±0.52). This result shows a clear diet effect on the isotopic composition of the snail shells. For the C 4 experiment, the difference in carbon isotope composition between the corn and the shell (Δ 13C shell-corn) yielded an average value of 4.89‰±0.87. The main result is that Δ 13C is not constant and appears to depend on the type of ingested food. Several hypotheses can arise from this study to explain the different fractionations: (a) differences in the quality of the two diets, (b) differences in turnover rate for C 3 and C 4 feeders. The groups regularly fed with mixed diet yielded δ 13C values showing a preferential use of C 3 food for most values. The C 3-C 4 mixed dietary alternation probably led snails to use mainly the lettuce instead of the corn powder.

  3. Decoupling of coral skeletal δ13C and solar irradiance over the past millennium caused by the oceanic Suess effect

    NASA Astrophysics Data System (ADS)

    Deng, Wenfeng; Chen, Xuefei; Wei, Gangjian; Zeng, Ti; Zhao, Jian-xin

    2017-02-01

    Many factors influence the seasonal changes in δ13C levels in coral skeletons; consequently, the climatic and environmental significance of such changes is complicated and controversial. However, it is widely accepted that the secular declining trend of coral δ13C over the past 200 years reflects the changes in the additional flux of anthropogenic CO2 from the atmosphere into the surface oceans. Even so, the centennial-scale variations, and their significance, of coral δ13C before the Industrial Revolution remain unclear. Based on an annually resolved coral δ13C record from the northern South China Sea, the centennial-scale variations of coral δ13C over the past millennium were studied. The coral δ13C and total solar irradiance (TSI) have a significant positive Pearson correlation and coupled variation during the Medieval Warm Period and Little Ice Age, when natural forcing controlled the climate and environment. This covariation suggests that TSI controls coral δ13C by affecting the photosynthetic activity of the endosymbiotic zooxanthellae over centennial timescales. However, there was a decoupling of the coral skeletal δ13C and TSI during the Current Warm Period, the period in which the climate and environment became linked to anthropogenic factors. Instead, coral δ13C levels have a significant Pearson correlation with both the atmospheric CO2 concentration and δ13C levels in atmospheric CO2. The correlation between coral δ13C and atmospheric CO2 suggests that the oceanic 13C Suess effect, caused by the addition of increasing amounts of anthropogenic 12CO2 to the surface ocean, has led to the decoupling of coral δ13C and TSI at the centennial scale.

  4. Physiological and isotopic (delta(13)C and delta(18)O) responses of three tropical tree species to water and nutrient availability.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-10-01

    Water-use efficiency and stable isotope composition were studied in three tropical tree species. Seedlings of Tectona grandis, Swietenia macrophylla and Platymiscium pinnatum were grown at either high or low water supply, and with or without added fertilizer. These three species previously exhibited low, intermediate and high whole-plant water-use efficiency (TE) when grown at high water supply in unfertilized soil. Responses of TE to water and nutrient availability varied among species. The TE was calculated as experiment-long dry matter production divided by cumulative water use. Species-specific offsets were observed in relationships between TE and whole-plant (13)C discrimination (Delta(13)C(p)). These offsets could be attributed to a breakdown in the relationship between Delta(13)C(p) and the ratio of intercellular to ambient CO(2) partial pressures (c(i)/c(a)) in P. pinnatum, and to variation among species in the leaf-to-air vapour pressure difference (v). Thus, a plot of v.TE against c(i)/c(a) showed a general relationship among species. Relationships between delta(18)O of stem dry matter and stomatal conductance ranged from strongly negative for S. macrophylla to no relationship for T. grandis. Results suggest inter-specific variation among tropical tree species in relationships between stable isotope ratios (delta(13)C and delta(18)O) and the gas exchange processes thought to affect them.

  5. Establishing spatial trends in water chemistry and stable isotopes (δ15N and δ13C) in the Elwha River prior to dam removal and salmon recolonization

    USGS Publications Warehouse

    Duda, J.J.; Coe, H.J.; Morley, S.A.; Kloehn, K.K.

    2011-01-01

    Two high-head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine-derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine-derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented.

  6. A conifer-friendly high-throughput α-cellulose extraction method for δ13C and δ18O stable isotope ratio analysis

    NASA Astrophysics Data System (ADS)

    Lin, W.; Noormets, A.; domec, J.; King, J. S.; Sun, G.; McNulty, S.

    2012-12-01

    Wood stable isotope ratios (δ13C and δ18O) offer insight to water source and plant water use efficiency (WUE), which in turn provide a glimpse to potential plant responses to changing climate, particularly rainfall patterns. The synthetic pathways of cell wall deposition in wood rings differ in their discrimination ratios between the light and heavy isotopes, and α-cellulose is broadly seen as the best indicator of plant water status due to its local and temporal fixation and to its high abundance within the wood. To use the effects of recent severe droughts on the WUE of loblolly pine (Pinus taeda) throughout Southeastern USA as a harbinger of future changes, an effort has been undertaken to sample the entire range of the species and to sample the isotopic composition in a consistent manner. To be able to accommodate the large number of samples required by this analysis, we have developed a new high-throughput method for α-cellulose extraction, which is the rate-limiting step in such an endeavor. Although an entire family of methods has been developed and perform well, their throughput in a typical research lab setting is limited to 16-75 samples per week with intensive labor input. The resin exclusion step in conifersis is particularly time-consuming. We have combined the recent advances of α-cellulose extraction in plant ecology and wood science, including a high-throughput extraction device developed in the Potsdam Dendro Lab and a simple chemical-based resin exclusion method. By transferring the entire extraction process to a multiport-based system allows throughputs of up to several hundred samples in two weeks, while minimizing labor requirements to 2-3 days per batch of samples.

  7. Stable isotope ratio (13C/12C) mass spectrometry to evaluate carbon sources and sinks: changes and trends during the decomposition of vegetal debris from eucalyptus clone plantations (NW Spain)

    NASA Astrophysics Data System (ADS)

    Fernandez, I.; Cabaneiro, A.

    2014-02-01

    Vegetal debris is known to participate in key soil processes such as the formation of soil organic matter (OM), also being a potential source of greenhouse gases to the atmosphere. However, its contribution to the isotopic composition of both the soil OM and the atmospheric carbon dioxide is not clear yet. Hence, the main objective of the present research is to understand the isotopic 13C changes and trends that take place during the successive biodegradative stages of decomposing soil organic inputs. By incubating bulk plant tissues for several months under laboratory controlled conditions, the kinetics of the CO2 releases and shifts in the 13C natural abundance of the solid residues were investigated using litter samples coming from forest plantations with a different clone (Anselmo: 1st clonal generation attained by morphological selection and Odiel: 2nd clonal generation genetically obtained) of Eucalyptus globulus Labill. developed over granitic or schistic bedrocks and located in northwestern Spain. Significant isotopic variations with time were observed, probably due to the isotopically heterogeneous composition of these complex substrates in conjunction with the initial selective consumption of more easily degradable 13C-differentiated compounds during the first stages of the biodegradation, while less available or recalcitrant litter components were decomposed at later stages of biodegradation, generating products that have their own specific isotopic signatures. These results, which significantly differ depending on the type of clone, suggest that caution must be exercised when interpreting carbon isotope studies (at natural abundance levels) since perturbations associated with the quality or chemical composition of the organic debris from different terrestrial ecosystems can have an important effect on the carbon stable isotope dynamics.

  8. The stable isotopic composition of Daphnia ephippia reflects changes in δ13C and δ18O values of food and water

    NASA Astrophysics Data System (ADS)

    Schilder, J.; Tellenbach, C.; Möst, M.; Spaak, P.; van Hardenbroek, M.; Wooller, M. J.; Heiri, O.

    2015-06-01

    The stable isotopic composition of fossil resting eggs (ephippia) of Daphnia spp. is being used to reconstruct past environmental conditions in lake ecosystems. However, the underlying assumption that the stable isotopic composition of the ephippia reflects the stable isotopic composition of the parent Daphnia, of their diet and of the environmental water have yet to be confirmed in a controlled experimental setting. We performed experiments with Daphnia pulicaria cultures, which included a control treatment conducted at 12 °C in filtered lake water and with a diet of fresh algae and three treatments in which we manipulated the stable carbon isotopic composition (δ13C value) of the algae, stable oxygen isotopic composition (δ18O value) of the water and the water temperature, respectively. The stable nitrogen isotopic composition (δ15N value) of the algae was similar for all treatments. At 12 °C, differences in algal δ13C values and in δ18O values of water were reflected in those of Daphnia. The differences between ephippia and Daphnia stable isotope ratios were similar in the different treatments (δ13C: +0.2 ± 0.4 ‰ (standard deviation); δ15N: -1.6 ± 0.4 ‰; δ18O: -0.9 ± 0.4 ‰), indicating that changes in dietary δ13C values and in δ18O values of water are passed on to these fossilizing structures. A higher water temperature (20 °C) resulted in lower δ13C values in Daphnia and ephippia than in the other treatments with the same food source and in a minor change in the difference between δ13C values of ephippia and Daphnia (to -1.3 ± 0.3 ‰). This may have been due to microbial processes or increased algal respiration rates in the experimental containers, which may not affect Daphnia in natural environments. There was no significant difference in the offset between δ18O and δ15N values of ephippia and Daphnia between the 12 and 20 °C treatments, but the δ18O values of Daphnia and ephippia were on average 1.2 ‰ lower at 20 °C than at

  9. Amino acid delta13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry: paleodietary implications from intra-individual comparisons.

    PubMed

    Raghavan, Maanasa; McCullagh, James S O; Lynnerup, Niels; Hedges, Robert E M

    2010-03-15

    We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (delta(13)C) of individual amino acids in hair proteins and bone collagen using the LC-IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound-specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context by the delta(13)C analysis of hair proteins and bone collagen recovered from six individuals from Uummannaq in Greenland. The analysis of hair and bone amino acids from the same individual, compared for the first time in this study, is of importance in palaeodietary reconstruction. If hair proteins can be used as a proxy for bone collagen at the amino acid level, this validates compound-specific isotope studies using hair as a model for palaeodietary reconstruction. Our results suggest that a small offset observed in the bulk delta(13)C values of the hair and bone samples may be attributed to two factors: (i) amino acid compositional differences between hair and bone proteins, and (ii) differential turnover rates of the tissues and the amino acid pools contributing to their synthesis. This application proposes that hair may be a useful complementary or alternative source of compound-specific paleodietary information.

  10. Stable isotopes (δ 18O and δ 13C), trace and minor element compositions of Recent scleractinians and Last Glacial bivalves at the Santa Maria di Leuca deep-water coral province, Ionian Sea

    NASA Astrophysics Data System (ADS)

    Correa, Matthias López; Montagna, Paolo; Vendrell-Simón, Begoña; McCulloch, Malcolm; Taviani, Marco

    2010-03-01

    ' vital effect. The intercept of the δ 13C/δ 18O correlation line with the δ 13C DIC-composition permits recognition of δ 18O equilibrium values of aragonite and thus reconstruction of water temperatures despite strong disequilibrium precipitation. Since the environmental parameters ( T, S and δ 18O sw) are stable, the entire isotopic signal of the coral must be driven by biological fractionation and might reflect growth speed variations, potentially related to pH variations and changes in the saturation state of the calcifying fluid or seasonally varying nutrient availability. Laser ablation tracks show a trace element composition dependent to microstructural zones (fibrous aragonite vs. centres of calcification). The parabolic relation of the classical temperature proxies Mg/Ca and U/Ca point to trace element vital effects, rendering them unreliable in L. pertusa. The P/Ca ratio shows similar values as Desmophyllum dianthus, for which a linear dependence with seawater phosphate (DIP) has been previously demonstrated. Consequently L. pertusa might be an additional nutrient recorder at bathyal depths. From the same site we also analysed the stable isotopic composition of the Last Glacial pectinid bivalve Pseudamussium peslutrae, which has been radiocarbon-dated (AMS- 14C) at 26.3 ka 14C yr BP. The isotope values of the shell calcite document a strongly differing glacial temperature-salinity regime preceding the Holocene coral growth above a prominent hiatus.

  11. Regional patterns of δ13C and δ15N stable isotopes of size-fractionated zooplankton in the western tropical North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Li, Chaolun; Guilini, Katja; Wang, Xiaocheng; Wang, Yanqing

    2017-02-01

    Zooplankton play a prominent role in the biogeochemical cycles of marine ecosystems. Little is known about the trophodynamics of zooplankton in response to geographic patterns in isotopic baselines and physical processes in the western tropical North Pacific. In this study, stable isotope ratios of five size fractions of zooplankton (100 to >2000 μm) from different current regions in the western tropical North Pacific Ocean were analyzed. Both δ13C and δ15N isotopic values increased with zooplankton size class. The largest zooplankton group (>2000 μm), with a diverse composition, showed relatively higher stable isotope signatures, covering a wider range. Regional variations in the zooplankton stable isotope signatures were similar across all size classes, with generally higher values in the North Equatorial Counter Current (NECC) and the North Equatorial Current (NEC) and lower values in the Subtropical Counter Current (STCC). These regional patterns of zooplankton isotope signatures were consistent with the variation of oceanographic features (temperature, salinity, nutrients, chlorophyll a) and were also related to the isotopic baselines of particulate organic matter (POM) in the different current regions. Moreover, the nitrogen-fixing cyanobacteria Trichodesmium spp. may be the main contributor to low δ15N values in the STCC. The results of this study demonstrate the influence of physical processes on the stable isotopic signatures of zooplankton. This baseline information is crucial for future food web studies in the western tropical North Pacific Ocean.

  12. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  13. Can tree-ring isotopes (δ18O and δ13C) improve our understanding of hydroclimate variability in the Columbia River Basin?

    NASA Astrophysics Data System (ADS)

    Csank, A. Z.; Wise, E.; McAfee, S. A.

    2015-12-01

    The trajectory of incoming storms from the Pacific Ocean has a strong impact on hydroclimate in the Pacific Northwest. Shifts between zonal and meridional flow are a key influence on drought and pluvial regimes in both the PNW and the western United States as a whole. Circulation-dependent variability in the isotopic composition of precipitation can be recorded and potentially reconstructed using δ18O records derived from tree-rings. Here we present isotopic records of δ18O and δ13C from ponderosa pine (Pinus ponderosa) for the period 1950-2013 from six sites located in the lee of the Cascades in eastern Washington. Because of the orientation of the Cascades, zonal flow will result in an intensified rain shadow whereas meridional flow allows moisture to penetrate at a lower elevation leading to a lower rainout effect. This means zonal flow results in drier conditions in eastern Washington and the converse for meridional flow. We hypothesized that more depleted precipitation δ18O values will occur with periods of more zonal flow across the PNW and will be recorded by trees at our sites. Results show a strong relationship between our δ18O chronologies and winter precipitation (R = -0.50; p<0.001). δ13C chronologies from the same trees showed a relationship to prior fall/winter (pOct-pDec) precipitation (R = -0.46; p<0.005) suggesting a possible link to antecedent moisture conditions. With a focus on years with clear zonal and meridional flow regimes, we regressed the tree-ring δ18O anomaly against the instrumental record of total precipitation and compared the residual series to records of storm track for the period 1978-2008, and we found a detectable signal where the most depleted δ18O was generally associated with zonal flow and the most enriched δ18O with meridional flow. However, there are still some years where the relationship is unclear. Further work is aimed at understanding these anomalous years and extending our record beyond the instrumental

  14. Combination of the (87)Sr/(86)Sr ratio and light stable isotopic values (δ(13)C, δ(15)N and δD) for identifying the geographical origin of winter wheat in China.

    PubMed

    Liu, Hongyan; Wei, Yimin; Lu, Hai; Wei, Shuai; Jiang, Tao; Zhang, Yingquan; Guo, Boli

    2016-12-01

    This study aims to investigate whether isotopic signatures can be used to develop reliable fingerprints for discriminating the geographical origin of Chinese winter wheat, and to evaluate the discrimination effects of δ(13)C, δ(15)N and δD, alone or with (87)Sr/(86)Sr. In this study, the values of δ(13)C, δ(15)N and δD, and the (87)Sr/(86)Sr ratios of wheat and provenance soils from three regions were determined. Significant differences were found in all parameters of wheat and (87)Sr/(86)Sr in soil extract (reflecting the bioavailable fraction of soil) among different regions. A significantly positive correlation was observed between the (87)Sr/(86)Sr ratios of wheat and soil extracts. An overall correct classification rate of 77.8% was obtained for discriminating wheat from three regions based on light stable isotopes (δ(13)C, δ(15)N, and δD). The correct classification rate of 98.1% could be obtained with the combination of the (87)Sr/(86)Sr ratio and the light stable isotopic values.

  15. Provenancing Archaeological Wool Textiles from Medieval Northern Europe by Light Stable Isotope Analysis (δ13C, δ15N, δ2H)

    PubMed Central

    von Holstein, Isabella C. C.; Walton Rogers, Penelope; Craig, Oliver E.; Penkman, Kirsty E. H.; Newton, Jason; Collins, Matthew J.

    2016-01-01

    We investigate the origin of archaeological wool textiles preserved by anoxic waterlogging from seven medieval archaeological deposits in north-western Europe (c. 700–1600 AD), using geospatial patterning in carbon (δ13C), nitrogen (δ15N) and non-exchangeable hydrogen (δ2H) composition of modern and ancient sheep proteins. δ13C, δ15N and δ2H values from archaeological wool keratin (n = 83) and bone collagen (n = 59) from four sites were interpreted with reference to the composition of modern sheep wool from the same regions. The isotopic composition of wool and bone collagen samples clustered strongly by settlement; inter-regional relationships were largely parallel in modern and ancient samples, though landscape change was also significant. Degradation in archaeological wool samples, examined by elemental and amino acid composition, was greater in samples from Iceland (Reykholt) than in samples from north-east England (York, Newcastle) or northern Germany (Hessens). A nominal assignment approach was used to classify textiles into local/non-local at each site, based on maximal estimates of isotopic variability in modern sheep wool. Light element stable isotope analysis provided new insights into the origins of wool textiles, and demonstrates that isotopic provenancing of keratin preserved in anoxic waterlogged contexts is feasible. We also demonstrate the utility of δ2H analysis to understand the location of origin of archaeological protein samples. PMID:27764106

  16. A gas chromatography/combustion/isotope ratio mass spectrometry system for high-precision delta13C measurements of atmospheric methane extracted from ice core samples.

    PubMed

    Behrens, Melanie; Schmitt, Jochen; Richter, Klaus-Uwe; Bock, Michael; Richter, Ulrike C; Levin, Ingeborg; Fischer, Hubertus

    2008-10-01

    Past atmospheric composition can be reconstructed by the analysis of air enclosures in polar ice cores which archive ancient air in decadal to centennial resolution. Due to the different carbon isotopic signatures of different methane sources high-precision measurements of delta13CH4 in ice cores provide clues about the global methane cycle in the past. We developed a highly automated (continuous-flow) gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) technique for ice core samples of approximately 200 g. The methane is melt-extracted using a purge-and-trap method, then separated from the main air constituents, combusted and measured as CO2 by a conventional isotope ratio mass spectrometer. One CO2 working standard, one CH4 and two air reference gases are used to identify potential sources of isotope fractionation within the entire sample preparation process and to enhance the stability, reproducibility and accuracy of the measurement. After correction for gravitational fractionation, pre-industrial air samples from Greenland ice (1831 +/- 40 years) show a delta13C(VPDB) of -49.54 +/- 0.13 per thousand and Antarctic samples (1530 +/- 25 years) show a delta13C(VPDB) of -48.00 +/- 0.12 per thousand in good agreement with published data.

  17. Provenancing Archaeological Wool Textiles from Medieval Northern Europe by Light Stable Isotope Analysis (δ13C, δ15N, δ2H).

    PubMed

    von Holstein, Isabella C C; Walton Rogers, Penelope; Craig, Oliver E; Penkman, Kirsty E H; Newton, Jason; Collins, Matthew J

    2016-01-01

    We investigate the origin of archaeological wool textiles preserved by anoxic waterlogging from seven medieval archaeological deposits in north-western Europe (c. 700-1600 AD), using geospatial patterning in carbon (δ13C), nitrogen (δ15N) and non-exchangeable hydrogen (δ2H) composition of modern and ancient sheep proteins. δ13C, δ15N and δ2H values from archaeological wool keratin (n = 83) and bone collagen (n = 59) from four sites were interpreted with reference to the composition of modern sheep wool from the same regions. The isotopic composition of wool and bone collagen samples clustered strongly by settlement; inter-regional relationships were largely parallel in modern and ancient samples, though landscape change was also significant. Degradation in archaeological wool samples, examined by elemental and amino acid composition, was greater in samples from Iceland (Reykholt) than in samples from north-east England (York, Newcastle) or northern Germany (Hessens). A nominal assignment approach was used to classify textiles into local/non-local at each site, based on maximal estimates of isotopic variability in modern sheep wool. Light element stable isotope analysis provided new insights into the origins of wool textiles, and demonstrates that isotopic provenancing of keratin preserved in anoxic waterlogged contexts is feasible. We also demonstrate the utility of δ2H analysis to understand the location of origin of archaeological protein samples.

  18. The suitability of the dual isotope approach (δ13C and δ18O) in tree ring studies

    NASA Astrophysics Data System (ADS)

    Siegwolf, Rolf; Saurer, Matthias

    2016-04-01

    The use of stable isotopes, complementary to tree ring width data in tree ring research has proven to be a powerful tool in studying the impact of environmental parameters on tree physiology and growth. These three proxies are thus instrumental for climate reconstruction and improve the understanding of underlying causes of growth changes. In various cases, however, their use suggests non-plausible interpretations. Often the use of one isotope alone does not allow the detection of such "erroneous isotope responses". A careful analysis of these deviating results shows that either the validity of the carbon isotope discrimination concept is no longer true (Farquhar et al. 1982) or the assumptions for the leaf water enrichment model (Cernusak et al., 2003) are violated and thus both fractionation models are not applicable. In this presentation we discuss such cases when the known fractionation concepts fail and do not allow a correct interpretation of the isotope data. With the help of the dual isotope approach (Scheidegger et al.; 2000) it is demonstrated, how to detect and uncover the causes for such anomalous isotope data. The fractionation concepts and their combinations before the background of CO2 and H2O gas exchange are briefly explained and the specific use of the dual isotope approach for tree ring data analyses and interpretations are demonstrated. References: Cernusak, L. A., Arthur, D. J., Pate, J. S. and Farquhar, G. D.: Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in Eucalyptus globules, Plant Physiol., 131, 1544-1554, 2003. Farquhar, G. D., O'Leary, M. H. and Berry, J. A.: On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves, Aust. J. Plant Physiol., 9, 121-137, 1982. Scheidegger, Y., Saurer, M., Bahn, M. and Siegwolf, R.: Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: A conceptual model

  19. Isotopic discrimination during litter decomposition and delta13C and delta15N soil profiles in a young artificial stand and in an old floodplain forest.

    PubMed

    Gioacchini, Paola; Masia, Andrea; Canaccini, Francesca; Boldreghini, Pietro; Tonon, Giustino

    2006-06-01

    In the present study, rates of litter decomposition and microbial biomass nitrogen were monitored over an 8-month period in a young broadleaf plantation (18 y) and in an old floodplain forest. Moreover, delta13C and delta15N temporal variations within soil profiles were evaluated at both sites. Rates of litter decomposition were higher in spring and autumn than in summer, in both forests. At the end of the observation period the percentage of original litter remaining was not statistically different between the young and the old forest and accounted for 60-70% of the original amount. Microbial biomass nitrogen in the remaining litter and the percentage of litter mass lost during decomposition were positively correlated. The difference in litter quality affected the decomposition rate and also the changes in carbon isotopic composition during the decomposition process. In contrast, 15N isotopic signatures showed a similar trend in the litter of the two forests irrespective of the litter quality. Although delta13Csoil and delta15Nsoil showed considerable temporal variation they increased with depth in the soils of both sites but their seasonal changes did not reflect those of the decomposing litter. Within the same soil horizon, both delta13C and delta15N showed similar seasonal trends in the soils of the two forests, suggesting the involvement of environmental factors acting at regional level, such as soil temperature and rainfall variations, in regulating seasonal delta13C and delta15N soil variations.

  20. High-resolution direct infusion-based mass spectrometry in combination with whole 13C metabolome isotope labeling allows unambiguous assignment of chemical sum formulas.

    PubMed

    Giavalisco, Patrick; Hummel, Jan; Lisec, Jan; Inostroza, Alvaro Cuadros; Catchpole, Gareth; Willmitzer, Lothar

    2008-12-15

    A new strategy for direct infusion-based metabolite analysis employing a combination of high-resolution mass spectrometry and (13)C-isotope labeling of entire metabolomes is described. Differentially isotope labeled metabolite extracts from otherwise identically grown reference plants were prepared and infused into a Fourier transform ion cyclotron resonance mass spectrometer. The derived accurate mass lists from each extract were searched, using an in-house-developed database search tool, against a number of comprehensive metabolite databases. Comparison of the retrieved chemical formulas from both, the (12)C and (13)C samples, leads to two major advantages compared to nonisotope-based metabolite fingerprinting: first, removal of background contaminations from the result list, due to the (12)C/(13)C peak pairing principle and therefore positive identification of compounds of true biological origin; second, elimination of ambiguity in chemical formula assignment due to the same principle, leading to the clear association of one measured mass to only one chemical formula. Applying this combination of strategies to metabolite extracts of the model plant Arabidopsis thaliana therefore resulted in the reproducible identification of more than 1000 unambiguous chemical sum formulas of biological origin of which more than 80% have not been associated to Arabidopsis before.

  1. Isotopically-selective two-photon ionization of 12C- and 13C-benzene and hexadeuterobenzene in a time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    de La Cruz, A.; Ortiz, M.; Cabrera, J. A.; Campos, J.

    1994-04-01

    In this work the 610 band spectra for 12C6H6, 12C6D6, 13C12C5H6 and 13C12C5D6 isotopically-substituted benzenes are reported. Spectra of deuterated species are given for the first time. These molecular spectra can be employed to test the technical performances of REMPI-TOFMS systems. The experimental method was laser-induced two-photon ionization of molecules cooled in a He supersonic beam followed by time-of-flight mass spectrometry. A splitting of the 610 band appears when a 13C atom is present in the benzene-ring, favoring the isotope selectivity. In the present experiment a complete mass discrimination has been accomplished by using appropriate electronic circuits. A proportional counter has been used to obtain the corresponding spectra of the molecules at 300 K. The device is very useful to tune the laser wavelength to resonance in this kind of mass spectrometry experiment.

  2. (13)C/(12)C isotope ratios of organic acids, glucose and fructose determined by HPLC-co-IRMS for lemon juices authenticity.

    PubMed

    Guyon, Francois; Auberger, Pauline; Gaillard, Laetita; Loublanches, Caroline; Viateau, Maryse; Sabathié, Nathalie; Salagoïty, Marie-Hélène; Médina, Bernard

    2014-03-01

    High performance liquid chromatography linked to isotope ratio mass spectrometry via an interface allowing the chemical oxidation of organic matter (HPLC-co-IRMS) was used to simultaneously determine carbon 13 isotope ratio (δ(13)C) of organic acids, glucose and fructose in lime and lemon juices. Because of the significant difference between organic acids and sugars concentrations, the experimental protocol was optimised by applying a "current jump" to the IRMS device. The filament current is increased of 300μA during elution in order to enhance IRMS sensitivity. Then, analysis were performed on 35 lemon and lime fruits from various geographical origins and squeezed in the laboratory. An overall average δ(13)C values of -25.40±1.62‰, -23.83±1.82‰ and -25.67±1.72‰ is found for organic acids mixture mainly made up of citric acid, glucose and fructose, respectively. These authentic samples allowed the definition of a confidence domain to which have been confronted 30 commercial juices (24 "pure juices" and 6 coming from concentrate). Among these 30 samples, 10 present δ(13)C values outside the defined range revealing an added "C4" type organic acids or sugars, addition not specified on the label that is not in agreement with EU regulation.

  3. Helium isotopes in ocelandic geothermal systems: I. [sup 3]He, gas chemistry, and [sup 13]C relations

    SciTech Connect

    Poreda, R.J.; Craig, H.; Welhan, J.A. ); Arnorsson, S. )

    1992-12-01

    Gas samples from seventeen high-temperature and twenty-two low-temperature geothermal systems have been analyzed for chemistry and [sup 3]He/[sup 4]He ratios. Within the Neo-Volcanic Zone the [sup 3]He/[sup 4]He ratios show a consistent regional pattern: 14-19 times the atmospheric ratio (R[sub A]) in the southwest, 8-11 R[sub A] in the north, and 17-26 R[sub A] in central Iceland. Outside of the rift zones a mantle helium component also dominates with the highest [sup 3]He/[sup 4]He ratios found in waters circulating through 9-My-old crust in Northwest Iceland (up to 29 R[sub A]). The minimum Icelandic [sup 3]He/[sup 4]He ratio (excluding a methane seep east of the rift) is 8.5 R[sub A] at Kverkfjoll, in central Iceland at the southern end of the narrow Northern Rift Zone; throughout the NRZ the ratios vary only from 8.5 to 10.7 R[sub A]. The Kverkfjoll ratio is precisely the mean MORB ratio: (8 [+-] 1)R[sub A] R[sub A]. Thus, the mantle helium emerging at Iceland is a simple mixture of two components: MORB He (8 R[sub A]) and deep-mantle plume He with R/R[sub A] > 29. High-temperature systems have CO[sub 2]/[sup 3]He ratios of 10[sup 9] to 10[sup 10] that encompass the range found in MORB (1-3 [times] 10[sup 9]). However, the CO[sub 2]/[sup 3]He values have been subjected to postmagmatic effects that alter and obscure the original magmatic CO[sub 2]/[sup 3]He ratios. [delta]([sup 13]C) in the fluid-phase CO[sub 2] is well defined at -3.8[per thousand] in the high-CO[sub 2] fluids (up to 1 mol/kg fluid), very similar to MORB values. CH[sub 4]/[sup 3]He ratios vary widely, from 3 [times] 10[sup 4] to 10[sup 8]. Most high-temperature systems from southwestern and northern Iceland have CH[sub 4]/[sup 3]He ratios less than 10[sup 6], while those from central Iceland have consistently higher ratios of the order of 10[sup 7]. Local conditions and possible proximity to an organic source of methane can have a strong effect on this ratio.

  4. Effects of fasting on serial measurements of hyperpolarized [1-(13) C]pyruvate metabolism in tumors.

    PubMed

    Serrao, Eva M; Rodrigues, Tiago B; Gallagher, Ferdia A; Kettunen, Mikko I; Kennedy, Brett W C; Vowler, Sarah L; Burling, Keith A; Brindle, Kevin M

    2016-08-01

    Imaging of the metabolism of hyperpolarized [1-(13) C]pyruvate has shown considerable promise in preclinical studies in oncology, particularly for the assessment of early treatment response. The repeatability of measurements of (13) C label exchange between pyruvate and lactate was determined in a murine lymphoma model in fasted and non-fasted animals. The fasted state showed lower intra-individual variability, although the [1-(13) C]lactate/[1-(13) C]pyruvate signal ratio was significantly greater in fasted than in non-fasted mice, which may be explained by the higher tumor lactate concentrations in fasted animals. These results indicate that the fasted state may be preferable for the measurement of (13) C label exchange between pyruvate and lactate, as it reduces the variability and therefore should make it easier to detect the effects of therapy. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  5. Effects of fasting on serial measurements of hyperpolarized [1‐13C]pyruvate metabolism in tumors

    PubMed Central

    Serrao, Eva M.; Rodrigues, Tiago B.; Gallagher, Ferdia A.; Kettunen, Mikko I.; Kennedy, Brett W. C.; Vowler, Sarah L.; Burling, Keith A.

    2016-01-01

    Imaging of the metabolism of hyperpolarized [1‐13C]pyruvate has shown considerable promise in preclinical studies in oncology, particularly for the assessment of early treatment response. The repeatability of measurements of 13C label exchange between pyruvate and lactate was determined in a murine lymphoma model in fasted and non‐fasted animals. The fasted state showed lower intra‐individual variability, although the [1‐13C]lactate/[1‐13C]pyruvate signal ratio was significantly greater in fasted than in non‐fasted mice, which may be explained by the higher tumor lactate concentrations in fasted animals. These results indicate that the fasted state may be preferable for the measurement of 13C label exchange between pyruvate and lactate, as it reduces the variability and therefore should make it easier to detect the effects of therapy. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:27309986

  6. UV-laser microdissection system - A novel approach for the preparation of high-resolution stable isotope records (δ13C/δ18O) from tree rings

    NASA Astrophysics Data System (ADS)

    Schollaen, Karina; Helle, Gerhard

    2013-04-01

    Intra-annual stable isotope13C and δ18O) studies of tree rings at various incremental resolutions have been attempting to extract valuable seasonal climatic and environmental information or assessing plant ecophysiological processes. For preparing high-resolution isotope samples normally wood segments or cores are mechanically divided in radial direction or cut in tangential direction. After mechanical dissection, wood samples are ground to a fine powder and either cellulose is extracted or bulk wood samples are analyzed. Here, we present a novel approach for the preparation of high-resolution stable isotope records from tree rings using an UV-laser microdissection system. Firstly, tree-ring cellulose is directly extracted from wholewood cross-sections largely leaving the wood anatomical structure intact and saving time as compared to the classical procedure. Secondly, micro-samples from cellulose cross-sections are dissected with an UV-Laser dissection microscope. Tissues of interest from cellulose cross-sections are identified and marked precisely with a screen-pen and dissected via an UV-laser beam. Dissected cellulose segments were automatically collected in capsules and are prepared for stable isotope13C and δ18O) analysis. The new techniques facilitate inter- and intra-annual isotope analysis on tree-ring and open various possibilities for comparisons with wood anatomy in plant eco-physiological studies. We describe the design and the handling of this novel methodology and discuss advantages and constraints given by the example of intra-annual oxygen isotope analysis on tropical trees.

  7. The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids

    USGS Publications Warehouse

    Hatcher, P.G.; Wilson, M.A.

    1991-01-01

    Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.

  8. Effect of light and brine shrimp on skeletal δ 13C in the Hawaiian coral Porites compressa: a tank experiment

    NASA Astrophysics Data System (ADS)

    Grottoli, Andréa G.

    2002-06-01

    Previous experimental fieldwork showed that coral skeletal δ 13C values decreased when solar intensity was reduced, and increased in the absence of zooplankton. However, actual seasonal changes in solar irradiance levels are typically less pronounced than those used in the previous experiment and the effect of increases in the consumption of zooplankton in the coral diet on skeletal δ 13C remains relatively unknown. In the present study, the effects of four different light and heterotrophy regimes on coral skeletal δ 13C values were measured. Porites compressa corals were grown in outdoor flow-through tanks under 112%, 100%, 75%, and 50% light conditions at the Hawaii Institute of Marine Biology, Hawaii. In addition, corals were fed either zero, low, medium, or high concentrations of brine shrimp. Decreases in light from 100% resulted in significant decreases in δ 13C that is most likely due to a corresponding decrease in photosynthesis. Increases in light to 112% also resulted in a decrease in δ 13C values. This latter response may be a consequence of photoinhibition. The overall curved response in δ 13C values was described by a significant quadratic function. Increases in brine shrimp concentrations resulted in increased skeletal δ 13C levels. This unexpected outcome appears to be attributable to enhanced nitrogen supply associated with the brine shrimp diet which led to increased zooxanthellae concentrations, increased photosynthesis rates, and thus increased δ 13C values. This result highlights the potential influence of nutrients from heterotrophically acquired carbon in maintaining the zooxanthellae-host symbiosis in balance. In addition, evidence is presented that suggests that coral skeletal growth and δ 13C are decoupled. These results increase our knowledge of how light and heterotrophy affects the δ 13C of coral skeletons.

  9. 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea.

    PubMed

    Glaubitz, Sabine; Lueders, Tillmann; Abraham, Wolf-Rainer; Jost, Günter; Jürgens, Klaus; Labrenz, Matthias

    2009-02-01

    Marine pelagic redoxclines are zones of high dark CO(2) fixation rates, which can correspond up to 30% of the surface primary production. However, despite this significant contribution to the pelagic carbon cycle, the identity of most chemolithoautotrophic organisms is still unknown. Therefore, the aim of this study was to directly link the dark CO(2) fixation capacity of a pelagic redoxcline in the central Baltic Sea (Landsort Deep) with the identity of the main chemolithoautotrophs involved. Our approach was based on the analysis of natural carbon isotope signatures in fatty acid methyl esters (FAMEs) and on measurements of CO(2) incorporation in (13)C-bicarbonate pulse experiments. The incorporation of (13)C into chemolithoautotrophic cells was investigated by rRNA-based stable isotope probing (RNA-SIP) and FAME analysis after incubation for 24 and 72 h under in situ conditions. Our results demonstrated that fatty acids indicative of Proteobacteria were significantly enriched in (13)C slightly below the chemocline. RNA-SIP analyses revealed that two different Gammaproteobacteria and three closely related Epsilonproteobacteria of the Sulfurimonas cluster were active dark CO(2)-fixing microorganisms, with a time-dependent community shift between these groups. Labelling of Archaea was not detectable, but after 72 h of incubation the (13)C-label had been transferred to a potentially bacterivorous ciliate related to Euplotes sp. Thus, RNA-SIP provided direct evidence for the contribution of chemolithoautotrophic production to the microbial food web in this marine pelagic redoxcline, emphasizing the importance of dark CO(2)-fixing Proteobacteria within this habitat.

  10. Synthesizing the Use of Carbon Isotope (14C and 13C) Approaches to Understand Rates and Pathways for Permafrost C Mobilization and Mineralization

    NASA Astrophysics Data System (ADS)

    Estop-Aragones, C.; Olefeldt, D.; Schuur, E.

    2015-12-01

    To better understand the permafrost carbon (C) feedback it is important to synthesize our current knowledge, and knowledge gaps, of how permafrost thaw can cause in situ mineralization or downstream mobilization of aged soil organic carbon (SOC) and the rate of this release. This potential loss of old SOC may occur via gaseous flux of CO2 and CH4 exchanged between soil and the atmosphere and via waterborne flux as DOC, POC (and their subsequent decomposition and release to the atmosphere). Carbon isotope (14C and 13C) approaches have been used to estimate both rates and pathways for permafrost C mobilization and mineralization. Radiocarbon (14C) has been used to estimate the contribution of aged C to overall respiration or waterborne C export. We aim to contrast results from radiocarbon studies, in order to assess differences between ecosystems (contrasting wet and dry ecosystems), thaw histories (active layer deepening or thermokarst landforms), greenhouse gas considered (CO2 and CH4) and seasons. We propose to also contrast methodologies used for assessing the contribution of aged C to overall C balance, and include studies using 13C data. Biological fractionation of 13C during both uptake and decomposition has been taken advantage of both in order to aid the interpretation of 14C data and on its own to assess sources and mineralization pathways. For example, 13C data has been used to differentiate between CH4 production pathways, and the relative contribution of anaerobic CO2 production to overall respiration. Overall, carbon isotope research is proving highly valuable for our understanding of permafrost C dynamics following thaw, and there is a current need to synthesize the available literature.

  11. Determination of methanogenic pathways through carbon isotope13C) analysis for the two-stage anaerobic digestion of high-solids substrates.

    PubMed

    Gehring, Tito; Klang, Johanna; Niedermayr, Andrea; Berzio, Stephan; Immenhauser, Adrian; Klocke, Michael; Wichern, Marc; Lübken, Manfred

    2015-04-07

    This study used carbon isotope (δ(13)C)-based calculations to quantify the specific methanogenic pathways in a two-stage experimental biogas plant composed of three thermophilic leach bed reactors (51-56 °C) followed by a mesophilic (36.5 °C) anaerobic filter. Despite the continuous dominance of the acetoclastic Methanosaeta in the anaerobic filter, the methane (CH4) fraction derived from carbon dioxide reduction (CO2), fmc, varied significantly over the investigation period of 200 days. At organic loading rates (OLRs) below 6.0 gCOD L(-1) d(-1), the average fmc value was 33%, whereas at higher OLRs, with a maximum level of 17.0 gCOD L(-1) d(-1), the fmc values reached 47%. The experiments allowed for a clear differentiation of the isotope fractionation related to the formation and consumption of acetate in both stages of the plant. Our data indicate constant carbon isotope fractionation for acetate formation at different OLRs within the thermophilic leach bed reactors as well as a negligible contribution of homoacetogenesis. These results present the first quantification of methanogenic pathway (fmc values) dynamics for a continually operated mesophilic bioreactor and highlight the enormous potential of δ(13)C analysis for a more comprehensive understanding of the anaerobic degradation processes in CH4-producing biogas plants.

  12. A mantle origin for Paleoarchean peridotitic diamonds from the Panda kimberlite, Slave Craton: Evidence from 13C-, 15N- and 33,34S-stable isotope systematics

    NASA Astrophysics Data System (ADS)

    Cartigny, Pierre; Farquhar, James; Thomassot, Emilie; Harris, Jeffrey W.; Wing, Bozwell; Masterson, Andy; McKeegan, Kevin; Stachel, Thomas

    2009-11-01

    In order to address diamond formation and origin in the lithospheric mantle underlying the Central Slave Craton, we report N- and C-stable isotopic compositions and N-contents and aggregation states for 85 diamonds of known paragenesis (73 peridotitic, 8 eclogitic and 4 from lower mantle) from the Panda kimberlite (Ekati Mine, Lac de Gras Area, Canada). For 12 peridotitic and two eclogitic sulfide inclusion-bearing diamonds from this sample set, we also report multiple-sulfur isotope ratios. The 73 peridotitic diamonds have a mean δ13C-value of - 5.2‰ and range from - 6.9 to - 3.0‰, with one extreme value at - 14.1‰. The associated δ15N-values range from - 17.0 to + 8.5‰ with a mean value of - 4.0‰. N-contents range from 0 to 1280 ppm. The 8 eclogitic diamonds have δ13C-values ranging from - 11.2 to - 4.4‰ with one extreme value at - 19.4‰. Their δ15N ranges from - 2.1 to + 7.9‰ and N-contents fall between 0 and 3452 ppm. Four diamonds with an inferred lower mantle origin are all Type II (i.e. nitrogen-free) and have a narrow range of δ13C values, between - 4.5 and - 3.5‰. The δ34S of the 14 analyzed peridotitic and eclogitic sulfide inclusions ranges from - 3.5 to +5.7‰. None of them provide evidence for anomalous δ33S-values; observed variations in δ33S are from +0.19 to - 0.33‰, i.e. within the 2 sigma uncertainties of mantle sulfur ( δ33S = 0‰). At Panda, the N contents and the δ13C of sulfide-bearing peridotitic diamonds show narrower ranges than silicate-bearing peridotitic diamonds. This evidence supports the earlier suggestion established from eclogitic diamonds from the Kaapvaal that sulfide-(±silicate) bearing diamonds sample a more restricted portion of sublithospheric mantle than silicate-(no sulfide) bearing diamonds. Our findings at Panda suggest that sulfide-bearing diamonds should be considered as a specific diamond population on a global-scale. Based on our study of δ34S, Δ 33S, δ15N and δ13C, we find no

  13. Pyrolysis compound specific isotopic analysis (δ13C and δD Py-CSIA) of soil organic matter size fractions under four vegetation covers.

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Almendros, Gonzalo; De la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    A chemical characterization of soil organic matter (SOM) under different ground cover from a Mediterranean climate (Doñana National Park, Andalusia, Spain) is approached using bulk δ15N, δ13C, δ18O and δD isotopic analysis (C/TC-IRMS) and δ13C and δD pyrolysis compound specific isotopic analysis (Py-CSIA: Py-GC-C/TC-IRMS). Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: <0.05 mm) were studied from each soil. A complete conventional analytical pyrolysis (Py-GC/MS) of these samples have been studied in detail (Jiménez-Morillo et al., 2015). Bulk isotopic analysis of stable light elements (δ15N, δ13C, δ18O and δD) revealed particular isotopic signatures showing differences related with the main vegetation cover and the different soil size fraction. All samples had a carbon isotopic signature between -26 and -29 ‰, which indicated that the organic matter in the two fractions of each soil sample derived from C3-type plants. The bulk δD isotopic signature in whole soil sample indicate a lower deuterium fractionation occurs in SOM under arboreal than under no-arboreal vegetation, this can be caused by the occurrence of a higher water evaporation rate under bush vegetation and/or to differences due to leaf morphology as previously described (Leaney et al., 1985). A δ15N vs. δ18O chart may provide some clues about N origin in the soil and particularly about the original source of nitrates (Kendall et al., 1996). In in all sample and size fractions our values are in the chart area corresponding to NO3 in precipitation, with lighter δ18O (c. 20 ‰) values compatible with fertilizers may be from adjacent crops. In addition we were able to assign δ13C and δD values for a number of

  14. Paleobiological Implications of the Isotopic Signatures ( 13C, 15N) of Fossil Mammal Collagen in Scladina Cave (Sclayn, Belgium)

    NASA Astrophysics Data System (ADS)

    Bocherens, Hervé; Billiou, Daniel; Patou-Mathis, Marylène; Bonjean, Dominique; Otte, Marcel; Mariotti, André

    1997-11-01

    An isotopic investigation of upper Pleistocene mammal bones and teeth from Scladina cave (Sclayn, Belgium) demonstrated the very good quality of collagen preservation. A preliminary screening of the samples used the amount of nitrogen in whole bone and dentine in order to estimate the preserved amount of collagen before starting the extraction process. The isotopic abundances of fossil specimens from still-extant species are consistent with their trophic position. Moreover, the 15N isotopic abundance is higher in dentine than in bone in bears and hyenas, a phenomenon already observed in modern specimens. These results demonstrate that the isotopic compositions of samples from Scladina cave can be interpreted in ecological terms. Mammoths exhibit a high 15N isotopic abundance relative to other herbivores, as was the case in Siberian and Alaskan samples. These results suggest distinctive dietary adaptations in herbivores living in the mammoth steppe. Cave bears are clearly isotopically different from coeval brown bears, suggesting an ecological separation between species, with a pure vegetarian diet for cave bear and an omnivorous diet for brown bear.

  15. Study of the diet effect on d13C of shell carbonate of the land snail Helix aspersa in experimental conditions

    NASA Astrophysics Data System (ADS)

    Metref, S.; Rousseau, D. D.; Bentaleb, I.; Labonne, M.; Vianey-Liaud, M.

    2003-04-01

    This study aims to demonstrate the influence of the metabolic CO2 derived from the diet and of the atmospheric CO2 on the shell carbonate d13C of the pulmonate snail Helix aspersa maxima raised under controlled conditions. Adult snails were analyzed and compared with three hatching and one-day young snails stemming from the same breeding. One day after, the two-days old individuals were raised during one month. Three groups of gastropods were fed with fresh lettuce (C3 plant, d13C = -27.49 ppt), three groups with corn (C4 plant, d13C = -11.7 ppt), and three groups ate both (C3 + C4). The difference between the mean d13C values of the adult snails on one hand and the hatched and one-day snails on the other hand indicates a depletion of 2.47 ‰. Therefore, the isotopic parents offspring signal is not preserved. The depleted ingested albumen by the snail embryo in the egg during the built of the shell could explain this depletion. The C3 diet experiment gave the expected isotopic composition difference between the diet (lettuce) and the shells (mean D13Cshell-Lettuce = 13.75 ppt +- 0.52). This result shows a clear diet effect on the isotopic composition of the snail shells. For the C4 experiment, the difference in carbon isotope composition between the corn and the shell (D13Cshell-corn) yielded a mean value of 4.89 ppt +- 0.87. The main result is that D13C is not constant and appears to depend on the type of ingested food. Several hypothesis can raise from this study to explain the different fractionations : a) The differences in quality of the two diets seem to have placed the animals in different growth states, b) Differences in turnover rate for C3 and C4 feeders. The groups regularly fed with mixed diet yielded d13C values, showing a preferential use of C3 food for the most values. The C3-C4 mixed dietary alternation probably led snails to use mainly the lettuce instead of the corn powder.

  16. Evaluation of on-line pyrolysis coupled to isotope ratio mass spectrometry for the determination of position-specific (13)C isotope composition of short chain n-alkanes (C6-C12).

    PubMed

    Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro

    2016-06-01

    We measured (13)C intramolecular isotopic composition of commercially available short-chain hydrocarbons (n-C6-n-C12) using (13)C-NMR. Results show that the main variation is between the terminal and the sub-terminal C-atom positions. Site-preference (difference in δ(13)C values between terminal and sub-terminal C-atom positions) among all the samples varies between -12.2‰ and +8.4‰. Comparison of these results with those obtained using on-line pyrolysis coupled with GC-C-IRMS show that the thermal cracking of hydrocarbons occurs with a good isotopic fidelity between terminal and sub-terminal C-atom positions of the starting material and the related pyrolysis products (methane and ethylene). On-line pyrolysis coupled with GC-C-IRMS can thus be used for tracing hydrocarbons biogeochemical processes.

  17. Biosynthesis, molecular structure, and domain architecture of potato suberin: a (13)C NMR study using isotopically labeled precursors.

    PubMed

    Yan, B; Stark, R E

    2000-08-01

    Although suberin in potato wound periderm is known to be a polyester containing long-chain fatty acids and phenolics embedded within the cell wall, many aspects of its molecular structure and polymer-polymer connectivities remain elusive. The present work combines biosynthetic incorporation of site-specifically (13)C-enriched acetates and phenylalanines with one- and two-dimensional solid-state (13)C NMR spectroscopic methods to monitor the developing suberin polymer. Exogenous acetate is found to be incorporated preferentially at the carboxyl end of the aliphatic carbon chains, suggesting addition during the later elongation steps of fatty acid synthesis. Carboxyl-labeled phenylalanine precursors provide evidence for the concurrent development of phenolic esters and of monolignols typical of lignin. Experiments with ring-labeled phenylalanine precursors demonstrate a predominance of sinapyl and guaiacyl structures among suberin's phenolic moieties. Finally, the analysis of spin-exchange (solid-state NOESY) NMR experiments in ring-labeled suberin indicates distances of no more than 0.5 nm between pairs of phenolic and oxymethine carbons, which are attributed to the aromatic-aliphatic polyester and the cell wall polysaccharide matrix, respectively. These results offer direct and detailed molecular information regarding the insoluble intermediates of suberin biosynthesis, indicate probable covalent linkages between moieties of its polyester and polysaccharide domains, and yield a clearer overall picture of this agriculturally important protective material.

  18. Identifying the African Wintering Grounds of Hybrid Flycatchers Using a Multi–Isotope (δ2H, δ13C, δ15N) Assignment Approach

    PubMed Central

    Van Wilgenburg, Steven L.; Hobson, Keith A.; Folmer, Eelke; Font, Laura; Klaassen, Marcel

    2014-01-01

    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher. PMID:24847717

  19. sup 18 O/ sup 16 O and sup 13 C/ sup 12 C in lower Paleozoic articulate brachiopods: Implications for the isotopic composition of seawater

    SciTech Connect

    Wadleigh, M.A. ); Veizer, J. Ruhr Univ., Bochum )

    1992-01-01

    Three hundred and eleven articulate brachiopods, with extensive geographic coverage, spanning the Cambrian to Silurian stratigraphic interval, were analyzed for oxygen and carbon isotopic composition. Cambrian samples have {delta}{sup 18}O {le} {minus}7{per thousand}, Ordovician samples {le} {minus}2.4{per thousand}, and Silurian samples {le} {minus}1.9{per thousand}, confirming the previously established trend towards lighter isotopic compositions with increasing age throughout the Lower Paleozoic. Forty-nine best preserved' Ordovician and Silurian samples were identified based on scanning electron microscopy and trace element analysis. They were found to bracket the isotopic compositions of over 85% of specimens from these stratigraphic intervals supporting widespread preservation of the isotopic signal. Some latest Ordovician and Lower Ludlovian samples associated with shale sequences are apparently enriched' in {sup 18}O. These are interpreted as an environmental phenomenon, perhaps related to water temperature and glaciation. A number of Silurian samples of varying genera and stratigraphic levels are highly enriched in {sup 13}C, up to +6{per thousand}. Some are shale related, but some are associated with carbonate-bearing basins. These are also thought to represent near-original' compositions, but a single environmental cause is unknown. The present data show that luminescence is not a decisive criterion for evaluating the degree of brachiopod preservation. Whole-shell values were isotopically similar to their nonluminescent portions for both oxygen and carbon.

  20. Paleocene to Early Eocene paleoceanography of the Middle East: The δ13C and δ18O isotopes from foraminiferal calcite

    NASA Astrophysics Data System (ADS)

    Charisi, Stella D.; Schmitz, Birger

    1998-02-01

    Paleocene to early Eocene benthic foraminiferal δ13C and δ18O records from southern Tethyan sections at Ben Gurion, Israel (paleodepth 500-700 m), and Gebel Aweina, Egypt (paleodepth 150-200 m), show generally similar trends but 1-3‰ more negative values than coeval deep-sea isotopic records. In both Tethyan sections a negative δ13C excursion of 2.5-3‰ marks the benthic extinction event in the latest Paleocene. For at least 1 m.y. after this event, δ13C values were 1.5-2‰ more negative on the shelf than at upper bathyal depths, reflecting a deepening of the oxygen minimum zone, possibly related to an increase or spatial shift in upwelling. Benthic δ18O records indicate a 2-4°C temperature gradient between the shelf and upper bathyal depths. Temperature-salinity reconstructions suggest that upwelling was a dominant mechanism for surface water formation in this part of the southern Tethys during the late Paleocene.

  1. Easy Extraction Method To Evaluate δ13C Vanillin by Liquid Chromatography-Isotopic Ratio Mass Spectrometry in Chocolate Bars and Chocolate Snack Foods.

    PubMed

    Bononi, Monica; Quaglia, Giancarlo; Tateo, Fernando

    2015-05-20

    An easy extraction method that permits the use of a liquid chromatography-isotopic ratio mass spectrometry (LC-IRMS) system to evaluate δ(13)C of vanillin in chocolate products and industrial flavorings is presented. The method applies the determination of stable isotopes of carbon to discriminate between natural vanillin from vanilla beans and vanillin from other sources (mixtures from beans, synthesis, or biotechnology). A series of 13 chocolate bars and chocolate snack foods available on the Italian market and 8 vanilla flavorings derived from industrial quality control processes were analyzed. Only 30% of products considered in this work that declared "vanilla" on the label showed data that permitted the declaration "vanilla" according to European Union (EU) Regulation 1334/2008. All samples not citing "vanilla" or "natural flavoring" on the label gave the correct declaration. The extraction method is presented with data useful for statistical evaluation.

  2. Spatially tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry

    SciTech Connect

    Moran, James J.; Doll, Charles G.; Bernstein, Hans C.; Renslow, Ryan S.; Cory, Alexandra B.; Hutchison, Janine R.; Lindemann, Stephen R.; Fredrickson, Jim K.

    2014-08-25

    This is a manuscript we would like to submit for publication in Environmental Microbiology Reports. This manuscript contains a description of a laser ablation isotope ratio mass spectrometry methodology developed at PNNL and applied to a microbial system at a PNNL project location – Hot Lake, Washington. I will submit a word document containing the entire manuscript with this Erica input request form.

  3. Biogeochemical Indicators in High- and Low-Arctic Marine and Terrestrial Avian Community Changes: Comparative Isotopic (13C, 15N, and 34S) Studies in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Causey, D.; Bargmann, N. A.; Burnham, K. K.; Burnham, J. L.; Padula, V. M.; Johnson, J. A.; Welker, J. M.

    2011-12-01

    Understanding the complex dynamics of environmental change in northern latitudes is of paramount importance today, given documented rapid shifts in sea ice, plant phenology, temperatures, deglaciation, and habitat fidelity. This knowledge is particularly critical for Arctic avian communities, which are integral components by which biological teleconnections are maintained between the mid and northern latitudes. Furthermore, Arctic birds are fundamental to Native subsistence lifestyles and a focus for conservation activities. Avian communities of marine and terrestrial Arctic environments represent a broad spectrum of trophic levels, from herbivores (eg., geese Chen spp.), planktivores (eg., auklets Aethia spp.), and insectivores (eg., passerines: Wheatears Oenanthe spp., Longspurs Calcarius spp.), to predators of marine invertebrates (eg., eiders Somateria spp.), nearshore and offshore fish (eg., cormorants Phalacrocorax spp, puffins Fratercula spp.), even other bird species (eg., gulls Larus spp., falcons Peregrinus spp.). This diversity of trophic interconnections is an integral factor in the dynamics of Arctic ecosystem ecology, and they are key indicators for the strength and trajectories of change. We are especially interested in their feeding ecology, using stable isotope-diet relations to examine historical diets and to predict future feeding ecology by this range of species. Since 2009, we have been studying the foodweb ecology using stable isotopes13C, δ15N, δ34S) of contemporaneous coastal and marine bird communities in High Arctic (Northwest Greenland) and Low Arctic (western Aleutian Islands, AK). We are quantifying the isotopic values of blood, organ tissues, and feathers, and have carried out comparisons between native and lipid-extracted samples. Although geographically distant, these communities comprise similar taxonomic and ecological congeners, including several species common to both (eg., Common Eider, Black-legged Kittiwake, Northern

  4. Carbon isotope effects associated with aceticlastic methanogenesis

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1994-01-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems.

  5. Influence of diet on growth, condition and reproductive capacity in Newfoundland and Labrador cod ( Gadus morhua): Insights from stable carbon isotopes ( δ13C)

    NASA Astrophysics Data System (ADS)

    Sherwood, Graham D.; Rideout, Rick M.; Fudge, Susan B.; Rose, George A.

    2007-11-01

    Cod populations in Newfoundland and Labrador waters have shown differing growth, condition and recruitment since near-universal declines in these properties during the cold period of the late 1980s and early 1990s. To assess the influence of variable prey communities on these parameters, we compared cod energetics and diet in populations off Labrador and the northeast and south coasts of Newfoundland. Many properties were highest in the southern group(s) and lowest in the northern group(s), including growth, somatic condition, liver index and age-at-maturity. Most differences could be explained by variations in diet, as measured by stomach contents and stable carbon isotopes ( δ13C). The diet of Labrador cod consisted almost entirely of northern shrimp ( Pandalus borealis), and these cod displayed the most benthic δ13C signatures. Northeast cod had a more varied diet that included capelin and other fish, but still had mostly benthic δ13C signatures, suggesting the importance of benthic prey like shrimp in this population. South coast cod exhibited the most varied diet, including capelin ( Mallotus villosus), zooplankton, crabs and other fish, and had the most pelagic δ13C signatures. Among and within populations, the benefits of a more pelagic diet in medium-sized (30-69 cm) cod included higher somatic condition, higher liver index (lipid stores) and greater spawning potential (decreased incidence of atresia). It is hypothesized that major rebuilding of Newfoundland and Labrador cod stocks will require a return to a system that supports mostly pelagic feeding (i.e. capelin) in cod.

  6. Strong anion exchange liquid chromatographic separation of protein amino acids for natural 13C-abundance determination by isotope ratio mass spectrometry.

    PubMed

    Abaye, Daniel A; Morrison, Douglas J; Preston, Tom

    2011-02-15

    Amino acids are the building blocks of proteins and the analysis of their (13)C abundances is greatly simplified by the use of liquid chromatography (LC) systems coupled with isotope ratio mass spectrometry (IRMS) compared with gas chromatography (GC)-based methods. To date, various cation exchange chromatography columns have been employed for amino acid separation. Here, we report strong anion exchange chromatography (SAX) coupled to IRMS with a Liquiface interface for amino acid δ(13)C determination. Mixtures of underivatised amino acids (0.1-0.5 mM) and hydrolysates of representative proteins (prawns and bovine serum albumin) were resolved by LC/IRMS using a SAX column and inorganic eluents. Background inorganic carbon content was minimised through careful preparation of alkaline reagents and use of a pre-injector on-line carbonate removal device. SAX chromatography completely resolved 11 of the 16 expected protein amino acids following acid hydrolysis in underivatised form. Basic and neutral amino acids were resolved with 35 mM NaOH in isocratic mode. Elution of the aromatic and acidic amino acids required a higher hydroxide concentration (180 mM) and a counterion (NO 3-, 5-25 mM). The total run time was 70 min. The average δ(13)C precision of baseline-resolved peaks was 0.75‰ (range 0.04 to 1.06‰). SAX is a viable alternative to cation chromatography, especially where analysis of basic amino acids is important. The technology shows promise for (13)C amino acid analysis in ecology, archaeology, forensic science, nutrition and protein metabolism.

  7. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in marine zooplankton.

    PubMed

    Pomerleau, Corinne; Stern, Gary A; Pućko, Monika; Foster, Karen L; Macdonald, Robie W; Fortier, Louis

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea.

  8. CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes

    NASA Astrophysics Data System (ADS)

    Mikaloff Fletcher, Sara E.; Tans, Pieter P.; Bruhwiler, Lori M.; Miller, John B.; Heimann, Martin

    2004-12-01

    A time-dependent inverse modeling approach that estimates the global magnitude of atmospheric methane sources from the observed spatiotemporal distribution of atmospheric CH4, 13C/12C isotopic ratios, and a priori estimates of the source strengths is presented. Relative to the a priori source estimates, the inverse model calls for increased CH4 flux from sources with strong spatial footprints in the tropics and Southern Hemisphere and decreases in sources in the Northern Hemisphere. The CH4 and 13C/12C isotopic ratio observations suggest an unusually high CH4 flux from swamps (˜200 ± 44 Tg CH4/yr) and biomass burning (88 ± 18 Tg CH4/yr) with relatively low estimates of emissions from bogs (˜20 ± 14 Tg CH4/yr), and landfills (35 ± 14 Tg CH4/yr). The model results support the hypothesis that the 1998 CH4 growth rate anomaly was caused in part by a large increase in CH4 production from wetlands, and indicate that wetland sources were about 40 Tg CH4/yr higher in 1998 than 1999.

  9. Interference effects between /sup 17/O states populated in the /sup 13/C(/sup 6/Li,d)/sup 17/O*. --> cap alpha. +/sup 13/C reaction

    SciTech Connect

    Cardella, G.; Cunsolo, A.; Foti, A.; Imme, G.; Pappalardo, G.; Raciti, G.; Rizzo, F.; Alamanos, N.; Berthier, B.; Saunier, N.

    1987-12-01

    An analysis of the /sup 13/C(/sup 6/Li,d..cap alpha..)/sup 13/C reaction in the collinear (theta/sub d/ = 0/sup 0/) and noncollinear (theta/sub d/ = 10/sup 0/,8/sup 0/) geometry is made for two peaks observed in the deuteron energy spectrum and corresponding to excitation energies of 16.1 and 13.6 MeV in the /sup 17/O nucleus. It is shown that the reaction proceeds via a direct alpha-transfer process which populates doublets of interfering /sup 17/O levels. Spins, weights, and parities of these levels are obtained by means of a least square procedure.

  10. Trophic ecology of the supralittoral rocky shore (Roscoff, France): A dual stable isotope13C, δ 15N) and experimental approach

    NASA Astrophysics Data System (ADS)

    Laurand, Sandrine; Riera, Pascal

    2006-07-01

    The present study investigates the trophic transfers on the upper littoral rocky shore (i.e. the supralittoral zone together with the upper midlittoral and adlittoral) of northern Brittany. The population mainly consists of four invertebrate species: the littorinids Littorina saxatilis and Melarhaphe neritoides, the isopod Ligia oceanica and the insect Petrobius maritimus. The utilisation of food sources available to these grazers was examined in a laboratory microcosm feeding experiment and a field study using stable isotopes13C, δ 15N). The results indicated that although Ligia oceanica preferentially occurs in the supralittoral zone, its trophic subsidies originate mostly from the adlittoral and lower intertidal zones. The stable isotope data also suggested that adlittoral terrestrial organic material may be the major food source of Petrobius maritimus. δ 15N of Littorina saxatilis indicated a highly variable diet consisting of supralittoral lichens, midlittoral macroalgae and other food sources (e.g. microalgae). Both feeding experiments and stable isotope data show that only Melarhaphe neritoides has a clearly identifiable diet based on a mixture of lichens, mostly Verrucaria maura and Caloplaca marina, as estimated by an isotopic mixing model. Hence, the food web of this intertidal zone appears largely based on trophic subsidies from other habitats (i.e. upper and lower intertidal zones).

  11. Chemical weathering and the role of sulfuric and nitric acids in carbonate weathering: Isotopes (13C, 15N, 34S, and 18O) and chemical constraints

    NASA Astrophysics Data System (ADS)

    Li, Cai; Ji, Hongbing

    2016-05-01

    Multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-) and water chemistry were used to evaluate weathering rates and associated CO2 consumption by carbonic acid and strong acids (H2SO4 and HNO3) in a typical karst watershed (Wujiang River, Southwest China). The dual sulfate isotopes indicate that sulfate is mainly derived from sulfide oxidation in coal stratum and sulfide-containing minerals, and dual nitrate isotopes indicate that nitrate is mainly derived from soil N and nitrification. The correlation between isotopic compositions and water chemistry suggests that sulfuric and nitric acids, in addition to carbonic acid, are involved in carbonate weathering. The silicate and carbonate weathering rates are 7.2 t km-2 yr-1 and 76 t km-2 yr-1, respectively. In comparison with carbonate weathering rates (43 t km-2 yr-1) by carbonic acid alone, the subsequent increase in rates indicates significant enhancement of weathering when combined with sulfuric and nitric acids. Therefore, the role of sulfuric and nitric acids in the rock weathering should be considered in the global carbon cycle.

  12. Effect of glyphosate on plant cell metabolism. 31P and 13C NMR studies.

    PubMed

    Gout, E; Bligny, R; Genix, P; Tissut, M; Douce, R

    1992-01-01

    The effect of glyphosate (N-phosphonomethyl glycine; the active ingredient of Roundup herbicide) on plant cells metabolism was analysed by 31P and 13C NMR using suspension-cultured sycamore (Acer pseudoplatanus L) cells. Cells were compressed in the NMR tube and perfused with an original arrangement enabling a tight control of the circulating nutrient medium. Addition of 1 mM glyphosate to the nutrient medium triggered the accumulation of shikimate (20-30 mumol g-1 cell wet weight within 50 h) and shikimate 3-phosphate (1-1.5 mumol g-1 cell wet weight within 50 h). From in vivo spectra it was demonstrated that these two compounds were accumulated in the cytoplasm where their concentrations reached potentially lethal levels. On the other hand, glyphosate present in the cytoplasmic compartment was extensively metabolized to yield aminomethylphosphonic acid which also accumulated in the cytoplasm. Finally, the results presented in this paper indicate that although the cell growth was stopped by glyphosate the cell respiration rates and the level of energy metabolism intermediates remained unchanged.

  13. 13C NMR study of halogen bonding of haloarenes: measurements of solvent effects and theoretical analysis.

    PubMed

    Glaser, Rainer; Chen, Naijun; Wu, Hong; Knotts, Nathan; Kaupp, Martin

    2004-04-07

    Solvent effects on the NMR spectra of symmetrical (X = F (1), X = Cl (2), X = Br (3), X = I (4), X = NO2 (5), X = CN (6)) and unsymmetrical (X = I, Y = MeO (7), Y = PhO (8)) para-disubstituted acetophenone azines X-C6H4-CMe=N-N=CMe-C6H4-Y and of models X-C6H4-CMe=N-Z (X = I, Z = H (9), Z = NH2 (10)), 4-iodoacetophenone (11), and iodobenzene (12) were measured in CDCl(3), DMSO, THF, pyridine, and benzene to address one intramolecular and one intermolecular issue. Solvent effects on the (13)C NMR spectra are generally small, and this finding firmly establishes that the azine bridge indeed functions as a "conjugation stopper," an important design concept in our polar materials research. Since intermolecular halogen bonding of haloarenes do occur in polar organic crystalline materials, the NMR solution data pose the question as to whether the absence of solvent shifts indicates the absence of strong halogen bonding in solution. This question was studied by the theoretical analysis of the DMSO complexes of iodoarenes 4, 9-12, and of iodoacetylene. DFT and MP2 computations show iodine bonding, and characteristic structural and electronic features are described. The nonrelativistic complexation shifts and the change in the spin-orbit induced heavy atom effect of iodine compensate each other, and iodine bonding thus has no apparent effect on Ci in the iodoarenes. For iodides, complexation by DMSO occurs and may or may not manifest itself in the NMR spectra. The absence of complexation shifts in the NMR spectra of halides does not exclude the occurrence of halogen bonding in solution.

  14. NMR 13C-isotopic enrichment experiments to study carbon-partitioning into organic solutes in the red alga Grateloupia doryphora.

    PubMed

    Simon-Colin, Christelle; Kervarec, Nelly; Pichon, Roger; Deslandes, Eric

    2004-01-01

    The red alga Grateloupia doryphora Montagne (Howe) (Cryptonemiales, Halymeniaceae) was used as a model to investigate the effects of changes in seawater salinity on the intracellular low-molecular-weight organic compounds. Carbon-partitioning into major organic solutes was followed by 13C nuclear magnetic resonance (NMR) spectroscopy on living algae incubated in NaH13CO3-enriched seawater, and by high resolution 1H and 13C NMR experiments performed on 13C-enriched algal extracts. NMR and high performance liquid chromatography (HPLC) analyses both demonstrated that floridoside level was the most affected by changes in salinity: it rose under the hypersaline treatment and decreased under hyposaline one. Moreover, at low salinity, the high labeling of floridoside (45.3% 13C-enrichment for C1) together with its low concentrations both provided evidence of great increase in the de novo biosynthesis and turnover rate. Our experiments also demonstrated a high incorporation of photosynthetic carbon into amino acids, especially glutamate, under hypoosmotic conditions. On the other hand, isethionic acid and N-methyl-methionine sulfoxide were only partly labeled, which indicates they do not directly derive from carbon photoassimilation. In algae exposed to high salinity, elevated concentrations of floridoside coupled to a low labeling (9.4%) were observed. These results suggest that hyperosmotic conditions stimulated floridoside biosynthesis from endogen storage products rather than from carbon assimilation through photosynthesis.

  15. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  16. Tracing source, mixing and uptaking processes of carbon in an epikarst spring-pond system in southeastern Guizhou of China by carbon isotopes (13C-14C)

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Chen, B.; Liu, Z.; Li, H. C.; Yang, R.

    2015-12-01

    δ13C and Δ14C of dissolved inorganic carbon (DIC), particulate organic carbon (POC) and aquatic plants from a karst spring and two spring-fed ponds in Laqiao, Maolan County, Guizhou Province in January, July and October of 2013 were measured to understand the roles of aquatic photosynthesis through DIC uptake in karst surface waters. The mean Δ14C and δ13C values of DIC for the spring pool, midstream and downstream ponds are -60.6±26.3‰ and -13.53±1.97‰, -62.8±62.9‰ and -11.72±2.72‰, and -54.2±56.5‰ and -9.40±2.03‰, respectively. Both Δ14C and δ13C show seasonal variations, with lower Δ14C values but heavier δ13C values in dry season and vice versa in summer rainy season. This observation indicates that (1) the main carbon source of the spring DIC is from limestone bedrock dissolution and soil CO2 with higher contribution in summer due to higher productivity; and (2) 13C and 14C have different behaviors during DIC uptake by aquatic plants and during CO2 exchange between DIC and the atmospheric CO2. Biological uptake of CO2 will not affect the Δ14C of DIC, but lead to δ13CDIC enrichment. CO2 exchange between DIC and the atmospheric CO2 should elevate both the Δ14C and δ13C of DIC. In Laqiao spring-pond system, it seems that the effect of biological uptake on the Δ14C and δ13C of DIC is much stronger than that of CO2 exchange with the atmosphere. The mean Δ14C values of POC from the spring pool, midstream and downstream ponds are -308.1 ±64.3‰, -164.4±84.4‰ and -195.1±108.5‰, respectively, indicating mixture of aquatic algae and detrital particle (clay and dust). More aquatic algae were formed in the stream ponds especially in the summer. SEM results of the POC samples support this conclusion. Furthermore, the Δ14C values of the submerged aquatic plants range from -200.0‰ to -51.3 ‰ and were similar to those of the DIC, indicating that the aquatic plants used DIC for photosynthesis. The Δ14C value of an emergent plant

  17. Spatial variation in the stable isotopes of 13C and 15N and trophic position of Leporinus friderici (Characiformes, Anostomidae) in Corumbá Reservoir, Brazil.

    PubMed

    Pereira, Alexandre L; Benedito, Evanilde; Sakuragui, Cássia M

    2007-03-01

    Stable isotopes of carbon (delta13C) and nitrogen (delta15N) were used to describe sources of energy and trophic position for adult Leporinus friderici in the area of the Corumbá Reservoir, Brazil. Samples were collected from April 1999 to March 2000. Spatial variations were not identified in the isotopic composition. The maximum and minimum contribution of C4 plants calculated integrating the variation of plants and fish were 47.7% and 2.4%, respectively. Among C3 plants, periphyton presented closer isotopic values to those observed for fishes, corresponding to an important carbon source. The proportion of ingested plant item is larger in rivers upstream from the reservoir (42.7%), which justifies the smaller trophic level among there. However, in the reservoir, the ingestion of fish was 81.4%, while ingested plants contributed with 18.6%. Downstream from the dam, participation of plant item was even smaller (14.4%). Although the trophic position calculated with diet data was proportional to the one calculated with delta15N values, the former elevated the trophic level of L. friderici in the food web, because estimated trophic positions were based on fish items belonging to the 2nd (a) and to the 3rd (b) trophic levels.

  18. Elemental formula annotation of polar and lipophilic metabolites using (13) C, (15) N and (34) S isotope labelling, in combination with high-resolution mass spectrometry.

    PubMed

    Giavalisco, Patrick; Li, Yan; Matthes, Annemarie; Eckhardt, Aenne; Hubberten, Hans-Michael; Hesse, Holger; Segu, Shruthi; Hummel, Jan; Köhl, Karin; Willmitzer, Lothar

    2011-10-01

    The unbiased and comprehensive analysis of metabolites in any organism presents a major challenge if proper peak annotation and unambiguous assignment of the biological origin of the peaks are required. Here we provide a comprehensive multi-isotope labelling-based strategy using fully labelled (13) C, (15) N and (34) S plant tissues, in combination with a fractionated metabolite extraction protocol. The extraction procedure allows for the simultaneous extraction of polar, semi-polar and hydrophobic metabolites, as well as for the extraction of proteins and starch. After labelling and extraction, the metabolites and lipids were analysed using a high-resolution mass spectrometer providing accurate MS and all-ion fragmentation data, providing an unambiguous readout for every detectable isotope-labelled peak. The isotope labelling assisted peak annotation process employed can be applied in either an automated database-dependent or a database-independent analysis of the plant polar metabolome and lipidome. As a proof of concept, the developed methods and technologies were applied and validated using Arabidopsis thaliana leaf and root extracts. Along with a large repository of assigned elemental compositions, which is provided, we show, using selected examples, the accuracy and reliability of the developed workflow.

  19. Carbon (δ13C) and Nitrogen (δ15N) Stable Isotope Signatures in Bat Fur Indicate Swarming Sites Have Catchment Areas for Bats from Different Summering Areas

    PubMed Central

    Segers, Jordi L.; Broders, Hugh G.

    2015-01-01

    Migratory patterns of bats are not well understood and traditional methods to study this, like capture-mark-recapture, may not provide enough detail unless there are many records. Stable isotope profiles of many animal species have been used to make inferences about migration. Each year Myotis lucifugus and M. septentrionalis migrate from summering roosts to swarming caves and mines in the fall, but the pattern of movement between them is not well understood. In this study, fur δ13C and δ15N values of 305 M. lucifugus and 200 M. septentrionalis were analyzed to make inferences about migration patterns between summering areas and swarming sites in Nova Scotia, Canada. We expected that there would be greater variability in δ13C and δ15N among individuals at swarming sites because it was believed that these sites are used by individuals originating from many summering areas. There was extensive overlap in the standard ellipse area, corrected for small sample sizes (SEAc), of bats at swarming sites and much less overlap in SEAc among groups sampled at summering areas. Meaningful inference could not be made on M. septentrionalis because their low variation in SEAc may have been the result of sampling only 3 summering areas. However, for M. lucifugus, swarming sites had larger SEAc than summering areas and predictive discriminant analysis assigned swarming bats to multiple summering areas, supporting the contention that swarming bats are mixed aggregations of bats from several summering areas. Together, these data support the contention that swarming sites have catchment areas for bats from multiple summering areas and it is likely that the catchment areas for swarming sites overlap. These data suggest that δ13C and δ15N profiling of bat fur offer some potential to make inferences about regional migration in bats. PMID:25923696

  20. Carbon (δ13C) and Nitrogen (δ15N) Stable Isotope Signatures in Bat Fur Indicate Swarming Sites Have Catchment Areas for Bats from Different Summering Areas.

    PubMed

    Segers, Jordi L; Broders, Hugh G

    2015-01-01

    Migratory patterns of bats are not well understood and traditional methods to study this, like capture-mark-recapture, may not provide enough detail unless there are many records. Stable isotope profiles of many animal species have been used to make inferences about migration. Each year Myotis lucifugus and M. septentrionalis migrate from summering roosts to swarming caves and mines in the fall, but the pattern of movement between them is not well understood. In this study, fur δ13C and δ15N values of 305 M. lucifugus and 200 M. septentrionalis were analyzed to make inferences about migration patterns between summering areas and swarming sites in Nova Scotia, Canada. We expected that there would be greater variability in δ13C and δ15N among individuals at swarming sites because it was believed that these sites are used by individuals originating from many summering areas. There was extensive overlap in the standard ellipse area, corrected for small sample sizes (SEAc), of bats at swarming sites and much less overlap in SEAc among groups sampled at summering areas. Meaningful inference could not be made on M. septentrionalis because their low variation in SEAc may have been the result of sampling only 3 summering areas. However, for M. lucifugus, swarming sites had larger SEAc than summering areas and predictive discriminant analysis assigned swarming bats to multiple summering areas, supporting the contention that swarming bats are mixed aggregations of bats from several summering areas. Together, these data support the contention that swarming sites have catchment areas for bats from multiple summering areas and it is likely that the catchment areas for swarming sites overlap. These data suggest that δ13C and δ15N profiling of bat fur offer some potential to make inferences about regional migration in bats.

  1. Submillimeter Observations of Titan: Global Measures of Stratospheric Temperature, CO, HCN, HC3N, and the Isotopic Ratios 12C/13C and 14N/15N

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark A.

    2004-11-01

    Interferometric observations of the atmosphere of Titan were performed with the Submillimeter Array on two nights in 2004 February to investigate the global average vertical distributions of several molecular species above the tropopause. Rotational transitions of CO, isomers of HCN, and HC3N were simultaneously recorded. The abundance of CO is determined to be 51+/-4 parts per million (ppm), constant with altitude. The vertical profile of HCN is dependent on the assumed temperature but generally increases from 30 parts per billion at the condensation altitude (~83 km) to 5 ppm at ~300 km. Furthermore, the central core of the HCN emission is strong and can be reproduced only if the upper stratospheric temperature increases with altitude. The isotopic ratios are determined to be 12C/13C=132+/-25 and 14N/15N=94+/-13 assuming the Coustenis & Bézard temperature profile. If the Lellouch temperature profile is assumed, the ratios decrease to 12C/13C=108+/-20 and 14N/15N=72+/-9. The vertical profile of HC3N is consistent with that derived by Marten et al.

  2. Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas--characterization by multivariate analysis.

    PubMed

    Foan, L; Leblond, S; Thöni, L; Raynaud, C; Santamaría, J M; Sebilo, M; Simon, V

    2014-01-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations and N, C stable isotope signatures were determined in mosses Hypnum cupressiforme Hedw. from 61 sites of 3 European regions: Île-de-France (France); Navarra (Spain); the Swiss Plateau and Basel area (Switzerland). Total PAH concentrations of 100-700 ng g(-1), as well as δ(13)C values of -32 to -29‰ and δ(15)N values of -11 to -3‰ were measured. Pearson correlation tests revealed opposite trends between high molecular weight PAH (4-6 aromatic rings) content and δ(13)C values. Partial Least Square regressions explained the very significant correlations (r > 0.91, p < 0.001) between high molecular weight PAH concentrations by local urban land use (<10 km) and environmental factors such as elevation and pluviometry. Finally, specific correlations between heavy metal and PAH concentrations were attributed to industrial emissions in Switzerland and road traffic emissions in Spain.

  3. Identification of biomass utilizing bacteria in a carbon-depleted glacier forefield soil by the use of 13C DNA stable isotope probing.

    PubMed

    Zumsteg, Anita; Schmutz, Stefan; Frey, Beat

    2013-06-01

    As Alpine glaciers are retreating rapidly, bare soils with low organic C and N contents are becoming exposed. Carbon availability is a key factor regulating microbial diversity and ecosystem functioning in these soils. The aim of this study was to investigate how bacterial activity, community structure and composition are influenced by organic carbon availability. Bare soils were supplied with (13)C-labelled fungal (Penicillium sp.) and green algal (Chlorella sp.) biomass and the CO2 evolution and its δ(13)C signature were monitored up to 60 days. These organisms have previously been isolated near the glacier terminus. DNA stable isotope probing followed by T-RFLP profiling and sequencing of 16S rRNA genes was employed to identify consumers able to assimilate carbon from these biomass amendments. Higher respiration and higher bacterial activity indicated a more efficient utilization of algal cells than fungal cells. Flavobacterium sp. predominantly incorporated fungal-derived C, whereas the algal-derived C was mainly incorporated by Acidobacteria and Proteobacteria. This study emphasizes the important role of both fungal and algal biomass in increasing the carbon pool in recently deglaciated bare soils, as only 20% of the added C was respired as CO2, and the rest, we presume, remained in the soil.

  4. Using (13)C isotopes to explore denitrification-dependent anaerobic methane oxidation in a paddy-peatland.

    PubMed

    Shi, Yao; Wang, Zhongqiang; He, Chunguang; Zhang, Xinyu; Sheng, Lianxi; Ren, Xiaodong

    2017-01-18

    Peatlands are organic-matter-rich but nitrogen-limited natural systems, the carbon/nitrogen (C/N) status of which are subject to increasing exposure from long-term nitrate (NO3(-)) fertilizer inputs and atmospheric nitrogen (N) deposits. To manage and protect these unique environments, an improved understanding of denitrification-dependent anaerobic oxidation of methane (DAMO) in peatlands is needed. In this study, we used stable isotope measurements and incubation with NO3(-) additions to facilitate an investigation and comparison of the potential DAMO rates in a paddy-peatland that has been influenced by N fertilizer over 40 years and an undisturbed peatland in northeast China. Monitoring of (13)CO2 production confimed DAMO did occur in both the paddy-peatland and the undisturbed peatland, the rates of which increased with NO3(-) additions, but decreased logarithmically with time. When NO3(-) was added, there were no significant differences between the CH4 oxidation in the paddy-peatland and peatland samples after 36 hours of incubation (97.08 vs. 143.69 nmol g(-1) dry peat) and the potential DAMO rate after incubation for 1 hour (92.53 vs. 69.99 nmol g(-1 )h(-1)). These results indicate that the occurrence of DAMO in peatlands might be controlled by the amount of NO3(-) applied and the depth to which it penetrates into the anoxic layer.

  5. Using 13C isotopes to explore denitrification-dependent anaerobic methane oxidation in a paddy-peatland

    NASA Astrophysics Data System (ADS)

    Shi, Yao; Wang, Zhongqiang; He, Chunguang; Zhang, Xinyu; Sheng, Lianxi; Ren, Xiaodong

    2017-01-01

    Peatlands are organic-matter-rich but nitrogen-limited natural systems, the carbon/nitrogen (C/N) status of which are subject to increasing exposure from long-term nitrate (NO3‑) fertilizer inputs and atmospheric nitrogen (N) deposits. To manage and protect these unique environments, an improved understanding of denitrification-dependent anaerobic oxidation of methane (DAMO) in peatlands is needed. In this study, we used stable isotope measurements and incubation with NO3‑ additions to facilitate an investigation and comparison of the potential DAMO rates in a paddy-peatland that has been influenced by N fertilizer over 40 years and an undisturbed peatland in northeast China. Monitoring of 13CO2 production confimed DAMO did occur in both the paddy-peatland and the undisturbed peatland, the rates of which increased with NO3‑ additions, but decreased logarithmically with time. When NO3‑ was added, there were no significant differences between the CH4 oxidation in the paddy-peatland and peatland samples after 36 hours of incubation (97.08 vs. 143.69 nmol g‑1 dry peat) and the potential DAMO rate after incubation for 1 hour (92.53 vs. 69.99 nmol g‑1 h‑1). These results indicate that the occurrence of DAMO in peatlands might be controlled by the amount of NO3‑ applied and the depth to which it penetrates into the anoxic layer.

  6. Using 13C isotopes to explore denitrification-dependent anaerobic methane oxidation in a paddy-peatland

    PubMed Central

    Shi, Yao; Wang, Zhongqiang; He, Chunguang; Zhang, Xinyu; Sheng, Lianxi; Ren, Xiaodong

    2017-01-01

    Peatlands are organic-matter-rich but nitrogen-limited natural systems, the carbon/nitrogen (C/N) status of which are subject to increasing exposure from long-term nitrate (NO3−) fertilizer inputs and atmospheric nitrogen (N) deposits. To manage and protect these unique environments, an improved understanding of denitrification-dependent anaerobic oxidation of methane (DAMO) in peatlands is needed. In this study, we used stable isotope measurements and incubation with NO3− additions to facilitate an investigation and comparison of the potential DAMO rates in a paddy-peatland that has been influenced by N fertilizer over 40 years and an undisturbed peatland in northeast China. Monitoring of 13CO2 production confimed DAMO did occur in both the paddy-peatland and the undisturbed peatland, the rates of which increased with NO3− additions, but decreased logarithmically with time. When NO3− was added, there were no significant differences between the CH4 oxidation in the paddy-peatland and peatland samples after 36 hours of incubation (97.08 vs. 143.69 nmol g−1 dry peat) and the potential DAMO rate after incubation for 1 hour (92.53 vs. 69.99 nmol g−1 h−1). These results indicate that the occurrence of DAMO in peatlands might be controlled by the amount of NO3− applied and the depth to which it penetrates into the anoxic layer. PMID:28098207

  7. Assessment of trace elements, POPs, (210)Po and stable isotopes ((15)N and (13)C) in a rare filter-feeding shark: The megamouth.

    PubMed

    Moura, Jailson Fulgencio de; Merico, Agostino; Montone, Rosalinda Carmela; Silva, Josilene; Seixas, Tércia Guedes; Godoy, José Marcus de Oliveira; Saint'Pierre, Tatiana Dillenburg; Hauser-Davis, Rachel Ann; Di Beneditto, Ana Paula Madeira; Reis, Estéfane Cardinot; Tavares, Davi Castro; Lemos, Leila Soledade; Siciliano, Salvatore

    2015-06-15

    With less than 60 records being reported worldwide, the megamouth (Megachasma pelagios) is today one of the least known shark species inhabiting our oceans. Therefore, information concerning the biology and ecology of this enigmatic organism is very scarce and limited to feeding behaviour and preferred habitat. The present work reports new data on the concentrations of trace elements, organic mercury, POPs and (210)Po in hepatic and muscular tissues of a specimen found stranded in the southeastern coast of Brazil. Additionally, we provide new evidence based on stable isotope analysis (δ(15)N and δ(13)C) confirming the preference for the pelagic habitat and the zooplanktivorous feeding behaviour of the megamouth. These results are consistent with the low concentrations of organic pollutant compounds and other elements measured in our samples.

  8. Incorporation of 13C labelled root-shoot residues in soil in the presence of Lumbricus terrestris: An isotopic and molecular approach

    NASA Astrophysics Data System (ADS)

    Vidal, Alix; Alexis, Marie; Nguyen Tu, Thanh Tu; Anquetil, Christelle; Vaury, Véronique; Derenne, Sylvie; Quenea, Katell

    2016-04-01

    Litter from plant biomass deposited on soil surface can either be mineralized; releasing CO2 to the atmosphere, or transferred into the soil as organic compounds. Both pathways depend on biotic factors such as litter characteristics and the of soil organism activity. During the last decades, many studies have focused on the origin of organic matter, with a particular attention to the fate of root and shoot litter. It is generally admitted that roots decompose at a slower rate than shoots, resulting in a higher carbon sequestration in soil for compounds originating from roots. Earthworms play a central role in litter decomposition and carbon cycling, ingesting both organic and mineral compounds which are mixed, complexed and dejected in the form of casts at the soil surface or along earthworm burrows. The simultaneous impact of earthworms and root-shoot on soil carbon cycling is still poorly understood. This study aimed at (1) defining the rate of incorporation of root and shoot litter with or without earthworms and (2) characterizing the molecular composition of soil organic matter upon litter decomposition, after one year of experimentation. A mesocosm experiment was set up to follow the incorporation of 13C labelled Ryegrass root and shoot litter in the soil, in the presence of anecic earthworms (Lumbricus terrestris). Soil samples were collected at 0-20 and 40-60 cm, as well as surface casts, at the beginning and after 1, 2, 4, 8, 24 and 54 weeks of experiment. Organic carbon content and δ13C values were determined for all the samples with Elemental Analysis - Isotope Ratio Mass Spectrometry. Lipid-free soil and cast samples after 54 weeks of incubation were analyzed with Pyrolysis-Gas Chromatography-Mass Spectrometry. Pyrolysis products were grouped into six classes: polysaccharides, lignin derived compounds, phenols, N-compounds, aliphatic compounds and sterols. Each pyrolysis product was quantified thanks to its peak area, relative to the total area of the

  9. Growth decline and divergent tree ring isotopic composition (δ(13) C and δ(18) O) contradict predictions of CO2 stimulation in high altitudinal forests.

    PubMed

    Gómez-Guerrero, Armando; Silva, Lucas C R; Barrera-Reyes, Miguel; Kishchuk, Barbara; Velázquez-Martínez, Alejandro; Martínez-Trinidad, Tomás; Plascencia-Escalante, Francisca Ofelia; Horwath, William R

    2013-06-01

    Human-induced changes in atmospheric composition are expected to affect primary productivity across terrestrial biomes. Recent changes in productivity have been observed in many forest ecosystems, but low-latitude upper tree line forests remain to be investigated. Here, we use dendrochronological methods and isotopic analysis to examine changes in productivity, and their physiological basis, in Abies religiosa (Ar) and Pinus hartwegii (Ph) trees growing in high-elevation forests of central Mexico. Six sites were selected across a longitudinal transect (Transverse Volcanic Axis), from the Pacific Ocean toward the Gulf of Mexico, where mature dominant trees were sampled at altitudes ranging from 3200 to 4000 m asl. A total of 60 Ar and 84 Ph trees were analyzed to describe changes in growth (annual-resolution) and isotopic composition (decadal-resolution) since the early 1900s. Our results show an initial widespread increase in basal area increment (BAI) during the first half of the past century. However, BAI has decreased significantly since the 1950s with accentuated decline after the 1980s in both species and across sites. We found a consistent reduction in atmosphere to wood (13) C discrimination, resulting from increasing water use efficiency (20-60%), coinciding with rising atmospheric CO2 . Changes in (13) C discrimination were not followed, however, by shifts in tree ring δ(18) O, indicating site- and species-specific differences in water source or uptake strategy. Our results indicate that CO2 stimulation has not been enough to counteract warming-induced drought stress, but other stressors, such as progressive nutrient limitation, could also have contributed to growth decline. Future studies should explore the distinct role of resource limitation (water vs. nutrients) in modulating the response of high-elevation ecosystems to atmospheric change.

  10. Multi-Isotopic (δ2H, δ13C, δ15N) Tracing of Molt Origin for Red-Winged Blackbirds Associated with Agro-Ecosystems

    PubMed Central

    Werner, Scott J.; Hobson, Keith A.; Van Wilgenburg, Steven L.; Fischer, Justin W.

    2016-01-01

    We analyzed stable-hydrogen (δ2H), carbon (δ13C) and nitrogen (δ 15N) isotope ratios in feathers to better understand the molt origin and food habits of Red-winged Blackbirds (Agelaius phoeniceus) near sunflower production in the Upper Midwest and rice production in the Mid-South of the United States. Outer primary feathers were used from 661 after-second-year (ASY) male blackbirds collected in Minnesota, Montana, North Dakota and South Dakota (spring collection), and Arkansas, Louisiana, Mississippi, Missouri and Texas (winter collection). The best-fit model indicated that the combination of feather δ2H, δ13C and δ15N best predicted the state of sample collections and thus supported the use of this approach for tracing molt origins in Red-winged Blackbirds. When considering only birds collected in spring, 56% of birds were classified to their collection state on the basis of δ2H and δ13C alone. We then developed feather isoscapes for δ13C based upon these data and for δ2H based upon continental patterns of δ2H in precipitation. We used 81 birds collected at the ten independent sites for model validation. The spatially-explicit assignment of these 81 birds to the δ2H isoscape resulted in relatively high rates (~77%) of accurate assignment to collection states. We also modeled the spatial extent of C3 (e.g. rice, sunflower) and C4 (corn, millet, sorghum) agricultural crops grown throughout the Upper Midwest and Mid-South United States to predict the relative use of C3- versus C4-based foodwebs among sampled blackbirds. Estimates of C3 inputs to diet ranged from 50% in Arkansas to 27% in Minnesota. As a novel contribution to blackbird conservation and management, we demonstrate how such feather isoscapes can be used to predict the molt origin and interstate movements of migratory blackbirds for subsequent investigations of breeding biology (e.g. sex-specific philopatry), agricultural depredation, feeding ecology, physiology of migration and sensitivity to

  11. Multi-Isotopic (δ2H, δ13C, δ15N) Tracing of Molt Origin for Red-Winged Blackbirds Associated with Agro-Ecosystems.

    PubMed

    Werner, Scott J; Hobson, Keith A; Van Wilgenburg, Steven L; Fischer, Justin W

    2016-01-01

    We analyzed stable-hydrogen (δ2H), carbon (δ13C) and nitrogen (δ 15N) isotope ratios in feathers to better understand the molt origin and food habits of Red-winged Blackbirds (Agelaius phoeniceus) near sunflower production in the Upper Midwest and rice production in the Mid-South of the United States. Outer primary feathers were used from 661 after-second-year (ASY) male blackbirds collected in Minnesota, Montana, North Dakota and South Dakota (spring collection), and Arkansas, Louisiana, Mississippi, Missouri and Texas (winter collection). The best-fit model indicated that the combination of feather δ2H, δ13C and δ15N best predicted the state of sample collections and thus supported the use of this approach for tracing molt origins in Red-winged Blackbirds. When considering only birds collected in spring, 56% of birds were classified to their collection state on the basis of δ2H and δ13C alone. We then developed feather isoscapes for δ13C based upon these data and for δ2H based upon continental patterns of δ2H in precipitation. We used 81 birds collected at the ten independent sites for model validation. The spatially-explicit assignment of these 81 birds to the δ2H isoscape resulted in relatively high rates (~77%) of accurate assignment to collection states. We also modeled the spatial extent of C3 (e.g. rice, sunflower) and C4 (corn, millet, sorghum) agricultural crops grown throughout the Upper Midwest and Mid-South United States to predict the relative use of C3- versus C4-based foodwebs among sampled blackbirds. Estimates of C3 inputs to diet ranged from 50% in Arkansas to 27% in Minnesota. As a novel contribution to blackbird conservation and management, we demonstrate how such feather isoscapes can be used to predict the molt origin and interstate movements of migratory blackbirds for subsequent investigations of breeding biology (e.g. sex-specific philopatry), agricultural depredation, feeding ecology, physiology of migration and sensitivity to

  12. Stable Isotope13C, δ15N, δ34S) Analysis and Satellite Telemetry Depict the Complexity of Gray Wolf (Canis lupus) Diets in Southwest Alaska

    NASA Astrophysics Data System (ADS)

    Stanek, A.; Watts, D. E.; Cohn, B. R.; Spencer, P.; Mangipane, B.; Welker, J. M.

    2010-12-01

    Throughout Alaska, gray wolves (Canis lupus) are a top predator of large ungulates. While they primarily rely on ungulates such as moose (Alces alces) and caribou (Rangifer tarandus) as food, they are opportunistic and use alternative resources. The variation and supplemental protein sources in wolf diet has not been studied extensively on live animals currently using the landscape. With large seasonal influxes of Pacific salmon (Oncorhynchus sp.) into Alaska, terrestrial carnivore use of marine species is of particular interest. Using stable isotope13C, δ15N, δ34S) analysis of wolf guard hair and blood, this study aims to determine the proportion of marine derived nutrients (MDN) in the diet of wolf packs within and surrounding Lake Clark National Park and Preserve and Alaska Peninsula and Becharof National Wildlife Refuges in Southwest Alaska. Satellite telemetry from the animals sampled facilitates quantification of landscape use patterns in correspondence with isotopic traits. Wolf pack territories within and surrounding the Lake Clark region appear to vary in spatial extent and in availability of MDN, such as salmon. Initial analysis shows that two packs with smaller home ranges, centrally located around areas with greater salmon availability, have enriched δ15N values compared to packs that have larger home ranges not centralized around salmon spawning waters. This pattern of isotopic enrichment is found in red blood cells, blood serum and hair, representing diets over different time scales. The enrichment in both blood and hair indicates a sustained use of MDN over the previous six to nine months. In the Lake Clark region, simple mixing model estimates suggest that up to 30% of wolf pack diets may be from marine sources. In contrast, packs with larger home ranges and less access to salmon have stable isotope values representative of a terrestrial diet.

  13. Observations of atmospheric methane and its stable isotope ratio (δ13C) over the Arctic seas from ship cruises in the summer and autumn of 2015

    NASA Astrophysics Data System (ADS)

    Skorokhod, Andrey; Belikov, Igor; Pankratova, Natalia; Novigatsky, Alexander; Thompson, Rona

    2016-04-01

    Atmospheric methane (CH4) is the second most important long-lived greenhouse gas. The Arctic has significant sources of CH4, such as from wetlands and possibly also from methane hydrates, which may act as a positive feedback on the climate system. Despite significant efforts in establishing a network of ground-based CH4 observations in the Arctic zone, there is still a lack of measurements over the Arctic Ocean and sub-polar seas. From 21 July to 9 October 2015, concentrations of CH4 and CO2, as well as of the 13C:12C isotopic ratio in CH4, i.e., δ13C, were measured in the marine boundary layer from aboard the Research Vessel "Akademik Mstislav Keldysh" by the Shirshov Institute of Oceanology. Measurements were made using a Cavity Ring Down Spectroscopy instrument from Picarro™ (model G2132-i). The cruises covered a vast area including the North Atlantic up to 70°N, the Baltic, North, Norwegian, Greenland, Barents, White, Kara and Laptev Seas. To the best of our knowledge, these are the first measurements of their type made in these regions. Concentrations of CH4 typically had low variations (in the range of a few ppb) in the open sea but relatively large variations (of the order of 100 ppb) were recorded near and during stops in ports. High variability of atmospheric CH4 was also registered near the delta of the Lena River in the Laptev Sea, which has been suggested to be a large CH4 reservoir and where bubbles rising through the water column have been observed. The obtained set of δ13CCH4 is characterized by significant range of the measured values varying from open Atlantic to polluted regions near large sea ports. The Keeling plot analyses were implemented to study possible CH4 sources according to its isotopic signature. Footprint analyses are presented for the shipboard observations, as well as comparisons to simulated CH4 concentrations and δ13C using the Lagrangian transport model, FLEXPART. This work has been carried-out with the financial support of

  14. /sup 13/C-/sup 13/C spin-spin coupling in structural investigations. VII. Substitution effects and direct carbon-carbon constants of the triple bond in acetyline derivatives

    SciTech Connect

    Krivdin, L.B.; Proidakov, A.G.; Bazhenov, B.N.; Zinchenko, S.V.; Kalabin, G.A.

    1989-01-10

    The effects of substitution on the direct /sup 13/C-/sup 13/C spin-spin coupling constants of the triple bond were studied in 100 derivatives of acetylene. It was established that these parameters exhibit increased sensitivity to the effect of substituents compared with other types of compounds. The main factor which determines their variation is the electronegativity of the substituting groups, and in individual cases the /pi/-electronic effects are appreciable. The effect of the substituents with an element of the silicon subgroup at the /alpha/ position simultaneously at the triple bond or substituent of the above-mentioned type and a halogen atom.

  15. Seasonal inter-relationships in atmospheric methane and companion δ13C values: effects of sinks and sources

    NASA Astrophysics Data System (ADS)

    Lassey, K. R.; Allan, W.; Fletcher, S. E. Mikaloff

    2011-07-01

    Recent developments in applying carbon-isotope information to better understand regional and global methane budgets infer a strong role by a highly fractionating seasonal sink such as atomic chlorine. Specifically, OH as the predominant seasonal sink cannot account for the ‘phase ellipses’ based on observed seasonal cycles of methane mixing ratio and isotope ratio, δ13C. Although a strong role by atomic chlorine is inferred empirically, open questions remain about the interplay between sources and sinks in determining the properties of phase ellipses. This paper employs a simple didactic model of the seasonal cycling of atmospheric methane to understand such interplay. We demonstrate that a single seasonal sink and seasonal source act together to imprint anti-phase seasonalities on atmospheric methane and δ13C, which lead to phase ellipses that collapse onto a straight line with slope characteristic of that sink. This explains empirical findings of these anti-phase relationships in three-dimensional modelling studies. We also demonstrate that multiple seasonal sinks acting with a seasonal source can yield surprising properties for the phase ellipse that not only explain some features of phase ellipses reported in modelling studies but also have the potential to explain marked inter-annual variation in phase ellipses based on observation.

  16. Determination of 13C isotopic enrichment of glutathione and glycine by gas chromatography/combustion/isotope ratio mass spectrometry after formation of the N- or N,S-ethoxycarbonyl methyl ester derivatives.

    PubMed

    Tea, Illa; Ferchaud-Roucher, Véronique; Küster, Alice; Darmaun, Dominique; Robins, Richard J

    2007-01-01

    The depletion of glutathione (GSH) reported in very-low-birth-weight infants is implicated in several pathologies, especially if deficiency occurs during foetal development. The cause of this depletion is suggested to be modification of GSH turnover. To probe the role of GSH, a reliable non-invasive method adapted to very-low-birth-weight infants is required. In this paper, we report the preparation of the N,S-ethoxycarbonyl methyl ester derivatives of GSH and glycine and their application to the measurement of (13)C/(12)C ratios at natural abundance in erythrocyte samples by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The technique allowed the determination of (13)C/(12)C ratios at natural abundance with a precision <3% and within-day and between-day variabilities both <4%. The method is able to determine accurately low (13)C-enrichments in GSH (0.00241 to 0.00753 Atom Percent Excess) in erythrocyte extracts following incubation with (13)C-glycine at low specific enrichment (approx. 1.5 atom %). Excellent agreement was obtained between the calculated GSH fractional synthesis rate (FSR) in human adult blood (approx. 300% day(-1)) using the low-enrichment (13)C-glycine/GC/C/IRMS protocol and that using highly enriched (13)C-glycine (99 atom %)/GC/MS with the same derivative. The GC/C/IRMS method was shown to be suitable to measure the in vitro GSH FSR (200-660% day(-1)) in human venous and arterial blood from the umbilical cord. This approach provides a good tool for studying the turnover of GSH in vitro in infants, allowing both the use of minimal amounts of tracer and negligible perturbation of endogenous precursor pools.

  17. Profiling primaquine metabolites in primary human hepatocytes by UPLC-QTOF-MS with 13c stable isotope labeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Primaquine (PQ) is an important antimalarial agent because of its activity against exoerythrocytic forms of Plasmodium spp. However, hemolytic anemia is a dose-limiting side effect of primaquine therapy that limits its widespread use. The major plasma metabolite identified in humans and animals, car...

  18. Microhabitat effects on Cd/Ca and δ 13C of benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Tachikawa, K.; Elderfield, H.

    2002-09-01

    Cd/Ca and δ 13C were measured on bottom and pore water samples, and samples comprising dead individuals of six species of benthic foraminifera, including Cibicidoides wuellerstorfi, Uvigerina peregrina and Melonis barleeanum, from throughout the sediment mixed layer at three well-characterised sites in the Northeastern Atlantic. 'Living' (i.e., Rose Bengal stained) U. peregrina and M. barleeanum from one of the three sites were also analysed. Co-existing living and dead foraminifera of the same species from the same site have similar Cd/Ca and δ 13C, and show no significant down core variability. Therefore, comparison of δ 13C in foraminifera with bottom water and pore waters was used to estimate average calcification depths within the sediment for each species and thereby determine DCd based on the Cd concentrations at these depths. Pore waters are 2-4 times more enriched in Cd than bottom waters; consequently, DCd values are different from estimates based on bottom water Cd. Results give DCd of ˜1 for all the infaunal species, with no significant water depth dependence. DCd for C. wuellerstorfi based on bottom water Cd are 3.2±1.1 at 3600 m water depth and 3.9±1.3 at 1900 m water depth, being consistent with DCd estimated from culture experiments. The results suggest that the depth dependence of DCd based on bottom water Cd may be partly explained by a pore water influence on the test chemistry for infaunal species.

  19. Diet analysis of Alaska Arctic snow crabs (Chionoecetes opilio) using stomach contents and δ13C and δ15N stable isotopes

    NASA Astrophysics Data System (ADS)

    Divine, Lauren M.; Bluhm, Bodil A.; Mueter, Franz J.; Iken, Katrin

    2017-01-01

    We used stomach content and stable δ13C and δ15N isotope analyses to investigate male and female snow crab diets over a range of body sizes (30-130 mm carapace width) in five regions of the Pacific Arctic (southern and northern Chukchi Sea, western, central, and Canadian Beaufort Sea). Snow crab stomach contents from the southern Chukchi Sea were also compared to available prey biomass and abundance. Snow crabs consumed four main prey taxa: polychaetes, decapod crustaceans (crabs, amphipods), echinoderms (mainly ophiuroids), and mollusks (bivalves, gastropods). Both approaches revealed regional differences. Crab diets in the two Chukchi regions were similar to those in the western Beaufort (highest bivalve, amphipod, and crustacean consumption). The Canadian Beaufort region was most unique in prey composition and in stable isotope values. We also observed a trend of decreasing carbon stable isotopes in crabs from the Chukchi to those in the Canadian Beaufort, likely reflecting the increasing use of terrestrial carbon sources towards the eastern regions of the Beaufort Sea from Mackenzie River influx. Cannibalism on snow crabs was higher in the Chukchi regions relative to the Beaufort regions. We suggest that cannibalism may have an impact on recruitment in the Chukchi Sea via reduction of cohort strength after settlement to the benthos, as known from the Canadian Atlantic. Prey composition varied with crab size only in some size classes in the southern Chukchi and central Beaufort, while stable isotope results showed no size-dependent differences. Slightly although significantly higher mean carbon isotope values for males in the southern Chukchi may not be reflective of a gender-specific pattern but rather be driven by low sample size. Finally, the lack of prey selection relative to availability in crabs in the southern Chukchi suggests that crabs consume individual prey taxa in relative proportions to prey field abundances. The present study is the first to

  20. Carbon isotope13C) excursions suggest times of major methane release during the last 14 kyr in Fram Strait, the deep-water gateway to the Arctic

    NASA Astrophysics Data System (ADS)

    Consolaro, C.; Rasmussen, T. L.; Panieri, G.; Mienert, J.; Bünz, S.; Sztybor, K.

    2015-04-01

    We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (~ 80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dates reveal a detailed chronology for the last 14 ka BP. The δ 13C record measured on the benthonic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values termed carbon isotope excursion (CIE I and CIE II, respectively). The values were as low as -4.37‰ in CIE I, correlating with the Bølling-Allerød interstadials, and as low as -3.41‰ in CIE II, correlating with the early Holocene. In the Bølling-Allerød interstadials, the planktonic foraminifera also show negative values, probably indicating secondary methane-derived authigenic precipitation affecting the foraminiferal shells. After a cleaning procedure designed to remove authigenic carbonate coatings on benthonic foraminiferal tests from this event, the 13C values are still negative (as low as -2.75‰). The CIE I and CIE II occurred during periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic, suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.

  1. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey.

    PubMed

    Cotte, J F; Casabianca, H; Lhéritier, J; Perrucchietti, C; Sanglar, C; Waton, H; Grenier-Loustalot, M F

    2007-01-16

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The delta(13)C parameter was not significant for characterizing an origin, while the (D/H)(I) ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C(4) syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per thousand (permil). A filtration step was added to the experimental procedure and provided results that were compliant with the natural origin of our honey samples. In addition, spiking with a C(4) syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying.

  2. Measurements of CH4 Mixing Ratio and D/H and 13C/12C Isotope Ratios in Atmospheric Samples from Continental United States

    NASA Astrophysics Data System (ADS)

    Tyler, S. C.; Ajie, H. O.; Gotoh, A. A.; Rice, A. L.

    2002-12-01

    We report δD and δ13C measurements of atmospheric CH4 from air samples collected bi-weekly from fixed surface sites in the United States. Our fixed surface sites are located at the mid-continental site Niwot Ridge, CO (41°N, 105°W) and a Pacific coastal northern hemispheric site receiving strong westerlies, Montaña de Oro, CA (35°N, 121°W). Data from multiyear bi-weekly sampling provide information relating seasonal cycling of CH4 sources and sinks in background air, provide a record of long term trends in CH4 mixing and isotope ratio related to atmospheric CH4 loading, and may reveal information on regional sources of CH4. Measurements of δD-CH4 average -93+/-3‰ (versus V-SMOW) at Niwot Ridge from 1999 through 2001 and -97+/-4‰ at Montaña de Oro from 2000 through 2001. Annual seasonal cycles observed at both sites are 6-7‰ , exhibiting strong anti-correlation with CH4 mixing ratio seasonality that appears to be largely sink-driven (i.e. through reaction with OH). More extensive time series in δ13C-CH4 average -47.2+/-0.1‰ (versus V-PDB) at Niwot Ridge from 1995 through 2001 and -47.3+/-0.2‰ at Montaña de Oro from 1996 through 2001. In contrast to δD-CH4, seasonality in δ13C-CH4 has a relatively poor anti-correlation with seasonality in CH4 mixing ratio, indicating significant source-driven influence. We discuss the implications of these measurements on the atmospheric CH4 budget and detail the precision and accuracy of our data with respect international reference standards. It is our intention to have these data archived and available for modeling and advanced calculations by other atmospheric researchers in the near future.

  3. Application of a methane carbon isotope analyzer for the investigation of δ13C of methane emission measured by the automatic chamber method in an Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Mastepanov, Mikhail; Christensen, Torben

    2014-05-01

    Methane emissions have been monitored by an automatic chamber method in Zackenberg valley, NE Greenland, since 2006 as a part of Greenland Ecosystem Monitoring (GEM) program. During most of the seasons the measurements were carried out from the time of snow melt (June-July) until freezing of the active layer (October-November). Several years of data, obtained by the same method, instrumentation and at exactly the same site, provided a unique opportunity for the analysis of interannual methane flux patterns and factors affecting their temporal variability. The start of the growing season emissions was found to be closely related to a date of snow melt at the site. Despite a large between year variability of this date (sometimes more than a month), methane emission started within a few days after, and was increasing for the next about 30 days. After this peak of emission, it slowly decreased and stayed more or less constant or slightly decreasing during the rest of the growing season (Mastepanov et al., Biogeosciences, 2013). During the soil freezing, a second peak of methane emission was found (Mastepanov et al., Nature, 2008); its amplitude varied a lot between the years, from almost undetectable to comparable with total growing season emissions. Analysis of the multiyear emission patterns (Mastepanov et al., Biogeosciences, 2013) led to hypotheses of different sources for the spring, summer and autumn methane emissions, and multiyear cycles of accumulation and release of these components to the atmosphere. For the further investigation of this it was decided to complement the monitoring system with a methane carbon isotope analyzer (Los Gatos Research, USA). The instrument was installed during 2013 field season and was successfully operating until the end of the measurement campaign (27 October). Detecting both 12C-CH4 and 13C-CH4 concentrations in real time (0.5 Hz) during automatic chamber closure (15 min), the instrument was providing data for determination of

  4. Coupling a high-temperature catalytic oxidation total organic carbon analyzer to an isotope ratio mass spectrometer to measure natural-abundance delta13C-dissolved organic carbon in marine and freshwater samples.

    PubMed

    Panetta, Robert J; Ibrahim, Mina; Gélinas, Yves

    2008-07-01

    The stable isotope composition of dissolved organic carbon (delta(13)C-DOC) provides powerful information toward understanding carbon sources and cycling, but analytical limitations have precluded its routine measurement in natural samples. Recent interfacing of wet oxidation-based dissolved organic carbon analyzers and isotope ratio mass spectrometers has simplified the measurement of delta(13)C-DOC in freshwaters, but the analysis of salty estuarine/marine samples still proves difficult. Here we describe the coupling of the more widespread high-temperature catalytic oxidation-based total organic carbon analyzer to an isotope ratio mass spectrometer (HTC-IRMS) through cryogenic trapping of analyte gases exiting the HTC analyzer for routine analysis of delta(13)C-DOC in aquatic and marine samples. Targeted elimination of major sources of background CO2 originating from the HTC analyzer allows for the routine measurement of samples over the natural range of DOC concentrations (from 40 microM to over 2000 microM), and salinities (<0.1-36 g/kg). Because consensus reference natural samples for delta(13)C-DOC do not exist, method validation was carried out with water-soluble stable isotope standards as well as previously measured natural samples (IAEA sucrose, Suwannee River Fulvic Acids, Deep Sargasso Sea consensus reference material, and St. Lawrence River water) and result in excellent delta(13)C-DOC accuracy (+/-0.2 per thousand) and precision (+/-0.3 per thousand).

  5. A stable isotope ( δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants

    NASA Astrophysics Data System (ADS)

    Hobson, Keith A.; Fisk, Aaron; Karnovsky, Nina; Holst, Meike; Gagnon, Jean-Marc; Fortier, Martin

    fundamentally in transferring energy and carbon flux to higher trophic-level seabirds and marine mammals. We measured PCB 153 among selected organisms to investigate the behavior of bioaccumulating contaminants within the food web. Our isotopic model confirmed the trophic magnification of PCB 153 in this high-Arctic food web due to a strong correlation between contaminant concentration and organism δ15N values, demonstrating the utility of combining isotopic and contaminant approaches to food-web studies. Stable-carbon isotope analysis confirmed an enrichment in 13C between POM and ice algae (-22.3 vs. -17.7‰). Benthic organisms were generally enriched in 13C compared to pelagic species. We discuss individual species isotopic data and the general utility of our stable isotope model for defining carbon flux and contaminant flow through the North Water food web.

  6. Major Sources of Organic Matter in a Complex Coral Reef Lagoon: Identification from Isotopic Signatures (δ13C and δ15N).

    PubMed

    Briand, Marine J; Bonnet, Xavier; Goiran, Claire; Guillou, Gaël; Letourneur, Yves

    2015-01-01

    A wide investigation was conducted into the main organic matter (OM) sources supporting coral reef trophic networks in the lagoon of New Caledonia. Sampling included different reef locations (fringing, intermediate and barrier reef), different associated ecosystems (mangroves and seagrass beds) and rivers. In total, 30 taxa of macrophytes, plus pools of particulate and sedimentary OM (POM and SOM) were sampled. Isotopic signatures (C and N) of each OM sources was characterized and the composition of OM pools assessed. In addition, spatial and seasonal variations of reef OM sources were examined. Mangroves isotopic signatures were the most C-depleted (-30.17 ± 0.41 ‰) and seagrass signatures were the most C-enriched (-4.36 ± 0.72 ‰). Trichodesmium spp. had the most N-depleted signatures (-0.14 ± 0.03 ‰) whereas mangroves had the most N-enriched signatures (6.47 ± 0.41 ‰). The composition of POM and SOM varied along a coast-to-barrier reef gradient. River POM and marine POM contributed equally to coastal POM, whereas marine POM represented 90% of the POM on barrier reefs, compared to 10% river POM. The relative importance of river POM, marine POM and mangroves to the SOM pool decreased from fringing to barrier reefs. Conversely, the relative importance of seagrass, Trichodesmium spp. and macroalgae increased along this gradient. Overall, spatial fluctuations in POM and SOM were much greater than in primary producers. Seasonal fluctuations were low for all OM sources. Our results demonstrated that a large variety of OM sources sustain coral reefs, varying in their origin, composition and role and suggest that δ13C was a more useful fingerprint than δ15N in this endeavour. This study also suggested substantial OM exchanges and trophic connections between coral reefs and surrounding ecosystems. Finally, the importance of accounting for environmental characteristics at small temporal and spatial scales before drawing general patterns is highlighted.

  7. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS.

    PubMed

    Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin

    2015-07-01

    To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low (15)N/(14)N ratios indicating an incomplete derivatization; in contrast, too high (15)N/(14)N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate.

  8. Combining stable isotope13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves.

    PubMed

    Garcia-Anton, E; Cuezva, S; Jurado, V; Porca, E; Miller, A Z; Fernandez-Cortes, A; Saiz-Jimenez, C; Sanchez-Moral, S

    2014-01-01

    Altamira Cave (north of Spain) contains one of the world's most prominent Paleolithic rock art paintings, which are threatened by a massive microbial colonization of ceiling and walls. Previous studies revealed that exchange rates between the cave and the external atmosphere through the entrance door play a decisive role in the entry and transport of microorganisms (bacteria and fungi) and nutrients to the interior of the cave. A spatial-distributed sampling and measurement of carrier (CO2) and trace (CH4) gases and isotopic signal of CO2 (δ(13)C) inside the cave supports the existence of a second connection (active gas exchange processes) with the external atmosphere at or near the Well Hall, the innermost and deepest area of the cave. A parallel aerobiological study also showed that, in addition to the entrance door, there is another connection with the external atmosphere, which favors the transport and increases microorganism concentrations in the Well Hall. This double approach provides a more complete knowledge on cave ventilation and revealed the existence of unknown passageways in the cave, a fact that should be taken into account in future cave management.

  9. Regional Scale Variability in Background and Source δ13C of Methane in the Atlantic, Europe and the Arctic: Cautionary Tales for Isotopic Modeling

    NASA Astrophysics Data System (ADS)

    Lowry, D.; Fisher, R. E.; France, J. L.; Lanoiselle, M.; Zazzeri, G.; Nisbet, E. G.

    2013-12-01

    Modeling studies of methane δ13C, both of modern atmosphere and glacial palaeoclimates have used a global isotopic signature for each of the main source categories, whereas detailed studies of source fluxes, such as boreal wetlands, suggest that on the centimeter to meter scale there is very great variability. In recent years we have been reassessing the usefulness of using a generic source value from source up to regional scale through sampling campaigns in the European Arctic, the UK and onboard ships sailing the Atlantic up to the Arctic Ocean. Currently the boreal wetland source of methane dominates above 60°N. Within Finland this source varies at the wetland scale from -74 to -66‰ depending on wetland type and seasonal variability in temperature and water table. Lapland road trips and ship sampling suggest that these emissions are homogenized to -70 to -67‰ in the well-mixed regional atmosphere. An infrequent boreal forest fire emission adds a -30 to -26‰ component into the mix, and such inputs have been observed in the Mace Head (Ireland) isotopic record of 2002. The story is much more complex once the latitudes of heavily urbanized and agricultural areas of Northern Europe are reached. Isotopic signatures applied to UK and EC inventories suggest that national emissions can vary from -42 to -60‰ depending on source mix, but even this is too simplified. Fugitive emissions from gas distribution systems vary based on the source of the gas, with biogenic-dominated supplies from west Siberia at -50‰ to thermogenic gas of the Southern North Sea fields at -32‰. Coal emissions are also source-dependent and have a similar range to gas, but unlike pipeline-homogenized gas can vary from one mine to the next. Emissions from ruminants vary due to C3 and C4 plant diets, with C4 closer to -50‰ while C3 emissions are in the low -60's. A recent whole barn experiment in the UK recorded -66‰. Landfill signatures also vary. Sites engineered in the last decade

  10. The use of isotope effects to determine enzyme mechanisms.

    PubMed

    Cleland, W W

    2005-01-01

    Isotope effects are one of the most powerful kinetic tools for determining enzyme mechanisms. There are three methods of measurement. First, one can compare reciprocal plots with labeled and unlabeled substrates. The ratio of the slopes is the isotope effect on V/K, and the ratio of the vertical intercepts is the isotope effect on V(max). This is the only way to determine V(max) isotope effects, but is limited to isotope effects of 5% or greater. The second method is internal competition, where the labeled and unlabeled substrates are present at the same time and the change in their ratio in residual substrate or in product is used to calculate an isotope effect, which is that on V/K of the labeled reactant. This is the method used for tritium or (14)C, or with the natural abundances of (13)C, (15)N, or (18)O. The third method involves perturbations from equilibrium when a labeled substrate and corresponding unlabeled product are present at chemical equilibrium. This also gives just an isotope effect on V/K for the labeled reactant. The chemistry is typically not fully rate limiting, so that the isotope effect on V/K is given by: (x)(V/K)=((x)k+c(f)+c(r)(x)K(eq))/(1+c(f)+c(r)) where x defines the isotope (D, T, 13, 15, 18 for deuterium, tritium, (13)C, (15)N, or (18)O), and (x)(V/K), (x)k, and (x)K(eq) are the observed isotope effect, the intrinsic one on the chemical step, and the isotope effect on the equilibrium constant, respectively. The constants c(f) and c(r) are commitments in forward and reverse directions, and are the ratio of the rate constant for the chemical reaction and the net rate constant for release from the enzyme of the varied substrate (direct comparison) or labeled substrate (internal competition and equilibrium perturbation) for c(f), or the first product released or the one involved in the perturbation for c(r). The intrinsic isotope effect, (x)k, can be estimated by comparing deuterium and tritium isotope effects on V/K, or by comparing the

  11. Effects of handling, storage, and chemical treatments on δ13C values of terrestrial fossil organic matter

    NASA Astrophysics Data System (ADS)

    Gauthier, Caroline; Hatté, Christine

    2008-08-01

    With the need to interpret small isotopic variations, δ13C analyses of sedimentary organic matter are more and more widespread in the field of (paleo)climatology. Recent developments require an evaluation of the reliability and reproducibility of the whole data acquisition chain. Literature abounds in protocols for sediment pretreatment prior to physical measurements. These procedures differ at every step: from sampling, handling, and storage conditions to leaching procedure, without cross evaluation. In this study, we focus on two sediment samples: a modern temperate soil and a 70 ka typical loess. We review different protocols that characterize each step of the sediment pretreatment. Handling and storage conditions are tested, e.g., finger skin contact, mild- to high-temperature oven-dry, and freeze-drying. Likewise, different decarbonation protocols are compared: wet decarbonation under cold 0.6 N HCl, 2 N HCl and boiling 1 N HCl, and acid fuming with 36% HCl. This study identifies up to 1.5‰ isotopic shifts linked to experimental bias. This large bias might be at the origin of erroneous paleoclimatic interpretation. On the basis of these results, we propose specific treatments adapted to the sample type.

  12. The effect of biochar amendment on the soil microbial community - PLFA analyses and 13C labeling results

    NASA Astrophysics Data System (ADS)

    Watzinger, A.; Feichtmair, S.; Rempt, F.; Anders, E.; Wimmer, B.; Kitzler, B.; Zechmeister-Boltenstern, S.; Horacek, M.; Zehetner, F.; Kloss, S.; Richoz, S.; Soja, G.

    2012-04-01

    The effects of biochar amendment on plant growth and on the chemical / physical soil characteristics are well explored but only few studies have investigated the impact on soil microorganisms. The response of the soil microbial community to biochar amendment was investigated by phospholipid fatty acid (PLFA) analysis in (i) a large scale pot experiment, (ii) a small scale pot experiment using 13C labeled biochar and (iii) an incubation study using 13C labeled biochar. In the large scale pot experiment, three different agricultural soils from Austria (Planosol, Cambisol, Chernozem) and four different types of biochar were investigated. In total, 25 treatments with 5 replicates each were set up and monitored over a year. The results from the pot experiments showed no significant influence of biochar amendment on the total microbial biomass in the first 100 days after biochar addition. However, discriminant analysis showed a distinction of biochar and control soils as well as a strong effect of the pyrolysis temperature on the microbial composition. The effect of biochar was dependent on the type of soil. In the Planosol, some PLFAs were affected positively, especially when adding biochar with a low pyrolysis temperature, in the first month. In the long term, microbial community composition altered. Growth of fungi and gram negative bacteria was enhanced. In the Chernozem, PLFAs from various microbial groups decreased in the long term. Variability in the incubation study was low. Consequently, many PLFAs were significantly affected by biochar amendment. Again, in the Planosol, gram negative bacteria, actinomycetes and, after 2 weeks, gram positive bacteria increased under biochar amendment whereas in the chernozem total microbial biomass and gram positive bacteria were negatively affected in the long term. The 13C labeling studies confirmed the low degradability of the biochar, i.e. no alteration of the content and the δ13C in the soil organic matter within 100 days

  13. Newtonian kinetic isotope effects. Observation, prediction, and origin of heavy-atom dynamic isotope effects.

    PubMed

    Kelly, Kelmara K; Hirschi, Jennifer S; Singleton, Daniel A

    2009-06-24

    Intramolecular (13)C kinetic isotope effects were determined for the dimerization of cyclopentadiene. Substantial isotope effects were observed in three positions, despite the C(2) symmetry of the cycloaddition transition state and the absence of dynamical bottlenecks after this transition state. The observed isotope effects were predicted well from trajectory studies by extrapolating the outcomes of trajectories incorporating superheavy isotopes of carbon, ranging from (20)C to (140)C. Trajectory studies suggest that the isotope effects are unrelated to zero-point energy or the geometrical and momentum properties of the transition state. However, steepest-descent paths in mass-weighted coordinates correctly predict the direction of the isotope effects, supporting a novel origin in Newton's second law of motion.

  14. An extractive removal step optimized for a high-throughput α-cellulose extraction method for δ13C and δ18O stable isotope ratio analysis in conifer tree rings.

    PubMed

    Lin, Wen; Noormets, Asko; King, John S; Sun, Ge; McNulty, Steve; Domec, Jean-Christophe

    2016-09-26

    Stable isotope ratios (δ(13)C and δ(18)O) of tree-ring α-cellulose are important tools in paleoclimatology, ecology, plant physiology and genetics. The Multiple Sample Isolation System for Solids (MSISS) was a major advance in the tree-ring α-cellulose extraction methods, offering greater throughput and reduced labor input compared to traditional alternatives. However, the usability of the method for resinous conifer species may be limited by the need to remove extractives from some conifer species in a separate pretreatment step. Here we test the necessity of pretreatment for α-cellulose extraction in loblolly pine (Pinus taeda L.), and the efficiency of a modified acetone-based ambient-temperature step for the removal of extractives (i) in loblolly pine from five geographic locations representing its natural range in the southeastern USA, and (ii) on five other common coniferous species (black spruce (Picea mariana Mill.), Fraser fir (Abies fraseri (Pursh) Poir.), Douglas fir (Pseudotsuga menziesii (Mirb.) Franco), Norway spruce (Picea abies (L.) Karst) and ponderosa pine (Pinus ponderosa D.)) with contrasting extractive profiles. The differences of δ(13)C values between the new and traditional pretreatment methods were within the precision of the isotope ratio mass spectrometry method used (±0.2‰), and the differences between δ(18)O values were not statistically significant. Although some unanticipated results were observed in Fraser fir, the new ambient-temperature technique was deemed as effective as the more labor-consuming and toxic traditional pretreatment protocol. The proposed technique requires a separate acetone-inert multiport system similar to MSISS, and the execution of both pretreatment and main extraction steps allows for simultaneous treatment of up to several hundred microsamples from resinous softwood, while the need of additional labor input remains minimal.

  15. The signatures of stable isotopes δ 15N and δ 13C in anadromous and non-anadromous Coilia nasus living in the Yangtze River, and the adjacent sea waters

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Tang, Wenqiao; Dong, Wenxia

    2015-12-01

    Stable isotopes are increasingly used to investigate seasonal migrations of aquatic organisms. This study employed stable isotopes ( δ 13C and δ 15N) for Coilia nasus from the lower Yangtze River and the adjacent East China Sea to distinguish different ecotypic groups, ascertain trophic nutrition positions, and reflect environmental influences on C. nasus. δ 13C signatures of C. nasus sampled from Zhoushan (ZS), Chongming (CM), and Jingjiang (JJ) waters were significantly higher than those from the Poyang Lake (PYL) ( P < 0.05). By contrast, δ 15N signatures of C. nasus in ZS, CM, and JJ groups were significantly lower than those in PYL group ( P < 0.05). Basing on δ 13C and δ 15N signatures, we could distinguish anadromous (ZS, CM, and JJ) and non-anadromous (PYL) groups. The trophic level (TL) of anadromous C. nasus ranged from 2.90 to 3.04, whereas that of non-anadromous C. nasus was 4.38. C. nasus occupied the middle and top nutrition positions in the marine and Poyang Lake food webs, respectively. C. nasus in Poyang Lake were significantly more enriched in δ 15N but depleted in δ 13C, suggesting that anthropogenic nutrient inputs and terrigenous organic carbon are important to the Poyang Lake food web. This study is the first to apply δ 15N and δ 13C to population assignment studies of C. nasus in the Yangtze River and its affiliated waters. Analysis of stable isotopes ( δ 15N and δ 13C) is shown to be a useful tool for discriminating anadromous and non-anadromous C. nasus.

  16. Effect of tacticity on the segmental dynamics of polypropylene melts investigated by 13C nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Lippow, S. M.; Qiu, XiaoHua; Ediger, M. D.

    2001-09-01

    13C nuclear magnetic resonance (NMR) T1 and nuclear Overhauser effect measurements are reported for syndiotactic and isotactic polypropylene from their melting points to 525 K. These results indicate that the segmental dynamics of syndiotactic polypropylene are 1.7 times slower than for isotactic polypropylene at 500 K. Recent molecular dynamics computer simulations [Antoniadis, Samara, and Theodorou, Macromolecules 32, 8635 (1999)] predict this trend qualitatively but predict too large a dependence of dynamics upon tacticity. The contribution of normal mode relaxation to the decay of the C-H vector autocorrelation function is significantly larger for syndiotactic polypropylene than for either isotactic or atactic polypropylene.

  17. (13)C NMR Metabolomics: INADEQUATE Network Analysis.

    PubMed

    Clendinen, Chaevien S; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S

    2015-06-02

    The many advantages of (13)C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, (13)C NMR offers a straightforward measurement of these compounds. Two-dimensional (13)C-(13)C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semiautomated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE data sets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures.

  18. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO{sub 2} levels: The added value of the isotope ({delta}{sup 13}C and {delta}{sup 18}O CO{sub 2}; {delta}{sup 13}C and {delta}D CH{sub 4}) approach

    SciTech Connect

    Widory, D.; Proust, E.; Bellenfant, G.; Bour, O.

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

  19. Experimental and theoretical study of substituent effect on 13C NMR chemical shifts of 5-arylidene-2,4-thiazolidinediones

    NASA Astrophysics Data System (ADS)

    Rančić, Milica P.; Trišović, Nemanja P.; Milčić, Miloš K.; Ajaj, Ismail A.; Marinković, Aleksandar D.

    2013-10-01

    The electronic structure of 5-arylidene-2,4-thiazolidinediones has been studied by using experimental and theoretical methodology. The theoretical calculations of the investigated 5-arylidene-2,4-thiazolidinediones have been performed by the use of quantum chemical methods. The calculated 13C NMR chemical shifts and NBO atomic charges provide an insight into the influence of such a structure on the transmission of electronic substituent effects. Linear free energy relationships (LFERs) have been further applied to their 13C NMR chemical shifts. The correlation analyses for the substituent-induced chemical shifts (SCS) have been performed with σ using SSP (single substituent parameter), field (σF) and resonance (σR) parameters using DSP (dual substituent parameter), as well as the Yukawa-Tsuno model. The presented correlations account satisfactorily for the polar and resonance substituent effects operative at Cβ, and C7 carbons, while reverse substituent effect was found for Cα. The comparison of correlation results for the investigated molecules with those obtained for seven structurally related styrene series has indicated that specific cross-interaction of phenyl substituent and groups attached at Cβ carbon causes increased sensitivity of SCS Cβ to the resonance effect with increasing of electron-accepting capabilities of the group present at Cβ.

  20. (13)C metabolic flux analysis of recombinant expression hosts.

    PubMed

    Young, Jamey D

    2014-12-01

    Identifying host cell metabolic phenotypes that promote high recombinant protein titer is a major goal of the biotech industry. (13)C metabolic flux analysis (MFA) provides a rigorous approach to quantify these metabolic phenotypes by applying isotope tracers to map the flow of carbon through intracellular metabolic pathways. Recent advances in tracer theory and measurements are enabling more information to be extracted from (13)C labeling experiments. Sustained development of publicly available software tools and standardization of experimental workflows is simultaneously encouraging increased adoption of (13)C MFA within the biotech research community. A number of recent (13)C MFA studies have identified increased citric acid cycle and pentose phosphate pathway fluxes as consistent markers of high recombinant protein expression, both in mammalian and microbial hosts. Further work is needed to determine whether redirecting flux into these pathways can effectively enhance protein titers while maintaining acceptable glycan profiles.

  1. Synthesis of Site-Specifically (13)C Labeled Linoleic Acids.

    PubMed

    Offenbacher, Adam R; Zhu, Hui; Klinman, Judith P

    2016-10-12

    Soybean lipoxygenase-1 (SLO-1) catalyzes the C-H abstraction from the reactive carbon (C-11) in linoleic acid as the first and rate-determining step in the formation of alkylhydroperoxides. While previous labeling strategies have focused on deuterium labeling to ascertain the primary and secondary kinetic isotope effects for this reaction, there is an emerging interest and need for selectively enriched (13)C isotopologues. In this report, we present synthetic strategies for site-specific (13)C labeled linoleic acid substrates. We take advantage of a Corey-Fuchs formyl to terminal (13)C-labeled alkyne conversion, using (13)CBr4 as the labeling source, to reduce the number of steps from a previous fatty acid (13)C synthetic labeling approach. The labeled linoleic acid substrates are useful as nuclear tunneling markers and for extracting active site geometries of the enzyme-substrate complex in lipoxygenase.

  2. Effects of plant species richness on 13C assimilate partitioning in artificial grasslands of different established ages

    PubMed Central

    Xu, Longhua; Yao, Buqing; Wang, Wenying; Wang, Fangping; Zhou, Huakun; Shi, Jianjun; Zhao, Xinquan

    2017-01-01

    Artificial grasslands play a role in carbon storage on the Qinghai–Tibetan Plateau. The artificial grasslands exhibit decreased proportions of graminate and increased species richness with age. However, the effect of the graminate proportions and species richness on ecosystem C stocks in artificial grasslands have not been elucidated. We conducted an in situ13C pulse-labeling experiment in August 2012 using artificial grasslands that had been established for two years (2Y), five years (5Y), and twelve years (12Y). Each region was plowed fallow from severely degraded alpine meadow in the Qinghai-Tibetan Plateau. The 12Y grassland had moderate proportions of graminate and the highest species richness. This region showed more recovered 13C in soil and a longer mean residence time, which suggests species richness controls the ecosystem C stock. The loss rate of leaf-assimilated C of the graminate-dominant plant species Elymus nutans in artificial grasslands of different ages was lowest in the 12Y grassland, which also had the highest species richness. Thus the lower loss rate of leaf-assimilated C can be partially responsible for the larger ecosystem carbon stocks in the 12Y grassland. This finding is a novel mechanism for the effects of species richness on the increase in ecosystem functioning. PMID:28067300

  3. Effects of plant species richness on 13C assimilate partitioning in artificial grasslands of different established ages

    NASA Astrophysics Data System (ADS)

    Xu, Longhua; Yao, Buqing; Wang, Wenying; Wang, Fangping; Zhou, Huakun; Shi, Jianjun; Zhao, Xinquan

    2017-01-01

    Artificial grasslands play a role in carbon storage on the Qinghai–Tibetan Plateau. The artificial grasslands exhibit decreased proportions of graminate and increased species richness with age. However, the effect of the graminate proportions and species richness on ecosystem C stocks in artificial grasslands have not been elucidated. We conducted an in situ13C pulse-labeling experiment in August 2012 using artificial grasslands that had been established for two years (2Y), five years (5Y), and twelve years (12Y). Each region was plowed fallow from severely degraded alpine meadow in the Qinghai-Tibetan Plateau. The 12Y grassland had moderate proportions of graminate and the highest species richness. This region showed more recovered 13C in soil and a longer mean residence time, which suggests species richness controls the ecosystem C stock. The loss rate of leaf-assimilated C of the graminate-dominant plant species Elymus nutans in artificial grasslands of different ages was lowest in the 12Y grassland, which also had the highest species richness. Thus the lower loss rate of leaf-assimilated C can be partially responsible for the larger ecosystem carbon stocks in the 12Y grassland. This finding is a novel mechanism for the effects of species richness on the increase in ecosystem functioning.

  4. Effects of plant species richness on (13)C assimilate partitioning in artificial grasslands of different established ages.

    PubMed

    Xu, Longhua; Yao, Buqing; Wang, Wenying; Wang, Fangping; Zhou, Huakun; Shi, Jianjun; Zhao, Xinquan

    2017-01-09

    Artificial grasslands play a role in carbon storage on the Qinghai-Tibetan Plateau. The artificial grasslands exhibit decreased proportions of graminate and increased species richness with age. However, the effect of the graminate proportions and species richness on ecosystem C stocks in artificial grasslands have not been elucidated. We conducted an in situ(13)C pulse-labeling experiment in August 2012 using artificial grasslands that had been established for two years (2Y), five years (5Y), and twelve years (12Y). Each region was plowed fallow from severely degraded alpine meadow in the Qinghai-Tibetan Plateau. The 12Y grassland had moderate proportions of graminate and the highest species richness. This region showed more recovered (13)C in soil and a longer mean residence time, which suggests species richness controls the ecosystem C stock. The loss rate of leaf-assimilated C of the graminate-dominant plant species Elymus nutans in artificial grasslands of different ages was lowest in the 12Y grassland, which also had the highest species richness. Thus the lower loss rate of leaf-assimilated C can be partially responsible for the larger ecosystem carbon stocks in the 12Y grassland. This finding is a novel mechanism for the effects of species richness on the increase in ecosystem functioning.

  5. Compound-specific stable carbon isotope ratios (delta13C values) of the halogenated natural product 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1).

    PubMed

    Vetter, Walter; Gleixner, Gerd

    2006-01-01

    Compound-specific isotope analysis using gas chromatography interfaced to isotope ratio mass spectrometry (GC/IRMS) was applied for the determination of delta13C values of the marine halogenated natural product 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1). The delta13C value of a lab-made Q1 standard (-34.20 +/- 0.27 per thousand) was depleted in 13C by more than 11 per thousand relative to the residues of Q1 in dolphin blubber from Australia and skua liver from Antarctica. This clarified that the synthesized Q1 was not the source for Q1 in the biota samples. However, two Australian marine mammals showed a large variation in the delta13C value, which, in our experience, was implausible. Since the GC/IRMS system was connected to a conventional ion trap mass spectrometer by a post-column splitter, we were able to closely inspect the peak purity of Q1 in the respective samples. While the mass spectra of Q1 did not indicate any impurity, a fronting peak of PCB 101 was identified in one sample. This interference falsified the delta13C value of the respective sample. Once this sample was excluded, we found that the delta13C values of the remaining samples, i.e. liver of Antarctic brown skua (-21.47 +/- 1.47 per thousand) and blubber of Australian melon-headed whale (-22.80 +/- 0.33 per thousand), were in the same order. The standard deviation for Q1 was larger in the skua samples than in the standard and the whale blubber sample. This was due to lower amounts of skua sample available. It remained unclear if the Q1 residues originate from the same producer and location.

  6. Reconstruction of δ 13C of chemocline CO 2 (aq) in past oceans and lakes using the δ 13C of fossil isorenieratene

    NASA Astrophysics Data System (ADS)

    van Breugel, Yvonne; Schouten, Stefan; Paetzel, Matthias; Ossebaar, Jort; Sinninghe Damsté, Jaap S.

    2005-06-01

    High abundances of the diaromatic carotenoid isorenieratene derived from photosynthetic green sulfur bacteria (Chlorobiaceae) were found just below the chemocline in an anoxic fjord in Norway, throughout the annual cycle. The stable carbon isotope composition of this carotenoid co-varied with the δ 13C of CO 2 (aq) and is independent of the CO 2 and isorenieratene concentration. This constant isotopic fractionation ɛp of isorenieratene versus CO 2, 4 ± 1‰, was subsequently used in the reconstruction of δ 13C of CO 2 at the chemocline in ancient oceans and lakes. These reconstructions indicate that δ 13C of CO 2 at the chemocline is often influenced by isotopically light CO 2, formed by remineralization of organic matter. This process can, depending on the depth and stability of the chemocline, also effect the isotopic composition of the phytoplankton and, thus, isotopic records of sedimentary inorganic and organic carbon.

  7. Nanostructural effects on polymer and water dynamics in cellulose biocomposites: (2)h and (13)c NMR relaxometry.

    PubMed

    Terenzi, Camilla; Prakobna, Kasinee; Berglund, Lars A; Furó, István

    2015-05-11

    Improved moisture stability is desired in cellulose biocomposites. In order to clarify nanostructural effects, a new approach is presented where water and polymer matrix mobilities are characterized separately. Nanocomposites from cellulose nanofibers (CNF) in the xyloglucan (XG) biopolymer matrix are investigated at different hydration states. Films of XG, CNF, and CNF/XG composites are subjected to detailed (2)H and (13)C NMR relaxation studies. Since the (2)H NMR signal arises from heavy water and the (13)C signal from the polysaccharides, molecular water and polymer dynamics is for the first time investigated separately. In the neat components, (2)H transverse relaxation (T2) data are consistent with water clustering at the CNF fibril surfaces, but bulk spread of moisture in XG. The new method results in a description of water interaction with the nanoscale phases. At low hydration, water molecules at the CNF/XG interface exhibit higher water mobility than in neat CNF or XG, due to locally high water concentration. At the same time, CNF-associated interphase segments of XG show slower NMR-dynamics than that in neat XG.

  8. Effect of chronic hypoglycaemia on glucose concentration and glycogen content in rat brain: a localized 13C NMR study

    PubMed Central

    Lei, Hongxia; Gruetter, Rolf

    2006-01-01

    While chronic hypoglycaemia has been reported to increase unidirectional glucose transport across the blood-brain barrier (BBB) and to increase GLUT1 expression at the endothelium, the effect on steady-state brain d-glucose and brain glycogen content is currently unknown. Brain glucose and glycogen concentrations were directly measured in vivo using localized 13C magnetic resonance spectroscopy (MRS) following 12-14 days of hypoglycaemia. Brain glucose content was significantly increased by 48%, which is consistent with an increase in the maximal glucose transport rate, Tmax, by 58% compared with the sham-treated animals. The localized 13C NMR measurements of brain glucose were directly validated by comparison with biochemically determined brain glucose content after rapid focused microwave fixation (1.4 s at 4 kW). Both in vivo MRS and biochemical measurements implied that brain glycogen content was not affected by chronic hypoglycaemia, consistent with brain glucose being a major factor controlling brain glycogen content. We conclude that the increased glucose transporter expression in chronic hypoglycaemia leads to increased brain glucose content at a given level of glycaemia. Such increased brain glucose concentrations can result in a lowered glycaemic threshold of counter-regulation observed in chronic hypoglycaemia. PMID:16987249

  9. Combined Effects of Ocean Acidification and Light or Nitrogen Availabilities on 13C Fractionation in Marine Dinoflagellates

    PubMed Central

    Hoins, Mirja; Eberlein, Tim; Groβmann, Christian H.; Brandenburg, Karen; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy; Van de Waal, Dedmer B.

    2016-01-01

    Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (εp) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light (‘LL’) and high-light (‘HL’) conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures (‘LN’) and nitrogen-replete batches (‘HN’). The observed CO2-dependency of εp remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL εp was consistently lower by about 2.7‰ over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched) bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of εp disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher εp under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent εp under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect εp, thereby illustrating the need to carefully consider prevailing environmental conditions. PMID:27153107

  10. 13C Isotopic Fractionation of HC3N in Star-forming Regions: Low-mass Star-forming Region L1527 and High-mass Star-forming Region G28.28-0.36

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kotomi; Saito, Masao; Ozeki, Hiroyuki

    2016-10-01

    We observed the J = 9-8 and 10-9 rotational lines of three 13C isotopologues of HC3N in L1527 and G28.28-0.36, with the 45 m radio telescope of the Nobeyama Radio Observatory, in order to constrain the main formation mechanisms of HC3N in each source. The abundance ratios of the three 13C isotopologues of HC3N are found to be 0.9 (±0.2) : 1.00 : 1.29 (±0.19) (1σ), and 1.0 (±0.2) : 1.00 : 1.47 (±0.17) (1σ), for [H13CCCN : HC13CCN : HCC13CN] in L1527 and G28.28-0.36, respectively. We recognize, from a similar 13C isotopic fractionation pattern, that the abundances of H13CCCN and HC13CCN are comparable, and HCC13CN is more abundant than the others. Based on the results, we discuss the main formation pathway of HC3N. The 13C isotopic fractionation pattern derived from our observations can be explained by the neutral-neutral reaction between C2H2 and CN in both the low-mass (L1527) and high-mass (G28.28-0.36) star-forming regions.

  11. The Semiquinone at the Qi Site of the bc1 Complex Explored Using HYSCORE Spectroscopy and Specific Isotopic Labeling of Ubiquinone in Rhodobacter sphaeroides via 13C Methionine and Construction of a Methionine Auxotroph

    PubMed Central

    2015-01-01

    Specific isotopic labeling at the residue or substituent level extends the scope of different spectroscopic approaches to the atomistic level. Here we describe 13C isotopic labeling of the methyl and methoxy ring substituents of ubiquinone, achieved through construction of a methionine auxotroph in Rhodobacter sphaeroides strain BC17 supplemented with l-methionine with the side chain methyl group 13C-labeled. Two-dimensional electron spin echo envelope modulation (HYSCORE) was applied to study the 13C methyl and methoxy hyperfine couplings in the semiquinone generated in situ at the Qi site of the bc1 complex in its membrane environment. The data were used to characterize the distribution of unpaired spin density and the conformations of the methoxy substituents based on density functional theory calculations of 13C hyperfine tensors in the semiquinone of the geometry-optimized X-ray structure of the bc1 complex (Protein Data Bank entry 1PP9) with the highest available resolution. Comparison with other proteins indicates individual orientations of the methoxy groups in each particular case are always different from the methoxy conformations in the anion radical prepared in a frozen alcohol solution. The protocol used in the generation of the methionine auxotroph is more generally applicable and, because it introduces a gene deletion using a suicide plasmid, can be applied repeatedly. PMID:25184535

  12. A (13)C NMR analysis of the effects of electron radiation on graphite/polyetherimide composites

    NASA Technical Reports Server (NTRS)

    Ferguson, Milton W.

    1989-01-01

    Initial investigations have been made into the use of high resolution nuclear magnetic resonance (NMR) for the characterization of radiation effects in graphite and Kevlar fibers, polymers, and the fiber/matrix interface in graphite/polyetherimide composites. Sample preparation techniques were refined. Essential equipment has been procured. A new NMR probe was constructed to increase the proton signal-to-noise ratio. Problem areas have been identified and plans developed to resolve them.

  13. Trimethylamine and Organic Matter Additions Reverse Substrate Limitation Effects on the δ13C Values of Methane Produced in Hypersaline Microbial Mats

    PubMed Central

    Nicholson, Brooke E.; Beaudoin, Claire S.; Detweiler, Angela M.; Bebout, Brad M.

    2014-01-01

    Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ13C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ13C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more 13C-depleted methane. Trimethylamine-amended samples produced lower methane δ13C values than the mat-amended samples. This difference in the δ13C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis. PMID:25239903

  14. Trimethylamine and Organic Matter Additions Reverse Substrate Limitation Effects on the δ13C Values of Methane Produced in Hypersaline Microbial Mats.

    PubMed

    Kelley, Cheryl A; Nicholson, Brooke E; Beaudoin, Claire S; Detweiler, Angela M; Bebout, Brad M

    2014-12-01

    Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ(13)C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ(13)C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more (13)C-depleted methane. Trimethylamine-amended samples produced lower methane δ(13)C values than the mat-amended samples. This difference in the δ(13)C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis.

  15. Multi-isotope labelling of organic matter by diffusion of 2H/18O-H2O vapour and 13C-CO2 into the leaves and its distribution within the plant

    NASA Astrophysics Data System (ADS)

    Studer, M. S.; Siegwolf, R. T. W.; Leuenberger, M.; Abiven, S.

    2015-03-01

    Isotope labelling is a powerful tool to study elemental cycling within terrestrial ecosystems. Here we describe a new multi-isotope technique to label organic matter (OM). We exposed poplars (Populus deltoides × nigra) for 14 days to an atmosphere enriched in 13CO2 and depleted in 2H218O. After 1 week, the water-soluble leaf OM (δ13C = 1346 ± 162‰) and the leaf water were strongly labelled (δ18O = -63 ± 8, δ2H = -156 ± 15‰). The leaf water isotopic composition was between the atmospheric and stem water, indicating a considerable back-diffusion of vapour into the leaves (58-69%) in the opposite direction to the net transpiration flow. The atomic ratios of the labels recovered (18O/13C, 2H/13C) were 2-4 times higher in leaves than in the stems and roots. This could be an indication of the synthesis of more condensed compounds in roots and stems (e.g. lignin vs. cellulose) or might be the result of O and H exchange and fractionation processes during phloem transport and biosynthesis. We demonstrate that the three major OM elements (C, O, H) can be labelled and traced simultaneously within the plant. This approach could be of interdisciplinary interest in the fields of plant physiology, palaeoclimatic reconstruction or soil science.

  16. Comparative effect of salinity on growth, grain yield, water use efficiency, δ(13)C and δ(15)N of landraces and improved durum wheat varieties.

    PubMed

    Chamekh, Zoubeir; Ayadi, Sawsen; Karmous, Chahine; Trifa, Youssef; Amara, Hajer; Boudabbous, Khaoula; Yousfi, Salima; Serret, Maria Dolors; Araus, José Luis

    2016-10-01

    Supplemental irrigation with low-quality water will be paramount in Mediterranean agriculture in the future, where durum wheat is a major crop. Breeding for salinity tolerance may contribute towards improving resilience to irrigation with brackish water. However, identification of appropriate phenotyping traits remains a bottleneck in breeding. A set of 25 genotypes, including 19 landraces and 6 improved varieties most cultivated in Tunisia, were grown in the field and irrigated with brackish water (6, 13 and 18dSm(-1)). Improved genotypes exhibited higher grain yield (GY) and water use efficiency at the crop level (WUEyield or 'water productivity'), shorter days to flowering (DTF), lower N concentration (N) and carbon isotope composition (δ(13)C) in mature kernels and lower nitrogen isotope composition (δ(15)N) in the flag leaf compared with landraces. GY was negatively correlated with DTF and the δ(13)C and N of mature kernels and was positively correlated with the δ(15)N of the flag leaf. Moreover, δ(13)C of mature kernels was negatively correlated with WUEyield. The results highlight the importance of shorter phenology together with photosynthetic resilience to salt-induced water stress (lower δ(13)C) and nitrogen metabolism (higher N and δ(15)N) for assessing genotypic performance to salinity.

  17. Calculation of total meal d13C from individual food d13C.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variations in the isotopic signature of carbon in biological samples can be used to distinguish dietary patterns and monitor shifts in metabolism. But for these variations to have meaning, the isotopic signature of the diet must be known. We sought to determine if knowledge of the 13C isotopic abund...

  18. Linking Isotopes and Panmixia: High Within-Colony Variation in Feather δ2H, δ13C, and δ15N across the Range of the American White Pelican

    PubMed Central

    Reudink, Matthew W.; Kyle, Christopher J.; McKellar, Ann E.; Somers, Christopher M.; Reudink, Robyn L. F.; Kyser, T. Kurt; Franks, Samantha E.; Nocera, Joseph J.

    2016-01-01

    Complete panmixia across the entire range of a species is a relatively rare phenomenon; however, this pattern may be found in species that have limited philopatry and frequent dispersal. American white pelicans (Pelecanus erythrorhyncos) provide a unique opportunity to examine the role of long-distance dispersal in facilitating gene flow in a species recently reported as panmictic across its broad breeding range. This species is also undergoing a range expansion, with new colonies arising hundreds of kilometers outside previous range boundaries. In this study, we use a multiple stable isotope (δ2H, δ13C, δ15N) approach to examine feather isotopic structuring at 19 pelican colonies across North America, with the goal of establishing an isotopic basemap that could be used for assigning individuals at newly established breeding sites to source colonies. Within-colony isotopic variation was extremely high, exceeding 100‰ in δ2H within some colonies (with relatively high variation also observed for δ13C and δ15N). The high degree of within-site variation greatly limited the utility of assignment-based approaches (42% cross-validation success rate; range: 0–90% success). Furthermore, clustering algorithms identified four likely isotopic clusters; however, those clusters were generally unrelated to geographic location. Taken together, the high degree of within-site isotopic variation and lack of geographically-defined isotopic clusters preclude the establishment of an isotopic basemap for American white pelicans, but may indicate that a high incidence of long-distance dispersal is facilitating gene flow, leading to genetic panmixia. PMID:26974163

  19. The effect of feeding on CO2 production and energy expenditure in ponies measured by indirect calorimetry and the 13C-bicarbonate technique.

    PubMed

    Jensen, R B; Kyrstein, T D; Junghans, P; Tauson, A H

    2015-11-01

    Energy expenditure (EE) can be estimated based on respiratory gas exchange measurements, traditionally done in respiration chambers by indirect calorimetry (IC). However, the (13)C-bicarbonate technique ((13)C-BT) might be an alternative minimal invasive method for estimation of CO(2) production and EE in the field. In this study, four Shetland ponies were used to explore the effect of feeding on CO(2) production and EE measured simultaneously by IC and (13)C-BT. The ponies were individually housed in respiration chambers and received either a single oral or intravenous (IV) bolus dose of (13)C-labelled sodium bicarbonate (NaH(13)CO(3)). The ponies were fed haylage 3 h before (T(-3)), simultaneously with (T(0)) or 3 h after (T(+3)) administration of (13)C-bicarbonate. The CO(2) produced and O(2) consumed by the ponies were measured for 6 h with both administration routes of (13)C-bicarbonate at the three different feeding times. Feeding time affected the CO(2) production (P<0.001) and O(2) consumption (P<0.001), but not the respiratory quotient (RQ) measured by IC. The recovery factor (RF) of (13)C in breath CO(2) was affected by feeding time (P<0.01) and three different RF were used in the calculation of CO(2) production measured by 13C-BT. An average RQ was used for the calculations of EE. There was no difference between IC and (13)C-BT for estimation of CO(2) production. An effect of feeding time (P<0.001) on the estimated EE was found, with higher EE when feed was offered (T(0) and T(+3)) compared with when no feed was available (T -3) during measurements. In conclusion, this study showed that feeding time affects the RF and measurements of CO(2) production and EE. This should be considered when the (13)C-BT is used in the field. IV administration of (13)C-bicarbonate is recommended in future studies with horses to avoid complex (13)C enrichment-time curves with maxima and shoulders as observed in several experiments with oral administration of (13)C-bicarbonate.

  20. Methyl [13C]glucopyranosiduronic acids: effect of COOH ionization and exocyclic structure on NMR spin-couplings.

    PubMed

    Zhang, Wenhui; Hu, Xiaosong; Carmichael, Ian; Serianni, Anthony S

    2012-11-02

    Methyl α- and β-D-glucopyranuronides singly labeled with (13)C at C1-C6 were prepared from the corresponding (13)C-labeled methyl D-glucopyranosides, and multiple NMR J-couplings (J(HH), J(CH), and J(CC)) were measured in their protonated and ionized forms in aqueous ((2)H(2)O) solution. Solvated density functional theory (DFT) calculations of J-couplings in structurally related model compounds were performed to determine how well the calculated J-couplings matched the experimental values in saccharides bearing an ionizable substituent. Intraring J(HH) values in both uronide anomers, including (3)J(H4,H5), are unaffected by solution pD, and COOH ionization exerts little effect on J(CH) and J(CC) except for (1)J(C1,H1), (1)J(C4,H4), (1)J(C5,H5), (1)J(C5,C6), and (2)J(C3,C5), where changes of up to 5 Hz were observed. Some of these changes are associated with changes in bond lengths upon ionization; in general, better agreement between theory and experiment was observed for couplings less sensitive to exocyclic C-O bond conformation. Titration of (1)H and (13)C chemical shifts, and some J-couplings, yielded a COOH pK(a) of 3.0 ± 0.1 in both anomers. DFT calculations suggest that substituents proximal to the exocyclic COOH group (i.e., the C4-O4 bond) influence the activation barrier to C5-C6 bond rotation due to transient intramolecular H-bonding. A comparison of J-couplings in the glucopyranuronides to corresponding J-couplings in the glucopyranosides showed that more pervasive changes occur upon conversion from a COOH to a CH(2)OH substituent at C6 than from COOH ionization within the uronides. Twelve J-couplings are affected, with the largest being (1)J(C5,C6) (∼18 Hz larger in the uronides), followed by (2)J(C6,H5) (∼2.5 Hz more negative in the uronides).

  1. Development of new method of δ(13)C measurement for trace hydrocarbons in natural gas using solid phase micro-extraction coupled to gas chromatography isotope ratio mass spectrometry.

    PubMed

    Li, Zhongping; Wang, Xibin; Li, Liwu; Zhang, Mingjie; Tao, Mingxin; Xing, Lantian; Cao, Chunhui; Xia, Yanqing

    2014-11-01

    Compound specific isotope analysis (CSIA) of normal-level hydrocarbons (C1-C4) in natural gas is often successfully used in natural gas origin identification and classification, but little progress so far has been made for trace level hydrocarbons (C5-C14) in natural gas. In this study, we developed a method for rapid analysis of carbon isotopic ratios for trace hydrocarbons in natural gas samples. This method can be described as a combined approach characterized by solid phase micro-extraction (SPME) technique coupled to gas chromatography isotope ratio mass spectrometry (GC/IRMS). In this study, the CAR-PDMS fiber was chosen as the SPME adsorptive material after comparative experiments with other four fibers, and the parameters, including equilibration time, extraction temperature and desorption time, for efficient extraction of trace hydrocarbons were systematically optimized. The results showed the carbon isotopic fractionation was not observed as a function of equilibration time and extraction temperature. And the δ(13)C signatures determined by SPME-GC/IRMS were in good agreement with the known δ(13)C values of C5-C14 measured by GC-IRMS, and the accuracy is generally within ±0.5‰. Five natural gas samples were analyzed using this method, and the δ(13)C values for C5-C14 components were obtained with satisfied repeatability. The SPME-GC/IRMS approach fitted with CAR-PDMS fiber is well suited for the preconcentration of trace hydrocarbons and provides so far the most reliable carbon isotopic analysis for trace compounds in natural gas.

  2. Latest Paleocene benthic extinction event on the southern Tethyan shelf (Egypt): Foraminiferal stable isotopic13C, δ18O) records

    NASA Astrophysics Data System (ADS)

    Schmitz, B.; Speijer, R. P.; Aubry, M.-P.

    1996-04-01

    The dramatic global extinction of 35% 50% of benthic foraminifera species in the deep sea in the latest Paleocene and associated negative excursions in δ13C and δ18O may be related to spreading of warm, saline bottom water from subtropical Tethyan shallow regions over the sea floor worldwide. Our study of neritic sections in Egypt shows that in the southern shallow Tethys, a prominent long-term change in bottom-water chemistry, sedimentation, and benthic foraminifera fauna was initiated at the time when the deep-sea benthic extinction event (BEE) took place. Bottom-water δ13C values on the Tethyan shelf show a sudden 3.0‰ negative shift at this event; however, contrary to the deep sea, in which the δ13C excursion was of short duration, Tethyan δ13C values did not fully return to preboundary values, but remained depressed by ˜1.5‰ for at least 1 m.y. The δ13C values at the Egyptian shelf during the BEE are much lower than would be expected if this was a source region for global deep water. The δ18O values indicate no significant change in bottom-water salinity or temperature at the BEE. The long-lasting environmental changes that began on the Egyptian shelf at the BEE may be related to, for example, gateway reorganization along the Tethyan seaway. Paleogeographic changes possibly also triggered a change in the loci of global deep-water formation; however, these loci must be sought in another part of the Tethys.

  3. Changing gull diet in a changing world: a 150-year stable isotope13C, δ15N) record from feathers collected in the Pacific Northwest of North America.

    PubMed

    Blight, Louise K; Hobson, Keith A; Kyser, T Kurt; Arcese, Peter

    2015-04-01

    The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long-term human impacts. We used stable isotope (δ(13)C, δ(15)N) analysis of feathers from glaucous-winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long-term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ(13)C and δ(15)N declined since 1860 in both subadult and adult gulls (δ(13)C, ~ 2-6‰; δ(15)N, ~4-5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ(13)C and δ(15)N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage-based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long-term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional

  4. Acute porcine renal metabolic effect of endogastric soft drink administration assessed with hyperpolarized [1‐13c]pyruvate

    PubMed Central

    Hansen, Esben Søvsø Szocska; Kjærgaard, Uffe; Bertelsen, Lotte Bonde; Ringgaard, Steffen; Stødkilde‐Jørgensen, Hans

    2015-01-01

    Purpose Our aim was to determine the quantitative reproducibility of metabolic breakdown products in the kidney following intravenous injection of hyperpolarized [1‐13C]pyruvate and secondly to investigate the metabolic effect on the pyruvate metabolism of oral sucrose load using dissolution dynamic nuclear polarization. By this technique, metabolic alterations in several different metabolic related diseases and their metabolic treatment responses can be accessed. Methods In four healthy pigs the lactate‐to‐pyruvate, alanine‐to‐pyruvate and bicarbonate‐to‐pyruvate ratio was measured following administration of regular cola and consecutive injections of hyperpolarized [1‐13C]pyruvate four times within an hour. Results The overall lactate‐to‐pyruvate metabolic profile changed significantly over one hour following an acute sucrose load leading to a significant rise in blood glucose. Conclusion The reproducibility of hyperpolarized magnetic resonance spectroscopy in the healthy pig kidney demonstrated a repeatability of more than 94% for all metabolites and, furthermore, that the pyruvate to lactate conversion and the blood glucose level is elevated following endogastric sucrose administration. Magn Reson Med 74:558–563, 2015. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. PMID:26014387

  5. Stable isotope analysis of breath using the optogalvanic effect

    NASA Astrophysics Data System (ADS)

    Murnick, Daniel E.; Colgan, M. J.; Lie, H. P.; Stoneback, D.

    1996-05-01

    A new technique based on the optogalvanic effect has been developed for the measurement of stable isotope ratios in the carbon dioxide of exhaled breath. Data obtained before and after ingestion of harmless stable isotope labeled compounds, metabolized to carbon dioxide, can be used for sensitive noninvasive diagnostics of various disease conditions. The technique uses the specificity of laser resonance spectroscopy and achieves sensitivity and accuracy typical of sophisticated isotope ratio mass spectrometers. Using fixed frequency carbon dioxide lasers, 13C/12C ratios can be determined with a precision of 2 ppm with 100 second averaging times. Multiple samples can be analyzed simultaneously providing real time continuous calibration. In a first application, analysis of 13C/12C ratios in exhaled human breath after ingestion of 13C labeled urea is being developed as a diagnostic for the bacterium H-pylori, known to be the causative agent for most peptic and duodenal ulcers.

  6. New guidelines for δ13C measurements

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Gehre, Matthias; Groning, Manfred; Meijer, Harro A. J.; Toman, Blaza; Verkouteren, R. Michael

    2006-01-01

    Consistency of δ13C measurements can be improved 39−47% by anchoring the δ13C scale with two isotopic reference materials differing substantially in 13C/12C. It is recommended thatδ13C values of both organic and inorganic materials be measured and expressed relative to VPDB (Vienna Peedee belemnite) on a scale normalized by assigning consensus values of −46.6‰ to L-SVEC lithium carbonate and +1.95‰ to NBS 19 calcium carbonate. Uncertainties of other reference material values on this scale are improved by factors up to two or more, and the values of some have been notably shifted:  the δ13C of NBS 22 oil is −30.03%.

  7. Racing carbon atoms. Atomic motion reaction coordinates and structural effects on Newtonian kinetic isotope effects.

    PubMed

    Andujar-De Sanctis, Ivonne L; Singleton, Daniel A

    2012-10-19

    Intramolecular (13)C kinetic isotope effects were determined for the dimerization of methacrolein. Trajectory studies accurately predict the isotope effects and support an origin in Newton's second law of motion, with no involvement of zero-point energy or transition state recrossing. Atomic motion reaction coordinate diagrams are introduced as a way to qualitatively understand the selectivity.

  8. Stable carbon ((12/13)C) and nitrogen ((14/15)N) isotopes as a tool for identifying the sources of cyanide in wastes and contaminated soils--a method development.

    PubMed

    Weihmann, Jenny; Mansfeldt, Tim; Schulte, Ulrike

    2007-01-23

    The occurrence of iron-cyanide complexes in the environment is of concern, since they are potentially hazardous. In order to determine the source of iron-cyanide complexes in contaminated soils and wastes, we developed a method based on the stable isotope ratios (13)C/(12)C and (15)N/(14)N of the complexed cyanide-ion (CN(-)). The method was tested on three pure chemicals and two industrials wastes: blast-furnace sludge (BFS) and gas-purifier waste (GPW). The iron-cyanide complexes were converted into the solid cupric ferrocyanide, Cu(2)[Fe(CN)(6)].7H(2)O, followed by combustion and determination of the isotope-ratios by continuous flow isotope ratio mass spectrometry. Cupric ferrocyanide was obtained from the materials by (i) an alkaline extraction with 1M NaOH and (ii) a distillate digestion. The [Fe(CN)(6)](4-) of the alkaline extraction was precipitated after adding Cu(2+). The CN(-) of the distillate digestion was at first complexed with Fe(2+) under inert conditions and then precipitated after adding Cu(2+). The delta(13)C-values obtained by the two methods differed slightly up to 1-3 per thousand for standards and BFS. The difference was larger for alkaline-extracted GPW (4-7 per thousand), since non-cyanide C was co-extracted and co-precipitated. Therefore the distillate digestion technique is recommended when determining the C isotope ratios in samples rich in organic carbon. Since the delta(13)C-values of BFS are in the range of -30 to -24 per thousand and of -17 to -5 per thousand for GPW, carbon seems to be a suitable tracer for identifying the source of cyanide in both wastes. However, the delta(15)N-values overlapped for BFS and GPW, making nitrogen unsuitable as a tracer.

  9. Synthesis, NMR spectroscopic characterization and structure of a divinyldisilazane-(triphenylphosphine)platinum(0) complex: observation of isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt).

    PubMed

    Wrackmeyer, Bernd; Klimkina, Elena V; Schmalz, Thomas; Milius, Wolfgang

    2013-05-01

    Tetramethyldivinyldisilazane-(triphenylphosphine)platinum(0) was prepared, characterized in solid state by X-ray crystallography and in solution by multinuclear magnetic resonance spectroscopy ((1)H, (13)C, (15)N, (29)Si, (31)P and (195)Pt NMR). Numerous signs of spin-spin coupling constants were determined by two-dimensional heteronuclear shift correlations (HETCOR) and two-dimensional (1)H/(1)H COSY experiments. Isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt) were measured from (195)Pt NMR spectra of the title compound as well as of other Pt(0), Pt(II) and Pt(IV) compounds for comparison. In contrast to other heavy nuclei such as (199)Hg or (207)Pb, the "normal" shifts of the heavy isotopomers to low frequencies are found, covering a range of >500 ppb.

  10. Effects of side-chain orientation on the 13C chemical shifts of antiparallel beta-sheet model peptides.

    PubMed

    Villegas, Myriam E; Vila, Jorge A; Scheraga, Harold A

    2007-02-01

    The dependence of the (13)C chemical shift on side-chain orientation was investigated at the density functional level for a two-strand antiparallel beta-sheet model peptide represented by the amino acid sequence Ac-(Ala)(3)-X-(Ala)(12)-NH(2) where X represents any of the 17 naturally occurring amino acids, i.e., not including alanine, glycine and proline. The dihedral angles adopted for the backbone were taken from, and fixed at, observed experimental values of an antiparallel beta-sheet. We carried out a cluster analysis of the ensembles of conformations generated by considering the side-chain dihedral angles for each residue X as variables, and use them to compute the (13)C chemical shifts at the density functional theory level. It is shown that the adoption of the locally-dense basis set approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 17 naturally occurring amino acids in an antiparallel beta-sheet, there is (i) good agreement between computed and observed (13)C(alpha) and (13)C(beta) chemical shifts, with correlation coefficients of 0.95 and 0.99, respectively; (ii) significant variability of the computed (13)C(alpha) and (13)C(beta) chemical shifts as a function of chi(1) for all amino acid residues except Ser; and (iii) a smaller, although significant, dependence of the computed (13)C(alpha) chemical shifts on chi(xi) (with xi > or = 2) compared to chi(1) for eleven out of seventeen residues. Our results suggest that predicted (13)C(alpha) and (13)C(beta) chemical shifts, based only on backbone (phi,psi) dihedral angles from high-resolution X-ray structure data or from NMR-derived models, may differ significantly from those observed in solution if the dihedral-angle preferences for the side chains are not taken into account.

  11. Effect of Crop cultivation after Mediterranean maquis on soil carbon stock, δ13C spatial distribution and root turnover

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Gristina, Luciano; Santoro, Antonino; La Mantia, Tommaso

    2013-04-01

    The aim of this work was investigate the effect of land use change on soil organic carbon (SOC) stock and distribution in a Mediterranean succession. A succession composed by natural vegetation, cactus pear crop and olive grove, was selected in Sicily. The land use change from mediterranena maquis (C3 plant) to cactus pear (C4 plant) lead to a SOC decrease of 65% after 28 years of cultivation, and a further decrease of 14% after 7 years since the land use from cactus pear to olive grove (C3 plant). Considering this exchange and decrease as well as the periods after the land use changes we calculated the mean residence time (MRT) of soil C of different age. The MRT of C under Mediterranean maquis was about 142 years, but was 10 years under cactus pear. Total SOC and δ13 C were measured along the soil profile (0-75cm) and in the intra-rows in order to evaluate the distribution of new and old carbon derived and the growth of roots. After measuring of weight of cactus pear root, an approach was developed to estimate the turnover of root biomass. Knowledge of root turnover and carbon input are important to evaluate the correlation between carbon input accumulation and SOC stock in order to study the ability of C sink of soils with different use and managements.

  12. (13)C and (15)N NMR characterization of amine reactivity and solvent effects in CO2 capture.

    PubMed

    Perinu, Cristina; Arstad, Bjørnar; Bouzga, Aud M; Jens, Klaus-J

    2014-08-28

    Factors influencing the reactivity of selected amine absorbents for carbon dioxide (CO2) capture, in terms of the tendency to form amine carbamate, have been studied. Four linear primary alkanolamines at varying chain lengths (MEA, 3A1P, 4A1B , and 5A1P ), two primary amines with different substituents in the β-position to the nitrogen (1A2P and ISOB), a secondary alkanolamine (DEA), and a sterically hindered primary amine (AMP) were investigated. The relationship between the (15)N NMR data of aqueous amines and their ability to form carbamate, as determined at equilibrium by quantitative (13)C NMR experiments, was analyzed, taking into account structural-chemical properties. For all the amines, the (15)N chemical shifts fairly reflected the observed reactivity for carbamate formation. In addition to being a useful tool for the investigation of amine reactivity, (15)N NMR data clearly provided evidence of the importance of solvent effects for the understanding of chemical dynamics in CO2 capture by aqueous amine absorbents.

  13. A stable isotope13C and δ15N) perspective on human diet on Rapa Nui (Easter Island) ca. AD 1400-1900.

    PubMed

    Commendador, Amy S; Dudgeon, John V; Finney, Bruce P; Fuller, Benjamin T; Esh, Kelley S

    2013-10-01

    Ecological and environmental evidence suggests that Rapa Nui was among the most marginally habitable islands in Eastern Polynesia, with only a fraction of the biotic diversity found on archipelagos to the west, and capable of sustaining many fewer cultigens traditionally transported by Polynesian colonizers. However, archaeological evidence for human dietary adaptations under such restrictions is limited. Little is known about the particulars of the subsistence base and dietary changes on Rapa Nui that may be associated with a hypothesized late prehistoric decline in the quality and diversity of food sources. To better understand prehistoric Rapa Nui diet we examined stable carbon and nitrogen isotope compositions of human teeth along with archaeological faunal material thought to comprise the Rapa Nui food web. Our results indicate that contrary to previous zooarchaeological studies diet was predominantly terrestrial throughout the entire sequence of occupation, with reliance on rats, chickens and C3 plants. While a few individuals may have had access to higher trophic level marine resources, this is evident only later in time (generally post-AD 1600). A decline in (15)N through time was observed, and may be attributed to declines in available terrestrial proteins; however, presently we cannot rule out the effect of changing soil and plant baseline δ(15)N. Our results also suggest differential access to higher trophic level marine resources among contemporaneous populations, but more research is required to clarify this observation.

  14. Identifying carbon sources and trophic position of coral reef fishes using diet and stable isotope (δ15N and δ13C) analyses in two contrasted bays in Moorea, French Polynesia

    NASA Astrophysics Data System (ADS)

    Letourneur, Y.; Lison de Loma, T.; Richard, P.; Harmelin-Vivien, M. L.; Cresson, P.; Banaru, D.; Fontaine, M.-F.; Gref, T.; Planes, S.

    2013-12-01

    Stable isotope ratios (δ15N and δ13C) and diet of three fish species, Stegastes nigricans, Chaetodon citrinellus and Epinephelus merra, were analyzed on the fringing coral reefs of two bays that are differentially exposed to river runoff on Moorea Island, French Polynesia. S. nigricans and C. citrinellus relied mostly on turf algae and presented similar trophic levels and δ15N values, whereas E. merra fed on large invertebrates (crabs and shrimps) and had higher trophic levels and δ15N values. Discrepancies existed between stomach content and stable isotope analyses for the relative importance of food items. Bayesian mixing models indicated that sedimented organic matter was also an important additional food for S. nigricans and C. citrinellus, and fishes for E. merra. The main sources of organic matter involved in the food webs ending with these species were algal turfs and surface sediments, while water particulate organic matter was barely used. Significant spatial differences in C and N isotopic ratios for sources and fishes were found within and between bays. Lower 13C and higher 15N values were observed for various compartments of the studied trophic network at the end of each bay than at the entrance. Differences were observed between bays, with organic sources and consumers being, on average, slightly more 13C-depleted and 15N-enriched in Cook's Bay than in Opunohu Bay, linked with a higher mean annual flow of the river at Cook's Bay. Our results suggest that rivers bring continental material into these two bays, which is partly incorporated into the food webs of fringing coral reefs at least close to river mouths. Thus, continental inputs can influence the transfer of organic matter within coral reef food webs depending on the diet of organisms.

  15. Effect of photosynthesis on the abundance of 18O13C16O in atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Hofmann, Magdalena E. G.; Pons, Thijs L.; Ziegler, Martin; Lourens, Lucas J.; Röckmann, Thomas

    2016-04-01

    The abundance of the isotopologue 18O13C16O (Δ47) in atmospheric air is a promising new tracer for the atmospheric carbon cycle (Eiler and Schauble, 2004; Affek and Eiler, 2006; Affek et al., 2007). The large gross fluxes in CO2 between the atmosphere and biosphere are supposed to play a major role in controlling its abundance. Eiler and Schauble (2004) set up a box model describing the effect of air-leaf interaction on the abundance of 18O13C16O in atmospheric air. The main assumption is that the exchange between CO2 and water within the mesophyll cells will imprint a Δ47 value on the back-diffusing CO2 that reflects the leaf temperature. Additionally, kinetic effects due to CO2 diffusion into and out of the stomata are thought to play a role. We investigated the effect of photosynthesis on the residual CO2 under controlled conditions using a leaf chamber set-up to quantitatively test the model assumptions suggested by Eiler and Schauble (2004). We studied the effect of photosynthesis on the residual CO2 using two C3 and one C4 plant species: (i) sunflower (Helianthus annuus), a C3 species with a high leaf conductance for CO2 diffusion, (ii) ivy (Hedera hibernica), a C3 species with a low conductance, and (iii), maize (Zea mays), a species with the C4 photosynthetic pathway. We also investigated the effect of different light intensities (photosynthetic photon flux density of 200, 700 and 1800 μmol m2s-1), and thus, photosynthetic rate in sunflower and maize. A leaf was mounted in a cuvette with a transparent window and an adjustable light source. The air inside was thoroughly mixed, making the composition of the outgoing air equal to the air inside. A gas-mixing unit was attached at the entrance of the cuvette that mixed air with a high concentration of scrambled CO2 with a Δ47 value of 0 to 0.1‰ with CO2 free air to set the CO2 concentration of ingoing air at 500 ppm. The flow rate through the cuvette was adjusted to the photosynthetic activity of the leaf

  16. Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid δ13C values for palaeodietary and palaeoecological reconstruction.

    PubMed

    Dunn, Philip J H; Honch, Noah V; Evershed, Richard P

    2011-10-30

    Results are presented of a comparison of the amino acid (AA) δ(13)C values obtained by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) and liquid chromatography-isotope ratio mass spectrometry (LC/IRMS). Although the primary focus was the compound-specific stable carbon isotope analysis of bone collagen AAs, because of its growing application for palaeodietary and palaeoecological reconstruction, the results are relevant to any field where AA δ(13)C values are required. We compare LC/IRMS with the most up-to-date GC/C/IRMS method using N-acetyl methyl ester (NACME) AA derivatives. This comparison involves the analysis of standard AAs and hydrolysates of archaeological human bone collagen, which have been previously investigated as N-trifluoroacetyl isopropyl esters (TFA/IP). It was observed that, although GC/C/IRMS analyses required less sample, LC/IRMS permitted the analysis of a wider range of AAs, particularly those not amenable to GC analysis (e.g. arginine). Accordingly, reconstructed bulk δ(13)C values based on LC/IRMS-derived δ(13)C values were closer to the EA/IRMS-derived δ(13)C values than those based on GC/C/IRMS values. The analytical errors for LC/IRMS AA δ(13)C values were lower than GC/C/IRMS determinations. Inconsistencies in the δ(13)C values of the TFA/IP derivatives compared with the NACME- and LC/IRMS-derived δ(13)C values suggest inherent problems with the use of TFA/IP derivatives, resulting from: (i) inefficient sample combustion, and/or (ii) differences in the intra-molecular distribution of δ(13)C values between AAs, which are manifested by incomplete combustion. Close similarities between the NACME AA δ(13)C values and the LC/IRMS-derived δ(13)C values suggest that the TFA/IP derivatives should be abandoned for the natural abundance determinations of AA δ(13)C values.

  17. The effects of Paraloid B-72 and Butvar B-98 treatment and organic solvent removal on δ(13)C, δ(15)N, and δ(18)O values of collagen and hydroxyapatite in a modern bone.

    PubMed

    France, Christine A M; Giaccai, Jennifer A; Doney, Charlotte R

    2015-06-01

    Stable isotopes in bones are a powerful tool for diet, provenance, climate, and physiological reconstructions, but necessarily require well-preserved specimens unaltered by postmortem diagenesis or conservation practices. This study examines the effects of Paraloid B-72 and Butvar B-98, two common consolidants used in field and museum conservation, on δ(13)C, δ(15)N, and δ(18)O values from bone collagen and hydroxyapatite. The effects of solvent removal (100% acetone, 100% ethanol, 9:1 acetone:xylenes, 9:1 ethanol:xylenes) and drying methods (ambient air, vacuum, oven drying at 80°C) were also examined to determine if bones treated with these consolidants can successfully be cleaned and used for stable isotope analyses. Results show that introduction of Paraloid B-72 or Butvar B-98 in 100% acetone or 100% ethanol, respectively, with subsequent removal by the same solvents and drying at 80°C facilitates the most successful removal of consolidants and solvents. The δ(13)C values in collagen, δ(15)N in collagen, δ(18)O in hydroxyapatite phosphate, and δ(13)C in hydroxyapatite structural carbonate were unaltered by treatments with Paraloid or Butvar and subsequent solvent removal. The δ(18)O in hydroxyapatite structural carbonate showed nonsystematic variability when bones were treated with Paraloid and Butvar, which is hypothesized to be a result of hydroxyl exchange when bones are exposed to consolidants in solution. It is therefore recommended that δ(18)O in hydroxyapatite structural carbonate should not be used in stable isotope studies if bones have been treated with Paraloid or Butvar.

  18. An estimation of Central Iberian Peninsula atmospheric δ13C and water δD in the Upper Cretaceous using pyrolysis compound specific isotopic analysis (Py-CSIA) of a fossil conifer.

    NASA Astrophysics Data System (ADS)

    González-Pérez, José A.; Jiménez-Morillo, Nicasio T.; De la Rosa, José M.; Almendros, Gonzalo; González-Vila, Francisco J.

    2015-04-01

    Frenelopsis is a frequently found genus of the Cretaceous floras adapted to dry, saline and in general to environmental conditions marked by severe water stress [1]. Stable isotope analysis of fossil organic materials can be used to infer palaeoenvironmental variables helpful to reconstruct plant paleohabitats [2]. In this study stable isotope analysis of organic fossil remains (FR) and humic fractions (FA, HA and humin) of Frenelopsis oligiostomata are studied in bulk (C, H, O, N IRMS) and in specific compounds released by pyrolysis (C, H, Py-CSIA). Well preserved F. oligiostomata fossils were handpicked from a limestone included in compacted marls from Upper Cretaceous (Senonian c. 72 Mya) in Guadalix de la Sierra (Madrid, Spain) [3]. The fossils were decarbonated with 6M HCl. Humic substances were extracted from finely ground fossil remains (FR) by successive treatments with 0.1M Na4P2O7 + NaOH [4]. The extract was acidified resulting into insoluble HA and soluble FA fractions. The HA and FA were purified as in [5] and [6] respectively. Bulk stable isotopic analysis (δ13C, δD, δ18O, δ15N IRMS) was done in an elemental micro-analyser coupled to a continuous flow Delta V Advantage isotope ratio mass spectrometer (IRMS). Pyrolysis compound specific isotopic analysis Py-CSIA (δ13C, δD): was done by coupling a double-shot pyrolyzer to a chromatograph connected to an IRMS. Structural features of specific peaks were inferred by comparing/matching mass spectra from conventional Py-GC/MS (data not shown) with Py-GC/IRMS chromatograms obtained using the same chromatographic conditions. Bulk C isotopic signature found for FR (-20.5±0.02 ‰) was in accordance with previous studies [2, 7-9]. This heavy isotopic δ13C signature indicates a depleted stomatal conductance and paleoenvironmental growth conditions of water and salt stress. This is in line with the morphological and depositional characteristics [3] confirming that F. oligostomata was adapted to highly xeric

  19. Specific 13C functional pathways as diagnostic targets in gastroenterology breath-tests: tricks for a correct interpretation.

    PubMed

    Pizzoferrato, M; Del Zompo, F; Mangiola, F; Lopetuso, L R; Petito, V; Cammarota, G; Gasbarrini, A; Scaldaferri, F

    2013-01-01

    Breath tests are non-invasive, non-radioactive, safe, simple and effective tests able to determine significant metabolic alterations due to specific diseases or lack of specific enzymes. Carbon isotope (13)C, the stable-non radioactive isotope of carbon, is the most used substrate in breath testing, in which (13)C/(12)C ratio is measured and expressed as a delta value, a differences between readings and a fixed standard. (13)C/(12)C ratio is measured with isotope ratio mass spectrometry or non-dispersive isotope-selective infrared spectrometer and generally there is a good agreement between these techniques in the isotope ratio estimation. (13)C/(12)C ratio can be expressed as static measurement (like delta over baseline in urea breath test) or as dynamic measurement as percent dose recovery, but more dosages are necessary. (13)C Breath-tests are involved in many fields of interest within gastroenterology, such as detection of Helicobacter pylori infection, study of gastric emptying, assessment of liver and exocrine pancreatic functions, determination of oro-caecal transit time, evaluation of absorption and to a lesser extend detection of bacterial overgrowth. The use of every single test in a clinical setting is vary depending on accuracy and substrate costs. This review is meant to present (13)C the meaning of (13)C/(12)C ratio and static and dynamic measure and, finally, the instruments dedicated to its use in gastroenterology. A brief presentation of (13)C breath tests in gastroenterology is also provided.

  20. Characterization of metabolic profile of honokiol in rat feces using liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and (13)C stable isotope labeling.

    PubMed

    Dong, Yinfeng; Tang, Minghai; Song, Hang; Li, Rong; Wang, Chunyu; Ye, Haoyu; Qiu, Neng; Zhang, Yongkui; Chen, Lijuan; Wei, Yuquan

    2014-03-15

    As fecal excretion is one of important routes of elimination of drugs and their metabolites, it is indispensable to investigate the metabolites in feces for more comprehensive information on biotransformation in vivo. In this study, a sensitive and reliable approach based on ultra-performance liquid chromatography/quadrupole-time-of-flight-mass spectrometry (UHPLC-Q-TOF-MS) was applied to characterize the metabolic profile of honokiol in rat feces after the administration of an equimolar mixture of honokiol and [(13)C6]-labeled honokiol. Totally 42 metabolites were discovered and tentatively identified in rat feces samples, 26 metabolites were first reported, including two novel classes of metabolites, methylated and dimeric metabolites of honokiol. Moreover, this study provided basic comparative data on the metabolites in rat plasma, feces and urine, which gave better understanding of the metabolic fate of honokiol in vivo.

  1. Determining the Local Abundance of Martian Methane and its 13-C/l2-C and D/H Isotopic Ratios for Comparison with Related Gas and Soil Analysis on the 2011 Mars Science Laboratory (MSL) Mission

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Mahaffy, Paul R.

    2011-01-01

    Understanding the origin of Martian methane will require numerous complementary measurements from both in situ and remote sensing investigations and laboratory work to correlate planetary surface geophysics with atmospheric dynamics and chemistry. Three instruments (Quadrupole Mass Spectrometer (QMS), Gas Chromatograph (GC) and Tunable Laser Spectrometer (TLS)) with sophisticated sample handling and processing capability make up the Sample Analysis at Mars (SAM) analytical chemistry suite on NASA s 2011 Mars Science Laboratory (MSL) Mission. Leveraging off the SAM sample and gas processing capability that includes methane enrichment, TLS has unprecedented sensitivity for measuring absolute methane (parts-per-trillion), water, and carbon dioxide abundances in both the Martian atmosphere and evolved from heated soil samples. In concert with a wide variety of associated trace gases (e.g. SO2, H2S, NH3, higher hydrocarbons, organics, etc.) and other isotope ratios measured by SAM, TLS will focus on determining the absolute abundances of methane, water and carbon dioxide, and their isotope ratios: 13C/12C and D/H in methane; 13C/12C and 18O/17O/16O in carbon dioxide; and 18O/17O/16O and D/H in water. Measurements near the MSL landing site will be correlated with satellite (Mars Express, Mars 2016) and ground-based observations.

  2. NMR crystallography to probe the breathing effect of the MIL-53(Al) metal-organic framework using solid-state NMR measurements of (13)C-(27)Al distances.

    PubMed

    Giovine, Raynald; Volkringer, Christophe; Trébosc, Julien; Amoureux, Jean Paul; Loiseau, Thierry; Lafon, Olivier; Pourpoint, Frédérique

    2017-03-01

    The metal-organic framework MIL-53(Al) (aluminium terephthalate) exhibits a structural transition between two porous structures with large pore (lp) or narrow pore (np) configurations. This transition, called the breathing effect, is observed upon changes in temperature or external pressure, as well as with the adsorption of guest molecules, such as H2O, within the pores. We show here how these different pore openings can be detected by observing the dephasing of (13)C magnetization under (13)C-(27)Al dipolar couplings using Rotational-Echo Saturation-Pulse Double-Resonance (RESPDOR) solid-state NMR experiments with Simultaneous Frequency and Amplitude Modulation (SFAM) recoupling. These double-resonance NMR experiments between (13)C and (27)Al nuclei, which have close Larmor frequencies, are feasible thanks to the use of a frequency splitter. The experimental SFAM-RESPDOR signal fractions agree well with those simulated from the MIL-53(Al)-lp and -np crystal structures obtained from powder X-ray diffraction analysis. Hence, these (13)C-(27)Al solid-state NMR experiments validate these structures and confirm their rigidity. A similar agreement is reported for the framework ligands in the as-synthesized (as) MIL-53(Al), in which the pores contain free ligands. Furthermore, in this case, (13)C-{(27)Al} SFAM-RESPDOR experiments allow an estimation of the average distance between the free ligands and the (27)Al nuclei of the framework.

  3. Use of hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate to probe the effects of the anticancer agent dichloroacetate on mitochondrial metabolism in vivo in the normal rat.

    PubMed

    Hu, Simon; Yoshihara, Hikari A I; Bok, Robert; Zhou, Jenny; Zhu, Minhua; Kurhanewicz, John; Vigneron, Daniel B

    2012-12-01

    Development of hyperpolarized technology utilizing dynamic nuclear polarization has enabled the measurement of (13)C metabolism in vivo at very high signal-to-noise ratio (SNR). In vivo mitochondrial metabolism can, in principle, be monitored with pyruvate, which is catalyzed to acetyl-CoA via pyruvate dehydrogenase (PDH). The purpose of this work was to determine whether the compound sodium dichloroacetate (DCA) could aid the study of mitochondrial metabolism with hyperpolarized pyruvate. DCA stimulates PDH by inhibiting its inhibitor, pyruvate dehydrogenase kinase. In this work, hyperpolarized [1-(13)C]pyruvate and [2-(13)C]pyruvate were used to probe mitochondrial metabolism in normal rats. Increased conversion to bicarbonate (+181±69%, P=.025) was measured when [1-(13)C]pyruvate was injected after DCA administration, and increased glutamate (+74±23%, P=.004), acetoacetate (+504±281%, P=.009) and acetylcarnitine (+377±157%, P=.003) were detected when [2-(13)C]pyruvate was used.

  4. Effects of insulin on perfused liver from streptozotocin-diabetic and untreated rats: /sup 13/C NMR assay of pyruvate kinase flux

    SciTech Connect

    Cohen, S.M.

    1987-01-27

    The effects of insulin in vitro on perfused liver from streptozotocin-diabetic rats and their untreated littermates during gluconeogenesis from either (3-/sup 13/C)alanine + ethanol or (2-/sup 13/C)pyruvate + NH/sub 4/Cl + ethanol were studied by /sup 13/C NMR. A /sup 13/C NMR determination of the rate of pyruvate kinase flux under steady-state conditions of active gluconeogenesis was developed; this assay includes a check on the reuse of recycled pyruvate. The preparations studied provided gradations of pyruvate kinase flux within the confines of the assay's requirement of active gluconeogenesis. By this determination, the rate of pyruvate kinase flux was 0.74 +/- 0.04 of the gluconeogenic rate in liver from 24-h-fasted controls; in liver from 12-h fasted controls, relative pyruvate kinase flux increased to 1.0 +/- 0.2. In diabetic liver, this flux was undetectable by the authors NMR method. Insulin's hepatic influence in vitro was greatest in the streptozotocin model of type 1 diabetes: upon treatment of diabetic liver with 7 nM insulin in vitro, a partial reversal of many of the differences noted between diabetic and control liver was demonstrated by /sup 13/C NMR. A major effect of insulin in vitro upon diabetic liver was the induction of a large increase in the rate of pyruvate kinase flux, bringing relative and absolute fluxes up to the levels measured in 24-h-fasted controls. By way of comparison, the effects of ischemia on diabetic liver were studied by /sup 13/C NMR to test whether changes in allosteric effectors under these conditions could also increase pyruvate kinase flux. A large increase in this activity was demonstrated in ischemic diabetic liver.

  5. Life history of the individuals buried in the St. Benedict Cemetery (Prague, 15th-18th centuries): insights from (14)C dating and stable isotope (δ(13)C, δ(15)N, δ(18)O) analysis.

    PubMed

    Salesse, Kevin; Dufour, Élise; Castex, Dominique; Velemínský, Petr; Santos, Frédéric; Kuchařová, Hedvika; Jun, Libor; Brůžek, Jaroslav

    2013-06-01

    Funerary practices and bioarchaeological (sex and age) data suggest that a mortality crisis linked to an epidemic episode occurred during the fifth phase of the St. Benedict cemetery in Prague (Czech Republic). To identify this mass mortality episode, we reconstructed individual life histories (dietary and mobility factors), assessed the population's biological homogeneity, and proposed a new chronology through stable isotope analysis (δ(13)C, δ(18)O and δ(15)N) and direct radiocarbon dating. Stable isotope analysis was conducted on the bone and tooth enamel (collagen and carbonate) of 19 individuals from three multiple graves (MG) and 12 individuals from individual graves (IG). The δ(15)N values of collagen and the difference between the δ(13)C values of collagen and bone carbonate could indicate that the IG individuals had a richer protein diet than the MG individuals or different food resources. The human bone and enamel carbonate and δ(18)O values suggest that the majority of individuals from MG and all individuals from IG spent most of their lives outside of the Bohemian region. Variations in δ(18)O values also indicate that all individuals experienced residential mobility during their lives. The stable isotope results, biological (age and sex) data and eight (14)C dates clearly differentiate the MG and IG groups. The present work provides evidence for the reuse of the St. Benedict cemetery to bury soldiers despite the funeral protest ban (1635 AD). The Siege of Prague (1742 AD) by French-Bavarian-Saxon armies is identified as the cause of the St. Benedict mass mortality event.

  6. Leaf and root pectin methylesterase activity and 13C/12C stable isotopic ratio measurements of methanol emissions give insight into methanol production in Lycopersicon esculentum.

    PubMed

    Oikawa, Patricia Yoshino; Giebel, Brian M; Sternberg, Leonel da Silveira Lobo O'Reilly; Li, Lei; Timko, Michael P; Swart, Peter K; Riemer, Daniel D; Mak, John E; Lerdau, Manuel T

    2011-09-01

    Plant production of methanol (MeOH) is a poorly understood aspect of metabolism, and understanding MeOH production in plants is crucial for modeling MeOH emissions. Here, we have examined the source of MeOH emissions from mature and immature leaves and whether pectin methylesterase (PME) activity is a good predictor of MeOH emission. We also investigated the significance of below-ground MeOH production for mature leaf emissions. We present measurements of MeOH emission, PME activity, and MeOH concentration in mature and immature tissues of tomato (Lycopersicon esculentum). We also present stable carbon isotopic signatures of MeOH emission and the pectin methoxyl pool. Our results suggest that below-ground MeOH production was not the dominant contributor to daytime MeOH emissions from mature and immature leaves. Stable carbon isotopic signatures of mature and immature leaf MeOH were similar, suggesting that they were derived from the same pathway. Foliar PME activity was related to MeOH flux, but unexplained variance suggested PME activity could not predict emissions. The data show that MeOH production and emission are complex and cannot be predicted using PME activity alone. We hypothesize that substrate limitation of MeOH synthesis and MeOH catabolism may be important regulators of MeOH emission.

  7. Observations of atmospheric methane and its stable isotope ratio (δ13C) over the Russian Arctic seas from ship cruises in the summer and autumn of 2015

    NASA Astrophysics Data System (ADS)

    Skorokhod, A. I.; Pankratova, N. V.; Belikov, I. B.; Thompson, R. L.; Novigatsky, A. N.; Golitsyn, G. S.

    2016-10-01

    The results of experimental measurements of atmospheric methane concentrations and its isotopic composition in the Russian Arctic seas in the summer and autumn of 2015 are discussed. The Keeling plot method and inverse number simulation were used for revealing the factors responsible for elevated methane concentrations over the sea surface. Its maximum concentrations (up to 2050 ppb) were measured over the Kara and Laptev seas, as well as in the port area of Arkhangel'sk. It is shown that tundra and bog ecosystems of Siberia serve as the main sources of methane in the measurement zone (except for the area adjacent to large ports). As a whole, the share of methane from microbiological sources is as high as approximately 43% of the total methane concentrations along the ship route.

  8. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    USGS Publications Warehouse

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  9. Equilibrium clumped-isotope effects in doubly substituted isotopologues of ethane

    NASA Astrophysics Data System (ADS)

    Webb, Michael A.; Wang, Yimin; Braams, Bastiaan J.; Bowman, Joel M.; Miller, Thomas F.

    2017-01-01

    We combine path-integral Monte Carlo methods with a new intramolecular potential energy surface to quantify the equilibrium enrichment of doubly substituted ethane isotopologues due to clumped-isotope effects. Ethane represents the simplest molecule to simultaneously exhibit 13C-13C, 13C-D, and D-D clumped-isotope effects, and the analysis of corresponding signatures may provide useful geochemical and biogeochemical proxies of formation temperatures or reaction pathways. Utilizing path-integral statistical mechanics, we predict equilibrium fractionation factors that fully incorporate nuclear quantum effects, such as anharmonicity and rotational-vibrational coupling which are typically neglected by the widely used Urey model. The magnitude of the calculated fractionation factors for the doubly substituted ethane isotopologues indicates that isotopic clumping can be observed if rare-isotope substitutions are separated by up to three chemical bonds, but the diminishing strength of these effects suggests that enrichment at further separations will be negligible. The Urey model systematically underestimates enrichment due to 13C-D and D-D clumped-isotope effects in ethane, leading to small relative errors in the apparent equilibrium temperature, ranging from 5 K at 273.15 K to 30 K at 873.15 K. We additionally note that the rotameric dependence of isotopologue enrichment must be carefully considered when using the Urey model, whereas the path-integral calculations automatically account for such effects due to configurational sampling. These findings are of direct relevance to future clumped-isotope studies of ethane, as well as studies of 13C-13C, 13C-D, and D-D clumped-isotope effects in other hydrocarbons.

  10. Defining fish community structure in Lake Winnipeg using stable isotopes (δ(13)C, δ(15)N, δ(34)S): implications for monitoring ecological responses and trophodynamics of mercury & other trace elements.

    PubMed

    Ofukany, Amy F A; Wassenaar, Leonard I; Bond, Alexander L; Hobson, Keith A

    2014-11-01

    The ecological integrity of freshwater lakes is influenced by atmospheric and riverine deposition of contaminants, shoreline development, eutrophication, and the introduction of non-native species. Changes to the trophic structure of Lake Winnipeg, Canada, and consequently, the concentrations of contaminants and trace elements measured in tissues of native fishes, are likely attributed to agricultural runoff from the 977,800 km(2) watershed and the arrival of non-native zooplankters and fishes. We measured δ(13)C, δ(15)N, and δ(34)S along with concentrations of 15 trace elements in 17 native fishes from the north and south basins of Lake Winnipeg in 2009 and 2010. After adjusting for differences in isotopic baseline values between the two basins, fishes in the south basin had consistently higher δ(13)C and δ(34)S, and lower δ(15)N. We found little evidence of biomagnification of trace elements at the community level, but walleye (Sander vitreus) and freshwater drum (Aplodinotus grunniens) had higher mercury and selenium concentrations with increased trophic position, coincident with increased piscivory. There was evidence of growth dilution of cobalt, copper, manganese, molybdenum, thallium, and vanadium, and bioaccumulation of mercury, which could be explained by increases in algal (and consequently, lake and fish) productivity. We conclude that the north and south basins of Lake Winnipeg represent very different communities with different trophic structures and trace element concentrations.

  11. Simultaneous determination of stable isotopic compositions of nitrous oxide (δ15N and δ18O of N2O) and methane (δ13C of CH4) in nanomolar quantities from a single water sample

    NASA Astrophysics Data System (ADS)

    Hirota, A.; Tsunogai, U.; Komatsu, D. D.; Nakagawa, F.

    2010-12-01

    The stable isotopic compositions of nitrous oxide (δ15N of N2O and δ18O of N2O, respectively) and methane (δ13C of CH4) have provided us with some interesting geochemical insights. We have developed a rapid, sensitive, and automated analytical system to simultaneously determine the concentrations and stable isotopic compositions of nanomolar quantities of N2O and CH4 in the environmental water, by combining continuous-flow isotope-ratio mass spectrometry and a He-sparging system to extract and purify the dissolved gases. Our system, which is composed of a sparging bottle, a chemical trap, four cold traps and a capillary gas chromatograph that use ultra-pure helium as the carrier gas, achieves complete extraction of N2O and CH4 in a water sample and separation among N2O, CH4, and the other component gases. The flow path subsequent to gas chromatograph was periodically changed to pass the gases through the combustion furnace to convert CH4 and the other hydrocarbons into CO2, or to bypass the combustion furnace for the direct introduction of eluted N2O into the mass spectrometer, for determining the stable isotopic compositions through monitoring m/z = 44, 45, and 46, on the bases of CO2+ and N2O+, respectively. The analytical system can be operated automatically with sequential software programmed on a personal computer. The analytical precisions (the standard deviation of a single measurement) were better than 0.2‰ for δ15N of N2O and 0.3‰ for δ18O of N2O, in the case of more than 6.7 nmol N2O injection and better than 1.4‰ for δ15N of N2O and 2.6‰ for δ18O of N2O, in the case of more than 0.2 nmol N2O injection, respectively. Simultaneously, the analytical precisions were better than 0.07‰ for δ13C of CH4, in the case of more than 5.5 nmol CH4 infection and better than 2.1‰ for δ13C of CH4, when more than 0.024 nmol CH4 injection. In this manner, we can simultaneously determine stable isotopic compositions of a 120 mL water sample having

  12. Biomagnification profiles of polycyclic aromatic hydrocarbons, alkylphenols and polychlorinated biphenyls in Tokyo Bay elucidated by delta13C and delta15N isotope ratios as guides to trophic web structure.

    PubMed

    Takeuchi, Ichiro; Miyoshi, Noriko; Mizukawa, Kaoruko; Takada, Hideshige; Ikemoto, Tokutaka; Omori, Koji; Tsuchiya, Kotaro

    2009-05-01

    Biomagnification profiles of polycyclic aromatic hydrocarbons (PAHs), alkylphenols, and polychlorinated biphenyls (PCBs) from the innermost part of Tokyo Bay, Japan were analyzed using stable carbon (delta(13)C) and nitrogen (delta(15)N) isotope ratios as guides to trophic web structure. delta(15)N analysis indicated that all species of mollusks tested were primary consumers, while decapods and fish were secondary consumers. Higher concentrations of PCBs occurred in decapods and fish than in mollusks. In contrast, concentrations of PAHs and alkylphenols were lower in decapods and fish than in mollusks. Unlike PCBs, whose concentrations largely increased with increasing delta(15)N (i.e. increasing trophic level), all PAHs and alkylphenols analyzed followed a reverse trend. Molecular weights of PAHs are lower than those of PCBs, therefore low membrane permeability caused by large molecular size is an unlikely factor in the "biodilution" of PAHs. Organisms at higher trophic levels may rapidly metabolize PAHs or they may assimilate less of them.

  13. Development and Validation of a Rapid 13C6-Glucose Isotope Dilution UPLC-MRM Mass Spectrometry Method for Use in Determining System Accuracy and Performance of Blood Glucose Monitoring Devices

    PubMed Central

    Matsunami, Risë K.; Angelides, Kimon; Engler, David A.

    2015-01-01

    Background: There is currently considerable discussion about the accuracy of blood glucose concentrations determined by personal blood glucose monitoring systems (BGMS). To date, the FDA has allowed new BGMS to demonstrate accuracy in reference to other glucose measurement systems that use the same or similar enzymatic-based methods to determine glucose concentration. These types of reference measurement procedures are only comparative in nature and are subject to the same potential sources of error in measurement and system perturbations as the device under evaluation. It would be ideal to have a completely orthogonal primary method that could serve as a true standard reference measurement procedure for establishing the accuracy of new BGMS. Methods: An isotope-dilution liquid chromatography/mass spectrometry (ID-UPLC-MRM) assay was developed using 13C6-glucose as a stable isotope analogue to specifically measure glucose concentration in human plasma, and validated for use against NIST standard reference materials, and against fresh isolates of whole blood and plasma into which exogenous glucose had been spiked. Assay performance was quantified to NIST-traceable dry weight measures for both glucose and 13C6-glucose. Results: The newly developed assay method was shown to be rapid, highly specific, sensitive, accurate, and precise for measuring plasma glucose levels. The assay displayed sufficient dynamic range and linearity to measure across the range of both normal and diabetic blood glucose levels. Assay performance was measured to within the same uncertainty levels (<1%) as the NIST definitive method for glucose measurement in human serum. Conclusions: The newly developed ID UPLC-MRM assay can serve as a validated reference measurement procedure to which new BGMS can be assessed for glucose measurement performance. PMID:25986627

  14. Use of intermediate partitioning to calculate intrinsic isotope effects for the reaction catalyzed by malic enzyme

    SciTech Connect

    Grissom, C.B.; Cleland, W.W.

    1985-02-12

    For those enzymes that proceed via a stepwise reaction mechanism with a discrete chemical intermediate and where deuterium and /sup 13/C isotope effects are on separate steps, a new method has been developed to solve for the intrinsic deuterium and /sup 13/C kinetic isotope effects that relies on directly observing the partitioning of the intermediate between the forward and reverse directions. This observed partitioning ratio, along with the values of the primary deuterium, tritium, and /sup 13/C kinetic isotope effects on V/K for the substrate with the label being followed, allows an exact solution for the intrinsic deuterium and /sup 13/C isotope effects, the forward commitment for the deuterium-sensitive step, and the partition ratio for the intermediate in the reaction. This method allows portions of the reaction coordinate diagram to be defined precisely and the relative energy levels of certain activation barriers to be assigned exactly. With chicken liver triphosphopyridine nucleotide (TPN) malic enzyme activated by Mg/sup 2 +/, the partitioning of oxalacetate to pyruvate vs. malate in the presence of TPNH, 0.47, plus previously determined isotope effects gives an intrinsic deuterium isotope effect of 5.7 on hydride transfer and a /sup 13/C isotope effect of 1.044 on decarboxylation. Reverse hydride transfer is 10 times faster than decarboxylation, and the forward commitment for hydride transfer is 3.3. The /sup 13/C isotope effect is not significantly different with reduced acetylpyridine adenine dinucleotide phosphate replacing TPNH (although the pyruvate/malate partitioning ratio for oxalactate is now 9.9), but replacement of Mg/sup 2 +/ by Mn/sup 2 +/ raises the value to 1.065 (partition ratio 0.99).

  15. [Determination of 13C enrichment in soil amino acid enantiomers by gas chromatogram/mass spectrometry].

    PubMed

    He, Hong-Bo; Zhang, Wei; Ding, Xue-Li; Bai, Zhen; Liu, Ning; Zhang, Xu-Dong

    2008-06-01

    The transformation and renewal of amino acid enantiomers is of significance in indicating the turnover mechanism of soil organic matter. In this paper, a method of gas chromatogram/mass spectrometry combined with U-13 C-glucose incubation was developed to determine the 13C enrichment in soil amino acid enantiomers, which could effectively differentiate the original and the newly synthesized amino acids in soil matrix. The added U-13 C-glucose was utilized rapidly to structure the amino acid carbon skeleton, and the change of relative abundance of isotope ions could be determined by mass spectrometry. The direct incorporation of U-13 C glucose was estimated by the intensity increase of m/z (F + n) to F (F was parent fragment, and n was the carbon number in the fragment), while the total isotope incorporation from the added 13C could be calculated according to the abundance ratio increment summation from m/z (Fa + 1) through (Fa + T) (Fa was the fragment containing all original skeleton carbons, and T was the carbon number in the amino acid molecule). The 13C enrichment in the target compound was expressed as atom percentage excess (APE), and that of D-amino acid needed to be corrected by the coefficient of hydrolysis-induced racemization. The 13C enrichment reflected the carbon turnover velocity of individual amino acid enantiomers, and was powerful to investigate the dynamics of soil amino acids.

  16. 13C MAS NMR studies of the effects of hydration on the cell walls of potatoes and Chinese water chestnuts.

    PubMed

    Tang, H; Belton, P S; Ng, A; Ryden, P

    1999-02-01

    13C NMR with magic angle spinning (MAS) has been employed to investigate the cell walls of potatoes and Chinese water chestnuts over a range of hydration levels. Both single-pulse excitation (SPEMAS) and cross-polarization (CPMAS) experiments were carried out. Hydration led to a substantial increase in signal intensities of galactan and galacturonan in the SPEMAS spectra and a decrease in line width, implying mobilization in the backbone and side chains of pectin. In CPMAS spectra of both samples, noncellulose components showed signal loss as hydration increased. However, the signals of some galacturonan in the 3(1) helix configuration remained in the spectra even when the water content was as high as 110%. Cellulose was unaffected. It is concluded that the pectic polysaccharides experience a distribution of molecular conformations and mobility, whereas cellulose remained as typical rigid solid.

  17. Short-term natural δ13C and δ18O variations in pools and fluxes in a beech forest: the transfer of isotopic signal from recent photosynthates to soil respired CO2

    NASA Astrophysics Data System (ADS)

    Gavrichkova, O.; Proietti, S.; Moscatello, S.; Portarena, S.; Battistelli, A.; Matteucci, G.; Brugnoli, E.

    2011-10-01

    The fate of photosynthetic products within the plant-soil continuum determines how long the reduced carbon resides within the ecosystem and when it returns back to the atmosphere in the form of respiratory CO2. We have tested the possibility of measuring natural variation in δ13C and δ18O to disentangle the potential times needed to transfer carbohydrates produced by photosynthesis down to trunk, roots and, in general, to belowground up to its further release in the form of soil respiration into the atmosphere in a beech (Fagus sylvatica) forest. We have measured the variation in stable carbon and oxygen isotope compositions in plant material and in soil respired CO2 every three hours for three consecutive days. Possible steps and different signs of post-photosynthetic fractionation during carbon translocation were also identified. A 12 h-periodicity was observed for variation in δ13C in soluble sugars in the top crown leaves and it can be explained by starch day/night dynamics in synthesis and breakdown and by stomatal limitations under elevated vapour pressure deficits. Photosynthetic products were transported down the trunk and mixed with older carbon pools, therefore causing the dampening of the δ13C signal variation. The strongest periodicity of 24 h was found in δ13C in soil respiration indicating changes in root contribution to the total CO2 efflux. Other non-biological causes like diffusion fractionation and advection induced by gas withdrawn from the measurement chamber complicate data interpretation on this step of C transfer path. Nevertheless, it was possible to identify the speed of carbohydrates' translocation from the point of assimilation to the trunk breast height because leaf-imprinted enrichment of δ18O in soluble sugars was less modified along the downward transport and was well related to environmental parameters potentially linked to stomatal conductance. The speed of carbohydrates translocation from the site of assimilation to the trunk

  18. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction

    SciTech Connect

    Weiss, P.M.; Urbauer, J.L.; Cleland, W.W. ); Gavva, S.R.; Harris, B.G.; Cook, P.F. )

    1991-06-11

    Deuterium isotope effects and {sup 13}C isotope effects with deuterium- and protium-labeled malate have been obtained for both NAD- and NADP-malic enzymes by using a variety of alternative dinucleotide substrates. With nicotinamide-containing dinucleotides as the oxidizing substrate, the {sup 13}C effect decreases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data are consistent with a stepwise chemical mechanism in which hydride transfer precedes decarboxylation of the oxalacetate intermediate as previously proposed. When dinucleotide substrates such as thio-NAD, 3-nicotinamide rings are used, the {sup 13}C effect increases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data, at face value, are consistent with a change in mechanism from stepwise to concerted for the oxidative decarboxylation portion of the mechanism. However, the increase in the deuterium isotope effect from 1.5 to 3 with a concomitant decrease in the {sup 13}C isotope effect from 1.034 to 1.003 as the dinucleotide substrate is changed suggests that the reaction may still be stepwise with the non-nicotinamide dinucleotides. A more likely explanation is that a {beta}-secondary {sup 13}C isotope effect accompanies hydride transfer as a result of hyperconjugation of the {beta}-carboxyl of malate as the transition state for the hydride transfer step is approached.

  19. Quantitation of a spin polarization-induced nuclear Overhauser effect (SPINOE) between a hyperpolarized (13) C-labeled cell metabolite and water protons.

    PubMed

    Marco-Rius, Irene; Bohndiek, Sarah E; Kettunen, Mikko I; Larkin, Timothy J; Basharat, Meer; Seeley, Colm; Brindle, Kevin M

    2014-01-01

    The spin polarization-induced nuclear Overhauser effect (SPINOE) describes the enhancement of spin polarization of solvent nuclei by the hyperpolarized spins of a solute. In this communication we demonstrate that SPINOEs can be observed between [1,4-(13) C2 ]fumarate, hyperpolarized using the dissolution dynamic nuclear polarization technique, and solvent water protons. We derive a theoretical expression for the expected enhancement and demonstrate that this fits well with experimental measurements. Although the magnitude of the effect is relatively small (around 2% measured here), the SPINOE increases at lower field strengths, so that at clinically relevant magnetic fields (1.5-3 T) it may be possible to track the passage through the circulation of a bolus containing a hyperpolarized (13) C-labeled substrate through the increase in solvent water (1) H signal.

  20. Ecological processes dominate the 13C land disequilibrium in a Rocky Mountain subalpine forest

    NASA Astrophysics Data System (ADS)

    Bowling, D. R.; Ballantyne, A. P.; Miller, J. B.; Burns, S. P.; Conway, T. J.; Menzer, O.; Stephens, B. B.; Vaughn, B. H.

    2014-04-01

    Fossil fuel combustion has increased atmospheric CO2 by ≈ 115 µmol mol-1 since 1750 and decreased its carbon isotope composition (δ13C) by 1.7-2‰ (the 13C Suess effect). Because carbon is stored in the terrestrial biosphere for decades and longer, the δ13C of CO2 released by terrestrial ecosystems is expected to differ from the δ13C of CO2 assimilated by land plants during photosynthesis. This isotopic difference between land-atmosphere respiration (δR) and photosynthetic assimilation (δA) fluxes gives rise to the 13C land disequilibrium (D). Contemporary understanding suggests that over annual and longer time scales, D is determined primarily by the Suess effect, and thus, D is generally positive (δR > δA). A 7 year record of biosphere-atmosphere carbon exchange was used to evaluate the seasonality of δA and δR, and the 13C land disequilibrium, in a subalpine conifer forest. A novel isotopic mixing model was employed to determine the δ13C of net land-atmosphere exchange during day and night and combined with tower-based flux observations to assess δA and δR. The disequilibrium varied seasonally and when flux-weighted was opposite in sign than expected from the Suess effect (D = -0.75 ± 0.21‰ or -0.88 ± 0.10‰ depending on method). Seasonality in D appeared to be driven by photosynthetic discrimination (Δcanopy) responding to environmental factors. Possible explanations for negative D include (1) changes in Δcanopy over decades as CO2 and temperature have risen, and/or (2) post-photosynthetic fractionation processes leading to sequestration of isotopically enriched carbon in long-lived pools like wood and soil.

  1. 13C, 18O, and D fractionation effects in the reactions of CH3OH isotopologues with Cl and OH radicals.

    PubMed

    Feilberg, Karen L; Gruber-Stadler, Margret; Johnson, Matthew S; Mühlhäuser, Max; Nielsen, Claus J

    2008-11-06

    A relative rate experiment is carried out for six isotopologues of methanol and their reactions with OH and Cl radicals. The reaction rates of CH2DOH, CHD2OH, CD3OH, (13)CH3OH, and CH3(18)OH with Cl and OH radicals are measured by long-path FTIR spectroscopy relative to CH3OH at 298 +/- 2 K and 1013 +/- 10 mbar. The OH source in the reaction chamber is photolysis of ozone to produce O((1)D) in the presence of a large excess of molecular hydrogen: O((1)D) + H2 --> OH + H. Cl is produced by the photolysis of Cl2. The FTIR spectra are fitted using a nonlinear least-squares spectral fitting method with measured high-resolution infrared spectra as references. The relative reaction rates defined as alpha = k(light)/k(heavy) are determined to be: k(OH + CH3OH)/k(OH + (13)CH3OH) = 1.031 +/- 0.020, k(OH + CH3OH)/k(OH + CH3(18)OH) = 1.017 +/- 0.012, k(OH + CH3OH)/k(OH + CH2DOH) = 1.119 +/- 0.045, k(OH + CH3OH)/k(OH + CHD2OH) = 1.326 +/- 0.021 and k(OH + CH3OH)/k(OH + CD3OH) = 2.566 +/- 0.042, k(Cl + CH3OH)/k(Cl + (13)CH3OH) = 1.055 +/- 0.016, k(Cl + CH3OH)/k(Cl + CH3(18)OH) = 1.025 +/- 0.022, k(Cl + CH3OH)/k(Cl + CH2DOH) = 1.162 +/- 0.022 and k(Cl + CH3OH)/k(Cl + CHD2OH) = 1.536 +/- 0.060, and k(Cl + CH3OH)/k(Cl + CD3OH) = 3.011 +/- 0.059. The errors represent 2sigma from the statistical analyses and do not include possible systematic errors. Ground-state potential energy hypersurfaces of the reactions were investigated in quantum chemistry calculations at the CCSD(T) level of theory with an extrapolated basis set. The (2)H, (13)C, and (18)O kinetic isotope effects of the OH and Cl reactions with CH3OH were further investigated using canonical variational transition state theory with small curvature tunneling and compared to experimental measurements as well as to those observed in CH4 and several other substituted methane species.

  2. Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow "fen-bog" gradient using digestive vacuole content and 13C and 15N isotopic analyses.

    PubMed

    Jassey, Vincent E J; Shimano, Satoshi; Dupuy, Christine; Toussaint, Marie-Laure; Gilbert, Daniel

    2012-05-01

    Population dynamics and feeding habits of the testate amoebae Nebela tincta and Hyalosphenia papilio were studied along a short "fen" to "bog" gradient in a Sphagnum-dominated mire (Jura, France). Samples were collected in living "top segments" (0-3 cm) and early declining "bottom segments" (3-6 cm) of Sphagnum fallax peat. Observations of digestive vacuole content and stable isotope analyses ((13)C and (15)N) were used to establish the feeding behavior of both testate amoeba species. Owing to their vertical distribution, the feeding habit of H. papilio was described from top segments, and that of N. tincta from bottom segments. Among identified food sources, those most frequently ingested by N. tincta were spores and mycelia of fungi (55%), microalgae (25%) and cyanobacteria (8.5%). For H. papilio, the most frequently ingested prey were ciliates (55%) and microalgae (35%). Nonmetric Multidimensional Scaling analysis clearly demonstrated that the two species did not have the same feeding habit along the "fen-bog" gradient, and furthermore that a significant spatial split exists in the feeding behavior of H. papilio. Additionally, isotope analyses suggested that H. papilio and N. tincta did not have the same trophic position in the microbial food web, probably resulting from their different feeding strategies.

  3. Coupling tree-ring delta13C and delta15N to test the effect of fertilization on mature Douglas-fir (Pseudotsuga menziesii var. glauca) stands across the Interior northwest, USA.

    PubMed

    Balster, Nick J; Marshall, John D; Clayton, Murray

    2009-12-01

    Nitrogen (N) fertilization causes long-term increases in biomass production in many N-limited forests around the world, but the mechanistic basis underlying the increase is often unclear. One possibility, especially in summer-dry climates, is that N fertilization increases the efficiency with which a finite water supply is consumed to support photosynthesis. This increase is achieved by a reduction in the canopy-integrated concentration of internal CO(2) and thus discrimination against (13)C. We used stable isotopes of carbon (delta(13)C) in tree rings to experimentally test the physiological impact of N fertilization on mature Douglas-fir (Pseudotsuga menziesii Franco var. glauca) stands across the geographic extent of the Intermountain West, USA. The concentration and the stable isotopes of N (delta(15)N) in tree rings were also used to assess the presence and activity of fertilizer N. We hypothesized that N fertilization would (i) increase delta(15)N and N concentration of stemwood relative to non-fertilized stands and (ii) increase stemwood delta(13)C as photosynthetic gas exchange responded to the additional N. This experiment included two rates of urea addition, 178 kg ha(-1) (low) and 357 kg ha(-1) (high), which were applied twice over a 6-year interval bracketed by the 18 years of wood production measured in this study. Foliar N concentrations measured the year after each fertilization treatment suggest that the fertilizer N had been assimilated by the trees (P < 0.001). The N fertilization significantly enriched stemwood delta(15)N by 1.3 per thousand at the low fertilization rate and by 2.4 per thousand at the high rate (P < 0.001) despite variation in soil N between sites. However, we found no significant effect of the N fertilizer on delta(13)C of the annual rings (P = 0.76). These data lead us to suggest that alternative mechanisms underlie the growth response to fertilizer, i.e., increase in canopy area and shifts in biomass allocation.

  4. Natural (13) C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern.

    PubMed

    Lamade, Emmanuelle; Tcherkez, Guillaume; Darlan, Nuzul Hijri; Rodrigues, Rosario Lobato; Fresneau, Chantal; Mauve, Caroline; Lamothe-Sibold, Marlène; Sketriené, Diana; Ghashghaie, Jaleh

    2016-01-01

    Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs.

  5. Quantitative solid-state 13C nuclear magnetic resonance spectrometric analyses of wood xylen: effect of increasing carbohydrate content

    USGS Publications Warehouse

    Bates, A.L.; Hatcher, P.G.

    1992-01-01

    Isolated lignin with a low carbohydrate content was spiked with increasing amounts of alpha-cellulose, and then analysed by solid-state 13C nuclear magnetic resonance (NMR) using cross-polarization with magic angle spinning (CPMAS) and dipolar dephasing methods in order to assess the quantitative reliability of CPMAS measurement of carbohydrate content and to determine how increasingly intense resonances for carbohydrate carbons affect calculations of the degree of lignin's aromatic ring substitution and methoxyl carbon content. Comparisons were made of the carbohydrate content calculated by NMR with carbohydrate concentrations obtained by phenol-sulfuric acid assay and by the calculation from the known amounts of cellulose added. The NMR methods used in this study yield overestimates for carbohydrate carbons due to resonance area overlap from the aliphatic side chain carbons of lignin. When corrections are made for these overlapping resonance areas, the NMR results agree very well with results obtained by other methods. Neither the calculated methoxyl carbon content nor the degree of aromatic ring substitution in lignin, both calculated from dipolar dephasing spectra, change with cellulose content. Likewise, lignin methoxyl content does not correlate with cellulose abundance when measured by integration of CPMAS spectra. ?? 1992.

  6. Magnitude and origin of the anthropogenic CO2 increase and 13C Suess effect in the Nordic seas since 1981

    NASA Astrophysics Data System (ADS)

    Olsen, Are; Omar, Abdirahman M.; Bellerby, Richard G. J.; Johannessen, Truls; Ninnemann, Ulysses; Brown, Kelly R.; Olsson, K. Anders; Olafsson, Jon; Nondal, Gisle; KivimäE, Caroline; Kringstad, Solveig; Neill, Craig; Olafsdottir, Solveig

    2006-09-01

    This study evaluates the anthropogenic changes of CO2 (ΔCant) and δ13C (Δδ13Cant) in the Nordic seas, the northern limb of the Atlantic Meridional Overturning Circulation, that took place between 1981 and 2002/2003. The changes have been determined by comparing data obtained during the Transient Tracers in the Ocean, North Atlantic Study (TTO-NAS) with data obtained during the Nordic seas surveys of R/V Knorr in 2002 and R/V G.O. Sars in 2003 using an extended multilinear regression approach. The estimated Δδ13Cant and ΔCant and their relationship to each other and to water mass distribution suggest that the Polar Water entering the Nordic seas from the north is undersaturated with respect to the present atmospheric anthropogenic CO2 levels and promotes a local uptake of Cant within the Nordic seas. In contrast, the Atlantic Water entering from the south appears equilibrated. It carries with it anthropogenic carbon which will be sequestered at depth as the water overturns. This preequilibration leaves no room for further uptake of Cant in the parts of the Nordic seas dominated by Atlantic Water. The upper ocean pCO2 in these regions appears to have increased at a greater rate than the atmospheric pCO2 over the last 2 decades; this is reconcilable with a large lateral advective supply of Cant.

  7. Effective Estimation of Dynamic Metabolic Fluxes Using 13C Labeling and Piecewise Affine Approximation: From Theory to Practical Applicability

    PubMed Central

    Schumacher, Robin; Wahl, S. Aljoscha

    2015-01-01

    The design of microbial production processes relies on rational choices for metabolic engineering of the production host and the process conditions. These require a systematic and quantitative understanding of cellular regulation. Therefore, a novel method for dynamic flux identification using quantitative metabolomics and 13C labeling to identify piecewise-affine (PWA) flux functions has been described recently. Obtaining flux estimates nevertheless still required frequent manual reinitalization to obtain a good reproduction of the experimental data and, moreover, did not optimize on all observables simultaneously (metabolites and isotopomer concentrations). In our contribution we focus on measures to achieve faster and robust dynamic flux estimation which leads to a high dimensional parameter estimation problem. Specifically, we address the following challenges within the PWA problem formulation: (1) Fast selection of sufficient domains for the PWA flux functions, (2) Control of over-fitting in the concentration space using shape-prescriptive modeling and (3) robust and efficient implementation of the parameter estimation using the hybrid implicit filtering algorithm. With the improvements we significantly speed up the convergence by efficiently exploiting that the optimization problem is partly linear. This allows application to larger-scale metabolic networks and demonstrates that the proposed approach is not purely theoretical, but also applicable in practice. PMID:26690237

  8. Effects of post-reactor functionalization on the phase behaviour of an ethylene-1-octene copolymer studied using solid-state high resolution 13C NMR spectroscopy.

    PubMed

    Calucci, Lucia; Cicogna, Francesca; Forte, Claudia

    2013-10-07

    The effects of post-reactor functionalization with naphthoate-TEMPO on the structure and morphology of an ethylene-1-octene copolymer were investigated by means of solid-state NMR techniques and DSC measurements. Selective (13)C MAS experiments allowed the orthorhombic and the monoclinic crystalline phases and two amorphous phases with different degree of mobility to be detected and quantified. (13)C and (1)H relaxation time measurements and spin diffusion experiments gave insight into the polymer dynamics within the different phases, the crystalline domain dimensions, and the rate of chain diffusion between amorphous and crystalline phases. Comparison of the results obtained for the pristine copolymer and the functionalized samples clearly indicated that the functionalization procedure causes redistribution within the crystalline and the amorphous phases with no relevant change in the degree of crystallinity or in the crystalline domain average size, and slows down chain diffusion.

  9. Quantification of the push-pull Effect in disubstituted alkynes - Application of occupation quotients π*/π and 13C chemical shift differences ΔδCtbnd C

    NASA Astrophysics Data System (ADS)

    Kleinpeter, Erich; Klaumünzer, Ute

    2014-09-01

    Structures, 13C chemical shifts, and the occupation quotients of anti-bonding π* and bonding π orbitals of the Ctbnd C triple bond along a series of push-pull alkynes (p)Xsbnd C6H4sbnd C(O)sbnd Ctbnd Csbnd NHsbnd C6H4sbnd Y(p) (X,Y = H, Me, OMe, NMe2, NO2, COMe, COOMe, F, Cl, Br) were computed at the DFT level (B3LYP/6-311G**) of theory. Both the stereochemistry (cis/trans-isomers) by steric twist and the push-pull character by both 13C chemical shift differences (ΔδCtbnd C) and the occupation quotient (π*Ctbnd C/πCtbnd C) were studied; the latter two parameters can be readily employed to precisely quantify the push-pull effect in alkynes.

  10. An isotopic (Δ14C, δ13C, and δ15N) investigation of particulate organic matter and zooplankton biomass in Lake Superior and across a size-gradient of aquatic systems

    NASA Astrophysics Data System (ADS)

    Zigah, P. K.; Minor, E. C.; Werne, J. P.; McCallister, S. Leigh

    2012-04-01

    Food webs in aquatic systems can be supported both by carbon from recent local primary productivity and by carbon subsidies, such as material from terrestrial ecosystems or past in situ primary productivity. The importance of these subsidies to respiration and biomass production remains a topic of debate, but they may play major roles in determining the fate of organic carbon and in sustaining upper trophic levels, including those contributing to economically important fisheries. While some studies have reported that terrigenous organic carbon supports disproportionately high zooplankton production, others have suggested that phytoplankton preferentially supports zooplankton production in aquatic ecosystems. Here we apply natural abundance radiocarbon (Δ14C) and stable isotope13C, δ15N) analyses to show that zooplankton in Lake Superior selectively incorporate recently-fixed, locally-produced (autochthonous) organic carbon even though other carbon sources are readily available. Estimates from Bayesian isotopic modeling based on Δ14C values show that the average lakewide median contributions of recent in situ algal, terrestrial, sedimentary, and bacterial organic carbon to the bulk POM in Lake Superior were 23%, 28%, 15%, and 25%, respectively. However, the isotopic modeling estimates show that recent in situ production (algae) contributed a disproportionately large amount (median, 40-89%) of the carbon in zooplankton biomass in Lake Superior. Although terrigenous organic carbon and old organic carbon from resuspended sediments were significant portions of the available basal food resources, these contributed only a small amount to zooplankton biomass (average lakewide median, 2% from sedimentary organic carbon and 9% from terrigenous organic carbon). Comparison of zooplankton food sources based on their radiocarbon composition showed that terrigenous organic carbon was relatively more important in rivers and small lakes, and the proportion of terrestrially

  11. Ozone air pollution effects on tree-ring growth, delta(13)C, visible foliar injury and leaf gas exchange in three ozone-sensitive woody plant species.

    PubMed

    Novak, Kristopher; Cherubini, Paolo; Saurer, Matthias; Fuhrer, Jürg; Skelly, John M; Kräuchi, Norbert; Schaub, Marcus

    2007-07-01

    We assessed the effects of ambient tropospheric ozone on annual tree-ring growth, delta(13)C in the rings, leaf gas exchange and visible injury in three ozone-sensitive woody plant species in southern Switzerland. Seedlings of Populus nigra L., Viburnum lantana L. and Fraxinus excelsior L. were exposed to charcoal-filtered air (CF) and non-filtered air (NF) in open-top chambers, and to ambient air (AA) in open plots during the 2001 and 2002 growing seasons. Ambient ozone exposures in the region were sufficient to cause visible foliar injury, early leaf senescence and premature leaf loss in all species. Ozone had significant negative effects on net photosynthesis and stomatal conductance in all species in 2002 and in V. lantana and F. excelsior in 2001. Water-use efficiency decreased and intercellular CO(2) concentrations increased in all species in response to ozone in 2002 only. The width and delta(13)C of the 2001 and 2002 growth rings were measured for all species at the end of the 2002 growing season. Compared with CF seedlings, mean ring width in the AA and NF P. nigra seedlings was reduced by 52 and 46%, respectively, in 2002, whereas in V. lantana and F. excelsior, ring width showed no significant reductions in either year. Although delta(13)C was usually more negative in CF seedlings than in AA and NF seedlings, with the exception of F. excelsior in 2001, ozone effects on delta(13)C were significant only for V. lantana and P. nigra in 2001. Among species, P. nigra exhibited the greatest response to ozone for the measured parameters as well as the most severe foliar injury and was the only species to show a significant reduction in ring width in response to ozone exposure, despite significant negative ozone effects on leaf gas exchange and the development of visible foliar injury in V. lantana and F. excelsior. Thus, significant ozone-induced effects at the leaf level did not correspond to reduced tree-ring growth or increased delta(13)C in all species

  12. Reduced mitochondrial malate dehydrogenase activity has a strong effect on photorespiratory metabolism as revealed by 13C labelling

    PubMed Central

    Lindén, Pernilla; Keech, Olivier; Stenlund, Hans; Gardeström, Per; Moritz, Thomas

    2016-01-01

    Mitochondrial malate dehydrogenase (mMDH) catalyses the interconversion of malate and oxaloacetate (OAA) in the tricarboxylic acid (TCA) cycle. Its activity is important for redox control of the mitochondrial matrix, through which it may participate in regulation of TCA cycle turnover. In Arabidopsis, there are two isoforms of mMDH. Here, we investigated to which extent the lack of the major isoform, mMDH1 accounting for about 60% of the activity, affected leaf metabolism. In air, rosettes of mmdh1 plants were only slightly smaller than wild type plants although the fresh weight was decreased by about 50%. In low CO2 the difference was much bigger, with mutant plants accumulating only 14% of fresh weight as compared to wild type. To investigate the metabolic background to the differences in growth, we developed a 13CO2 labelling method, using a custom-built chamber that enabled simultaneous treatment of sets of plants under controlled conditions. The metabolic profiles were analysed by gas- and liquid- chromatography coupled to mass spectrometry to investigate the metabolic adjustments between wild type and mmdh1. The genotypes responded similarly to high CO2 treatment both with respect to metabolite pools and 13C incorporation during a 2-h treatment. However, under low CO2 several metabolites differed between the two genotypes and, interestingly most of these were closely associated with photorespiration. We found that while the glycine/serine ratio increased, a concomitant altered glutamine/glutamate/α-ketoglutarate relation occurred. Taken together, our results indicate that adequate mMDH activity is essential to shuttle reductants out from the mitochondria to support the photorespiratory flux, and strengthen the idea that photorespiration is tightly intertwined with peripheral metabolic reactions. PMID:26889011

  13. Effects of bis homoallylic and homoallylic hydroxyl substitution on the olefinic 13C resonance shifts in fatty acid methyl esters.

    PubMed

    Pfeffer, P E; Sonnet, P E; Schwartz, D P; Osman, S F; Weisleder, D

    1992-04-01

    Substitution of a hydroxyl group at the bis homoallylic position (OH group located three carbons away from the olefinic carbon) in C18 unsaturated fatty acid esters (FAE) induces a 0.73 +/- 0.05 ppm upfield and a 0.73 +/- 0.06 ppm downfield shift on the delta and epsilon olefinic 13C resonances relative to the unsubstituted FAE, respectively. If the hydroxyl group is located on the carboxyl side of the double bond of the bis homoallylic hydroxy fatty acid esters (BHAHFA), the olefinic resonances are uniformly shifted apart by [formula: see text] where delta delta dbu represents the absolute value of the double bond resonance separation in the unsubstituted FAE and 1.46 ppm is the sum of the absolute values of the delta and epsilon shift parameters. With hydroxyl substitution on the terminal methyl side of the double bond, the olefinic shift separation is equal to [formula: see text] In homoallylic (OH group located two carbons away from the olefinic carbon) substituted FAE the gamma and delta induced hydroxyl shifts for the cis double bond resonances are +3.08 and -4.63 ppm, respectively while the trans double bond parameters are +4.06 and -4.18 ppm, respectively. The double bond resonance separation in homoallylic hydroxy fatty acid esters (HAHFA) can be calculated from the formula [formula: see text] for cis and [formula: see text] for the trans case when the OH substitution is on the carboxyl side of the double bond. Conversely, when the OH resides on the terminal methyl side, the double bond shift separations for cis and trans isomers are [formula: see text] and [formula: see text] respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Effect of in-stream physicochemical processes on the seasonal variations in δ13C and δ18O values in laminated travertine deposits in a mountain stream channel

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Liu, Zaihua; Sun, Hailong

    2017-04-01

    Travertines are potential archives of continental paleoclimate. Records of stable carbon and oxygen isotopic composition (δ13C and δ18O) in laminated travertine deposits from endogene spring waters show regular cyclic patterns which may be due to seasonal change in climate determinants such as temperature and rainfall. In this study, δ13C and δ18O measurements of three travertine specimens that grew naturally over the eight years, 2004-2011, at upstream, middle and downstream sites in a canal at Baishuitai, SW China, are presented. They exhibit clear seasonal variations that generally correlate with biannual laminations. Specifically, δ13C and δ18O values show significant positive correlation with each other for the three travertine specimens, with the correlation coefficients increasing downstream along the canal. To reveal the factors governing the seasonal and spatial variations in δ13C and δ18O values, newly formed travertines precipitated on Plexiglas substrates are also examined. Both δ13C and δ18O of the substrate travertines are low in the summer/rainy season and high in the winter/dry season, showing a great consistency with the patterns in the natural travertines. Spatially, isotope values increase downstream in both seasons, with higher increase rates in winter that are related to removal of larger fractions of dissolved inorganic carbon (DIC) from the solution and stronger kinetic isotopic fractionation in winter. Due to in-stream physicochemical processes, including CaCO3 precipitation and the associated degassing of CO2, seasonal changes in δ13C and δ18O in the travertines are amplified by two times between the upstream and downstream sites: this is opposite to trends for epigene (meteogene) tufas whose seasonal changes in stable isotope compositions are reduced downstream. We suggest in-stream physicochemical processes are a potential reason for underestimation of annual temperature ranges that are inferred from epigene tufa δ18O data.

  15. Synthesis of [13C4]-labeled ∆9-tetrahydrocannabinol and 11-nor-9-carboxy-∆9-tetrahydrocannabinol as internal standards for reducing ion suppressing/alteration effects in LC/MS-MS quantification.

    PubMed

    Karlsen, Morten; Liu, Huiling; Johansen, Jon Eigill; Hoff, Bård Helge

    2014-09-01

    (-)-∆9-Tetrahydrocannabinol is the principal psychoactive component of the cannabis plant and also the active ingredient in some prescribed drugs. To detect and control misuse and monitor administration in clinical settings, reference samples of the native drugs and their metabolites are needed. The accuracy of liquid chromatography/mass spectrometric quantification of drugs in biological samples depends among others on ion suppressing/alteration effects. Especially, 13C-labeled drug analogues are useful for minimzing such interferences. Thus, to provide internal standards for more accurate quantification and for identification purpose, synthesis of [13C4]-∆9-tetrahydro-cannabinol and [13C4]-11-nor-9-carboxy-∆9-tetrahydrocannabinol was developed via [13C4]-olivetol. Starting from [13C4]-olivetol the synthesis of [13C4]-11-nor-9-carboxy-∆9-tetrahydrocannabinol was shortened from three to two steps by employing nitromethane as a co-solvent in condensation with (+)-apoverbenone.

  16. 13C NMR of tunnelling methyl groups

    NASA Astrophysics Data System (ADS)

    Detken, A.

    The dipolar interactions between the protons and the central 13C nucleus of a 13CH3 group are used to study rotational tunnelling and incoherent dynamics of such groups in molecular solids. Single-crystal 13C NMR spectra are derived for arbitrary values of the tunnel frequency upsilon t. Similarities to ESR and 2H NMR are pointed out. The method is applied to three different materials. In the hydroquinone/acetonitrile clathrate, the unique features in the 13C NMR spectra which arise from tunnelling with a tunnel frequency that is much larger than the dipolar coupling between the methyl protons and the 13C nucleus are demonstrated, and the effects of incoherent dynamics are studied. The broadening of the 13C resonances is related to the width of the quasi-elastic line in neutron scattering. Selective magnetization transfer experiments for studying slow incoherent dynamics are proposed. For the strongly hindered methyl groups of L-alanine, an upper limit for upsilon is derived from the 13C NMR spectrum. In aspirinTM (acetylsalicylic acid), incoherent reorientations dominate the spectra down to the lowest temperatures studied; their rate apparently increases with decreasing temperature below 25K.

  17. Mass-independent isotope effects.

    PubMed

    Buchachenko, Anatoly L

    2013-02-28

    Three fundamental properties of atomic nuclei-mass, spin (and related magnetic moment), and volume-are the source of isotope effects. The mostly deserved and popular, with almost hundred-year history, is the mass-dependent isotope effect. The first mass-independent isotope effect which chemically discriminates isotopes by their nuclear spins and nuclear magnetic moments rather than by their masses was detected in 1976. It was named as the magnetic isotope effect because it is controlled by magnetic interaction, i.e., electron-nuclear hyperfine coupling in the paramagnetic species, the reaction intermediates. The effect follows from the universal physical property of chemical reactions to conserve angular momentum (spin) of electrons and nuclei. It is now detected for oxygen, silicon, sulfur, germanium, tin, mercury, magnesium, calcium, zinc, and uranium in a great variety of chemical and biochemical reactions including those of medical and ecological importance. Another mass-independent isotope effect was detected in 1983 as a deviation of isotopic distribution in reaction products from that which would be expected from the mass-dependent isotope effect. On the physical basis, it is in fact a mass-dependent effect, but it surprisingly results in isotope fractionation which is incompatible with that predicted by traditional mass-dependent effects. It is supposed to be a function of dynamic parameters of reaction and energy relaxation in excited states of products. The third, nuclear volume mass-independent isotope effect is detected in the high-resolution atomic and molecular spectra and in the extraction processes, but there are no unambiguous indications of its importance as an isotope fractionation factor in chemical reactions.

  18. Anomalous 13C enrichment in modern marine organic carbon

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Claypool, G.E.

    1985-01-01

    Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, ??13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) ??13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter ??13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower PCO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4. ?? 1985 Nature Publishing Group.

  19. The evolution of 13C and 18O isotope composition of DIC in a calcite depositing film of water with isotope exchange between the DIC and a CO2 containing atmosphere, and simultaneous evaporation of the water. Implication to climate proxies from stalagmites: A theoretical model

    NASA Astrophysics Data System (ADS)

    Dreybrodt, Wolfgang; Romanov, Douchko

    2016-12-01

    The most widely applied climate proxies in speleothems are the isotope compositions of carbon and oxygen expressed by δ13C and δ18O values. However, mechanisms, which are not related to climate changes, overlay the climate signal. One is the temporal increase of both, δ13C and δ18O values by kinetic processes during precipitation of calcite. Isotope exchange between DIC in the water and the CO2 in the surrounding cave atmosphere can also change isotope composition. Here we present a theoretical model of the temporal isotope evolution of DIC in a thin water layer during precipitation of calcite and simultaneous isotope exchange with the cave atmosphere, and simultaneous evaporation of water. The exchange of oxygen isotopes in the DIC with those in the water is also considered. For drip times for Tdrip < 0.2τ, where τ is the precipitation time, we find for the change of the δ13C and δ18O values, respectively, after the time Tdrip ΔDIC(Tdrip) = ((λ + ɛ)Ceq/C0 - ɛ) Tdrip/τ + ((δeqatm - δ0) Tdrip/τinatm) + (δeqwater - δ0 - ɛw Tdrip/Tev) Tdrip/Twater The first term on the right hand side is the contribution from precipitation of calcite, the second stems from isotope exchange with the CO2 of the cave atmosphere, and the third results from isotope exchange between oxygen in the DIC and the oxygen in the water. λ, ε are kinetic parameters, τ is the time scale of precipitation, (δeqatm -δ0) and (δeqwater -δ0) are the differences between the corresponding initial δ-value δ0 and the value δeqatm,water if DIC were in isotope equilibrium with the atmosphere or in the case of oxygen with the water, respectively. τinatm and τwater are the time scales of approach to isotope equilibrium by the exchange reactions. Ceq is the concentration of DIC in chemical equilibrium with the CO2 in the cave atmosphere and C0 is the initial concentration, when the water drips to the stalagmite. Tev is the time needed for complete evaporation of the water layer. ε

  20. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  1. Compound Specific δ13C of Amino Acids in a Deep-Sea Coral (Isidella) from the Monterey Canyon

    NASA Astrophysics Data System (ADS)

    Brown, J. T.; Batista, F. C.; Sherwood, O.; Ravelo, A. C.; Hill, T. M.; Guilderson, T. P.; McCarthy, M.

    2012-12-01

    Deep-sea proteinaceous corals have proven to be highly effective biological archives for the reconstruction of δ13C and δ15N late Holocene oceanic environments. These corals can have lifespans of hundreds to thousands of years depending on the species, and their annual band growth allows for high resolution records that extend biogeochemical time series beyond instrumental data. Compound-specific isotope analysis of amino acids (CSI-AA) can be readily applied to expand stable isotopic information beyond what is possible from bulk δ13C and δ15N isotope analyses. However, while recent studies have shown that δ15N CSI-AA in deep sea corals can be a robust paleoceanographic tool, to our knowledge the potential of δ13C CSI-AA for these archives has not yet been examined. Here we present results of the δ13C of amino acids in one ~100-year old bamboo coral (Isidella) from the Monterey Canyon, and compare the CSI-AA results with the bulk δ13C record from the same specimen. We explore the potential of the essential amino acid group to reconstruct a direct and highly detailed record of exported primary production δ13C, decoupled from the confounding effects of food webs and trophic transfer. Our preliminary results show cyclic variations in δ13C values of ~1‰, along with a general decline in bulk δ13C consistent with the Suess effect over the last century. This suggests the occurrence of regular excursions of primary production δ13C values along the California coastal region over the last hundred years. We have calibrated our CSI-AA results with existing plankton δ13C CSI-AA data to create corrected δ13C values which we propose as a foundation for deducing a direct record of the δ13C of exported primary production in the Montery Bay for the 20th century. Our results suggest that δ13C CSI-AA, coupled with deep sea proteinaceous coral archives, will represent a powerful new tool for highly detailed isotopic records of the late Holocene carbon cycle.

  2. Chiral effects on the /sup 13/C resonances of. cap alpha. -tocopherol and related compounds. A novel illustration of Newman's rule of six

    SciTech Connect

    Brownstein, S.; Burton, G.W.; Hughes, L.; Ingold, K.U.

    1989-02-03

    The 100-MHz /sup 13/C NMR spectrum of (2R,4'R,8'R)-..cap alpha..-tocopherol (natural vitamin E) has been completely assigned with the aid of a number of selectively deuteriated (2R,4'R,8'R)-..cap alpha..-tocopherols. The /sup 13/C NMR spectrum of (2RS,4'RS,8'RS)-..cap alpha..-tocopherol (all-racemic, synthetic vitamin E) has also been measured. Many of the individual carbons in this all-racemic mixture of eight ..cap alpha..-tocopherol stereoisomers give more than one resonance with eight of the carbons (2-CH/sub 3/, 2',3',4',4'-CH/sub 3/, 5', 8', and 9') giving the maximum number of four resonances from each of the four enantiomeric pairs; these resonances have also been assigned. The structurally related 5'-hydroxy-2-(4',8',12'-trimethyltridecyl)-2,4,6,7-tetramethyl-2,3,-dihydrobenzofuran (HTDBF) has been synthesized for the first time in the 2R,4'R,8'R and 2S,4'R,8'R configurations and their /sup 13/C resonances have been assigned. In its all-racemic form this compound also shows up to four resonances from a single carbon. Related observations have been made with phytol and isophytol. A careful examination of these chirally induced chemical shift differences for the individual carbon atoms, ..delta.., reveals a bond-alternation effect with maxima at a separation of one, three, and five bonds from the closest chiral center and with the maximum at a five-bond separation being greater than that at a three-bond separation. 32 references, 2 figures, 4 tables.

  3. Sheep wool δ13C reveals no effect of grazing on the C3/C4 ratio of vegetation in the inner Mongolia-Mongolia border region grasslands.

    PubMed

    Auerswald, Karl; Wittmer, Max H O M; Tungalag, Radnaakhand; Bai, Yongfei; Schnyder, Hans

    2012-01-01

    We tested whether the abundance of C(4) vegetation in grasslands of the Mongolian plateau is influenced by grazing conditions. The analysis exploited the politically originated contrast that exists between Mongolia (low stocking rate, transhumant system) and the district of Inner Mongolia, China (high stocking rate, sedentary system). We estimated the proportion of C(4) carbon (P(C4)) in grazed vegetation from the relative carbon isotope ratio (δ(13)C) of sheep wool sampled from 298 annual shearings originating from 1996 to 2007. Annual stocking rates varying over time and between the districts of both countries were taken from regional statistics. The P(C4) pattern within the 0.7 million km(2) sampling area was geostatistically analyzed and related to stocking rates and temperature gradients. For similar climatic conditions, P(C4) was the same in both countries. Further, a unique relationship was found between P(C4) and July temperature on both sides of the border, which explained 71% of the pattern. Stocking rate and grazing system had no significant influences on present-day C(3)/C(4) abundance ratio. This finding suggests that recent changes in the C(3)/C(4) ratio of these grasslands are mainly a consequence of regional warming, not overgrazing.

  4. Sheep Wool δ13C Reveals No Effect of Grazing on the C3/C4 Ratio of Vegetation in the Inner Mongolia–Mongolia Border Region Grasslands

    PubMed Central

    Auerswald, Karl; Wittmer, Max H.O.M.; Tungalag, Radnaakhand; Bai, Yongfei; Schnyder, Hans

    2012-01-01

    We tested whether the abundance of C4 vegetation in grasslands of the Mongolian plateau is influenced by grazing conditions. The analysis exploited the politically originated contrast that exists between Mongolia (low stocking rate, transhumant system) and the district of Inner Mongolia, China (high stocking rate, sedentary system). We estimated the proportion of C4 carbon (PC4) in grazed vegetation from the relative carbon isotope ratio (δ13C) of sheep wool sampled from 298 annual shearings originating from 1996 to 2007. Annual stocking rates varying over time and between the districts of both countries were taken from regional statistics. The PC4 pattern within the 0.7 million km2 sampling area was geostatistically analyzed and related to stocking rates and temperature gradients. For similar climatic conditions, PC4 was the same in both countries. Further, a unique relationship was found between PC4 and July temperature on both sides of the border, which explained 71% of the pattern. Stocking rate and grazing system had no significant influences on present-day C3/C4 abundance ratio. This finding suggests that recent changes in the C3/C4 ratio of these grasslands are mainly a consequence of regional warming, not overgrazing. PMID:23029090

  5. δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH-11 calcite

    USGS Publications Warehouse

    Revesz, Kinga M.; Landwehr, Jurate M.

    2002-01-01

    A new method was developed to analyze the stable carbon and oxygen isotope ratios of small samples (400 ± 20 µg) of calcium carbonate. This new method streamlines the classical phosphoric acid/calcium carbonate (H3PO4/CaCO3) reaction method by making use of a recently available Thermoquest-Finnigan GasBench II preparation device and a Delta Plus XL continuous flow isotope ratio mass spectrometer. Conditions for which the H3PO4/CaCO3 reaction produced reproducible and accurate results with minimal error had to be determined. When the acid/carbonate reaction temperature was kept at 26 °C and the reaction time was between 24 and 54 h, the precision of the carbon and oxygen isotope ratios for pooled samples from three reference standard materials was ≤0.1 and ≤0.2 per mill or ‰, respectively, although later analysis showed that materials from one specific standard required reaction time between 34 and 54 h for δ18O to achieve this level of precision. Aliquot screening methods were shown to further minimize the total error. The accuracy and precision of the new method were analyzed and confirmed by statistical analysis. The utility of the method was verified by analyzing calcite from Devils Hole, Nevada, for which isotope-ratio values had previously been obtained by the classical method. Devils Hole core DH-11 recently had been re-cut and re-sampled, and isotope-ratio values were obtained using the new method. The results were comparable with those obtained by the classical method with correlation = +0.96 for both isotope ratios. The consistency of the isotopic results is such that an alignment offset could be identified in the re-sampled core material, and two cutting errors that occurred during re-sampling then were confirmed independently. This result indicates that the new method is a viable alternative to the classical reaction method. In particular, the new method requires less sample material permitting finer resolution and allows

  6. The effect of different cooking processes on stable C, N, and H isotopic compositions of beef.

    PubMed

    Zhou, Jiuqing; Guo, Boli; Wei, Yimin; Zhang, Guoquan; Wei, Shuai; Ma, Yiyan

    2015-09-01

    The variability in the stable C, N, and H isotopic composition caused by different beef processing operations (boiling, frying, and roasting) was studied. The aim was to evaluate the stability of stable isotopic fingerprint information during the beef cooking process. The δ(13)C, δ(15)N, and δ(2)H values for raw, boiled, fried and roasted beef were measured, and the differences in the stable isotopic composition between raw and processed beef products were assessed. The results indicated that the δ(13)C and δ(15)N values in raw beef were not significantly different compared with processed beef, but the δ(2)H values were significantly higher in processed beef than in raw beef. In general, boiling, frying, and roasting had no significant effect on δ(13)C and δ(15)N values, but the δ(2)H value of processed beef increased.

  7. Isotope effects in ESR spectroscopy.

    PubMed

    Stößer, Reinhard; Herrmann, Werner

    2013-06-07

    In order to present the relationship between ESR spectroscopy and isotope effects three levels are considered: (i) ESR spectroscopy is described on a general level up to the models for interpretation of the experimental spectra, which go beyond the usually used time and mass independent spin-Hamilton operator, (ii) the main characteristics of the generalized isotope effects are worked out, and finally (iii) the basic, mainly quantum mechanical effects are used to describe the coupling of electron spins with the degrees of freedom, which are accessible under the selected conditions, of the respective paramagnetic object under investigation. The ESR parameters and the respective models are formalized so far, that they include the time and mass depending influences and reflect the specific isotope effects. Relations will be established between the effects in ESR spectra to spin relaxation, to spin exchange, to the magnetic isotope effect, to the Jahn-Teller effects, as well as to the influence of zero-point vibrations. Examples will be presented which demonstrate the influence of isotopes as well as the kind of accessible information. It will be differentiated with respect to isotope effects in paramagnetic centres itself and in the respective matrices up to the technique of ESR imaging. It is shown that the use of isotope effects is indispensable in ESR spectroscopy.

  8. δ 13C response surface resolves humidity and temperature signals in trees

    NASA Astrophysics Data System (ADS)

    Edwards, T. W. D.; Graf, W.; Trimborn, P.; Stichler, W.; Lipp, J.; Payer, H. D.

    2000-01-01

    Stem cellulose of bean plants ( Vicia faba) grown under controlled conditions exhibits inverse linear carbon-isotope reactions to changes in both relative humidity (RH) and temperature (T), readily mappable as a planar δ 13C response surface in RH-T space. The analogous response surface for annual late-wood cellulose δ 13C from a field calibration using fir trees ( Abies alba) in the Black Forest, southern Germany, also supports resolution of independent δ-RH and δ-T effects. The response of cellulose δ 13C to RH and T derived from this new calibration differs markedly from estimates based on univariate linear regression analysis: The sensitivity of δ 13C to RH is stronger than that inferred previously ( c. -0.17‰/% vs. -0.12‰/%, respectively), whereas the δ-T coefficient is weaker and reversed in sign ( c. -0.15‰/K vs. +0.36‰/K). This new perspective on the coupled influence of moisture and temperature changes on tree-ring cellulose δ 13C helps to unify divergent observations about carbon-isotope signals in trees, especially the broad range of apparent δ-T relations obtained in calibration studies, which are often used as paleoclimate transfer functions. Although this highlights the large potential uncertainties surrounding paleoclimate reconstruction based solely on δ 13C data, coupling of the carbon-isotope response-surface approach with equivalent response surfaces for hydrogen or oxygen isotopes may afford new opportunities for investigating the nature of past climate variability and change from tree-ring sequences.

  9. Linking Biogeochemistry to Microbial Diversity Using New 13C Approaches

    NASA Astrophysics Data System (ADS)

    Baggs, E. M.

    2005-12-01

    The use of 13C enables us to overcome uncertainties associated with soil C processes and to assess the links between species diversity and ecosystem function. Recent advances in stable isotope techniques enable determination of process rates, for example CH4 oxidation by direct measurement of 13C-CH4 and 13C-CO2. This overcomes uncertainties associated with reliance on changes in net CH4 emission, which may have compromised some earlier studies as both methanogenesis and CH4 oxidation may occur simultaneously in soil, providing significant advances in our understanding of the process of CH4 oxidation. These stable isotope techniques can be combined with molecular techniques (analysis of gene expression, stable isotope probing (SIP)) to relate the measured process to the microbial populations responsible. Here we will give a synthesis of results from experiments in which we applied 13C-CH4 to accurately determine CH4 oxidation rates in soils, and also present results of 13C-SIP from which we can identify the key players in the microbial population that are using the applied 13C substrate. With the 13C-CH4 technique we were able to provide direct evidence of inhibition of CH4 oxidation following fertiliser application (50-300 kg N ha-1) that was less under elevated pCO2, and evidence for anaerobic CH4 oxidation occurring in soil at 75% soil water filled pore space that would not have been apparent from changes in net CH4 emissions. 13C-SIP both through plants (using 13C-CO2) and directly into soil (using 13C-methane and -organic substrates) has revealed how key players in C utilisation vary under different soil conditions, for example, under improved and unimproved grasslands.

  10. C Diffusion in Fe: Isotope Effects and Other Complexities

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Muller, T.; Trail, D.; Van Orman, J. A.; Papineau, D.

    2011-12-01

    Carbon is a minor but significant component of iron meteorites, and probably also of planetary cores, including that of Earth. Given the dynamical nature of core-forming processes, C diffusion in the metal phase may play a role in C equilibration between Fe-Ni metal and silicate, carbide or oxide at some stage. Despite its relevance to steel-making, C diffusion in Fe is not well characterized over the range of conditions of interest in planetary bodies, and the likelihood of an isotope mass effect on C diffusion has not been explored. The prospect of incomplete diffusive equilibration of carbon in Fe-Ni raises the possibility that carbon isotopes might be fractionated by diffusion during core formation and evolution-perhaps to an extent that could affect the C isotope ratio of the bulk silicate Earth. Here we report results of preliminary experiments addressing the isotopic mass effect on C diffusion in Fe. Initial low-pressure experiments were conducted by placing a layer of ^{13}C-enriched graphite ( 20% ^{13}C) at the end of a high-purity, polycrystalline Fe cylinder in a silica glass container. These diffusion couples were run in a piston-cylinder apparatus at 1.5 GPa and 1000-1100^{o}C for several hours, and the resulting C-uptake profiles in the Fe cylinders were measured by EPMA and SIMS. In traverses moving away from the original C-Fe interface, total carbon decreases monotonically and becomes significantly lighter, indicating that ^{12}C diffuses faster than ^{13}C. Preliminary estimates of β in the relative isotope diffusivity relation D_{1}/D_{2} = [M_{2}/M_{1}]^{β} (where D is diffusivity and M is mass of isotopes 1 and 2) suggest values as high as 0.5, corresponding to predictions for gaseous diffusion. Isotope mass effects approaching this magnitude have been observed previously for diffusion in metals, and are expected to be highest for interstitial diffusion. Such a high β value will lead to major C isotope fractionation in some partial

  11. In vivo stable isotope studies in three patients affected with mitochondrial fatty acid oxidation disorders: limited diagnostic use of 1-13C fatty acid breath test using bolus technique.

    PubMed

    Jakobs, C; Kneer, J; Martin, D; Boulloche, J; Brivet, M; Poll-The, B T; Saudubray, J M

    1997-08-01

    The in vivo oxidation of fatty acids (FA) of different chain length was investigated in three patients with documented mitochondrial FA oxidation disorders: one patient with mild multiple acyl-CoA dehydrogenase deficiency (MADM), one with medium chain acyl-CoA dehydrogenase deficiency (MCAD), and one with carnitine palmitoyltransferase I deficiency (CPT I). Breath tests were performed after oral administration of 1-13C butyric. 1-13C octanoic, and 1-13C palmitic acids. 13C/12C ratio in the expired oxidative end product CO2 was measured. The cumulative 13C elimination was calculated and expressed as a percentage of the administered dose. In the MADM patient the influence of carnitine therapy (or deprivation) on the utilization of 1-13C palmitic acid was also examined. In the MCAD and CPT I patients, the 1-13C butyric, 1-13C octanoic and 1-13C palmitic acids in vivo oxidation were similar to five healthy controls. In the MADM patient, the oxidation of 1-13C butyric and 1-13C octanoic acids were normal, whereas the metabolism of 1-13C palmitic acid ranged from 33% of 66% of controls. In this patient the serum carnitine level decreased from 60 to 27 mumol/l without carnitine supplementation. Clinically there was mild hypotonia. 1-13C palmitic acid oxidation compared to controls was 50%. After 2 further weeks of carnitine deprivation the serum carnitine was 10-15 mumol/l. Clinically he was very hypotonic and had a large liver. 1-13C Palmitic acid oxidation was 33%. After 6 weeks of readministration of carnitine (L-carnitine 100 mg/kg/day p.o.) the serum carnitine was 60 mumol/l and the patient was in good clinical condition. 1-13C palmitic acid oxidation was 66% compared to controls. Our study implies that this simple fatty acid breath test is not of diagnostic use for detection of enzymatic defects in FA oxidation disorders. The carnitine dependent 1-13C palmitic acid oxidation indicates that this test might be of some value in cases with primary or secondary carnitine

  12. Kinetic and metabolic isotope effects in coral skeletal carbon isotopes: A re-evaluation using experimental coral bleaching as a case study

    NASA Astrophysics Data System (ADS)

    Schoepf, Verena; Levas, Stephen J.; Rodrigues, Lisa J.; McBride, Michael O.; Aschaffenburg, Matthew D.; Matsui, Yohei; Warner, Mark E.; Hughes, Adam D.; Grottoli, Andréa G.

    2014-12-01

    Coral skeletal δ13C can be a paleo-climate proxy for light levels (i.e., cloud cover and seasonality) and for photosynthesis to respiration (P/R) ratios. The usefulness of coral δ13C as a proxy depends on metabolic isotope effects (related to changes in photosynthesis) being the dominant influence on skeletal δ13C. However, it is also influenced by kinetic isotope effects (related to calcification rate) which can overpower metabolic isotope effects and thus compromise the use of coral skeletal δ13C as a proxy. Heikoop et al. (2000) proposed a simple data correction to remove kinetic isotope effects from coral skeletal δ13C, as well as an equation to calculate P/R ratios from coral isotopes. However, despite having been used by other researchers, the data correction has never been directly tested, and isotope-based P/R ratios have never been compared to P/R ratios measured using respirometry. Experimental coral bleaching represents a unique environmental scenario to test this because bleaching produces large physiological responses that influence both metabolic and kinetic isotope effects in corals. Here, we tested the δ13C correction and the P/R calculation using three Pacific and three Caribbean coral species from controlled temperature-induced bleaching experiments where both the stable isotopes and the physiological variables that cause isotopic fractionation (i.e., photosynthesis, respiration, and calcification) were simultaneously measured. We show for the first time that the data correction proposed by Heikoop et al. (2000) does not effectively remove kinetic effects in the coral species studied here, and did not improve the metabolic signal of bleached and non-bleached corals. In addition, isotope-based P/R ratios were in poor agreement with measured P/R ratios, even when the data correction was applied. This suggests that additional factors influence δ13C and δ18O, which are not accounted for by the data correction. We therefore recommend that the

  13. Intertube effects on one-dimensional correlated state of metallic single-wall carbon nanotubes probed by 13C NMR

    NASA Astrophysics Data System (ADS)

    Serita, Noboru; Nakai, Yusuke; Matsuda, Kazuyuki; Yanagi, Kazuhiro; Miyata, Yasumitsu; Saito, Takeshi; Maniwa, Yutaka

    2017-01-01

    The electronic states in isolated single-wall carbon nanotubes (SWCNTs) have been considered as an ideal realization of a Tomonaga-Luttinger liquid (TLL). However, it remains unclear whether one-dimensional correlated states are realized under local environmental effects such as the formation of a bundle structure. Intertube effects originating from other adjacent SWCNTs within a bundle may drastically alter the one-dimensional correlated state. In order to test the validity of the TLL model in bundled SWCNTs, low-energy spin excitation is investigated by nuclear magnetic resonance (NMR). The NMR relaxation rate in bundled mixtures of metallic and semiconducting SWCNTs shows a power-law temperature dependence with a theoretically predicted exponent. This demonstrates that a TLL state with the same strength as that for effective Coulomb interactions is realized in a bundled sample, as in isolated SWCNTs. In bundled metallic SWCNTs, we found a power-law temperature dependence of the relaxation rate, but the magnitude of the relaxation rate is one order of magnitude smaller than that predicted by theory. Furthermore, we found an almost doubled magnitude of the Luttinger parameter. These results indicate suppressed spin excitations with reduced Coulomb interactions in bundled metallic SWCNTs, which are attributable to intertube interactions originating from adjacent metallic SWCNTs within a bundle. Our findings give direct evidence that bundling reduces the effective Coulomb interactions via intertube interactions within bundled metallic SWCNTs.

  14. Investigation of gamma radiation effect on the anion exchange resin Amberlite IRA-400 in hydroxide form by Fourier transformed infrared and 13C nuclear magnetic resonance spectroscopies.

    PubMed

    Traboulsi, A; Dupuy, N; Rebufa, C; Sergent, M; Labed, V

    2012-03-02

    Radiation-induced decomposition of the anion exchange resin Amberlite IRA-400 in hydroxide form by gamma radiolysis has been studied under different irradiation doses and irradiation atmospheres. In this work, we focused on the degradation of the solid part of the resin by Fourier transformed infrared (FTIR) and (13)C nuclear magnetic resonance (NMR) spectroscopies associated with chemometric treatments. FTIR and (13)C NMR techniques showed that only -CH(2)N(+)(CH(3))(3) groups were detached from the resin whereas the polystyrene divinylbenzene backbone remains intact. The quaternary ammonium groups were replaced by amine or carbonyl groups according to the irradiation atmosphere (with or without water or oxygen). Principal components analysis (PCA) was used to classify the degraded resins according to their irradiation conditions by separating the effect of the dose or the environment. The PCA loadings have shown spectral regions which discriminate the irradiated resins whereas SIMPLe-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA) allows to identify families of component characterizing the chemical structure of resins and estimate their relative contributions according to the irradiation atmospheres.

  15. Methionine kinetics in adult men: effects of dietary betaine on L-(2H3-methyl-1-13C)methionine

    SciTech Connect

    Storch, K.J.; Wagner, D.A.; Young, V.R. )

    1991-08-01

    The effects of a daily 3-g supplement of betaine on kinetic aspects of L-(2H3-methyl-1-13C)methionine (MET) metabolism in healthy young adult men were explored. Four groups of four subjects each were given a control diet, based on an L-amino acid mixture supplying 29.5 and 21.9 mg.kg-1.d-1 of L-methionine and L-cystine for 4 d before the tracer study, conducted on day 5 during the fed state. Two groups received the control diet and two groups received the betaine supplement. Tracer was given intravenously (iv) or orally. The transmethylation rate of MET (TM), homocysteine remethylation (RM), and oxidation of methionine were estimated from plasma methionine labeling and 13C enrichment of expired air. RM tended to increase (P = 0.14) but the TM and methionine oxidation were significantly (P less than 0.05) higher after betaine supplementation when estimated with the oral tracer. No differences were detected with the intravenous tracer. Methionine concentration in plasma obtained from blood taken from subjects in the fed state was higher (P less than 0.01) with betaine supplementation. These results suggest that excess methyl-group intake may increase the dietary requirement for methionine.

  16. /sup 13/C NMR analysis of the effects of electron radiation on graphite/polyetherimide composites. Final report

    SciTech Connect

    Ferguson, M.W.

    1989-03-01

    Initial investigations have been made into the use of high resolution nuclear magnetic resonance (NMR) for the characterization of radiation effects in graphite and Kevlar fibers, polymers, and the fiber/matrix interface in graphite/polyetherimide composites. Sample preparation techniques were refined. Essential equipment has been procured. A new NMR probe was constructed to increase the proton signal-to-noise ratio. Problem areas have been identified and plans developed to resolve them.

  17. Unusual origins of isotope effects in enzyme-catalysed reactions

    PubMed Central

    Northrop, Dexter B

    2006-01-01

    High hydrostatic pressure is a neglected tool for probing the origins of isotope effects. In chemical reactions, normal primary deuterium isotope effects (DIEs) arising solely from differences in zero point energies are unaffected by pressure; but some anomalous isotope effects in which hydrogen tunnelling is suspected are partially suppressed. In some enzymatic reactions, high pressure completely suppresses the DIE. We have now measured the effects of high pressure on the parallel 13C heavy atom isotope effect of yeast alcohol dehydrogenase and found that it is also suppressed by high pressure and, similarly, suppressed in its entirety. Moreover, the volume changes associated with the suppression of both deuterium and heavy atom isotope effects are virtually identical. The equivalent decrease in activation volumes for hydride transfer, when one mass unit is added to the carbon end of a scissile C–H bond as when one mass unit is added to the hydrogen end, suggests a common origin. Given that carbon is highly unlikely to undergo tunnelling, it follows that hydrogen is not doing so either. The origin of these isotope effects must lie elsewhere. We offer protein domain motions as a possibility. PMID:16873122

  18. δ13C and δD Measurement using Cavity Ring-down and Isotope Ratio Mass Spectrometry by Gas Chromatography/Combustion/Pyrolysis and Off-line Processing of Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Culp, R.; Pan, H.; Saad, N.

    2015-12-01

    A comparison was made between various stable isotope measurement techniques for the purpose of quantifying each methods capability for use in hydrocarbon analyses applicable to fields such as geochemistry, agriculture, forensics and authenticity testing. Measurement techniques include: (1) Cavity Ring-down spectrometry (CRDS) using a Picarro 2120-A interfaced with a combustion module (CM) to facilitate conversion of hydrocarbons to carbon dioxide and water (2) Isotope Ratio Mass Spectrometry (IRMS) using a Thermo 253 IRMS with gas chromatographic separation prior to combustion to carbon dioxide or high temperature pyrolysis to hydrogen for isotope ratio measurement. Also, off line combustion to carbon dioxide and water with further reduction to hydrogen and dual-inlet measurement by IRMS. IRMS techniques have proven track records for measurement accuracy and precision but require independent analyses of carbon and hydrogen since one needs to oxidize carbon but reduce water to hydrogen prior to measurement or pyrolyze hydrocarbons directly into hydrogen after gas chromatographic separation. Cavity ring-down spectrometry can measure carbon dioxide and water simultaneously eliminating the need for two separate measurements of carbon and hydrogen isotopes. Although the CRDS suffers from memory effects following combustion and transfer of gases early on, new technology has reduced this to acceptable levels for accurate determinations of carbon and hydrogen isotope ratios. In this study, various hydrocarbon materials were used over an extended period of time to determine the best combination of sample size, replicate analyses and combustion column composition and life. The data presented here indicates isotopic measurements by CM-CRDS, for both solid and volatile liquid samples, compare well with GC/IRMS and off-line dual inlet methods of analysis.

  19. Conifers, Angiosperm Trees, and Lianas: Growth, Whole-Plant Water and Nitrogen Use Efficiency, and Stable Isotope Composition (δ13C and δ18O) of Seedlings Grown in a Tropical Environment1[W][OA

    PubMed Central

    Cernusak, Lucas A.; Winter, Klaus; Aranda, Jorge; Turner, Benjamin L.

    2008-01-01

    Seedlings of several species of gymnosperm trees, angiosperm trees, and angiosperm lianas were grown under tropical field conditions in the Republic of Panama; physiological processes controlling plant C and water fluxes were assessed across this functionally diverse range of species. Relative growth rate, r, was primarily controlled by the ratio of leaf area to plant mass, of which specific leaf area was a key component. Instantaneous photosynthesis, when expressed on a leaf-mass basis, explained 69% of variation in r (P < 0.0001, n = 94). Mean r of angiosperms was significantly higher than that of the gymnosperms; within angiosperms, mean r of lianas was higher than that of trees. Whole-plant nitrogen use efficiency was also significantly higher in angiosperm than in gymnosperm species, and was primarily controlled by the rate of photosynthesis for a given amount of leaf nitrogen. Whole-plant water use efficiency, TEc, varied significantly among species, and was primarily controlled by ci/ca, the ratio of intercellular to ambient CO2 partial pressures during photosynthesis. Instantaneous measurements of ci/ca explained 51% of variation in TEc (P < 0.0001, n = 94). Whole-plant 13C discrimination also varied significantly as a function of ci/ca (R2 = 0.57, P < 0.0001, n = 94), and was, accordingly, a good predictor of TEc. The 18O enrichment of stem dry matter was primarily controlled by the predicted 18O enrichment of evaporative sites within leaves (R2 = 0.61, P < 0.0001, n = 94), with some residual variation explained by mean transpiration rate. Measurements of carbon and oxygen stable isotope ratios could provide a useful means of parameterizing physiological models of tropical forest trees. PMID:18599645

  20. [Effect of pharmaceutical care in the diagnosis of Helicobacter pylori infection using 13C-urea breath test].

    PubMed

    Funakoshi, Ryohkan; Yokoyama, Haruko; Kawai, Noriko; Kobayashi, Kenji; Ueno, Fumiaki; Yamada, Yasuhiko

    2012-01-01

    The urea breath test (UBT) is used widely for assessment of Helicobacter pylori (H. pylori) eradication after treatment. A false-negative UBT is common during administration of anti-ulcer drugs and immediately after their discontinuation. It was thought that the pharmaceutical care by the pharmacists was necessary for the diagnostic accuracy of UBT after H. pylori eradication therapy. Therefore, we investigated the effect of pharmaceutical care on diagnosis based on assessment of UBT. The patients who performed UBT were classified into two groups according to the pharmacists' intervention. From 2008 April to 2009 September, the number of the patients taken pharmaceutical care was 57 (intervention group) and that of the patients taken no pharmaceutical care was 62 (control group). When drugs for H. pylori infection and anamnestic therapy were same, the percentage that avoided administration of double drugs was significantly increased by the pharmaceutical care (93.3% in intervention group versus 21.4% in control group, p<0.05). Therefore, the percentage of noncompliance that performed UBT 4 weeks after treatment onward was significantly decreased by the pharmaceutical care (1.6% in intervention group versus 17.5% in control group, p<0.05). Moreover, the percentage of recurrence after treatment was significantly decreased, there were 3.3% in the intervention group and 14.0% in the control group. In conclusion, it was very important that the pharmacists take care in the management of treatment and UBT for H. pylori eradication therapy.

  1. [Effects of different soil types on the foliar δ13C values of common local plant species in karst rocky desertification area in central Guizhou Province].

    PubMed

    Du, Xue-lian; Wang, Shi-jie; Luo, Xu-qiang

    2014-09-01

    By measuring the foliar δ13C values of common local plant species grown in different soil types in Wangjiazhai catchments, a typical karst desertification area in Qingzhen City, Central Guizhou, we studied the impact of soil type and rocky desertification grade on the foliar δ13C values. The results showed that the foliar δ13C values were more negative in yellow soil area than those in black calcareous area and there was no obvious difference in foliar δ13C values between these two soil types. The distribution interval of foliar δ13C values in yellow soil area was narrower than those in black calcareous area and the variation coefficient of foliar δ13C values in yellow soil area were smaller than those in black calcareous area. With increasing degree of karst rocky desertification, the foliar δ13C values of plant community in black calcareous area increased, whereas those in yellow soil area first increased and then decreased. The result of multiple comparison showed that the difference in foliar δ13C values of plant community among rocky desertification grade was not obvious in yellow soil area, but it was obvious in black calcareous area. Correlation analysis between the foliar δ13C values of plant species and the main environmental factors indicated that slope and soil thickness were the main factors which affected the foliar δ13C values of plants in yellow soil area and soil water contant was the main factor in black calcareous area. The impact of soil on the foliar δ13C values was realized by adjusting the soil moisture in study area.

  2. Malic enzyme: Tritium isotope effects with alternative dinucleotide substrates and divalent metal ions

    SciTech Connect

    Karsten, W.E.; Harris, B.G.; Cook, P.F. )

    1992-01-01

    The NAD-malic enzyme from Ascaris suum catalyzes the divalent metal ion dependent oxidative decarboxylation of L-malate to yield pyruvate, carbon dioxide and NADH. Multiple isotope effect studies suggest a stepwise chemical mechanism with hydride transfer from L-malate to NAD occurring first to form oxalacetate, followed by decarboxylation. Utilizing L-malate-2-T, tritium V/K isotope effects have been determined for the hydride transfer step using a variety of alternative dinucleotide substrates and divalent metal ions. Combination of these data with deuterium isotope effects data and previously determined [sup 13]C isotope effects has allowed the calculation of intrinsic isotope effects for the malic enzyme catalyzed reaction. The identity of both the dinucleotide substrate and divalent metal ion has an effect of the size of the intrinsic isotope effect for hydride transfer.

  3. NMR ({sup 1}H and {sup 13}C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect

    SciTech Connect

    Bag, Swarnendu; Banerjee, Deb Ranjan; Basak, Amit; Das, Amit Kumar; Pal, Mousumi; Banerjee, Rita; Paul, Ranjan Rashmi; Chatterjee, Jyotirmoy

    2015-04-17

    At functional levels, besides genes and proteins, changes in metabolome profiles are instructive for a biological system in health and disease including malignancy. It is understood that metabolomic alterations in association with proteomic and transcriptomic aberrations are very fundamental to unravel malignant micro-ambient criticality and oral cancer is no exception. Hence deciphering intricate dimensions of oral cancer metabolism may be contributory both for integrated appreciation of its pathogenesis and to identify any critical but yet unexplored dimension of this malignancy with high mortality rate. Although several methods do exist, NMR provides higher analytical precision in identification of cancer metabolomic signature. Present study explored abnormal signatures in choline metabolism in oral squamous cell carcinoma (OSCC) using {sup 1}H and {sup 13}C NMR analysis of serum. It has demonstrated down-regulation of choline with concomitant up-regulation of its break-down product in the form of trimethylamine N-oxide in OSCC compared to normal counterpart. Further, no significant change in lactate profile in OSCC possibly indicated that well-known Warburg effect was not a prominent phenomenon in such malignancy. Amongst other important metabolites, malonate has shown up-regulation but D-glucose, saturated fatty acids, acetate and threonine did not show any significant change. Analyzing these metabolomic findings present study proposed trimethyl amine N-oxide and malonate as important metabolic signature for oral cancer with no prominent Warburg effect. - Highlights: • NMR ({sup 1}H and {sup 13}C) study of Oral Squamous cell Carcinoma Serum. • Abnormal Choline metabolomic signatures. • Up-regulation of Trimethylamine N-oxide. • Unchanged lactate profile indicates no prominent Warburg effect. • Proposed alternative glucose metabolism path through up-regulation of malonate.

  4. Model-free estimation of the effective correlation time for C-H bond reorientation in amphiphilic bilayers: 1H-13C solid-state NMR and MD simulations

    NASA Astrophysics Data System (ADS)

    Ferreira, Tiago Mendes; Ollila, O. H. Samuli; Pigliapochi, Roberta; Dabkowska, Aleksandra P.; Topgaard, Daniel

    2015-01-01

    Molecular dynamics (MD) simulations give atomically detailed information on structure and dynamics in amphiphilic bilayer systems on timescales up to about 1 μs. The reorientational dynamics of the C-H bonds is conventionally verified by measurements of 13C or 2H nuclear magnetic resonance (NMR) longitudinal relaxation rates R1, which are more sensitive to motional processes with correlation times close to the inverse Larmor frequency, typically around 1-10 ns on standard NMR instrumentation, and are thus less sensitive to the 10-1000 ns timescale motion that can be observed in the MD simulations. We propose an experimental procedure for atomically resolved model-free estimation of the C-H bond effective reorientational correlation time τe, which includes contributions from the entire range of all-atom MD timescales and that can be calculated directly from the MD trajectories. The approach is based on measurements of 13C R1 and R1ρ relaxation rates, as well as 1H-13C dipolar couplings, and is applicable to anisotropic liquid crystalline lipid or surfactant systems using a conventional solid-state NMR spectrometer and samples with natural isotopic composition. The procedure is demonstrated on a fully hydrated lamellar phase of 1-palmitoyl-2-oleoyl-phosphatidylcholine, yielding values of τe from 0.1 ns for the methyl groups in the choline moiety and at the end of the acyl chains to 3 ns for the g1 methylene group of the glycerol backbone. MD simulations performed with a widely used united-atom force-field reproduce the τe-profile of the major part of the acyl chains but underestimate the dynamics of the glycerol backbone and adjacent molecular segments. The measurement of experimental τe-profiles can be used to study subtle effects on C-H bond reorientational motions in anisotropic liquid crystals, as well as to validate the C-H bond reorientation dynamics predicted in MD simulations of amphiphilic bilayers such as lipid membranes.

  5. The paper trail of the 13C of atmospheric CO2 since the industrial revolution period

    NASA Astrophysics Data System (ADS)

    Yakir, Dan

    2011-07-01

    The 13C concentration in atmospheric CO2 has been declining over the past 150 years as large quantities of 13C-depleted CO2 from fossil fuel burning are added to the atmosphere. Deforestation and other land use changes have also contributed to the trend. Looking at the 13C variations in the atmosphere and in annual growth rings of trees allows us to estimate CO2 uptake by land plants and the ocean, and assess the response of plants to climate. Here I show that the effects of the declining 13C trend in atmospheric CO2 are recorded in the isotopic composition of paper used in the printing industry, which provides a well-organized archive and integrated material derived from trees' cellulose. 13C analyses of paper from two European and two American publications showed, on average, a - 1.65 ± 1.00‰ trend between 1880 and 2000, compared with - 1.45 and - 1.57‰ for air and tree-ring analyses, respectively. The greater decrease in plant-derived 13C in the paper we tested than in the air is consistent with predicted global-scale increases in plant intrinsic water-use efficiency over the 20th century. Distinct deviations from the atmospheric trend were observed in both European and American publications immediately following the World War II period.

  6. Differential effects of safflower oil versus fish oil feeding on insulin-stimulated glycogen synthesis, glycolysis, and pyruvate dehydrogenase flux in skeletal muscle: a 13C nuclear magnetic resonance study.

    PubMed

    Jucker, B M; Cline, G W; Barucci, N; Shulman, G I

    1999-01-01

    To examine the effects of safflower oil versus fish oil feeding on in vivo intramuscular glucose metabolism and relative pyruvate dehydrogenase (PDH) versus tricarboxylic acid (TCA) cycle flux, rats were pair-fed on diets consisting of 1) 59% safflower oil, 2) 59% menhaden fish oil, or 3) 59% carbohydrate (control) in calories. Rates of glycolysis and glycogen synthesis were assessed by monitoring [1-(13)C]glucose label incorporation into [1-(13)C]glycogen, [3-(13)C]lactate, and [3-(13)C]alanine in the hindlimb of awake rats via 13C nuclear magnetic resonance (NMR) spectroscopy during a euglycemic (approximately 6 mmol/l) hyperinsulinemic (approximately 180 microU/ml) clamp. A steady-state isotopic analysis of lactate, alanine, and glutamate was used to determine the relative PDH versus TCA cycle flux present in muscle under these conditions. The safflower oil-fed rats were insulin resistant compared with control and fish oil-fed rats, as reflected by a markedly reduced glucose infusion rate (Ginf) during the clamp (21.4 +/- 2.3 vs. 31.6 +/- 2.8 and 31.7 +/- 1.9 mg x kg(-1) x min(-1) in safflower oil versus control and fish oil groups, respectively, P < 0.006). This decrease in insulin-stimulated glucose disposal in the safflower oil group was associated with a lower rate of glycolysis (21.7 +/- 2.2 nmol x g(-1) x min(-1)) versus control (62.1 +/- 10.3 nmol x g(-1) x min(-1), P < 0.001) and versus fish oil (45.7 +/- 6.7 nmol x g(-1) x min(-1), P < 0.04), as no change in glycogen synthesis (103 +/- 15, 133 +/- 19, and 125 +/- 14 nmol x g(-1) x min(-1) in safflower oil, fish oil, and control, respectively) was detected. The intramuscular triglyceride (TG) content was increased in the safflower oil group (7.3 +/- 0.8 micromol/g) compared with the control group (5.2 +/- 0.8 micromol/g, P < 0.05) and the fish oil group (3.6 +/- 1.1 micromol/g, P < 0.01). Conversely, the percent PDH versus TCA cycle flux was decreased in the safflower oil (43 +/- 8%) versus the control

  7. Solvent effect on pathways and mechanisms for D-fructose conversion to 5-hydroxymethyl-2-furaldehyde: in situ 13C NMR study.

    PubMed

    Kimura, Hiroshi; Nakahara, Masaru; Matubayasi, Nobuyuki

    2013-03-14

    Noncatalytic reactions of D-fructose were kinetically investigated in dimethylsulfoxide (DMSO), water, and methanol as a function of time at temperatures of 30-150 °C by applying in situ (13)C NMR spectroscopy. The products were quantitatively analyzed with distinction of isomeric species by taking advantage of site-selective (13)C labeling technique. In DMSO, D-fructose was converted first into 3,4-dihydroxy-2-dihydroxymethyl-5-hydroxymethyltetrahydrofuran having no double bond in the ring, subsequently into 4-hydroxy-5-hydroxymethyl-4,5-dihydrofuran-2-carbaldehyde having one double bond through dehydration, and finally into 5-hydroxymethyl-2-furaldehyde (5-HMF) having two double bonds. No other reaction pathways were involved, as shown from the carbon mass balance. In water, 5-HMF, the final product in DMSO, was generated with the precursors undetected and furthermore transformed predominantly into formic and levulinic acids and slightly into 1,2,4-benzenetriol accompanied by polymerization. D-glucose was also produced through the reversible transformation of the reactant D-fructose. In methanol, some kinds of anhydro-D-fructoses were generated instead of 5-HMF. The reaction pathways can thus be controlled by taking advantage of the solvent effect. The D-fructose conversion reactions are of the first order with respect to the concentration of D-fructose and proceed on the order of minutes in DMSO but on the order of hours in water and methanol. The rate constant was three orders of magnitude larger in DMSO than in water or methanol.

  8. Water availability and branch length determine delta(13)C in foliage of Pinus pinaster.

    PubMed

    Warren, Charles R.; Adams, Mark A.

    2000-05-01

    The stable carbon isotope composition (delta(13)C) of foliage integrates signals resulting from environmental and hydraulic constraints on water movement and photosynthesis. We used branch length as a simple predictor of hydraulic constraints to water fluxes and determined the response of delta(13)C to varying water availability. Foliage up to 6 years old was taken from Pinus pinaster Ait. trees growing at four sites differing in precipitation (P; 414-984 mm year(-1)) and potential evaporation (ET; 1091-1750 mm year(-1)). Branch length was the principal determinant of temporal trends in delta(13)C. The strong relationship between delta(13)C and branch length was a function of hydraulic conductance, which was negatively correlated with branch length (r(2) = 0.84). Variation in P and ET among sites was reflected in delta(13)C, which was negatively correlated with P/ET (r(2) = 0.66). However, this analysis was confounded by differences in branch length. If the effects of branch length on delta(13)C were first removed, then the 'residual' delta(13)C was more closely related to P/ET (r(2) = 0.99), highlighting the importance of accounting for variation in hydraulic constraints to water flux between sites and years. For plant species that exhibit considerable phenotypic plasticity in response to changes in environment (e.g., variation in leaf area, branch length and number, or stem form), the environmental effects on delta(13)C in foliage can only be reliably assessed if deconvoluted from hydraulic constraints.

  9. The effects of librations on the 13C chemical shift and 2H electric field gradient tensors in β-calcium formate

    NASA Astrophysics Data System (ADS)

    Hallock, Kevin J.; Lee, Dong Kuk; Ramamoorthy, A.

    2000-12-01

    The magnitudes and orientations of the principal elements of the 13C chemical shift anisotropy (CSA) tensor in the molecular frame of the formate ion in β-calcium formate is determined using one-dimensional dipolar-shift spectroscopy. The magnitudes of the principal elements of the 13C CSA tensor are σ11C=104 ppm, σ22C=179 ppm, and σ33C=233 ppm. The least shielding element of the 13C CSA tensor, σ33C, is found to be collinear with the C-H bond. The temperature dependence of the 13C CSA and the 2H quadrupole coupling tensors in β-calcium formate are analyzed for a wide range of temperature (173-373 K). It was found that the span of the 13C CSA and the magnitude of the 2H quadrupole coupling interactions are averaged with the increasing temperature. The experimental results also show that the 2H quadrupole coupling tensor becomes more asymmetric with increasing temperature. A librational motion about the σ22C axis of the 13C CSA tensor is used to model the temperature dependence of the 13C CSA tensor. The temperature dependence of the mean-square amplitude of the librational motion is found to be <α2>=2.6×10-4(T) rad2 K-1. The same librational motion also accounts for the temperature-dependence of the 2H quadrupole coupling tensor after the relative orientation of the 13C CSA and 2H electric field gradient tensors are taken into account. Reconsideration of the results of a previous study found that the librational motion, not the vibrational motion, accounts for an asymmetry in the 1H-13C dipolar coupling tensor of α-calcium formate at room temperature.

  10. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    NASA Astrophysics Data System (ADS)

    Ni, Yunyan; Ma, Qisheng; Ellis, Geoffrey S.; Dai, Jinxing; Katz, Barry; Zhang, Shuichang; Tang, Yongchun

    2011-05-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2 cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using δD values in ethane from several basins in the world are in close agreement with similar predictions based on the δ 13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that δD values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that δD values in ethane might be more suitable for modeling than comparable values in methane and propane.

  11. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    USGS Publications Warehouse

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  12. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    The humified SOM or humic substances (HS) composed of humic acid (HA), fulvic acid (FA) and humin (HM) represent the most microbially recalcitrant and stable reservoir of organic carbon in soil (Piccolo et al., 2004). OM applications can influence the amount and structural characteristics of HS(Dou et al., 2008). During the past few decades, there has been much research on HS, but their chemical structure is still not fully understood (Dong, 2006).CP-MAS-13C-NMR spectroscopy was considered as an effective method to study structures of HS without dissolving problem compared with liquid 13C-NMR (Conte et al., 1997; Dou et al., 2008). It can directly measure the carbon framework and reflect the nature of HS transformation after OM application (Spaccini et al., 2000). For that reason, this method was applied in this study. The objective of this paper was to clarify the effect of long term OM application on the changes of structural characteristics in HAs, which provided new information for improving soil fertility by OM application. The experiment was carried out on a brown soil (Paleudalf in USDA Soil Taxonomy) at Shenyang Agricultural University, Liaoning province, China (N41°48'-E123°25'). The experiment included 3 treatments: zero-treatment (CKbr), and two pig manure (PM) treatments (O1 and O2) at the rates of 0.9 t ha-1 and 1.8 t ha-1 of organic carbon, respectively. The samples of the HA fraction were extracted, separated and purified according to the method described by Dou et al. (1991). Elemental composition, Differential thermal analysis (DTA), -lgK value, FT-IR and CP-MAS- 13C-NMR of HAs were performed. Effects on the contents of orgaic carbon and its composition. The contents of TOC were from 8.77 g kg-1 to 12.25 g kg-1. The relative contents in TOC for WSS, HA, and FA were 6.87%, 14.2% and 19.8%. Comparing the CKbr, the contents of WSS, HA and FA for O1 and O2 increased, but relative contents of WSS and FA decreased. The content of the HA increased after

  13. Priming effect of 13C-labelled wheat straw in no-tillage soil under drying and wetting cycles in the Loess Plateau of China

    PubMed Central

    Liu, Enke; Wang, Jianbo; Zhang, Yanqing; Angers, Denis A.; Yan, Changrong; Oweis, Theib; He, Wenqing; Liu, Qin; Chen, Baoqing

    2015-01-01

    The objectives of this study were to determine the effects of drying and wetting (DW) cycles on soil organic carbon (SOC) mineralisation and on the priming effect (PE) induced by the addition of 13C-labelled wheat straw to long-term no-tillage (NT) and conventional-tillage (CT) soils. We observed that the SOC mineralisation rate in rewetted soils was greater than that in soils that were kept at constant water content. The proportion of CO2 derived from the straw declined dramatically during the first 10 days. The priming direction was first positive, and then became slightly negative. The PE was higher under DW cycles than under constant water content. There was no significant effect of the tillage system on the SOC mineralisation rate or PE. The data indicate that the DW cycles had a significant effect on the SOC mineralisation rate and on the PE, demonstrating a positive combined effect between wheat straw and moisture fluctuations. Further research is needed to study the role of microbial communities and C pools in affecting the SOC mineralisation response to DW cycles. PMID:26345303

  14. Temporal δ13C records from bottlenose dolphins (Tursiops truncatus) reflect variation in foraging location and global carbon cycling

    NASA Astrophysics Data System (ADS)

    Rossman, S. L.; Barros, N. B.; Ostrom, P. H.; Gandhi, H.; Wells, R. S.

    2010-12-01

    first year of life. Given the age of bottlenose dolphins from SB (ca. 60 years), our isotopic data provide a record beginning in 1944. While carbon isotope values show a striking decline over time, the data must be corrected for the Suess effect. The Suess effect results from burning of 13C depleted hydrocarbons which causes a decrease in the δ13C of atmospheric CO2 that subsequent depresses isotope values in food webs. To account for the Suess effect, δ13C values are adjusted by 0.15‰ per decade. Suess corrected δ13C values do not show a temporal linear trend however the average isotope value prior to 1960 is significantly higher than that after 1960 (-10.1 vs -11.66, p=0.038). While documented declines in seagrass abundance prior to 1980 may influence our data, the decline in δ13C of atmospheric CO2 is likely an important factor that controls the isotopic composition of dolphin tissues. Our results suggest that isotope-based estimates of foraging should account for the Suess effect, and that dolphins act as environmental sentinels whose δ13C values records perturbations in global carbon cycling.

  15. Changes and their possible causes in δ13C of dark-respired CO2 and its putative bulk and soluble sources during maize ontogeny.

    PubMed

    Ghashghaie, Jaleh; Badeck, Franz W; Girardin, Cyril; Huignard, Christophe; Aydinlis, Zackarie; Fonteny, Charlotte; Priault, Pierrick; Fresneau, Chantal; Lamothe-Sibold, Marlène; Streb, Peter; Terwilliger, Valery J

    2016-04-01

    The issues of whether, where, and to what extent carbon isotopic fractionations occur during respiration affect interpretations of plant functions that are important to many disciplines across the natural sciences. Studies of carbon isotopic fractionation during dark respiration in C3 plants have repeatedly shown respired CO2 to be (13)C enriched relative to its bulk leaf sources and (13)C depleted relative to its bulk root sources. Furthermore, two studies showed respired CO2 to become progressively (13)C enriched during leaf ontogeny and (13)C depleted during root ontogeny in C3 legumes. As such data on C4 plants are scarce and contradictory, we investigated apparent respiratory fractionations of carbon and their possible causes in different organs of maize plants during early ontogeny. As in the C3 plants, leaf-respired CO2 was (13)C enriched whereas root-respired CO2 was (13)C depleted relative to their putative sources. In contrast to the findings for C3 plants, however, not only root- but also leaf-respired CO2 became more (13)C depleted during ontogeny. Leaf-respired CO2 was highly (13)C enriched just after light-dark transition but the enrichment rapidly decreased over time in darkness. We conclude that (i) although carbon isotopic fractionations in C4 maize and leguminous C3 crop roots are similar, increasing phosphoenolpyruvate-carboxylase activity during maize ontogeny could have produced the contrast between the progressive (13)C depletion of maize leaf-respired CO2 and (13)C enrichment of C3 leaf-respired CO2 over time, and (ii) in both maize and C3 leaves, highly (13)C enriched leaf-respired CO2 at light-to-dark transition and its rapid decrease during darkness, together with the observed decrease in leaf malate content, may be the result of a transient effect of light-enhanced dark respiration.

  16. Alternate substrates and isotope effects as a probe of the malic enzyme reaction

    SciTech Connect

    Gavva, S.R.

    1988-01-01

    Dissociation constants for alternative dinucleotide substrates and competitive inhibitors suggest that the dinucleotide binding site of the Ascaris suum NAD-malic enzyme is hydrophobic in the vicinity of the nicotinamide ring. Changes in the divalent metal ion activator from Mg{sup 2+} to Mn{sup 2+} or Cd{sup 2+} results in a decrease in the dinucleotide affinity and an increase in the affinity for malate. Primary deuterium and {sup 13}C isotope effects obtained with the different metal ions suggest either a change in the transition state structure for the hydride transfer or decarboxylation steps or both. Deuterium isotope effects are finite whether reactants are maintained at saturating or limiting concentrations with all the metal ions and dinucleotide substrates used. For the native enzyme, primary deuterium isotope effects increase with a concomitant decrease in the {sup 13}C effects when NAD is replaced by an alternate dinucleotide substrate different in redox potential.

  17. 13C metabolic flux analysis.

    PubMed

    Wiechert, W

    2001-07-01

    Metabolic flux analysis using 13C-labeled substrates has become an important tool in metabolic engineering. It allows the detailed quantification of all intracellular fluxes in the central metabolism of a microorganism. The method has strongly evolved in recent years by the introduction of new experimental procedures, measurement techniques, and mathematical data evaluation methods. Many of these improvements require advanced skills in the application of nuclear magnetic resonance and mass spectrometry techniques on the one hand and computational and statistical experience on the other hand. This minireview summarizes these recent developments and sketches the major practical problems. An outlook to possible future developments concludes the text.

  18. Theoretical investigations of the γ- gauche effect on the 13C chemical shifts produced by oxygen atoms at the γ position by quantum chemistry calculations

    NASA Astrophysics Data System (ADS)

    Suzuki, Shinji; Horii, Fumitaka; Kurosu, Hiromichi

    2009-02-01

    The γ- gauche effect on 13C chemical shifts that is produced by the O atoms located at the γ positions has been evaluated by quantum chemistry calculations based on the GAIO-CHF procedure. The γ- gauche effects produced by the O and Cl atoms in n-propanol and n-propyl chloride are found to be, respectively, +1.4 and -0.7 ppm, whereas that due to the C atom in n-butane is -3.0 ppm in good agreement of the values previously calculated. The apparent cause of such a difference in the γ- gauche effect is mainly relatively higher shielding of the CH 3 carbon in the trans conformation for the n-propanol and n-propyl chloride. Extending the n-propanol chain at both ends causes no significant change in the γ- gauche effect produced by the O atom. In 2-butanol and 2-methyl-2-butanol as examples of secondarily and tertiarily substituted compounds, the γ- gauche effects produced by the γ-OH groups are estimated to be -7 to -9 ppm. In addition, the γ- gauche effect due to the C atom is found to increase in n-butane, secondary, and tertiary butanols in this order. The γ- gauche effect produced by the O atom in hydroxyethylcyclohexane is as negligibly small as -0.7 ppm, whereas that produced by the C atom in ethylcyclohexane is about -5 ppm. These results suggest that the γ- gauche effect, including downfield shift, produced by the O atom in a compound greatly depends on its chemical structure, whereas upfield shifts of -3 to -7 ppm are induced in all examined compounds as the γ- gauche effect due to the C atom.

  19. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    SciTech Connect

    Rosenberg, R.M.; O'Leary, M.H.

    1985-03-26

    The authors have measured the /sup 13/C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D/sub 2/O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D/sub 2/O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The /sup 13/C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the /sup 13/C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier.

  20. Hyperpolarized 13C Metabolic MRI of the Human Heart

    PubMed Central

    Lau, Justin Y.C.; Chen, Albert P.; Geraghty, Benjamin J.; Perks, William J.; Roifman, Idan; Wright, Graham A.; Connelly, Kim A.

    2016-01-01

    Rationale: Altered cardiac energetics is known to play an important role in the progression toward heart failure. A noninvasive method for imaging metabolic markers that could be used in longitudinal studies would be useful for understanding therapeutic approaches that target metabolism. Objective: To demonstrate the first hyperpolarized 13C metabolic magnetic resonance imaging of the human heart. Methods and Results: Four healthy subjects underwent conventional proton cardiac magnetic resonance imaging followed by 13C imaging and spectroscopic acquisition immediately after intravenous administration of a 0.1 mmol/kg dose of hyperpolarized [1-13C]pyruvate. All subjects tolerated the procedure well with no adverse effects reported ≤1 month post procedure. The [1-13C]pyruvate signal appeared within the chambers but not within the muscle. Imaging of the downstream metabolites showed 13C-bicarbonate signal mainly confined to the left ventricular myocardium, whereas the [1-13C]lactate signal appeared both within the chambers and in the myocardium. The mean 13C image signal:noise ratio was 115 for [1-13C]pyruvate, 56 for 13C-bicarbonate, and 53 for [1-13C]lactate. Conclusions: These results represent the first 13C images of the human heart. The appearance of 13C-bicarbonate signal after administration of hyperpolarized [1-13C]pyruvate was readily detected in this healthy cohort (n=4). This shows that assessment of pyruvate metabolism in vivo in humans is feasible using current technology. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02648009. PMID:27635086

  1. Metabolic flux analysis using 13C peptide label measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate cellular metabolism. MFA has established flux maps of central metabolism for dozens of microbes, cell cultures, and plant seeds. Steady-state MFA utilizes isotopic labeling measurements of amino acids obtai...

  2. Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Gu, L.; Bao, F.; Cao, Y.; Hao, Y.; He, J.; Li, J.; Li, Y.; Ren, Y.; Wang, F.; Wu, R.; Yao, B.; Zhao, Y.; Lin, G.; Wu, B.; Lu, Q.; Meng, P.

    2015-01-01

    A longstanding puzzle in isotope studies of C3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific disciplines ranging from plant physiology to global carbon cycle studies. To gain insight into this puzzle, we excavated whole plant architectures of Nitraria tangutorum Bobrov, a C3 species that has an exceptional capability of fixing sands and building sand dunes, in two deserts in northwestern China. We systematically and simultaneously measured carbon isotope ratios and nitrogen and phosphorous contents of different parts of the excavated plants. We also determined the seasonal variations in leaf carbon isotope ratios on nearby intact plants of N. tangutorum. We found, for the first time, that higher nitrogen contents in heterotrophic organs were significantly correlated with increased heterotrophic 13C enrichment compared to leaves. However, phosphorous contents had no effect on the enrichment. In addition, new leaves had carbon isotope ratios similar to roots but were progressively depleted in 13C as they matured. We concluded that a nitrogen-mediated process, hypothesized to be the refixation of respiratory CO2 by phosphoenolpyruvate (PEP) carboxylase, was responsible for the differences in 13C enrichment among different heterotrophic organs, while processes such as fractionating foliar metabolism and preferentially loading into phloem of 13C-enriched sugars may contribute to the overall autotrophic-heterotrophic difference in carbon isotope compositions.

  3. Ethane's 12C/13C Ratio in Titan: Implications for Methane Replenishment

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Nixon, C. A.; Romani, P. N.; Bjoraker, G. L.; Sada, P. V.; Lunsford, A. W.; Boyle, R. J.; Hesman, B. E.; McCabe, G. H.

    2009-01-01

    As the .main destination of carbon in the destruction of methane in the atmosphere of Titan, ethane provides information about the carbon isotopic composition of the reservoir from which methane is replenished. If the amount of methane entering the atmosphere is presently equal to the amount converted to ethane, the 12C/13C ratio in ethane should be close to the ratio in the reservoir. We have measured the 12C/13C ratio in ethane both with Cassini CIRS(exp 1) and from the ground and find that it is very close to the telluric standard and outer planet values (89), consistent with a primordial origin for the methane reservoir. The lower 12C/13C ratio measured for methane by Huygens GCMS (82.3) can be explained if the conversion of CH4 to CH3 (and C2H6) favors 12C over 13C with a carbon kinetic isotope effect of 1.08. The time required for the atmospheric methane to reach equilibrium, i.e., for replenishment to equal destruction, is approximately 5 methane atmospheric lifetimes.

  4. [The use of the [13C]/[12C] ratio for the assay of the microbial oxidation of hydrocarbons].

    PubMed

    Ziakun, A M; Kosheleva, I A; Zakharchenko, V N; Kudriavtseva, A I; Peshenko, V A; Filonov, A E; Boronin, A M

    2003-01-01

    The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope composition of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (delta 13C = -44.6 +/- 0.2@1000) were characterized by the isotope effects delta 13CCO2 = -50.2 +/- 0.4@1000, delta 13Cbiom = -46.6 +/- 0.4@1000 and delta 13Cexo = -41.5 +/- 0.4@1000, respectively. The isotope composition of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (delta 13C = -21 +/- 0.4@1000) were characterized by the isotope effects delta 13CCO2 = -24.1 +/- 0.4@1000, delta 13Cbiom = -19.2 +/- 0.4@1000 and delta 13Cexo = -19.1 +/- 0.4@1000, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the enviroment is discussed.

  5. Model-free estimation of the effective correlation time for C–H bond reorientation in amphiphilic bilayers: {sup 1}H–{sup 13}C solid-state NMR and MD simulations

    SciTech Connect

    Ferreira, Tiago Mendes; Ollila, O. H. Samuli; Pigliapochi, Roberta; Dabkowska, Aleksandra P.; Topgaard, Daniel

    2015-01-28

    Molecular dynamics (MD) simulations give atomically detailed information on structure and dynamics in amphiphilic bilayer systems on timescales up to about 1 μs. The reorientational dynamics of the C–H bonds is conventionally verified by measurements of {sup 13}C or {sup 2}H nuclear magnetic resonance (NMR) longitudinal relaxation rates R{sub 1}, which are more sensitive to motional processes with correlation times close to the inverse Larmor frequency, typically around 1-10 ns on standard NMR instrumentation, and are thus less sensitive to the 10-1000 ns timescale motion that can be observed in the MD simulations. We propose an experimental procedure for atomically resolved model-free estimation of the C–H bond effective reorientational correlation time τ{sub e}, which includes contributions from the entire range of all-atom MD timescales and that can be calculated directly from the MD trajectories. The approach is based on measurements of {sup 13}C R{sub 1} and R{sub 1ρ} relaxation rates, as well as {sup 1}H−{sup 13}C dipolar couplings, and is applicable to anisotropic liquid crystalline lipid or surfactant systems using a conventional solid-state NMR spectrometer and samples with natural isotopic composition. The procedure is demonstrated on a fully hydrated lamellar phase of 1-palmitoyl-2-oleoyl-phosphatidylcholine, yielding values of τ{sub e} from 0.1 ns for the methyl groups in the choline moiety and at the end of the acyl chains to 3 ns for the g{sub 1} methylene group of the glycerol backbone. MD simulations performed with a widely used united-atom force-field reproduce the τ{sub e}-profile of the major part of the acyl chains but underestimate the dynamics of the glycerol backbone and adjacent molecular segments. The measurement of experimental τ{sub e}-profiles can be used to study subtle effects on C–H bond reorientational motions in anisotropic liquid crystals, as well as to validate the C–H bond reorientation dynamics predicted in MD

  6. delta15N and delta13C diet-tissue discrimination factors for large sharks under semi-controlled conditions.

    PubMed

    Hussey, Nigel E; Brush, Jaclyn; McCarthy, Ian D; Fisk, Aaron T

    2010-04-01

    Stable isotopes (delta(15)N and delta(13)C) are being widely applied in ecological research but there has been a call for ecologists to determine species- and tissue-specific diet discrimination factors ((13)C and (15)N) for their study animals. For large sharks stable isotopes may provide an important tool to elucidate aspects of their ecological roles in marine systems, but laboratory based controlled feeding experiments are impractical. By utilizing commercial aquaria, we estimated (15)N and (13)C of muscle, liver, vertebral cartilage and a number of organs of three large sand tiger (Carcharias taurus) and one large lemon shark (Negaprion brevirostris) under a controlled feeding regime. For all sharks mean+/-SD for (15)N and (13)C in lipid extracted muscle using lipid extracted prey data were 2.29 per thousand+/-0.22 and 0.90 per thousand+/-0.33, respectively. The use of non-lipid extracted muscle and prey resulted in very similar (15)N and (13)C values but mixing of lipid and non-lipid extracted data produced variable estimates. Values of (15)N and (13)C in lipid extracted liver and prey were 1.50 per thousand+/-0.54 and 0.22 per thousand+/-1.18, respectively. Non-lipid extracted diet discrimination factors in liver were highly influenced by lipid content and studies that examine stable isotopes in shark liver, and likely any high lipid tissue, should strive to remove lipid effects through standardising C:N ratios, prior to isotope analysis. Mean vertebral cartilage (15)N and (13)C values were 1.45 per thousand+/-0.61 and 3.75 per thousand+/-0.44, respectively. Organ (15)N and (13)C values were more variable among individual sharks but heart tissue was consistently enriched by approximately 1-2.5 per thousand. Minimal variability in muscle and liver delta(15)N and delta(13)C sampled at different intervals along the length of individual sharks and between liver lobes suggests that stable isotope values are consistent within tissues of individual animals. To our

  7. /sup 13/C nuclear magnetic resonance studies of cardiac metabolism

    SciTech Connect

    Seeholzer, S.H.

    1985-01-01

    The last decade has witnessed the increasing use of Nuclear Magnetic Resonance (NMR) techniques for following the metabolic fate of compounds specifically labeled with /sup 13/C. The goals of the present study are: (1) to develop reliable quantitative procedures for measuring the /sup 13/C enrichment of specific carbon sites in compounds enriched by the metabolism of /sup 13/C-labeled substrates in rat heart, and (2) to use these quantitative measurements of fractional /sup 13/C enrichment within the context of a mathematical flux model describing the carbon flow through the TCA cycle and ancillary pathways, as a means for obtaining unknown flux parameters. Rat hearts have been perfused in vitro with various combinations of glucose, acetate, pyruvate, and propionate to achieve steady state flux conditions, followed by perfusion with the same substrates labeled with /sup 13/C in specific carbon sites. The hearts were frozen at different times after addition of /sup 13/C-labeled substrates and neutralized perchloric acid extracts were used to obtain high resolution proton-decoupled /sup 13/C NMR spectra at 90.55 MHz. The fractional /sup 13/C enrichment (F.E.) of individual carbon sites in different metabolites was calculated from the area of the resolved resonances after correction for saturation and nuclear Overhauser effects. These F.E. measurements by /sup 13/C NMR were validated by the analysis of /sup 13/C-/sup 1/H scalar coupling patterns observed in /sup 1/H NMR spectra of the extracted metabolites. The results obtained from perfusion of hearts glucose plus either (2-/sup 13/C) acetate or (3-/sup 13/C) pyruvate are similar to those obtained by previous investigators using /sup 14/C-labeled substrates.

  8. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.

    PubMed

    Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun

    2016-04-14

    NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites.

  9. High-Frequency (13)C and (29)Si NMR Chemical Shifts in Diamagnetic Low-Valence Compounds of Tl(I) and Pb(II): Decisive Role of Relativistic Effects.

    PubMed

    Vícha, Jan; Marek, Radek; Straka, Michal

    2016-02-15

    The (13)C and (29)Si NMR signals of ligand atoms directly bonded to Tl(I) or Pb(II) heavy-element centers are predicted to resonate at very high frequencies, up to 400 ppm for (13)C and over 1000 ppm for (29)Si, outside the typical experimental NMR chemical-shift ranges for a given type of nuclei. The large (13)C and (29)Si NMR chemical shifts are ascribed to sizable relativistic spin-orbit effects, which can amount to more than 200 ppm for (13)C and more than 1000 ppm for (29)Si, values unexpected for diamagnetic compounds of the main group elements. The origin of the vast spin-orbit contributions to the (13)C and (29)Si NMR shifts is traced to the highly efficient 6p → 6p* metal-based orbital magnetic couplings and related to the 6p orbital-based bonding together with the low-energy gaps between the occupied and virtual orbital subspaces in the subvalent Tl(I) and Pb(II) compounds. New NMR spectral regions for these compounds are suggested based on the fully relativistic density functional theory calculations in the Dirac-Coulomb framework carefully calibrated on the experimentally known NMR data for Tl(I) and Pb(II) complexes.

  10. Application of DRIFTS, (13)C NMR, and py-MBMS to Characterize the Effects of Soil Science Oxidation Assays on Soil Organic Matter Composition in a Mollic Xerofluvent.

    PubMed

    Margenot, Andrew J; Calderón, Francisco J; Magrini, Kimberly A; Evans, Robert J

    2017-01-01

    Chemical oxidations are routinely employed in soil science to study soil organic matter (SOM), and their interpretation could be improved by characterizing oxidation effects on SOM composition with spectroscopy. We investigated the effects of routinely employed oxidants on SOM composition in a Mollic Xerofluvent representative of intensively managed agricultural soils in the California Central Valley. Soil samples were subjected to oxidation by potassium permanganate (KMnO4), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2). Additionally, non-oxidized and oxidized soils were treated with hydrofluoric acid (HF) to evaluate reduction of the mineral component to improve spectroscopy of oxidation effects. Oxidized non-HF and HF-treated soils were characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), (13)C cross polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, and pyrolysis molecular beam mass spectrometry (py-MBMS), and for particle size distribution (PSD) using laser diffractometry (LD). Across the range of soil organic carbon (OC) removed by oxidations (14-72%), aliphatic C-H stretch at 3000-2800 cm(-1) (DRIFTS) decreased with OC removal, and this trend was enhanced by HF treatment due to significant demineralization in this soil (70%). Analysis by NMR spectroscopy was feasible only after HF treatment, and did not reveal trends between OC removal and C functional groups. Pyrolysis-MBMS did not detect differences among oxidations, even after HF treatment of soils. Hydrofluoric acid entailed OC loss (13-39%), and for H2O2 oxidized soils increased C:N and substantially decreased mean particle size. This study demonstrates the feasibility of using HF to improve characterizations of SOM composition following oxidations as practiced in soil science, in particular for DRIFTS. Since OC removal by oxidants, mineral removal by HF, and the interaction of oxidants and HF observed for this soil

  11. Synthesis of exemestane labelled with (13)C.

    PubMed

    Fontana, Erminia; Pignatti, Alberto; Giribone, Danilo; Di Salle, Enrico

    2008-08-01

    The synthesis of exemestane Aromasin, an irreversible steroidal aromatase inhibitor, specifically labelled with (13)C is reported. The preparation of [(13)C(3)]exemestane was achieved according to an eight-step procedure starting from the commercially available testosterone.

  12. Mother-egg stable isotope conversions and effects of lipid extraction and ethanol preservation on loggerhead eggs.

    PubMed

    Kaufman, Temma J; Pajuelo, Mariela; Bjorndal, Karen A; Bolten, Alan B; Pfaller, Joseph B; Williams, Kristina L; Vander Zanden, Hannah B

    2014-01-01

    Carbon and nitrogen stable isotope (δ(13)C and δ(15)N) analysis has been used to elucidate foraging and migration behaviours of endangered sea turtle populations. Isotopic analysis of tissue samples from nesting females can provide information about their foraging locations before reproduction. To determine whether loggerhead (Caretta caretta) eggs provide a good proxy for maternal isotope values, we addressed the following three objectives: (i) we evaluated isotopic effects of ethanol preservation and lipid extraction on yolk; (ii) we examined the isotopic offset between maternal epidermis and corresponding egg yolk and albumen tissue δ(13)C and δ(15)N values; and (iii) we assessed the accuracy of foraging ground assignment using egg yolk and albumen stable isotope values as a proxy for maternal epidermis. Epidermis (n = 61), albumen (n = 61) and yolk samples (n = 24) were collected in 2011 from nesting females at Wassaw Island, GA, USA. Subsamples from frozen and ethanol-preserved yolk samples were lipid extracted. Both lipid extraction and ethanol preservation significantly affected yolk δ(13)C, while δ(15)N values were not altered at a biologically relevant level. The mathematical corrections provided here allow for normalization of yolk δ(13)C values with these treatments. Significant tissue conversion equations were found between δ(13)C and δ(15)N values of maternal epidermis and corresponding yolk and albumen. Finally, the consistency in assignment to a foraging area was high (up to 84%), indicating that these conversion equations can be used in future studies where stable isotopes are measured to determine female foraging behaviour and trophic relationships by assessing egg components. Loggerhead eggs can thus provide reliable isotopic information when samples from nesting females cannot be obtained.

  13. Effects of configurational disorder on the elastic properties of icosahedral boron-rich alloys based on B6O, B13C2, and B4C, and their mixing thermodynamics.

    PubMed

    Ektarawong, A; Simak, S I; Hultman, L; Birch, J; Tasnádi, F; Wang, F; Alling, B

    2016-04-07

    The elastic properties of alloys between boron suboxide (B6O) and boron carbide (B13C2), denoted by (B6O)(1-x)(B13C2)(x), as well as boron carbide with variable carbon content, ranging from B13C2 to B4C are calculated from first-principles. Furthermore, the mixing thermodynamics of (B6O)(1-x)(B13C2)(x) is studied. A superatom-special quasirandom structure approach is used for modeling different atomic configurations, in which effects of configurational disorder between the carbide and suboxide structural units, as well as between boron and carbon atoms within the units, are taken into account. Elastic properties calculations demonstrate that configurational disorder in B13C2, where a part of the C atoms in the CBC chains substitute for B atoms in the B12 icosahedra, drastically increase the Young's and shear modulus, as compared to an atomically ordered state, B12(CBC). These calculated elastic moduli of the disordered state are in excellent agreement with experiments. Configurational disorder between boron and carbon can also explain the experimentally observed almost constant elastic moduli of boron carbide as the carbon content is changed from B4C to B13C2. The elastic moduli of the (B6O)(1-x)(B13C2)(x) system are also practically unchanged with composition if boron-carbon disorder is taken into account. By investigating the mixing thermodynamics of the alloys, in which the Gibbs free energy is determined within the mean-field approximation for the configurational entropy, we outline the pseudo-binary phase diagram of (B6O)(1-x)(B13C2)(x). The phase diagram reveals the existence of a miscibility gap at all temperatures up to the melting point. Also, the coexistence of B6O-rich as well as ordered or disordered B13C2-rich domains in the material prepared through equilibrium routes is predicted.

  14. Effects of configurational disorder on the elastic properties of icosahedral boron-rich alloys based on B6O, B13C2, and B4C, and their mixing thermodynamics

    NASA Astrophysics Data System (ADS)

    Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Tasnádi, F.; Wang, F.; Alling, B.

    2016-04-01

    The elastic properties of alloys between boron suboxide (B6O) and boron carbide (B13C2), denoted by (B6O)1-x(B13C2)x, as well as boron carbide with variable carbon content, ranging from B13C2 to B4C are calculated from first-principles. Furthermore, the mixing thermodynamics of (B6O)1-x(B13C2)x is studied. A superatom-special quasirandom structure approach is used for modeling different atomic configurations, in which effects of configurational disorder between the carbide and suboxide structural units, as well as between boron and carbon atoms within the units, are taken into account. Elastic properties calculations demonstrate that configurational disorder in B13C2, where a part of the C atoms in the CBC chains substitute for B atoms in the B12 icosahedra, drastically increase the Young's and shear modulus, as compared to an atomically ordered state, B12(CBC). These calculated elastic moduli of the disordered state are in excellent agreement with experiments. Configurational disorder between boron and carbon can also explain the experimentally observed almost constant elastic moduli of boron carbide as the carbon content is changed from B4C to B13C2. The elastic moduli of the (B6O)1-x(B13C2)x system are also practically unchanged with composition if boron-carbon disorder is taken into account. By investigating the mixing thermodynamics of the alloys, in which the Gibbs free energy is determined within the mean-field approximation for the configurational entropy, we outline the pseudo-binary phase diagram of (B6O)1-x(B13C2)x. The phase diagram reveals the existence of a miscibility gap at all temperatures up to the melting point. Also, the coexistence of B6O-rich as well as ordered or disordered B13C2-rich domains in the material prepared through equilibrium routes is predicted.

  15. A 200 year temperature record from tree ring δ13C at the Qaidam Basin of the Tibetan Plateau after identifying the optimum method to correct for changing atmospheric CO2 and δ13C

    NASA Astrophysics Data System (ADS)

    Wang, Wenzhi; Liu, Xiaohong; Shao, Xuemei; Leavitt, Steven; Xu, Guobao; An, Wenling; Qin, Dahe

    2011-12-01

    Improved understanding of climate influences on tree ring stable carbon isotope13C) ratios for Qilian juniper (Sabina przewalskii Kom.) will improve prospects for long climate reconstructions in northwestern China's Qaidam Basin, where weather stations are widely scattered with relatively short records. Here, we developed an annual-resolution δ13C series from 1800 to 2005 for trees in this extremely arid, high-elevation area. As expected, a significant decline in δ13C (of about 3.5‰) occurred from 1850 to 2005 in response to increasing atmospheric CO2 concentrations and decreasing atmospheric δ13C. High-frequency correlation analysis based on comparison of the tree ring δ13C chronology with recorded weather parameters revealed that mean temperature during the current growing season (April-August) most strongly influenced tree ring δ13C discrimination from 1956 to 2005. To clarify the climatic implications of the long-term trend, we systematically compared four previously published approaches to remove the effects of decreasing atmospheric δ13C from the climate signals. The optimal correction, which accounted for the decline in atmospheric δ13C (δ13Ccor) and for a discrimination rate of about 0.016‰ ppmv-1 for the CO2 partial pressure, captured the strongest temperature signal (r = 0.75, P < 0.001). The historical mean April-August temperatures inferred from the correlations of tree ring δ13C with climate data revealed a persistent warming trend during the past two centuries, especially since the 1980s. Our results therefore reveal a high potential for reconstruction of growing season temperatures on a millennial scale in the northeastern Tibetan Plateau.

  16. Heavy atom isotope effects on enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Paneth, Piotr

    1994-05-01

    The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.

  17. Effect of salinity and water stress during the reproductive stage on growth, ion concentrations, Delta 13C, and delta 15N of durum wheat and related amphiploids.

    PubMed

    Yousfi, Salima; Serret, Maria Dolores; Voltas, Jordi; Araus, José Luis

    2010-08-01

    The physiological performance of durum wheat and two related amphiploids was studied during the reproductive stage under different combinations of salinity and irrigation. One triticale, one tritordeum, and four durum wheat genotypes were grown in pots in the absence of stress until heading, when six different treatments were imposed progressively. Treatments resulted from the combination of two irrigation regimes (100% and 35% of container water capacity) with three levels of water salinity (1.8, 12, and 17 dS m(-1)), and were maintained for nearly 3 weeks. Gas exchange and chlorophyll fluorescence and content were measured prior to harvest; afterwards shoot biomass and height were recorded, and Delta(13)C, delta(15)N, and the concentration of nitrogen (N), phosphorus, and several ions (K(+), Na(+), Ca(2+), Mg(2+)) were analysed in shoot material. Compared with control conditions (full irrigation with Hoagland normal) all other treatments inhibited photosynthesis through stomatal closure, accelerated senescence, and decreased biomass. Full irrigation with 12 dS m(-1) outperformed other stress treatments in terms of biomass production and physiological performance. Biomass correlated positively with N and delta(15)N, and negatively with Na(+) across genotypes and fully irrigated treatments, while relationships across deficit irrigation conditions were weaker or absent. Delta(13)C did not correlate with biomass across treatments, but it was the best trait correlating with phenotypic differences in biomass within treatments. Tritordeum produced more biomass than durum wheat in all treatments. Its low Delta(13)C and high K(+)/Na(+) ratio, together with a high potential growth, may underlie this finding. Mechanisms relating delta(15)N and Delta(13)C to biomass are discussed.

  18. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    NASA Astrophysics Data System (ADS)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  19. Responses of foliar delta13C, gas exchange and leaf morphology to reduced hydraulic conductivity in Pinus monticola branches.

    PubMed

    Cernusak, L A; Marshall, J D

    2001-10-01

    We tested the hypothesis that branch hydraulic conductivity partly controls foliar stable carbon isotope ratio (delta13C) by its influence on stomatal conductance in Pinus monticola Dougl. Notching and phloem-girdling treatments were applied to reduce branch conductivity over the course of a growing season. Notching and phloem girdling reduced leaf-specific conductivity (LSC) by about 30 and 90%, respectively. The 90% reduction in LSC increased foliar delta13C by about 1 per thousand (P < 0.0001, n = 65), whereas the 30% reduction in LSC had no effect on foliar delta13C (P = 0.90, n = 65). Variation in the delta13C of dark respiration was similar to that of whole-tissues when compared among treatments. These isotopic measurements, in addition to instantaneous gas exchange measurements, suggested only minor adjustments in the ratio of intercellular to atmospheric CO2 partial pressures (ci/ca) in response to experimentally reduced hydraulic conductivity. A strong correlation was observed between stomatal conductance (gs) and photosynthetic demand over a tenfold range in gs. Although ci/ca and delta13C appeared to be relatively homeostatic, current-year leaf area varied linearly as a function of branch hydraulic conductivity (r2 = 0.69, P < 0.0001, n = 18). These results suggest that, for Pinus monticola, adjustment of leaf area is a more important response to reduced branch conductivity than adjustment of ci/ca.

  20. Galactic Chemical Evolution and Solar s-process Abundances: Dependence on the 13C-pocket Structure

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Travaglio, C.; Gallino, R.; Wiescher, M.; Käppeler, F.

    2014-05-01

    We study the s-process abundances (A >~ 90) at the epoch of the solar system formation. Asymptotic giant branch yields are computed with an updated neutron capture network and updated initial solar abundances. We confirm our previous results obtained with a Galactic chemical evolution (GCE) model: (1) as suggested by the s-process spread observed in disk stars and in presolar meteoritic SiC grains, a weighted average of s-process strengths is needed to reproduce the solar s distribution of isotopes with A > 130; and (2) an additional contribution (of about 25%) is required in order to represent the solar s-process abundances of isotopes from A = 90 to 130. Furthermore, we investigate the effect of different internal structures of the 13C pocket, which may affect the efficiency of the 13C(α, n)16O reaction, the major neutron source of the s process. First, keeping the same 13C profile adopted so far, we modify by a factor of two the mass involved in the pocket; second, we assume a flat 13C profile in the pocket, and we test again the effects of the variation of the mass of the pocket. We find that GCE s predictions at the epoch of the solar system formation marginally depend on the size and shape of the 13C pocket once a different weighted range of 13C-pocket strengths is assumed. We obtain that, independently of the internal structure of the 13C pocket, the missing solar system s-process contribution in the range from A = 90 to 130 remains essentially the same.

  1. On the use of phloem sap δ13C to estimate canopy carbon discrimination

    NASA Astrophysics Data System (ADS)

    Rascher, Katherine; Máguas, Cristina; Werner, Christiane

    2010-05-01

    Although the carbon stable isotope composition (d13C) of bulk leaf material is a good integrative parameter of photosynthetic discrimination and can be used as a reliable ecological index of plant functioning; it is not a good tracer of short-term changes in photosynthetic discrimination. In contrast, d13C of phloem sap is potentially useful as an indicator of short-term changes in canopy photosynthetic discrimination. However, recent research indicates that d13C signatures may be substantially altered by metabolic processes downstream of initial leaf-level carbon fixation (e.g. post-photosynthetic fractionation). Accordingly, before phloem sap d13C can be used as a proxy for canopy level carbon discrimination an understanding of factors influencing the degree and magnitude of post-photosynthetic fractionation and how these vary between species is of paramount importance. In this study, we measured the d13C signature along the basipetal transport pathway in two co-occurring tree species in the field - an understory invasive exotic legume, Acacia longifolia, and a native pine, Pinus pinaster. We measured d13C of bulk leaf and leaf water soluble organic matter (WSOM), phloem sap sampled at two points along the plant axis and leaf and root dark respiration. In general, species differences in photosynthetic discrimination resulted in more enriched d13C values in the water-conserving P. pinaster relative to the water-spending A. longifolia. Post-photosynthetic fractionation led to differences in d13C of carbon pools along the plant axis with progressively more depleted d13C from the canopy to the trunk (~6.5 per mil depletion in A. longifolia and ~0.8per mil depletion in P. pinaster). Leaf and root respiration, d13C, were consistently enriched relative to putative substrates. We hypothesize that the pronounced enrichm