Science.gov

Sample records for 13c kinetic isotope

  1. Kinetic isotope effects significantly influence intracellular metabolite 13C labeling patterns and flux determination

    PubMed Central

    Wasylenko, Thomas M.; Stephanopoulos, Gregory

    2014-01-01

    Rigorous mathematical modeling of carbon-labeling experiments allows estimation of fluxes through the pathways of central carbon metabolism, yielding powerful information for basic scientific studies as well as for a wide range of applications. However, the mathematical models that have been developed for flux determination from 13C labeling data have commonly neglected the influence of kinetic isotope effects on the distribution of 13C label in intracellular metabolites, as these effects have often been assumed to be inconsequential. We have used measurements of the 13C isotope effects on the pyruvate dehydrogenase enzyme from the literature to model isotopic fractionation at the pyruvate node and quantify the modeling errors expected to result from the assumption that isotope effects are negligible. We show that under some conditions kinetic isotope effects have a significant impact on the 13C labeling patterns of intracellular metabolites, and the errors associated with neglecting isotope effects in 13C-metabolic flux analysis models can be comparable in size to measurement errors associated with GC–MS. Thus, kinetic isotope effects must be considered in any rigorous assessment of errors in 13C labeling data, goodness-of-fit between model and data, confidence intervals of estimated metabolic fluxes, and statistical significance of differences between estimated metabolic flux distributions. PMID:23828762

  2. sup 13 C and sup 18 O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects

    SciTech Connect

    McConnaughey, T. )

    1989-01-01

    Biological carbonates are built largely from CO{sub 2}, which diffuses across the skeletogenic membrane and reacts to form HCO{sub 3}{sup {minus}}. Kinetic discrimination against the heavy isotopes {sup 18}O and {sup 13}C during CO{sub 2} hydration and hydroxylation apparently causes most of the isotopic disequilibrium observed in biological carbonates. These kinetic isotope effects are expressed when the extracytosolic calcifying solution is thin and alkaline, and HCO{sub 3}{sup {minus}} precipitates fairly rapidly as CaCO{sub 3}. In vitro simulation of the calcifying environment produced heavy isotope depletions qualitatively similar to, but somewhat more extreme than, those seen in biological carbonates. Isotopic equilibration during biological calcification occurs through CO{sub 2} exchange across the calcifying membrane and by admixture ambient waters (containing HCO{sub 3}{sup {minus}}) into the calcifying fluids. Both mechanisms tend to produce linear correlations between skeletal {delta}{sup 13}C and {delta}{sup 18}O.

  3. Experimental evidence for heavy-atom tunneling in the ring-opening of cyclopropylcarbinyl radical from intramolecular 12C/13C kinetic isotope effects.

    PubMed

    Gonzalez-James, Ollie M; Zhang, Xue; Datta, Ayan; Hrovat, David A; Borden, Weston Thatcher; Singleton, Daniel A

    2010-09-15

    The intramolecular (13)C kinetic isotope effects for the ring-opening of cyclopropylcarbinyl radical were determined over a broad temperature range. The observed isotope effects are unprecedentedly large, ranging from 1.062 at 80 degrees C to 1.163 at -100 degrees C. Semiclassical calculations employing canonical variational transition-state theory drastically underpredict the observed isotope effects, but the predicted isotope effects including tunneling by a small-curvature tunneling model match well with experiment. These results and a curvature in the Arrhenius plot of the isotope effects support the recently predicted importance of heavy-atom tunneling in cyclopropylcarbinyl ring-opening.

  4. Experimental Evidence for Heavy-Atom Tunneling in the Ring-Opening of Cyclopropylcarbinyl Radical from Intramolecular 12C/13C Kinetic Isotope Effects

    PubMed Central

    Gonzalez-James, Ollie M.; Zhang, Xue; Datta, Ayan; Hrovat, David A.; Borden, Weston Thatcher; Singleton, Daniel A.

    2010-01-01

    The intramolecular 13C kinetic isotope effects for the ring-opening of cyclopropylcarbinyl radical were determined over a broad temperature range. The observed isotope effects are unprecedentedly large, ranging from 1.062 at 80 °C to 1.163 at −100 °C. Semi-classical calculations employing canonical variational transition state theory drastically underpredict the observed isotope effects, but the predicted isotope effects including tunneling by a small-curvature tunneling model match well with experiment. These results and a curvature in the Arrhenius plot of the isotope effects support the recently predicted importance of heavy-atom tunneling in cyclopropylcarbinyl ring-opening. PMID:20722415

  5. Experimental evidence for heavy-atom tunneling in the ring-opening of cyclopropylcarbinyl radical from intramolecular 12C/13C kinetic isotope effects.

    PubMed

    Gonzalez-James, Ollie M; Zhang, Xue; Datta, Ayan; Hrovat, David A; Borden, Weston Thatcher; Singleton, Daniel A

    2010-09-15

    The intramolecular (13)C kinetic isotope effects for the ring-opening of cyclopropylcarbinyl radical were determined over a broad temperature range. The observed isotope effects are unprecedentedly large, ranging from 1.062 at 80 degrees C to 1.163 at -100 degrees C. Semiclassical calculations employing canonical variational transition-state theory drastically underpredict the observed isotope effects, but the predicted isotope effects including tunneling by a small-curvature tunneling model match well with experiment. These results and a curvature in the Arrhenius plot of the isotope effects support the recently predicted importance of heavy-atom tunneling in cyclopropylcarbinyl ring-opening. PMID:20722415

  6. Determination of the fractions of syntrophically oxidized acetate in a mesophilic methanogenic reactor through an (12)C and (13)C isotope-based kinetic model.

    PubMed

    Gehring, Tito; Niedermayr, Andrea; Berzio, Stephan; Immenhauser, Adrian; Wichern, Marc; Lübken, Manfred

    2016-10-01

    In order to accurately describe the carbon flow in anaerobic digestion processes, this work investigates the acetate degradation pathways through the use of stable carbon isotope analysis and a mathematical model. Batch assays using labeled (13)C acetate were employed to distinguish the acetate consumption through methanogenic Archaea and acetate-oxidizing Bacteria. Suspended and sessile biomass, with over 400 days of retention time, from a mesophilic (36.5 °C) upflow anaerobic filter was used as inocula in these assays. A three-process model for acetoclastic methanogenesis and syntrophic acetate oxidation (SAO) was developed to allow for a precise quantification of the SAO contribution. The model distinguishes carbon atoms in light and heavy isotopes, (12)C and (13)C, respectively, which permitted the simulation of the isotope ratios variation in addition to gas production, gas composition and acetate concentrations. The model indicated oxidized fractions of acetate between 7 and 18%. Due to the low free ammonia inhibition potential for the acetoclastic methanogens in these assays these findings point to the biomass retention times as a driven factor for the SAO pathway. The isotope-based kinetic model developed here also describes the δ(13)C variations in unlabeled assays accurately and has the potential to determine biological (13)C fractionation factors.

  7. Determination of the fractions of syntrophically oxidized acetate in a mesophilic methanogenic reactor through an (12)C and (13)C isotope-based kinetic model.

    PubMed

    Gehring, Tito; Niedermayr, Andrea; Berzio, Stephan; Immenhauser, Adrian; Wichern, Marc; Lübken, Manfred

    2016-10-01

    In order to accurately describe the carbon flow in anaerobic digestion processes, this work investigates the acetate degradation pathways through the use of stable carbon isotope analysis and a mathematical model. Batch assays using labeled (13)C acetate were employed to distinguish the acetate consumption through methanogenic Archaea and acetate-oxidizing Bacteria. Suspended and sessile biomass, with over 400 days of retention time, from a mesophilic (36.5 °C) upflow anaerobic filter was used as inocula in these assays. A three-process model for acetoclastic methanogenesis and syntrophic acetate oxidation (SAO) was developed to allow for a precise quantification of the SAO contribution. The model distinguishes carbon atoms in light and heavy isotopes, (12)C and (13)C, respectively, which permitted the simulation of the isotope ratios variation in addition to gas production, gas composition and acetate concentrations. The model indicated oxidized fractions of acetate between 7 and 18%. Due to the low free ammonia inhibition potential for the acetoclastic methanogens in these assays these findings point to the biomass retention times as a driven factor for the SAO pathway. The isotope-based kinetic model developed here also describes the δ(13)C variations in unlabeled assays accurately and has the potential to determine biological (13)C fractionation factors. PMID:27390036

  8. The δ13C evolution of cave drip water along discreet flow paths in a central Texas cave: Quantifying kinetic isotope fractionation factors

    NASA Astrophysics Data System (ADS)

    Mickler, P. J.; Carlson, P. E.; Banner, J.; Breecker, D.; Stern, L. A.; Baseman, A.

    2015-12-01

    Gaps remain in our understanding of in-cave processes that influence cave water chemistry during speleothem formation. Quantifying environmental controls on the isotopic and chemical evolution of karst groundwater would improve the accuracy of speleothem-based paleoclimate reconstructions. In this study, drip water chemical evolution along flow paths was sampled monthly at two locations in Inner Space Cavern, Texas, over a period of 8 months. In each of the two locations, cave water drips off a stalactite, flows along a flowstone and subsequently drips off a lower stalactite, allowing cave water to be sampled at two points, 1-2 meters apart, along each flow path. The chemical and isotopic evolution of drip water along its flow path shows seasonality, where 1) summer months (high cave-air pCO2) have small variations in δ13C values along the flow paths, high and relatively invariant DIC and Ca values,; and 2) winter months (low cave-air pCO2) generally have large increases in DIC δ13C values along the flow paths, lower DIC and Ca values. The magnitude of the increase in DIC δ13C values along the flow paths, <~1‰ to ~4‰, is controlled by the extent of DIC loss to CO2 degassing and calcite precipitation which is controlled by the pCO2 gradient between drip water and cave air. If the DIC loss is less than 15%, then the evolution of the δ13C value of the DIC reservoir can be modelled using a Rayleigh distillation model and equilibrium fractionation factors between (CO2(g)-HCO3-(aq)) and (CaCO3-HCO3-(aq)). As the loss of the DIC reservoir increases above 15% the DIC δ13C values become progressively higher such that the ɛ (CO2(g)-HCO3-(aq)) values needed to model the observed results change from equilibrium values of ~8‰ to non-equilibrium values up to ~25‰. The variance in magnitude of carbon isotope fractionation during CO2 degassing cannot be attributed to changes in temperature, and thus we infer significant kinetic isotope effects at higher rates of DIC

  9. Implications of the large carbon kinetic isotope effect in the reaction CH4 + Cl for the 13C/12C ratio of stratospheric CH4

    NASA Astrophysics Data System (ADS)

    Bergamaschi, P.; Brühl, C.; Brenninkmeijer, C. A. M.; Saueressig, G.; Crowley, J. N.; Grooß, J. U.; Fischer, H.; Crutzen, P. J.

    Recent investigations of the carbon kinetic isotope effect (KIE) of the reaction CH4 + Cl yielded KIECl = 1.066±0.002 at 297 K (increasing to 1.075±0.005 at 223 K) [Saueressig et al., 1995]. In order to assess the effect of the exceptionally large KIEcl on δ13C of stratospheric CH4 we applied a two-dimensional, time dependent chemical transport model. The model results demonstrate the strong influence of the CH4 + Cl reaction on δ13CH4 in particular in the middle and upper stratosphere, where this reaction contributes several tens of percent to the total CH4 sink. The Cl sink helps to explain the relatively large overall isotope fractionation of 1.010-1.012 observed in the lower stratosphere [Brenninkmeijer et al., 1995; Brenninkmeijer et al., 1996], even though the model results predict a smaller effect than observed.

  10. 13C isotopic fractionation during biodegradation of agricultural wastes.

    PubMed

    Chalk, Phillip M; Inácio, Caio T; Urquiaga, Segundo; Chen, Deli

    2015-01-01

    Significant differences in δ(13)C signatures occur within and between plant tissues and their constituent biochemical entities, and also within and between heterotrophic bacteria and fungi and their metabolic products. Furthermore, (13)C isotopic fractionation occurs during the biodegradation of organic molecules as seen in the substrate, respired CO(2) and the microbial biomass, which could be related to substrate composition and/or microbial metabolism. The (13)C isotopic fractionation observed during the decomposition of a single defined C substrate appears to be due to the intra-molecular heterogeneity in (13)C in the substrate and to (13)C isotopic fractionation during microbial metabolism. Very limited data suggest that the latter may be quantitatively more important than the former. Studies with defined fungi in culture media have highlighted the complexities associated with the interpretation of the observed patterns of (13)C isotopic fractionation when a single defined C source is added to the culture medium which itself contains one or more C sources. Techniques involving (13)C enrichment or paired treatments involving an equivalent C(3)- and C(4)-derived substrate have been devised to overcome the problem of background C in the culture medium and (13)C isotopic fractionation during metabolism. Studies with complex substrates have shown an initial (13)C depletion phase in respired CO(2) followed by a (13)C enrichment phase which may or may not be followed by another (13)C depletion phase. Basic studies involving an integrated approach are required to gain a new insight into (13)C isotopic fractionation during organic residue decomposition, by simultaneous measurements of δ(13)C in all C moieties. New analytical tools to measure real-time changes in δ(13)CO(2) and the intra-molecular δ(13)C distribution within plant biochemical entities offer new opportunities for unravelling the complex interactions between substrate and microbial metabolism with

  11. sup 13 C and sup 18 O isotopic disequilibrium in biological carbonates: I. Patterns

    SciTech Connect

    McConnaughey, T. )

    1989-01-01

    Biological carbonates frequently precipitate out of {sup 18}O and {sup 13}C equilibrium with ambient waters. Two patterns of isotopic disequilibrium are particularly common. Kinetic disequilibria, so designated because they apparently result from kinetic isotope effects during CO{sub 2} hydration and hydroxylation, involve simultaneous depletions of {sup 18}O and {sup 13}C as large as 4{per thousand} and 10 to 15{per thousand}, respectively. Rapid skeletogenesis favors strong kinetic effects, and approximately linear correlations between skeletal {delta}{sup 18}O and {delta}{sup 13}C are common in carbonates showing mainly the kinetic pattern. Metabolic effects involve additional positive or negative modulation of skeletal {delta}{sup 13}C, reflecting changes in the {delta}{sup 13}C of dissolved inorganic carbon, caused mainly by photosynthesis and respiration. Kinetic isotope disequilibria tend to be fairly consistent in rapidly growing parts of photosynthetic corals, and time dependent isotopic variations therefore reflect changes in environmental conditions. {delta}{sup 18}O variations from Galapagos corals yields meaningful clues regarding seawater temperature, while {delta}{sup 13}C variations reflect changes in photosynthesis, modulated by cloudiness.

  12. Study of Urban environmental quality through Isotopes δ13C

    NASA Astrophysics Data System (ADS)

    González-Sosa, E.; Mastachi-Loza, C.; Becerril-Piña, R.; Ramos-Salinas, N. M.

    2012-04-01

    Usually, trees with similar pH values on their bark develop epiphytes of similar species, the acidity to be a factor for growth. The aim of the study was evaluate the air quality through isotope δ13C in order to define the levels of environmental quality in the city of Queretaro, Mexico. In this work were collected at least 4 epiphytes positioned in trees of the species Prosopis Laevigata at 25 sites of Queretaro City. The samples were analyzed for trace elements with an inductively coupled plasma atomic emission spectroscopy (ICP). The collecting took place during dry period, in May and early rain June 2011 period, and on four sectors to identify the spatial distribution of pollution, using isotopic analysis of concentration of δ 13C. According with the results there are significant differences among the species in each of the sampled areas. The 5 February Avenue presented greater diversity and richness of δ13C, followed by those who were surveyed in the proximity of the UAQ and finally in the middle-east area. An average value of δ13C-17.92%, followed by those surveyed in the vicinity of the UAQ that correspond to sector I and II with an concentration of δ13C-17.55% and δ13C-17.22%, and finally the samples collected in trees scattered in the East-Sector II and IV with a value of δ13C-17.02% and δ13C-15.62%, respectively. Also were observed differences between the dry and wet period. It is likely that these results of δ 13C in moist period reflect the drag of the isotopes due to rain events that could mark a trend in the dilution of this element, however there is a trend in terms of abundance and composition of finding more impact in those species sampled in dry period, in May and early June 2011.

  13. Experimental design principles for isotopically instationary 13C labeling experiments.

    PubMed

    Nöh, Katharina; Wiechert, Wolfgang

    2006-06-01

    13C metabolic flux analysis (MFA) is a well-established tool in Metabolic Engineering that found numerous applications in recent years. However, one strong limitation of the current method is the requirement of an-at least approximate-isotopic stationary state at sampling time. This requirement leads to a principle lower limit for the duration of a 13C labeling experiment. A new methodological development is based on repeated sampling during the instationary transient of the 13C labeling dynamics. The statistical and computational treatment of such instationary experiments is a completely new terrain. The computational effort is very high because large differential equations have to be solved and, moreover, the intracellular pool sizes play a significant role. For this reason, the present contribution works out principles and strategies for the experimental design of instationary experiments based on a simple example network. Hereby, the potential of isotopically instationary experiments is investigated in detail. Various statistical results on instationary flux identifiability are presented and possible pitfalls of experimental design are discussed. Finally, a framework for almost optimal experimental design of isotopically instationary experiments is proposed which provides a practical guideline for the analysis of large-scale networks.

  14. Model of decision system for 13C Isotope Separation column

    NASA Astrophysics Data System (ADS)

    Boca, M. L.

    2015-11-01

    This paper presents the model of a decisional system for 13C Isotope Separation column, which is used to detect mission critical situation. The start model was a model of one distributed control system of critical situations that may arise in the operation of the distillation column. The research work it is proposed a model of decision system which implement a temperature sensor inside of liquid nitrogen level in the condenser. The condenser is a part of column where take place the cryogenic process using nitrogen liquid. The work temperature is very low about -192oC, and because the temperature can grow or go down more than 2 degrees is a very critical location inside the column. In this way the column has a deeply monitor and supervised and it take a decision in a proper time when the temperature is grow up or getting down and became a critical situation. For monitor and supervised it was used MatLAB SimuLink. The model, the decision system gives a signal to one sensor when something is wrong in the condenser which is the most critical place of the isotopic column. In this way it creates an alarm that something is getting wrong in the isotopic column.

  15. 13C-18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Eagle, Robert A.; Thiagarajan, Nivedita; Gagnon, Alexander C.; Bauch, Henning; Halloran, Paul R.; Eiler, John M.

    2010-10-01

    Accurate constraints on past ocean temperatures and compositions are critical for documenting climate change and resolving its causes. Most proxies for temperature are not thermodynamically based, appear to be subject to biological processes, require regional calibrations, and/or are influenced by fluid composition. As a result, their interpretation becomes uncertain when they are applied in settings not necessarily resembling those in which they were empirically calibrated. Independent proxies for past temperature could provide an important means of testing and/or expanding on existing reconstructions. Here we report measurements of abundances of stable isotopologues of calcitic and aragonitic benthic and planktic foraminifera and coccoliths, relate those abundances to independently estimated growth temperatures, and discuss the possible scope of equilibrium and kinetic isotope effects. The proportions of 13C- 18O bonds in these samples exhibits a temperature dependence that is generally similar to that previously been reported for inorganic calcite and other biologically precipitated carbonate-containing minerals (apatite from fish, reptile, and mammal teeth; calcitic brachiopods and molluscs; aragonitic coral and mollusks). Most species that exhibit non-equilibrium 18O/ 16O (δ 18O) and 13C/ 12C (δ 13C) ratios are characterized by 13C- 18O bond abundances that are similar to inorganic calcite and are generally indistinguishable from apparent equilibrium, with possible exceptions among benthic foraminiferal samples from the Arctic Ocean where temperatures are near-freezing. Observed isotope ratios in biogenic carbonates can be explained if carbonate minerals generally preserve a state of ordering that reflects the extent of isotopic equilibration of the dissolved inorganic carbon species.

  16. Carbon isotope discrimination during litter decomposition can be explained by selective use of substrate with differing δ13C

    NASA Astrophysics Data System (ADS)

    Ngao, J.; Cotrufo, M. F.

    2011-01-01

    Temporal dynamics of C isotopic composition (δ13C) of CO2 and leaf litter was monitored during a litter decomposition experiment using Arbutus unedo L., as a slow decomposing model substrate. This allowed us (1) to quantify isotopic discrimination variation during litter decomposition, and (2) to test whether selective substrate use or kinetic fractionation could explain the observed isotopic discrimination. Total cumulative CO2-C loss (CL) comprised 27% of initial litter C. Temporal evolution of CL was simulated following a three-C-pool model. Isotopic composition of respired CO2 (δRL) was higher with respect to that of the bulk litter. The isotopic discrimination Δ(L/R) varied from -2‰ to 0‰ and it is mostly attributed to the variations of δRL. A three-pool model, with the three pools differing in their δ13C, described well the dynamic of Δ(L/R), in the intermediate stage of the process. This suggests that the observed isotopic discrimination between respired CO2 and bulk litter is in good agreement with the hypothesis of successive consumption of C compounds differing in δ13C during decomposition. However, to explain also 13C-CO2 dynamics at the beginning and end of the incubation the model had to be modified, with discrimination factors ranging from -1‰ to -4.6‰ attributed to the labile and the recalcitrance pool, respectively. We propose that this discrimination is also the result of further selective use of specific substrates within the two pools, likely being both the labile and recalcitrant pool of composite nature. In fact, the 2‰ 13C enrichment of the α-cellulose observed by the end of the experiment, and potentially attributable to kinetic fractionation, could not explain the measured Δ(L/R) dynamics.

  17. 13C metabolic flux analysis for larger scale cultivation using gas chromatography-combustion-isotope ratio mass spectrometry.

    PubMed

    Yuan, Yongbo; Yang, Tae Hoon; Heinzle, Elmar

    2010-07-01

    (13)C-based metabolic flux analysis ((13)CMFA) is limited to smaller scale experiments due to very high costs of labeled substrates. We measured (13)C enrichment in proteinogenic amino acid hydrolyzates using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) from a series of parallel batch cultivations of Corynebacterium glutamicum utilizing mixtures of natural glucose and [1-(13)C] glucose, containing 0%, 0.5%, 1%, 2%, and 10% [1-(13)C] glucose. Decreasing the [1-(13)C] glucose content, kinetic isotope effects played an increasing role but could be corrected. From the corrected (13)C enrichments in vivo fluxes in the central metabolism were determined by numerical optimization. The obtained flux distribution was very similar to those obtained from parallel labeling experiments using conventional high labeling GC-MS method and to published results. The GC-C-IRMS-based method involving low labeling degree of expensive tracer substrate, e.g. 1%, is well suited for larger laboratory and industrial pilot scale fermentations.

  18. Stable isotope-enhanced two- and three-dimensional diffusion ordered 13C-NMR spectroscopy (SIE-DOSY 13C-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable Isotope-Enhanced Diffusion Ordered (SIE-DOSY) 13C-NMR has been applied to 13C-enriched carbohydrates and has been used to determine diffusion coefficients for pentose and hexose monosaccharides, a disaccharide and a trisaccharide. These 2D spectra were obtained with as little as 8 min of acq...

  19. An economical method for (15)N/(13)C isotopic labeling of proteins expressed in Pichia pastoris.

    PubMed

    Rodriguez, E; Krishna, N R

    2001-07-01

    We report a new and cost-effective approach to prepare (15)N/(13)C labeled proteins for NMR using the Pichia pastoris expression system. Four protocols (P1 to P4) were defined and compared using recombinant Ovine interferon-tau (rOvIFN-tau). Our results demonstrate that in order to get full incorporation of (15)N and (13)C, the isotopes are not totally required during the initial growth phase of P. pastoris culture. The addition of small amounts of (15)N and (13)C compounds 6 h prior to the methanol induction phase is sufficient to obtain 99% incorporation of heavy isotopes into the protein. Our optimized protocol P4 is two-thirds less costly than the classical method using (15)N and (13)C isotopes during the entire growth phase.

  20. Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells

    PubMed Central

    Metallo, Christian M.; Walther, Jason L.; Stephanopoulos, Gregory

    2009-01-01

    13C metabolic flux analysis (MFA) is the most comprehensive means of characterizing cellular metabolic states. Uniquely labeled isotopic tracers enable more focused analyses to probe specific reactions within the network. As a result, the choice of tracer largely determines the precision with which one can estimate metabolic fluxes, especially in complex mammalian systems that require multiple substrates. Here we have experimentally determined metabolic fluxes in a tumor cell line, successfully recapitulating the hallmarks of cancer cell metabolism. Using these data, we computationally evaluated specifically labeled 13C glucose and glutamine tracers for their ability to precisely and accurately estimate fluxes in central carbon metabolism. These methods enabled us to to identify the optimal tracer for analyzing individual fluxes, specific pathways, and central carbon metabolism as a whole. [1,2-13C2]glucose provided the most precise estimates for glycolysis, the pentose phosphate pathway, and the overall network. Tracers such as [2-13C]glucose and [3-13C]glucose also outperformed the more commonly used [1-13C]glucose. [U-13C5]glutamine emerged as the preferred isotopic tracer for analysis of the tricarboxylic acid (TCA) cycle. These results provide valuable, quantitative information on the performance of 13C-labeled substrates and can aid in the design of more informative MFA experiments in mammalian cell culture. PMID:19622376

  1. The kinetics of the ordering of 13C-18O bonds in calcite and apatite

    NASA Astrophysics Data System (ADS)

    Stolper, D. A.; Halevy, I.; Eiler, J. M.

    2011-12-01

    Eiler and Schauble (2004) showed that the isotopes of C and O are not randomly distributed within single phases such as CO2 gas and carbonates, and in particular, that heavy isotopes of C and O tend to bond preferentially (clump) at lower temperatures. Consequently, the measurement of the deviation from a random distribution of C and O isotope distributions in a single phase can be used as a thermometer. As with other geothermometers based on homogeneous or heterogeneous equilibria, the clumped-isotope thermometer is susceptible to resetting (e.g., if the phase is reheated or experiences slow cooling). Thus, clumped-isotope "temperatures" of phases that have experienced complex thermal histories may, in fact, be closure temperatures, the interpretation of which requires quantification of the kinetics of redistribution of C and O isotopes as a function of temperature. These kinetics have received increasing attention (Dennis and Schrag, 2010; Passey 2010), and are likely to be critical for understanding clumped-isotope temperatures of samples that have been buried for long periods of time. To better constrain these kinetics we performed experiments on natural optical calcite from Mexico and carbonate-bearing apatite from the Siilinjarvi carbonatite (Finland). For each experiment, multiple single crystal grains (~2 mm in diameter) of calcite or apatite were loaded in open Pt capsules, pressurized with Ar gas, and held at 400-700 °C, 550 bars using a rapid quench TZM apparatus for 5 min to 520 hrs. After quenching, 13C-18O clumping was measured in the samples; the change from the initial Δ47 with time for each phase at each temperature was fit to simple mechanistic models of isotope exchange between sites in these phases. One conclusion of the experimental study is that resetting the internal ordering of carbonate groups proceeds more rapidly in calcites than in apatites. For example, heating apatite at 400 °C results in no change in clumping over a 24 hr period

  2. Precise and traceable (13)C/(12)C isotope amount ratios by multicollector ICPMS.

    PubMed

    Santamaria-Fernandez, Rebeca; Carter, David; Hearn, Ruth

    2008-08-01

    A new method for the measurement of SI traceable carbon isotope amount ratios using a multicollector inductively coupled mass spectrometer (MC-ICPMS) is reported for the first time. Carbon (13)C/(12)C isotope amount ratios have been measured for four reference materials with carbon isotope amount ratios ranging from 0.010659 (delta(13)C(VPDB) = -46.6 per thousand) to 0.011601 (delta(13)C(VPDB) = +37 per thousand). Internal normalization by measuring boron (11)B/(10)B isotope amount ratios has been used to correct for the effects of instrumental mass bias. Absolute (13)C/(12)C ratios have been measured and corrected for instrumental mass bias and full uncertainty budgets have been calculated using the Kragten approach. Corrected (13)C/(12)C ratios for NIST RM8545 (Lithium Carbonate LSVEC), NIST RM8573 (L-Glutamic Acid USGS40), NIST RM8542 (IAEA-CH6 Sucrose) and NIST RM8574 (L-Glutamic Acid USGS41) differed from reference values by 0.06-0.20%. Excellent linear correlation (R = 0.9997) was obtained between corrected carbon isotope amount ratios and expected carbon isotope amount ratios of the four chosen NIST RMs. The method has proved to be linear within this range (from (13)C/(12)C = 0.010659 to (13)C/(12)C =0.011601), and therefore, it is suitable for the measurement of carbon isotope amount ratios within the natural range of variation of organic carbon compounds, carbonates, elemental carbon, carbon monoxide, and carbon dioxide. In addition, a CO2 gas sample previously characterized in-house by conventional dual inlet isotope ratio mass spectrometry has been analyzed and excellent agreement has been found between the carbon isotope amount ratio value measured by MC-ICPMS and the IRMS measurements. Absolute values for carbon isotope amount ratios traceable to the SI are given for each NIST RM, and the combined uncertainty budget (including instrumental error and each parameter contributing to Russell expression for mass bias correction) has been found to be < 0

  3. Stable isotopic signatures (δ13C, δD) of methane from European landfill sites

    NASA Astrophysics Data System (ADS)

    Bergamaschi, P.; Lubina, C.; KöNigstedt, R.; Fischer, H.; Veltkamp, A. C.; Zwaagstra, O.

    1998-04-01

    The stable isotopic signatures (δ13C, δD) of CH4 from four German and Dutch landfill sites have been characterized using different techniques for isotope analysis (tunable diode laser absorption spectroscopy and isotope ratio mass spectrometry). Samples taken directly from the gas collection systems show fairly uniform, biogenic δ13C-δD isotopic signatures [δ13C = (-59.0±2.2)‰ VPDB (n = 104); δD = (-304±10)‰ VSMOW (n = 46)]. In contrast, emission samples taken with static chambers on soil-covered landfill areas exhibit a considerable δ13C-δD variability, mainly due to the influence of aerobic bacterial CH4 oxidation, which occurs when the biogas CH4 encounters atmospheric oxygen available in the uppermost region of the cover soil. Soil gas samples from the landfill covers clearly show the progressive isotopic enrichment within the aerobic regions of the soil. Isotope fractionation factors due to CH4 oxidation were determined to be α(δ13C) = 1.008±0.004 and α(δD) = 1.039±0.026. On average, about 80% (70-97%) of CH4 is oxidized during the transport through cover soils, while no significant CH4 oxidation was found in uncovered areas consisting of freshly dumped waste. Area-integrated δ13C values of total emissions were derived from upwind-downwind measurements around the landfill and show very little temporal and site-to-site variation (δ13C = (-55.4±1.4)‰ VPDB (n = 13; four different landfills)). CH4 budgets were established for two landfill sites, indicating that projected CH4 surface emissions from uncovered and covered areas are significantly lower compared to total CH4 production (for a landfill without gas collection) or compared to the difference between CH4 production and recovery (for a landfill with a gas collection system). For these two landfill sites the overall fraction of CH4 oxidation is estimated to be 46 and 39% (53%) of total CH4 production (minus recovery). Furthermore, the δ13C balance (comparing the δ13C values of the

  4. Isotopic variability of cave bears (δ15N, δ13C) across Europe during MIS 3

    NASA Astrophysics Data System (ADS)

    Krajcarz, Magdalena; Pacher, Martina; Krajcarz, Maciej T.; Laughlan, Lana; Rabeder, Gernot; Sabol, Martin; Wojtal, Piotr; Bocherens, Hervé

    2016-01-01

    Collagen, the organic fraction of bone, records the isotopic parameters of consumed food for carbon (δ13C) and nitrogen (δ15N). This relationship of isotopic signature between diet and tissue is an important tool for the study of dietary preferences of modern and fossil animal species. Since the first information on the isotopic signature of cave bear was reported, numerous data from Europe have become available. The goal of this work is to track the geographical variation of cave bear collagen isotopic values in Europe during Marine Isotopic Stage 3 (about 60,000-25,000 yr BP). In this study the results of new δ13C and δ15N isotopic analyses of cave bear collagen from four Central-Eastern European sites are presented, as well as a review of all published isotopic data for cave bears of the same period. The main conclusion is a lack of geographical East-West pattern in the variations of δ13C and δ15N values of cave bear collagen. Moreover, no relationship was found between cave bear taxonomy and isotopic composition. The cave bears from Central-Eastern Europe exhibit δ13C and δ15N values near the average of the range of Central, Western and Southern European cave bears. Despite the fact that most cave bear sites follow an altitudinal gradient, separate groups of sites exhibit shift in absolute values of δ13C, what disturbs an altitude-related isotopic pattern. The most distinct groups are: high Alpine sites situated over 1500 m a.s.l. - in terms of δ13C; and two Romanian sites Peştera cu Oase and Urşilor - in case of δ15N. Although the cave bear isotopic signature is driven by altitude, the altitudinal adjustment of isotopic data is not enough to explain the isotopic dissimilarity of these cave bears. The unusually high δ15N signature of mentioned Romanian sites is an isolated case in Europe. Cave bears from relatively closely situated Central-Eastern European sites and other Romanian sites are more similar to Western European than to Romanian

  5. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.

    PubMed

    Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation.

  6. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.

    PubMed

    Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation. PMID:26479486

  7. Analysis of 13C labeling enrichment in microbial culture applying metabolic tracer experiments using gas chromatography-combustion-isotope ratio mass spectrometry.

    PubMed

    Heinzle, Elmar; Yuan, Yongbo; Kumar, Sathish; Wittmann, Christoph; Gehre, Matthias; Richnow, Hans-Herrmann; Wehrung, Patrick; Adam, Pierre; Albrecht, Pierre

    2008-09-15

    The applicability of gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) for the quantification of 13C enrichment of proteinogenic amino acids in metabolic tracer experiments was evaluated. Measurement of the 13C enrichment of proteinogenic amino acids from cell hydrolyzates of Corynebacterium glutamicum growing on different mixtures containing between 0.5 and 10% [1-13C]glucose shows the significance of kinetic isotope effects in metabolic flux studies at low degree of labeling. We developed a method to calculate the 13C enrichment. The approach to correct for these effects in metabolic flux studies using delta13C measurement by GC-C-IRMS uses two parallel experiments applying substrate with natural abundance and 13C-enriched tracer substrate, respectively. The fractional enrichment obtained in natural substrate is subtracted from that of the enriched one. Tracer studies with C. glutamicum resulted in a statistically identical relative fractional enrichment of 13C in proteinogenic amino acids over the whole range of applied concentrations of [1-13C]glucose. The current findings indicate a great potential of GC-C-IRMS for labeling quantification in 13C metabolic flux analysis with low labeling degree of tracer substrate directly in larger scale bioreactors.

  8. Origin differentiation of heroin sample and its acetylating agent with (13)C isotope ratio mass spectrometry.

    PubMed

    Zhang, Daming; Sun, Wei; Yuan, Zengping; Ju, Huangxian; Shi, Xuejun; Wang, Chonghu

    2005-01-01

    A novel method for deducing the origins of heroin and the reagent used for acetylation was established based on delta(13)C determinations of heroin and its hydrolysate, morphine, using gas chromatography (13)C isotope ratio mass spectrometry (GC-C-IRMS). The alkaline and acid hydrolysis conditions of heroin were optimized. Both yield and purity of morphine produced could meet the requirement for a GC-C-IRMS analysis. Using (2-diethylaminoethyl-2,2- diphenylvalerate) as internal standard the determinations of heroin and morphine contents were performed with a GC method in a linear range of 0.2 to 2.0 mg ml(1) that was required to gain the isotope ratio results. The hydrolysis and synthesis of heroin did not change the delta(13)C value of morphine. The precision for delta(13)C detection of both heroin and morphine was sufficient for origin differentiation of heroin samples. The information about the origins of acetylation reagents could be deduced from the difference of delta(13)C values between heroin and morphine. The results for origin differentiation of 10 heroin samples grouped into different regions and their acetylating agents were satisfactory.

  9. delta(13)C and delta(2)H isotope ratios in amphetamine synthesized from benzaldehyde and nitroethane.

    PubMed

    Collins, Michael; Salouros, Helen; Cawley, Adam T; Robertson, James; Heagney, Aaron C; Arenas-Queralt, Andrea

    2010-06-15

    Previous work in these laboratories and by Butzenlechner et al. and Culp et al. has demonstrated that the delta(2)H isotope value of industrial benzaldehyde produced by the catalytic oxidation of toluene is profoundly positive, usually in the range +300 per thousand to +500 per thousand. Synthetic routes leading to amphetamine, methylamphetamine or their precursors and commencing with such benzaldehyde may be expected to exhibit unusually positive delta(2)H values. Results are presented for delta(13)C and delta(2)H isotope values of 1-phenyl-2-nitropropene synthesized from an industrial source of benzaldehyde, having a positive delta(2)H isotope value, by a Knoevenagel condensation with nitroethane. Results are also presented for delta(13)C and delta(2)H isotope values for amphetamine prepared from the resulting 1-phenyl-2-nitropropene. The values obtained were compared with delta(13)C and delta(2)H isotope values obtained for an amphetamine sample prepared using a synthetic route that did not involve benzaldehyde. Finally, results are presented for samples of benzaldehyde, 1-phenyl-2-nitropropene and amphetamine that had been seized at a clandestine amphetamine laboratory.

  10. Kinetic modeling of hyperpolarized 13C 1-pyruvate metabolism in normal rats and TRAMP mice

    NASA Astrophysics Data System (ADS)

    Zierhut, Matthew L.; Yen, Yi-Fen; Chen, Albert P.; Bok, Robert; Albers, Mark J.; Zhang, Vickie; Tropp, Jim; Park, Ilwoo; Vigneron, Daniel B.; Kurhanewicz, John; Hurd, Ralph E.; Nelson, Sarah J.

    2010-01-01

    PurposeTo investigate metabolic exchange between 13C 1-pyruvate, 13C 1-lactate, and 13C 1-alanine in pre-clinical model systems using kinetic modeling of dynamic hyperpolarized 13C spectroscopic data and to examine the relationship between fitted parameters and dose-response. Materials and methodsDynamic 13C spectroscopy data were acquired in normal rats, wild type mice, and mice with transgenic prostate tumors (TRAMP) either within a single slice or using a one-dimensional echo-planar spectroscopic imaging (1D-EPSI) encoding technique. Rate constants were estimated by fitting a set of exponential equations to the dynamic data. Variations in fitted parameters were used to determine model robustness in 15 mm slices centered on normal rat kidneys. Parameter values were used to investigate differences in metabolism between and within TRAMP and wild type mice. ResultsThe kinetic model was shown here to be robust when fitting data from a rat given similar doses. In normal rats, Michaelis-Menten kinetics were able to describe the dose-response of the fitted exchange rate constants with a 13.65% and 16.75% scaled fitting error (SFE) for kpyr→lac and kpyr→ala, respectively. In TRAMP mice, kpyr→lac increased an average of 94% after up to 23 days of disease progression, whether the mice were untreated or treated with casodex. Parameters estimated from dynamic 13C 1D-EPSI data were able to differentiate anatomical structures within both wild type and TRAMP mice. ConclusionsThe metabolic parameters estimated using this approach may be useful for in vivo monitoring of tumor progression and treatment efficacy, as well as to distinguish between various tissues based on metabolic activity.

  11. Position-Specific Isotope Analysis of Xanthines: A (13)C Nuclear Magnetic Resonance Method to Determine the (13)C Intramolecular Composition at Natural Abundance.

    PubMed

    Diomande, Didier G; Martineau, Estelle; Gilbert, Alexis; Nun, Pierrick; Murata, Ariaki; Yamada, Keita; Watanabe, Naoharu; Tea, Illa; Robins, Richard J; Yoshida, Naohiro; Remaud, Gérald S

    2015-07-01

    The natural xanthines caffeine, theobromine, and theophylline are of major commercial importance as flavor constituents in coffee, cocoa, tea, and a number of other beverages. However, their exploitation for authenticity, a requirement in these commodities that have a large origin-based price-range, by the standard method of isotope ratio monitoring by mass spectrometry (irm-MS) is limited. We have now developed a methodology that overcomes this deficit that exploits the power of isotopic quantitative (13)C nuclear magnetic resonance (NMR) spectrometry combined with chemical modification of the xanthines to enable the determination of positional intramolecular (13)C/(12)C ratios (δ(13)Ci) with high precision. However, only caffeine is amenable to analysis: theobromine and theophylline present substantial difficulties due to their poor solubility. However, their N-methylation to caffeine makes spectral acquisition feasible. The method is confirmed as robust, with good repeatability of the δ(13)Ci values in caffeine appropriate for isotope fractionation measurements at natural abundance. It is shown that there is negligible isotope fractionation during the chemical N-methylation procedure. Thus, the method preserves the original positional δ(13)Ci values. The method has been applied to measure the position-specific variation of the (13)C/(12)C distribution in caffeine. Not only is a clear difference between caffeine isolated from different sources observed, but theobromine from cocoa is found to show a (13)C pattern distinct from that of caffeine. PMID:26067163

  12. Stable Carbon Isotopes13C) in Coral Skeletons: Experimental Approach and Applications for Paleoceanography

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.

    2004-12-01

    natural field conditions corals feed on zooplankton below this `nutrient threshold' and that increases in heterotrophy should result in decreases skeletal δ 13C values. Overall, changes in photosynthesis and heterotrophy have significant effects on coral skeletal δ 13C. In shallower corals, photosynthesis drives the bulk of the variation in δ 13C. In addition, boron isotope data indicate that pH levels do not vary with changes in photosynthesis or heterotrophy suggesting that metabolically driven δ 13C fractionation during skeletogenesis is not pH driven. Thus the skeletal δ 13C records from shallow corals in non-upwelling regions where zooplankton concentrations are relatively constant should represent a reliable proxy of light variability. Due to the complexity associated with nutrients and heterotrophy, δ 13C records from upwelling regions or deep corals are still difficult to resolve.

  13. OpenMebius: An Open Source Software for Isotopically Nonstationary 13C-Based Metabolic Flux Analysis

    PubMed Central

    Furusawa, Chikara

    2014-01-01

    The in vivo measurement of metabolic flux by 13C-based metabolic flux analysis (13C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a 13C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model to the isotopic labeling enrichment of intracellular metabolites measured by mass spectrometry. Whereas 13C-MFA is conventionally performed under isotopically constant conditions, isotopically nonstationary 13C metabolic flux analysis (INST-13C-MFA) has recently been developed for flux analysis of cells with photosynthetic activity and cells at a quasi-steady metabolic state (e.g., primary cells or microorganisms under stationary phase). Here, the development of a novel open source software for INST-13C-MFA on the Windows platform is reported. OpenMebius (Open source software for Metabolic flux analysis) provides the function of autogenerating metabolic models for simulating isotopic labeling enrichment from a user-defined configuration worksheet. Analysis using simulated data demonstrated the applicability of OpenMebius for INST-13C-MFA. Confidence intervals determined by INST-13C-MFA were less than those determined by conventional methods, indicating the potential of INST-13C-MFA for precise metabolic flux analysis. OpenMebius is the open source software for the general application of INST-13C-MFA. PMID:25006579

  14. OpenMebius: an open source software for isotopically nonstationary 13C-based metabolic flux analysis.

    PubMed

    Kajihata, Shuichi; Furusawa, Chikara; Matsuda, Fumio; Shimizu, Hiroshi

    2014-01-01

    The in vivo measurement of metabolic flux by (13)C-based metabolic flux analysis ((13)C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a (13)C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model to the isotopic labeling enrichment of intracellular metabolites measured by mass spectrometry. Whereas (13)C-MFA is conventionally performed under isotopically constant conditions, isotopically nonstationary (13)C metabolic flux analysis (INST-(13)C-MFA) has recently been developed for flux analysis of cells with photosynthetic activity and cells at a quasi-steady metabolic state (e.g., primary cells or microorganisms under stationary phase). Here, the development of a novel open source software for INST-(13)C-MFA on the Windows platform is reported. OpenMebius (Open source software for Metabolic flux analysis) provides the function of autogenerating metabolic models for simulating isotopic labeling enrichment from a user-defined configuration worksheet. Analysis using simulated data demonstrated the applicability of OpenMebius for INST-(13)C-MFA. Confidence intervals determined by INST-(13)C-MFA were less than those determined by conventional methods, indicating the potential of INST-(13)C-MFA for precise metabolic flux analysis. OpenMebius is the open source software for the general application of INST-(13)C-MFA.

  15. Nondestructive determination of the 13C content in isotopic diamond by nuclear resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Beck, O.; Ruf, T.; Finkelstein, Y.; Cardona, M.; Anthony, T. R.; Belic, D.; Eckert, T.; Jäger, D.; Kneissl, U.; Maser, H.; Moreh, R.; Nord, A.; Pitz, H. H.; Wolpert, A.

    1998-05-01

    Nuclear resonance fluorescence excited with continuous electron bremsstrahlung from the 4.3 MV Stuttgart Dynamitron accelerator is used as a nondestructive method to determine the 13C content x of bulk isotopic diamonds (12C1-x13Cx). The smallest detectable amount of 13C in carbon or low Z matrices is on the order of 0.5 mg. The relative accuracy of absolute mass determinations is about ±7%. Errors are mainly due to uncertainties in the natural widths Γ of the 13C nuclear levels at 3089 and 3684 keV used in the measurements. The results confirm a previous calibration which is based on Raman scattering and the destructive determination of x by mass spectroscopy.

  16. Precursor discrimination of designer drug benzylpiperazine using δ13C and δ15N stable isotopes.

    PubMed

    Beckett, Nicola M; Grice, Darren I; Carter, James F; Cresswell, Sarah L

    2015-01-01

    Advances in analytical technology and emerging techniques have resulted in the increased exploitation of chemical and isotopic profiling for source linkage/discrimination of illicit drugs for forensic purposes. Although not routinely used for illicit drug investigations, such information has been obtained and its application demonstrated through the use of isotope ratio mass spectrometry (IRMS). There is a solid platform of research available relating to the isotopic analysis of methylenedioxymethamphetamine (MDMA) and methamphetamine (MA), however with the recently flourishing designer drug market it was of interest to examine the isotopic profiles of the popular 'party drug' benzylpiperazine hydrochloride (BZP·HCl). A preliminary analysis of δ13C and δ15N isotopic ratios in BZP·HCl products and corresponding synthetic intermediates (piperazine·HCl) synthesized in-house from three different precursor suppliers was conducted using IRMS. Analysis of the δ13C and δ15N isotopic data indicated that discrimination and correct grouping of all the intermediates and some of the product samples examined in this study were achievable.

  17. On the status of IAEA delta-13C stable isotope reference materials.

    NASA Astrophysics Data System (ADS)

    Assonov, Sergey; Groening, Manfred; Fajgelj, Ales

    2016-04-01

    For practical reasons all isotope measurements are performed on relative scales realized through the use of international, scale-defining primary standards. In fact these standards were materials (artefacts, similar to prototypes of meter and kg) selected based on their properties. The VPDB delta-13C scale is realised via two highest-level reference materials NBS19 and LSVEC, the first defining the scale and the second aimed to normalise lab-to-lab calibrations. These two reference materials (RMs) have been maintained and distributed by IAEA and NIST. The priority task is to maintain these primary RMs at the required uncertainty level, thus ensuring the long-term scale consistency. The second task is to introduce replacements when needed (currently for exhausted NBS19, work in progress). The next is to produce a family of lower level RMs (secondary, tertiary) addressing needs of various applications (with different delta values, in different physical-chemical forms) and their needs for the uncertainty; these RMs should be traceable to the highest level RMs. Presently three is a need for a range of RMs addressing existing and newly emerging analytical techniques (e.g. optical isotopic analysers) in form of calibrated CO2 gases with different delta-13C values. All that implies creating a family of delta-13C stable isotope reference materials. Presently IAEA works on replacement for NBS19 and planning new RMs. Besides, we found that LSVEC (introduced as second anchor for the VPDB scale in 2006) demonstrate a considerable scatter of its delta-13C value which implies a potential bias of the property value and increased value uncertainty which may conflict with uncertainty requirements for atmospheric monitoring. That is not compatible with the status of LSVEC, and therefore it should be replaced as soon as possible. The presentation will give an overview of the current status, the strategic plan of developments and the near future steps.

  18. Mechanisms linking metabolism of Helicobacter pylori to (18)O and (13)C-isotopes of human breath CO2.

    PubMed

    Som, Suman; De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Ghosh, Chiranjit; Pal, Mithun; Daschakraborty, Sunil B; Chaudhuri, Sujit; Jana, Subhra; Pradhan, Manik

    2015-06-03

    The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 ((18)O) and carbon-13 ((13)C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of (18)O/(16)O and (13)C/(12)C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections exhibited significantly higher isotopic enrichments of (18)O in breath CO2 during the 2h-glucose metabolism regardless of the isotopic nature of the substrate, while no significant enrichments of (18)O in breath CO2 were manifested in individuals without the infections. In contrast, the (13)C-isotopic enrichments of breath CO2 were significantly higher in individuals with Helicobacter pylori compared to individuals without infections in response to (13)C-enriched glucose uptake, whereas a distinguishable change of breath (13)C/(12)C-isotope ratios was also evident when Helicobacter pylori utilize natural glucose. Moreover, monitoring the (18)O and (13)C-isotopic exchange in breath CO2 successfully diagnosed the eradications of Helicobacter pylori infections following a standard therapy. Our findings suggest that breath (12)C(18)O(16)O and (13)C(16)O(16)O can be used as potential molecular biomarkers to distinctively track the pathogenesis of Helicobacter pylori and also for eradication purposes and thus may open new perspectives into the pathogen's physiology along with isotope-specific non-invasive diagnosis of the infection.

  19. Measurement of position-specific 13C isotopic composition of propane at the nanomole level

    NASA Astrophysics Data System (ADS)

    Gilbert, Alexis; Yamada, Keita; Suda, Konomi; Ueno, Yuichiro; Yoshida, Naohiro

    2016-03-01

    We have developed a novel method for analyzing intramolecular carbon isotopic distribution of propane as a potential new tracer of its origin. The method is based on on-line pyrolysis of propane followed by analysis of carbon isotope ratios of the pyrolytic products methane, ethylene and ethane. Using propane samples spiked with 13C at the terminal methyl carbon, we characterize the origin of the pyrolytic fragments. We show that the exchange between C-atoms during the pyrolytic process is negligible, and thus that relative intramolecular isotope composition can be calculated. Preliminary data from 3 samples show that site-preference (SP) values, defined as the difference of δ13C values between terminal and sub-terminal C-atom positions of propane, range from -1.8‰ to -12.9‰. In addition, SP value obtained using our method for a thermogenic natural gas sample is consistent with that expected from theoretical models of thermal cracking, suggesting that the isotope fractionation associated with propane pyrolysis is negligible. The method will provide novel insights into the characterization of the origin of propane and will help better understand the biogeochemistry of natural gas deposits.

  20. Aspects regarding at 13C isotope separation column control using Petri nets system

    NASA Astrophysics Data System (ADS)

    Boca, M. L.; Ciortea, M. E.

    2015-11-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.

  1. Carbon isotope ratio (13C/12C) of pine honey and detection of HFCS adulteration.

    PubMed

    Çinar, Serap B; Ekşi, Aziz; Coşkun, İlknur

    2014-08-15

    Carbon isotope ratio ((13)C/(12)C=δ(13)C) of 100 pine honey samples collected from 9 different localities by Mugla region (Turkey) in years 2006, 2007 and 2008 were investigated. The δ(13)Cprotein value of honey samples ranged between -23.7 and -26.6‰, while the δ(13)Choney value varied between -22.7 and -27‰. For 90% of the samples, the difference in the C isotope ratio of protein and honey fraction (δ(13)Cpro-δ(13)Chon) was -1.0‰ and/or higher. Therefore, it can be said that the generally anticipated minimum value of C isotope difference (-1.0‰) for honey is also valid for pine honey. On the other hand, C4 sugar value (%), which was calculated from the δ(13)Cpro-δ(13)Chon difference, was found to be linearly correlated with the amount of adulterant (HFCS) in pine honey. These results indicate that C4 sugar value is a powerful criteria for detecting HFCS adulteration in pine honey. The δ(13)Choney and δ(13)Cprotein-δ(13)Choney values of the samples did not show any significant differences in terms of both year and locality (P>0.05), while the δ(13)Cprotein values showed significant differences due to year (P<0.05) but not due to locality (P>0.05). PMID:24679745

  2. Carbon isotope ratio (13C/12C) of pine honey and detection of HFCS adulteration.

    PubMed

    Çinar, Serap B; Ekşi, Aziz; Coşkun, İlknur

    2014-08-15

    Carbon isotope ratio ((13)C/(12)C=δ(13)C) of 100 pine honey samples collected from 9 different localities by Mugla region (Turkey) in years 2006, 2007 and 2008 were investigated. The δ(13)Cprotein value of honey samples ranged between -23.7 and -26.6‰, while the δ(13)Choney value varied between -22.7 and -27‰. For 90% of the samples, the difference in the C isotope ratio of protein and honey fraction (δ(13)Cpro-δ(13)Chon) was -1.0‰ and/or higher. Therefore, it can be said that the generally anticipated minimum value of C isotope difference (-1.0‰) for honey is also valid for pine honey. On the other hand, C4 sugar value (%), which was calculated from the δ(13)Cpro-δ(13)Chon difference, was found to be linearly correlated with the amount of adulterant (HFCS) in pine honey. These results indicate that C4 sugar value is a powerful criteria for detecting HFCS adulteration in pine honey. The δ(13)Choney and δ(13)Cprotein-δ(13)Choney values of the samples did not show any significant differences in terms of both year and locality (P>0.05), while the δ(13)Cprotein values showed significant differences due to year (P<0.05) but not due to locality (P>0.05).

  3. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins. PMID:25929326

  4. The use of isotope ratios (13C/12C) for vegetable oils authentication

    NASA Astrophysics Data System (ADS)

    Cristea, G.; Magdas, D. A.; Mirel, V.

    2012-02-01

    Stable isotopes are now increasingly used for the control of the geographical origin or authenticity of food products. The falsification may be more or less sophisticated and its sophistication as well as its costs increases with the improvement of analytical methods. In this study 22 vegetable oils (olive, sunflower, palm, maize) commercialized on Romanian market were investigated by mean of δ13C in bulk oil and the obtained results were compared with those reported in literature in order to check the labeling of these natural products. The obtained results were in the range of the mean values found in the literature for these types of oils, thus providing their accurate labeling.

  5. 13C and 18O isotopic signatures of CO uptake and release by soil

    NASA Astrophysics Data System (ADS)

    Popa, Maria Elena; Pathirana, Supun L.; Röckmann, Thomas

    2014-05-01

    CO is important for atmospheric chemistry, is a pollutant, and it has been recognized as an important indirect greenhouse gas. Soil uptake is globally one of the main sinks for atmospheric CO. Isotopic measurements can help constraining the global and regional CO budget, but the isotopic signature of the various components of the CO cycle are not all well known. In this study we performed soil chamber experiments in order to determine the isotopic signature of the exchange of CO between soil and atmosphere. We found that the uptake of CO by soil is associated with a small positive fractionation (the lighter CO is taken up faster). In our experiments, even when soil uptake dominated the net flux, a concurrent emission of CO from soil was always present. We were able to determine separately the isotopic effects of the two fluxes, uptake and emission. The isotopic composition of the emitted CO is depleted in 13C compared to atmospheric CO, and compatible with a source from plant and soil organic matter oxidation.

  6. Quinone-based stable isotope probing for assessment of 13C substrate-utilizing bacteria

    NASA Astrophysics Data System (ADS)

    Kunihiro, Tadao; Katayama, Arata; Demachi, Toyoko; Veuger, Bart; Boschker, Henricus T. S.; van Oevelen, Dick

    2015-04-01

    13C abundance in the quinone. In this study, we verified carbon stable isotope of quinone compared with bulk carbon stable isotope of bacterial culture. Results indicated a good correlation between carbon stable isotope of quinone compared with bulk carbon stable isotope. However, our measurement conditions for detection of quinone isotope-ions incurred underestimation of 13C abundance in the quinone. The quinone-SIP technique needs further optimization for measurement conditions of LC-MS/MS.

  7. Transmembrane Exchange of Hyperpolarized 13C-Urea in Human Erythrocytes: Subminute Timescale Kinetic Analysis

    PubMed Central

    Pagès, Guilhem; Puckeridge, Max; Liangfeng, Guo; Tan, Yee Ling; Jacob, Chacko; Garland, Marc; Kuchel, Philip W.

    2013-01-01

    The rate of exchange of urea across the membranes of human erythrocytes (red blood cells) was quantified on the 1-s to 2-min timescale. 13C-urea was hyperpolarized and subjected to rapid dissolution and the previously reported (partial) resolution of 13C NMR resonances from the molecules inside and outside red blood cells in suspensions was observed. This enabled a stopped-flow type of experiment to measure the (initially) zero-trans transport of urea with sequential single-pulse 13C NMR spectra, every second for up to ∼2 min. Data were analyzed using Bayesian reasoning and a Markov chain Monte Carlo method with a set of simultaneous nonlinear differential equations that described nuclear magnetic relaxation combined with transmembrane exchange. Our results contribute to quantitative understanding of urea-exchange kinetics in the whole body; and the methodological approach is likely to be applicable to other cellular systems and tissues in vivo. PMID:24209840

  8. Thz Spectroscopy of 13C Isotopic Species of a "weed": Acetaldehyde

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.

    2011-06-01

    Our studies of the isotopic species of 13C and D isotopologues of methyl formate (HCOOCH_3), have allowed the detection of more than 600 lines in Orion. This confirms that many observed U-lines are coming from isotopic species of one of the most abundant molecules in space. Since its first detection in 1976 in SgrB2 and in Orion A, acetaldehyde (CH_3CHO) was detected in many other numerous objects. If its deuterated species (CD_3CHO and CH_3CDO) have been previously studied in the millimeterwave range, the data concerning the 13C species are limited to few lines measured in 1957 up to 40 GHz. In this context we decided to study the 13C species of acetaldehyde. Acetaldehyde molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with the Rho Axis Method. Recent versions of the codes include high orders term in order to reproduce the observed frequencies for large quantum numbers values as J-values as high as 70a,b,. Measurements and analysis of the rotational spectra of 13C isotopic species are in progress in Lille with a solid-state submillimetre-wave spectrometer (50-950 GHz), the first results will be presented. This work is supported by the contract ANR-08-BLAN-0054 and by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS). Carvajal, M.; Margulès, L.; Tercero, B.; et al.A&A 500, (2009) 1109 Margulès, L.; Huet, T. R.; Demaison J.; et al.,ApJ 714, (2010) 1120. Ikeda, M.; Ohishi, M.; Nummelin, A.; et al., ApJ, 560, (2001) 792 Kleiner, I.; Lopez, J.-C.; Blanco, S.; et al.J. Mol. Spectrosc. 197, (1999) 275 Elkeurti M.; Coudert, L. H.; Medvedev, I. R.; et al.J. Mol. Spectrosc. 263, (2010) 145 Kilb, R.W.; Lin, C.C.; and Wilson, E.B.J. Chem. Phys. 26, (1957) 1695 Kleiner, I. J. Mol. Spectrosc. 260, (2010) 1 Ilyushin, V.V.; Kryvda, A; and Alekseev, E;J. Mol. Spectrosc. 255, (2009) 32

  9. Partial 13C isotopic enrichment of nucleoside monophosphates: useful reporters for NMR structural studies

    PubMed Central

    Kishore, Anita I.; Mayer, Michael R.; Prestegard, James H.

    2005-01-01

    Analysis of the 13C isotopic labeling patterns of nucleoside monophosphates (NMPs) extracted from Escherichia coli grown in a mixture of C-1 and C-2 glucose is presented. By comparing our results to previous observations on amino acids grown in similar media, we have been able to rationalize the labeling pattern based on the well-known biochemistry of nucleotide biosynthesis. Except for a few notable absences of label (C4 in purines and C3′ in ribose) and one highly enriched site (C1′ in ribose), most carbons are randomly enriched at a low level (an average of 13%). These sparsely labeled NMPs give less complex NMR spectra than their fully isotopically labeled analogs due to the elimination of most 13C–13C scalar couplings. The spectral simplicity is particularly advantageous when working in ordered systems, as illustrated with guanosine diphosphate (GDP) bound to ADP ribosylation factor 1 (ARF1) aligned in a liquid crystalline medium. In this system, the absence of scalar couplings and additional long-range dipolar couplings significantly enhances signal to noise and resolution. PMID:16254075

  10. Stable isotopes13C and δ15N) of organic matrix from coral skeleton

    PubMed Central

    Muscatine, Leonard; Goiran, Claire; Land, Lynton; Jaubert, Jean; Cuif, Jean-Pierre; Allemand, Denis

    2005-01-01

    The evolutionary success of reef-building corals in nutrient-poor tropical waters is attributed to endosymbiotic dinoflagellates. The algae release photosynthetic products to the coral animal cells, augment nutrient flux, and enhance the rate of coral calcification. Natural abundance of stable isotopes13C and δ18O) provides answers to modern and paleobiological questions about the effect of photosymbiosis on sources of carbon and oxygen in coral skeletal calcium carbonate. Here we compare 17 species of symbiotic and nonsymbiotic corals to determine whether evidence for photosymbiosis appears in stable isotopes13C and δ15N) of an organic skeletal compartment, the coral skeletal organic matrix (OM). Mean OM δ13C in symbiotic and nonsymbiotic corals was similar (-26.08‰ vs. -24.31‰), but mean OM δ15N was significantly depleted in 15N in the former (4.09‰) relative to the latter (12.28‰), indicating an effect of the algae on OM synthesis and revealing OM δ15N as a proxy for photosymbiosis. To answer an important paleobiological question about the origin of photosymbiosis in reef-building corals, we applied this proxy test to a fossil coral (Pachythecalis major) from the Triassic (240 million years ago) in which OM is preserved. Mean OM δ15N was 4.66‰, suggesting that P. major was photosymbiotic. The results show that symbiotic algae augment coral calcification by contributing to the synthesis of skeletal OM and that they may have done so as early as the Triassic. PMID:15671164

  11. Isotopic profiling of seized benzylpiperazine and trifluoromethylphenylpiperazine tablets using δ13C and δ15N stable isotopes.

    PubMed

    Beckett, Nicola M; Cresswell, Sarah L; Grice, Darren I; Carter, James F

    2015-01-01

    This paper demonstrates the use of isotopic analysis of 23 benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP) containing tablets seized on two independent occasions by the Northern Territory (NT) Police, Australia. Isolation (High Performance Liquid Chromatography (HPLC)) of BZP and TFMPP followed by Isotope Ratio Mass Spectrometry (IRMS) (carbon and nitrogen stable isotopes) analysis was performed. Results are presented for δ13C and δ15N values of the respective piperazine analogues. The isotopic data and statistical analysis suggest a common source of manufacture for the BZP samples but suggest different sources for the TFMPP isolated from the corresponding BZP containing tablets investigated. The use of IRMS in this case study demonstrated the ability to obtain information regarding the BZP/TFMPP sources unattainable via conventional chemical analysis.

  12. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    PubMed Central

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-01-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes. PMID:27678172

  13. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    NASA Astrophysics Data System (ADS)

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-09-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes.

  14. Ca and Mg isotope constraints on the origin of Earth's deepest δ13 C excursion

    NASA Astrophysics Data System (ADS)

    Husson, Jon M.; Higgins, John A.; Maloof, Adam C.; Schoene, Blair

    2015-07-01

    Understanding the extreme carbon isotope excursions found in carbonate rocks of the Ediacaran Period (635-541 Ma), where δ13 C of marine carbonates (δ13 Ccarb) reach their minimum (- 12 ‰) for Earth history, is one of the most vexing problems in Precambrian geology. Known colloquially as the 'Shuram' excursion, the event has been interpreted by many as a product of a profoundly different Ediacaran carbon cycle. More recently, diagenetic processes have been invoked, with the very negative δ13 C values of Ediacaran carbonates explained via meteoric alteration, late-stage burial diagenesis or growth of authigenic carbonates in the sediment column, thus challenging models which rely upon a dramatically changing redox state of the Ediacaran oceans. Here we present 257 δ 44 / 40 Ca and 131 δ26 Mg measurements, along with [Mg], [Mn] and [Sr] data, from carbonates of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia to bring new isotope systems to bear on understanding the 'Shuram' excursion. Data from four measured sections spanning the basin reveal stratigraphically coherent trends, with variability of ∼1.5‰ in δ26 Mg and ∼1.2‰ in δ 44 / 40 Ca. This Ca isotope variability dwarfs the 0.2-0.3 ‰ change seen coeval with the Permian-Triassic mass extinction, the largest recorded in the rock record, and is on par with putative changes in the δ 44 / 40 Ca value of seawater seen over the Phanerozoic Eon. Changes in both isotopic systems are too large to explain with changes in the isotopic composition of Ca and Mg in global seawater given modern budgets and residence times, and thus must be products of alternative processes. Relationships between δ 44 / 40 Ca and [Sr] and δ26 Mg and [Mg] are consistent with mineralogical control (e.g., aragonite vs. calcite, limestone vs. dolostone) on calcium and magnesium isotope variability. The most pristine samples in the Wonoka dataset, preserving Sr concentrations (in the 1000s of ppm range) and δ 44 / 40

  15. Metabolic Flux Elucidation for Large-Scale Models Using 13C Labeled Isotopes

    PubMed Central

    Suthers, Patrick F.; Burgard, Anthony P.; Dasika, Madhukar S.; Nowroozi, Farnaz; Van Dien, Stephen; Keasling, Jay D.; Maranas, Costas D.

    2007-01-01

    A key consideration in metabolic engineering is the determination of fluxes of the metabolites within the cell. This determination provides an unambiguous description of metabolism before and/or after engineering interventions. Here, we present a computational framework that combines a constraint-based modeling framework with isotopic label tracing on a large-scale. When cells are fed a growth substrate with certain carbon positions labeled with 13C, the distribution of this label in the intracellular metabolites can be calculated based on the known biochemistry of the participating pathways. Most labeling studies focus on skeletal representations of central metabolism and ignore many flux routes that could contribute to the observed isotopic labeling patterns. In contrast, our approach investigates the importance of carrying out isotopic labeling studies using a more comprehensive reaction network consisting of 350 fluxes and 184 metabolites in Escherichia coli including global metabolite balances on cofactors such as ATP, NADH, and NADPH. The proposed procedure is demonstrated on an E. coli strain engineered to produce amorphadiene, a precursor to the anti-malarial drug artemisinin. The cells were grown in continuous culture on glucose containing 20% [U-13C]glucose; the measurements are made using GC-MS performed on 13 amino acids extracted from the cells. We identify flux distributions for which the calculated labeling patterns agree well with the measurements alluding to the accuracy of the network reconstruction. Furthermore, we explore the robustness of the flux calculations to variability in the experimental MS measurements, as well as highlight the key experimental measurements necessary for flux determination. Finally, we discuss the effect of reducing the model, as well as shed light onto the customization of the developed computational framework to other systems. PMID:17632026

  16. Mechanisms linking metabolism of Helicobacter pylori to 18O and 13C-isotopes of human breath CO2

    PubMed Central

    Som, Suman; De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Ghosh, Chiranjit; Pal, Mithun; Daschakraborty, Sunil B.; Chaudhuri, Sujit; Jana, Subhra; Pradhan, Manik

    2015-01-01

    The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 (18O) and carbon-13 (13C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of 18O/16O and 13C/12C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections exhibited significantly higher isotopic enrichments of 18O in breath CO2 during the 2h-glucose metabolism regardless of the isotopic nature of the substrate, while no significant enrichments of 18O in breath CO2 were manifested in individuals without the infections. In contrast, the 13C-isotopic enrichments of breath CO2 were significantly higher in individuals with Helicobacter pylori compared to individuals without infections in response to 13C-enriched glucose uptake, whereas a distinguishable change of breath 13C/12C-isotope ratios was also evident when Helicobacter pylori utilize natural glucose. Moreover, monitoring the 18O and 13C-isotopic exchange in breath CO2 successfully diagnosed the eradications of Helicobacter pylori infections following a standard therapy. Our findings suggest that breath 12C18O16O and 13C16O16O can be used as potential molecular biomarkers to distinctively track the pathogenesis of Helicobacter pylori and also for eradication purposes and thus may open new perspectives into the pathogen’s physiology along with isotope-specific non-invasive diagnosis of the infection. PMID:26039789

  17. Compound specific 13C- and 18O-isotope analysis of organic aerosols

    NASA Astrophysics Data System (ADS)

    Blees, Jan; Saurer, Matthias; Siegwolf, Rolf T. W.; Dommen, Josef; Baltensperger, Urs

    2014-05-01

    . Elements other than carbon may provide valuable additional information. Here we report on the development of methods for the analysis of stable carbon and oxygen isotope ratios of organic compounds in aerosols, through GC-combustion-irMS and GC-pyrolysis-irMS. We apply these analyses to environmental aerosol samples and samples of smog-chamber experiments, with the aim of identifying isotopic signatures of sources and pathways. We will pay special attention to derivatisation techniques - notably alternatives to the often-used trimethylsilyl derivatives in GC-pyrolysis-irMS for δ18O analysis - and to compound separation and identification. We present initial data of combined δ13C and δ18O studies on (secondary) organic aerosol samples, and their added value for source apportionment studies.

  18. Analogy between mission critical detection in distributed systems and 13C isotope separation column

    NASA Astrophysics Data System (ADS)

    Boca, Maria L.; Secara, Mihai

    2015-02-01

    Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13 Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [2]. Distributed systems are increasingly being applied in critical real-time applications and their complexity forces programmers to use design methods which guarantee correctness and increase the maintainability of the products. Objectoriented methodologies are widely used to cope with complexity in any kind of system, but most of them lack a formal foundation to allow the analysis and verification of designs, which is one of the main requirements for dealing with concurrent and reactive systems. This research is intended to make an analogy between two tips of industrial processes, one 13C Isotope Separation Column and other one distributed systems. We try to highlight detection of "mission critical "situations for this two processes and show with one is more critical and needs deeply supervisyon [1], [3].

  19. Application of (13)C-stable isotope probing to identify RDX-degrading microorganisms in groundwater.

    PubMed

    Cho, Kun-Ching; Lee, Do Gyun; Roh, Hyungkeun; Fuller, Mark E; Hatzinger, Paul B; Chu, Kung-Hui

    2013-07-01

    We employed stable isotope probing (SIP) with (13)C-labeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to identify active microorganisms responsible for RDX biodegradation in groundwater microcosms. Sixteen different 16S rRNA gene sequences were derived from microcosms receiving (13)C-labeled RDX, suggesting the presence of microorganisms able to incorporate carbon from RDX or its breakdown products. The clones, residing in Bacteroidia, Clostridia, α-, β- and δ-Proteobacteria, and Spirochaetes, were different from previously described RDX degraders. A parallel set of microcosms was amended with cheese whey and RDX to evaluate the influence of this co-substrate on the RDX-degrading microbial community. Cheese whey stimulated RDX biotransformation, altered the types of RDX-degrading bacteria, and decreased microbial community diversity. Results of this study suggest that RDX-degrading microorganisms in groundwater are more phylogenetically diverse than what has been inferred from studies with RDX-degrading isolates. PMID:23603473

  20. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics

    NASA Astrophysics Data System (ADS)

    Chen, Daizhao; Qing, Hairuo; Li, Renwei

    2005-06-01

    A severe biotic crisis occurred during the Late Devonian Frasnian-Famennian (F/F) transition (± 367 Myr). Here we present δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics, from identical samples of two sections across F/F boundary in South China, which directly demonstrate large and frequent climatic fluctuations (˜200 kyr) from warming to cooling during the F/F transition. These climate fluctuations are interpreted to have been induced initially by increased volcanic outgassing, and subsequent enhanced chemical weathering linked to the rapid expansion of vascular plants on land, which would have increased riverine delivery to oceans and primary bioproductivity, and subsequent burial of organic matter, thereby resulting in climate cooling. Such large and frequent climatic fluctuations, together with volcanic-induced increases in nutrient (e.g., biolimiting Fe), toxin (sulfide) and anoxic water supply, and subsequent enhanced riverine fluxes and microbial bloom, were likely responsible for the stepwise faunal demise of F/F biotic crisis.

  1. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    PubMed

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs. PMID:27302905

  2. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    PubMed

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs.

  3. Capillary Absorption Spectrometer for 13C Isotopic Composition of Pico to Subpico Molar Sample Quantities

    NASA Astrophysics Data System (ADS)

    Moran, J.; Kelly, J.; Sams, R.; Newburn, M.; Kreuzer, H.; Alexander, M.

    2011-12-01

    Quick incorporation of IR spectroscopy based isotope measurements into cutting edge research in biogeochemical cycling attests to the advantages of a spectroscopy versus mass spectrometry method for making some 13C measurements. The simple principles of optical spectroscopy allow field portability and provide a more robust general platform for isotope measurements. We present results with a new capillary absorption spectrometer (CAS) with the capability of reducing the sample size required for high precision isotopic measurements to the picomolar level and potentially the sub-picomolar level. This work was motivated by the minute sample size requirements for laser ablation isotopic studies of carbon cycling in microbial communities but has potential to be a valuable tool in other areas of biological and geological research. The CAS instrument utilizes a capillary waveguide as a sample chamber for interrogating CO2 via near IR laser absorption spectroscopy. The capillary's small volume (~ 0.5 mL) combined with propagation and interaction of the laser mode with the entire sample reduces sample size requirements to a fraction of that accessible with commercially available IR absorption including those with multi-pass or ring-down cavity systems. Using a continuous quantum cascade laser system to probe nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 permits sample measurement at low analyte pressures (as low as 2 Torr) for further sensitivity improvement. A novel method to reduce cw-fringing noise in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level after averaging 1,000 scans in 10 seconds. Detection limits down to the 20 picomoles have been observed, a concentration of approximately 400 ppm at 2 Torr in the waveguide with precision and accuracy at or better than 1 %. Improvements in detection and signal averaging electronics and laser power and mode quality are

  4. A combustion setup to precisely reference δ13C and δ2H isotope ratios of pure CH4 to produce isotope reference gases of δ13C-CH4 in synthetic air

    NASA Astrophysics Data System (ADS)

    Sperlich, P.; Guillevic, M.; Buizert, C.; Jenk, T. M.; Sapart, C. J.; Schaefer, H.; Popp, T. J.; Blunier, T.

    2012-09-01

    Isotope records of atmospheric CH4 can be used to infer changes in the biogeochemistry of CH4. One factor currently limiting the quantitative interpretation of such changes are uncertainties in the isotope measurements stemming from the lack of a unique isotope reference gas, certified for δ13C-CH4 or δ2H-CH4. We present a method to produce isotope reference gases for CH4 in synthetic air that are precisely anchored to the VPDB and VSMOW scales and have δ13C-CH4 values typical for the modern and glacial atmosphere. We quantitatively combusted two pure CH4 gases from fossil and biogenic sources and determined the δ13C and δ2H values of the produced CO2 and H2O relative to the VPDB and VSMOW scales within a very small analytical uncertainty of 0.04‰ and 0.7‰, respectively. We found isotope ratios of -39.56‰ and -56.37‰ for δ13C and -170.1‰ and -317.4‰ for δ2H in the fossil and biogenic CH4, respectively. We used both CH4 types as parental gases from which we mixed two filial CH4 gases. Their δ13C was determined to be -42.21‰ and -47.25‰ representing glacial and present atmospheric δ13C-CH4. The δ2H isotope ratios of the filial CH4 gases were found to be -193.1‰ and -237.1‰, respectively. Next, we mixed aliquots of the filial CH4 gases with ultrapure N2/O2 (CH4 ≤ 2 ppb) producing two isotope reference gases of synthetic air with CH4 mixing ratios near atmospheric values. We show that our method is reproducible and does not introduce isotopic fractionation for δ13C within the uncertainties of our detection limit (we cannot conclude this for δ2H because our system is currently not prepared for δ2H-CH4 measurements in air samples). The general principle of our method can be applied to produce synthetic isotope reference gases targeting δ2H-CH4 or other gas species.

  5. A combustion setup to precisely reference δ13C and δ2H isotope ratios of pure CH4 to produce isotope reference gases of δ13C-CH4 in synthetic air

    NASA Astrophysics Data System (ADS)

    Sperlich, P.; Guillevic, M.; Buizert, C.; Jenk, T. M.; Sapart, C. J.; Schaefer, H.; Blunier, T.

    2012-05-01

    Isotope records of atmospheric CH4 can be used to infer changes in the biochemistry of CH4. One factor limiting quantitative estimates of changes in the biogeochemistry of CH4 are the uncertainties of the isotope measurements due to the lack of a unique isotope reference gas, certified for δ13C-CH4 or δ2H-CH4. We present a method to produce isotope reference gases for CH4 in synthetic airs that are precisely anchored to the VPDB and VSMOW scale and contain δ13C-CH4 values typical for the modern and glacial atmosphere. We quantitatively combusted two pure CH4 gases from fossil and biogenic sources and determined the δ13C and δ2H values of the produced CO2 and H2O relative to the VPDB and VSMOW scale within a very small analytical uncertainty of 0.04‰ and 0.7‰, respectively. We found isotope ratios of -39.56‰ and -56.37‰ for δ13C and -170.1‰ and -317.4‰ for δ2H in the fossil and biogenic CH4, respectively. We used both CH4 types as parental gases from which we mixed two filial CH4 gases. Their δ13C was determined to be -42.21‰ and -47.25‰, representing glacial and present atmospheric δ13C-CH4. The δ2H isotope ratios of the filial CH4 gases were found with -193.1‰ and -237.1‰, respectively. Next, we mixed aliquots of the filial CH4 gases with ultrapure N2/O2 (CH4 ≤ 2 ppb) producing two isotope reference gases of synthetic air with CH4 mixing ratios near atmospheric values. We show that our method is reproducible and does not introduce isotopic fractionation for δ13C within the uncertainties of our detection limit (we cannot conclude this for δ2H because our system is currently not prepared for δ2H-CH4 measurements in air samples). The general principle of our method can be applied to produce synthetic isotope reference gases targeting δ2H-CH4 or other gas species.

  6. Use of Isotope Ratio Determination (13C/12C) to Assess the Production Method of Sparkling Wine.

    PubMed

    Rossier, Joël S; Maury, Valérie; Gaillard, Laetitia; Pfammatter, Elmar

    2016-01-01

    The production of a sparkling wine can be performed with different methods taking from a few weeks to several years, which often justifies a difference in added value for the consumer. This paper presents the use of isotope ratio δ(13)C measurements combined with physico-chemical analyses for the determination of mislabelling of sparkling wines produced by 'ancestral', 'traditional', 'closed tank' or 'gasification' methods. This work shows that the isotope composition of CO(2) compared with that of the corresponding dried residue of wine (DRW) can assess whether carbonate CO(2) in a sparkling wine originates from alcohol fermentation or from artificial gas addition. Isotopic ratios expressed as δ(13)C(CO2) and δ(13)C(DRW) measurements have been obtained for each wine by gasbench isotopic ratio mass spectroscopy and cavity ring down infrared spectroscopy, respectively. When the difference between δ(13)C(CO2) and δ(13)C(DRW) is negative, the presence of artificial CO(2) can be undoubtedly inferred, which would exclude the production methods 'ancestral' or 'traditional' for instance. Other parameters such as alcohol content, sugar and acid distributions are also important to complete the analytical panel to aid fraud tracking.

  7. 13C NMR and isotopic13C) investigations on modern vegetation samples: a tool to understand the soil organic matter degradation dynamics and preferences

    NASA Astrophysics Data System (ADS)

    Rakshit, Subhadeep; Sanyal, Prasanta; Vardhan Gaur, Harsh

    2015-04-01

    Soil organic carbon, one of the largest reservoirs of carbon, is a heterogeneous mixture of organic compounds with dominant contribution derived from decomposition of plants in various stages. Although general ideas about the processes and mechanisms of soil organic matter (SOM) degradation have been developed, a very few study has linked the SOM with its parent material. In this study we aim to generate reference data set of functional groups from modern vegetation samples (C3 and C4plants) to better understand the degradation dynamics and preferences. The carbon functional groups from modern vegetation samples (eight C3 and nine C4 plants collected from Mohanpur, Nadia, West Bengal, India) were examined by solid state 13C CPMAS NMR spectroscopy. Additionally, isotopic investigations (δ13C) has also been carried out on the modern vegetation samples to understand the relationship of bulk isotopic values to the concentration of functional groups. The major functional groups (alkyl C, O-alkyl C, aromatic C, carbonyl C and aldehyde/ketone) of modern vegetation samples form 16%, 65%, 5%, 14% and 1% respectively in C3 plants. Considerable differences has been observed for C4 plants with average values of alkyl C, O-alkyl C, aromatic C, carbonyl C and aldehyde/ketone are 8%, 83%, 3%, 5% and 1% respectively. The concentration of functional groups from the modern vegetational samples can be considered as reference scale to compare with the 13C NMR data derived from the different soil horizons to understand the SOM degradation dynamics. The δ13CV PDB values of modern vegetation samples plotted against the individual concentration of functional groups shows significant correlation in C4 plants, whereas a lack in correlation has been observed for C3 plants. We assume this difference in relationship of δ13CV PDB values with functional groups of C3 and C4plants can be due to the differences in photosynthesis pathways, the fractionation of CO2 and accumulation of the products

  8. Synthesis of isotopically labeled R- or S-[.sup.13C, .sup.2H] glycerols

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2008-01-22

    The present invention is directed to asymmetric chiral labeled glycerols including at least one chiral atom, from one to two .sup.13C atoms and from zero to four deuterium atoms bonded directly to a carbon atom, e.g., (2S) [1,2-.sup.13C.sub.2]glycerol and (2R) [1,2-.sup.13C.sub.2]glycerol, and to the use of such chiral glycerols in the preparation of labeled amino acids.

  9. A simplified mathematical model of the cryogenic distillation with application to the (13C) isotope separation column

    NASA Astrophysics Data System (ADS)

    Neaga, A. O.; Festila, C.; Dulf, E. H.; Both, R.; Szelitzky, T.; Gligan, M.

    2012-02-01

    The isotope (13C) has a widespread application in many fields such as chemistry, physics, medicine, etc. To obtain a high concentration in isotope of interest, in our case (13C), it is used the method of cryogenic distillation of carbon monoxide (CO) which is based on the difference between the vapor pressure of (12C16O) and (13C16O) at the temperature of liquid nitrogen. Isotopic separation plant, used to obtain the isotope (13C), is a complex installation, with many inputs and outputs, rather difficult to control. Due to this reason, from the point of view of automation, it is needed a simplified mathematical model. This model can be determined only with some presumption and simplification assumptions. Using the physical laws, the hydrodynamic part of the process and the mass balance will be described by partial differential equations. In order to design a controller for the column, it is needed a transfer function or a statespace realization of the plant, which is the main contribution of the present work. Implementing this mathematical model will be the key element for describing and understanding the operation of the plant and for future development of process control strategies.

  10. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry for Applications in Stable Isotope Probing

    PubMed Central

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L.

    2014-01-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating 13C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography–tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% 13C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation. PMID:25217022

  11. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry for Applications in Stable Isotope Probing.

    PubMed

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L; Mohn, William W

    2014-12-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating (13)C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography-tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% (13)C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation.

  12. Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    PubMed Central

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N (δ15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice

  13. Multi-isotope labelling (13C, 18O, 2H) for studying organic matter cycling within plant-soil systems

    NASA Astrophysics Data System (ADS)

    Studer, M. S.; Abiven, S.; Schmidt, M. W. I.; Siegwolf, R. T. W.

    2012-04-01

    Carbon cycling has become of major interest for the understanding and mitigation of global climatic change. Terrestrial ecosystems have a large carbon sequestration potential, but many processes and fluxes of organic matter (OM) cycling within the plant-soil system are not yet well understood [1]. The dynamics of OM cycling within the plant soil-system are determined by environmental parameters, as well as chemical quality of OM input. A well-known technique to study OM dynamics is to label OM inputs with stable isotopes (e.g 13C). Changes in OM quality in the plant and in the soil can be assessed by compound specific isotopic analysis [2]. These techniques give a precise insight of the OM composition, but are laborious and expensive. Here we suggest a new multi-isotope labelling technique using stable 13C in combination with stable 18O and 2H isotopes, which provides information on OM quality by simple bulk material analysis. The method is based on the creation of an isotopic van Krevelen diagram, which is used to describe different compound groups by plotting the atomic ratios of O/C vs. H/C [3]. We could show that new assimilates can be labelled with 13C, 18O and 2H by adding the stable isotopes (continuously) in the gaseous phase (CO2 and water vapour) to the plants atmosphere. The label has been traced within the bulk material of different compartments of the plant-soil system (e.g. leaves, stems, roots, bulk soil). Our first results showed that after 2, 8 and 14 days of labelling the 18O/13C(new) ratio was notably different in leaf, stem and root tissue (0.0024, 0.0011 and 0.0007, respectively), suggesting a change in OM quality towards more C-rich compounds. d2H analysis will follow and an isotopic van Krevelen diagram will be produced (18O/13C(new) vs. 2H/13C(new)) to describe the changes in OM quality. The new multi-isotope labelling approach represent a powerful tool to address open questions in plant and soil research such as the allocation of organic

  14. The 13C/12C isotopic signal of day-respired CO2 in variegated leaves of Pelargonium × hortorum.

    PubMed

    Tcherkez, Guillaume; Mauve, Caroline; Lamothe, Marlene; Le Bras, Camille; Grapin, Agnes

    2011-02-01

    In leaves, although it is accepted that CO(2) evolved by dark respiration after illumination is naturally (13) C-enriched compared to organic matter or substrate sucrose, much uncertainty remains on whether day respiration produces (13) C-depleted or (13) C-enriched CO(2). Here, we applied equations described previously for mesocosm CO(2) exchange to investigate the carbon isotope composition of CO(2) respired by autotrophic and heterotrophic tissues of Pelargonium × hortorum leaves, taking advantage of leaf variegation. Day-respired CO(2) was slightly (13) C-depleted compared to organic matter both under 21% O(2) and 2% O(2). Furthermore, most, if not all CO(2) molecules evolved in the light came from carbon atoms that had been fixed previously before the experiments, in both variegated and green leaves. We conclude that the usual definition of day respiratory fractionation, that assumes carbon fixed by current net photosynthesis is the respiratory substrate, is not valid in Pelargonium leaves under our conditions. In variegated leaves, total organic matter was slightly (13) C-depleted in white areas and so were most primary metabolites. This small isotopic difference between white and green areas probably came from the small contribution of photosynthetic CO(2) refixation and the specific nitrogen metabolism in white leaf areas. PMID:20955224

  15. The 13C/12C isotopic signal of day-respired CO2 in variegated leaves of Pelargonium × hortorum.

    PubMed

    Tcherkez, Guillaume; Mauve, Caroline; Lamothe, Marlene; Le Bras, Camille; Grapin, Agnes

    2011-02-01

    In leaves, although it is accepted that CO(2) evolved by dark respiration after illumination is naturally (13) C-enriched compared to organic matter or substrate sucrose, much uncertainty remains on whether day respiration produces (13) C-depleted or (13) C-enriched CO(2). Here, we applied equations described previously for mesocosm CO(2) exchange to investigate the carbon isotope composition of CO(2) respired by autotrophic and heterotrophic tissues of Pelargonium × hortorum leaves, taking advantage of leaf variegation. Day-respired CO(2) was slightly (13) C-depleted compared to organic matter both under 21% O(2) and 2% O(2). Furthermore, most, if not all CO(2) molecules evolved in the light came from carbon atoms that had been fixed previously before the experiments, in both variegated and green leaves. We conclude that the usual definition of day respiratory fractionation, that assumes carbon fixed by current net photosynthesis is the respiratory substrate, is not valid in Pelargonium leaves under our conditions. In variegated leaves, total organic matter was slightly (13) C-depleted in white areas and so were most primary metabolites. This small isotopic difference between white and green areas probably came from the small contribution of photosynthetic CO(2) refixation and the specific nitrogen metabolism in white leaf areas.

  16. Validation of pentaacetylaldononitrile derivative for dual 2H gas chromatography/mass spectrometry and 13C gas chromatography/combustion/isotope ratio mass spectrometry analysis of glucose.

    PubMed

    Sauvinet, Valérie; Gabert, Laure; Qin, Du; Louche-Pélissier, Corinne; Laville, Martine; Désage, Michel

    2009-12-01

    A reference method to accurately define kinetics in response to the ingestion of glucose in terms of total, exogenous and endogenous glucose is to use stable-isotope-labelled compounds such as 2H and 13C glucose followed by gas chromatography/mass spectrometry (GC/MS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analysis. The use of the usual pentaacetyl (5Ac) derivative generates difficulties in obtaining accurate and reproducible results due to the two chromatographic peaks for the syn and anti isomers, and to the isotopic effect occurring during acetylation. Therefore, the pentaacetylaldononitrile derivative (Aldo) was validated for both isotopes, and compared with the 5Ac derivative. A correction factor including carbon atom dilution (stoichiometric equation) and the kinetic isotopic effect (KIE) was determined. Analytical validation results for the 2H GC/MS and 13C GC/C/IRMS measurements produced acceptable results with both derivatives. When 2H enrichments of plasma samples were < or = 1 mol % excess (MPE), the repeatability (RSD(Aldo Intra assay and Intra day) <0.94%, RSD(5Ac Intra assay and Intra day) <3.29%), accuracy (Aldo <3.4%, 5Ac <29.0%), and stability of the derivatized samples were significantly better when the Aldo derivatives of the plasma samples were used (p < 0.05). When the glucose kinetics were assessed in nine human subjects, after glucose ingestion, the plasma glucose 2H enrichments were identical with both derivatives, whereas the 13C enrichments needed a correction factor to fit together. Due to KIE variation, this correction factor was not constant and had to be calculated for each batch of analyses, to obtain satisfactory results. Mean quantities of exogenous glucose exhibit marked difference (20.9 +/- 1.3g (5Ac) vs. 26.7 +/- 2.5g (Aldo)) when calculated with stoichiometric correction, but fit perfectly when calculated after application of the correction factor (22.1 +/- 1.3g (5Ac) vs. 22.9 +/- 1.9g

  17. LASER BIOLOGY AND MEDICINE: Laser analysis of the 13C/12C isotope ratio in CO2 in exhaled air

    NASA Astrophysics Data System (ADS)

    Stepanov, E. V.

    2002-11-01

    Tunable diode lasers (TDLs) are applied to the diagnostics of gastroenterological diseases using respiratory tests and preparations enriched with the stable 13C isotope. This method of the analysis of the 13C/12C isotope ratio in CO2 in exhaled air is based on the selective measurement of the resonance absorption at the vibrational — rotational structure of 12CO2 and 13CO2. The CO2 transmission spectra in the region of 4.35 μm were measured with a PbEuSe double-heterostructure TDL. The accuracy of carbon isotope ratio measurements in CO2 of exhaled air performed with the TDL was ~0.5%. The data of clinical tests of the developed laser-based analyser are presented.

  18. Stable Oxygen (δ 18O) and Carbon (δ 13C) Isotopes in the Skeleton of Bleached and Recovering Corals From Hawaii

    NASA Astrophysics Data System (ADS)

    Rodrigues, L. J.; Grottoli, A. G.

    2004-12-01

    Coral skeletal stable oxygen isotopes (δ 18O) reflect changes in seawater temperature and salinity, while stable carbon isotopes13C) reflect a combination of both metabolic (photosynthesis and feeding) and kinetic fractionation. Together, the two isotopic signatures may be used as a proxy for past bleaching events. During bleaching, increased seawater temperatures often contribute to a decline in zooxanthellae and/or chlorophyll concentrations, resulting in a decrease in photosynthesis. We experimentally investigated the effect of bleaching and subsequent recovery on the δ 13C and δ 18O values of coral skeleton. Fragments from two coral species (Montipora capitata and Porites compressa) from Kaneohe Bay, Hawaii were bleached in outdoor tanks by raising the seawater temperature to 30° C. Additional fragments from the same parent colonies were maintained at ambient seawater temperatures (27° C) in separate tanks as controls. After one month in the tanks, a subset of the fragments was frozen and all remaining fragments were placed back on the reef to recover. All coral fragments were analyzed for their skeletal δ 13C and δ 18O compositions at five time intervals: before, immediately after, 1.5, 4, and 8 months after bleaching. In addition, rates of photosynthesis, calcification, and heterotrophy were also measured. Immediately after bleaching, δ 18O decreased in bleached M. capitata relative to controls, reflecting their exposure to increased seawater temperatures. During recovery, δ 18O values in the treatment M. capitata were not different from the controls. In P. compressa, δ 18O did not significantly differ in bleached and control corals at any time during the experiment. Immediately after bleaching, δ 13C decreased in the bleached fragments of both species relative to controls reflecting decreased photosynthetic rates. However, during recovery δ 13C in both species was greater in bleached than control fragments despite photosynthesis remaining

  19. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Assonov, Sergey S.

    2010-01-01

    Measurements of δ(13C) determined on CO2 with an isotope-ratio mass spectrometer (IRMS) must be corrected for the amount of 17O in the CO2. For data consistency, this must be done using identical methods by different laboratories. This report aims at unifying data treatment for CO2 IRMS by proposing (i) a unified set of numerical values, and (ii) a unified correction algorithm, based on a simple, linear approximation formula. Because the oxygen of natural CO2 is derived mostly from the global water pool, it is recommended that a value of 0.528 be employed for the factor λ, which relates differences in 17O and 18O abundances. With the currently accepted N(13C)/N(12C) of 0.011 180(28) in VPDB (Vienna Peedee belemnite) reevaluation of data yields a value of 0.000 393(1) for the oxygen isotope ratio N(17O)/N(16O) of the evolved CO2. The ratio of these quantities, a ratio of isotope ratios, is essential for the 17O abundance correction: [N(17O)/N(16O)]/[N(13C)/N(12C)] = 0.035 16(8). The equation [δ(13C) ≈ 45δVPDB-CO2 + 2 17R/13R (45δVPDB-CO2 – λ46δVPDB-CO2)] closely approximates δ(13C) values with less than 0.010 ‰ deviation for normal oxygen-bearing materials and no more than 0.026 ‰ in extreme cases. Other materials containing oxygen of non-mass-dependent isotope composition require a more specific data treatment. A similar linear approximation is also suggested for δ(18O). The linear approximations are easy to implement in a data spreadsheet, and also help in generating a simplified uncertainty budget.

  20. Constraining {sup 13}C amounts in AGB stars through isotopic analysis of trace elements in presolar SiC.

    SciTech Connect

    Barzyk, J. G.; Savina, M. R.; Davis, A. M.; Gallino, R.; Gyngard, F.; Amari, S.; Zinner, E.; Pelliln, M. J.; Lewis, R. S.; Clayton, R. N.; Materials Science Division; Univ. Chicago; Chicago Ctr Cosmochem.; Universita di Torino; Washington Univ.

    2007-07-01

    Analyses of the isotopic compositions of multiple elements (Mo, Zr, and Ba) in individual mainstream presolar SiC grains were done by resonant ionization mass spectrometry (RIMS). While most heavy element compositions were consistent with model predictions for the slow neutron capture process (s-process) in low-mass (1.5-3 M{sub {circle_dot}}) asymptotic giant branch stars of solar metallicity when viewed on single-element three-isotope plots, grains with compositions deviating from model predictions were identified on multi-element plots. These grains have compositions that cannot result from any neutron capture process but can be explained by contamination in some elements with solar system material. Previous work in which only one heavy element per grain was examined has been unable to identify contaminated grains. The multi-element analyses of this study detected contaminated grains which were subsequently eliminated from consideration. The uncontaminated grains form a data set with a greatly reduced spread on the three-isotope plots of each element measured, corresponding to a smaller range of {sup 13}C pocket efficiencies in parent AGB stars. Furthermore, due to this reduced spread, the nature of the stellar starting material, previously interpreted as having solar isotopic composition, is uncertain. The constraint on {sup 13}C pocket efficiencies in parent stars of these grains may help uncover the mechanism responsible for formation of {sup 13}C, the primary neutron source for s-process nucleosynthesis in low-mass stars.

  1. Tracing the diet of the monitor lizard Varanus mabitang by stable isotope analyses (δ15N, δ13C)

    NASA Astrophysics Data System (ADS)

    Struck, Ulrich; Altenbach, Alexander; Gaulke, Maren; Glaw, Frank

    2002-09-01

    In this study, we used analyses of stable isotopes of nitrogen (δ15N) and carbon (δ13C) to determine the trophic ecology of the monitor lizard Varanus mabitang. Stable isotopes from claws, gut contents, and soft tissues were measured from the type specimen. Samples from Varanus olivaceus, Varanus prasinus, Varanus salvator, the herbivorous agamid lizard Hydrosaurus pustulatus, and some plant matter were included for comparison. Our data show a rapid decrease in δ13C (about10‰) from food plants towards gut contents and soft tissues of herbivorous species. For the varanids, we found a significant linear correlation of decreasing δ13C and increasing δ15N from herbivorous towards carnivorous species. In terms of trophic isotope ecology, the type specimen of V. mabitang is a strict herbivore. Thus it differs significantly in its isotopic composition from the morphologically next closest related species V. olivaceus. The most highly carnivorous species is V. salvator, while δ15N values for V. prasinus and V. olivaceus are intermediate. Claws provide very valuable samples for such measurements, because they can be sampled from living animals without harm. Additionally, their range of variability is relatively small in comparison with measurements from soft tissues.

  2. Magnetic isotope effects in the photolysis of dibenzyl ketone on porous silica. /sup 13/C and /sup 17/O enrichments

    SciTech Connect

    Turro, N.J.; Cheng, C.C.; Wan, P.; Chung, C.; Mahler, W.

    1985-04-25

    The photolysis of dibenzyl ketone (DBK) on porous silica has been investigated. Both /sup 13/C and /sup 17/O isotopic enrichment in the ketone remaining after partial photolysis is demonstrated. The efficiency of /sup 13/C enrichment was found to be relatively insensitive to the average pore diameter of the silica host, to the percent coverage by DBK, and to the application of an external magnetic field. A significant dependence of /sup 13/C enrichment with temperature, with a maximum in the enrichment-temperature profile, was observed. The results are interpreted in terms of the competition between pathways available to the triplet C/sub 6/H/sub 5/CH/sub 2/COCH/sub 2/C/sub 6/H/sub 5/ radical pair produced by photolysis of DBK.

  3. Methane concentration and isotopic composition (δ13C-CH4) in the Nerja Cave system (South Spain)

    NASA Astrophysics Data System (ADS)

    Vadillo, Iñaki; Etiope, Giuseppe; Benavente, José; Ojeda, Lucia; Liñán, Cristina; Carrasco, Francisco

    2016-04-01

    Air in underground caves often has methane (CH4) concentrations below the atmospheric level, due to methanotrophic or other unkown CH4 consuming processes. Caves are thus considered a potential sink for atmospheric methane. If globally important, this underground CH4 oxidation should be taken into account in the atmospheric methane budget, in addition to the known soil methanotrophy and tropospheric/stratospheric sinks. A large set of data is however necessary to understand how and how much methane from external atmospheric air is consumed in the caves. While methane concentration data are available for several caves worldwide, its isotopic composition and variations in space and time are poorly documented. We measured methane concentration and stable C isotope composition (δ13C) in the Nerja cave (Southern Spain) air during two surveys in March and April 2015. CH4 concentration decreases progressively from the more external cave rooms, with atmospheric levels of 1.9 ppmv, to the more internal and isolated rooms down to 0.5 ppmv. δ13C increases correspondingly from -47 ‰ to -41 ‰ (VPDB). CH4 is systematically 13C-enriched (δ13C > -45) in areas of the cave where the concentration is below 1.4 ppmv. This combination of concentration decrease and 13C-enrichment towards the more internal and isolated zones of the cave confirms the importance of CH4 oxidation, likely driven by methanotrophic bacteria. Further data, including stable H isotope composition of sub-atmospheric CH4 concentrations, CO2 and microbial analyses, shall be acquired over time to assess the actual role of methanotrophic bacteria and seasonal controls in the CH4 consumption process.

  4. Stable isotope (13C, 15N and 34S) analysis of the hair of modern humans and their domestic animals.

    PubMed

    Bol, Roland; Pflieger, Christian

    2002-01-01

    Relationships between dietary status and recent migration were examined by delta(13)C, delta(15)N and delta(34)S analysis of hair samples from 43 modern humans living in a rural community in SW England. The isotopic content of 38 'local' hair samples was compared with that of five recently arrived individuals (from Canada, Chile, Germany and the USA). Hair samples from domestic animals (i.e. mainly cats, dogs, cows and horses) were analysed to examine the difference in delta(13)C, delta(15)N and delta(34)S values between herbivores and carnivores. Generally, modern human hair data from the triple stable isotope (delta(13)C, delta(15)N and delta(34)S) provided enough information to confirm the dietary status and origin of the individual subjects. The dietary intake was generally reflected in the animal hair delta(15)N and delta(13)C values, i.e. highest in the carnivores (cats). However, a non-local origin of food sources given to domesticated omnivores (i.e. dogs) was suggested by their hair delta(34)S values.

  5. Continuous flow stable isotope methods for study of δ13C fractionation during halomethane production and degradation

    USGS Publications Warehouse

    Kalin, Robert M.; Hamilton, John T.G.; Harper, David B.; Miller, Laurence G.; Lamb, Clare; Kennedy, James T.; Downey, Angela; McCauley, Sean; Goldstein, Allen H.

    2001-01-01

    Gas chromatography/mass spectrometry/isotope ratio mass spectrometry (GC/MS/IRMS) methods for δ13C measurement of the halomethanes CH3Cl, CH3Br, CH3I and methanethiol (CH3SH) during studies of their biological production, biological degradation, and abiotic reactions are presented. Optimisation of gas chromatographic parameters allowed the identification and quantification of CO2, O2, CH3Cl, CH3Br, CH3I and CH3SH from a single sample, and also the concurrent measurement of δ13C for each of the halomethanes and methanethiol. Precision of δ13C measurements for halomethane standards decreased (±0.3, ±0.5 and ±1.3‰) with increasing mass (CH3Cl, CH3Br, CH3I, respectively). Given that carbon isotope effects during biological production, biological degradation and some chemical (abiotic) reactions can be as much as 100‰, stable isotope analysis offers a precise method to study the global sources and sinks of these halogenated compounds that are of considerable importance to our understanding of stratospheric ozone destruction. 

  6. Validating the Incorporation of 13C and 15N in a Shorebird That Consumes an Isotopically Distinct Chemosymbiotic Bivalve

    PubMed Central

    van Gils, Jan A.; Ahmedou Salem, Mohamed Vall

    2015-01-01

    The wealth of field studies using stable isotopes to make inferences about animal diets require controlled validation experiments to make proper interpretations. Despite several pleas in the literature for such experiments, validation studies are still lagging behind, notably in consumers dwelling in chemosynthesis-based ecosystems. In this paper we present such a validation experiment for the incorporation of 13C and 15N in the blood plasma of a medium-sized shorebird, the red knot (Calidris canutus canutus), consuming a chemosymbiotic lucinid bivalve (Loripes lucinalis). Because this bivalve forms a symbiosis with chemoautotrophic sulphide-oxidizing bacteria living inside its gill, the bivalve is isotopically distinct from ‘normal’ bivalves whose food has a photosynthetic basis. Here we experimentally tested the hypothesis that isotope discrimination and incorporation dynamics are different when consuming such chemosynthesis-based prey. The experiment showed that neither the isotopic discrimination factor, nor isotopic turnover time, differed between birds consuming the chemosymbiotic lucinid and a control group consuming a photosynthesis-based bivalve. This was true for 13C as well as for 15N. However, in both groups the 15N discrimination factor was much higher than expected, which probably had to do with the birds losing body mass over the course of the experiment. PMID:26458005

  7. Carbon fluxes to the soil in a mature temperate forest assessed by 13C isotope tracing.

    PubMed

    Steinmann, Katharina; Siegwolf, Rolf T W; Saurer, Matthias; Körner, Christian

    2004-11-01

    Photosynthetic carbon uptake and respiratory C release from soil are major components of the global carbon balance. The use of 13C depleted CO2)(delta13C = -30 per thousand) in a free air CO2 enrichment experiment in a mature deciduous forest permitted us to trace the carbon transfer from tree crowns to the rhizosphere of 100-120 years old trees. During the first season of CO2 enrichment the CO2 released from soil originated substantially from concurrent assimilation. The small contribution of recent carbon in fine roots suggests a much slower fine root turnover than is often assumed. 13C abundance in soil air correlated best with temperature data taken from 4 to 10 days before air sampling time and is thus rapidly available for root and rhizosphere respiration. The spatial variability of delta13C in soil air showed relationships to above ground tree types such as conifers versus broad-leaved trees. Considering the complexity and strong overlap of roots from different individuals in a forest, this finding opens an exciting new possibility of associating respiration with different species. What might be seen as signal noise does in fact contain valuable information on the spatial heterogeneity of tree-soil interaction.

  8. Modeling non-linear kinetics of hyperpolarized [1-(13)C] pyruvate in the crystalloid-perfused rat heart.

    PubMed

    Mariotti, E; Orton, M R; Eerbeek, O; Ashruf, J F; Zuurbier, C J; Southworth, R; Eykyn, T R

    2016-04-01

    Hyperpolarized (13)C MR measurements have the potential to display non-linear kinetics. We have developed an approach to describe possible non-first-order kinetics of hyperpolarized [1-(13)C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass of the hyperpolarized signal. Simultaneous fitting to a second-order model for conversion of [1-(13)C] pyruvate to bicarbonate, lactate and alanine was well described in the isolated rat heart perfused with Krebs buffer containing glucose as sole energy substrate, or glucose supplemented with pyruvate. Second-order modeling yielded significantly improved fits of pyruvate-bicarbonate kinetics compared with the more traditionally used first-order model and suggested time-dependent decreases in pyruvate-bicarbonate flux. Second-order modeling gave time-dependent changes in forward and reverse reaction kinetics of pyruvate-lactate exchange and pyruvate-alanine exchange in both groups of hearts during the infusion of pyruvate; however, the fits were not significantly improved with respect to a traditional first-order model. The mechanism giving rise to second-order pyruvate dehydrogenase (PDH) kinetics was explored experimentally using surface fluorescence measurements of nicotinamide adenine dinucleotide reduced form (NADH) performed under the same conditions, demonstrating a significant increase of NADH during pyruvate infusion. This suggests a simultaneous depletion of available mitochondrial NAD(+) (the cofactor for PDH), consistent with the non-linear nature of the kinetics. NADH levels returned to baseline following cessation of the pyruvate infusion, suggesting this to be a transient effect. PMID:26777799

  9. Modeling non‐linear kinetics of hyperpolarized [1‐13C] pyruvate in the crystalloid‐perfused rat heart

    PubMed Central

    Mariotti, E.; Orton, M. R.; Eerbeek, O.; Ashruf, J. F.; Zuurbier, C. J.; Southworth, R.

    2016-01-01

    Hyperpolarized 13C MR measurements have the potential to display non‐linear kinetics. We have developed an approach to describe possible non‐first‐order kinetics of hyperpolarized [1‐13C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass of the hyperpolarized signal. Simultaneous fitting to a second‐order model for conversion of [1‐13C] pyruvate to bicarbonate, lactate and alanine was well described in the isolated rat heart perfused with Krebs buffer containing glucose as sole energy substrate, or glucose supplemented with pyruvate. Second‐order modeling yielded significantly improved fits of pyruvate–bicarbonate kinetics compared with the more traditionally used first‐order model and suggested time‐dependent decreases in pyruvate–bicarbonate flux. Second‐order modeling gave time‐dependent changes in forward and reverse reaction kinetics of pyruvate–lactate exchange and pyruvate–alanine exchange in both groups of hearts during the infusion of pyruvate; however, the fits were not significantly improved with respect to a traditional first‐order model. The mechanism giving rise to second‐order pyruvate dehydrogenase (PDH) kinetics was explored experimentally using surface fluorescence measurements of nicotinamide adenine dinucleotide reduced form (NADH) performed under the same conditions, demonstrating a significant increase of NADH during pyruvate infusion. This suggests a simultaneous depletion of available mitochondrial NAD+ (the cofactor for PDH), consistent with the non‐linear nature of the kinetics. NADH levels returned to baseline following cessation of the pyruvate infusion, suggesting this to be a transient effect. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26777799

  10. Monitoring CO2 concentration and δ13C in an underground cavity using a commercial isotope ratio infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Guillon, Sophie; Agrinier, Pierre; Pili, Éric

    2015-04-01

    CO2 stable carbon isotopes are very attractive in environmental research to investigate both natural and anthropogenic carbon sources. Laser-based isotope ratio infrared spectrometers (IRIS) allow in situ continuous monitoring of CO2 isotopes, and therefore they have a potential for unprecedented understanding of carbon sources and dynamics with a high temporal resolution. Here we present the performance assessment of a commercial IRIS analyzer, including the measurement setup and the data processing scheme that we used. Even if the analyzer performs 1-Hz measurements, an integration time of the order of 1 h is commonly needed to obtain acceptable precision for δ13C. The main sources of uncertainty on δ13C come from the concentration dependence and from the temporal instability of the analyzer. The method is applied to the in situ monitoring of the CO2 carbon isotopes in an underground cavity (Roselend Natural Laboratory, France) during several months. On a weekly timescale, the temporal variability of CO2 is dominated by transient contamination by human breath. Discarding these anthropogenic contaminations, CO2 and δ13C backgrounds do not show diurnal or seasonal fluctuations. A CO2 flux released into the tunnel by the surrounding rocks is measured. The carbon isotope composition of this CO2, identified with a Keeling plot, is consistent with a main production by microbial respiration and a minor production from weathering of carbonate minerals. The presented instrument and application study are relevant to cave monitoring, whether to understand CO2 dynamics in visited and/or painted caves for preservation purposes or to understand paleoclimate recording in speleothems.

  11. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by (13)C nuclear magnetic resonance spectrometry.

    PubMed

    Julien, Maxime; Nun, Pierrick; Höhener, Patrick; Parinet, Julien; Robins, Richard J; Remaud, Gérald S

    2016-01-15

    In forensic environmental investigations the main issue concerns the inference of the original source of the pollutant for determining the liable party. Isotope measurements in geochemistry, combined with complimentary techniques for contaminant identification, have contributed significantly to source determination at polluted sites. In this work we have determined the intramolecular (13)C profiles of several molecules well-known as pollutants. By giving additional analytical parameters, position-specific isotope analysis performed by isotope ratio monitoring by (13)C nuclear magnetic resonance (irm-(13)C NMR) spectrometry gives new information to help in answering the major question: what is the origin of the detected contaminant? We have shown that isotope profiling of the core of a molecule reveals both the raw materials and the process used in its manufacture. It also can reveal processes occurring between the contamination site 'source' and the sampling site. Thus, irm-(13)C NMR is shown to be a very good complement to compound-specific isotope analysis currently performed by mass spectrometry for assessing polluted sites involving substantial spills of pollutant.

  12. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by (13)C nuclear magnetic resonance spectrometry.

    PubMed

    Julien, Maxime; Nun, Pierrick; Höhener, Patrick; Parinet, Julien; Robins, Richard J; Remaud, Gérald S

    2016-01-15

    In forensic environmental investigations the main issue concerns the inference of the original source of the pollutant for determining the liable party. Isotope measurements in geochemistry, combined with complimentary techniques for contaminant identification, have contributed significantly to source determination at polluted sites. In this work we have determined the intramolecular (13)C profiles of several molecules well-known as pollutants. By giving additional analytical parameters, position-specific isotope analysis performed by isotope ratio monitoring by (13)C nuclear magnetic resonance (irm-(13)C NMR) spectrometry gives new information to help in answering the major question: what is the origin of the detected contaminant? We have shown that isotope profiling of the core of a molecule reveals both the raw materials and the process used in its manufacture. It also can reveal processes occurring between the contamination site 'source' and the sampling site. Thus, irm-(13)C NMR is shown to be a very good complement to compound-specific isotope analysis currently performed by mass spectrometry for assessing polluted sites involving substantial spills of pollutant. PMID:26592622

  13. Calcium isotope constraints on the marine carbon cycle and CaCO3 deposition during the late Silurian (Ludfordian) positive δ13C excursion

    NASA Astrophysics Data System (ADS)

    Farkaš, Juraj; Frýda, Jiří; Holmden, Chris

    2016-10-01

    reservoir, but rather some local processes in the Prague Basin. These can be related to restricted elemental/sediment cycling involving mixing of isotopically distinct Ca sources and carbonate polymorphs (calcite vs. aragonite), and/or possible kinetic Ca isotope effects due to changes in the rate of marine carbonate formation. Evidence supporting the 'kinetic' effect in the studied mid-Ludfordian carbonates is indicated by correlated δ 44 / 40Ca and Sr-concentration data (rs = - 0.76, p < 0.001, n = 41) yielding a slope of -0.00097, which is indistinguishable from the 'kinetic' slope of abiotic calcite precipitation. Kinetic processes are integral to the model of rapid carbonate precipitation recently proposed by Kozłowski (2015), to explain the origin of the mid-Ludfordian CIE, involving intense methanogenesis/photosynthesis in near shore settings coupled with rapid CaCO3 precipitation (i.e., massive whitings events) and eustatically-controlled carbonate hypersaturation of seawater. More Ca isotope studies are needed to shed light on the question of whether kinetics or mineralogy controls the coupled variations in carbonate δ 44 / 40Ca and δ13 C records observed in this study and other large positive CIEs in geological record.

  14. Optimization of 13C dynamic nuclear polarization: isotopic labeling of free radicals

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Parish, Christopher; Kiswandi, Andhika; Lumata, Lloyd

    Dynamic nuclear polarization (DNP) is a physics technique that amplifies the nuclear magnetic resonance (NMR) signals by transferring the high polarization of the electrons to the nuclear spins. Thus, the choice of free radical is crucial in DNP as it can directly affect the NMR signal enhancement levels, typically on the order of several thousand-fold in the liquid-state. In this study, we have investigated the efficiency of four variants of the well-known 4-oxo-TEMPO radical (normal 4-oxo-TEMPO plus its 15N-enriched and/or perdeuterated variants) for use in DNP of an important metabolic tracer [1-13C]acetate. Though the variants have significant differences in electron paramagnetic resonance (EPR) spectra, we have found that changing the composition of the TEMPO radical through deuteration or 15N doping yields no significant difference in 13C DNP efficiency at 3.35 T and 1.2 K. On the other hand, deuteration of the solvent causes a significant increase of 13C polarization that is consistent over all the 4-oxo-TEMPO variants. These findings are consistent with the thermal mixing model of DNP. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  15. Comparing isotope signatures of prey fish: does gut removal affect δ13C or δ15N?

    USGS Publications Warehouse

    Chipps, Steven R.; Fincel, Mark J.; VanDeHey, Justin A.; Wuestewald, Andrew

    2011-01-01

    Stable isotope analysis is a quick and inexpensive method to monitor the effects of food web changes on aquatic communities. Traditionally, whole specimens have been used when determining isotope composition of prey fish or age-0 recreational fishes. However, gut contents of prey fish could potentially alter isotope composition of the specimen, especially when recent foraging has taken place or when the gut contains non-assimilated material that would normally pass through fishes undigested. To assess the impacts of gut content on prey fish isotope signatures, we examined the differences in isotopic variation of five prey fish species using whole fish, whole fish with the gut contents removed, and dorsal muscle only. We found significant differences in both δ15N and δ13C between the three tissue treatments. In most cases, muscle tissue was enriched compared to whole specimens or gut-removed specimens. Moreover, differences in mean δ15N within a species were up to 2‰ among treatments. This would result in a change of over half a trophic position (TP) based on a 3.4‰ increase per trophic level. However, there were no apparent relationships between tissue isotope values in fish with increased gut fullness (more prey tissue present). We suggest that muscle tissue should be used as the standard tissue for determining isotope composition of prey fish or age-0 recreational fishes, especially when determining enrichment for mixing models, calculating TP, or constructing aquatic food webs.

  16. Isotope ratio mass spectrometry: delta13C and delta15 N analysis for tracing the origin of illicit drugs.

    PubMed

    Galimov, E M; Sevastyanov, V S; Kulbachevskaya, E V; Golyavin, A A

    2005-01-01

    Gas chromatography/combustion/mass spectrometry (GC-C-MS) and elemental analysis/mass spectrometry (EA-MS) techniques are proposed to estimate delta(13)C and delta(15)N values in heroin, morphine, cocaine and hemp leaves, for the purposes of tracing the geographical origins of seized drugs. The values of isotope ratios for pure drugs and drugs with impurities were compared. It was demonstrated that large samples (up to 3 x 10(-6) g C) were combusted completely, so that the results obtained were valid. The data are considered to be an essential supplement to a wide-scale database designed specifically for the delta(13)C and delta(15)N values of drugs. The potential forensic and academic significance of the results is discussed.

  17. Intrinsic ratios of glucose, fructose, glycerol and ethanol 13C/12C isotopic ratio determined by HPLC-co-IRMS: toward determining constants for wine authentication.

    PubMed

    Guyon, François; Gaillard, Laetitia; Salagoïty, Marie-Hélène; Médina, Bernard

    2011-09-01

    High-performance liquid chromatography linked to isotope ratio mass spectrometry (HPLC-co-IRMS) via a Liquiface© interface has been used to simultaneously determine (13)C isotope ratios of glucose (G), fructose (F), glycerol (Gly) and ethanol (Eth) in sweet and semi-sweet wines. The data has been used the study of wine authenticity. For this purpose, 20 authentic wines from various French production areas and various vintages have been analyzed after dilution in pure water from 20 to 200 times according to sugar content. If the (13)C isotope ratios vary according to the production area and the vintage, it appears that internal ratios of (13)C isotope ratios (R((13)C)) of the four compounds studied can be considered as a constant. Thus, ratios of isotope ratios are found to be 1.00 ± 0.04 and 1.02 ± 0.08 for R((13)C(G/F)) and R((13)C(Gly/Eth)), respectively. Moreover, R((13)C(Eth/Sugar)) is found to be 1.15 ± 0.10 and 1.16 ± 0.08 for R((13)C(Gly/Sugar)). Additions of glucose, fructose and glycerol to a reference wine show a variation of the R((13)C) value for a single product addition as low as 2.5 g/L(-1). Eighteen commercial wines and 17 concentrated musts have been analyzed. Three wine samples are suspicious as the R((13)C) values are out of range indicating a sweetening treatment. Moreover, concentrated must analysis shows that (13)C isotope ratio can be also used directly to determine the authenticity of the matrix.

  18. Stable isotope analysis (δ13C and δ15N) of soil nematodes from four feeding groups

    PubMed Central

    Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis (13C/12C and 15N/14N, expressed as δ13C and δ15N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis–isotopic ratio mass spectrometry (μEA–IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ15N (p = 0.290) or δ13C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ15N = 1.08 to 3.22 mUr‰, δ13C = –29.58 to –27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ15N between the plant feeder and the predator group (δ15N = 9.89 to 12.79 mUr, δ13C = –27.04 to –25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr2) and the predators (1.73 mUr2), but largest for omnivores (3.83 mUr2

  19. Stable isotope analysis (δ13C and δ15N) of soil nematodes from four feeding groups

    PubMed Central

    Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis (13C/12C and 15N/14N, expressed as δ13C and δ15N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis–isotopic ratio mass spectrometry (μEA–IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ15N (p = 0.290) or δ13C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ15N = 1.08 to 3.22 mUr‰, δ13C = –29.58 to –27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ15N between the plant feeder and the predator group (δ15N = 9.89 to 12.79 mUr, δ13C = –27.04 to –25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr2) and the predators (1.73 mUr2), but largest for omnivores (3.83 mUr2

  20. Stable isotope analysis (δ (13)C and δ (15)N) of soil nematodes from four feeding groups.

    PubMed

    Melody, Carol; Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis ((13)C/(12)C and (15)N/(14)N, expressed as δ (13)C and δ (15)N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis-isotopic ratio mass spectrometry (μEA-IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ (15)N (p = 0.290) or δ (13)C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ (15)N = 1.08 to 3.22 mUr‰, δ (13)C = -29.58 to -27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ (15)N between the plant feeder and the predator group (δ (15)N = 9.89 to 12.79 mUr, δ (13)C = -27.04 to -25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr(2)) and the predators (1.73 mUr(2)), but largest for

  1. Stable isotope analysis (δ (13)C and δ (15)N) of soil nematodes from four feeding groups.

    PubMed

    Melody, Carol; Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis ((13)C/(12)C and (15)N/(14)N, expressed as δ (13)C and δ (15)N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis-isotopic ratio mass spectrometry (μEA-IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ (15)N (p = 0.290) or δ (13)C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ (15)N = 1.08 to 3.22 mUr‰, δ (13)C = -29.58 to -27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ (15)N between the plant feeder and the predator group (δ (15)N = 9.89 to 12.79 mUr, δ (13)C = -27.04 to -25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr(2)) and the predators (1.73 mUr(2)), but largest for

  2. A Capillary Absorption Spectrometer for Stable Carbon Isotope Ratio (13C/12C) Analysis in Very Small Samples

    SciTech Connect

    Kelly, James F.; Sams, Robert L.; Blake, Thomas A.; Newburn, Matthew K.; Moran, James J.; Alexander, M. L.; Kreuzer, Helen W.

    2012-02-06

    A capillary absorption spectrometer (CAS) suitable for IR laser isotope analysis of small CO{sub 2} samples is presented. The system employs a continuous-wave (cw) quantum cascade laser to study nearly adjacent rovibrational transitions of different isotopologues of CO{sub 2} near 2307 cm{sup -1} (4.34 {mu}m). This initial CAS system can achieve relative isotopic precision of about 10 ppm {sup 13}C, or {approx}1{per_thousand} (per mil in delta notation relative to Vienna Pee Dee Belemnite) with 20-100 picomoles of entrained sample within the hollow waveguide for CO{sub 2} concentrations {approx}400 to 750 ppm. Isotopic analyses of such gas fills in a 1-mm ID hollow waveguide of 0.8 m overall physical path length can be carried out down to {approx}2 Torr. Overall {sup 13}C/{sup 12}C ratios can be calibrated to {approx}2{per_thousand} accuracy with diluted CO{sub 2} standards. A novel, low-cost method to reduce cw-fringing noise resulting from multipath distortions in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level (peak-to-rms) after 1,000 scans are co-added in {approx}10 sec. The CAS is meant to work directly with converted CO{sub 2} samples from a Laser Ablation-Catalytic-Combustion (LA CC) micro-sampler to provide {sup 13}C/{sup 12}C ratios of small biological isolates with spatial resolutions {approx}50 {mu}m.

  3. The {sup 13}C-pocket structure in AGB models: constraints from zirconium isotope abundances in single mainstream SiC grains

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Gallino, Roberto; Bisterzo, Sara; Savina, Michael R.

    2014-06-20

    We present postprocess asymptotic giant branch (AGB) nucleosynthesis models with different {sup 13}C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. and Barzyk et al. We show that higher-than-solar {sup 92}Zr/{sup 94}Zr ratios can be predicted by adopting a {sup 13}C-pocket with a flat {sup 13}C profile, instead of the previous decreasing-with-depth {sup 13}C profile. The improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat {sup 13}C profile based on barium isotopes in mainstream SiC grains by Liu et al.

  4. Carbon isotopic composition (δ(13)C and (14)C activity) of plant samples in the vicinity of the Slovene nuclear power plant.

    PubMed

    Sturm, Martina; Vreča, Polona; Krajcar Bronić, Ines

    2012-08-01

    δ(13)C values of various plants (apples, wheat, and maize) collected in the vicinity of the Krško Nuclear Power Plant (Slovenia) during 2008 and 2009 were determined. By measuring dried samples and their carbonized counterparts we showed that no significant isotopic fractionation occurs during the carbonization phase of the sample preparation process in the laboratory. The measured δ(13)C values of the plants were used for δ(13)C correction of their measured (14)C activities.

  5. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant tissue isotope labeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tracing heavy stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O o...

  6. Nic1 inactivation enables stable isotope labeling with 13C615N4-arginine in Schizosaccharomyces pombe.

    PubMed

    Carpy, Alejandro; Patel, Avinash; Tay, Ye Dee; Hagan, Iain M; Macek, Boris

    2015-01-01

    Stable Isotope Labeling by Amino Acids (SILAC) is a commonly used method in quantitative proteomics. Because of compatibility with trypsin digestion, arginine and lysine are the most widely used amino acids for SILAC labeling. We observed that Schizosaccharomyces pombe (fission yeast) cannot be labeled with a specific form of arginine, (13)C(6) (15)N(4)-arginine (Arg-10), which limits the exploitation of SILAC technology in this model organism. We hypothesized that in the fission yeast the guanidinium group of (13)C(6) (15)N(4)-arginine is catabolized by arginase and urease activity to (15)N1-labeled ammonia that is used as a precursor for general amino acid biosynthesis. We show that disruption of Ni(2+)-dependent urease activity, through deletion of the sole Ni(2+) transporter Nic1, blocks this recycling in ammonium-supplemented EMMG medium to enable (13)C(6) (15)N(4)-arginine labeling for SILAC strategies in S. pombe. Finally, we employed Arg-10 in a triple-SILAC experiment to perform quantitative comparison of G1 + S, M, and G2 cell cycle phases in S. pombe.

  7. Intramyocellular diacylglycerol concentrations and [U-13C]palmitate isotopic enrichment measured by LC/MS/MS

    PubMed Central

    Blachnio-Zabielska, Agnieszka U.; Zabielski, Piotr; Jensen, Michael D.

    2013-01-01

    Diacylglycerols (DAG) are important lipid metabolites thought to induce muscle insulin resistance when present in excess; they can be synthesized de novo from plasma free fatty acids (FFA) or generated by hydrolysis of preexisting intracellular lipids. We present a new method to simultaneously measure intramyocellular concentrations of and the incorporation of [U-13C]palmitate from an intravenous infusion into individual DAG species. DAG were extracted from pulverized muscle samples using isopropanol:water:ethyl acetate (35:5:60; v:v:v). Chromatographic separation was conducted on reverse-phase column in binary gradient using 1.5 mM ammonium formate, 0.1% formic acid in water as solvent A, and 2 mM ammonium formate, 0.15% formic acid in methanol as solvent B. We used UPLC-ESI+-MS/MS in the multiple reaction monitoring (MRM) mode to separate the ions of interest from sample. Because DAG are a neutral lipid class, they were monitored as an ammonium adduct [M+NH4]+. To measure isotopic enrichment (for 13C16:0/16:0-DAG and 13C16:0/C18:1-DAG), we monitored the basic ions as [M+2+NH4]+ and the enriched compounds as [M+16+NH4]+. We were able to measure concentration and enrichment using 20 mg of skeletal muscle samples obtained from rats receiving a continuous infusion of [U-13C]palmitate. Applying this protocol to biological muscle samples proves that the method is sensitive, accurate, and efficient. PMID:23511896

  8. Characterising ontogenetic niche shifts in Nile crocodile using stable isotope13C, δ15N) analyses of scute keratin.

    PubMed

    Radloff, Frans G T; Hobson, Keith A; Leslie, Alison J

    2012-09-01

    Nile crocodiles undergo a three to five order of magnitude increase in body size during their lifespan. This shift coincides with a change in resource and habitat use which influences the strength, type and symmetry of interactions with other species. Identifying size-specific crocodile groups displaying similar traits is important for conservation planning. Here, we illustrate how stable carbon (δ(13) C) and nitrogen (δ(15) N) isotope analysis of scute keratin, together with breakpoint modelling analysis can be used to characterise ontogenetic niche shifts. Using a sample set of 238 crocodiles from the Okavango Delta, Botswana (35-463 cm total length), we found prominent size-related changes in the scute keratin δ(13) C and δ(15) N profiles close to 40 and 119 cm snout-vent length. The first shift corroborated the findings of a traditional stomach-content study conducted on the same population at the same time, and the second conformed to known crocodile ecology. This approach can be used as a first approximation to identify size-specific groups within crocodile populations, and these can then be investigated further using isotopic or other methods.

  9. Modelling aspects regarding the control in 13C isotope separation column

    NASA Astrophysics Data System (ADS)

    Boca, M. L.

    2016-08-01

    Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [9] A manufacturing control system manages the internal logistics in a production system and determines the routings of product instances, the assignment of workers and components, the starting of the processes on not-yet-finished product instances. Manufacturing control does not control the manufacturing processes themselves, but has to cope with the consequences of the processing results (e.g. the routing of products to a repair station). In this research it was fulfilled some UML (Unified Modelling Language) diagrams for modelling the C13 Isotope Separation column, implement in STARUML program. Being a critical process and needing a good control and supervising, the critical parameters in the column, temperature and pressure was control using some PLC (Programmable logic controller) and it was made some graphic analyze for this to observe some critical situation than can affect the separation process. The main parameters that need to be control are: -The liquid nitrogen (N2) level in the condenser. -The electrical power supplied to the boiler. -The vacuum pressure.

  10. High-resolution δ 13C intratooth profiles in bovine enamel: Implications for mineralization pattern and isotopic attenuation

    NASA Astrophysics Data System (ADS)

    Zazzo, Antoine; Balasse, Marie; Patterson, William P.

    2005-07-01

    We present the first high-resolution carbon isotope and carbonate content profiles generated through the thickness of enamel from a steer fed C 3- then C 4-dominant food. Carbonate contents decrease by ˜2 wt% from the enamel surface to the innermost enamel layer, and each carbon isotope profile shows a mixture of enamel portions mineralized over several months. Downward and outward increasing contribution of C 4 food to the enamel δ 13C values reveal two components of the mineralization gradient: a vertical component from the tip of the tooth crown to the neck, and a horizontal component from the enamel-dentine junction to the outer enamel. We use our results to infer mineralization parameters for bovines and to calculate expected isotopic attenuations for an array of environmental inputs and microsampling strategies, using the model developed by Passey and Cerling [ Geochim. Cosmochim. Acta. 66 (2002) 3225-3234]. Although it seems unlikely that any strategy will perfectly isolate discrete time slices, sampling the innermost enamel layer might offer the advantage of significantly reducing the isotope damping that would become independent of the structure of the input signal.

  11. Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Gustafsson, Erik; Mörth, Carl-Magnus; Humborg, Christoph; Gustafsson, Bo G.

    2015-08-01

    In this study, 12C and 13C contents of all carbon containing state variables (dissolved inorganic and organic carbon, detrital carbon, and the carbon content of autotrophs and heterotrophs) have for the first time been explicitly included in a coupled physical-biogeochemical Baltic Sea model. Different processes in the carbon cycling have distinct fractionation values, resulting in specific isotopic fingerprints. Thus, in addition to simulating concentrations of different tracers, our new model formulation improves the possibility to constrain the rates of processes such as CO2 assimilation, mineralization, and air-sea exchange. We demonstrate that phytoplankton production and respiration, and the related air-sea CO2 fluxes, are to a large degree controlling the isotopic composition of organic and inorganic carbon in the system. The isotopic composition is further, but to a lesser extent, influenced by river loads and deep water inflows as well as transformation of terrestrial organic carbon within the system. Changes in the isotopic composition over the 20th century have been dominated by two processes - the preferential release of 12C to the atmosphere in association with fossil fuel burning, and the eutrophication of the Baltic Sea related to increased nutrient loads under the second half of the century.

  12. Decomposition kinetics and mechanism of n-hexadecane-1,2- 13C 2 and dodec-1-ene-1,2-13C2 doped in petroleum and n-hexadecane

    NASA Astrophysics Data System (ADS)

    Burnham, Alan K.; Gregg, Hugh R.; Ward, Raymond L.; Knauss, Kevin G.; Copenhaver, Sally A.; Reynolds, John G.; Sanborn, Russell

    1997-09-01

    Isotopically labeled n-hexadecane doped at the percent level in three crude oils is used to determine the intrinsic decomposition kinetics and mechanism of n-alkanes in petroleum. Adjacent 13C labels at the end of the hexadecane and dodecene give a mass fragment sufficiently unique that its disappearance and many of its products can be followed by ordinary gas chromatography-mass spectrometry. Additional structural details of the labeled reaction products are measurable by the NMR INADEQUATE technique, which detects only adjacent 13C atoms. Samples were heated at temperatures ranging from 310 to 360°C in capillary glass tubes and Dickson autoclaves. At temperatures around 350°C, n-alkane decomposition in dissimilar oil matrices forms primarily normal alkanes smaller than the starting alkane at a rate about 60% as fast as the decomposition of the neat alkane. Unlike in neat hexadecane, no significant branched alkanes are formed from the labeled hexadecane in crude oil by alkylation of alkene intermediates. Doping the oils and n-hexadecane with labeled dodecene confirms that alkenes in two of the three oils are rapidly converted primarily to the corresponding alkanes, while reaction of alkenes in hexadecane forms primarily branched alkanes. Reaction of alkenes in the high paraffin oil was intermediate in characteristics. One autoclave experiment included water to assess the importance of water during pyrolysis, with the result that the alkane decomposition rate is affected very little. However, coking of aromatics is inhibited, and there is a significant increase in the production of both H 2 and CO 2 gas with water present, indicating that water is chemically reactive under these conditions. At temperatures around 310°C, the decomposition rate of neat hexadecane is roughly equal to that in a high paraffin oil and substantially slower than in North Sea and high sulfur oil, suggesting that the effect of the oil matrix has switched from suppression of propagation

  13. Food web structure in two counter-rotating eddies based on δ15N and δ13C isotopic analyses

    NASA Astrophysics Data System (ADS)

    Waite, A. M.; Muhling, B. A.; Holl, C. M.; Beckley, L. E.; Montoya, J. P.; Strzelecki, J.; Thompson, P. A.; Pesant, S.

    2007-04-01

    We measured the natural inventories of nitrogen and carbon stable isotopes within various ecosystem fractions of two counter-rotating eddies associated with the poleward Leeuwin Current (LC), off Western Australia. Isotopic signatures ( δ15N and δ13C) were used as proxies for trophic transformation of inorganic and organic matter and are the basis for our discussion on food web functions in the two eddies. We present the first measurements of dissolved inorganic nitrogen (DIN) isotopic composition for the eastern Indian Ocean. We show that the large autotrophs (sampled within the >5-μm and >20-μm fractions of particulate organic matter (POM)), including a distinctive diatom population in the warm-core (WC) eddy, are likely to have taken up sources of DIN which were primarily nitrate, while the picoplankton are likely to have assimilated a large fraction of recycled ammonium. We show that phytoplankton in the cold-core (CC) eddy had distinctly more enriched δ15N signatures than in the WC eddy, probably due to the higher vertical fluxes of nitrate into the CC eddy. A clear negative correlation between mixed-layer depth and δ15N in POM across both eddies also supports the role of vertical nitrate fluxes in determining the primary δ15N signature of the autotrophs. Within the WC eddy, there was a significant δ13C-enrichment in comparison to the CC eddy across all size fractions of the mesozooplankton community, which, in combination with a low C:N molar ratio the >200- and >500-μm mesozooplankton size fractions, suggests a healthier mesozooplankton community, with greater lipid storage, in the WC eddy. This is consistent with the greater productivity and biomass of large diatoms in the WC eddy. Larval fish from the WC eddy also had an enriched δ13C signature compared to those from the CC eddy. The WC eddy had higher production rates than the CC eddy, and harboured a physiologically healthier population of zooplankton. Paradoxically, this seemed to occur

  14. Diagnosis and quantification of glycerol assimilating denitrifying bacteria in an integrated fixed-film activated sludge reactor via 13C DNA stable-isotope probing.

    PubMed

    Lu, Huijie; Chandran, Kartik

    2010-12-01

    Glycerol, a byproduct of biodiesel and oleo-chemical manufacturing operations, represents an attractive alternate to methanol as a carbon and electron donor for enhanced denitrification. However, unlike methanol, little is known about the diversity and activity of glycerol assimilating bacteria in activated sludge. In this study, the microbial ecology of glycerol assimilating denitrifying bacteria in a sequencing batch integrated fixed film activated sludge (SB-IFAS) reactor was investigated using (13)C-DNA stable isotope probing (SIP). During steady state SB-IFAS reactor operation, near complete nitrate removal (92.7 ± 5.8%) was achieved. Based on (13)C DNA clone libraries obtained after 360 days of SB-IFAS reactor operation, bacteria related to Comamonas spp. and Diaphorobacter spp. dominated in the suspended phase communities. (13)C assimilating members in the biofilm community were phylogenetically more diverse and were related to Comamonas spp., Bradyrhizobium spp., and Tessaracoccus spp. Possibly owing to greater substrate availability in the suspended phase, the glycerol-assimilating denitrifying populations (quantified by real-time PCR) were more abundant therein than in the biofilm phase. The biomass in the suspended phase also had a higher specific denitrification rate than the biofilm phase (p = 4.33e-4), and contributed to 69.7 ± 4.5% of the overall N-removal on a mass basis. The kinetics of glycerol based denitrification by suspended phase biomass were approximately 3 times higher than with methanol. Previously identified methanol assimilating denitrifying bacteria were not associated with glycerol assimilation, thereby suggesting limited cross-utilization of these two substrates for denitrification in the system tested.

  15. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Somes, C. J.

    2016-06-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the model's Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient

  16. Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes ( δ18O, δ13C)

    NASA Astrophysics Data System (ADS)

    Lukeneder, Alexander; Harzhauser, Mathias; Müllegger, Stefan; Piller, Werner E.

    2010-07-01

    Stable isotope ( δ18O and δ13C) ratios were measured in successive aragonitic shell sequences of ammonoids (class Cephalopoda) to determine whether their depth distributions changed within ontogeny and whether stable isotope values differ in various morphological groups (e.g. Leiostraca vs. Trachyostraca). We concentrate mainly on δ18O for temperature results and added δ13C data to obtain information on the ontogenetic history, for which full spiral measurements were undertaken for the first time. To obtain valid stable isotope data from ammonoid shells, we measured ontogenetic sequences (full shell) within different genera. Data sets from the Jurassic ( Cadoceras) and Cretaceous ( Hypacanthoplites, Nowakites) were chosen due to the pure primary aragonitic shell preservation. The study was designed to extract better information on the habitat and life cycle of fossil cephalopods (e.g. ammonoids) in comparison with recent cephalopods (e.g. Nautilus, Spirula, Sepia) possessing equivalent or comparable hard parts. The data from three genera suggest different modes of life in at least two morphological groups. We detected and established two main groups with different ontogenetic strategies based on the δ18O data. The wcw-type (warm-cool-warm type) of Cadoceras resembles strategies in Nautilus and Sepia, which migrate from shallow into deeper environments and back in ontogeny ( wc-type, warm-cool-type), and the cw-type (cool-warm type) of Hypacanthoplites resembling the first two migration phases of Spirula ( cwc-type), which migrates from deeper into shallower and back again into deeper habitats. The main (three) phases revealed by both δ18O and δ13C data sets most probably reflect diet changes in juvenile to mid-aged individuals, followed by a habitat change for spawning adults. In Cadoceras the temperatures range from 21.2 °C for juveniles down to 12.1 °C for mid-aged individuals and back up 16.9 °C in adults. The cw- type strategy of Hypacanthoplites

  17. The stable isotopic composition of a phosphorite deposit: δ13C, δ34S, and δ18O

    USGS Publications Warehouse

    Piper, D.Z.; Kolodny, Y.

    1987-01-01

    The stable isotopes of carbon and sulfur in a major marine sedimentary phosphate deposit from the northwestern United States (the Phosphoria Formation of Permian age) characterize the chemical properties of the depositional environment. The δ34S and δ13C analyses suggest deposition under conditions of variable redox from a solution the acidity of which was controlled by reaction with carbonate rocks and exchange with seawater. The δ18O concentration of apetite indicates phosphatization in a shallow sea, during three glacial and intervening interglacial stages. These data tend to corroborate the interpretation of field studies by others, that the apatite formed on a continental shelf in an area of intense oceanic upwelling during several episodes of sea level change. 

  18. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-09-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air-sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air-sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air-sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by

  19. delta 13C analyses of vegetable oil fatty acid components, determined by gas chromatography--combustion--isotope ratio mass spectrometry, after saponification or regiospecific hydrolysis.

    PubMed

    Woodbury, S E; Evershed, R P; Rossell, J B

    1998-05-01

    The delta 13C values of the major fatty acids of several different commercially important vegetable oils were measured by gas chromatography--combustion--isotope ratio mass spectrometry. The delta 13C values obtained were found to fall into two distinct groups, representing the C3 and C4 plants classes from which the oils were derived. The delta 13C values of the oils were measured by continuous flow elemental isotope ratio mass spectrometry and were found to be similar to their fatty acids, with slight differences between individual fatty acids. Investigations were then made into the influence on the delta 13C values of fatty acids of the position occupied on the glycerol backbone. Pancreatic lipase was employed to selectively hydrolyse fatty acids from the 1- and 3-positions with the progress of the reaction being followed by high-temperature gas chromatography in order to determine the optimum incubation time. The 2-monoacylglycerols were then isolated by thin-layer chromatography and fatty acid methyl esters prepared. The delta 13C values obtained indicate that fatty acids from any position on the glycerol backbone are isotopically identical. Thus, whilst quantification of fatty acid composition at the 2-position and measurement of delta 13C values of oils and their major fatty acids are useful criteria in edible oil purity assessment, measurement of delta 13C values of fatty acids from the 2-position does not assist with oil purity assignments.

  20. Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation.

    PubMed

    Ma, Fangfang; Jazmin, Lara J; Young, Jamey D; Allen, Doug K

    2014-11-25

    Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has been previously applied to map carbon fluxes in photoautotrophic bacteria, which involves model-based regression of transient (13)C-labeling patterns of intracellular metabolites. However, experimental and computational difficulties have hindered its application to terrestrial plant systems. We performed in vivo isotopic labeling of Arabidopsis thaliana rosettes with (13)CO2 and estimated fluxes throughout leaf photosynthetic metabolism by INST-MFA. Plants grown at 200 µmol m(-2)s(-1) light were compared with plants acclimated for 9 d at an irradiance of 500 µmol⋅m(-2)⋅s(-1). Approximately 1,400 independent mass isotopomer measurements obtained from analysis of 37 metabolite fragment ions were regressed to estimate 136 total fluxes (54 free fluxes) under each condition. The results provide a comprehensive description of changes in carbon partitioning and overall photosynthetic flux after long-term developmental acclimation of leaves to high light. Despite a doubling in the carboxylation rate, the photorespiratory flux increased from 17 to 28% of net CO2 assimilation with high-light acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively). This study highlights the potential of (13)C INST-MFA to describe emergent flux phenotypes that respond to environmental conditions or plant physiology and cannot be obtained by other complementary approaches. PMID:25368168

  1. The Titan 14N/ 15N and 12C/ 13C isotopic ratios in HCN from Cassini/CIRS

    NASA Astrophysics Data System (ADS)

    Vinatier, Sandrine; Bézard, Bruno; Nixon, Conor A.

    2007-11-01

    We report the detection of H 13CN and HC 15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/ 13C and 14N/ 15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm -1 resolution. The spectral range 1210-1310 cm -1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H 12C 14N, H 13CN and HC 15N from their bands at 713, 706 and 711 cm -1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find C12/C13=89-18+22 at 15° S, and 68-12+16 at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/ 13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane ( 82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/ 15N isotopic ratio is found equal to 56-13+16 at 15° S and 56-9+10 at 83° N. Combining the two values yields 14N/ 15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/ 14N ratio found in HCN is ˜3 times higher than in N 2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779

  2. Combining position-specific 13C labeling with compound-specific isotope analysis: first steps towards soil fluxomics

    NASA Astrophysics Data System (ADS)

    Dippold, Michaela; Kuzyakov, Yakov

    2015-04-01

    Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino

  3. Racing carbon atoms. Atomic motion reaction coordinates and structural effects on Newtonian kinetic isotope effects.

    PubMed

    Andujar-De Sanctis, Ivonne L; Singleton, Daniel A

    2012-10-19

    Intramolecular (13)C kinetic isotope effects were determined for the dimerization of methacrolein. Trajectory studies accurately predict the isotope effects and support an origin in Newton's second law of motion, with no involvement of zero-point energy or transition state recrossing. Atomic motion reaction coordinate diagrams are introduced as a way to qualitatively understand the selectivity.

  4. Carbon isotope analysis in urea at high 13C-abundances using the 13/12CO2-breath test device FANci2.

    PubMed

    Schmidt, G

    2002-09-01

    The increasing application of 13C-labelled urea in medicine requires simple and reasonable methods for measuring highly enriched C in urea. The combination: ultimate organic analysis--mass spectrometry so far prescribed is complicated and expensive. For medical diagnosis, however, isotope selective nondispersive infrared spectrometers (NDIRS) have been available for many years. One of these tools is FANci2 which is very reasonable and easily to be operated. By means of such devices also urea highly enriched in 13C can be analysed, provided that the samples are first diluted with a defined amount of urea of natural isotopic composition and then transformed into carbon dioxide by means of urease. The relative abundance of 13C in this carbon dioxide, measured by nondispersive infrared spectrometry, is then a measure of the 13C abundance in the initial urea sample. Comparison of results of such measurements with those attained by mass spectrometry proves that this procedure is feasible and yields precis results.

  5. The use of δ13C isotope ratio mass spectrometry for methamphetamine profiling: comparison of ephedrine and pseudoephedrine-based samples to P2P-based samples.

    PubMed

    Toske, Steven G; Morello, David R; Berger, Jennifer M; Vazquez, Etienne R

    2014-01-01

    Differentiating methamphetamine samples produced from ephedrine and pseudoephedrine from phenyl-2-propanone precursors is critical for assigning synthetic route information for methamphetamine profiling. The use of isotope ratio mass spectrometry data is now a key component for tracking precursor information. Recent carbon (δ(13)C) isotope results from the analysis of numerous methamphetamine samples show clear differentiation for ephedrine and pseudoephedrine-produced samples compared to P2P-produced samples. The carbon isotope differences were confirmed from synthetic route precursor studies.

  6. Investigation of amino acid δ 13C signatures in bone collagen to reconstruct human palaeodiets using liquid chromatography-isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Choy, Kyungcheol; Smith, Colin I.; Fuller, Benjamin T.; Richards, Michael P.

    2010-11-01

    This research presents the individual amino acid δ 13C values in bone collagen of humans ( n = 9) and animals ( n = 27) from two prehistoric shell midden sites in Korea. We obtained complete baseline separation of 16 of the 18 amino acids found in bone collagen by using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). The isotopic results reveal that the humans and animals in the two sites had similar patterns in essential amino acids (EAAs) and non-essential amino acids (NEAAs). The EAA and NEAA δ 13C values in humans are intermediate between those in marine and terrestrial animals. However, the threonine δ 13C values in humans and animals measured in this study are more highly enriched than those of other amino acids. At both sites, all amino acids in marine animals are 13C-enriched relative to those of the terrestrial animals. The isotopic evidence suggests that the Tongsamdong human had EAAs and NEAAs from marine food resources, while the Nukdo humans mainly had EAAs from terrestrial food resources but obtained NEAAs from both terrestrial and marine resources. The δ 13C isotopic differences in amino acids between marine and terrestrial animals were the largest for glycine (NEAA) and histidine (EAA) and the smallest for tyrosine (NEAA) and phenylalanine (EAA). In addition, threonine among the EAAs also had a large difference (˜8‰) in δ 13C values between marine and terrestrial animals, and has the potential to be used as an isotopic marker in palaeodietary studies. Threonine δ 13C values were used in conjunction with the established Δ 13C Glycine-phenylalanine values and produced three distinct dietary groups (terrestrial, omnivorous, and marine). In addition, threonine δ 13C values and Δ 13C Serine-phenylalanine values were discovered to separate between two dietary groups (terrestrial vs. marine), and these δ 13C values may provide a potential new indicator for investigating the distinction between marine and terrestrial protein

  7. 13C-isotopic fingerprint of Pinus pinaster Ait. and Pinus sylvestris L. wood related to the quality of standing tree mass in forests from NW Spain.

    PubMed

    Fernandez, Irene; González-Prieto, Serafin J; Cabaneiro, Ana

    2005-01-01

    Pine forest plantations of Pinus pinaster Ait. and P. sylvestris L. located in Galicia, NW Spain, were selected to study the 13C/12C-isotopic fingerprint in wood core samples in order to find possible relationships between the delta(13)C at natural abundance levels and the quality of the standing tree mass. For each pine species, 24 forests growing on acidic soils were studied: half developed over granite and half over schists. Two dominant trees from each plot, corresponding to all possible combinations of forest stands with high or low site index and with adults or young trees, were drilled at the basal part of trunks using a Pressler drill to obtain tree ring samples. The C-isotopic compositions of the litter and the soil organic matter from different soil depths were also determined and statistically significant correlations between these values and the 13C content of the wood were observed. Despite internal variations due to the influence of site index, tree age and parent material, the isotopic fingerprint of P. pinaster wood (mean value delta13C=-26.2+/-0.8 per thousand) significantly differed (P<0.001) from that of P. sylvestris (mean value delta13C=-24.6+/-0.7 per thousand). Relationships between the quality of the stand and the C-isotopic composition of the wood were observed, high quality stands having trees more 13C-depleted than low quality ones. A high correlation between wood delta13C and site index values for P. pinaster stands (r=-0.667, P<0.001) was found, this correlation being even clearer when only P. pinaster growing over schists (r=-0.833, P<0.001) are considered. Again, the correlation between the site index and the wood delta13C of young P. pinaster trees is higher when plots over granite or schists are separately considered. A similar fact occurs for adult P. sylvestris trees from schists stands, high quality specimens being 13C-depleted compared with low quality ones. On the other hand, 13C natural abundance of wood from P. sylvestris

  8. Newtonian kinetic isotope effects. Observation, prediction, and origin of heavy-atom dynamic isotope effects.

    PubMed

    Kelly, Kelmara K; Hirschi, Jennifer S; Singleton, Daniel A

    2009-06-24

    Intramolecular (13)C kinetic isotope effects were determined for the dimerization of cyclopentadiene. Substantial isotope effects were observed in three positions, despite the C(2) symmetry of the cycloaddition transition state and the absence of dynamical bottlenecks after this transition state. The observed isotope effects were predicted well from trajectory studies by extrapolating the outcomes of trajectories incorporating superheavy isotopes of carbon, ranging from (20)C to (140)C. Trajectory studies suggest that the isotope effects are unrelated to zero-point energy or the geometrical and momentum properties of the transition state. However, steepest-descent paths in mass-weighted coordinates correctly predict the direction of the isotope effects, supporting a novel origin in Newton's second law of motion.

  9. Evaluating mercury biomagnification in fish from a tropical marine environment using stable isotopes (delta13C and delta15N).

    PubMed

    Al-Reasi, Hassan A; Ababneh, Fuad A; Lean, David R

    2007-08-01

    Concentrations of total mercury (T-Hg) and methylmercury (MeHg) were measured in zooplankton and 13 fish species from a coastal food web of the Gulf of Oman, an arm of the Arabian Sea between Oman and Iran. Stable isotope ratios (delta13C and delta15N) also were determined to track mercury biomagnification. The average concentration of T-Hg in zooplankton was 21 +/- 8.0 ng g(-1) with MeHg accounting 10% of T-Hg. Total mercury levels in fish species ranged from 3.0 ng g(-1) (Sardinella longiceps) to 760 ng g(-1) (Rhizoprionodon acutus) with relatively lower fraction of MeHg (72%) than that found in other studies. The average trophic difference (Deltadelta13C) between zooplankton and planktivorous fish (Selar crumenopthalmus, Rastrelliger kanagurta, and S. longiceps) was higher (3.4 per thousandth) than expected, suggesting that zooplankton may not be the main diet or direct carbon source for these fish species. However, further sampling would be required to compensate for temporal changes in zooplankton and the influence of their lipid content. Trophic position inferred by delta15N and and slopes of the regression equations (log10[T-Hg] = 0.13[delta15N] - 3.57 and log10[MeHg] = 0.14[delta15N] - 3.90) as estimates of biomagnification indicate that biomagnification of T-Hg and MeHg was lower in this tropical ocean compared to what has been observed in arctic and temperate ecosystems and tropical African lakes. The calculated daily intake of methylmercury in the diet of local people through fish consumption was well below the established World Health Organization (WHO) tolerable daily intake threshold for most of the fish species except Euthynnus affinis, Epinephelus epistictus, R. acutus, and Thunnus tonggol, illustrating safe consumption of the commonly consumed fish species.

  10. Paleocene-Eocene δ13C of marine and terrestrial organic matter: implications for the magnitude of total organic carbon hyperthermal isotope excursions

    NASA Astrophysics Data System (ADS)

    Sluijs, A.; Dickens, G. R.

    2011-12-01

    A series of "hyperthermals" occurred during the Late Paleocene and Early Eocene (~58-50 Ma). These transient global warming events were characterized by prominent negative excursions in the stable carbon isotope ratios (δ13C) of carbon-bearing phases, and widespread dissolution of deep-sea carbonate; they were almost certainly geologically brief intervals of rapid and massive injection of 13C-depleted carbon into the combined ocean-atmosphere-biosphere system. However, the carbon masses involved remain the source of considerable debate, in part because the carbon isotope excursions (CIEs) are expressed differently, depending on the substrate analyzed and the location. For example, the CIE across the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma), now measured in numerous phases at over 100 locations, ranges between 2 - 8 %, even after discounting sections with truncated records. Three factors might cause individual carbon isotope records to differ in shape and magnitude from changes in the global exogenic carbon cycle during hyperthermal events: (i) Changes in the isotope composition of the proximal carbon source (e.g., DIC); (ii) Changes in isotope fractionation through physiological response to ecological change; and (iii) Changes in the relative abundance of components with different δ13C. All three factors likely influence the magnitude of the CIE in many records across hyperthermal events. Here, we discuss how the third factor impacts the δ13C of total organic carbon (TOC) in a shallow marine sequence. Over the past years, bulk organic δ13C, BIT index and palynomorph records have been published for the late Paleocene-early Eocene interval at IODP Hole 4A on Lomonosov Ridge, Arctic Ocean. These records show a long-term -3 % decrease in TOC and a long-term increase in the proportion of marine organic carbon; they also show a rapid -5.5 % CIE in TOC and the proportion of marine organic carbon across the PETM. After correcting for long-term variations in

  11. 13C-methacetin breath test: isotope-selective nondispersive infrared spectrometry in comparison to isotope ratio mass spectrometry in volunteers and patients with liver cirrhosis.

    PubMed

    Adamek, R J; Goetze, O; Boedeker, C; Pfaffenbach, B; Luypaerts, A; Geypens, B

    1999-12-01

    The 13C-methacetin breath test (MBT) has been proposed for the noninvasive evaluation of the hepatic mixed function oxidase activity. Up to now, stable isotope analysis of carbon dioxide of the MBT has been carried out with isotope ratio mass spectrometry (IRMS). The aim of the present study was to test a recently developed isotope-selective nondispersive infrared spectrometer (NDIRS) in comparison to IRMS in healthy volunteers and patients with liver cirrhosis. Ten healthy volunteers (range 22 to 76 years) and ten patients with histologically proven liver cirrhosis (range 47 to 71 years; Child Pugh score A = 5, B = 3, C = 2) were studied. After an overnight fast each subject received 2 mg/kg BW of 13C-methacetin dissolved in 100 ml of tea. Breath samples were obtained before substrate administration and after 5, 10, 15, 20, 30, 40, 50, 60, 80, 100, 120, 150, 180 min. The 13C/12C-ratio was analyzed in each breath sample both by NDIRS (IRIS, Wagner Analysen Technik, Worpswede, Germany) and CF-IRMS (ABCA, Europa Scientific, Crewe, UK). Results were expressed as delta over baseline (DOB [/1000]) and as cumulative percentage doses of 13C recovered (cPDR [%]) at each time interval. Correlations between IRMS and NDIRS were tested by linear regression correlation. For measuring agreement an Altman-Bland-plot was performed. Applying correlation analysis a linear correlation was found (DOB: y = 1.068 +/- 0.0012.x + 2.088 +/- 0.2126, r = 0.98, p < 0.0001; cPDR: y = 1.148 +/- 0.0109.x + 0.569 +/- 0.172; r = 0.99, p < 0.0001). For DOB the mean difference (d) was 2.9/1000 and the standard deviation (SD) of the difference was 2.7/1000. The limits of agreement (d +/- SD) were -2.5/1000 and 8.3/1000. The comparison of DOB- and cPDR-values by NDIRS and IRMS shows a high linear correlation. However, the distance of the limits of agreement is wide. Consequently, the validity of the MBT could be influenced which could make MBT by NDIRS unprecise for exact evaluation of hepatocellular

  12. Stable isotope ratio (13C/12C) mass spectrometry to evaluate carbon sources and sinks: changes and trends during the decomposition of vegetal debris from eucalyptus clone plantations (NW Spain)

    NASA Astrophysics Data System (ADS)

    Fernandez, I.; Cabaneiro, A.

    2014-02-01

    Vegetal debris is known to participate in key soil processes such as the formation of soil organic matter (OM), also being a potential source of greenhouse gases to the atmosphere. However, its contribution to the isotopic composition of both the soil OM and the atmospheric carbon dioxide is not clear yet. Hence, the main objective of the present research is to understand the isotopic 13C changes and trends that take place during the successive biodegradative stages of decomposing soil organic inputs. By incubating bulk plant tissues for several months under laboratory controlled conditions, the kinetics of the CO2 releases and shifts in the 13C natural abundance of the solid residues were investigated using litter samples coming from forest plantations with a different clone (Anselmo: 1st clonal generation attained by morphological selection and Odiel: 2nd clonal generation genetically obtained) of Eucalyptus globulus Labill. developed over granitic or schistic bedrocks and located in northwestern Spain. Significant isotopic variations with time were observed, probably due to the isotopically heterogeneous composition of these complex substrates in conjunction with the initial selective consumption of more easily degradable 13C-differentiated compounds during the first stages of the biodegradation, while less available or recalcitrant litter components were decomposed at later stages of biodegradation, generating products that have their own specific isotopic signatures. These results, which significantly differ depending on the type of clone, suggest that caution must be exercised when interpreting carbon isotope studies (at natural abundance levels) since perturbations associated with the quality or chemical composition of the organic debris from different terrestrial ecosystems can have an important effect on the carbon stable isotope dynamics.

  13. Food partitioning of leaf-eating mangrove crabs ( Sesarminae): Experimental and stable isotope ( 13C and 15N) evidence

    NASA Astrophysics Data System (ADS)

    Kristensen, Ditte K.; Kristensen, Erik; Mangion, Perrine

    2010-05-01

    The feasibility of mangrove leaves as a full diet for sesarmid crabs has been questioned for decades. Since these leaves are nitrogen-poor, sesarmids probably obtain nitrogen from other sources to sustain growth. The aim of this study was to assess the food partitioning of the sesarmid species Neoepisesarma versicolor with emphasis on nitrogen allocation. The preference for animal tissue when crabs were pre-fed diets of different nitrogen content was determined in the laboratory. Furthermore, the possible in situ diet composition of N. versicolor was established from carbon and nitrogen stable isotope signature ( δ13C and δ15N) of freshly caught individuals and their potential food sources, using a concentration-dependent mixing model. N. versicolor showed significantly higher feeding preferences for fish meat when pre-fed leaf material without than with access to meat, indicating that this crab species can meet its nitrogen demand by ingesting animal tissue. The stable isotope mixing model based on in situ materials suggests that the diet of N. versicolor consists of ˜60% leaves in terms of biomass, leaving ˜40% for other sources such as animal tissue and benthic microorganisms. The biomass contribution from animal tissues, in form of e.g. other crustaceans and fish carcasses, was found to account for ˜15%. Despite the relative low biomass fraction, animal food sources may contribute with up to half of the nitrogen in the diet of N. versicolor. The quantity of ingested sediment most likely exceeds that of animal tissues. However, due to the low concentration of assimilable microalgae and other microorganism, we propose that sediment associated sources are less important as a nitrogen source for N. versicolor than hitherto presumed.

  14. Glycation Isotopic Labeling with 13C-Reducing Sugars for Quantitative Analysis of Glycated Proteins in Human Plasma*

    PubMed Central

    Priego-Capote, Feliciano; Scherl, Alexander; Müller, Markus; Waridel, Patrice; Lisacek, Frédérique; Sanchez, Jean-Charles

    2010-01-01

    Non-enzymatic glycation of proteins is a post-translational modification produced by a reaction between reducing sugars and amino groups located in lysine and arginine residues or in the N-terminal position. This modification plays a relevant role in medicine and food industry. In the clinical field, this undesired role is directly linked to blood glucose concentration and therefore to pathological conditions derived from hyperglycemia (>11 mm glucose) such as diabetes mellitus or renal failure. An approach for qualitative and quantitative analysis of glycated proteins is here proposed to achieve the three information levels for their complete characterization. These are: 1) identification of glycated proteins, 2) elucidation of sugar attachment sites, and 3) quantitative analysis to compare glycemic states. Qualitative analysis was carried out by tandem mass spectrometry after endoproteinase Glu-C digestion and boronate affinity chromatography for isolation of glycated peptides. For this purpose, two MS operational modes were used: higher energy collisional dissociation-MS2 and CID-MS3 by neutral loss scan monitoring of two selective neutral losses (162.05 and 84.04 Da for the glucose cleavage and an intermediate rearrangement of the glucose moiety). On the other hand, quantitative analysis was based on labeling of proteins with [13C6]glucose incubation to evaluate the native glycated proteins labeled with [12C6]glucose. As glycation is chemoselective, it is exclusively occurring in potential targets for in vivo modifications. This approach, named glycation isotopic labeling, enabled differentiation of glycated peptides labeled with both isotopic forms resulting from enzymatic digestion by mass spectrometry (6-Da mass shift/glycation site). The strategy was then applied to a reference plasma sample, revealing the detection of 50 glycated proteins and 161 sugar attachment positions with identification of preferential glycation sites for each protein. A predictive

  15. Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis method.

    PubMed

    Tosun, Murat

    2013-06-01

    Honey can be adulterated in various ways. One of the adulteration methods is the addition of different sugar syrups during or after honey production. Starch-based sugar syrups, high fructose corn syrup (HFCS), glucose syrup (GS) and saccharose syrups (SS), which are produced from beet or canes, can be used for adulterating honey. In this study, adulterated honey samples were prepared with the addition of HFCS, GS and SS (beet sugar) at a ratio of 0%, 10%, 20%, 40% and 50% by weight. (13)C/(12)C analysis was conducted on these adulterated honey samples using an isotope ratio mass spectrometer in combination with an elemental analyser (EA-IRMS). As a result, adulteration using C(4) sugar syrups (HFCS and GS) could be detected to a certain extent while adulteration of honey using C(3) sugar syrups (beet sugar) could not be detected. Adulteration by using SS (beet sugar) still has a serious detection problem, especially in countries in which beet is used in manufacturing sugar. For this reason, practice and analysis methods are needed to meet this deficit and to detect the adulterations precisely in the studies that will be conducted. PMID:23411291

  16. The effects of sex, tissue type, and dietary components on stable isotope discrimination factors (Δ13C and Δ15N) in mammalian omnivores.

    PubMed

    Kurle, Carolyn M; Koch, Paul L; Tershy, Bernie R; Croll, Donald A

    2014-01-01

    We tested the effects of sex, tissue, and diet on stable isotope discrimination factors (Δ(13)C and Δ(15)N) for six tissues from rats fed four diets with varied C and N sources, but comparable protein quality and quantity. The Δ(13)C and Δ(15)N values ranged from 1.7-4.1‰ and 0.4-4.3‰, respectively. Females had higher Δ(15)N values than males because males grew larger, whereas Δ(13)C values did not differ between sexes. Differences in Δ(13)C values among tissue types increased with increasing variability in dietary carbon sources. The Δ(15)N values increased with increasing dietary δ(15)N values for all tissues except liver and serum, which have fast stable isotope turnover times, and differences in Δ(15)N values among tissue types decreased with increasing dietary animal protein. Our results demonstrate that variability in dietary sources can affect Δ(13)C values, protein source affects Δ(15)N values even when protein quality and quantity are controlled, and the isotope turnover rate of a tissue can influence the degree to which diet affects Δ(15)N values.

  17. Assessing waterbird habitat use in coastal evaporative systems using stable isotopes13C, δ 15N and δD) as environmental tracers

    NASA Astrophysics Data System (ADS)

    Ramírez, Francisco; Abdennadher, Aida; Sanpera, Carola; Jover, Lluís; Wassenaar, Leonard I.; Hobson, Keith A.

    2011-04-01

    Isotopic patterns of biota across salinity gradients in man-made evaporative systems could assist in determining the use of these habitats by animals. Here we report δ 13C, δ 15N and δD measurements of a euryhaline fish, the Mediterranean toothcarp ( Aphanius fasciatus), inhabiting a range of salinities in the Thyna saltworks near Sfax (Tunisia). The contribution of these salinity niches to egg formation of two typically piscivorous bird species breeding in the area and feeding within saltworks, Little Tern ( Sternula albifrons) and Little Egret ( Egretta garzetta), was inferred trough a triple-isotope13C, δ 15N and δD) Bayesian mixing model. Isotopic trends for fish δ 15N and δD across the salinity gradient followed the equations: δ 15N = e (1.1 + 47.68/Salinity) and δD = -175.74 + Salinity + Salinity 2; whereas fish δ 13C increased as salinity rose (δ 13C = -10.83 + 0.02·Salinity), after a sudden drop in fish isotopic values for salinities >60 (Practical Salinity Scale) (average fish δ 13C for salinities <60 = -5.92‰). Both bird species fed largely on low hypersalinity ponds (salinity = 43; average contribution = 37% and 22% for Little Egrets and Little Terns, respectively), although the use of intermediate hypersalinities (salinities 63 and 70) by Little Terns also occurred (16% and 21%, respectively). Isotopic patterns across salinity gradients allow the use of isotopic measurements to inform studies of habitat occupancy within evaporative systems and provide further insights into how wildlife communities interact with them.

  18. 13C/12C and 15N/14N Isotope Analysis to Characterize Natural Degradation of Atrazine: Evidence from Parent and Daughter Compound Values

    NASA Astrophysics Data System (ADS)

    Elsner, Martin; Meyer, Armin

    2013-04-01

    The mobile and still herbicidal metabolites desethylatrazine (DEA) and desisopropylatrazine (DIA) are frequently detected together with its parent compound atrazine (Atz) in the aquatic environment. Interpretation of their transformation state is often difficult with current methods, which are mainly measuring concentrations. Alternatively, compound specific isotope analyses (CSIA) has become a novel tool to detect degradation processes of contaminants in groundwater. The aim of our study was to investigate on the lab scale 13C/12C and 15N/14N isotope trends in parent and daughter compounds associated with different degradation scenarios of atrazine likely to occur in the environment. Thus atrazine was dealkylated with (i) permanganate and (ii) the bacterium Rhodococcus sp. NI86/21. In both transformations, 13C/12C ratios of atrazine increased strongly (epsilon carbon/permanganate = -4.6 ± 0.6 ‰ and epsilon carbon/Rhodoccoccus = -3.8 ± 0.2 ‰) whereas nitrogen isotope fractionation was small. 13C/12C ratios of DEA showed the following trends. (i) When DEA was formed as only product (Atz + permanganate) 13C/12C remained constant, close to the initial value of Atz. (ii) When DEA was formed together with deisopropylatrazine (biodegradation of Atz) 13C/12C increased, but only within 2‰. (iii) When DEA and DIA was further biodegraded, 13C/12C increased for both metabolites up to 9‰. Thus strong enrichment of 13C/12C in the metabolites in comparison to Atz can give strong testimony for further breakdown of the metabolite.

  19. Geometries and tautomerism of OHN hydrogen bonds in aprotic solution probed by H/D isotope effects on (13)C NMR chemical shifts.

    PubMed

    Tolstoy, Peter M; Guo, Jing; Koeppe, Benjamin; Golubev, Nikolai S; Denisov, Gleb S; Smirnov, Sergei N; Limbach, Hans-Heinrich

    2010-10-14

    The (1)H and (13)C NMR spectra of 17 OHN hydrogen-bonded complexes formed by CH(3)(13)COOH(D) with 14 substituted pyridines, 2 amines, and N-methylimidazole have been measured in the temperature region between 110 and 150 K using CDF(3)/CDF(2)Cl mixture as solvent. The slow proton and hydrogen bond exchange regime was reached, and the H/D isotope effects on the (13)C chemical shifts of the carboxyl group were measured. In combination with the analysis of the corresponding (1)H chemical shifts, it was possible to distinguish between OHN hydrogen bonds exhibiting a single proton position and those exhibiting a fast proton tautomerism between molecular and zwitterionic forms. Using H-bond correlations, we relate the H/D isotope effects on the (13)C chemical shifts of the carboxyl group with the OHN hydrogen bond geometries.

  20. Temperature dependence of the folding and unfolding kinetics of the GCN4 leucine zipper via 13C(alpha)-NMR.

    PubMed Central

    Holtzer, M E; Bretthorst, G L; d'Avignon, D A; Angeletti, R H; Mints, L; Holtzer, A

    2001-01-01

    Studies by one-dimensional NMR are reported on the interconversion of folded and unfolded forms of the GCN4 leucine zipper in neutral saline buffer. The peptide bears 99% 13C(alpha) labels at three sites: V9, L12, and G31. Time-domain 13C(alpha)-NMR spectra are interpreted by global Bayesian lineshape analysis to extract the rate constants for both unfolding and folding as functions of temperature in the range 47-71 degrees C. The data are well fit by the assumption that the same rate constants apply at each labeled site, confirming that only two conformational states need be considered. Results show that 1) both processes require a free energy of activation; 2) unfolding is kinetically enthalpy-opposed and entropy-driven, while folding is the opposite; and 3) the transition state dimer ensemble averages approximately 40% helical. The activation parameters for unfolding, derived from NMR data at the elevated temperatures where both conformations are populated, lead to estimates of the rate constant at low temperatures (5-15 degrees C) that agree with extant values determined by stopped-flow CD via dilution from denaturing media. However, the corresponding estimated values for the folding rate constant are larger by two to three orders of magnitude than those obtained by stopped flow. We propose that this apparent disagreement is caused by the necessity, in the stopped-flow experiment, for initiation of new helices as the highly denaturant-unfolded molecule adjusts to the newly created benign solvent conditions. This must reduce the success rate of collisions in producing the folded molecule. In the NMR determinations, however, the unfolded chains always have a small, but essential, helix content that makes such initiation unnecessary. Support for this hypothesis is adduced from recent extant experiments on the helix-coil transition in single-chain helical peptides and from demonstration that the folding rate constants for coiled coils, as obtained by stopped flow

  1. Anomalous 13C isotope abundances in C3S and C4H observed toward the cold interstellar cloud, Taurus Molecular Cloud-1.

    PubMed

    Sakai, Nami; Takano, Shuro; Sakai, Takeshi; Shiba, Shoichi; Sumiyoshi, Yoshihiro; Endo, Yasuki; Yamamoto, Satoshi

    2013-10-01

    We have studied the abundances of the (13)C isotopic species of C3S and C4H in the cold molecular cloud, Taurus Molecular Cloud-1 (Cyanopolyyne Peak), by radioastronomical observations of their rotational emission lines. The CCCS/(13)CCCS and CCCS/C(13)CCS ratios are determined to be >206 and 48 ± 15, respectively. The CC(13)CS line is identified with the aid of laboratory microwave spectroscopy, and the range of the CCCS/CC(13)CS ratio is found to be from 30 to 206. The abundances of at least two (13)C isotopic species of C3S are thus found to be different. Similarly, it is found that the abundances of the four (13)C isotopic species of C4H are not equivalent. The CCCCH/(13)CCCCH, CCCCH/C(13)CCCH, CCCCH/CC(13)CCH, and CCCCH/CCC(13)CH ratios are evaluated to be 141 ± 44, 97 ± 27, 82 ± 15, and 118 ± 23, respectively. Here the errors denote 3 times the standard deviation. These results will constrain the formation pathways of C3S and C4H, if the nonequivalence is caused during the formation processes of these molecules. The exchange reactions after the formation of these two molecules may also contribute to the nonequivalence. In addition, we have confirmed that the (12)C/(13)C ratio of some species are significantly higher than the interstellar elemental (12)C/(13)C ratio of 60-70. The observations of the (13)C isotopic species provide us with rich information on chemical processes in cold interstellar clouds.

  2. Effects of growth and tissue type on the kinetics of 13C and 15N incorporation in a rapidly growing ectotherm.

    PubMed

    Reich, Kimberly J; Bjorndal, Karen A; Martínez Del Rio, Carlos

    2008-04-01

    The use of stable isotopes to investigate animal diets, habitat use, and trophic level requires understanding the rate at which animals incorporate the 13C and 15N from their diets and the factors that determine the magnitude of the difference in isotopic composition between the animal's diet and that of its tissues. We determined the contribution of growth and catabolic turnover to the rate of 13C and 15N incorporation into several tissues that can be sampled non-invasively (skin, scute, whole blood, red blood cells, and plasma solutes) in two age classes of a rapidly growing ectotherm (loggerhead turtles, Caretta caretta). We found significant differences in C and N incorporation rates and isotopic discrimination factors (Delta 13C = delta 13Ctissues - delta 13Cdiet and Delta 15N = delta 15Ntissues - delta 15Ndiet) among tissues and between age classes. Growth explained from 26 to 100% of the total rate of incorporation in hatchling turtles and from 15 to 52% of the total rate of incorporation in juvenile turtles. Because growth contributed significantly to the rate of isotopic incorporation, variation in rates among tissues was lower than reported in previous studies. The contribution of growth can homogenize the rate of isotopic incorporation and limit the application of stable isotopes to identify dietary changes at contrasting time scales and to determine the timing of diet shifts. The isotopic discrimination factor of nitrogen ranged from -0.64 to 1.77 per thousand in the turtles' tissues. These values are lower than the commonly assumed average 3.4 per thousand discrimination factors reported for whole body and muscle isotopic analyses. The increasing reliance on non-invasive and non-destructive sampling in animal isotopic ecology requires that we recognize and understand why different tissues differ in isotopic discrimination factors.

  3. [Distribution characteristics of soil humus fractions stable carbon isotope natural abundance (delta 13C) in paddy field under long-term ridge culture].

    PubMed

    Tang, Xiao-hong; Luo, You-jin; Ren, Zhen-jiang; Lü, Jia-ke; Wei, Chao-fu

    2011-04-01

    A 16-year field experiment was conducted in a ridge culture paddy field in the hilly region of Sichuan Basin, aimed to investigate the distribution characteristics of stable carbon isotope natural abundance (delta 13C) in soil humus fractions. The soil organic carbon (SOC) content in the paddy field under different cultivation modes ranked in the order of wide ridge culture > ridge culture > paddy and upland rotation. In soil humus substances (HS), humin (HU) was the main composition, occupying 21% - 30% of the total SOC. In the extracted soil carbon, humic acid (HA) dominated, occupying 17% - 21% of SOC and 38% - 65% of HS. The delta 13C value of SOC ranged from -27.9 per thousand to -25.6 per thousand, and the difference of the delta 13C value between 0-5 cm and 20-40 cm soil layers was about 1.9 per thousand. The delta 13C value of HA under different cultivation modes was 1 per thousand - 2 per thousand lower than that of SOC, and more approached to the delta 13C value of rapeseed and rice residues. As for fulvic acid (FA), its delta 13C value was about 2 per thousand and 4 per thousand higher than that of SOC and HA, respectively. The delta 13C value of HU in plough layer (0-20 cm) and plow layer (20-40 cm) ranged from -23.7 per thousand - -24.9 per thousand and -22.6 per thousand - -24.2 per thousand, respectively, reflecting the admixture of young and old HS. The delta 13C value in various organic carbon fractions was HU>FA>SOC>rapeseed and rice residues>HA. Long-term rice planting benefited the increase of SOC content, and cultivation mode played an important role in affecting the distribution patterns of soil humus delta 13C in plough layer and plow layer. PMID:21774322

  4. [Distribution characteristics of soil humus fractions stable carbon isotope natural abundance (delta 13C) in paddy field under long-term ridge culture].

    PubMed

    Tang, Xiao-hong; Luo, You-jin; Ren, Zhen-jiang; Lü, Jia-ke; Wei, Chao-fu

    2011-04-01

    A 16-year field experiment was conducted in a ridge culture paddy field in the hilly region of Sichuan Basin, aimed to investigate the distribution characteristics of stable carbon isotope natural abundance (delta 13C) in soil humus fractions. The soil organic carbon (SOC) content in the paddy field under different cultivation modes ranked in the order of wide ridge culture > ridge culture > paddy and upland rotation. In soil humus substances (HS), humin (HU) was the main composition, occupying 21% - 30% of the total SOC. In the extracted soil carbon, humic acid (HA) dominated, occupying 17% - 21% of SOC and 38% - 65% of HS. The delta 13C value of SOC ranged from -27.9 per thousand to -25.6 per thousand, and the difference of the delta 13C value between 0-5 cm and 20-40 cm soil layers was about 1.9 per thousand. The delta 13C value of HA under different cultivation modes was 1 per thousand - 2 per thousand lower than that of SOC, and more approached to the delta 13C value of rapeseed and rice residues. As for fulvic acid (FA), its delta 13C value was about 2 per thousand and 4 per thousand higher than that of SOC and HA, respectively. The delta 13C value of HU in plough layer (0-20 cm) and plow layer (20-40 cm) ranged from -23.7 per thousand - -24.9 per thousand and -22.6 per thousand - -24.2 per thousand, respectively, reflecting the admixture of young and old HS. The delta 13C value in various organic carbon fractions was HU>FA>SOC>rapeseed and rice residues>HA. Long-term rice planting benefited the increase of SOC content, and cultivation mode played an important role in affecting the distribution patterns of soil humus delta 13C in plough layer and plow layer.

  5. Using 13C-labeled benzene and Raman gas spectroscopy to investigate respiration and biodegradation kinetics following soil contamination

    NASA Astrophysics Data System (ADS)

    Jochum, Tobias; Popp, Juergen; Frosch, Torsten

    2016-04-01

    Soil and groundwater contamination with benzene can cause serious environmental damages. However, many soil microorganisms are capable to adapt and known to strongly control the fate of organic contamination. Cavity enhanced Raman gas spectroscopy (CERS) was applied to investigate the short-term response of indigenous soil bacteria to a sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. 13C-labeled benzene was spiked on a silty-loamy soil column (sampled from Hainich National Park, Germany) in order to track and separate the changes in heterotrophic soil respiration - involving 12CO2 and O2 - from the microbial process of benzene degradation, which ultimately forms 13CO2.1 The respiratory quotient (RQ) of 0.98 decreased significantly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with maximum 13CO2 concentration rates (0.63 μ mol m-2 s-1), indicating highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into 13CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore.1 The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration. In summary, this study shows the potential of combining Raman gas spectroscopy and stable isotopes to follow soil microbial biodegradation dynamics while simultaneously monitoring the underlying respiration behavior. Support by the Collaborative Research Center 1076 Aqua Diva is kindly acknowledged. We thank Beate Michalzik for soil analysis and discussion. 1. T. Jochum, B. Michalzik, A. Bachmann, J. Popp and T. Frosch, Analyst, 2015, 140, 3143-3149.

  6. Do birds of like feather flock together? The use of a novel 13C+D combustion isotope analyzer to track bird migration

    NASA Astrophysics Data System (ADS)

    Saad, N.

    2011-12-01

    Information on spring migration routes, geographic linkages among winter, spring, and breeding locations, and potential geographic effects on arrival body condition of a variety of avian species is so far little known. Stable isotope ratios are exquisitely sensitive to the biochemistry of living organisms and the nutrients available to them. Isotope ratios provide detailed knowledge useful in a variety of fields, including birds migration, through a combination of stable-isotope measurements of carbon (13C/12C) and hydrogen (D/H) isotopes of flight feathers and breast feathers of tissues representing different periods of dietary integration and body composition analyses. Associations among specific geographic areas, habitat use, and arrival condition can be elucidated through the measurement of these dual isotopes. We report here on the development of a novel laser spectroscopy based system for the simultaneous analysis of the stable isotope ratios of carbon (13C/12C) and hydrogen (D/H) that is robust, easy-to-use, and is the first stable isotope ratio analysis system to combine the measurement of 13C/12C and D/H in one simple analysis from a bulk organic sample with an application to bird migration. The system comprises a combustion module to convert the organic sample into CO2 and H2O and a Cavity Ring-Down Spectrometer (CRDS) that analyzes the combustion species inside an optical cavity based on the molecular absorption of individual isotopomers. This CRDS uses dual lasers to target the four isotpomers of interest: 12CO2, 13CO2, H2O and HDO. The system delivers a typical precision of 0.1 permil for δ13C and 1.5 permil for δD that parallels that achieved by IRMS, but with an unprecedented simplicity that allows ecologists to leverage the science and elucidate the avian migration patterns.

  7. /sup 18/O isotope effect in /sup 13/C nuclear magnetic resonance spectroscopy. Part 9. Hydrolysis of benzyl phosphate by phosphatase enzymes and in acidic aqueous solutions

    SciTech Connect

    Parente, J.E.; Risley, J.M.; Van Etten, R.L.

    1984-12-26

    The /sup 18/O isotope-induced shifts in /sup 13/C and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy were used to establish the position of bond cleavage in the phosphatase-catalyzed and acid-catalyzed hydrolysis reactions of benzyl phosphate. The application of the /sup 18/O-isotope effect in NMR spectroscopy affords a continuous, nondestructive assay method for following the kinetics and position of bond cleavage in the hydrolytic process. The technique provides advantages over most discontinuous methods in which the reaction components must be isolated and converted to volatile derivatives prior to analysis. In the present study, (..cap alpha..-/sup 13/C,ester-/sup 18/O)benzyl phosphate and (ester-/sup 18/O)benzyl phosphate were synthesized for use in enzymatic and nonenzymatic studies. Hydrolysis reactions catalyzed by the alkaline phosphatase from E. coli and by the acid phosphatases isolated from human prostate and human liver were all accompanied by cleavage of the substrate phosphorus-oxygen bond consistent with previously postulated mechanisms involving covalent phosphoenzyme intermediates. An extensive study of the acid-catalyzed hydrolysis of benzyl phosphate at 75/sup 0/C revealed that the site of bond cleavage is dependent on pH. At pH less than or equal to 1.3, the hydrolysis proceeds with C-O bond cleavage; at 1.3 < pH < 2.0, there is a mixture of C-O and P-O bond scission, the latter progressively predominating as the pH is raised; at pH greater than or equal to 2.0, the hydrolysis proceeds with exclusive P-O bond scission. (S)-(+)-(..cap alpha..-/sup 2/H)Benzyl phosphate was also synthesized. Hydrolysis of this chiral benzyl derivative demonstrated that the acid-catalyzed C-O bond scission of benzyl phosphate proceeds by an A-1 (S/sub N/1) mechanism with 70% racemization and 30% inversion at carbon. 37 references, 4 figures, 2 tables.

  8. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  9. Can 13C stable isotope analysis uncover essential amino acid provisioning by termite-associated gut microbes?

    PubMed Central

    Jones, Susan C.; Sabree, Zakee L.

    2015-01-01

    Gut-associated microbes of insects are postulated to provide a variety of nutritional functions including provisioning essential amino acids (EAAs). Demonstrations of EAA provisioning in insect-gut microbial systems, nonetheless, are scant. In this study, we investigated whether the eastern subterranean termite Reticulitermes flavipes sourced EAAs from its gut-associated microbiota. δ13CEAA data from termite carcass, termite gut filtrate and dietary (wood) samples were determined following 13C stable isotope analysis. Termite carcass samples (−27.0 ± 0.4‰, mean ± s.e.) were significantly different from termite gut filtrate samples (−27.53 ± 0.5‰), but not the wood diet (−26.0 ± 0.5‰) (F(2,64) = 6, P < 0.0052). δ13CEAA-offsets between termite samples and diet suggested possible non-dietary EAA input. Predictive modeling identified gut-associated bacteria and fungi, respectively as potential major and minor sources of EAAs in both termite carcass and gut filtrate samples, based on δ13CEAA data of four and three EAAs from representative bacteria, fungi and plant data. The wood diet, however, was classified as fungal rather than plant in origin by the model. This is attributed to fungal infestation of the wood diet in the termite colony. This lowers the confidence with which gut microbes (bacteria and fungi) can be attributed with being the source of EAA input to the termite host. Despite this limitation, this study provides tentative data in support of hypothesized EAA provisioning by gut microbes, and also a baseline/framework upon which further work can be carried out to definitively verify this function. PMID:26336647

  10. Mangrove isotopic (δ15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient

    USGS Publications Warehouse

    Mckee, Karen L.; Feller, Ilka C.; Popp, Marianne; Wanek, Wolfgang

    2002-01-01

    Mangrove islands in Belize are characterized by a unique switching from nitrogen (N) to phosphorus (P) limitation to tree growth from shoreline to interior. Fertilization has previously shown that Rhizophora mangle (red mangrove) fringe trees (5–6 m tall) growing along the shoreline are N limited; dwarf trees (!1.5 m tall) in the forestinterior are P limited; and transition trees (2–4 m tall) are co-limited by both N and P.  Growth patterns paralleled a landward decrease in soil flushing by tides and an increase in bioavailable N, but P availability remained consistently low across the gradient. Stable isotopic composition was measured in R. mangle leaves to aid in explaining this nutrient switching pattern and growth variation. Along control transects, leaf !15N decreased from "0.10‰ (fringe) to #5.38‰ (dwarf). The !15N of N-fertilized trees also varied spatially, but the values were consistently more negative (by $3‰) compared to control trees. Spatial variation in !15N values disappeared when the trees were fertilized with P, and values averaged "0.12‰, similar to that in control fringe trees. Neither variation in source inputs nor microbial fractionation could fully account for the observed patterns in !15N. The results instead suggest that the lower !15N values in transition and dwarf control trees were due to plant fractionation as a consequence of slower growth and lower N demand. P fertilization increased N demand and decreased fractionation. Although leaf !13C was unaffected by fertilization, values increased from fringe (#28.6‰) to transition (#27.9‰) to dwarf (#26.4‰) zones, indicating spatial variation in environmental stresses affecting stomatal conductance or carboxylation. The results thus suggest an interaction of external supply, internal demand, and plant ability to acquire nutrients under different hydro-edaphic conditions that vary across this tree-height gradient. The findings not only aid in understanding

  11. Stable isotopes (δ 18O and δ 13C), trace and minor element compositions of Recent scleractinians and Last Glacial bivalves at the Santa Maria di Leuca deep-water coral province, Ionian Sea

    NASA Astrophysics Data System (ADS)

    Correa, Matthias López; Montagna, Paolo; Vendrell-Simón, Begoña; McCulloch, Malcolm; Taviani, Marco

    2010-03-01

    The aragonitic skeletons of bathyal cold-water corals have a high potential as geochemical in situ archives for paleoceanography. Oxygen isotopes and stable carbon isotopes (δ 18O and δ 13C) have been analyzed, as well as trace and minor element compositions (e.g. Mg/Ca, Sr/Ca, U/Ca, B/Ca and P/Ca) in Lophelia pertusa, one of the most important frame-builders at the Santa Maria di Leuca (SML) deep-water coral hotspot in the Central Mediterranean. The Apulian Bank is swept by strong currents of the Adriatic Deep Water Outflow. The temperature of 13.9 °C is the highest temperature recorded for L. pertusa and provides an important end-member of environmental conditions for geochemical analyses on living Atlantic and Mediterranean cold-water corals. Temperature and salinity (38.77 PSU) are stable throughout the year, and thus virtually no changes should be observed in the stable oxygen isotope signal—if the coral precipitates its skeleton in equilibrium with seawater. We measured various marine properties, such as the seawater oxygen isotope composition (δ 18O sw), stable carbon isotope composition (δ 13C DIC) of dissolved inorganic carbon (DIC), and dissolved inorganic nutrient concentrations (PO 4, NO 3, NO 2, NH 3 and SiO 2). Bottom water at the coral sites shows a mean oxygen isotope composition of 1.47‰ δ 18O sw-VSMOW, and δ 13C DIC showed a mean of 1.1‰ VPDB. A section of a living L. pertusa with a thick theca calcification was probed with a Merchantek MicroMill at a high spatial sampling resolution with 10 samples per 1 mm. This reduced the signal-smoothing inherent to conventional sampling. The δ 18O ag of coral aragonite ranges between -2.0‰ and +2.8‰ VPDB and the δ 13C ag ranges between -7.77‰ and +1.47‰ VPDB. The Gaussian data distribution for both parameters, including heavy equilibrium values, suggests the completeness of the captured isotopic variability. The strict linear correlation of δ 13C and δ 18O displays a strong 'kinetic

  12. Abundance Anomaly of the 13C Isotopic Species of c-C3H2 in the Low-mass Star Formation Region L1527

    NASA Astrophysics Data System (ADS)

    Yoshida, Kento; Sakai, Nami; Tokudome, Tomoya; López-Sepulcre, Ana; Watanabe, Yoshimasa; Takano, Shuro; Lefloch, Bertrand; Ceccarelli, Cecilia; Bachiller, Rafael; Caux, Emmanuel; Vastel, Charlotte; Yamamoto, Satoshi

    2015-07-01

    The rotational spectral lines of c-C3H2 and two kinds of the 13C isotopic species, c-{}13{{CCCH}}2 ({C}2v symmetry) and c-{{CC}}13{{CH}}2 (Cs symmetry), have been observed in the 1–3 mm band toward the low-mass star-forming region L1527. We have detected 7, 3, and 6 lines of c-C3H2, c-{}13{{CCCH}}2, and c-{{CC}}13{{CH}}2, respectively, with the Nobeyama 45 m telescope and 34, 6, and 13 lines, respectively, with the IRAM 30 m telescope, where seven, two, and two transitions, respectively, are observed with both telescopes. With these data, we have evaluated the column densities of the normal and 13C isotopic species. The [c-C3H2]/[c-{}13{{CCCH}}2] ratio is determined to be 310 ± 80, while the [c-C3H2]/[c-{{CC}}13{{CH}}2] ratio is determined to be 61 ± 11. The [c-C3H2]/[c-{}13{{CCCH}}2] and [c-C3H2]/[c-{{CC}}13{{CH}}2] ratios expected from the elemental 12C/13C ratio are 60–70 and 30–35, respectively, where the latter takes into account the statistical factor of 2 for the two equivalent carbon atoms in c-C3H2. Hence, this observation further confirms the dilution of the 13C species in carbon-chain molecules and their related molecules, which are thought to originate from the dilution of 13C+ in the gas-phase C+ due to the isotope exchange reaction: {}13{{{C}}}++{CO}\\to {}13{CO}+{{{C}}}+. Moreover, the abundances of the two 13C isotopic species are different from each other. The ratio of c-{}13{{CCCH}}2 species relative to c-{{CC}}13{{CH}}2 is determined to be 0.20 ± 0.05. If 13C were randomly substituted for the three carbon atoms, the [c-{}13{{CCCH}}2]/[c-{{CC}}13{{CH}}2] ratio would be 0.5. Hence, the observed ratio indicates that c-{{CC}}13{{CH}}2 exists more favorably. Possible origins of the different abundances are discussed. Based on observations carried out with the IRAM 30 m Telescope and the NRO 45 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). NRO is a branch of the National Astronomical Observatory of Japan

  13. Coral skeletal carbon isotopes13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico

    USGS Publications Warehouse

    Moyer, R.P.; Grottoli, A.G.

    2011-01-01

    Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world's oceans. However, few historical records of land-ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (δ13C) and radiocarbon (Δ14C) isotopes of coastal DIC are influenced by the δ13C and Δ14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, δ13C and Δ14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the δ13C and Δ14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both δ13C and Δ14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in δ13C and Δ14C than seawater DIC, and (3) the correlation of δ13C and Δ14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal δ13C and Δ14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land-ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land-ocean carbon flux in the context of land-use change and global climate change.

  14. Coral skeletal carbon isotopes13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico

    USGS Publications Warehouse

    Moyer, R.P.; Grottoli, A.G.

    2011-01-01

    Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world's oceans. However, few historical records of land-ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (??13C) and radiocarbon (??14C) isotopes of coastal DIC are influenced by the ??13C and ??14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, ??13C and ??14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the ??13C and ??14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both ??13C and ??14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in ??13C and ??14C than seawater DIC, and (3) the correlation of ??13C and ??14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal ??13C and ??14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land-ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land-ocean carbon flux in the context of land-use change and global climate change. ?? 2011 United States Geological Survey.

  15. Effects of Air Pollutants on the Composition of Stable Carbon Isotopes, δ13C, of Leaves and Wood, and on Leaf Injury 1

    PubMed Central

    Martin, Bjorn; Bytnerowicz, Andrzej; Thorstenson, Yvonne R.

    1988-01-01

    Air pollutants are known to cause visible leaf injury as well as impairment of photosynthetic CO2 fixation. Here we evaluate whether the effects on photosynthesis are large enough to cause changes in the relative composition of stable carbon isotopes, δ13C, of plant tissue samples, and, if so, how the changes relate to visual leaf injury. For that purpose, several woody and herbaceous plant species were exposed to SO2 + O3 and SO2 + O3 + NO2 for one month (8 hours per day, 5 days per week). At the end of the fumigations, the plants were evaluated for visual leaf lesions, and δ13C of leaf tissue was determined. Woody plants generally showed less visual leaf injury and smaller effects on δ13C of pollutant exposure than did herbaceous plants. If δ13C was affected by pollutants, it became, with few exceptions, less negative. The data from the fumigation experiments were consistent with δ13C analyses of whole wood of annual growth rings from two conifer tree species, Pseudotsuga menziesii and Pinus strobus. These trees had been exposed until 1977 to exhaust gases from a gas plant at Lacq, France. Wood of both conifer species formed in the polluted air of 1972 to 1976 had less negative δ13C values than had wood formed in the much cleaner air in 1982 to 1986. No similar, time-dependent differences in δ13C of wood were observed in trees which had been continuously growing in clean air. Our δ13C data from both relatively short-term artificial exposures and long-term natural exposure are consistent with greater stomatal limitation of photosynthesis in polluted air than in clean air. PMID:16666270

  16. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    PubMed Central

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

  17. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    PubMed

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  18. Examination of the kinetic isotopic effect to the acetylation derivatization for the gas chromatographic-combustion-isotope ratio mass spectrometric doping control analysis of endogenous steroids.

    PubMed

    Angelis, Yiannis S; Kioussi, Maroula K; Kiousi, Polyxeni; Brenna, J Thomas; Georgakopoulos, Costas G

    2012-12-01

    In gas chromatographic-combustion-isotope ratio mass spectrometry (GC-C-IRMS) doping control analysis, endogenous androgenic anabolic steroids and their metabolites are commonly acetylated using acetic anhydride reagent, thus incorporating exogenous carbon that contributes to the measured isotope ratio. Comparison of the endogenous δ(13)C of free, mono-, and di-acetylated steroids requires application of corrections, typically through straightforward use of the mass balance equation. Variability in kinetic isotope effects (KIE) due to steroid structures could cause fractionation of endogenous steroid carbon, resulting in inaccurate results. To test for possible KIE influence on δ(13)C, acetic anhydride of graded isotope ratio within the natural abundance range was used under normal derivatization conditions to test for linearity. In all cases, plots of measured steroid acetate δ(13)C versus acetic anhydride δ(13)C were linear and slopes were not significantly different. Regression analysis of the Δδ(13)C of enriched acetic anhydrides versus Δδ(13)C of derivatized steroids shows that KIE are similar in all cases. We conclude that δ(13)C calculated from the mass balance equation is independent of the δ(13)C of the acetic anhydride reagent, and that net KIE under normal derivatization conditions do not bias the final reported steroid δ(13)C.

  19. Implication of Formation Mechanisms of HC5N in TMC-1 as Studied by 13C Isotopic Fractionation

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kotomi; Ozeki, Hiroyuki; Saito, Masao; Sakai, Nami; Nakamura, Fumitaka; Kameno, Seiji; Takano, Shuro; Yamamoto, Satoshi

    2016-02-01

    We observed the J = 9 ‑ 8 and 16 ‑ 15 rotational transitions of the normal species and five 13C isotopologues of HC5N to study its formation mechanisms toward the cyanopolyyne peak in Taurus Molecular Cloud-1, with the 45-m radio telescope of the Nobeyama Radio Observatory. We detected the five 13C isotopologues with high signal-to-noise ratios between 12 and 20, as well as the normal species. The abundance ratios of the five 13C isotopologues of HC5N are found to be 1.00:0.97:1.03:1.05:1.16 (±0.19) (1σ) for [H13CCCCCN]:[HC13CCCCN]:[HCC13CCCN]:[HCCC13CCN]:[HCCCC13CN]. We do not find any significant differences among the five {}13{{C}} isotopologues. The averaged [HC5N]/[13C isotopologues] abundance ratio is determined to be 94 ± 6 (1σ), which is slightly higher than the local interstellar elemental 12C/13C ratio of 60–70. Possible formation pathways are discussed on the basis of these results.

  20. [Isotopic signature (15N/14N and 13C/12C) confirms similarity of trophic niches of millipedes (Myriapoda, Diplopoda) in a temperate deciduous forest].

    PubMed

    Semeniuk, I I; Tiunov, A V

    2011-01-01

    The species composition, abundance, and isotopic signature of millipedes (Myriapoda, Diplopoda) were investigated in seven biotopes of Kaluzhskie Zaseki State Nature Reserve. Nine Diplopoda species were found in total, and the local species diversity (within a sampling plot) reached seven species. The Diplopoda tissues were similar to the plant litter in the isotopic composition of nitrogen (delta15N was by 0.4% per hundred higher, on average), but were more strongly enriched in heavy carbon (delta13C was by 4% per hundred higher, on average). Removal of mineral carbon from the cuticle reduced delta13C of Diplopoda by about 1.4% per hundred on average. Differences in the delta15N and delta13C values between the species did not exceed 2.5 per hundred. Differences in the isotopic compositions of the considered species are insignificant, and thus, it is impossible to distinguish particular trophic guilds in the Diplopoda community. Analysis of the published data confirmed that isotopic differentiation of millipedes was much less pronounced than in other investigated groups of soil animals. Hence, millipedes of the deciduous forest form a uniform trophic group.

  1. Stable nitrogen and carbon isotope (δ 15N and δ 13C) variability in shallow tropical Pacific soft coral and black coral taxa and implications for paleoceanographic reconstructions

    NASA Astrophysics Data System (ADS)

    Williams, Branwen; Grottoli, Andréa G.

    2010-09-01

    Soft corals and black corals are useful proxy tools for paleoceanographic reconstructions. However, most work has focused on deep-water taxa and few studies have used these corals as proxy organisms in shallow water (<200 m). To facilitate the use of stable nitrogen and carbon isotope (δ 15N and δ 13C) records from shallow-water soft coral and black coral taxa for paleoceanographic reconstructions, quantification of the inherent variability in skeletal isotope values between sites, across depth, and among taxa is needed. Here, skeletal δ 15N and δ 13C values were measured in multiple colonies from eleven genera of soft corals and two genera of black corals from across a depth transect (5-105 m) at two sites in Palau located in the tropical western Pacific Ocean. Overall, no difference in skeletal δ 15N and δ 13C values between sites was present. Skeletal δ 15N values significantly increased and δ 13C values decreased with depth. This is consistent with changes in isotope values of suspended particulate organic matter (POM) across the photic zone, suggesting that the primary food source to these corals is suspended POM and that the stable isotopic composition of POM controls the skeletal isotopic composition of these corals. Thus, to compare the isotope records of corals collected across a depth range in the photic zone, first order depth corrections of -0.013‰ m -1 and +0.023‰ m -1 are recommended for δ 15N and δ 13C, respectively. Average depth-corrected δ 15N values were similar between black corals and soft corals, indicating that corals in these orders feed at a similar trophic level. In contrast, average depth-corrected δ 13C values of black corals were significantly lower than that of soft corals, potentially resulting from metabolic processes associated with differing skeletal compositions among the orders (i.e., gorgonin vs. chitin based). Thus, a correction of +1.0‰ is recommended for black corals when comparing their δ 13C-based proxy

  2. Use of isotope ratio mass spectrometry to detect doping with oral testosterone undecanoate: inter-individual variability of 13C/12C ratio.

    PubMed

    Baume, Norbert; Saudan, Christophe; Desmarchelier, Aurélien; Strahm, Emmanuel; Sottas, Pierre-Edouard; Bagutti, Carlo; Cauderay, Michel; Schumacher, Yorck Olaf; Mangin, Patrice; Saugy, Martial

    2006-05-01

    The metabolic effect of multiple oral testosterone undecanoate (TU) doses over 4 weeks was assessed in seven voluntary men. The protocol was designed to detect accumulation of the substance by choosing the appropriate spot urines collections time and to study the urinary clearance of the substance after weeks of treatment. Urines were analysed by a new GC/C/isotope ratio mass spectrometry (IRMS) method to establish the delta(13)C-values of testosterone metabolites (androsterone and etiocholanolone) together with an endogenous reference compound (16(5alpha)-androsten-3alpha-ol). The significant differences in inter-individual metabolism following TU intake was illustrated by large variations in delta(13)C-values of both T metabolites (maximum Deltadelta(13)C-values = 5.5 per thousand), as well as by very stable longitudinal T/E profiles and carbon isotopic ratios in the first hours following administration. According to T/E ratios and delta(13)C-values, the washout period after 80 mg TU intake was less than 48 h for all subjects and no accumulation phenomenon was observed upon chronic oral administration. PMID:16438998

  3. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant isotope labeling.

    PubMed

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M Francesca

    2014-01-16

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as (13)C with (15)N, (18)O or (2)H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation(1-4). From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage(5-7). The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing (13)C and (15)N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous (13)C and (15)N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%(13)C and 6.7 atom%(15)N uniform plant label, or material that is differentially labeled by up to 1.29 atom%(13)C and 0.56 atom%(15)N in its metabolic and structural components (hot water extractable and hot water

  4. Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling

    PubMed Central

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M. Francesca

    2014-01-01

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components

  5. High-Precision Measurement of 13C/12C Isotopic Ratio Using Gas Chromatography-Combustion-Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Saad, N.; Kuramoto, D. S.; Haase, C.; Crosson, E.; Tan, S.; Zare, R. N.

    2009-12-01

    Light stable isotope analysis, and in particular, compound specific isotopic analysis (CSIA), is a valuable tool to elucidate pathways and provide a better insight into biological, ecological, and geological systems. We present here the results of compound-specific isotopic carbon analysis of short chain hydrocarbons using the world’s first combination of gas chromatography, combustion interface, and cavity ring-down spectroscopy (GC-C-CRDS). Cavity ring-down spectroscopy (CRDS) is a highly sensitive optical spectroscopy, one application of which is to measure the stable isotopic ratios in small molecules. Because it uses a highly reflective optical cavity with many kilometers effective path length, CRDS provides some of the most sensitive and precise optical absorption measurements. Most optical spectroscopy isotopic analysis measures the quantities of each isotopologue independently using their distinct ro-vibrational spectra. The most common isotopes measured with optical spectroscopy are 13C and 12C in carbon dioxide. However, the isotopes of hydrogen, oxygen, and sulfur have also been measured. Unlike isotope ratio mass spectrometry (IRMS), optical spectroscopy can distinguish among isobars, which have essentially identical m/z ratios. The combination of chemical separation, chemical conversion, and CRDS makes a nearly universal tool for isotopic analysis of mixtures. In addition, CRDS can tolerate a variety of compounds mixed with the target. For example, CRDS can measure carbon dioxide and its isotopic 13C/12C ratio in the presence of oxygen. Using the novel GC-C-CRDS system, we injected a 75-microliter mixture of approximately equal quantities of methane, ethane, and propane into a gas chromatograph using helium as carrier gas. The methane, ethane, and propane were separated in time by 100 to 200 seconds after the chromatograph. Oxygen gas was added, and the hydrocarbons were combusted in a catalytic combustor with platinum and nickel, held at 1150oC. The

  6. The stable isotopic composition of Daphnia ephippia reflects changes in δ13C and δ18O values of food and water

    NASA Astrophysics Data System (ADS)

    Schilder, J.; Tellenbach, C.; Möst, M.; Spaak, P.; van Hardenbroek, M.; Wooller, M. J.; Heiri, O.

    2015-06-01

    The stable isotopic composition of fossil resting eggs (ephippia) of Daphnia spp. is being used to reconstruct past environmental conditions in lake ecosystems. However, the underlying assumption that the stable isotopic composition of the ephippia reflects the stable isotopic composition of the parent Daphnia, of their diet and of the environmental water have yet to be confirmed in a controlled experimental setting. We performed experiments with Daphnia pulicaria cultures, which included a control treatment conducted at 12 °C in filtered lake water and with a diet of fresh algae and three treatments in which we manipulated the stable carbon isotopic composition (δ13C value) of the algae, stable oxygen isotopic composition (δ18O value) of the water and the water temperature, respectively. The stable nitrogen isotopic composition (δ15N value) of the algae was similar for all treatments. At 12 °C, differences in algal δ13C values and in δ18O values of water were reflected in those of Daphnia. The differences between ephippia and Daphnia stable isotope ratios were similar in the different treatments (δ13C: +0.2 ± 0.4 ‰ (standard deviation); δ15N: -1.6 ± 0.4 ‰; δ18O: -0.9 ± 0.4 ‰), indicating that changes in dietary δ13C values and in δ18O values of water are passed on to these fossilizing structures. A higher water temperature (20 °C) resulted in lower δ13C values in Daphnia and ephippia than in the other treatments with the same food source and in a minor change in the difference between δ13C values of ephippia and Daphnia (to -1.3 ± 0.3 ‰). This may have been due to microbial processes or increased algal respiration rates in the experimental containers, which may not affect Daphnia in natural environments. There was no significant difference in the offset between δ18O and δ15N values of ephippia and Daphnia between the 12 and 20 °C treatments, but the δ18O values of Daphnia and ephippia were on average 1.2 ‰ lower at 20 °C than at

  7. Practical considerations in the gas chromatography/combustion/isotope ratio monitoring mass spectrometry of 13C-enriched compounds: detection limits and carryover effects.

    PubMed

    Mottram, Hazel R; Evershed, Richard P

    2003-01-01

    This paper describes a methodological investigation of the use of gas chromatography/combustion/isotope ratio monitoring mass spectrometry (GC/C/IRMS) for the compound-specific stable isotope analysis of 13C-enriched compounds. Analysis of two 13C-enriched fatty acid methyl esters, possessing delta13C values of approximately 500 per thousand, at a range of concentrations, demonstrated that detectable responses, i.e. chromatographic peaks, could be observed in the 45/44 output even when the compound was present in such low abundance that no peak was observed in the m/z 44 ion chromatogram. A limit of detection, defined as the point at which the signal-to-background ratio was equal to 3, was calculated for two compounds and for both ion chromatograms. The limit of detection in the 45/44 chromatogram was found to be ca. 30 pg injected for methyl 13C-hexadecanoate and ca. 20 pg injected for methyl 13C-octadecanoate, whilst, in the m/z 44 ion chromatogram, detection limits were approximately 180 and approximately 200 pg, respectively. The delta13C value recorded for the analytes was found to be both inaccurate and imprecise below 5 ng of each component injected, although this would not represent a significant drawback in qualitative tracer-type experiments. In a further study of co-injected mixtures of labelled (approximately 500 per thousand) and unlabelled (natural abundance, -20 to -30 per thousand ) fatty acid methyl esters a significant within-run carryover effect was observed, where the isotope values recorded for compounds eluting immediately after enriched components were significantly affected. Whilst this would not affect qualitative results, quantitative data for mixtures containing enriched compounds should be considered with caution. The standards employed in this investigation were enriched to approximately 500 per thousand in 13C; however, these effects would probably be accentuated at higher levels of labelling and with other elements. The limit of

  8. Tracking spatial distribution of human-derived wastewater from Davis Station, East Antarctica, using δ15N and δ13C stable isotopes.

    PubMed

    Corbett, Patricia A; King, Catherine K; Mondon, Julie A

    2015-01-15

    Stable isotope ratios, δ15N and δ13C were effectively used to determine the geographical dispersion of human derived sewage from Davis Station, East Antarctica, using Antarctic rock cod (Trematomus bernacchii). Fish within 0-4 km downstream of the outfall exhibited higher δ15N and δ13C values relative to reference sites. Nitrogen in particular showed a stepped decrease in δ15N with increasing distance from the discharge point by 1-2‰. Stable isotopes were better able to detect the extent of wastewater contamination than other techniques including faecal coliform and sterol measures. Uptake and assimilation of δ15N and δ13C up to 4 km from the outfall adds to growing evidence indicating the current level of wastewater treatment at Davis Station is not sufficient to avoid impact to the surrounding environment. Isotopic assimilation in T. bernacchii is a viable biomarker for investigation of initial sewage exposure and longer term monitoring in the future.

  9. Deuterium isotope effects on 13C and 15N chemical shifts of intramolecularly hydrogen-bonded enaminocarbonyl derivatives of Meldrum’s and Tetronic acid

    NASA Astrophysics Data System (ADS)

    Ullah, Saif; Zhang, Wei; Hansen, Poul Erik

    2010-07-01

    Secondary deuterium isotope effects on 13C and 15N nuclear shieldings in a series of cyclic enamino-diesters and enamino-esters and acyclic enaminones and enamino-esters have been examined and analysed using NMR and DFT (B3LYP/6-31G(d,p)) methods. One-dimensional and two-dimensional NMR spectra of enaminocarbonyl and their deuterated analogues were recorded in CDCl 3 and CD 2Cl 2 at variable temperatures and assigned. 1JNH coupling constants for the derivatives of Meldrum's and tetronic acids reveal that they exist at the NH-form. It was demonstrated that deuterium isotope effects, for the hydrogen bonded compounds, due to the deuterium substitution at the nitrogen nucleus lead to large one-bond isotope effects at nitrogen, 1Δ 15N(D), and two-bond isotope effects on carbon nuclei, 2ΔC(ND), respectively. A linear correlations exist between 2ΔC(ND) and 1Δ 15N(D) whereas the correlation with δNH is divided into two. A good agreement between the experimentally observed 2ΔC(ND) and calculated dσ 13C/dR NH was obtained. A very good correlation between calculated NH bond lengths and observed NH chemical shifts is found. The observed isotope effects are shown to depend strongly on Resonance Assisted Hydrogen bonding.

  10. Isotopic finger-printing of active pharmaceutical ingredients by 13C NMR and polarization transfer techniques as a tool to fight against counterfeiting.

    PubMed

    Bussy, Ugo; Thibaudeau, Christophe; Thomas, Freddy; Desmurs, Jean-Roger; Jamin, Eric; Remaud, Gérald S; Silvestre, Virginie; Akoka, Serge

    2011-09-30

    The robustness of adiabatic polarization transfer methods has been evaluated for determining the carbon isotopic finger-printing of active pharmaceutical ingredients. The short time stabilities of the adiabatic DEPT and INEPT sequences are very close to that observed with the one pulse sequence, but the DEPT long time stability is not sufficient for isotopic measurements at natural abundance or low enrichment. Using the INEPT sequence for (13)C isotopic measurements induces a dramatic reduction in the experimental time without deterioration in short time or long time stability. It appears, therefore, to be a method of choice for obtaining the isotopic finger-print of different ibuprofen samples in a minimum time. The results obtained on 13 commercial ibuprofen samples from different origins show that this strategy can be used effectively to determine (13)C distribution within a given molecule and to compare accurately differences in the isotopic distribution between different samples of the given molecule. The present methodology is proposed as a suitable tool to fight against counterfeiting.

  11. Similarities and differences in 13C and 15N stable isotope ratios in two non-lethal tissue types from shovelnose sturgeon Scaphirhynchus platorynchus (Rafinesque, 1820)

    USGS Publications Warehouse

    DeVries, R. J.; Schramm, Harold L.

    2015-01-01

    We tested the hypothesis that δ13C and δ15N signatures of pectoral spines would provide measures of δ13C and δ15N similar to those obtained from fin clips for adult shovelnose sturgeon Scaphirhynchus platorynchus. Thirty-two shovelnose sturgeon (fork length [FL] = 500–724 mm) were sampled from the lower Mississippi River, USA on 23 February 2013. Isotopic relationships between the two tissue types were analyzed using mixed model analysis of covariance. Tissue types differed significantly for both δ13C (P < 0.01; spine: mean = −23.83, SD = 0.62; fin clip: mean = −25.74, SD = 0.97) and δ15N (P = 0.01; spine: mean = 17.01, SD = 0.51; fin clip: mean = 17.19, SD = 0.62). Neither FL nor the FL × tissue type interaction had significant (P > 0.05) effects on δ13C. Fin clip δ13C values were highly variable and weakly correlated (r = 0.16, P = 0.40) with those from pectoral spines. We found a significant FL-tissue type interaction for δ15N, reflecting increasing δ15N with FL for spines and decreasing δ15N with FL for fin clips. These results indicate that spines are not a substitute for fin clip tissue for measuring δ13C and δ15N for shovelnose sturgeon in the lower Mississippi River, but the two tissues have different turnover rates they may provide complementary information for assessing trophic position at different time scales.

  12. Multi-isotope ((15)N, (18)O and (13)C) indicators of sources and fate of nitrate in the upper stream of Chaobai River, Beijing, China.

    PubMed

    Li, Cai; Jiang, Yongbin; Guo, Xinyue; Cao, Yang; Ji, Hongbing

    2014-11-01

    Dual isotopes of nitrate ((15)N and (18)O) and carbon isotopes of dissolved inorganic carbon ((13)C) together with water chemistry were used to identify the sources and fate of nitrate in the upper stream of Chaobai River, north China. The results show that NO3(-) concentrations ranges from 0.03 mmol L(-1) to 0.80 mmol L(-1). Sampling sites from watershed with dominant forest land had higher NO3(-) concentrations and lower δ(15)N-NO3(-) (<10‰) in the wet season than in the dry season, while those from watershed with more anthropogenic activities had lower NO3(-) concentrations and higher δ(15)N-NO3(-) (>10‰) in the wet season. Compositions of isotopes and chemistry indicated that NO3(-) originated mainly from soil N, sewage and livestock wastes and atmospheric nitrogen. Furthermore, the mixing model suggested that soil N was the major NO3(-) source in the wet season, while the sewage and livestock wastes contributed the most in the dry season. Compared to rivers, the Miyun Reservoir had a higher contribution of atmospheric N and the N input from the upper rivers exerted significant influence over the reservoir. Mineralization and nitrification played an important role in N biogeochemistry based on the isotopes ((15)N and (18)O and (13)C) and chemical data. There appeared to be no significant denitrification in the watershed according to the three isotopes and chemical ions. The combined use of (15)N, (18)O and (13)C proved to be useful for further identification of the sources and fate of nitrate in watersheds with dominant forest land in the wet season. PMID:25283837

  13. Lower to middle Miocene isotope ( sup 87 Sr/ sup 86 Sr,. delta. sup 18 O,. delta. sup 13 C) standard sections, DSDP site 608

    SciTech Connect

    Miller, K.G.; Feigenson, M.D. ); Wright, J.D. )

    1990-05-01

    Isotopes changes ({sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O, {delta}{sup 13}C) have been correlated to the geologic time scale primarily by biostratigraphy. Biostratigraphic correlations suffer from problems of diachrony and taxonomy. Magnetostratigraphy provides a facies-independent correlation tool, but there are few Tertiary sections with unambiguous magnetostratigraphy. The authors previously developed an isotope standard for the Oligocene at the only location with a pristine magnetochronology, Site 522. They extend this approach to Site 608 in the northeastern North Atlantic, which contains a relatively straightforward Miocene magnetochronology. They establish Miocene oxygen isotope Chronozones MI1 through MI6 at Sites 522 and 608, which are directly tied to the geomagnetic polarity time scale (GPTS). The integration of stable isotopes, Sr isotopes, biostratigraphy, and magnetostratigraphy at site 608 provides a standard section with which other Sr isotope and oxygen isotope records can be correlated. For example, using oxygen isotopes to correlate, the Sr isotope record from Site 608 compares well with previously published records from Sites 516 and 590. The firm ties of the Oligocene to middle Miocene isotope records with the GPTS allows them to establish the nature of the change in Sr isotopes between 38 and 8 Ma. There were moderately high rates of {sup 87}Sr/{sup 86}Sr change during the Oligocene ({approximately}0.000030/m.y.), yielding stratigraphic resolution of {plus minus}1.0 m.y. The rate of change of {sup 87}Sr/{sup 86}Sr increased during the early Miocene. They estimate that the rate of change between 23 and 15 Ma was greater than 0.000060/m.y. Given their ability to reproduce Sr isotope measurements ({plus minus}0.000020 to {plus minus}0.000030), temporal resolution is better than {plus minus}0.5 my. for the early to early middle Oliocene.

  14. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  15. Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (δ (13)C and δ (15)N).

    PubMed

    Stallings, Christopher D; Nelson, James A; Rozar, Katherine L; Adams, Charles S; Wall, Kara R; Switzer, Theodore S; Winner, Brent L; Hollander, David J

    2015-01-01

    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ (13)C and δ (15)N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ (15)N values in nearly all comparisons. Ethanol also had strong effects on the δ (13)C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and

  16. Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (δ (13)C and δ (15)N).

    PubMed

    Stallings, Christopher D; Nelson, James A; Rozar, Katherine L; Adams, Charles S; Wall, Kara R; Switzer, Theodore S; Winner, Brent L; Hollander, David J

    2015-01-01

    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ (13)C and δ (15)N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ (15)N values in nearly all comparisons. Ethanol also had strong effects on the δ (13)C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and

  17. Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (δ13C and δ15N)

    PubMed Central

    Nelson, James A.; Rozar, Katherine L.; Adams, Charles S.; Wall, Kara R.; Switzer, Theodore S.; Winner, Brent L.; Hollander, David J.

    2015-01-01

    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ13C and δ15N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ15N values in nearly all comparisons. Ethanol also had strong effects on the δ13C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and corresponding

  18. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    USGS Publications Warehouse

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  19. Vitamin K absorption and kinetics in human subjects after consumption of 13C-labelled phylloquinone from kale.

    PubMed

    Novotny, Janet A; Kurilich, Anne C; Britz, Steven J; Baer, David J; Clevidence, Beverly A

    2010-09-01

    The absorption and plasma disappearance of vitamin K were investigated by uniformly labelling phylloquinone in kale with carbon-13, and by feeding the kale to study subjects. Seven healthy volunteers ingested a single 400 g serving of kale with 30 g vegetable oil. The kale provided 156 nmol of phylloquinone. Serial plasma samples were collected and analysed for the appearance of 13C-phylloquinone by HPLC-MS. Six of the subjects showed significant amounts of labelled phylloquinone in plasma, though one subject's plasma was not consistently enriched above the detection limit, and this subject's baseline plasma phylloquinone level was the lowest in the group. After ingestion of the labelled kale, plasma 13C-phylloquinone concentration increased rapidly to a peak between 6 and 10 h, and then rapidly decreased. Average peak plasma concentration for the six subjects with detectable 13C-phylloquinone was 2.1 nmol/l. Plasma concentration-time data were analysed by compartmental modelling. Modelling results demonstrated a mean (n 6) bioavailability of phylloquinone from kale to be 4.7%. Plasma and tissue half-times for phylloquinone were found to be 8.8 and 215 h, respectively.

  20. Provenancing Archaeological Wool Textiles from Medieval Northern Europe by Light Stable Isotope Analysis (δ13C, δ15N, δ2H)

    PubMed Central

    von Holstein, Isabella C. C.; Walton Rogers, Penelope; Craig, Oliver E.; Penkman, Kirsty E. H.; Newton, Jason; Collins, Matthew J.

    2016-01-01

    We investigate the origin of archaeological wool textiles preserved by anoxic waterlogging from seven medieval archaeological deposits in north-western Europe (c. 700–1600 AD), using geospatial patterning in carbon (δ13C), nitrogen (δ15N) and non-exchangeable hydrogen (δ2H) composition of modern and ancient sheep proteins. δ13C, δ15N and δ2H values from archaeological wool keratin (n = 83) and bone collagen (n = 59) from four sites were interpreted with reference to the composition of modern sheep wool from the same regions. The isotopic composition of wool and bone collagen samples clustered strongly by settlement; inter-regional relationships were largely parallel in modern and ancient samples, though landscape change was also significant. Degradation in archaeological wool samples, examined by elemental and amino acid composition, was greater in samples from Iceland (Reykholt) than in samples from north-east England (York, Newcastle) or northern Germany (Hessens). A nominal assignment approach was used to classify textiles into local/non-local at each site, based on maximal estimates of isotopic variability in modern sheep wool. Light element stable isotope analysis provided new insights into the origins of wool textiles, and demonstrates that isotopic provenancing of keratin preserved in anoxic waterlogged contexts is feasible. We also demonstrate the utility of δ2H analysis to understand the location of origin of archaeological protein samples. PMID:27764106

  1. The response of the foliar antioxidant system and stable isotopes (δ(13)C and δ(15)N) of white willow to low-level air pollution.

    PubMed

    Wuytack, Tatiana; AbdElgawad, Hamada; Staelens, Jeroen; Asard, Han; Boeckx, Pascal; Verheyen, Kris; Samson, Roeland

    2013-06-01

    In this study we aimed to determine and elucidate the effect of ambient air pollution on the foliar antioxidant system and stable carbon and nitrogen isotopes of white willow (Salix alba L.). We grew white willow in uniform potting soil in the near vicinity of sixteen air quality monitoring stations in Belgium where nitrogen dioxide (NO2), ozone, sulfur dioxide and particulate matter concentrations were continuously measured. The trees were exposed to ambient air during six months (April-September 2011), and, thereafter, the degree of lipid peroxidation and foliar content of antioxidant molecules (ascorbate, glutathione, polyphenols, flavonoids), antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, peroxidase) and foliar stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes were measured. We found that lipid peroxidation was caused by air pollution stress, arising from high ambient NO2 concentrations, as shown by an increased amount of malondialdehyde. The antioxidant system was activated by increasing the amount of polyphenols at monitoring stations with a high atmospheric NO2 and low O3 concentration, while no increase of key enzymes (e.g., ascorbate, glutathione) was observed. The δ(13)C also decreased with increasing NO2 concentrations and decreasing O3 concentrations, probably reflecting a decreased net photosynthesis and/or a concomitant decrease of (13)CO2 in the atmosphere. Shade also influenced foliar δ(13)C and the content of leaf ascorbate and glutathione.

  2. (13)C/(12)C isotope ratios of organic acids, glucose and fructose determined by HPLC-co-IRMS for lemon juices authenticity.

    PubMed

    Guyon, Francois; Auberger, Pauline; Gaillard, Laetita; Loublanches, Caroline; Viateau, Maryse; Sabathié, Nathalie; Salagoïty, Marie-Hélène; Médina, Bernard

    2014-03-01

    High performance liquid chromatography linked to isotope ratio mass spectrometry via an interface allowing the chemical oxidation of organic matter (HPLC-co-IRMS) was used to simultaneously determine carbon 13 isotope ratio (δ(13)C) of organic acids, glucose and fructose in lime and lemon juices. Because of the significant difference between organic acids and sugars concentrations, the experimental protocol was optimised by applying a "current jump" to the IRMS device. The filament current is increased of 300μA during elution in order to enhance IRMS sensitivity. Then, analysis were performed on 35 lemon and lime fruits from various geographical origins and squeezed in the laboratory. An overall average δ(13)C values of -25.40±1.62‰, -23.83±1.82‰ and -25.67±1.72‰ is found for organic acids mixture mainly made up of citric acid, glucose and fructose, respectively. These authentic samples allowed the definition of a confidence domain to which have been confronted 30 commercial juices (24 "pure juices" and 6 coming from concentrate). Among these 30 samples, 10 present δ(13)C values outside the defined range revealing an added "C4" type organic acids or sugars, addition not specified on the label that is not in agreement with EU regulation. PMID:24176310

  3. (13)C/(12)C isotope ratios of organic acids, glucose and fructose determined by HPLC-co-IRMS for lemon juices authenticity.

    PubMed

    Guyon, Francois; Auberger, Pauline; Gaillard, Laetita; Loublanches, Caroline; Viateau, Maryse; Sabathié, Nathalie; Salagoïty, Marie-Hélène; Médina, Bernard

    2014-03-01

    High performance liquid chromatography linked to isotope ratio mass spectrometry via an interface allowing the chemical oxidation of organic matter (HPLC-co-IRMS) was used to simultaneously determine carbon 13 isotope ratio (δ(13)C) of organic acids, glucose and fructose in lime and lemon juices. Because of the significant difference between organic acids and sugars concentrations, the experimental protocol was optimised by applying a "current jump" to the IRMS device. The filament current is increased of 300μA during elution in order to enhance IRMS sensitivity. Then, analysis were performed on 35 lemon and lime fruits from various geographical origins and squeezed in the laboratory. An overall average δ(13)C values of -25.40±1.62‰, -23.83±1.82‰ and -25.67±1.72‰ is found for organic acids mixture mainly made up of citric acid, glucose and fructose, respectively. These authentic samples allowed the definition of a confidence domain to which have been confronted 30 commercial juices (24 "pure juices" and 6 coming from concentrate). Among these 30 samples, 10 present δ(13)C values outside the defined range revealing an added "C4" type organic acids or sugars, addition not specified on the label that is not in agreement with EU regulation.

  4. /sup 31/P NMR saturation-transfer and /sup 13/C NMR kinetic studies of glycolytic regulation during anaerobic and aerobic glycolysis

    SciTech Connect

    Campbell-Burk, S.L.; den Hollander, J.A.; Alger, J.R.; Shulman, R.G.

    1987-11-17

    /sup 31/P NMR saturation-transfer techniques have been employed in glucose-gown derepressed yeast to determine unidirectional fluxes in the upper part of the Embden-Meyerhof-Parnas pathway. The experiments were performed during anaerobic and aerobic glycolysis by saturating the ATP/sub ..gamma../ resonances and monitoring changes in the phosphomonoester signals from glucose 6-phosphate and fructose 1,6-bisphosphate. These experiments were supplemented with /sup 13/C NMR measurements of glucose utilization rates and /sup 13/C NMR label distribution studies. Combined with data obtained previously from radioisotope measurement, these /sup 31/P and /sup 13/C NMR kinetic studies allowed estimation of the net glycolytic flow in addition to relative flows through phosphofructokinase (PFK) and Fru-1,6-P/sub 2/ase during anaerobic and aerobic glycolysis. The /sup 31/P NMR saturation-transfer results are consistent with previous results obtained from measurements of metabolite levels, radioisotope data, and /sup 13/C NMR studies, providing additional support for in vivo measurement of the flows during glycolysis.

  5. Resiliency of Stable Isotope Fractionation (δ(13)C and δ(37)Cl) of Trichloroethene to Bacterial Growth Physiology and Expression of Key Enzymes.

    PubMed

    Buchner, Daniel; Behrens, Sebastian; Laskov, Christine; Haderlein, Stefan B

    2015-11-17

    Quantification of in situ (bio)degradation using compound-specific isotope analysis requires a known and constant isotope enrichment factor (ε). Because reported isotope enrichment factors for microbial dehalogenation of chlorinated ethenes vary considerably we studied the potential effects of metabolic adaptation to TCE respiration on isotope fractionation (δ(13)C and δ(37)Cl) using a model organism (Desulfitobacterium hafniesne Y51), which only has one reductive dehalogenase (PceA). Cells grown on TCE for the first time showed exponential growth until 10(9) cells/mL. During exponential growth, the cell-normalized amount of PceA enzyme increased steadily in the presence of TCE (up to 21 pceA transcripts per cell) but not with alternative substrates (<1 pceA transcript per cell). Cultures initially transferred or subcultivated on TCE showed very similar isotope fractionation, both for carbon (εcarbon: -8.6‰ ± 0.3‰ or -8.8‰ ± 0.2‰) and chlorine (εchlorine: -2.7‰ ± 0.3‰) with little variation (0.7‰) for the different experimental conditions. Thus, TCE isotope fractionation by D. hafniense strain Y51 was affected by neither growth phase, pceA transcription, or translation, nor by PceA content per cell, suggesting that transport limitations did not affect isotope fractionation. Previously reported variable ε values for other organohalide-respiring bacteria might thus be attributed to different expression levels of their multiple reductive dehalogenases.

  6. The suitability of the dual isotope approach (δ13C and δ18O) in tree ring studies

    NASA Astrophysics Data System (ADS)

    Siegwolf, Rolf; Saurer, Matthias

    2016-04-01

    The use of stable isotopes, complementary to tree ring width data in tree ring research has proven to be a powerful tool in studying the impact of environmental parameters on tree physiology and growth. These three proxies are thus instrumental for climate reconstruction and improve the understanding of underlying causes of growth changes. In various cases, however, their use suggests non-plausible interpretations. Often the use of one isotope alone does not allow the detection of such "erroneous isotope responses". A careful analysis of these deviating results shows that either the validity of the carbon isotope discrimination concept is no longer true (Farquhar et al. 1982) or the assumptions for the leaf water enrichment model (Cernusak et al., 2003) are violated and thus both fractionation models are not applicable. In this presentation we discuss such cases when the known fractionation concepts fail and do not allow a correct interpretation of the isotope data. With the help of the dual isotope approach (Scheidegger et al.; 2000) it is demonstrated, how to detect and uncover the causes for such anomalous isotope data. The fractionation concepts and their combinations before the background of CO2 and H2O gas exchange are briefly explained and the specific use of the dual isotope approach for tree ring data analyses and interpretations are demonstrated. References: Cernusak, L. A., Arthur, D. J., Pate, J. S. and Farquhar, G. D.: Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in Eucalyptus globules, Plant Physiol., 131, 1544-1554, 2003. Farquhar, G. D., O'Leary, M. H. and Berry, J. A.: On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves, Aust. J. Plant Physiol., 9, 121-137, 1982. Scheidegger, Y., Saurer, M., Bahn, M. and Siegwolf, R.: Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: A conceptual model

  7. UV-laser microdissection system - A novel approach for the preparation of high-resolution stable isotope records (δ13C/δ18O) from tree rings

    NASA Astrophysics Data System (ADS)

    Schollaen, Karina; Helle, Gerhard

    2013-04-01

    Intra-annual stable isotope13C and δ18O) studies of tree rings at various incremental resolutions have been attempting to extract valuable seasonal climatic and environmental information or assessing plant ecophysiological processes. For preparing high-resolution isotope samples normally wood segments or cores are mechanically divided in radial direction or cut in tangential direction. After mechanical dissection, wood samples are ground to a fine powder and either cellulose is extracted or bulk wood samples are analyzed. Here, we present a novel approach for the preparation of high-resolution stable isotope records from tree rings using an UV-laser microdissection system. Firstly, tree-ring cellulose is directly extracted from wholewood cross-sections largely leaving the wood anatomical structure intact and saving time as compared to the classical procedure. Secondly, micro-samples from cellulose cross-sections are dissected with an UV-Laser dissection microscope. Tissues of interest from cellulose cross-sections are identified and marked precisely with a screen-pen and dissected via an UV-laser beam. Dissected cellulose segments were automatically collected in capsules and are prepared for stable isotope13C and δ18O) analysis. The new techniques facilitate inter- and intra-annual isotope analysis on tree-ring and open various possibilities for comparisons with wood anatomy in plant eco-physiological studies. We describe the design and the handling of this novel methodology and discuss advantages and constraints given by the example of intra-annual oxygen isotope analysis on tropical trees.

  8. Effect of age and ration on diet-tissue isotopic13C, Δ15N) discrimination in striped skunks (Mephitis mephitis).

    PubMed

    Hobson, Keith A; Quirk, Travis W

    2014-01-01

    An important prerequisite for the effective use of stable isotopes in animal ecology is the accurate assessment of isotopic discrimination factors linking animals to their diets for a multitude of tissue types. Surprisingly, these values are poorly known in general and especially for mammalian carnivores and omnivores in particular. Also largely unknown are the factors that influence diet-tissue isotopic discrimination such as nutritional quality and age. We raised adult and juvenile striped skunks (Mephitis mephitis) in captivity on a constant omnivore diet (Mazuri Omnivore A 5635). Adults (n=6) and juveniles (n=3) were kept for 7 months and young (n=7) to the age of 50 days. We then examined individuals for stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values of hair, nails, lipid, liver, muscle, bone collagen and the plasma, and cellular fractions of blood. Discrimination values differed among age groups and were significantly higher for young compared with their mothers, likely due to the effects of weaning. Δ(15)N isotopic discrimination factors ranged from 3.14 (nails) to 5.6‰ (plasma) in adults and 4.3 (nails) to 5.8‰ (liver) for young. For Δ(13)C, values ranged from-3.3 (fat) to 3.0‰ (collagen) in adults and from-3.3 (fat) to 2.0‰ (collagen) in young. Our data provide an important tool for predicting diets and source of feeding for medium-sized mammalian omnivorous adults integrated over short (e.g. liver, plasma) through long (e.g. collagen) periods and underline the potential effects of age on isotopic values in omnivore diets. PMID:24506487

  9. Effect of age and ration on diet-tissue isotopic13C, Δ15N) discrimination in striped skunks (Mephitis mephitis).

    PubMed

    Hobson, Keith A; Quirk, Travis W

    2014-01-01

    An important prerequisite for the effective use of stable isotopes in animal ecology is the accurate assessment of isotopic discrimination factors linking animals to their diets for a multitude of tissue types. Surprisingly, these values are poorly known in general and especially for mammalian carnivores and omnivores in particular. Also largely unknown are the factors that influence diet-tissue isotopic discrimination such as nutritional quality and age. We raised adult and juvenile striped skunks (Mephitis mephitis) in captivity on a constant omnivore diet (Mazuri Omnivore A 5635). Adults (n=6) and juveniles (n=3) were kept for 7 months and young (n=7) to the age of 50 days. We then examined individuals for stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values of hair, nails, lipid, liver, muscle, bone collagen and the plasma, and cellular fractions of blood. Discrimination values differed among age groups and were significantly higher for young compared with their mothers, likely due to the effects of weaning. Δ(15)N isotopic discrimination factors ranged from 3.14 (nails) to 5.6‰ (plasma) in adults and 4.3 (nails) to 5.8‰ (liver) for young. For Δ(13)C, values ranged from-3.3 (fat) to 3.0‰ (collagen) in adults and from-3.3 (fat) to 2.0‰ (collagen) in young. Our data provide an important tool for predicting diets and source of feeding for medium-sized mammalian omnivorous adults integrated over short (e.g. liver, plasma) through long (e.g. collagen) periods and underline the potential effects of age on isotopic values in omnivore diets.

  10. Synthesizing the Use of Carbon Isotope (14C and 13C) Approaches to Understand Rates and Pathways for Permafrost C Mobilization and Mineralization

    NASA Astrophysics Data System (ADS)

    Estop-Aragones, C.; Olefeldt, D.; Schuur, E.

    2015-12-01

    To better understand the permafrost carbon (C) feedback it is important to synthesize our current knowledge, and knowledge gaps, of how permafrost thaw can cause in situ mineralization or downstream mobilization of aged soil organic carbon (SOC) and the rate of this release. This potential loss of old SOC may occur via gaseous flux of CO2 and CH4 exchanged between soil and the atmosphere and via waterborne flux as DOC, POC (and their subsequent decomposition and release to the atmosphere). Carbon isotope (14C and 13C) approaches have been used to estimate both rates and pathways for permafrost C mobilization and mineralization. Radiocarbon (14C) has been used to estimate the contribution of aged C to overall respiration or waterborne C export. We aim to contrast results from radiocarbon studies, in order to assess differences between ecosystems (contrasting wet and dry ecosystems), thaw histories (active layer deepening or thermokarst landforms), greenhouse gas considered (CO2 and CH4) and seasons. We propose to also contrast methodologies used for assessing the contribution of aged C to overall C balance, and include studies using 13C data. Biological fractionation of 13C during both uptake and decomposition has been taken advantage of both in order to aid the interpretation of 14C data and on its own to assess sources and mineralization pathways. For example, 13C data has been used to differentiate between CH4 production pathways, and the relative contribution of anaerobic CO2 production to overall respiration. Overall, carbon isotope research is proving highly valuable for our understanding of permafrost C dynamics following thaw, and there is a current need to synthesize the available literature.

  11. Determination of the 13C/12C ratio of ethanol derived from fruit juices and maple syrup by isotope ratio mass spectrometry: collaborative study.

    PubMed

    Jamin, Eric; Martin, Frédérique; Martin, Gilles G

    2004-01-01

    A collaborative study of the carbon-13 isotope ratio mass spectrometry (13C-IRMS) method based on fermentation ethanol for detecting some sugar additions in fruit juices and maple syrup is reported. This method is complementary to the site-specific natural isotope fractionation by nuclear magnetic resonance (SNIF-NMR) method for detecting added beet sugar in the same products (AOAC Official Methods 995.17 and 2000.19), and uses the same initial steps to recover pure ethanol. The fruit juices or maple syrups are completely fermented with yeast, and the alcohol is distilled with a quantitative yield (>96%). The carbon-13 deviation (delta13C) of ethanol is then determined by IRMS. This parameter becomes less negative when exogenous sugar derived from plants exhibiting a C4 metabolism (e.g., corn or cane) is added to a juice obtained from plants exhibiting a C3 metabolism (most common fruits except pineapple) or to maple syrup. Conversely, the delta13C of ethanol becomes more negative when exogenous sugar derived from C3 plants (e.g., beet, wheat, rice) is added to pineapple products. Twelve laboratories analyzed 2 materials (orange juice and pure cane sugar) in blind duplicate and 4 sugar-adulterated materials (orange juice, maple syrup, pineapple juice, and apple juice) as Youden pairs. The precision of that method for measuring delta13C was similar to that of other methods applied to wine ethanol or extracted sugars in juices. The within-laboratory (Sr) values ranged from 0.06 to 0.16%o (r = 0.17 to 0.46 percent per thousand), and the among-laboratories (SR) values ranged from 0.17 to 0.26 percent per thousand (R = 0.49 to 0.73 percent per thousand). The Study Directors recommend that the method be adopted as First Action by AOAC INTERNATIONAL.

  12. 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea.

    PubMed

    Glaubitz, Sabine; Lueders, Tillmann; Abraham, Wolf-Rainer; Jost, Günter; Jürgens, Klaus; Labrenz, Matthias

    2009-02-01

    Marine pelagic redoxclines are zones of high dark CO(2) fixation rates, which can correspond up to 30% of the surface primary production. However, despite this significant contribution to the pelagic carbon cycle, the identity of most chemolithoautotrophic organisms is still unknown. Therefore, the aim of this study was to directly link the dark CO(2) fixation capacity of a pelagic redoxcline in the central Baltic Sea (Landsort Deep) with the identity of the main chemolithoautotrophs involved. Our approach was based on the analysis of natural carbon isotope signatures in fatty acid methyl esters (FAMEs) and on measurements of CO(2) incorporation in (13)C-bicarbonate pulse experiments. The incorporation of (13)C into chemolithoautotrophic cells was investigated by rRNA-based stable isotope probing (RNA-SIP) and FAME analysis after incubation for 24 and 72 h under in situ conditions. Our results demonstrated that fatty acids indicative of Proteobacteria were significantly enriched in (13)C slightly below the chemocline. RNA-SIP analyses revealed that two different Gammaproteobacteria and three closely related Epsilonproteobacteria of the Sulfurimonas cluster were active dark CO(2)-fixing microorganisms, with a time-dependent community shift between these groups. Labelling of Archaea was not detectable, but after 72 h of incubation the (13)C-label had been transferred to a potentially bacterivorous ciliate related to Euplotes sp. Thus, RNA-SIP provided direct evidence for the contribution of chemolithoautotrophic production to the microbial food web in this marine pelagic redoxcline, emphasizing the importance of dark CO(2)-fixing Proteobacteria within this habitat.

  13. 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea.

    PubMed

    Glaubitz, Sabine; Lueders, Tillmann; Abraham, Wolf-Rainer; Jost, Günter; Jürgens, Klaus; Labrenz, Matthias

    2009-02-01

    Marine pelagic redoxclines are zones of high dark CO(2) fixation rates, which can correspond up to 30% of the surface primary production. However, despite this significant contribution to the pelagic carbon cycle, the identity of most chemolithoautotrophic organisms is still unknown. Therefore, the aim of this study was to directly link the dark CO(2) fixation capacity of a pelagic redoxcline in the central Baltic Sea (Landsort Deep) with the identity of the main chemolithoautotrophs involved. Our approach was based on the analysis of natural carbon isotope signatures in fatty acid methyl esters (FAMEs) and on measurements of CO(2) incorporation in (13)C-bicarbonate pulse experiments. The incorporation of (13)C into chemolithoautotrophic cells was investigated by rRNA-based stable isotope probing (RNA-SIP) and FAME analysis after incubation for 24 and 72 h under in situ conditions. Our results demonstrated that fatty acids indicative of Proteobacteria were significantly enriched in (13)C slightly below the chemocline. RNA-SIP analyses revealed that two different Gammaproteobacteria and three closely related Epsilonproteobacteria of the Sulfurimonas cluster were active dark CO(2)-fixing microorganisms, with a time-dependent community shift between these groups. Labelling of Archaea was not detectable, but after 72 h of incubation the (13)C-label had been transferred to a potentially bacterivorous ciliate related to Euplotes sp. Thus, RNA-SIP provided direct evidence for the contribution of chemolithoautotrophic production to the microbial food web in this marine pelagic redoxcline, emphasizing the importance of dark CO(2)-fixing Proteobacteria within this habitat. PMID:18793316

  14. Application of (13)C and (15)N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions.

    PubMed

    Cho, Kun-Ching; Lee, Do Gyun; Fuller, Mark E; Hatzinger, Paul B; Condee, Charles W; Chu, Kung-Hui

    2015-10-30

    This study identified microorganisms capable of using the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or its metabolites as carbon and/or nitrogen sources under different electron-accepting conditions using (13)C and (15)N stable isotope probing (SIP). Mesocosms were constructed using groundwater and aquifer solids from an RDX-contaminated aquifer. The mesocosms received succinate as a carbon source and one of four electron acceptors (nitrate, manganese(IV), iron(III), or sulfate) or no additional electron acceptor (to stimulate methanogenesis). When RDX degradation was observed, subsamples from each mesocosm were removed and amended with (13)C3- or ring-(15)N3-, nitro-(15)N3-, or fully-labeled (15)N6-RDX, followed by additional incubation and isolation of labeled nucleic acids. A total of fifteen 16S rRNA sequences, clustering in α- and γ-Proteobacteria, Clostridia, and Actinobacteria, were detected in the (13)C-DNA fractions. A total of twenty seven sequences were derived from different (15)N-DNA fractions, with the sequences clustered in α- and γ-Proteobacteria, and Clostridia. Interestingly, sequences identified as Desulfosporosinus sp. (in the Clostridia) were not only observed to incorporate the labeled (13)C or (15)N from labeled RDX, but also were detected under each of the different electron-accepting conditions. The data suggest that (13)C- and (15)N-SIP can be used to characterize microbial communities involved in RDX biodegradation, and that the dominant pathway of RDX biodegradation may differ under different electron-accepting conditions. PMID:25935409

  15. A mantle origin for Paleoarchean peridotitic diamonds from the Panda kimberlite, Slave Craton: Evidence from 13C-, 15N- and 33,34S-stable isotope systematics

    NASA Astrophysics Data System (ADS)

    Cartigny, Pierre; Farquhar, James; Thomassot, Emilie; Harris, Jeffrey W.; Wing, Bozwell; Masterson, Andy; McKeegan, Kevin; Stachel, Thomas

    2009-11-01

    In order to address diamond formation and origin in the lithospheric mantle underlying the Central Slave Craton, we report N- and C-stable isotopic compositions and N-contents and aggregation states for 85 diamonds of known paragenesis (73 peridotitic, 8 eclogitic and 4 from lower mantle) from the Panda kimberlite (Ekati Mine, Lac de Gras Area, Canada). For 12 peridotitic and two eclogitic sulfide inclusion-bearing diamonds from this sample set, we also report multiple-sulfur isotope ratios. The 73 peridotitic diamonds have a mean δ13C-value of - 5.2‰ and range from - 6.9 to - 3.0‰, with one extreme value at - 14.1‰. The associated δ15N-values range from - 17.0 to + 8.5‰ with a mean value of - 4.0‰. N-contents range from 0 to 1280 ppm. The 8 eclogitic diamonds have δ13C-values ranging from - 11.2 to - 4.4‰ with one extreme value at - 19.4‰. Their δ15N ranges from - 2.1 to + 7.9‰ and N-contents fall between 0 and 3452 ppm. Four diamonds with an inferred lower mantle origin are all Type II (i.e. nitrogen-free) and have a narrow range of δ13C values, between - 4.5 and - 3.5‰. The δ34S of the 14 analyzed peridotitic and eclogitic sulfide inclusions ranges from - 3.5 to +5.7‰. None of them provide evidence for anomalous δ33S-values; observed variations in δ33S are from +0.19 to - 0.33‰, i.e. within the 2 sigma uncertainties of mantle sulfur ( δ33S = 0‰). At Panda, the N contents and the δ13C of sulfide-bearing peridotitic diamonds show narrower ranges than silicate-bearing peridotitic diamonds. This evidence supports the earlier suggestion established from eclogitic diamonds from the Kaapvaal that sulfide-(±silicate) bearing diamonds sample a more restricted portion of sublithospheric mantle than silicate-(no sulfide) bearing diamonds. Our findings at Panda suggest that sulfide-bearing diamonds should be considered as a specific diamond population on a global-scale. Based on our study of δ34S, Δ 33S, δ15N and δ13C, we find no

  16. Effects of Water on Carbonate Clumped Isotope Bond Reordering Kinetics

    NASA Astrophysics Data System (ADS)

    Brenner, D. C.; Passey, B. H.

    2015-12-01

    Carbonate clumped isotope geothermometry is a powerful tool for reconstructing past temperatures, both in surface environments and in the shallow crust. The method is based on heavy isotope "clumps" within single carbonate groups (e.g., 13C18O16O2-2), whose overabundance beyond levels predicted by chance is determined by mineralization temperature. The degree of clumped isotope overabundance can change at elevated temperatures (ca. >100ºC) owing to solid-state diffusion of C and O through the mineral lattice. Understanding the kinetics of this clumped isotope reordering process is a prerequisite for application to geological questions involving samples that have been heated in the subsurface. Thus far, the effect of water on reordering kinetics has not been explored. The presence of water dramatically increases rates of oxygen self-diffusion in calcite, but whether this water-enhanced diffusion is limited to the mineral surface or extends into the bulk crystal lattice is not clear. Here we present experimentally determined Arrhenius parameters for reordering rates in optical calcite heated under aqueous high pressure (100 MPa) conditions. We observe only marginal increases in reordering rates under these wet, high pressure conditions relative to rates observed for the same material reacted under dry, low pressure conditions. The near identical clumped isotope reordering rates for wet and dry conditions contrasts with the orders of magnitude increase in oxygen diffusivity at the mineral surface when water is present. This suggests the latter effect arises from surface reactions that have minimal influence on the diffusivity of C or O in the bulk mineral. Our results also imply that previously published reordering kinetics determined under dry, low pressure experimental conditions are applicable to geological samples that have been heated in the presence of water.

  17. Feeding and migration habits of white shark Carcharodon carcharias (Lamniformes: Lamnidae) from Isla Guadalupe inferred by analysis of stable isotopes delta15N and delta13C.

    PubMed

    Jaime-Rivera, Mario; Caraveo-Patiño, Javier; Hoyos-Padilla, Mauricio; Galván-Magaña, Felipe

    2014-06-01

    Stable isotope composition of marine top predator's tissues provides insight information of its trophic ecology and migratory behavior. Previous reports have shown that dermal tissues could record longer patterns of hunting and movement. Based on this, the aim of this study was to describe the feeding and migratory habits of the white shark from Isla Guadalupe, using stable isotopic analysis of dermis. We considered a small subset of many possible prey taxa that the sharks could have eaten throughout their migration: pinnipeds, squid and tuna. We grouped the data in five focal areas: Gulf of California, Coast of California, Isla Guadalupe, SOFA and Hawaii. We performed a Bayesian mixing model to study the trophic ecology of this top predator. Average isotopic values for dermis tissue of white shark were delta13C (-14.5 per thousand) and delta15N (19.1 per thousand). Corrected white shark dermal mean values to resemble muscle were delta13C (-16.6 per thousand) and delta15N (21.2 per thousand). Mixing model data from dermis showed predation in offshore areas such the SOFA and a main importance of pinnipeds as prey of the white shark in Isla Guadalupe. PMID:25102646

  18. Determination of methanogenic pathways through carbon isotope13C) analysis for the two-stage anaerobic digestion of high-solids substrates.

    PubMed

    Gehring, Tito; Klang, Johanna; Niedermayr, Andrea; Berzio, Stephan; Immenhauser, Adrian; Klocke, Michael; Wichern, Marc; Lübken, Manfred

    2015-04-01

    This study used carbon isotope (δ(13)C)-based calculations to quantify the specific methanogenic pathways in a two-stage experimental biogas plant composed of three thermophilic leach bed reactors (51-56 °C) followed by a mesophilic (36.5 °C) anaerobic filter. Despite the continuous dominance of the acetoclastic Methanosaeta in the anaerobic filter, the methane (CH4) fraction derived from carbon dioxide reduction (CO2), fmc, varied significantly over the investigation period of 200 days. At organic loading rates (OLRs) below 6.0 gCOD L(-1) d(-1), the average fmc value was 33%, whereas at higher OLRs, with a maximum level of 17.0 gCOD L(-1) d(-1), the fmc values reached 47%. The experiments allowed for a clear differentiation of the isotope fractionation related to the formation and consumption of acetate in both stages of the plant. Our data indicate constant carbon isotope fractionation for acetate formation at different OLRs within the thermophilic leach bed reactors as well as a negligible contribution of homoacetogenesis. These results present the first quantification of methanogenic pathway (fmc values) dynamics for a continually operated mesophilic bioreactor and highlight the enormous potential of δ(13)C analysis for a more comprehensive understanding of the anaerobic degradation processes in CH4-producing biogas plants. PMID:25741999

  19. Pyrolysis compound specific isotopic analysis (δ13C and δD Py-CSIA) of soil organic matter size fractions under four vegetation covers.

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Almendros, Gonzalo; De la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    A chemical characterization of soil organic matter (SOM) under different ground cover from a Mediterranean climate (Doñana National Park, Andalusia, Spain) is approached using bulk δ15N, δ13C, δ18O and δD isotopic analysis (C/TC-IRMS) and δ13C and δD pyrolysis compound specific isotopic analysis (Py-CSIA: Py-GC-C/TC-IRMS). Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: <0.05 mm) were studied from each soil. A complete conventional analytical pyrolysis (Py-GC/MS) of these samples have been studied in detail (Jiménez-Morillo et al., 2015). Bulk isotopic analysis of stable light elements (δ15N, δ13C, δ18O and δD) revealed particular isotopic signatures showing differences related with the main vegetation cover and the different soil size fraction. All samples had a carbon isotopic signature between -26 and -29 ‰, which indicated that the organic matter in the two fractions of each soil sample derived from C3-type plants. The bulk δD isotopic signature in whole soil sample indicate a lower deuterium fractionation occurs in SOM under arboreal than under no-arboreal vegetation, this can be caused by the occurrence of a higher water evaporation rate under bush vegetation and/or to differences due to leaf morphology as previously described (Leaney et al., 1985). A δ15N vs. δ18O chart may provide some clues about N origin in the soil and particularly about the original source of nitrates (Kendall et al., 1996). In in all sample and size fractions our values are in the chart area corresponding to NO3 in precipitation, with lighter δ18O (c. 20 ‰) values compatible with fertilizers may be from adjacent crops. In addition we were able to assign δ13C and δD values for a number of

  20. Paleobiological Implications of the Isotopic Signatures ( 13C, 15N) of Fossil Mammal Collagen in Scladina Cave (Sclayn, Belgium)

    NASA Astrophysics Data System (ADS)

    Bocherens, Hervé; Billiou, Daniel; Patou-Mathis, Marylène; Bonjean, Dominique; Otte, Marcel; Mariotti, André

    1997-11-01

    An isotopic investigation of upper Pleistocene mammal bones and teeth from Scladina cave (Sclayn, Belgium) demonstrated the very good quality of collagen preservation. A preliminary screening of the samples used the amount of nitrogen in whole bone and dentine in order to estimate the preserved amount of collagen before starting the extraction process. The isotopic abundances of fossil specimens from still-extant species are consistent with their trophic position. Moreover, the 15N isotopic abundance is higher in dentine than in bone in bears and hyenas, a phenomenon already observed in modern specimens. These results demonstrate that the isotopic compositions of samples from Scladina cave can be interpreted in ecological terms. Mammoths exhibit a high 15N isotopic abundance relative to other herbivores, as was the case in Siberian and Alaskan samples. These results suggest distinctive dietary adaptations in herbivores living in the mammoth steppe. Cave bears are clearly isotopically different from coeval brown bears, suggesting an ecological separation between species, with a pure vegetarian diet for cave bear and an omnivorous diet for brown bear.

  1. Kinetic analysis of reactions of Si-based epoxy resins by near-infrared spectroscopy, 13C NMR and soft-hard modelling.

    PubMed

    Garrido, Mariano; Larrechi, Maria Soledad; Rius, F Xavier; Mercado, Luis Adolfo; Galià, Marina

    2007-02-01

    Soft- and hard-modelling strategy was applied to near-infrared spectroscopy data obtained from monitoring the reaction between glycidyloxydimethylphenyl silane, a silicon-based epoxy monomer, and aniline. On the basis of the pure soft-modelling approach and previous chemical knowledge, a kinetic model for the reaction was proposed. Then, multivariate curve resolution-alternating least squares optimization was carried out under a hard constraint, that compels the concentration profiles to fulfil the proposed kinetic model at each iteration of the optimization process. In this way, the concentration profiles of each species and the corresponding kinetic rate constants of the reaction, unpublished until now, were obtained. The results obtained were contrasted with 13C NMR. The joint interval test of slope and intercept for detecting bias was not significant (alpha=5%).

  2. Evaluation of on-line pyrolysis coupled to isotope ratio mass spectrometry for the determination of position-specific (13)C isotope composition of short chain n-alkanes (C6-C12).

    PubMed

    Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro

    2016-06-01

    We measured (13)C intramolecular isotopic composition of commercially available short-chain hydrocarbons (n-C6-n-C12) using (13)C-NMR. Results show that the main variation is between the terminal and the sub-terminal C-atom positions. Site-preference (difference in δ(13)C values between terminal and sub-terminal C-atom positions) among all the samples varies between -12.2‰ and +8.4‰. Comparison of these results with those obtained using on-line pyrolysis coupled with GC-C-IRMS show that the thermal cracking of hydrocarbons occurs with a good isotopic fidelity between terminal and sub-terminal C-atom positions of the starting material and the related pyrolysis products (methane and ethylene). On-line pyrolysis coupled with GC-C-IRMS can thus be used for tracing hydrocarbons biogeochemical processes.

  3. sup 18 O/ sup 16 O and sup 13 C/ sup 12 C in lower Paleozoic articulate brachiopods: Implications for the isotopic composition of seawater

    SciTech Connect

    Wadleigh, M.A. ); Veizer, J. Ruhr Univ., Bochum )

    1992-01-01

    Three hundred and eleven articulate brachiopods, with extensive geographic coverage, spanning the Cambrian to Silurian stratigraphic interval, were analyzed for oxygen and carbon isotopic composition. Cambrian samples have {delta}{sup 18}O {le} {minus}7{per thousand}, Ordovician samples {le} {minus}2.4{per thousand}, and Silurian samples {le} {minus}1.9{per thousand}, confirming the previously established trend towards lighter isotopic compositions with increasing age throughout the Lower Paleozoic. Forty-nine best preserved' Ordovician and Silurian samples were identified based on scanning electron microscopy and trace element analysis. They were found to bracket the isotopic compositions of over 85% of specimens from these stratigraphic intervals supporting widespread preservation of the isotopic signal. Some latest Ordovician and Lower Ludlovian samples associated with shale sequences are apparently enriched' in {sup 18}O. These are interpreted as an environmental phenomenon, perhaps related to water temperature and glaciation. A number of Silurian samples of varying genera and stratigraphic levels are highly enriched in {sup 13}C, up to +6{per thousand}. Some are shale related, but some are associated with carbonate-bearing basins. These are also thought to represent near-original' compositions, but a single environmental cause is unknown. The present data show that luminescence is not a decisive criterion for evaluating the degree of brachiopod preservation. Whole-shell values were isotopically similar to their nonluminescent portions for both oxygen and carbon.

  4. 18O /16O and 13C /12C in lower Paleozoic articulate brachiopods: Implications for the isotopic composition of seawater

    NASA Astrophysics Data System (ADS)

    Wadleigh, Moire A.; Veizer, Ján

    1992-01-01

    Three hundred and eleven articulate brachiopods, with extensive geographic coverage, spanning the Cambrian to Silurian stratigraphic interval, were analyzed for oxygen and carbon isotopic composition. Cambrian samples have δ18O ≤ -7%., Ordovician samples ≤ -2.4‰, and Silurian samples ≤ -1.9‰, confirming the previously established trend towards lighter isotopic compositions with increasing age throughout the Lower Paleozoic. Forty-nine "best preserved" Ordovician and Silurian samples were identified based on scanning electron microscopy and trace element analysis. They were found to bracket the isotopic compositions of over 85% of specimens from these stratigraphic intervals supporting widespread preservation of the isotopic signal. Some latest Ordovician and Lower Ludlovian samples associated with shale sequences are apparently "enriched" in 18O. These are interpreted as an environmental phenomenon, perhaps related to water temperature and glaciation. A number of Silurian samples of varying genera and stratigraphic levels are highly enriched in 13C, up to +6‰. Some are shale related, but some are associated with carbonate-bearing basins. These are also thought to represent "near-original" compositions, but a single environmental cause is unknown. The present data show that luminescence is not a decisive criterion for evaluating the degree of brachiopod preservation. Whole-shell values were isotopically similar to their nonluminescent portions for both oxygen and carbon.

  5. Identifying the African Wintering Grounds of Hybrid Flycatchers Using a Multi–Isotope (δ2H, δ13C, δ15N) Assignment Approach

    PubMed Central

    Van Wilgenburg, Steven L.; Hobson, Keith A.; Folmer, Eelke; Font, Laura; Klaassen, Marcel

    2014-01-01

    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher. PMID:24847717

  6. Identifying the African wintering grounds of hybrid flycatchers using a multi-isotope (δ2H, δ13C, δ15N) assignment approach.

    PubMed

    Veen, Thor; Hjernquist, Mårten B; Van Wilgenburg, Steven L; Hobson, Keith A; Folmer, Eelke; Font, Laura; Klaassen, Marcel

    2014-01-01

    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher.

  7. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-05-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the processes that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC) due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This process leads to low δ13CDIC values at dephs and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange provides an important secondary influence due to two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, air-sea gas exchange is slow, so biological effect dominate spatial δ13CDIC gradients both in the interior and at the surface, in constrast to conclusions from some previous studies. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed (δ13Cpre) and remineralized (δ13Crem) contributions as well as the effects of biology (Δδ13Cbio) and air-sea gas exchange (δ13C*). The model reproduces major features of the observed large-scale distribution of δ13CDIC, δ13Cpre, δ13Crem, δ13C*, and Δδ13Cbio. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement with δ13CDIC

  8. Synthesis of Isotopically Labeled (13)C3-Simazine and Development of a Simultaneous UPLC-MS/MS Method for the Analysis of Simazine in Soil.

    PubMed

    Song, Yan; Guo, Yangzhen; Zhang, Xia; Yang, Yue; Chen, Shuo; She, Gaimei; She, Dongmei

    2016-01-14

    The isotope dilution mass spectrometry (IDMS) is a highly efficient method for tackling the ion suppression in complex matrix by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), but a lack of commercial internal standards is a limiting factor for these analyses. Herein, an economical and efficient strategy for the synthesis of (13)C3-simazine via a three-step procedure was developed. The isotope-labeled internal standard was used for determination of simazine residue in soil samples. The quantitation method has a limit of detection of 0.015 μg/kg and quantitation of 0.08 μg/kg. The inter-day and intra-day precision of the method were below 4.6%. Recovery values were ranged between 92.9% and 99.2%. All the samples obtained from six provinces in China contained from 1 to 62 μg/kg of simazine.

  9. Easy Extraction Method To Evaluate δ13C Vanillin by Liquid Chromatography-Isotopic Ratio Mass Spectrometry in Chocolate Bars and Chocolate Snack Foods.

    PubMed

    Bononi, Monica; Quaglia, Giancarlo; Tateo, Fernando

    2015-05-20

    An easy extraction method that permits the use of a liquid chromatography-isotopic ratio mass spectrometry (LC-IRMS) system to evaluate δ(13)C of vanillin in chocolate products and industrial flavorings is presented. The method applies the determination of stable isotopes of carbon to discriminate between natural vanillin from vanilla beans and vanillin from other sources (mixtures from beans, synthesis, or biotechnology). A series of 13 chocolate bars and chocolate snack foods available on the Italian market and 8 vanilla flavorings derived from industrial quality control processes were analyzed. Only 30% of products considered in this work that declared "vanilla" on the label showed data that permitted the declaration "vanilla" according to European Union (EU) Regulation 1334/2008. All samples not citing "vanilla" or "natural flavoring" on the label gave the correct declaration. The extraction method is presented with data useful for statistical evaluation.

  10. Easy Extraction Method To Evaluate δ13C Vanillin by Liquid Chromatography-Isotopic Ratio Mass Spectrometry in Chocolate Bars and Chocolate Snack Foods.

    PubMed

    Bononi, Monica; Quaglia, Giancarlo; Tateo, Fernando

    2015-05-20

    An easy extraction method that permits the use of a liquid chromatography-isotopic ratio mass spectrometry (LC-IRMS) system to evaluate δ(13)C of vanillin in chocolate products and industrial flavorings is presented. The method applies the determination of stable isotopes of carbon to discriminate between natural vanillin from vanilla beans and vanillin from other sources (mixtures from beans, synthesis, or biotechnology). A series of 13 chocolate bars and chocolate snack foods available on the Italian market and 8 vanilla flavorings derived from industrial quality control processes were analyzed. Only 30% of products considered in this work that declared "vanilla" on the label showed data that permitted the declaration "vanilla" according to European Union (EU) Regulation 1334/2008. All samples not citing "vanilla" or "natural flavoring" on the label gave the correct declaration. The extraction method is presented with data useful for statistical evaluation. PMID:25965784

  11. Impact of deficit irrigation on water use efficiency and carbon isotope composition (delta13C) of field-grown grapevines under Mediterranean climate.

    PubMed

    de Souza, Claudia R; Maroco, João P; dos Santos, Tiago P; Rodrigues, M Lucília; Lopes, Carlos M; Pereira, João S; Chaves, M Manuela

    2005-08-01

    The objective of this study was to evaluate the effect of deficit irrigation on intrinsic water use efficiency (A/g(s)) and carbon isotope composition (delta13C) of two grapevine cultivars (Moscatel and Castelão), growing in a commercial vineyard in SW Portugal. The study was done in two consecutive years (2001 and 2002). The treatments were full irrigation (FI), corresponding to 100% of crop evapotranspiration (ETc), rain-fed (no irrigation, NI), and two types of deficit irrigation (50% ETc): (i) by supplying the water either to one side of the root system or to the other, which is partial rootzone drying (PRD), or (ii) dividing the same amount of water by the two sides of the root system, the normal deficit irrigation (DI). The water supplied to the PRD treatment alternated sides approximately every 15 d. The values of predawn leaf water potential (Psi(pd)) and the cumulative integral of Psi(pd) (S(Psi)) during the season were lower in 2001 than in the 2002 growing season. Whereas differences in Psi(pd) and S(Psi) between PRD and DI were not significantly different in 2001, in 2002 (a dryer year) both cultivars showed lower values of S(Psi) in the PRD treatment as compared with the DI treatment. This suggests that partial rootzone drying may have a positive effect on water use under dryer conditions, either as a result of better stomatal control and/or reduced vigour. The effects of the water treatments on delta13C were more pronounced in whole grape berries and pulp than in leaves. The delta13C of pulp showed the best correlation with intrinsic water use efficiency (A/g(s)) as well as with S(Psi). In spite of the better water status observed in PRD compared with DI in the two cultivars in 2002, no statistical differences between the two treatments were observed in A/g(s) and delta13C. On the other hand, they showed a higher delta13C compared with FI. In conclusion, it is apparent that the response to deficit irrigation varies with the environmental conditions

  12. Biogeochemical Indicators in High- and Low-Arctic Marine and Terrestrial Avian Community Changes: Comparative Isotopic (13C, 15N, and 34S) Studies in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Causey, D.; Bargmann, N. A.; Burnham, K. K.; Burnham, J. L.; Padula, V. M.; Johnson, J. A.; Welker, J. M.

    2011-12-01

    Understanding the complex dynamics of environmental change in northern latitudes is of paramount importance today, given documented rapid shifts in sea ice, plant phenology, temperatures, deglaciation, and habitat fidelity. This knowledge is particularly critical for Arctic avian communities, which are integral components by which biological teleconnections are maintained between the mid and northern latitudes. Furthermore, Arctic birds are fundamental to Native subsistence lifestyles and a focus for conservation activities. Avian communities of marine and terrestrial Arctic environments represent a broad spectrum of trophic levels, from herbivores (eg., geese Chen spp.), planktivores (eg., auklets Aethia spp.), and insectivores (eg., passerines: Wheatears Oenanthe spp., Longspurs Calcarius spp.), to predators of marine invertebrates (eg., eiders Somateria spp.), nearshore and offshore fish (eg., cormorants Phalacrocorax spp, puffins Fratercula spp.), even other bird species (eg., gulls Larus spp., falcons Peregrinus spp.). This diversity of trophic interconnections is an integral factor in the dynamics of Arctic ecosystem ecology, and they are key indicators for the strength and trajectories of change. We are especially interested in their feeding ecology, using stable isotope-diet relations to examine historical diets and to predict future feeding ecology by this range of species. Since 2009, we have been studying the foodweb ecology using stable isotopes13C, δ15N, δ34S) of contemporaneous coastal and marine bird communities in High Arctic (Northwest Greenland) and Low Arctic (western Aleutian Islands, AK). We are quantifying the isotopic values of blood, organ tissues, and feathers, and have carried out comparisons between native and lipid-extracted samples. Although geographically distant, these communities comprise similar taxonomic and ecological congeners, including several species common to both (eg., Common Eider, Black-legged Kittiwake, Northern

  13. Spatially tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry

    SciTech Connect

    Moran, James J.; Doll, Charles G.; Bernstein, Hans C.; Renslow, Ryan S.; Cory, Alexandra B.; Hutchison, Janine R.; Lindemann, Stephen R.; Fredrickson, Jim K.

    2014-08-25

    This is a manuscript we would like to submit for publication in Environmental Microbiology Reports. This manuscript contains a description of a laser ablation isotope ratio mass spectrometry methodology developed at PNNL and applied to a microbial system at a PNNL project location – Hot Lake, Washington. I will submit a word document containing the entire manuscript with this Erica input request form.

  14. Importance of bacterivory and preferential selection toward diatoms in larvae of Crepidula fornicata (L.) assessed by a dual stable isotope (13C, 15N) labeling approach

    NASA Astrophysics Data System (ADS)

    Leroy, Fanny; Riera, Pascal; Jeanthon, Christian; Edmond, Frédérique; Leroux, Cédric; Comtet, Thierry

    2012-05-01

    In Europe, the gastropod Crepidula fornicata is an invasive species characterized by a long reproductive period (from February to November). Thus, its larvae are exposed to variations in available food sources (in terms of quantity and quality). We aimed to investigate if bacteria could contribute to larval food both in presence or absence of phytoplankton, and to compare these results to seasonal variations of bacteria and phytoplankton abundances at a coastal site in the English Channel. First, ingestion of fluorescent beads of 0.5 to 2 μm diameter, showed that larvae were able to ingest particles of typical bacterial size. Then we used a dual stable isotope labeling approach which consisted in labeling a bacterial pelagic community with 15N and a diatom (Chaetoceros gracilis) culture with 13C, and supplying larvae with 15N-labeled bacteria, 13C-labeled diatoms, and both labeled sources. This technique has, to our knowledge, never been applied to invertebrate larvae. After 24 h of experiment, larvae were significantly enriched in all treatments: + 21.5‰ (∆δ13C) when supplied with diatoms, + 1364‰ (∆δ15N) when supplied with bacteria, and + 24‰ (∆δ13C) and + 135‰ (∆δ15N) when supplied with the two mixed sources. These results indicated that bacteria can contribute to the larval nutrition in C. fornicata, even in the presence of phytoplankton. Our results however suggested that larvae of C. fornicata preferentially used diatoms and showed that the supply of free bacteria did not alter the uptake of diatoms. Considering the seasonal variations of bacteria and phytoplankton abundances at the study site, these results suggested that bacteria may constitute a complementary resource for the larvae of C. fornicata when phytoplankton is abundant and may become a substitute resource when phytoplankton is less available. This approach offers promising perspectives to trace food sources and assess nitrogen and carbon fluxes between planktotrophic larvae

  15. Identification of metabolically active bacteria in the gut of the generalist Spodoptera littoralis via DNA stable isotope probing using 13C-glucose.

    PubMed

    Shao, Yongqi; Arias-Cordero, Erika M; Boland, Wilhelm

    2013-01-01

    Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction(1), boosting the immune response(2), pheromone production(3), as well as nutrition, including the synthesis of essential amino acids(4,) among others.     Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing (13)C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA(5). The incorporation of (13)C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled ((12)C) one. In the end, the (13)C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the (12)C-unlabeled similar one(6). Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The

  16. Identification of Metabolically Active Bacteria in the Gut of the Generalist Spodoptera littoralis via DNA Stable Isotope Probing Using 13C-Glucose

    PubMed Central

    Boland, Wilhelm

    2013-01-01

    Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction1, boosting the immune response2, pheromone production3, as well as nutrition, including the synthesis of essential amino acids4, among others.     Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing 13C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA5. The incorporation of 13C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled (12C) one. In the end, the 13C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the 12C-unlabeled similar one6. Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The phylogenetic analysis of the DNA

  17. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in marine zooplankton.

    PubMed

    Pomerleau, Corinne; Stern, Gary A; Pućko, Monika; Foster, Karen L; Macdonald, Robie W; Fortier, Louis

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea. PMID:26874765

  18. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in marine zooplankton.

    PubMed

    Pomerleau, Corinne; Stern, Gary A; Pućko, Monika; Foster, Karen L; Macdonald, Robie W; Fortier, Louis

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea.

  19. Pyrolysis compound specific isotopic analysis (δ13C and δD Py-CSIA) of soil organic matter size fractions under four vegetation covers.

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Almendros, Gonzalo; De la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    A chemical characterization of soil organic matter (SOM) under different ground cover from a Mediterranean climate (Doñana National Park, Andalusia, Spain) is approached using bulk δ15N, δ13C, δ18O and δD isotopic analysis (C/TC-IRMS) and δ13C and δD pyrolysis compound specific isotopic analysis (Py-CSIA: Py-GC-C/TC-IRMS). Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: <0.05 mm) were studied from each soil. A complete conventional analytical pyrolysis (Py-GC/MS) of these samples have been studied in detail (Jiménez-Morillo et al., 2015). Bulk isotopic analysis of stable light elements (δ15N, δ13C, δ18O and δD) revealed particular isotopic signatures showing differences related with the main vegetation cover and the different soil size fraction. All samples had a carbon isotopic signature between -26 and -29 ‰, which indicated that the organic matter in the two fractions of each soil sample derived from C3-type plants. The bulk δD isotopic signature in whole soil sample indicate a lower deuterium fractionation occurs in SOM under arboreal than under no-arboreal vegetation, this can be caused by the occurrence of a higher water evaporation rate under bush vegetation and/or to differences due to leaf morphology as previously described (Leaney et al., 1985). A δ15N vs. δ18O chart may provide some clues about N origin in the soil and particularly about the original source of nitrates (Kendall et al., 1996). In in all sample and size fractions our values are in the chart area corresponding to NO3 in precipitation, with lighter δ18O (c. 20 ‰) values compatible with fertilizers may be from adjacent crops. In addition we were able to assign δ13C and δD values for a number of

  20. Chemical weathering and the role of sulfuric and nitric acids in carbonate weathering: Isotopes (13C, 15N, 34S, and 18O) and chemical constraints

    NASA Astrophysics Data System (ADS)

    Li, Cai; Ji, Hongbing

    2016-05-01

    Multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-) and water chemistry were used to evaluate weathering rates and associated CO2 consumption by carbonic acid and strong acids (H2SO4 and HNO3) in a typical karst watershed (Wujiang River, Southwest China). The dual sulfate isotopes indicate that sulfate is mainly derived from sulfide oxidation in coal stratum and sulfide-containing minerals, and dual nitrate isotopes indicate that nitrate is mainly derived from soil N and nitrification. The correlation between isotopic compositions and water chemistry suggests that sulfuric and nitric acids, in addition to carbonic acid, are involved in carbonate weathering. The silicate and carbonate weathering rates are 7.2 t km-2 yr-1 and 76 t km-2 yr-1, respectively. In comparison with carbonate weathering rates (43 t km-2 yr-1) by carbonic acid alone, the subsequent increase in rates indicates significant enhancement of weathering when combined with sulfuric and nitric acids. Therefore, the role of sulfuric and nitric acids in the rock weathering should be considered in the global carbon cycle.

  1. Source Apportionment of Polycyclic Aromatic Hydrocarbons in Central European Soils with Compound-Specific Triple Isotopes (δ(13)C, Δ(14)C, and δ(2)H).

    PubMed

    Bosch, Carme; Andersson, August; Kruså, Martin; Bandh, Cecilia; Hovorková, Ivana; Klánová, Jana; Knowles, Timothy D J; Pancost, Richard D; Evershed, Richard P; Gustafsson, Örjan

    2015-07-01

    This paper reports the first study applying a triple-isotope approach for source apportionment of polycyclic aromatic hydrocarbons (PAHs). The (13)C/(12)C, (14)C/(12)C, and (2)H/(1)H isotope ratios of PAHs were determined in forest soils from mountainous areas of the Czech Republic, European Union. Statistical modeling applying a Bayesian Markov chain Monte Carlo (MCMC) framework to the environmental triple isotope PAH data and an end-member PAH isotope database allowed comprehensive accounting of uncertainties and quantitative constraints on the PAH sources among biomass combustion, liquid fossil fuel combustion, and coal combustion at low and high temperatures. The results suggest that PAHs in this central European region had a clear predominance of coal combustion sources (75 ± 6%; uncertainties represent 1 SD), mainly coal pyrolysis at low temperature (∼650 °C; 61 ± 8%). Combustion of liquid fossil fuels and biomass represented 16 ± 3 and 9 ± 3% of the total PAH burden (∑PAH14), respectively. Although some soils were located close to potential PAH point sources, the source distribution was within a narrow range throughout the region. These observation-based top-down constraints on sources of environmental PAHs provide a reference for both improved bottom-up emission inventories and guidance for efforts to mitigate PAH emissions. PMID:26053501

  2. Trophic ecology of the supralittoral rocky shore (Roscoff, France): A dual stable isotope13C, δ 15N) and experimental approach

    NASA Astrophysics Data System (ADS)

    Laurand, Sandrine; Riera, Pascal

    2006-07-01

    The present study investigates the trophic transfers on the upper littoral rocky shore (i.e. the supralittoral zone together with the upper midlittoral and adlittoral) of northern Brittany. The population mainly consists of four invertebrate species: the littorinids Littorina saxatilis and Melarhaphe neritoides, the isopod Ligia oceanica and the insect Petrobius maritimus. The utilisation of food sources available to these grazers was examined in a laboratory microcosm feeding experiment and a field study using stable isotopes13C, δ 15N). The results indicated that although Ligia oceanica preferentially occurs in the supralittoral zone, its trophic subsidies originate mostly from the adlittoral and lower intertidal zones. The stable isotope data also suggested that adlittoral terrestrial organic material may be the major food source of Petrobius maritimus. δ 15N of Littorina saxatilis indicated a highly variable diet consisting of supralittoral lichens, midlittoral macroalgae and other food sources (e.g. microalgae). Both feeding experiments and stable isotope data show that only Melarhaphe neritoides has a clearly identifiable diet based on a mixture of lichens, mostly Verrucaria maura and Caloplaca marina, as estimated by an isotopic mixing model. Hence, the food web of this intertidal zone appears largely based on trophic subsidies from other habitats (i.e. upper and lower intertidal zones).

  3. Improved detection of sugar addition to maple syrup using malic acid as internal standard and in 13C isotope ratio mass spectrometry (IRMS).

    PubMed

    Tremblay, Patrice; Paquin, Réal

    2007-01-24

    Stable carbon isotope ratio mass spectrometry (delta13C IRMS) was used to detect maple syrup adulteration by exogenous sugar addition (beet and cane sugar). Malic acid present in maple syrup is proposed as an isotopic internal standard to improve actual adulteration detection levels. A lead precipitation method has been modified to isolate quantitatively malic acid from maple syrup using preparative reversed-phase liquid chromatography. The stable carbon isotopic ratio of malic acid isolated from this procedure shows an excellent accuracy and repeatability of 0.01 and 0.1 per thousand respectively, confirming that the modified lead precipitation method is an isotopic fractionation-free process. A new approach is proposed to detect adulteration based on the correlation existing between the delta13Cmalic acid and the delta13Csugars-delta13Cmalic acid (r = 0.704). This technique has been tested on a set of 56 authentic maple syrup samples. Additionally, authentic samples were spiked with exogeneous sugars. The mean theoretical detection level was statistically lowered using this technique in comparison with the usual two-standard deviation approach, especially when maple syrup is adulterated with beet sugar : 24 +/- 12% of adulteration detection versus 48 +/- 20% (t-test, p = 7.3 x 10-15). The method was also applied to published data for pineapple juices and honey with the same improvement. PMID:17227042

  4. Kinetic and metabolic isotope effects in coral skeletal carbon isotopes: A re-evaluation using experimental coral bleaching as a case study

    NASA Astrophysics Data System (ADS)

    Schoepf, Verena; Levas, Stephen J.; Rodrigues, Lisa J.; McBride, Michael O.; Aschaffenburg, Matthew D.; Matsui, Yohei; Warner, Mark E.; Hughes, Adam D.; Grottoli, Andréa G.

    2014-12-01

    Coral skeletal δ13C can be a paleo-climate proxy for light levels (i.e., cloud cover and seasonality) and for photosynthesis to respiration (P/R) ratios. The usefulness of coral δ13C as a proxy depends on metabolic isotope effects (related to changes in photosynthesis) being the dominant influence on skeletal δ13C. However, it is also influenced by kinetic isotope effects (related to calcification rate) which can overpower metabolic isotope effects and thus compromise the use of coral skeletal δ13C as a proxy. Heikoop et al. (2000) proposed a simple data correction to remove kinetic isotope effects from coral skeletal δ13C, as well as an equation to calculate P/R ratios from coral isotopes. However, despite having been used by other researchers, the data correction has never been directly tested, and isotope-based P/R ratios have never been compared to P/R ratios measured using respirometry. Experimental coral bleaching represents a unique environmental scenario to test this because bleaching produces large physiological responses that influence both metabolic and kinetic isotope effects in corals. Here, we tested the δ13C correction and the P/R calculation using three Pacific and three Caribbean coral species from controlled temperature-induced bleaching experiments where both the stable isotopes and the physiological variables that cause isotopic fractionation (i.e., photosynthesis, respiration, and calcification) were simultaneously measured. We show for the first time that the data correction proposed by Heikoop et al. (2000) does not effectively remove kinetic effects in the coral species studied here, and did not improve the metabolic signal of bleached and non-bleached corals. In addition, isotope-based P/R ratios were in poor agreement with measured P/R ratios, even when the data correction was applied. This suggests that additional factors influence δ13C and δ18O, which are not accounted for by the data correction. We therefore recommend that the

  5. Stable Isotope Labeled n-Alkanes to Assess Digesta Passage Kinetics through the Digestive Tract of Ruminants

    PubMed Central

    Warner, Daniel; Ferreira, Luis M. M.; Breuer, Michel J. H.; Dijkstra, Jan; Pellikaan, Wilbert F.

    2013-01-01

    We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four rumen-cannulated lactating dairy cows receiving four contrasting ryegrass silage treatments that differed in nitrogen fertilization level (45 or 90 kg nitrogen ha−1) and maturity (early or late). Passage kinetics through the gastrointestinal tract were derived from the δ13C (i.e. the ratio 13C:12C) in apparently undigested fecal material. Isotopic enrichment was observed in a wide range of long-chain n-alkanes (C27–C36) and passage kinetics were determined for the most abundant C29, C31 and C33 n-alkanes, for which a sufficiently high response signal was detected by combustion isotope ratio mass spectrometry. Basal diet treatment and carbon chain length of n-alkanes did not affect fractional passage rates from the rumen (K1) among individual n-alkanes (3.71–3.95%/h). Peak concentration time and transit time showed a quantitatively small, significant (p≤0.002) increase with carbon chain length. K1 estimates were comparable to those of the 13C labeled digestible dry matter fraction (3.38%/h; r = 0.61 to 0.71; p≤0.012). A literature review has shown that n-alkanes are not fermented by microorganisms in the rumen and affirms no preferential depletion of 13C versus 12C. Our results suggest that 13C labeled n-alkanes can be used as nutrient passage tracers and support the reliability of the δ13C signature of digestible feed nutrients as a tool to measure nutrient-specific passage kinetics. PMID:24124493

  6. Site-specific thermodynamic stability and unfolding of a de novo designed protein structural motif mapped by 13C isotopically edited IR spectroscopy.

    PubMed

    Kubelka, Ginka S; Kubelka, Jan

    2014-04-23

    The mechanism of protein folding remains poorly understood, in part due to limited experimental information available about partially folded states. Isotopically edited infrared (IR) spectroscopy has emerged as a promising method for studying protein structural changes with site-specific resolution, but its full potential to systematically probe folding at multiple protein sites has not yet been realized. We have used (13)C isotopically edited IR spectroscopy to investigate the site-specific thermal unfolding at seven different locations in the de novo designed helix-turn-helix protein αtα. As one of the few stable helix-turn-helix motifs, αtα is an excellent model for studying the roles of secondary and tertiary interactions in folding. Circular dichroism (CD) experiments on the full αtα motif and its two peptide fragments show that interhelical tertiary contacts are critical for stabilization of the secondary structure. The site-specific thermal unfolding probed by (13)C isotopically edited IR is likewise consistent with primarily tertiary stabilization of the local structure. The least thermally stable part of the αtα motif is near the turn where the interhelical contacts are rather loose, while the motif's center with best established core packing has the highest stability. Similar correlation between the local thermal stability and tertiary contacts was found previously for a naturally occurring helix-turn-helix motif. These results underline the importance of native-like tertiary stabilizing interactions in folding, in agreement with recent state-of-the art folding simulations as well as simplified, native-centric models.

  7. Isotopic analyses (/sup 18/O, /sup 13/C, /sup 14/C) of two meromictic lakes in the Canadian Arctic Archipelago

    SciTech Connect

    Page, P.; Ouellet, M.; Hillaire-Marcel, C.; Dickman, M.

    1984-05-01

    Meromictic Lakes Garrow and Sophia in the Canadian Arctic Archipelago were sampled to establish the origin and age of their water by isotopic studies. /sup 18/O values reflect the permanent stratification of the water in both lakes. The mixolimnia contain waters with an isotopic signal between -13.16 and -21.98%, coherent with the values for precipitation in these high latitudes. In the chemoclines, the delta/sup 18/O values increase to -10% concomitantly with a rise in chloride content to 42 g.liter/sup -1/. In the monimolimnia, hypersaline waters (up to 2.5 times the salinity of seawater) show negative delta/sup 18/O values (ca. -.08%). These waters result from brine production during permafrost growth in the watershed, according to a Rayleigh process. /sup 14/C dating of total inorganic carbon in the Lake Garrow monimolimnion gave an age of 2580 +/- 260 years BP. In Lake Sophia, the deep waters exhibit recent /sup 14/C activity that suggests recent infiltration of seawater into the lake basin.

  8. Measurement of 13C and 15N isotope labeling by gas chromatography/combustion/isotope ratio mass spectrometry to study amino acid fluxes in a plant-microbe symbiotic association.

    PubMed

    Molero, Gemma; Aranjuelo, Iker; Teixidor, Pilar; Araus, José Luis; Nogués, Salvador

    2011-03-15

    We have developed a method based on a double labeling with stable isotopes and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analyses to study amino acid exchange in a symbiotic plant-microbe association. Isotopic precision was studied for 21 standards including 15 amino acid derivatives, three N-protected amino acid methyl esters, three amines and one international standard. High correlations were observed between the δ(13)C and δ(15)N values obtained by GC/C/IRMS and those obtained by an elemental analyzer (EA) coupled to an isotope ratio mass spectrometer (R(2) = 0.9868 and 0.9992, respectively). The mean precision measured was 0.04‰ for δ(13)C and 0.28‰ for δ(15)N (n = 15). This method was applied in vivo to the symbiotic relationship between alfalfa (Medicago sativa L.) and N(2)-fixing bacteria. Plants were simultaneously labeled over 10 days with (13)C-depleted CO(2) ((12)CO(2)), which was assimilated through photosynthesis by leaves, and (15)N(2) fixed via nodules. Subsequently, the C and N isotope compositions (i.e. δ(13)C and δ(15)N) of free amino acids were analyzed in leaves and nodules by GC/C/IRMS. The method revealed the pattern of C and N exchange between leaves and nodules, highlighting that γ-aminobutanoic acid and glycine may represent an important form of C transport from leaves to the nodules. The results confirmed the validity, reliability and accuracy of the method for assessing C and N fluxes between plants and symbiotic bacteria and support the use of this technique in a broad range of metabolic and fluxomic studies.

  9. Monitoring the bio-stimulation of hydrocarbon-contaminated soils by measurements of soil electrical properties, and CO2 content and its 13C/12C isotopic signature

    NASA Astrophysics Data System (ADS)

    Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.

    2013-12-01

    Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and

  10. Comparing three methods of NEE-flux partitioning from the same grassland ecosystem: the 13C, 18O isotope approach and using simulated Ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Siegwolf, R.; Bantelmann, E.; Saurer, M.; Eugster, W.; Buchmann, N.

    2007-12-01

    As a change in the global climate occurs with increasing temperatures, the Carbon exchange processes of terrestrial ecosystems will change as well. However, it is difficult to quantify the degree to what ecosystem respiration will change relative to the CO2 uptake by photosynthesis. To estimate the carbon sequestration potential of terrestrial vegetation cover it is essential to know both fluxes: ecosystem respiration and the carbon uptake by the vegetation cover. Therefore the net ecosystem exchange of CO2 (NEE) was measured with the eddy covariance method and separated into assimilation and respiration flux. We applied three different approaches, 1) the conventional method, applying the nighttime relationship between soil temperature and NEE for calculating the respiration flux during the day, 2) the use of stable carbon and 3) oxygen isotopes. We compared the results of the three partitioning exercises for a temperate grassland ecosystem in the pre-Alps of Switzerland for four days in June 2004. The assimilation flux derived with the conventional NEE partitioning approach, was best represented at low PAR and low temperatures, in the morning between 5 and 9 am. With increasing temperature and PAR the assimilation for the whole canopy was underestimated. For partitioning NEE via 18O approach, correlations of temperature and radiation with assimilation and respiration flux were significantly higher for the partitioning approach with 18O than for the 13C NEE partitioning. A sensitivity analysis showed the importance of an accurate determination of the equilibrium term θ between CO2 and leaf water δ18O for the NEE partitioning with 18O. For using 13C to partition NEE, the correct magnitude of the 13C fractionation and for the respiration term is essential. The analysis of the data showed that for low light and low morning temperatures the conventional method delivers reasonably good results. When the temperatures exceeded 21°C the isotope approach provided the

  11. Detection and quantification of chlordecone in contaminated soils from the French West Indies by GC-MS using the 13C10-chlordecone stable isotope as a tracer.

    PubMed

    Martin-Laurent, Fabrice; Sahnoun, Mehdi M; Merlin, Chloé; Vollmer, Guy; Lübke, Markus

    2014-04-01

    Chlordecone is an organochlorine insecticide that has been widely used to control banana weevil in the French West Indies. As a result of this intense use, up to 20,000 ha are contaminated by this insecticide in the French West Indies, and this causes environmental damage and health problems. A scenario of exposure was drawn by French authorities, based on land usage records. Many efforts have been made to monitor the occurrence of chlordecone and its main metabolites using different analytical methods, including GC, GC/MS, LC/MS, and NIRS. Although these different methods allow for the detection and quantification of chlordecone from soils, none of them estimate the bottleneck caused by extraction of this organochlorine from soils with high adsorption ability. In this study, we used (13)C10-chlordecone as a tracer to estimate chlordecone extraction yield and to quantify chlordecone in soil extracts based on the (13)C/(12)C isotope dilution. We report the optimization of (13)C10-chlordecone extraction from an Andosol. The method was found to be linear from 0.118 to 43 mg kg(-1) in the Andosol, with an instrumental detection limit estimated at 8.84 μg kg(-1). This method showed that chlordecone ranged from 35.4 down to 0.18 mg kg(-1) in Andosol, Nitisol, Ferralsol, and Fluvisol soil types. Traces of the metabolite β-monohydrochlordecone were detected in the Andosol, Nitisol, and Ferralsol soil samples. This last result indicates that this method could be useful to monitor the fate of chlordecone in soils of the French West Indies. PMID:23733305

  12. Carbon isotope13C) excursions suggest times of major methane release during the last 14 ka in Fram Strait, the deep-water gateway to the Arctic

    NASA Astrophysics Data System (ADS)

    Consolaro, C.; Rasmussen, T. L.; Panieri, G.; Mienert, J.; Bünz, S.; Sztybor, K.

    2014-10-01

    We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (∼80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dating reveals a detailed chronology for the last 14 ka BP. The δ13C record measured on the benthic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values, as low as -4.37‰ in the Bølling-Allerød interstadials and as low as -3.41‰ in the early Holocene. After cleaning procedure designed to remove all authigenic carbonate coatings on benthic foraminiferal tests, the 13C values are still negative (as low as -2.75‰). We have interpreted these negative carbon isotope excursions (CIEs) to record past methane release events, resulting from the incorporation of 13C-depleted carbon from methane emissions into the benthic foraminiferal shells. The CIEs during the Bølling-Allerød interstadials and the early Holocene relate to periods of ocean warming, sea level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.

  13. Carbon (δ13C) and Nitrogen (δ15N) Stable Isotope Signatures in Bat Fur Indicate Swarming Sites Have Catchment Areas for Bats from Different Summering Areas

    PubMed Central

    Segers, Jordi L.; Broders, Hugh G.

    2015-01-01

    Migratory patterns of bats are not well understood and traditional methods to study this, like capture-mark-recapture, may not provide enough detail unless there are many records. Stable isotope profiles of many animal species have been used to make inferences about migration. Each year Myotis lucifugus and M. septentrionalis migrate from summering roosts to swarming caves and mines in the fall, but the pattern of movement between them is not well understood. In this study, fur δ13C and δ15N values of 305 M. lucifugus and 200 M. septentrionalis were analyzed to make inferences about migration patterns between summering areas and swarming sites in Nova Scotia, Canada. We expected that there would be greater variability in δ13C and δ15N among individuals at swarming sites because it was believed that these sites are used by individuals originating from many summering areas. There was extensive overlap in the standard ellipse area, corrected for small sample sizes (SEAc), of bats at swarming sites and much less overlap in SEAc among groups sampled at summering areas. Meaningful inference could not be made on M. septentrionalis because their low variation in SEAc may have been the result of sampling only 3 summering areas. However, for M. lucifugus, swarming sites had larger SEAc than summering areas and predictive discriminant analysis assigned swarming bats to multiple summering areas, supporting the contention that swarming bats are mixed aggregations of bats from several summering areas. Together, these data support the contention that swarming sites have catchment areas for bats from multiple summering areas and it is likely that the catchment areas for swarming sites overlap. These data suggest that δ13C and δ15N profiling of bat fur offer some potential to make inferences about regional migration in bats. PMID:25923696

  14. Analyzing sites of OH radical attack (ring vs. side chain) in oxidation of substituted benzenes via dual stable isotope analysis (δ(13)C and δ(2)H).

    PubMed

    Zhang, Ning; Geronimo, Inacrist; Paneth, Piotr; Schindelka, Janine; Schaefer, Thomas; Herrmann, Hartmut; Vogt, Carsten; Richnow, Hans H

    2016-01-15

    OH radicals generated by the photolysis of H2O2 can degrade aromatic contaminants by either attacking the aromatic ring to form phenolic products or oxidizing the substituent. We characterized these competing pathways by analyzing the carbon and hydrogen isotope fractionation (εC and εH) of various substituted benzenes. For benzene and halobenzenes that only undergo ring addition, low values of εC (-0.7‰ to -1.0‰) were observed compared with theoretical values (-7.2‰ to -8‰), possibly owing to masking effect caused by pre-equilibrium between the substrate and OH radical preceding the rate-limiting step. In contrast, the addition of OH radicals to nitrobenzene ring showed a higher εC (-3.9‰), probably due to the lower reactivity. Xylene isomers, anisole, aniline, N,N-dimethylaniline, and benzonitrile yielded normal εH values (-2.8‰ to -29‰) indicating the occurrence of side-chain reactions, in contrast to the inverse εH (11.7‰ to 30‰) observed for ring addition due to an sp(2) to sp(3) hybridization change at the reacting carbon. Inverse εH values for toluene (14‰) and ethylbenzene (30‰) were observed despite the formation of side-chain oxidation products, suggesting that ring addition has a larger contribution to isotope fractionation. Dual element isotope slopes (∆δ(2)H/∆δ(13)C) therefore allow identification of significant degradation pathways of aromatic compounds by photochemically induced OH radicals. Issues that should be addressed in future studies include quantitative determination of the contribution of each competing pathway to the observed isotope fractionation and characterization of physical processes preceding the reaction that could affect isotope fractionation.

  15. The Precise Radio Observation of the 13C Isotopic Fractionation for Carbon Chain Molecule HC3N in the Low-Mass Star Forming Region L1527

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2016-06-01

    We observed the three 13C isotopic species of HC3N with the high signal-to-noise ratios in L1527 using Green Bank 100 m telescope and Nobeyama 45 m telescope to explore the production scheme of HC3N, where L1527 is the low-mass star forming region in the phase of a warm carbon chain chemistry region. The spectral lines of the J = 5--4, 9--8, 10--9, and 12--11 transitions in the 44-109 GHz region were used to measure isotopic ratios. The abundance of HCCCN was determined from the line intensities of the two weak hyperfine components of the J = 5-4 transition. The isotopic ratios were precisely determined to be 1.00 : 1.01 : 1.35 : 86.4 for [H13CCCN] : [HC13CCN] : [HCC13CN] : [HCCCN]. It was found that the abundance of H13CCCN is equal to that of HC13CCN, and it was implied that HC3N is mainly formed by the reaction schemes via C2H2 and C2H2+ in L1527. This would suggest a universality of dicarbide chemistry producing HC3N irrespective of evolutional phases from a starless dark cloud to a warm carbon chain chemistry region. Sakai, N., Sakai, T., Hirota, T., & Yamamoto, S. 2008, ApJ, 672, 371 Takano, S., Masuda, A., Hirahara, Y., et al. 1998, A&A, 329, 1156

  16. Submillimeter Observations of Titan: Global Measures of Stratospheric Temperature, CO, HCN, HC3N, and the Isotopic Ratios 12C/13C and 14N/15N

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark A.

    2004-11-01

    Interferometric observations of the atmosphere of Titan were performed with the Submillimeter Array on two nights in 2004 February to investigate the global average vertical distributions of several molecular species above the tropopause. Rotational transitions of CO, isomers of HCN, and HC3N were simultaneously recorded. The abundance of CO is determined to be 51+/-4 parts per million (ppm), constant with altitude. The vertical profile of HCN is dependent on the assumed temperature but generally increases from 30 parts per billion at the condensation altitude (~83 km) to 5 ppm at ~300 km. Furthermore, the central core of the HCN emission is strong and can be reproduced only if the upper stratospheric temperature increases with altitude. The isotopic ratios are determined to be 12C/13C=132+/-25 and 14N/15N=94+/-13 assuming the Coustenis & Bézard temperature profile. If the Lellouch temperature profile is assumed, the ratios decrease to 12C/13C=108+/-20 and 14N/15N=72+/-9. The vertical profile of HC3N is consistent with that derived by Marten et al.

  17. Identification of biomass utilizing bacteria in a carbon-depleted glacier forefield soil by the use of 13C DNA stable isotope probing.

    PubMed

    Zumsteg, Anita; Schmutz, Stefan; Frey, Beat

    2013-06-01

    As Alpine glaciers are retreating rapidly, bare soils with low organic C and N contents are becoming exposed. Carbon availability is a key factor regulating microbial diversity and ecosystem functioning in these soils. The aim of this study was to investigate how bacterial activity, community structure and composition are influenced by organic carbon availability. Bare soils were supplied with (13)C-labelled fungal (Penicillium sp.) and green algal (Chlorella sp.) biomass and the CO2 evolution and its δ(13)C signature were monitored up to 60 days. These organisms have previously been isolated near the glacier terminus. DNA stable isotope probing followed by T-RFLP profiling and sequencing of 16S rRNA genes was employed to identify consumers able to assimilate carbon from these biomass amendments. Higher respiration and higher bacterial activity indicated a more efficient utilization of algal cells than fungal cells. Flavobacterium sp. predominantly incorporated fungal-derived C, whereas the algal-derived C was mainly incorporated by Acidobacteria and Proteobacteria. This study emphasizes the important role of both fungal and algal biomass in increasing the carbon pool in recently deglaciated bare soils, as only 20% of the added C was respired as CO2, and the rest, we presume, remained in the soil.

  18. Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas--characterization by multivariate analysis.

    PubMed

    Foan, L; Leblond, S; Thöni, L; Raynaud, C; Santamaría, J M; Sebilo, M; Simon, V

    2014-01-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations and N, C stable isotope signatures were determined in mosses Hypnum cupressiforme Hedw. from 61 sites of 3 European regions: Île-de-France (France); Navarra (Spain); the Swiss Plateau and Basel area (Switzerland). Total PAH concentrations of 100-700 ng g(-1), as well as δ(13)C values of -32 to -29‰ and δ(15)N values of -11 to -3‰ were measured. Pearson correlation tests revealed opposite trends between high molecular weight PAH (4-6 aromatic rings) content and δ(13)C values. Partial Least Square regressions explained the very significant correlations (r > 0.91, p < 0.001) between high molecular weight PAH concentrations by local urban land use (<10 km) and environmental factors such as elevation and pluviometry. Finally, specific correlations between heavy metal and PAH concentrations were attributed to industrial emissions in Switzerland and road traffic emissions in Spain.

  19. Passage kinetics of concentrates in dairy cows measured with carbon stable isotopes.

    PubMed

    Warner, D; Dijkstra, J; Tamminga, S; Pellikaan, W F

    2013-12-01

    the 13C : 12C ratio varied considerably from studies based on external markers. Our results suggest that the use of 13C isotopes as digesta passage markers can provide feed component-specific K 1 estimates for concentrates and provides new insight into passage kinetics of NDF from technologically treated compound feed.

  20. Assessment of trace elements, POPs, (210)Po and stable isotopes ((15)N and (13)C) in a rare filter-feeding shark: The megamouth.

    PubMed

    Moura, Jailson Fulgencio de; Merico, Agostino; Montone, Rosalinda Carmela; Silva, Josilene; Seixas, Tércia Guedes; Godoy, José Marcus de Oliveira; Saint'Pierre, Tatiana Dillenburg; Hauser-Davis, Rachel Ann; Di Beneditto, Ana Paula Madeira; Reis, Estéfane Cardinot; Tavares, Davi Castro; Lemos, Leila Soledade; Siciliano, Salvatore

    2015-06-15

    With less than 60 records being reported worldwide, the megamouth (Megachasma pelagios) is today one of the least known shark species inhabiting our oceans. Therefore, information concerning the biology and ecology of this enigmatic organism is very scarce and limited to feeding behaviour and preferred habitat. The present work reports new data on the concentrations of trace elements, organic mercury, POPs and (210)Po in hepatic and muscular tissues of a specimen found stranded in the southeastern coast of Brazil. Additionally, we provide new evidence based on stable isotope analysis (δ(15)N and δ(13)C) confirming the preference for the pelagic habitat and the zooplanktivorous feeding behaviour of the megamouth. These results are consistent with the low concentrations of organic pollutant compounds and other elements measured in our samples.

  1. Assessment of trace elements, POPs, (210)Po and stable isotopes ((15)N and (13)C) in a rare filter-feeding shark: The megamouth.

    PubMed

    Moura, Jailson Fulgencio de; Merico, Agostino; Montone, Rosalinda Carmela; Silva, Josilene; Seixas, Tércia Guedes; Godoy, José Marcus de Oliveira; Saint'Pierre, Tatiana Dillenburg; Hauser-Davis, Rachel Ann; Di Beneditto, Ana Paula Madeira; Reis, Estéfane Cardinot; Tavares, Davi Castro; Lemos, Leila Soledade; Siciliano, Salvatore

    2015-06-15

    With less than 60 records being reported worldwide, the megamouth (Megachasma pelagios) is today one of the least known shark species inhabiting our oceans. Therefore, information concerning the biology and ecology of this enigmatic organism is very scarce and limited to feeding behaviour and preferred habitat. The present work reports new data on the concentrations of trace elements, organic mercury, POPs and (210)Po in hepatic and muscular tissues of a specimen found stranded in the southeastern coast of Brazil. Additionally, we provide new evidence based on stable isotope analysis (δ(15)N and δ(13)C) confirming the preference for the pelagic habitat and the zooplanktivorous feeding behaviour of the megamouth. These results are consistent with the low concentrations of organic pollutant compounds and other elements measured in our samples. PMID:25858662

  2. Quantification of soy protein using the isotope method (δ(13)C and δ(15)N) for commercial brands of beef hamburger.

    PubMed

    Ducatti, Rhani; de Almeida Nogueira Pinto, José Paes; Sartori, Maria Márcia Pereira; Ducatti, Carlos

    2016-12-01

    Hamburgers (beef patties) may be adulterated through the overuse of protein extenders. Among vegetables, soy protein is the best substitute for animal protein. These ingredients help to reduce the cost of producing a final product, and they maximize profits for fraudulent industries. Moreover, the ingestion of soy or other non-meat proteins by allergic individuals may present a health risk. In addition, monitoring by supervisory bodies is hampered by a lack of appropriate analytical methodologies. Within this context, the aim of this study was to determine and quantify the levels of added soy protein by determination of (15)N and (13)C stable isotopes. A total of 100 beef hamburger samples from 10 commercial brands were analyzed. Only three samples of the G brand were within the standards set the Brazilian legislation. The remaining 97 samples from 10 commercial brands contained >4% soy protein; therefore, they are adulterated and not in compliance with the current legislation. PMID:27501234

  3. Late Holocene monsoon climate of northeastern Taiwan inferred from elemental (C, N) and isotopic13C, δ15N) data in lake sediments

    NASA Astrophysics Data System (ADS)

    Selvaraj, Kandasamy; Wei, Kuo-Yen; Liu, Kon-Kee; Kao, Shuh-Ji

    2012-03-01

    Little information exists about centennial-scale climate variability on oceanic islands in the western Pacific where the East Asian monsoon (EAM) strongly influences the climate, mountain ecosystem and the society. In this study, we investigate a 168 cm long sediment core recovered from Emerald Peak Lake in subalpine NE Taiwan for the contents of grain size, total organic carbon (TOC), C/N ratio, and stable isotopes13C and δ15N) to reconstruct the monsoon climate and vegetation density during the late Holocene. Six radiocarbon (14C) ages obtained on plant remains used for the chronology indicate that the sediment core has been accumulated since ˜3770 cal BP with a mean sedimentation rate of 44.6 cm/ka. The sub-centennial resolution of our proxy records reveals strong fluctuations of the EAM and vegetation density for the past ˜3770 cal BP. The greater contents of coarse and medium sediments with overall decreasing trends from 3770 to 2000 cal BP suggest an increasing fine sediment influx from the catchment likely due to an increasing lake water level. Although low TOC content, C/N ratio, and enriched δ13C values in bulk and fine sediments during this interval suggest a sparsely vegetated catchment, increasing trends of TOC content and C/N ratio together with decreasing trends of δ13C and δ15N values indicate a strengthening pattern of summer monsoon. This is in contrast to a decreasing monsoon strength inferred from Dongge Cave δ18O record at that time, supporting the idea of anti-phasing of summer EAM and Indian summer monsoon. Since 2000 cal BP, higher content of fine sediments with high TOC content and C/N ratio but relatively depleted δ13C and low δ15N values suggest a high but stable lake water level and dense C3 plants, consistent with a stronger summer monsoon in a wet climate. Within this general trend, we interpret a prominent change of proxy parameters in sediments from ˜560 to 150 cal BP, as subtropical evidence for the Little Ice Age in NE

  4. Cycling of high-molecular-weight dissolved organic matter in the Middle Atlantic Bight as revealed by carbon isotopic ({sup 13}C and {sup 14}C) signatures

    SciTech Connect

    Guo, L.; Santschi, P.H.; Cifuentes, L.A.

    1996-09-01

    Carbon isotopes ({sup 13}C and {sup 14}C) and elemental composition (C and N) in two fractions of colloidal organic matter (COM) were measured to study the origin and cycling of dissolved organic matter (DOM) in the Middle Atlantic Bight (MAB). COM{sub 1} (1 kDa-0.2 {mu}m) was 59% of the bulk DOM in surface Chesapeake Bay waters and decreased to 30-35% in water of the MAB. COM{sub 10} (10 kDa-0.2 {mu}m), which was the high-molecular-weight (HMW) component of COM{sub 1}, comprised 3-12% of the bulk DOM, with highest concentrations in Chesapeake Bay waters and the lowest in deep waters in the MAB. {Delta}{sup 14}C values of COM{sub 1} decreased from nearshore (-21 to +12%) to offshore and from surface (-166 to -85{per_thousand}) to bottom waters (-400 to -304{per_thousand}). Although {Delta}{sup 14}C values of surface-water HMW COM{sub 10} were generally high (-2 to -7{per_thousand}), values for bottom-water COM{sub 10} were much lower (-129 to -709{per_thousand}). The high {Delta}{sup 14}C values in the surface water suggest a particulate origin of pelagic COM, consistent with the contemporary {Delta}{sup 14}C values of particulate organic matter (POM). The very low {Delta}{sup 14}C values of bottom-water COM{sub 10} imply that in addition to the pelagic origin, sedimentary organic C may serve as an important source for the benthic colloids in the bottom nepheloid layer. The general flow direction of organic carbon is from POM to HMW and to LMW DOM. Three colloidal end-members were identified in the MAB as well as in the Gulf of Mexico: estuarine colloids with high {Delta}{sup 14}C values, high C:N ratios, and lower {delta}{sup 13}C values; offshore surface water colloids with intermediate {Delta}{sup 14}C values, lower C:N ratios, and higher {delta}{sup 13}C values; and offshore deep-water colloids with low {Delta}{sup 14}C values, intermediate C:N ratios, and variable {delta}{sup 13}C values. 40 refs., 10 figs., 3 tabs.

  5. Observations of atmospheric methane and its stable isotope ratio (δ13C) over the Arctic seas from ship cruises in the summer and autumn of 2015

    NASA Astrophysics Data System (ADS)

    Skorokhod, Andrey; Belikov, Igor; Pankratova, Natalia; Novigatsky, Alexander; Thompson, Rona

    2016-04-01

    Atmospheric methane (CH4) is the second most important long-lived greenhouse gas. The Arctic has significant sources of CH4, such as from wetlands and possibly also from methane hydrates, which may act as a positive feedback on the climate system. Despite significant efforts in establishing a network of ground-based CH4 observations in the Arctic zone, there is still a lack of measurements over the Arctic Ocean and sub-polar seas. From 21 July to 9 October 2015, concentrations of CH4 and CO2, as well as of the 13C:12C isotopic ratio in CH4, i.e., δ13C, were measured in the marine boundary layer from aboard the Research Vessel "Akademik Mstislav Keldysh" by the Shirshov Institute of Oceanology. Measurements were made using a Cavity Ring Down Spectroscopy instrument from Picarro™ (model G2132-i). The cruises covered a vast area including the North Atlantic up to 70°N, the Baltic, North, Norwegian, Greenland, Barents, White, Kara and Laptev Seas. To the best of our knowledge, these are the first measurements of their type made in these regions. Concentrations of CH4 typically had low variations (in the range of a few ppb) in the open sea but relatively large variations (of the order of 100 ppb) were recorded near and during stops in ports. High variability of atmospheric CH4 was also registered near the delta of the Lena River in the Laptev Sea, which has been suggested to be a large CH4 reservoir and where bubbles rising through the water column have been observed. The obtained set of δ13CCH4 is characterized by significant range of the measured values varying from open Atlantic to polluted regions near large sea ports. The Keeling plot analyses were implemented to study possible CH4 sources according to its isotopic signature. Footprint analyses are presented for the shipboard observations, as well as comparisons to simulated CH4 concentrations and δ13C using the Lagrangian transport model, FLEXPART. This work has been carried-out with the financial support of

  6. Rock Magnetic Cyclostratigraphy and Magnetostratigraphy of the Rainstorm Member of the Neoproterozoic Johnnie Formation indicate a 2.5 Myr Duration for the Negative 13C Isotopic Anomaly

    NASA Astrophysics Data System (ADS)

    Kodama, K. P.; Hillhouse, J. W.

    2011-12-01

    The Rainstorm Member of the Neoproterozoic Johnnie Formation from Death Valley, CA, contains a negative 13C isotopic anomaly that records the oxidation of the oceans with the rise of atmospheric oxygen just before the appearance of multi-cellular life. Previously, the only estimate for the duration of the globally observed 13C anomaly, 50 myr, came from thermal subsidence modeling of rocks in Oman. In the southern Nopah Range, CA, we collected rock magnetic samples from 6 to 45 m above the Johnnie oolite marker bed to test for cyclostratigraphy in mudstone carbonates that correlate to the lower third of the carbon anomaly. Our objective was to independently determine the duration of the oxidation event by looking for evidence of orbital cycles in the rock magnetic properties. We also collected 8 horizons of three oriented samples each between 10 m and 40 m above the oolite for a magnetostratigraphy to constrain our interpretation of the rock magnetic cyclostratigraphy. After thermal demagnetization treatments, the remanent magnetization showed 4 chrons (R-N-R-N) in the 30 m interval with E (reversed)-W(normal) declinations and shallow inclinations (mean: D=262.8°, I=1.3°), similar to previous paleomagnetic determinations for an equivalent part of the Rainstorm Member in the Desert Range, Nevada (Van Alstine and Gillett , 1979) . Our rock magnetic cyclostratigraphy, sampled at 25 cm intervals, shows a well-defined 5 m wavelength for a measure of the goethite-to-hematite ratio that is interpreted to indicate climate variability (precipitation to aridity) in the Johnnie Formation source area. In addition to the 5 m cycle, a smaller amplitude cycle is observed in the data series with an average wavelength of 0.75 m. Multi-taper method (MTM) spectral analysis shows significant power (> than the 95% confidence limits above the robust red noise) at these frequencies, but also at harmonics of the 5 m waveform. If the 5 m cycle is assumed to be short eccentricity with a

  7. Stable Isotope13C, δ15N, δ34S) Analysis and Satellite Telemetry Depict the Complexity of Gray Wolf (Canis lupus) Diets in Southwest Alaska

    NASA Astrophysics Data System (ADS)

    Stanek, A.; Watts, D. E.; Cohn, B. R.; Spencer, P.; Mangipane, B.; Welker, J. M.

    2010-12-01

    Throughout Alaska, gray wolves (Canis lupus) are a top predator of large ungulates. While they primarily rely on ungulates such as moose (Alces alces) and caribou (Rangifer tarandus) as food, they are opportunistic and use alternative resources. The variation and supplemental protein sources in wolf diet has not been studied extensively on live animals currently using the landscape. With large seasonal influxes of Pacific salmon (Oncorhynchus sp.) into Alaska, terrestrial carnivore use of marine species is of particular interest. Using stable isotope13C, δ15N, δ34S) analysis of wolf guard hair and blood, this study aims to determine the proportion of marine derived nutrients (MDN) in the diet of wolf packs within and surrounding Lake Clark National Park and Preserve and Alaska Peninsula and Becharof National Wildlife Refuges in Southwest Alaska. Satellite telemetry from the animals sampled facilitates quantification of landscape use patterns in correspondence with isotopic traits. Wolf pack territories within and surrounding the Lake Clark region appear to vary in spatial extent and in availability of MDN, such as salmon. Initial analysis shows that two packs with smaller home ranges, centrally located around areas with greater salmon availability, have enriched δ15N values compared to packs that have larger home ranges not centralized around salmon spawning waters. This pattern of isotopic enrichment is found in red blood cells, blood serum and hair, representing diets over different time scales. The enrichment in both blood and hair indicates a sustained use of MDN over the previous six to nine months. In the Lake Clark region, simple mixing model estimates suggest that up to 30% of wolf pack diets may be from marine sources. In contrast, packs with larger home ranges and less access to salmon have stable isotope values representative of a terrestrial diet.

  8. A Method to Determine 18O Kinetic Isotope Effects in the Hydrolysis of Nucleotide Triphosphates

    PubMed Central

    Du, Xinlin; Ferguson, Kurt; Sprang, Stephen R.

    2007-01-01

    A method to determine 18O kinetic isotope effects (KIE) in the hydrolysis of GTP is described that is generally applicable to reactions involving other nucleotide triphosphates. Internal competition, wherein the substrate of the reaction is a mixture of 18O-labeled and unlabeled nucleotides, is employed and the change in relative abundance of the two species in the course of the reaction is used to calculate KIE. The nucleotide labeled with 18O at sites of mechanistic interest also contains 13C at all carbon positions, while the 16O-nucleotide is depleted of 13C. The relative abundance of the labeled and unlabeled substrates or products is reflected in the carbon isotope ratio (13C/12C) in GTP or GDP, which is determined by use of a liquid chromatography-coupled isotope ratio mass spectrometer (LC-coupled IRMS). The LC is coupled to the IRMS by an Isolink™ interface (ThermoFinnigan). Carbon isotope ratios can be determined with accuracy and precision greater than 0.04%, and are consistent over an order of magnitude in sample amount. KIE values for Ras/NF1333-catalyzed hydrolysis of [β18O3,13C]GTP were determined by change in the isotope ratio of GTP or GDP or the ratio of the isotope ratio of GDP to that of GTP. KIE values computed in the three ways agree within 0.1%, although the method using the ratio of isotope ratios of GDP and GTP gives superior precision (< 0.1%). A single KIE measurement can be conducted in 25 minutes with less than 5 μg nucleotide reaction product. PMID:17963711

  9. Determination of 13C isotopic enrichment of glutathione and glycine by gas chromatography/combustion/isotope ratio mass spectrometry after formation of the N- or N,S-ethoxycarbonyl methyl ester derivatives.

    PubMed

    Tea, Illa; Ferchaud-Roucher, Véronique; Küster, Alice; Darmaun, Dominique; Robins, Richard J

    2007-01-01

    The depletion of glutathione (GSH) reported in very-low-birth-weight infants is implicated in several pathologies, especially if deficiency occurs during foetal development. The cause of this depletion is suggested to be modification of GSH turnover. To probe the role of GSH, a reliable non-invasive method adapted to very-low-birth-weight infants is required. In this paper, we report the preparation of the N,S-ethoxycarbonyl methyl ester derivatives of GSH and glycine and their application to the measurement of (13)C/(12)C ratios at natural abundance in erythrocyte samples by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The technique allowed the determination of (13)C/(12)C ratios at natural abundance with a precision <3% and within-day and between-day variabilities both <4%. The method is able to determine accurately low (13)C-enrichments in GSH (0.00241 to 0.00753 Atom Percent Excess) in erythrocyte extracts following incubation with (13)C-glycine at low specific enrichment (approx. 1.5 atom %). Excellent agreement was obtained between the calculated GSH fractional synthesis rate (FSR) in human adult blood (approx. 300% day(-1)) using the low-enrichment (13)C-glycine/GC/C/IRMS protocol and that using highly enriched (13)C-glycine (99 atom %)/GC/MS with the same derivative. The GC/C/IRMS method was shown to be suitable to measure the in vitro GSH FSR (200-660% day(-1)) in human venous and arterial blood from the umbilical cord. This approach provides a good tool for studying the turnover of GSH in vitro in infants, allowing both the use of minimal amounts of tracer and negligible perturbation of endogenous precursor pools.

  10. Insight into the packing pattern of β2 fibrils: a model study of glutamic acid rich oligomers with 13C isotopic edited vibrational spectroscopy.

    PubMed

    Chi, Heng; Welch, William R W; Kubelka, Jan; Keiderling, Timothy A

    2013-11-11

    Polyglutamic acid at low pH forms aggregates and self-assembles into a spiral, fibril-like superstructure formed as a β2-type sheet conformation that has a more compact intersheet packing than commonly found. This is stabilized by three-centered bifurcated hydrogen bonding of the amide carbonyl involving the protonated glutamic acid side chain. We report vibrational spectroscopic results and analyses for oligopeptides rich in glutamic acid enhanced with (13)C isotope labeling in a study modeling low pH poly-Glu self-assembly. Our results indicate bifurcated H-bonding and β2 aggregation can be attained in these model decamers, confirming they have the same conformations as poly-Glu. We also prepared conventional β1-sheet aggregates by rapid precipitation from the residual peptides in the higher pH supernatant. By comparing the isotope-enhanced IR and VCD spectra with theoretical predictions, we deduced that the oligo-Glu β2 structure is based on stacked, twisted, antiparallel β-sheets. The best fit to theoretical predictions was obtained for the strands being out of register, sequentially stepped by one residue, in a ladder-like fashion. The alternate β1 conformer for this oligopeptide was similarly shown to be antiparallel but was less ordered and apparently had a different registry in its aggregate structure.

  11. Benthic macroinvertebrates and the use of stable isotopes13C and δ15N) in the impact assessment of peatland use on boreal stream ecosystems

    NASA Astrophysics Data System (ADS)

    Nieminen, Mika L.; Daza Secco, Emmanuela; Nykänen, Hannu; Meissner, Kristian

    2013-04-01

    Stable isotope analysis (SIA) can provide insights into carbon flow dynamics and trophic positions of consumers in food webs. SIA is used in this study, where we assess the possible changes in the basal resources of Finnish boreal stream ecosystems and differences in the impact of two forms of peatland use, forestry and peat mining. About 30% of the total land area of Finland is classified as peatland, of which about 55% has been drained for forestry and about 0.6% is in peat production. Unlike forestry, peat production is regionally less scattered and can thus have measurable local impacts although the total area of peat production is small. Three watersheds were used as study areas. Within each watershed, one stream drains a subcatchment affected only by peat mining, whereas the other stream flows through a subcatchment affected by forestry. The two subcatchment streams merge to form a single stream flowing into a lake. Studied watersheds were subject to no other forms of land use. In addition to the impacted sites, we used two pristine natural mire and two natural forest catchments as controls. We analysed the stable isotopes of carbon (δ13C) and nitrogen (δ15N) from benthic macroinvertebrates, stream bank soil, stream sediment, and dissolved organic carbon (DOC) in stream water. Samples for stable isotope analyses were collected in the summer of 2011 and samples for invertebrate community analyses in the autumn of 2011. Upon sampling we measured several physical parameters at each sampling site. In addition, stream water samples collected in summer and autumn 2012 were analysed for CH4 and CO2 gas concentrations and autumn gas samples also for their δ13C values. Our initial SIA results of invertebrates suggest some degree of discrimination between different sources of OM and possible effects on feeding habits, presumably due to the quality of the basal resources. We will explore this result further by examining not only taxonomical structure, but also the

  12. Establishing spatial trends in water chemistry and stable isotopes (δ15N and δ13C) in the Elwha River prior to dam removal and salmon recolonization

    USGS Publications Warehouse

    Duda, J.J.; Coe, H.J.; Morley, S.A.; Kloehn, K.K.

    2011-01-01

    Two high-head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine-derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine-derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented.

  13. A conifer-friendly high-throughput α-cellulose extraction method for δ13C and δ18O stable isotope ratio analysis

    NASA Astrophysics Data System (ADS)

    Lin, W.; Noormets, A.; domec, J.; King, J. S.; Sun, G.; McNulty, S.

    2012-12-01

    Wood stable isotope ratios (δ13C and δ18O) offer insight to water source and plant water use efficiency (WUE), which in turn provide a glimpse to potential plant responses to changing climate, particularly rainfall patterns. The synthetic pathways of cell wall deposition in wood rings differ in their discrimination ratios between the light and heavy isotopes, and α-cellulose is broadly seen as the best indicator of plant water status due to its local and temporal fixation and to its high abundance within the wood. To use the effects of recent severe droughts on the WUE of loblolly pine (Pinus taeda) throughout Southeastern USA as a harbinger of future changes, an effort has been undertaken to sample the entire range of the species and to sample the isotopic composition in a consistent manner. To be able to accommodate the large number of samples required by this analysis, we have developed a new high-throughput method for α-cellulose extraction, which is the rate-limiting step in such an endeavor. Although an entire family of methods has been developed and perform well, their throughput in a typical research lab setting is limited to 16-75 samples per week with intensive labor input. The resin exclusion step in conifersis is particularly time-consuming. We have combined the recent advances of α-cellulose extraction in plant ecology and wood science, including a high-throughput extraction device developed in the Potsdam Dendro Lab and a simple chemical-based resin exclusion method. By transferring the entire extraction process to a multiport-based system allows throughputs of up to several hundred samples in two weeks, while minimizing labor requirements to 2-3 days per batch of samples.

  14. Carbon isotope13C) excursions suggest times of major methane release during the last 14 kyr in Fram Strait, the deep-water gateway to the Arctic

    NASA Astrophysics Data System (ADS)

    Consolaro, C.; Rasmussen, T. L.; Panieri, G.; Mienert, J.; Bünz, S.; Sztybor, K.

    2015-04-01

    We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (~ 80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dates reveal a detailed chronology for the last 14 ka BP. The δ 13C record measured on the benthonic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values termed carbon isotope excursion (CIE I and CIE II, respectively). The values were as low as -4.37‰ in CIE I, correlating with the Bølling-Allerød interstadials, and as low as -3.41‰ in CIE II, correlating with the early Holocene. In the Bølling-Allerød interstadials, the planktonic foraminifera also show negative values, probably indicating secondary methane-derived authigenic precipitation affecting the foraminiferal shells. After a cleaning procedure designed to remove authigenic carbonate coatings on benthonic foraminiferal tests from this event, the 13C values are still negative (as low as -2.75‰). The CIE I and CIE II occurred during periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic, suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.

  15. Identification of tertiary butyl alcohol (TBA)-utilizing organisms in BioGAC reactors using 13C-DNA stable isotope probing.

    PubMed

    Aslett, Denise; Haas, Joseph; Hyman, Michael

    2011-09-01

    Biodegradation of the gasoline oxygenates methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE) can cause tertiary butyl alcohol (TBA) to accumulate in gasoline-impacted environments. One remediation option for TBA-contaminated groundwater involves oxygenated granulated activated carbon (GAC) reactors that have been self-inoculated by indigenous TBA-degrading microorganisms in ground water extracted from contaminated aquifers. Identification of these organisms is important for understanding the range of TBA-metabolizing organisms in nature and for determining whether self-inoculation of similar reactors is likely to occur at other sites. In this study (13)C-DNA-stable isotope probing (SIP) was used to identify TBA-utilizing organisms in samples of self-inoculated BioGAC reactors operated at sites in New York and California. Based on 16S rRNA nucleotide sequences, all TBA-utilizing organisms identified were members of the Burkholderiales order of the β-proteobacteria. Organisms similar to Cupriavidus and Methylibium were observed in both reactor samples while organisms similar to Polaromonas and Rhodoferax were unique to the reactor sample from New York. Organisms similar to Hydrogenophaga and Paucibacter strains were only detected in the reactor sample from California. We also analyzed our samples for the presence of several genes previously implicated in TBA oxidation by pure cultures of bacteria. Genes Mpe_B0532, B0541, B0555, and B0561 were all detected in (13)C-metagenomic DNA from both reactors and deduced amino acid sequences suggested these genes all encode highly conserved enzymes. One gene (Mpe_B0555) encodes a putative phthalate dioxygenase-like enzyme that may be particularly appropriate for determining the potential for TBA oxidation in contaminated environmental samples.

  16. Adaptation of continuous-flow cavity ring-down spectroscopy for batch analysis of δ13C of CO2 and comparison with isotope ratio mass spectrometry.

    PubMed

    Berryman, E M; Marshall, J D; Rahn, T; Cook, S P; Litvak, M

    2011-08-30

    Measurements of δ(13)C in CO(2) have traditionally relied on samples stored in sealed vessels and subsequently analyzed using magnetic sector isotope ratio mass spectrometry (IRMS), an accurate but expensive and high-maintenance analytical method. Recent developments in optical spectroscopy have yielded instruments that can measure δ(13)CO(2) in continuous streams of air with precision and accuracy approaching those of IRMS, but at a fraction of the cost. However, continuous sampling is unsuited for certain applications, creating a need for conversion of these instruments for batch operation. Here, we present a flask (syringe) adaptor that allows the collection and storage of small aliquots (20-30 mL air) for injection into the cavity ring-down spectroscopy (CRDS) instrument. We demonstrate that the adaptor's precision is similar to that of traditional IRMS (standard deviation of 0.3‰ for 385 ppm CO(2) standard gas). In addition, the concentration precision (±0.3% of sample concentration) was higher for CRDS than for IRMS (±7% of sample concentration). Using the adaptor in conjunction with CRDS, we sampled soil chambers and found that soil-respired δ(13)C varied between two different locations in a piñon-juniper woodland. In a second experiment, we found no significant discrimination between the respiration of a small beetle (~5 mm) and its diet. Our work shows that the CRDS system is flexible enough to be used for the analysis of batch samples as well as for continuous sampling. This flexibility broadens the range of applications for which CRDS has the potential to replace magnetic sector IRMS.

  17. Vitamin A status assessment in rats with (13)C(4)-retinyl acetate and gas chromatography/combustion/isotope ratio mass spectrometry.

    PubMed

    Tanumihardjo, S A

    2000-11-01

    Vitamin A assessment methods that indirectly determine liver reserves are still in development. The deuterated vitamin A assay has been successfully applied in several population groups, but large doses of vitamin A must be used and the gas chromatography/mass spectrometry analysis is not very sensitive. Therefore, 10,11,14,15-(13)C(4)-retinyl acetate was synthesized using a modified Wittig-Horner procedure. Thereafter, female Sprague-Dawley rats (n = 47) were fed a vitamin A-deficient diet and divided into three groups: low (L), moderate (M) and high (H) vitamin A. Groups L, M and H were supplemented with 35, 70 and 350 nmol of unlabeled retinyl acetate/d for 17 d. On d 18, three rats from each group were killed to determine baseline (13)C levels. Serum was prepared, and livers were collected and stored at -70 degrees C until analyzed with HPLC and gas chromatography/combustion/isotope ratio mass spectrometry. The remaining rats were supplemented with 52 nmol of (13)C(4)-retinyl acetate. Rats were killed on d 1, 2, 4 and 10. The calculated and measured values of total body reserves (TBR) of vitamin A were within 7% of each other overall, and the relationship was linear (r = 0.98, P < 0.0001). The calculated mean TBR were 0.49 +/- 0.03, 0.82 +/- 0.007 and 3.72 +/- 0.40 micromol, and the measured mean TBR were 0.50 +/- 0.045, 0.69 +/- 0.10 and 3.6 +/- 0.29 micromol for groups L, M and H, respectively. In contrast, serum retinol concentrations did not show a difference among the dietary groups: 1.32 +/- 0.14, 1.35 +/- 0.17 and 1.28 +/- 0.15 micromol/L for groups L, M and H, respectively (P = 0.25). In conclusion, this method offers more sensitivity than traditional methods and may be applicable to human vitamin A status assessment when TBR estimations are desired.

  18. Application of a methane carbon isotope analyzer for the investigation of δ13C of methane emission measured by the automatic chamber method in an Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Mastepanov, Mikhail; Christensen, Torben

    2014-05-01

    Methane emissions have been monitored by an automatic chamber method in Zackenberg valley, NE Greenland, since 2006 as a part of Greenland Ecosystem Monitoring (GEM) program. During most of the seasons the measurements were carried out from the time of snow melt (June-July) until freezing of the active layer (October-November). Several years of data, obtained by the same method, instrumentation and at exactly the same site, provided a unique opportunity for the analysis of interannual methane flux patterns and factors affecting their temporal variability. The start of the growing season emissions was found to be closely related to a date of snow melt at the site. Despite a large between year variability of this date (sometimes more than a month), methane emission started within a few days after, and was increasing for the next about 30 days. After this peak of emission, it slowly decreased and stayed more or less constant or slightly decreasing during the rest of the growing season (Mastepanov et al., Biogeosciences, 2013). During the soil freezing, a second peak of methane emission was found (Mastepanov et al., Nature, 2008); its amplitude varied a lot between the years, from almost undetectable to comparable with total growing season emissions. Analysis of the multiyear emission patterns (Mastepanov et al., Biogeosciences, 2013) led to hypotheses of different sources for the spring, summer and autumn methane emissions, and multiyear cycles of accumulation and release of these components to the atmosphere. For the further investigation of this it was decided to complement the monitoring system with a methane carbon isotope analyzer (Los Gatos Research, USA). The instrument was installed during 2013 field season and was successfully operating until the end of the measurement campaign (27 October). Detecting both 12C-CH4 and 13C-CH4 concentrations in real time (0.5 Hz) during automatic chamber closure (15 min), the instrument was providing data for determination of

  19. Substrate and Enzyme Specificity of the Kinetic Isotope Effects Associated with the Dioxygenation of Nitroaromatic Contaminants.

    PubMed

    Pati, Sarah G; Kohler, Hans-Peter E; Pabis, Anna; Paneth, Piotr; Parales, Rebecca E; Hofstetter, Thomas B

    2016-07-01

    Compound-specific isotope analysis (CSIA) is a promising approach for tracking biotransformation of organic pollutants, but isotope fractionation associated with aromatic oxygenations is only poorly understood. We investigated the dioxygenation of a series of nitroaromatic compounds to the corresponding catechols by two enzymes, namely, nitrobenzene and 2-nitrotoluene dioxygenase (NBDO and 2NTDO) to elucidate the enzyme- and substrate-specificity of C and H isotope fractionation. While the apparent (13)C- and (2)H-kinetic isotope effects of nitrobenzene, nitrotoluene isomers, 2,6-dinitrotoluene, and naphthalene dioxygenation by NBDO varied considerably, the correlation of C and H isotope fractionation revealed a common mechanism for nitrobenzene and nitrotoluenes. Similar observations were made for the dioxygenation of these substrates by 2NTDO. Evaluation of reaction kinetics, isotope effects, and commitment-to-catalysis based on experiment and theory showed that rates of dioxygenation are determined by the enzymatic O2 activation and aromatic C oxygenation. The contribution of enzymatic O2 activation to the reaction rate varies for different nitroaromatic substrates of NBDO and 2NTDO. Because aromatic dioxygenation by nonheme iron dioxygenases is frequently the initial step of biodegradation, O2 activation kinetics may also have been responsible for the minor isotope fractionation reported for the oxygenation of other aromatic contaminants.

  20. Substrate and Enzyme Specificity of the Kinetic Isotope Effects Associated with the Dioxygenation of Nitroaromatic Contaminants.

    PubMed

    Pati, Sarah G; Kohler, Hans-Peter E; Pabis, Anna; Paneth, Piotr; Parales, Rebecca E; Hofstetter, Thomas B

    2016-07-01

    Compound-specific isotope analysis (CSIA) is a promising approach for tracking biotransformation of organic pollutants, but isotope fractionation associated with aromatic oxygenations is only poorly understood. We investigated the dioxygenation of a series of nitroaromatic compounds to the corresponding catechols by two enzymes, namely, nitrobenzene and 2-nitrotoluene dioxygenase (NBDO and 2NTDO) to elucidate the enzyme- and substrate-specificity of C and H isotope fractionation. While the apparent (13)C- and (2)H-kinetic isotope effects of nitrobenzene, nitrotoluene isomers, 2,6-dinitrotoluene, and naphthalene dioxygenation by NBDO varied considerably, the correlation of C and H isotope fractionation revealed a common mechanism for nitrobenzene and nitrotoluenes. Similar observations were made for the dioxygenation of these substrates by 2NTDO. Evaluation of reaction kinetics, isotope effects, and commitment-to-catalysis based on experiment and theory showed that rates of dioxygenation are determined by the enzymatic O2 activation and aromatic C oxygenation. The contribution of enzymatic O2 activation to the reaction rate varies for different nitroaromatic substrates of NBDO and 2NTDO. Because aromatic dioxygenation by nonheme iron dioxygenases is frequently the initial step of biodegradation, O2 activation kinetics may also have been responsible for the minor isotope fractionation reported for the oxygenation of other aromatic contaminants. PMID:26895026

  1. A stable isotope ( δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants

    NASA Astrophysics Data System (ADS)

    Hobson, Keith A.; Fisk, Aaron; Karnovsky, Nina; Holst, Meike; Gagnon, Jean-Marc; Fortier, Martin

    fundamentally in transferring energy and carbon flux to higher trophic-level seabirds and marine mammals. We measured PCB 153 among selected organisms to investigate the behavior of bioaccumulating contaminants within the food web. Our isotopic model confirmed the trophic magnification of PCB 153 in this high-Arctic food web due to a strong correlation between contaminant concentration and organism δ15N values, demonstrating the utility of combining isotopic and contaminant approaches to food-web studies. Stable-carbon isotope analysis confirmed an enrichment in 13C between POM and ice algae (-22.3 vs. -17.7‰). Benthic organisms were generally enriched in 13C compared to pelagic species. We discuss individual species isotopic data and the general utility of our stable isotope model for defining carbon flux and contaminant flow through the North Water food web.

  2. Can tree-ring isotopes (δ18O and δ13C) improve our understanding of hydroclimate variability in the Columbia River Basin?

    NASA Astrophysics Data System (ADS)

    Csank, A. Z.; Wise, E.; McAfee, S. A.

    2015-12-01

    The trajectory of incoming storms from the Pacific Ocean has a strong impact on hydroclimate in the Pacific Northwest. Shifts between zonal and meridional flow are a key influence on drought and pluvial regimes in both the PNW and the western United States as a whole. Circulation-dependent variability in the isotopic composition of precipitation can be recorded and potentially reconstructed using δ18O records derived from tree-rings. Here we present isotopic records of δ18O and δ13C from ponderosa pine (Pinus ponderosa) for the period 1950-2013 from six sites located in the lee of the Cascades in eastern Washington. Because of the orientation of the Cascades, zonal flow will result in an intensified rain shadow whereas meridional flow allows moisture to penetrate at a lower elevation leading to a lower rainout effect. This means zonal flow results in drier conditions in eastern Washington and the converse for meridional flow. We hypothesized that more depleted precipitation δ18O values will occur with periods of more zonal flow across the PNW and will be recorded by trees at our sites. Results show a strong relationship between our δ18O chronologies and winter precipitation (R = -0.50; p<0.001). δ13C chronologies from the same trees showed a relationship to prior fall/winter (pOct-pDec) precipitation (R = -0.46; p<0.005) suggesting a possible link to antecedent moisture conditions. With a focus on years with clear zonal and meridional flow regimes, we regressed the tree-ring δ18O anomaly against the instrumental record of total precipitation and compared the residual series to records of storm track for the period 1978-2008, and we found a detectable signal where the most depleted δ18O was generally associated with zonal flow and the most enriched δ18O with meridional flow. However, there are still some years where the relationship is unclear. Further work is aimed at understanding these anomalous years and extending our record beyond the instrumental

  3. Kinetic Fractionation of Stable Isotopes in Carbonates on Mars: Terrestrial Analogs

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Gibson, Everett K., Jr.; Golden, D. C.; Ming, Douglas W.; McKay, Gordon A.

    2003-01-01

    An ancient Martian hydrosphere consisting of an alkali-rich ocean would likely produce solid carbonate minerals through the processes of evaporation and/or freezing. We postulate that both (or either) of these kinetically-driven processes would produce carbonate minerals whose stable isotopic compositions are highly fractionated (enriched) with respect to the source carbon. Various scenarios have been proposed for carbonate formation on Mars, including high temperature formation, hydrothermal alteration, precipitation from evaporating brines, and cryogenic formation. 13C and 18O -fractionated carbonates have previously been shown to form kinetically under some of these conditions, ie.: 1) alteration by hydrothermal processes, 2) low temperature precipitation (sedimentary) from evaporating bicarbonate (brine) solutions, and 3) precipitation during the process of cryogenic freezing of bicarbonate-rich fluids. Here we examine several terrestrial field settings within the context of kinetically controlled carbonate precipitation where stable isotope enrichments have been observed.

  4. Major Sources of Organic Matter in a Complex Coral Reef Lagoon: Identification from Isotopic Signatures (δ13C and δ15N).

    PubMed

    Briand, Marine J; Bonnet, Xavier; Goiran, Claire; Guillou, Gaël; Letourneur, Yves

    2015-01-01

    A wide investigation was conducted into the main organic matter (OM) sources supporting coral reef trophic networks in the lagoon of New Caledonia. Sampling included different reef locations (fringing, intermediate and barrier reef), different associated ecosystems (mangroves and seagrass beds) and rivers. In total, 30 taxa of macrophytes, plus pools of particulate and sedimentary OM (POM and SOM) were sampled. Isotopic signatures (C and N) of each OM sources was characterized and the composition of OM pools assessed. In addition, spatial and seasonal variations of reef OM sources were examined. Mangroves isotopic signatures were the most C-depleted (-30.17 ± 0.41 ‰) and seagrass signatures were the most C-enriched (-4.36 ± 0.72 ‰). Trichodesmium spp. had the most N-depleted signatures (-0.14 ± 0.03 ‰) whereas mangroves had the most N-enriched signatures (6.47 ± 0.41 ‰). The composition of POM and SOM varied along a coast-to-barrier reef gradient. River POM and marine POM contributed equally to coastal POM, whereas marine POM represented 90% of the POM on barrier reefs, compared to 10% river POM. The relative importance of river POM, marine POM and mangroves to the SOM pool decreased from fringing to barrier reefs. Conversely, the relative importance of seagrass, Trichodesmium spp. and macroalgae increased along this gradient. Overall, spatial fluctuations in POM and SOM were much greater than in primary producers. Seasonal fluctuations were low for all OM sources. Our results demonstrated that a large variety of OM sources sustain coral reefs, varying in their origin, composition and role and suggest that δ13C was a more useful fingerprint than δ15N in this endeavour. This study also suggested substantial OM exchanges and trophic connections between coral reefs and surrounding ecosystems. Finally, the importance of accounting for environmental characteristics at small temporal and spatial scales before drawing general patterns is highlighted. PMID

  5. Major Sources of Organic Matter in a Complex Coral Reef Lagoon: Identification from Isotopic Signatures (δ13C and δ15N)

    PubMed Central

    Briand, Marine J.; Bonnet, Xavier; Goiran, Claire; Guillou, Gaël; Letourneur, Yves

    2015-01-01

    A wide investigation was conducted into the main organic matter (OM) sources supporting coral reef trophic networks in the lagoon of New Caledonia. Sampling included different reef locations (fringing, intermediate and barrier reef), different associated ecosystems (mangroves and seagrass beds) and rivers. In total, 30 taxa of macrophytes, plus pools of particulate and sedimentary OM (POM and SOM) were sampled. Isotopic signatures (C and N) of each OM sources was characterized and the composition of OM pools assessed. In addition, spatial and seasonal variations of reef OM sources were examined. Mangroves isotopic signatures were the most C-depleted (-30.17 ± 0.41 ‰) and seagrass signatures were the most C-enriched (-4.36 ± 0.72 ‰). Trichodesmium spp. had the most N-depleted signatures (-0.14 ± 0.03 ‰) whereas mangroves had the most N-enriched signatures (6.47 ± 0.41 ‰). The composition of POM and SOM varied along a coast-to-barrier reef gradient. River POM and marine POM contributed equally to coastal POM, whereas marine POM represented 90% of the POM on barrier reefs, compared to 10% river POM. The relative importance of river POM, marine POM and mangroves to the SOM pool decreased from fringing to barrier reefs. Conversely, the relative importance of seagrass, Trichodesmium spp. and macroalgae increased along this gradient. Overall, spatial fluctuations in POM and SOM were much greater than in primary producers. Seasonal fluctuations were low for all OM sources. Our results demonstrated that a large variety of OM sources sustain coral reefs, varying in their origin, composition and role and suggest that δ13C was a more useful fingerprint than δ15N in this endeavour. This study also suggested substantial OM exchanges and trophic connections between coral reefs and surrounding ecosystems. Finally, the importance of accounting for environmental characteristics at small temporal and spatial scales before drawing general patterns is highlighted. PMID

  6. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts.

    PubMed

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan

    2015-07-01

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein (15)N and (13)C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.

  7. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS.

    PubMed

    Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin

    2015-07-01

    To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low (15)N/(14)N ratios indicating an incomplete derivatization; in contrast, too high (15)N/(14)N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate.

  8. Regional Scale Variability in Background and Source δ13C of Methane in the Atlantic, Europe and the Arctic: Cautionary Tales for Isotopic Modeling

    NASA Astrophysics Data System (ADS)

    Lowry, D.; Fisher, R. E.; France, J. L.; Lanoiselle, M.; Zazzeri, G.; Nisbet, E. G.

    2013-12-01

    Modeling studies of methane δ13C, both of modern atmosphere and glacial palaeoclimates have used a global isotopic signature for each of the main source categories, whereas detailed studies of source fluxes, such as boreal wetlands, suggest that on the centimeter to meter scale there is very great variability. In recent years we have been reassessing the usefulness of using a generic source value from source up to regional scale through sampling campaigns in the European Arctic, the UK and onboard ships sailing the Atlantic up to the Arctic Ocean. Currently the boreal wetland source of methane dominates above 60°N. Within Finland this source varies at the wetland scale from -74 to -66‰ depending on wetland type and seasonal variability in temperature and water table. Lapland road trips and ship sampling suggest that these emissions are homogenized to -70 to -67‰ in the well-mixed regional atmosphere. An infrequent boreal forest fire emission adds a -30 to -26‰ component into the mix, and such inputs have been observed in the Mace Head (Ireland) isotopic record of 2002. The story is much more complex once the latitudes of heavily urbanized and agricultural areas of Northern Europe are reached. Isotopic signatures applied to UK and EC inventories suggest that national emissions can vary from -42 to -60‰ depending on source mix, but even this is too simplified. Fugitive emissions from gas distribution systems vary based on the source of the gas, with biogenic-dominated supplies from west Siberia at -50‰ to thermogenic gas of the Southern North Sea fields at -32‰. Coal emissions are also source-dependent and have a similar range to gas, but unlike pipeline-homogenized gas can vary from one mine to the next. Emissions from ruminants vary due to C3 and C4 plant diets, with C4 closer to -50‰ while C3 emissions are in the low -60's. A recent whole barn experiment in the UK recorded -66‰. Landfill signatures also vary. Sites engineered in the last decade

  9. Specific natural isotope profile studied by isotope ratio mass spectrometry (SNIP-IRMS): (13)C/(12)C ratios of fructose, glucose, and sucrose for improved detection of sugar addition to pineapple juices and concentrates.

    PubMed

    González, J; Remaud, G; Jamin, E; Naulet, N; Martin, G G

    1999-06-01

    The delta(13)C values of fructose, glucose, and sucrose have been determined in authentic pineapple juices. The sugar fraction is separated from the organic acids by an anionic exchange process. Then the individual components (fructose, glucose, and sucrose) are isolated on a preparative HPLC device using a NH(2)-type column. It is demonstrated that no significant isotope fractionation occurs when close to 100% of material is recovered and when the hydrolysis of sucrose is avoided. The control of the recovery rates and of the sucrose hydrolysis rate after purification is recommended for a reliable interpretation of the results. Correlations between the delta(13)C values of fructose (delta(13)Cf), glucose (delta(13)Cg), and sucrose (delta(13)Csu) can be characterized by systematic differences between these values. For the set of measurements on authentic pineapple juices and concentrates, the mean and the standard deviation of the differences are delta(13)Cf - delta(13)Cg = -0.6 +/- 0.6 per thousand, delta(13)Cf - delta(13)Csu = -1.3 +/- 0. 6 per thousand, and delta(13)Cf - delta(13)Csu = -0.7 +/- 0.5 per thousand. The determinations of the (13)C content of fructose, glucose, and sucrose enable a refinement of the detection of added sugars in fruit juices, re-enforcing the SNIP-IRMS method. PMID:10794628

  10. Enhancing the understanding of earthworm feeding behaviour via the use of fatty acid delta13C values determined by gas chromatography-combustion-isotope ratio mass spectrometry.

    PubMed

    Dungait, Jennifer A J; Briones, Maria J I; Bol, Roland; Evershed, Richard P

    2008-06-01

    Litter-dwelling (epigeic) Lumbricus rubellus and soil-dwelling (endogeic) Allolobophora chlorotica earthworms were observed aggregating under C(3) (delta(13)C = -31.3 per thousand; delta(15)N = 10.7 per thousand) and C(4) (delta(13)C = -12.6 per thousand; delta(15)N = 7.5 per thousand) synthetic dung pats applied to a temperate grassland (delta(13)C = -30.3 per thousand; delta(15)N = 5.7 per thousand) in an experiment carried out for 372 days. Bulk delta(13)C values of earthworms collected from beneath either C(3) or C(4) dung after 28, 56, 112 and 372 days demonstrated that (i) L. rubellus beneath C(4) dung were significantly (13)C-enriched after 56 days (delta(13)C = -23.8 per thousand) and 112 days (delta(13)C = -22.4 per thousand) compared with those from C(3) dung treatments (56 days, delta(13)C = -26.5 per thousand; 112 days, delta(13)C = -27.0 per thousand), and (ii) A. chlorotica were 2.1 per thousand (13)C-enriched (delta(13)C = -24.2 per thousand) relative to those from C(3) dung (delta(13)C = -26.3 per thousand) treatments after 372 days. Bulk delta(15)N values did not suggest significant uptake of dung N by either species beneath C(3) or C(4) dung, but showed that the endogeic species (total mean delta(15)N = 3.3 per thousand) had higher delta(15)N values than the epigeic species (total mean delta(15)N = 5.4 per thousand). Although the two species exhibited similar fatty acid profiles, individual fatty acid delta(13)C values revealed extensive routing of dietary C into body tissue of L. rubellus, but minor incorporation into A. chlorotica. In particular, the direct incorporation of microbial biomarker fatty acids (iC(17:0), aC(17:0)) from (13)C-labelled dung in situ, the routing of dung C into de novo synthesised compounds (iC(20:4)(omega)(6),C(20:5)(omega)(3), and the assimilation of essential fatty acids ((C(18:1)(omega)(9), C(18:1)(omega(7), C(18:2)(omega(6), C(18:3)(omega)(3)) derived from dung, were determined.

  11. Qualitative Metabolome Analysis of Human Cerebrospinal Fluid by 13C-/12C-Isotope Dansylation Labeling Combined with Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guo, Kevin; Bamforth, Fiona; Li, Liang

    2011-02-01

    Metabolome analysis of human cerebrospinal fluid (CSF) is challenging because of low abundance of metabolites present in a small volume of sample. We describe and apply a sensitive isotope labeling LC-MS technique for qualitative analysis of the CSF metabolome. After a CSF sample is divided into two aliquots, they are labeled by 13C-dansyl and 12C-dansyl chloride, respectively. The differentially labeled aliquots are then mixed and subjected to LC-MS using Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS). Dansylation offers significant improvement in the performance of chromatography separation and detection sensitivity. Moreover, peaks detected in the mass spectra can be readily analyzed for ion pair recognition and database search based on accurate mass and/or retention time information. It is shown that about 14,000 features can be detected in a 25-min LC-FTICR MS run of a dansyl-labeled CSF sample, from which about 500 metabolites can be profiled. Results from four CSF samples are compared to gauge the detectability of metabolites by this method. About 261 metabolites are commonly detected in replicate runs of four samples. In total, 1132 unique metabolite ion pairs are detected and 347 pairs (31%) matched with at least one metabolite in the Human Metabolome Database. We also report a dansylation library of 220 standard compounds and, using this library, about 85 metabolites can be positively identified. Among them, 21 metabolites have never been reported to be associated with CSF. These results illustrate that the dansylation LC-FTICR MS method can be used to analyze the CSF metabolome in a more comprehensive manner.

  12. Site-specific protonation kinetics of acidic side chains in proteins determined by pH-dependent carboxyl (13)C NMR relaxation.

    PubMed

    Wallerstein, Johan; Weininger, Ulrich; Khan, M Ashhar I; Linse, Sara; Akke, Mikael

    2015-03-01

    Proton-transfer dynamics plays a critical role in many biochemical processes, such as proton pumping across membranes and enzyme catalysis. The large majority of enzymes utilize acid-base catalysis and proton-transfer mechanisms, where the rates of proton transfer can be rate limiting for the overall reaction. However, measurement of proton-exchange kinetics for individual side-chain carboxyl groups in proteins has been achieved in only a handful of cases, which typically have involved comparative analysis of mutant proteins in the context of reaction network modeling. Here we describe an approach to determine site-specific protonation and deprotonation rate constants (kon and koff, respectively) of carboxyl side chains, based on (13)C NMR relaxation measurements as a function of pH. We validated the method using an extensively studied model system, the B1 domain of protein G, for which we measured rate constants koff in the range (0.1-3) × 10(6) s(-1) and kon in the range (0.6-300) × 10(9) M(-1) s(-1), which correspond to acid-base equilibrium dissociation constants (Ka) in excellent agreement with previous results determined by chemical shift titrations. Our results further reveal a linear free-energy relationship between log kon and pKa, which provides information on the free-energy landscape of the protonation reaction, showing that the variability among residues in these parameters arises primarily from the extent of charge stabilization of the deprotonated state by the protein environment. We find that side-chain carboxyls with extreme values of koff or kon are involved in hydrogen bonding, thus providing a mechanistic explanation for the observed stabilization of the protonated or deprotonated state.

  13. The signatures of stable isotopes δ 15N and δ 13C in anadromous and non-anadromous Coilia nasus living in the Yangtze River, and the adjacent sea waters

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Tang, Wenqiao; Dong, Wenxia

    2015-12-01

    Stable isotopes are increasingly used to investigate seasonal migrations of aquatic organisms. This study employed stable isotopes ( δ 13C and δ 15N) for Coilia nasus from the lower Yangtze River and the adjacent East China Sea to distinguish different ecotypic groups, ascertain trophic nutrition positions, and reflect environmental influences on C. nasus. δ 13C signatures of C. nasus sampled from Zhoushan (ZS), Chongming (CM), and Jingjiang (JJ) waters were significantly higher than those from the Poyang Lake (PYL) ( P < 0.05). By contrast, δ 15N signatures of C. nasus in ZS, CM, and JJ groups were significantly lower than those in PYL group ( P < 0.05). Basing on δ 13C and δ 15N signatures, we could distinguish anadromous (ZS, CM, and JJ) and non-anadromous (PYL) groups. The trophic level (TL) of anadromous C. nasus ranged from 2.90 to 3.04, whereas that of non-anadromous C. nasus was 4.38. C. nasus occupied the middle and top nutrition positions in the marine and Poyang Lake food webs, respectively. C. nasus in Poyang Lake were significantly more enriched in δ 15N but depleted in δ 13C, suggesting that anthropogenic nutrient inputs and terrigenous organic carbon are important to the Poyang Lake food web. This study is the first to apply δ 15N and δ 13C to population assignment studies of C. nasus in the Yangtze River and its affiliated waters. Analysis of stable isotopes ( δ 15N and δ 13C) is shown to be a useful tool for discriminating anadromous and non-anadromous C. nasus.

  14. Spatio-temporal isotopic signatures (δ13 C and δ15 N) reveal that two sympatric West African mullet species do not feed on the same basal production sources.

    PubMed

    Le Loc'h, F; Durand, J-D; Diop, K; Panfili, J

    2015-04-01

    Potential trophic competition between two sympatric mullet species, Mugil cephalus and Mugil curema, was explored in the hypersaline estuary of the Saloum Delta (Senegal) using δ(13) C and δ(15) N composition of muscle tissues. Between species, δ(15) N compositions were similar, suggesting a similar trophic level, while the difference in δ(13) C compositions indicated that these species did not feed from exactly the same basal production sources or at least not in the same proportions. This result provides the first evidence of isotopic niche segregation between two limno-benthophageous species belonging to the geographically widespread, and often locally abundant, Mugilidae family.

  15. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO{sub 2} levels: The added value of the isotope ({delta}{sup 13}C and {delta}{sup 18}O CO{sub 2}; {delta}{sup 13}C and {delta}D CH{sub 4}) approach

    SciTech Connect

    Widory, D.; Proust, E.; Bellenfant, G.; Bour, O.

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

  16. Incorporation of 13C labelled root-shoot residues in soil in the presence of Lumbricus terrestris: An isotopic and molecular approach

    NASA Astrophysics Data System (ADS)

    Vidal, Alix; Alexis, Marie; Nguyen Tu, Thanh Tu; Anquetil, Christelle; Vaury, Véronique; Derenne, Sylvie; Quenea, Katell

    2016-04-01

    Litter from plant biomass deposited on soil surface can either be mineralized; releasing CO2 to the atmosphere, or transferred into the soil as organic compounds. Both pathways depend on biotic factors such as litter characteristics and the of soil organism activity. During the last decades, many studies have focused on the origin of organic matter, with a particular attention to the fate of root and shoot litter. It is generally admitted that roots decompose at a slower rate than shoots, resulting in a higher carbon sequestration in soil for compounds originating from roots. Earthworms play a central role in litter decomposition and carbon cycling, ingesting both organic and mineral compounds which are mixed, complexed and dejected in the form of casts at the soil surface or along earthworm burrows. The simultaneous impact of earthworms and root-shoot on soil carbon cycling is still poorly understood. This study aimed at (1) defining the rate of incorporation of root and shoot litter with or without earthworms and (2) characterizing the molecular composition of soil organic matter upon litter decomposition, after one year of experimentation. A mesocosm experiment was set up to follow the incorporation of 13C labelled Ryegrass root and shoot litter in the soil, in the presence of anecic earthworms (Lumbricus terrestris). Soil samples were collected at 0-20 and 40-60 cm, as well as surface casts, at the beginning and after 1, 2, 4, 8, 24 and 54 weeks of experiment. Organic carbon content and δ13C values were determined for all the samples with Elemental Analysis - Isotope Ratio Mass Spectrometry. Lipid-free soil and cast samples after 54 weeks of incubation were analyzed with Pyrolysis-Gas Chromatography-Mass Spectrometry. Pyrolysis products were grouped into six classes: polysaccharides, lignin derived compounds, phenols, N-compounds, aliphatic compounds and sterols. Each pyrolysis product was quantified thanks to its peak area, relative to the total area of the

  17. Application of 13C isotope labeling using liquid chromatography mass spectrometry (LC-MS) to determining phosphate-containing metabolic incorporation

    PubMed Central

    Bhowmik, Salil Kumar; Putluri, Vasanta; Kommagani, Ramakrishna; Konde, Sai Aparna; Lydon, John P.; Sreekumar, Arun; Putluri, Nagireddy

    2016-01-01

    Here, we describe an approach wherein negative electrospray ionization mass spectrometry has used to understand the relative flux through phosphate containing metabolic intermediates associated with central carbon metabolism after administering cells with 13C-labeled substrates. The method was applied to examine the 13C incorporation through glycolysis in T47D breast cancer cells and showed reduction of glycolytic relative flux upon treatment with 2-Deoxyglucose. PMID:24338880

  18. The Semiquinone at the Qi Site of the bc1 Complex Explored Using HYSCORE Spectroscopy and Specific Isotopic Labeling of Ubiquinone in Rhodobacter sphaeroides via 13C Methionine and Construction of a Methionine Auxotroph

    PubMed Central

    2015-01-01

    Specific isotopic labeling at the residue or substituent level extends the scope of different spectroscopic approaches to the atomistic level. Here we describe 13C isotopic labeling of the methyl and methoxy ring substituents of ubiquinone, achieved through construction of a methionine auxotroph in Rhodobacter sphaeroides strain BC17 supplemented with l-methionine with the side chain methyl group 13C-labeled. Two-dimensional electron spin echo envelope modulation (HYSCORE) was applied to study the 13C methyl and methoxy hyperfine couplings in the semiquinone generated in situ at the Qi site of the bc1 complex in its membrane environment. The data were used to characterize the distribution of unpaired spin density and the conformations of the methoxy substituents based on density functional theory calculations of 13C hyperfine tensors in the semiquinone of the geometry-optimized X-ray structure of the bc1 complex (Protein Data Bank entry 1PP9) with the highest available resolution. Comparison with other proteins indicates individual orientations of the methoxy groups in each particular case are always different from the methoxy conformations in the anion radical prepared in a frozen alcohol solution. The protocol used in the generation of the methionine auxotroph is more generally applicable and, because it introduces a gene deletion using a suicide plasmid, can be applied repeatedly. PMID:25184535

  19. 13C Isotopic Fractionation of HC3N in Star-forming Regions: Low-mass Star-forming Region L1527 and High-mass Star-forming Region G28.28-0.36

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kotomi; Saito, Masao; Ozeki, Hiroyuki

    2016-10-01

    We observed the J = 9–8 and 10–9 rotational lines of three 13C isotopologues of HC3N in L1527 and G28.28-0.36, with the 45 m radio telescope of the Nobeyama Radio Observatory, in order to constrain the main formation mechanisms of HC3N in each source. The abundance ratios of the three 13C isotopologues of HC3N are found to be 0.9 (±0.2) : 1.00 : 1.29 (±0.19) (1σ), and 1.0 (±0.2) : 1.00 : 1.47 (±0.17) (1σ), for [H13CCCN : HC13CCN : HCC13CN] in L1527 and G28.28-0.36, respectively. We recognize, from a similar 13C isotopic fractionation pattern, that the abundances of H13CCCN and HC13CCN are comparable, and HCC13CN is more abundant than the others. Based on the results, we discuss the main formation pathway of HC3N. The 13C isotopic fractionation pattern derived from our observations can be explained by the neutral-neutral reaction between C2H2 and CN in both the low-mass (L1527) and high-mass (G28.28-0.36) star-forming regions.

  20. Calculation of total meal d13C from individual food d13C.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variations in the isotopic signature of carbon in biological samples can be used to distinguish dietary patterns and monitor shifts in metabolism. But for these variations to have meaning, the isotopic signature of the diet must be known. We sought to determine if knowledge of the 13C isotopic abund...

  1. Combination of the (87)Sr/(86)Sr ratio and light stable isotopic values (δ(13)C, δ(15)N and δD) for identifying the geographical origin of winter wheat in China.

    PubMed

    Liu, Hongyan; Wei, Yimin; Lu, Hai; Wei, Shuai; Jiang, Tao; Zhang, Yingquan; Guo, Boli

    2016-12-01

    This study aims to investigate whether isotopic signatures can be used to develop reliable fingerprints for discriminating the geographical origin of Chinese winter wheat, and to evaluate the discrimination effects of δ(13)C, δ(15)N and δD, alone or with (87)Sr/(86)Sr. In this study, the values of δ(13)C, δ(15)N and δD, and the (87)Sr/(86)Sr ratios of wheat and provenance soils from three regions were determined. Significant differences were found in all parameters of wheat and (87)Sr/(86)Sr in soil extract (reflecting the bioavailable fraction of soil) among different regions. A significantly positive correlation was observed between the (87)Sr/(86)Sr ratios of wheat and soil extracts. An overall correct classification rate of 77.8% was obtained for discriminating wheat from three regions based on light stable isotopes (δ(13)C, δ(15)N, and δD). The correct classification rate of 98.1% could be obtained with the combination of the (87)Sr/(86)Sr ratio and the light stable isotopic values.

  2. New guidelines for δ13C measurements

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Gehre, Matthias; Groning, Manfred; Meijer, Harro A. J.; Toman, Blaza; Verkouteren, R. Michael

    2006-01-01

    Consistency of δ13C measurements can be improved 39−47% by anchoring the δ13C scale with two isotopic reference materials differing substantially in 13C/12C. It is recommended thatδ13C values of both organic and inorganic materials be measured and expressed relative to VPDB (Vienna Peedee belemnite) on a scale normalized by assigning consensus values of −46.6‰ to L-SVEC lithium carbonate and +1.95‰ to NBS 19 calcium carbonate. Uncertainties of other reference material values on this scale are improved by factors up to two or more, and the values of some have been notably shifted:  the δ13C of NBS 22 oil is −30.03%.

  3. Tracing source, mixing and uptaking processes of carbon in an epikarst spring-pond system in southeastern Guizhou of China by carbon isotopes (13C-14C)

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Chen, B.; Liu, Z.; Li, H. C.; Yang, R.

    2015-12-01

    δ13C and Δ14C of dissolved inorganic carbon (DIC), particulate organic carbon (POC) and aquatic plants from a karst spring and two spring-fed ponds in Laqiao, Maolan County, Guizhou Province in January, July and October of 2013 were measured to understand the roles of aquatic photosynthesis through DIC uptake in karst surface waters. The mean Δ14C and δ13C values of DIC for the spring pool, midstream and downstream ponds are -60.6±26.3‰ and -13.53±1.97‰, -62.8±62.9‰ and -11.72±2.72‰, and -54.2±56.5‰ and -9.40±2.03‰, respectively. Both Δ14C and δ13C show seasonal variations, with lower Δ14C values but heavier δ13C values in dry season and vice versa in summer rainy season. This observation indicates that (1) the main carbon source of the spring DIC is from limestone bedrock dissolution and soil CO2 with higher contribution in summer due to higher productivity; and (2) 13C and 14C have different behaviors during DIC uptake by aquatic plants and during CO2 exchange between DIC and the atmospheric CO2. Biological uptake of CO2 will not affect the Δ14C of DIC, but lead to δ13CDIC enrichment. CO2 exchange between DIC and the atmospheric CO2 should elevate both the Δ14C and δ13C of DIC. In Laqiao spring-pond system, it seems that the effect of biological uptake on the Δ14C and δ13C of DIC is much stronger than that of CO2 exchange with the atmosphere. The mean Δ14C values of POC from the spring pool, midstream and downstream ponds are -308.1 ±64.3‰, -164.4±84.4‰ and -195.1±108.5‰, respectively, indicating mixture of aquatic algae and detrital particle (clay and dust). More aquatic algae were formed in the stream ponds especially in the summer. SEM results of the POC samples support this conclusion. Furthermore, the Δ14C values of the submerged aquatic plants range from -200.0‰ to -51.3 ‰ and were similar to those of the DIC, indicating that the aquatic plants used DIC for photosynthesis. The Δ14C value of an emergent plant

  4. Linking Isotopes and Panmixia: High Within-Colony Variation in Feather δ2H, δ13C, and δ15N across the Range of the American White Pelican.

    PubMed

    Reudink, Matthew W; Kyle, Christopher J; McKellar, Ann E; Somers, Christopher M; Reudink, Robyn L F; Kyser, T Kurt; Franks, Samantha E; Nocera, Joseph J

    2016-01-01

    Complete panmixia across the entire range of a species is a relatively rare phenomenon; however, this pattern may be found in species that have limited philopatry and frequent dispersal. American white pelicans (Pelecanus erythrorhyncos) provide a unique opportunity to examine the role of long-distance dispersal in facilitating gene flow in a species recently reported as panmictic across its broad breeding range. This species is also undergoing a range expansion, with new colonies arising hundreds of kilometers outside previous range boundaries. In this study, we use a multiple stable isotope (δ2H, δ13C, δ15N) approach to examine feather isotopic structuring at 19 pelican colonies across North America, with the goal of establishing an isotopic basemap that could be used for assigning individuals at newly established breeding sites to source colonies. Within-colony isotopic variation was extremely high, exceeding 100‰ in δ2H within some colonies (with relatively high variation also observed for δ13C and δ15N). The high degree of within-site variation greatly limited the utility of assignment-based approaches (42% cross-validation success rate; range: 0-90% success). Furthermore, clustering algorithms identified four likely isotopic clusters; however, those clusters were generally unrelated to geographic location. Taken together, the high degree of within-site isotopic variation and lack of geographically-defined isotopic clusters preclude the establishment of an isotopic basemap for American white pelicans, but may indicate that a high incidence of long-distance dispersal is facilitating gene flow, leading to genetic panmixia.

  5. Linking Isotopes and Panmixia: High Within-Colony Variation in Feather δ2H, δ13C, and δ15N across the Range of the American White Pelican

    PubMed Central

    Reudink, Matthew W.; Kyle, Christopher J.; McKellar, Ann E.; Somers, Christopher M.; Reudink, Robyn L. F.; Kyser, T. Kurt; Franks, Samantha E.; Nocera, Joseph J.

    2016-01-01

    Complete panmixia across the entire range of a species is a relatively rare phenomenon; however, this pattern may be found in species that have limited philopatry and frequent dispersal. American white pelicans (Pelecanus erythrorhyncos) provide a unique opportunity to examine the role of long-distance dispersal in facilitating gene flow in a species recently reported as panmictic across its broad breeding range. This species is also undergoing a range expansion, with new colonies arising hundreds of kilometers outside previous range boundaries. In this study, we use a multiple stable isotope (δ2H, δ13C, δ15N) approach to examine feather isotopic structuring at 19 pelican colonies across North America, with the goal of establishing an isotopic basemap that could be used for assigning individuals at newly established breeding sites to source colonies. Within-colony isotopic variation was extremely high, exceeding 100‰ in δ2H within some colonies (with relatively high variation also observed for δ13C and δ15N). The high degree of within-site variation greatly limited the utility of assignment-based approaches (42% cross-validation success rate; range: 0–90% success). Furthermore, clustering algorithms identified four likely isotopic clusters; however, those clusters were generally unrelated to geographic location. Taken together, the high degree of within-site isotopic variation and lack of geographically-defined isotopic clusters preclude the establishment of an isotopic basemap for American white pelicans, but may indicate that a high incidence of long-distance dispersal is facilitating gene flow, leading to genetic panmixia. PMID:26974163

  6. Latest Paleocene benthic extinction event on the southern Tethyan shelf (Egypt): Foraminiferal stable isotopic13C, δ18O) records

    NASA Astrophysics Data System (ADS)

    Schmitz, B.; Speijer, R. P.; Aubry, M.-P.

    1996-04-01

    The dramatic global extinction of 35% 50% of benthic foraminifera species in the deep sea in the latest Paleocene and associated negative excursions in δ13C and δ18O may be related to spreading of warm, saline bottom water from subtropical Tethyan shallow regions over the sea floor worldwide. Our study of neritic sections in Egypt shows that in the southern shallow Tethys, a prominent long-term change in bottom-water chemistry, sedimentation, and benthic foraminifera fauna was initiated at the time when the deep-sea benthic extinction event (BEE) took place. Bottom-water δ13C values on the Tethyan shelf show a sudden 3.0‰ negative shift at this event; however, contrary to the deep sea, in which the δ13C excursion was of short duration, Tethyan δ13C values did not fully return to preboundary values, but remained depressed by ˜1.5‰ for at least 1 m.y. The δ13C values at the Egyptian shelf during the BEE are much lower than would be expected if this was a source region for global deep water. The δ18O values indicate no significant change in bottom-water salinity or temperature at the BEE. The long-lasting environmental changes that began on the Egyptian shelf at the BEE may be related to, for example, gateway reorganization along the Tethyan seaway. Paleogeographic changes possibly also triggered a change in the loci of global deep-water formation; however, these loci must be sought in another part of the Tethys.

  7. Development of new method of δ(13)C measurement for trace hydrocarbons in natural gas using solid phase micro-extraction coupled to gas chromatography isotope ratio mass spectrometry.

    PubMed

    Li, Zhongping; Wang, Xibin; Li, Liwu; Zhang, Mingjie; Tao, Mingxin; Xing, Lantian; Cao, Chunhui; Xia, Yanqing

    2014-11-01

    Compound specific isotope analysis (CSIA) of normal-level hydrocarbons (C1-C4) in natural gas is often successfully used in natural gas origin identification and classification, but little progress so far has been made for trace level hydrocarbons (C5-C14) in natural gas. In this study, we developed a method for rapid analysis of carbon isotopic ratios for trace hydrocarbons in natural gas samples. This method can be described as a combined approach characterized by solid phase micro-extraction (SPME) technique coupled to gas chromatography isotope ratio mass spectrometry (GC/IRMS). In this study, the CAR-PDMS fiber was chosen as the SPME adsorptive material after comparative experiments with other four fibers, and the parameters, including equilibration time, extraction temperature and desorption time, for efficient extraction of trace hydrocarbons were systematically optimized. The results showed the carbon isotopic fractionation was not observed as a function of equilibration time and extraction temperature. And the δ(13)C signatures determined by SPME-GC/IRMS were in good agreement with the known δ(13)C values of C5-C14 measured by GC-IRMS, and the accuracy is generally within ±0.5‰. Five natural gas samples were analyzed using this method, and the δ(13)C values for C5-C14 components were obtained with satisfied repeatability. The SPME-GC/IRMS approach fitted with CAR-PDMS fiber is well suited for the preconcentration of trace hydrocarbons and provides so far the most reliable carbon isotopic analysis for trace compounds in natural gas. PMID:25465020

  8. Development of new method of δ(13)C measurement for trace hydrocarbons in natural gas using solid phase micro-extraction coupled to gas chromatography isotope ratio mass spectrometry.

    PubMed

    Li, Zhongping; Wang, Xibin; Li, Liwu; Zhang, Mingjie; Tao, Mingxin; Xing, Lantian; Cao, Chunhui; Xia, Yanqing

    2014-11-01

    Compound specific isotope analysis (CSIA) of normal-level hydrocarbons (C1-C4) in natural gas is often successfully used in natural gas origin identification and classification, but little progress so far has been made for trace level hydrocarbons (C5-C14) in natural gas. In this study, we developed a method for rapid analysis of carbon isotopic ratios for trace hydrocarbons in natural gas samples. This method can be described as a combined approach characterized by solid phase micro-extraction (SPME) technique coupled to gas chromatography isotope ratio mass spectrometry (GC/IRMS). In this study, the CAR-PDMS fiber was chosen as the SPME adsorptive material after comparative experiments with other four fibers, and the parameters, including equilibration time, extraction temperature and desorption time, for efficient extraction of trace hydrocarbons were systematically optimized. The results showed the carbon isotopic fractionation was not observed as a function of equilibration time and extraction temperature. And the δ(13)C signatures determined by SPME-GC/IRMS were in good agreement with the known δ(13)C values of C5-C14 measured by GC-IRMS, and the accuracy is generally within ±0.5‰. Five natural gas samples were analyzed using this method, and the δ(13)C values for C5-C14 components were obtained with satisfied repeatability. The SPME-GC/IRMS approach fitted with CAR-PDMS fiber is well suited for the preconcentration of trace hydrocarbons and provides so far the most reliable carbon isotopic analysis for trace compounds in natural gas.

  9. Changing gull diet in a changing world: a 150-year stable isotope13C, δ15N) record from feathers collected in the Pacific Northwest of North America.

    PubMed

    Blight, Louise K; Hobson, Keith A; Kyser, T Kurt; Arcese, Peter

    2015-04-01

    The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long-term human impacts. We used stable isotope (δ(13)C, δ(15)N) analysis of feathers from glaucous-winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long-term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ(13)C and δ(15)N declined since 1860 in both subadult and adult gulls (δ(13)C, ~ 2-6‰; δ(15)N, ~4-5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ(13)C and δ(15)N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage-based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long-term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional

  10. Measuring kinetic isotope effects in enzyme reactions using time-resolved electrospray mass spectrometry.

    PubMed

    Liuni, Peter; Olkhov-Mitsel, Ekaterina; Orellana, Arturo; Wilson, Derek J

    2013-04-01

    Kinetic isotope effect (KIE) measurements are a powerful tool for studying enzyme mechanisms; they can provide insights into microscopic catalytic processes and even structural constraints for transition states. However, KIEs have not come into widespread use in enzymology, due in large part to the requirement for prohibitively cumbersome experimental procedures and daunting analytical frameworks. In this work, we introduce time-resolved electrospray ionization mass spectrometry (TRESI-MS) as a straightforward, precise, and inexpensive method for measuring KIEs. Neither radioisotopes nor large amounts of material are needed and kinetic measurements for isotopically "labeled" and "unlabeled" species are acquired simultaneously in a single "competitive" assay. The approach is demonstrated first using a relatively large isotope effect associated with yeast alcohol dehydrogenase (YADH) catalyzed oxidation of ethanol. The measured macroscopic KIE of 2.19 ± 0.05 is consistent with comparable measurements in the literature but cannot be interpreted in a way that provides insights into isotope effects in individual microscopic steps. To demonstrate the ability of TRESI-MS to directly measure intrinsic KIEs and to characterize the precision of the technique, we measure a much smaller (12)C/(13)C KIE associated specifically with presteady state acylation of chymotrypsin during hydrolysis of an ester substrate.

  11. Hydrogen bonding induced distortion of CO3 units and kinetic stabilization of amorphous calcium carbonate: results from 2D (13)C NMR spectroscopy.

    PubMed

    Sen, Sabyasachi; Kaseman, Derrick C; Colas, Bruno; Jacob, Dorrit E; Clark, Simon M

    2016-07-27

    Systematic correlation in alkaline-earth carbonate compounds between the deviation of the CO3 units from the perfect D3h symmetry and their (13)C nuclear magnetic resonance (NMR) chemical shift anisotropy (CSA) parameters is established. The (13)C NMR CSA parameters of amorphous calcium carbonate (ACC) are measured using two-dimensional (13)C phase adjusted spinning sidebands (PASS) NMR spectroscopy and are analyzed on the basis of this correlation. The results indicate a distortion of the CO3 units in ACC in the form of an in-plane displacement of the C atom away from the centroid of the O3 triangle, resulting from hydrogen bonding with the surrounding H2O molecules, without significant out-of-plane displacement. Similar distortion for all C atoms in the structure of ACC suggests a uniform spatial disposition of H2O molecules around the CO3 units forming a hydrogen-bonded amorphous network. This amorphous network is stabilized against crystallization by steric frustration, while additives such as Mg presumably provide further stabilization by increasing the energy of dehydration. PMID:27276013

  12. 13C18O in Earth's Atmosphere: a New Proxy for Constraining CO Budget

    NASA Astrophysics Data System (ADS)

    Guo, W.; Eiler, J. M.

    2005-12-01

    Despite its low average mixing ratio (70-100 ppbv), carbon monoxide plays an important role in atmospheric chemistry. It is the major sink of OH radicals, and thus strongly influences the oxidizing capacity of the atmosphere, and the lifetimes of many other atmospheric trace gases (e.g., methane, NHMCs and HCFCs). At present, the budget of atmospheric CO is constrained by its mixing ratio, δ13C, δ18O, δ17O values, inventory analysis and inverse modeling. However, the major sources of CO (CH4-oxidation, NMHC-oxidation, biomass burning, anthropogenic emissions and the ocean) vary in flux and isotopic composition, and some overlap one another in isotopic composition. Therefore, its atmospheric budget cannot be rigorously defined by inversion of the existing isotopic and concentration records. Here we introduce measurements of the abundance anomaly of the 13C18O isotopologue of carbon monoxide as an additional constraint on its atmospheric budget. We define the 13C18O anomaly as the deviation of its actual abundance from its expected statistical abundance,Δ13C18O=(([13C18O]actual/[12C16O]actual)/([13C18O]stati stical /[12C16O]statistical)-1)×1000. Abundances of 13C18O are measured by quantitatively oxidizing CO to CO2 over the Schutze reagent, and then measuring mass 47 (mainly 13C18O16O) in the product CO2, which is proportional to the abundance of 13C18O in the starting CO. External precision of Δ13C18O for repeated measurements of pure CO averages 0.03‰(one standard deviation). We expect Δ13C18O in atmospheric carbon monoxide to be sensitive to: mixing between CO of different isotopic compositions, thermodynamic fractionations, diffusion, and kinetic isotope effects accompanying chemical reactions. We have investigated the thermodynamic fractionation of Δ13C18O by performing measurements on carbon monoxide samples catalytically equilibrated at high temperatures (300-1000°C). Measured Δ13C18O values, ranging from ~0.08‰ to ~0.47‰, vary as a function

  13. Stable carbon ((12/13)C) and nitrogen ((14/15)N) isotopes as a tool for identifying the sources of cyanide in wastes and contaminated soils--a method development.

    PubMed

    Weihmann, Jenny; Mansfeldt, Tim; Schulte, Ulrike

    2007-01-23

    The occurrence of iron-cyanide complexes in the environment is of concern, since they are potentially hazardous. In order to determine the source of iron-cyanide complexes in contaminated soils and wastes, we developed a method based on the stable isotope ratios (13)C/(12)C and (15)N/(14)N of the complexed cyanide-ion (CN(-)). The method was tested on three pure chemicals and two industrials wastes: blast-furnace sludge (BFS) and gas-purifier waste (GPW). The iron-cyanide complexes were converted into the solid cupric ferrocyanide, Cu(2)[Fe(CN)(6)].7H(2)O, followed by combustion and determination of the isotope-ratios by continuous flow isotope ratio mass spectrometry. Cupric ferrocyanide was obtained from the materials by (i) an alkaline extraction with 1M NaOH and (ii) a distillate digestion. The [Fe(CN)(6)](4-) of the alkaline extraction was precipitated after adding Cu(2+). The CN(-) of the distillate digestion was at first complexed with Fe(2+) under inert conditions and then precipitated after adding Cu(2+). The delta(13)C-values obtained by the two methods differed slightly up to 1-3 per thousand for standards and BFS. The difference was larger for alkaline-extracted GPW (4-7 per thousand), since non-cyanide C was co-extracted and co-precipitated. Therefore the distillate digestion technique is recommended when determining the C isotope ratios in samples rich in organic carbon. Since the delta(13)C-values of BFS are in the range of -30 to -24 per thousand and of -17 to -5 per thousand for GPW, carbon seems to be a suitable tracer for identifying the source of cyanide in both wastes. However, the delta(15)N-values overlapped for BFS and GPW, making nitrogen unsuitable as a tracer. PMID:17386516

  14. Microbially Mediated Kinetic Sulfur Isotope Fractionation: Reactive Transport Modeling Benchmark

    NASA Astrophysics Data System (ADS)

    Wanner, C.; Druhan, J. L.; Cheng, Y.; Amos, R. T.; Steefel, C. I.; Ajo Franklin, J. B.

    2014-12-01

    Microbially mediated sulfate reduction is a ubiquitous process in many subsurface systems. Isotopic fractionation is characteristic of this anaerobic process, since sulfate reducing bacteria (SRB) favor the reduction of the lighter sulfate isotopologue (S32O42-) over the heavier isotopologue (S34O42-). Detection of isotopic shifts have been utilized as a proxy for the onset of sulfate reduction in subsurface systems such as oil reservoirs and aquifers undergoing uranium bioremediation. Reactive transport modeling (RTM) of kinetic sulfur isotope fractionation has been applied to field and laboratory studies. These RTM approaches employ different mathematical formulations in the representation of kinetic sulfur isotope fractionation. In order to test the various formulations, we propose a benchmark problem set for the simulation of kinetic sulfur isotope fractionation during microbially mediated sulfate reduction. The benchmark problem set is comprised of four problem levels and is based on a recent laboratory column experimental study of sulfur isotope fractionation. Pertinent processes impacting sulfur isotopic composition such as microbial sulfate reduction and dispersion are included in the problem set. To date, participating RTM codes are: CRUNCHTOPE, TOUGHREACT, MIN3P and THE GEOCHEMIST'S WORKBENCH. Preliminary results from various codes show reasonable agreement for the problem levels simulating sulfur isotope fractionation in 1D.

  15. Determination of the tautomeric equilibria of pyridoyl benzoyl β-diketones in the liquid and solid state through the use of deuterium isotope effects on (1)H and (13)C NMR chemical shifts and spin coupling constants.

    PubMed

    Hansen, Poul Erik; Borisov, Eugeny V; Lindon, John C

    2015-02-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on (1)H and (13)C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition, in the solution state the 2-bond and 3-bond J((1)H-(13)C) coupling constants have been used to confirm the equilibrium positions. The isotope effects due to deuteriation at the OH position are shown to be superior to chemical shift in determination of equilibrium positions of these almost symmetrical -pyridoyl-benzoyl methanes. The assignments of the NMR spectra are supported by calculations of the chemical shifts at the DFT level. The equilibrium positions are shown to be different in the liquid and the solid state. In the liquid state the 4-pyridoyl derivative is at the B-form (C-1 is OH), whereas the 2-and 3-pyridoyl derivatives are in the A-form. In the solid state all three compounds are on the B-form. The 4-pyridoyl derivative shows unusual deuterium isotope effects in the solid, which are ascribed to a change of the crystal structure of the deuteriated compound. PMID:24070650

  16. Clumped Isotopes Kinetic Effects: Insight from Synthetic Carbonate and its Implication for Speleothems

    NASA Astrophysics Data System (ADS)

    Affek, H. P.; Zaarur, S.; Kluge, T.; Saenger, C. P.; Douglas, P. M.

    2010-12-01

    Carbonate clumped isotopes is a new paleothermometer based on the relative abundance of 13C-18O bonds in CaCO3 (Δ47). Being an internal property of the carbonate lattice, it provides a temperature estimate that is independent of the isotopic composition of the water in which the carbonate was formed. As such it is most relevant on land where the complexity of water δ18O, associated with the hydrological cycle, makes temperature reconstruction difficult. A large variety of marine biogenic carbonates adheres to a common Δ47-T calibration relationship, developed through calcite synthesized at known temperatures. This relationship is therefore assumed to reflect equilibrium conditions. The application of clumped isotopes on land, however, has been elusive due to non-equilibrium, kinetic isotope effects, that are observed primarily in speleothems. These effects are associated with the degassing of CO2, and reflect the long time required for the solution to regain isotopic equilibrium. We observe that the time required for regaining equilibrium through isotope exchange between DIC and water is similar for Δ47 and δ18O; therefore Δ47 non-equilibrium also implies δ18O non-equilibrium in speleothems. We hypothesize that these kinetic isotope effects are related to speleothems formation occurring from a thin film of solution, where fast degassing lead to an isotopic offset in DIC, that is recorded in CaCO3 which is forming soon thereafter. To gain further insight we synthesized CaCO3 from a stagnant solution, leading to crystals forming at the water-air interface, the site of CO2 degassing, thus mimicking carbonate formation in thin films. The temperature dependence of Δ47 in these samples was significantly less steep than that observed in marine biogenic carbonates, consistent with a kinetic effect that offsets Δ47 to lower values, especially at low temperatures. The observed Δ47-T relationship, although not a direct calibration, is consistent with modern

  17. An estimation of Central Iberian Peninsula atmospheric δ13C and water δD in the Upper Cretaceous using pyrolysis compound specific isotopic analysis (Py-CSIA) of a fossil conifer.

    NASA Astrophysics Data System (ADS)

    González-Pérez, José A.; Jiménez-Morillo, Nicasio T.; De la Rosa, José M.; Almendros, Gonzalo; González-Vila, Francisco J.

    2015-04-01

    Frenelopsis is a frequently found genus of the Cretaceous floras adapted to dry, saline and in general to environmental conditions marked by severe water stress [1]. Stable isotope analysis of fossil organic materials can be used to infer palaeoenvironmental variables helpful to reconstruct plant paleohabitats [2]. In this study stable isotope analysis of organic fossil remains (FR) and humic fractions (FA, HA and humin) of Frenelopsis oligiostomata are studied in bulk (C, H, O, N IRMS) and in specific compounds released by pyrolysis (C, H, Py-CSIA). Well preserved F. oligiostomata fossils were handpicked from a limestone included in compacted marls from Upper Cretaceous (Senonian c. 72 Mya) in Guadalix de la Sierra (Madrid, Spain) [3]. The fossils were decarbonated with 6M HCl. Humic substances were extracted from finely ground fossil remains (FR) by successive treatments with 0.1M Na4P2O7 + NaOH [4]. The extract was acidified resulting into insoluble HA and soluble FA fractions. The HA and FA were purified as in [5] and [6] respectively. Bulk stable isotopic analysis (δ13C, δD, δ18O, δ15N IRMS) was done in an elemental micro-analyser coupled to a continuous flow Delta V Advantage isotope ratio mass spectrometer (IRMS). Pyrolysis compound specific isotopic analysis Py-CSIA (δ13C, δD): was done by coupling a double-shot pyrolyzer to a chromatograph connected to an IRMS. Structural features of specific peaks were inferred by comparing/matching mass spectra from conventional Py-GC/MS (data not shown) with Py-GC/IRMS chromatograms obtained using the same chromatographic conditions. Bulk C isotopic signature found for FR (-20.5±0.02 ‰) was in accordance with previous studies [2, 7-9]. This heavy isotopic δ13C signature indicates a depleted stomatal conductance and paleoenvironmental growth conditions of water and salt stress. This is in line with the morphological and depositional characteristics [3] confirming that F. oligostomata was adapted to highly xeric

  18. Strong coupling of centennial-scale changes of Asian monsoon and soil processes derived from stalagmite δ18O and δ13C records, southern China

    NASA Astrophysics Data System (ADS)

    Liu, Dianbing; Wang, Yongjin; Cheng, Hai; Edwards, R. Lawrence; Kong, Xinggong; Li, Ting-Yong

    2016-05-01

    The paleoclimate application of speleothem δ13C is influenced by site-specific processes. Here we present four stalagmite δ13C records from two caves in southern China, covering early and late Marine Isotope Stage (MIS) 3 and the Holocene, to investigate the spatio-temporal pattern of calcite δ13C changes and the relationship with Asian monsoon (AM) variability. In each growth period, precessional- to millennial-scale changes are clear in the δ18O record. In contrast, millennial variability is absent in the δ13C record, which characterizes persistent centennial oscillations. However, centennial-scale δ18O variations agree well with those of δ13C, with a larger amplitude in δ13C changes (about twice that of δ18O). This suggests that soil humidity balance associated with regional hydrological circulations is important for these centennial δ13C changes, although evaporation-related kinetic fractionation can induce concurrent enrichments in δ18O and δ13C. In frequency, the detrended δ18O and δ13C records are coupled at a periodicity of about 300 yr during the last glacial period and 150 yr during the Holocene. Those centennial-scale δ13C variations are generally consistent with Greenland temperature variability, indicating a climate response over broad regions. Thus, strong co-variation of δ18O and δ13C records should have a climatic origin, even if it is amplified by kinetic effects.

  19. Are light δ13C diamonds derived from preserved primordial heterogeneity or subducted organic carbon? Using numerical modelling of multi-component mass balanced mixing of stable isotopes

    NASA Astrophysics Data System (ADS)

    Mikhail, S.; Jones, A. P.; Robinson, S.; Milledge, H. J.; Verchovsky, A. B.

    2009-04-01

    During the subduction of oceanic crust light volatile elements such as S, C and H are recycled into the upper mantle wedge via slab dehydration and partial melting of oceanic lithosphere. This is evident as arc magmas have higher concentrations of SO2, CO2 and H2O than mid-ocean ridge basalts (Wallace, 2005). It is also calculated that 50% of the carbon and >70% of the sulphur subducted is returned to the earth's deep mantle (Wallace, 2005). This work is testing the notion that the subducted organic carbon is a possible source of growth medium for diamonds. Mantle materials display an interesting bimodality in carbon isotopes with a large peak demonstrating the mean mantle value of ~ -5 ‰ and a smaller peak consistent with organic carbon at ~ -25‰ (Deines, 2001). The source of the bimodality remains unresolved with the main theories being; subducted organic carbon, preserved primordial heterogeneity and the existence of a HPHT fractionation process (for a review see Cartigny, 2005). To test the idea that such organic values of d13C in diamond (ranging from -11 to -37‰) are derived from subducted organic carbon it is essential to compare the d13C values in diamond to other isotopic systems, such as the values for d15N in diamond, as well as values for d34S and d18O in associated syngenic mineral inclusions. We have calculated the percentage of organic C-O-N-S in sediments relative to mean mantle values for d13C, d15N, d34S and d18O required to produce the observed isotopic ratios found in natural diamonds and syngenic mineral inclusions. This was done by way of multi-component mass balanced mixing of stable isotopes between sedimentary, organic and mantle materials of varying measured isotope compositions. References: Cartigny, P .2005. Elements 1, 79-84 Deines, P. 2001. Earth Science Reviews 58, 247-278 Wallace, P.J. 2005. Journal of Volcanology and Geothermal Research 140, 217- 240

  20. Explosive H-Burning and Neutron Capture Isotopic Signatures in 13C- and 15N-Rich Presolar SiC Grains

    NASA Astrophysics Data System (ADS)

    Nittler, L. R.; Liu, N.; Alexander, C. M. O'D.; Wang, J.

    2016-08-01

    15N-rich SiC AB grains have correlated 26Al/27Al and N-isotopic ratios and evidence for neutron capture (50Ti and 32S excesses), indicating combined effects of explosive H burning and neutron capture. The origin(s) of these grains remains elusive.

  1. Short-term natural δ13C variations in pools and fluxes in a beech forest: the transfer of isotopic signal from recent photosynthates to soil respired CO2

    NASA Astrophysics Data System (ADS)

    Gavrichkova, O.; Proietti, S.; Moscatello, S.; Portarena, S.; Battistelli, A.; Matteucci, G.; Brugnoli, E.

    2011-03-01

    The fate of photosynthetic products within the plant-soil continuum determines how long the reduced carbon resides within the ecosystem and when it returns back to the atmosphere in the form of respiratory CO2. We have tested the possibility of measuring natural variation in δ13C to disentangle potential times needed to transfer carbohydrates produced by photosynthesis down to roots and, in general, to belowground up to its further release in the form of soil respiration into the atmosphere in a beech (Fagus sylvatica) forest. For these purposes we have measured the variation in stable carbon and oxygen isotope compositions in plant material and in soil respired CO2 every three hours for three consequent days. Possible steps and different signs of post-photosynthetic fractionation during carbon translocation were also identified. A 12 h-periodicity was observed for variation in δ13C in soluble sugars in the top crown leaves and it can be explained by starch day/night dynamics in synthesis and breakdown and by stomatal limitations under elevated vapour pressure deficits. Photosynthetic products were transported down the trunk and mixed with older carbon pools, therefore causing the dampening of the δ13C signal variation. The strongest periodicity of 24 h was found in δ13C in soil respiration indicating changes in root contribution to the total CO2 efflux. Nevertheless, it was possible to identify the speed of carbon translocation through the plant-soil continuum. A period of 24 h was needed to transfer the C assimilated by photosynthesis from the top crown leaves to the tree trunk at breast height and additional 3 h for further respiration of that C by roots and soil microorganisms and its to subsequent diffusion back to the atmosphere.

  2. Determining the Local Abundance of Martian Methane and its 13-C/l2-C and D/H Isotopic Ratios for Comparison with Related Gas and Soil Analysis on the 2011 Mars Science Laboratory (MSL) Mission

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Mahaffy, Paul R.

    2011-01-01

    Understanding the origin of Martian methane will require numerous complementary measurements from both in situ and remote sensing investigations and laboratory work to correlate planetary surface geophysics with atmospheric dynamics and chemistry. Three instruments (Quadrupole Mass Spectrometer (QMS), Gas Chromatograph (GC) and Tunable Laser Spectrometer (TLS)) with sophisticated sample handling and processing capability make up the Sample Analysis at Mars (SAM) analytical chemistry suite on NASA s 2011 Mars Science Laboratory (MSL) Mission. Leveraging off the SAM sample and gas processing capability that includes methane enrichment, TLS has unprecedented sensitivity for measuring absolute methane (parts-per-trillion), water, and carbon dioxide abundances in both the Martian atmosphere and evolved from heated soil samples. In concert with a wide variety of associated trace gases (e.g. SO2, H2S, NH3, higher hydrocarbons, organics, etc.) and other isotope ratios measured by SAM, TLS will focus on determining the absolute abundances of methane, water and carbon dioxide, and their isotope ratios: 13C/12C and D/H in methane; 13C/12C and 18O/17O/16O in carbon dioxide; and 18O/17O/16O and D/H in water. Measurements near the MSL landing site will be correlated with satellite (Mars Express, Mars 2016) and ground-based observations.

  3. Understanding the role of soil erosion on co2-c loss using (13)c isotopic signatures in abandoned Mediterranean agricultural land.

    PubMed

    Novara, Agata; Keesstra, Saskia; Cerdà, Artemio; Pereira, Paulo; Gristina, Luciano

    2016-04-15

    Understanding soil water erosion processes is essential to evaluate the redistribution of soil organic carbon (SOC) within a landscape and is fundamental to assess the role of soil erosion in the global carbon (C) budget. The main aim of this study was to estimate the C redistribution and losses using (13)C natural abundance. Carbon losses in soil sediment, dissolved organic carbon (DOC) and CO2 emission were determined. Four bounded parallel plots were installed on a 10% slope. In the upper part of the plots, C3soil was replaced with C4soil. The SOC and δ(13)C were measured after 145.2mm rainfall in the upper (2m far from C4strip), middle (4m far from C4strip) lower (6m far from C4strip) trams of the plot and in the sediments collected in the Gerlach collector at the lower part of the plot. A laboratory incubation experiment was performed to evaluate the CO2 emission rate of soils in each area. OC was mainly lost in the sediments as 2.08g(-)(2) of C was lost after 145.2mm rainfall. DOC losses were only 5.61% of off-site OC loss. Three months after the beginning of the experiment, 15.90% of SOC in the upper tram of the plot had a C4 origin. The C4-SOC content decreased along the 6m length of the plot, and in the sediments collected by the Gerlach collector. CO2 emission rate was high in the upper plot tram due to the high SOC content. The discrimination of CO2 in C3 and C4 portion permitted to increase our level of understanding on the stability of SOC and its resilience to decomposition. The transport of sediments along the plot increased SOC mineralization by 43%. Our study underlined the impact of rainfall in C losses in soil and water in abandoned Mediterranean agriculture fields and the consequent implications on the C balance.

  4. Understanding the role of soil erosion on co2-c loss using (13)c isotopic signatures in abandoned Mediterranean agricultural land.

    PubMed

    Novara, Agata; Keesstra, Saskia; Cerdà, Artemio; Pereira, Paulo; Gristina, Luciano

    2016-04-15

    Understanding soil water erosion processes is essential to evaluate the redistribution of soil organic carbon (SOC) within a landscape and is fundamental to assess the role of soil erosion in the global carbon (C) budget. The main aim of this study was to estimate the C redistribution and losses using (13)C natural abundance. Carbon losses in soil sediment, dissolved organic carbon (DOC) and CO2 emission were determined. Four bounded parallel plots were installed on a 10% slope. In the upper part of the plots, C3soil was replaced with C4soil. The SOC and δ(13)C were measured after 145.2mm rainfall in the upper (2m far from C4strip), middle (4m far from C4strip) lower (6m far from C4strip) trams of the plot and in the sediments collected in the Gerlach collector at the lower part of the plot. A laboratory incubation experiment was performed to evaluate the CO2 emission rate of soils in each area. OC was mainly lost in the sediments as 2.08g(-)(2) of C was lost after 145.2mm rainfall. DOC losses were only 5.61% of off-site OC loss. Three months after the beginning of the experiment, 15.90% of SOC in the upper tram of the plot had a C4 origin. The C4-SOC content decreased along the 6m length of the plot, and in the sediments collected by the Gerlach collector. CO2 emission rate was high in the upper plot tram due to the high SOC content. The discrimination of CO2 in C3 and C4 portion permitted to increase our level of understanding on the stability of SOC and its resilience to decomposition. The transport of sediments along the plot increased SOC mineralization by 43%. Our study underlined the impact of rainfall in C losses in soil and water in abandoned Mediterranean agriculture fields and the consequent implications on the C balance. PMID:26820936

  5. Heavy atom labeled nucleotides for measurement of kinetic isotope effects.

    PubMed

    Weissman, Benjamin P; Li, Nan-Sheng; York, Darrin; Harris, Michael; Piccirilli, Joseph A

    2015-11-01

    Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. The implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review, we highlight current approaches to the synthesis of nucleic acids enriched site specifically for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment.

  6. Life history of the individuals buried in the St. Benedict Cemetery (Prague, 15th-18th centuries): insights from (14)C dating and stable isotope (δ(13)C, δ(15)N, δ(18)O) analysis.

    PubMed

    Salesse, Kevin; Dufour, Élise; Castex, Dominique; Velemínský, Petr; Santos, Frédéric; Kuchařová, Hedvika; Jun, Libor; Brůžek, Jaroslav

    2013-06-01

    Funerary practices and bioarchaeological (sex and age) data suggest that a mortality crisis linked to an epidemic episode occurred during the fifth phase of the St. Benedict cemetery in Prague (Czech Republic). To identify this mass mortality episode, we reconstructed individual life histories (dietary and mobility factors), assessed the population's biological homogeneity, and proposed a new chronology through stable isotope analysis (δ(13)C, δ(18)O and δ(15)N) and direct radiocarbon dating. Stable isotope analysis was conducted on the bone and tooth enamel (collagen and carbonate) of 19 individuals from three multiple graves (MG) and 12 individuals from individual graves (IG). The δ(15)N values of collagen and the difference between the δ(13)C values of collagen and bone carbonate could indicate that the IG individuals had a richer protein diet than the MG individuals or different food resources. The human bone and enamel carbonate and δ(18)O values suggest that the majority of individuals from MG and all individuals from IG spent most of their lives outside of the Bohemian region. Variations in δ(18)O values also indicate that all individuals experienced residential mobility during their lives. The stable isotope results, biological (age and sex) data and eight (14)C dates clearly differentiate the MG and IG groups. The present work provides evidence for the reuse of the St. Benedict cemetery to bury soldiers despite the funeral protest ban (1635 AD). The Siege of Prague (1742 AD) by French-Bavarian-Saxon armies is identified as the cause of the St. Benedict mass mortality event.

  7. Life history of the individuals buried in the St. Benedict Cemetery (Prague, 15th-18th centuries): insights from (14)C dating and stable isotope (δ(13)C, δ(15)N, δ(18)O) analysis.

    PubMed

    Salesse, Kevin; Dufour, Élise; Castex, Dominique; Velemínský, Petr; Santos, Frédéric; Kuchařová, Hedvika; Jun, Libor; Brůžek, Jaroslav

    2013-06-01

    Funerary practices and bioarchaeological (sex and age) data suggest that a mortality crisis linked to an epidemic episode occurred during the fifth phase of the St. Benedict cemetery in Prague (Czech Republic). To identify this mass mortality episode, we reconstructed individual life histories (dietary and mobility factors), assessed the population's biological homogeneity, and proposed a new chronology through stable isotope analysis (δ(13)C, δ(18)O and δ(15)N) and direct radiocarbon dating. Stable isotope analysis was conducted on the bone and tooth enamel (collagen and carbonate) of 19 individuals from three multiple graves (MG) and 12 individuals from individual graves (IG). The δ(15)N values of collagen and the difference between the δ(13)C values of collagen and bone carbonate could indicate that the IG individuals had a richer protein diet than the MG individuals or different food resources. The human bone and enamel carbonate and δ(18)O values suggest that the majority of individuals from MG and all individuals from IG spent most of their lives outside of the Bohemian region. Variations in δ(18)O values also indicate that all individuals experienced residential mobility during their lives. The stable isotope results, biological (age and sex) data and eight (14)C dates clearly differentiate the MG and IG groups. The present work provides evidence for the reuse of the St. Benedict cemetery to bury soldiers despite the funeral protest ban (1635 AD). The Siege of Prague (1742 AD) by French-Bavarian-Saxon armies is identified as the cause of the St. Benedict mass mortality event. PMID:23588853

  8. Calcium kinetics with microgram stable isotope doses and saliva sampling

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Wastney, M. E.; Nyquist, L. E.; Shih, C. Y.; Wiesmann, H.; Nillen, J. L.; Lane, H. W.

    1996-01-01

    Studies of calcium kinetics require administration of tracer doses of calcium and subsequent repeated sampling of biological fluids. This study was designed to develop techniques that would allow estimation of calcium kinetics by using small (micrograms) doses of isotopes instead of the more common large (mg) doses to minimize tracer perturbation of the system and reduce cost, and to explore the use of saliva sampling as an alternative to blood sampling. Subjects received an oral dose (133 micrograms) of 43Ca and an i.v. dose (7.7 micrograms) of 46Ca. Isotopic enrichment in blood, urine, saliva and feces was well above thermal ionization mass spectrometry measurement precision up to 170 h after dosing. Fractional calcium absorptions determined from isotopic ratios in blood, urine and saliva were similar. Compartmental modeling revealed that kinetic parameters determined from serum or saliva data were similar, decreasing the necessity for blood samples. It is concluded from these results that calcium kinetics can be assessed with micrograms doses of stable isotopes, thereby reducing tracer costs and with saliva samples, thereby reducing the amount of blood needed.

  9. Quantum instanton evaluation of the kinetic isotope effects

    SciTech Connect

    Vanicek, Jiri; Miller, William H.; Castillo, Jesus F.; Aoiz, F.Javier

    2005-04-19

    A general quantum-mechanical method for computing kinetic isotope effects is presented. The method is based on the quantum instanton approximation for the rate constant and on the path integral Metropolis Monte-Carlo evaluation of the Boltzmann operator matrix elements. It computes the kinetic isotope effect directly, using a thermodynamic integration with respect to the mass of the isotope, thus avoiding the more computationally expensive process of computing the individual rate constants. The method is more accurate than variational transition-state theories or the semiclassical instanton method since it does not assume a single reaction path and does not use a semiclassical approximation of the Boltzmann operator. While the general Monte-Carlo implementation makes the method accessible to systems with a large number of atoms, we present numerical results for the Eckart barrier and for the collinear and full three-dimensional isotope variants of the hydrogen exchange reaction H+H{sub 2} {yields} H{sub 2}+H. In all seven test cases, for temperatures between 250 K and 600 K, the error of the quantum instanton approximation for the kinetic isotope effects is less than {approx}10%.

  10. Kinetic isotope effects on dehalogenations at an aromatic carbon.

    PubMed

    Dybala-Defratyka, Agnieszka; Szatkowski, Lukasz; Kaminski, Rafał; Wujec, Monika; Siwek, Agata; Paneth, Piotr

    2008-11-01

    In order to interpret the observed isotopic fractionation it is necessaryto understand its relationship with the isotope effect(s) on steps that occur during the conversion of the initial reactant to the final product. We examine this relationship from the biochemical point of view and elaborate on the consequences of the assumptions that it is based on. We illustrate the discrepancies between theoretical and experimental interpretation of kinetic isotope effects on examples of dehalogenation reactions that occur at an aromatic carbon atom. The examples include 4-chlorobenzoyl-CoA dehalogenase-catalyzed conversion of 4-chlorobenzoyl-CoA to 4-hydroxybenzoyl-CoA, dehaloperoxidase-catalyzed conversion of 2,4,6-trichlorophenol to 2,6-dichloroquinone, and spontaneous hydrolysis of atrazine at pH 12. For this latter reaction we have measured the chlorine kinetic isotope effect and estimated its value theoretically at the DFT level of theory. Results of chlorine kinetic isotope effects suggest that the studied dechlorination reactions proceed in a single step with significant weakening of the carbon-chlorine bond in the transition state.

  11. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    PubMed Central

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  12. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    SciTech Connect

    Matsuyama, M.; Kondo, M.; Noda, N.; Tanaka, M.; Nishimura, K.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel is limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)

  13. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    USGS Publications Warehouse

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  14. Defining fish community structure in Lake Winnipeg using stable isotopes (δ(13)C, δ(15)N, δ(34)S): implications for monitoring ecological responses and trophodynamics of mercury & other trace elements.

    PubMed

    Ofukany, Amy F A; Wassenaar, Leonard I; Bond, Alexander L; Hobson, Keith A

    2014-11-01

    The ecological integrity of freshwater lakes is influenced by atmospheric and riverine deposition of contaminants, shoreline development, eutrophication, and the introduction of non-native species. Changes to the trophic structure of Lake Winnipeg, Canada, and consequently, the concentrations of contaminants and trace elements measured in tissues of native fishes, are likely attributed to agricultural runoff from the 977,800 km(2) watershed and the arrival of non-native zooplankters and fishes. We measured δ(13)C, δ(15)N, and δ(34)S along with concentrations of 15 trace elements in 17 native fishes from the north and south basins of Lake Winnipeg in 2009 and 2010. After adjusting for differences in isotopic baseline values between the two basins, fishes in the south basin had consistently higher δ(13)C and δ(34)S, and lower δ(15)N. We found little evidence of biomagnification of trace elements at the community level, but walleye (Sander vitreus) and freshwater drum (Aplodinotus grunniens) had higher mercury and selenium concentrations with increased trophic position, coincident with increased piscivory. There was evidence of growth dilution of cobalt, copper, manganese, molybdenum, thallium, and vanadium, and bioaccumulation of mercury, which could be explained by increases in algal (and consequently, lake and fish) productivity. We conclude that the north and south basins of Lake Winnipeg represent very different communities with different trophic structures and trace element concentrations.

  15. A stable isotope13C and δ15N) perspective on human diet on Rapa Nui (Easter Island) ca. AD 1400-1900.

    PubMed

    Commendador, Amy S; Dudgeon, John V; Finney, Bruce P; Fuller, Benjamin T; Esh, Kelley S

    2013-10-01

    Ecological and environmental evidence suggests that Rapa Nui was among the most marginally habitable islands in Eastern Polynesia, with only a fraction of the biotic diversity found on archipelagos to the west, and capable of sustaining many fewer cultigens traditionally transported by Polynesian colonizers. However, archaeological evidence for human dietary adaptations under such restrictions is limited. Little is known about the particulars of the subsistence base and dietary changes on Rapa Nui that may be associated with a hypothesized late prehistoric decline in the quality and diversity of food sources. To better understand prehistoric Rapa Nui diet we examined stable carbon and nitrogen isotope compositions of human teeth along with archaeological faunal material thought to comprise the Rapa Nui food web. Our results indicate that contrary to previous zooarchaeological studies diet was predominantly terrestrial throughout the entire sequence of occupation, with reliance on rats, chickens and C3 plants. While a few individuals may have had access to higher trophic level marine resources, this is evident only later in time (generally post-AD 1600). A decline in (15)N through time was observed, and may be attributed to declines in available terrestrial proteins; however, presently we cannot rule out the effect of changing soil and plant baseline δ(15)N. Our results also suggest differential access to higher trophic level marine resources among contemporaneous populations, but more research is required to clarify this observation.

  16. Short-term natural δ13C and δ18O variations in pools and fluxes in a beech forest: the transfer of isotopic signal from recent photosynthates to soil respired CO2

    NASA Astrophysics Data System (ADS)

    Gavrichkova, O.; Proietti, S.; Moscatello, S.; Portarena, S.; Battistelli, A.; Matteucci, G.; Brugnoli, E.

    2011-10-01

    The fate of photosynthetic products within the plant-soil continuum determines how long the reduced carbon resides within the ecosystem and when it returns back to the atmosphere in the form of respiratory CO2. We have tested the possibility of measuring natural variation in δ13C and δ18O to disentangle the potential times needed to transfer carbohydrates produced by photosynthesis down to trunk, roots and, in general, to belowground up to its further release in the form of soil respiration into the atmosphere in a beech (Fagus sylvatica) forest. We have measured the variation in stable carbon and oxygen isotope compositions in plant material and in soil respired CO2 every three hours for three consecutive days. Possible steps and different signs of post-photosynthetic fractionation during carbon translocation were also identified. A 12 h-periodicity was observed for variation in δ13C in soluble sugars in the top crown leaves and it can be explained by starch day/night dynamics in synthesis and breakdown and by stomatal limitations under elevated vapour pressure deficits. Photosynthetic products were transported down the trunk and mixed with older carbon pools, therefore causing the dampening of the δ13C signal variation. The strongest periodicity of 24 h was found in δ13C in soil respiration indicating changes in root contribution to the total CO2 efflux. Other non-biological causes like diffusion fractionation and advection induced by gas withdrawn from the measurement chamber complicate data interpretation on this step of C transfer path. Nevertheless, it was possible to identify the speed of carbohydrates' translocation from the point of assimilation to the trunk breast height because leaf-imprinted enrichment of δ18O in soluble sugars was less modified along the downward transport and was well related to environmental parameters potentially linked to stomatal conductance. The speed of carbohydrates translocation from the site of assimilation to the trunk

  17. Cr stable isotope fractionation and reaction kinetics in aqueous milieu

    NASA Astrophysics Data System (ADS)

    Zink, S.; Schoenberg, R.; Staubwasser, M.

    2009-12-01

    Mass-dependent stable Cr isotope variations show great potential to monitor the natural attenuation of anthropogenic chromate pollution as well as to investigate changes in environmental conditions in the present and the past. However, accurate interpretation of mass-dependent Cr isotope variations requires profound knowledge of the Cr isotope fractionation behaviour during redox transitions and the isotope exchange kinetics of the reactions involved. Here, we present a comprehensive dataset of stable Cr isotope fractionation and reaction kinetics during Cr(III) oxidation, Cr(VI) reduction and isotopic exchange between soluble Cr(III) and Cr(VI) in aqueous milieu. All experiments were carried out with both oxidation states (i.e. Cr(III) and Cr(VI)) in solution, using H2O2 as oxidising as well as reducing agent. The pH conditions were varied to investigate the influence of the different Cr(III) and Cr(VI) species on the Cr isotope fractionation and on the reaction mechanisms during the enforced redox transitions. All Cr stable isotope measurements were performed by high-resolution MC-ICP-MS [1]. The reduction of Cr(VI) to Cr(III) with H2O2 under strongly acidic conditions shows an equilibrium isotope fractionation of Δ(53,52Cr)Cr(III)-Cr(VI) of -3.54 ± 0.35 ‰. This value is within uncertainty equal to that of -3.4 ± 0.1 ‰ reported by Ellis et al. [2], who used natural sediment and magnetite as reducing agents at pH 6 to 7. At pH = 7 our reduction experiments show a unidirectional, kinetic isotope fractionation Δ(53,52Cr)Cr(III)-Cr(VI) of approximately -5 ‰ for reduction rates of up to 80 %, but a strong deviation from this Rayleigh-type process for higher reduction rates. However, at a pH value of 7 H2O2 supports the temporary formation and decomposition of Cr(V)-peroxo complexes that might explain this fractionation behaviour and deviation from a single Rayleigh type trend. The oxidation experiments of Cr(III) to Cr(VI) were carried out in alkaline media

  18. Kinetic isotope effects for fast deuterium and proton exchange rates

    PubMed Central

    Mammoli, Daniele; Kadeřávek, Pavel; Pelupessy, Philippe; Bodenhausen, Geoffrey

    2016-01-01

    By monitoring the effect of deuterium decoupling on the decay of transverse 15N magnetization in D–15N spin pairs during multiple-refocusing echo sequences, we have determined fast D–D exchange rates k D and compared them with fast H–H exchange rates k H in tryptophan to determine the kinetic isotope effect as a function of pH and temperature. PMID:27009684

  19. Large-scale synthesis of isotopically labeled 13C2-tenuazonic acid and development of a rapid HPLC-MS/MS method for the analysis of tenuazonic acid in tomato and pepper products.

    PubMed

    Lohrey, Lilia; Marschik, Stefanie; Cramer, Benedikt; Humpf, Hans-Ulrich

    2013-01-01

    Tenuazonic acid is a fungal secondary metabolite that is produced by a number of Alternaria species and is therefore a natural contaminant of food and feed samples. This paper describes a new strategy for the efficient and economical large-scale synthesis of the isotopically labeled internal standard (13)C(2)-tenuazonic acid via a three-step procedure. Furthermore, a new reliable and quick method based on QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) cleanup is presented for the determination of tenuazonic acid in food and feed samples utilizing high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) by application of the stable isotope dilution analysis. This new method has a limit of detection (LOD) of 0.86 μg/kg and a limit of quantitation (LOQ) of 2.89 μg/kg. In total 26 tomato samples and 4 bell pepper samples from the German market were analyzed. Tenuazonic acid was found in each sample with levels from 3 to 2330 μg/kg.

  20. Tracking atmospheric sulphur pollution from the study of Racomitrium lanuginosum mosses in Iceland: A multi-isotope approach (δ34S, 206Pb/204Pb, δ13C and δ15N)

    NASA Astrophysics Data System (ADS)

    Proust, E.; Widory, D.; Gautason, B.; Rogers, K.; Morrison, J.

    2010-12-01

    Among terrestrial plants, the applicability of mosses as monitoring organisms of atmospheric pollutants is a world-wide accepted technique due to their special biological and morphologic characteristics as nonvascular plants. They are commonly regarded as the best bioindicators of air quality because they can accumulate sulphur (S) and other elements to a far greater level than is necessary for their physiological needs. This study aims at using different isotope systematics δ34S, 206Pb/204Pb, δ13C and δ15N) to help understand the origin of S in the atmophsere of Reykjavik and its vicinity, and especially the potential contribution of surrounding geothermal plants. The selected Icelandic woolly fringe moss (Racomitrium lanuginosum (Hedw.) Brid.) is extremely common in lava fields and gravely and stony areas. Samples were taken in four distinct sampling sites around the city of Reykjavik: Bláfjöll area (south-eastern suburb of the city), and close to three power plants: Hellisheioarvirkjun (northern suburb of the city), Svartsengi (south-western suburb of the city) and Nesjavellir (north-eastern suburb of the city). Results show that, whatever the sampling context is, S is controlled by a binary mixing, between i) a high δ34S (around 16‰) end-member, characteristic of mosses from Hellisheioarvirkjun, and ii) a low δ34S (around -2‰) end-member, characteristic of mosses from Nesjavellir. The multi-isotope approach, confirms this binary relation and helps to constrain the different end-members involved.

  1. Large-scale synthesis of isotopically labeled 13C2-tenuazonic acid and development of a rapid HPLC-MS/MS method for the analysis of tenuazonic acid in tomato and pepper products.

    PubMed

    Lohrey, Lilia; Marschik, Stefanie; Cramer, Benedikt; Humpf, Hans-Ulrich

    2013-01-01

    Tenuazonic acid is a fungal secondary metabolite that is produced by a number of Alternaria species and is therefore a natural contaminant of food and feed samples. This paper describes a new strategy for the efficient and economical large-scale synthesis of the isotopically labeled internal standard (13)C(2)-tenuazonic acid via a three-step procedure. Furthermore, a new reliable and quick method based on QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) cleanup is presented for the determination of tenuazonic acid in food and feed samples utilizing high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) by application of the stable isotope dilution analysis. This new method has a limit of detection (LOD) of 0.86 μg/kg and a limit of quantitation (LOQ) of 2.89 μg/kg. In total 26 tomato samples and 4 bell pepper samples from the German market were analyzed. Tenuazonic acid was found in each sample with levels from 3 to 2330 μg/kg. PMID:23230907

  2. Accelerating quantum instanton calculations of the kinetic isotope effects

    SciTech Connect

    Karandashev, Konstantin; Vaníček, Jiří

    2015-11-21

    Path integral implementation of the quantum instanton approximation currently belongs among the most accurate methods for computing quantum rate constants and kinetic isotope effects, but its use has been limited due to the rather high computational cost. Here, we demonstrate that the efficiency of quantum instanton calculations of the kinetic isotope effects can be increased by orders of magnitude by combining two approaches: The convergence to the quantum limit is accelerated by employing high-order path integral factorizations of the Boltzmann operator, while the statistical convergence is improved by implementing virial estimators for relevant quantities. After deriving several new virial estimators for the high-order factorization and evaluating the resulting increase in efficiency, using ⋅H{sub α} + H{sub β}H{sub γ} → H{sub α}H{sub β} + ⋅ H{sub γ} reaction as an example, we apply the proposed method to obtain several kinetic isotope effects on CH{sub 4} + ⋅ H ⇌ ⋅ CH{sub 3} + H{sub 2} forward and backward reactions.

  3. Optimized [1-13C]glucose infusion protocol for 13C magnetic resonance spectroscopy at 3 Tesla of human brain glucose metabolism under euglycemic and hypoglycemic conditions

    PubMed Central

    van de Ven, Kim C.C.; van der Graaf, Marinette; Tack, Cees J.J.; Klomp, Dennis W.J.; Heerschap, Arend; de Galan, Bastiaan E.

    2009-01-01

    The effect of insulin-induced hypoglycemia on cerebral glucose metabolism is largely unknown. 13C MRS is a unique tool to study cerebral glucose metabolism, but the concurrent requirement for [1-13C]glucose administration limits its use under hypoglycemic conditions. To facilitate 13C MRS data analysis we designed separate [1-13C]glucose infusion protocols for hyperinsulinemic euglycemic and hypoglycemic clamps in such a way that plasma isotopic enrichment of glucose was stable and comparable under both glycemic conditions. 13C MR spectra were acquired with optimized 13C MRS measurement techniques to obtain high quality 13C MR spectra with these protocols. PMID:19913052

  4. Anomalous 13C enrichment in modern marine organic carbon

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Claypool, G.E.

    1985-01-01

    Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, ??13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) ??13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter ??13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower PCO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4. ?? 1985 Nature Publishing Group.

  5. sup 13 C-enriched ribonucleosides: Synthesis and application of sup 13 C- sup 1 H and sup 13 C- sup 13 C spin-coupling constants to assess furanose and N-glycoside bond conformations

    SciTech Connect

    Kline, P.C.; Serianni, A.S. )

    1990-09-26

    Adenosine (1), cytidine (2), guanosine (3), and uridine (4) have been prepared chemically with {sup 13}C enrichment (99 atom %) at C1{prime} and C2{prime} of the ribose ring. Reliable synthetic protocols have been developed to permit access to millimole quantities of labeled ribonucleosides required for structural studies of stable isotopically labeled oligonucleotides and for in vivo metabolism studies. High-resolution {sup 1}H and {sup 13}C NMR spectra of the enriched ribonucleosides have been obtained, and {sup 13}C-{sup 13}C and {sup 13}C-{sup 1}H spin-coupling constants have been measured for pathways within the {beta}-D-ribofuranose ring and across the N-glycoside bond. Related couplings were determined in methyl {alpha}- and {beta}-D-riboruanosides (5,6), and in two conformationally constrained nucleosides, 2,2{prime}-anhydro-(1-{beta}-D-arabinofuranosyl)uracil (7) and 2{prime},3{prime}-O-isopropylidene-2,5{prime}-O-cyclouridine (8). The latter data were used to construct a crude Karplus curve for the {sup 13}C-C-N-{sup 13}C coupling pathway across the N-glycoside bond in 1-4. {sup 1}H-{sup 1}H, {sup 13}C-{sup 1}H, and {sup 13}C-{sup 13}C coupling data are used to evaluate current models describing the conformational dynamics of 1-4 in aqueous solution.

  6. Ethane's 12C/13C Ratio in Titan: Implications for Methane Replenishment

    NASA Astrophysics Data System (ADS)

    Jennings, Donald E.; Nixon, C. A.; Romani, P. N.; Bjoraker, G. L.; Sada, P. V.; Lunsford, A. W.; Boyle, R. J.; Hesman, B. E.; McCabe, G. H.

    2009-09-01

    As the main destination of carbon in the destruction of methane in the atmosphere of Titan, ethane provides information about the carbon isotopic composition of the reservoir from which methane is replenished. If the amount of methane entering the atmosphere is presently equal to the amount converted to ethane, the 12C/13C ratio in ethane should be close to the ratio in the reservoir. We have measured the 12C/13C ratio in ethane both with Cassini CIRS1 and from the ground2 and find that it is very close to the telluric standard and outer planet values (89), consistent with a primordial origin for the methane reservoir. The lower 12C/13C ratio measured for methane by Huygens GCMS (82.3) can be explained if the conversion of CH4 to CH3 (and C2H6) favors 12C over 13C with a carbon kinetic isotope effect of 1.08. The time required for the atmospheric methane to reach equilibrium, i.e., for replenishment to equal destruction, is approximately 5 methane atmospheric lifetimes. 1Nixon et al., Icarus 195, 778 (2008). 2Jennings et al., Journal of Physical Chemistry A, in press (2009).

  7. Quantum tunneling observed without its characteristic large kinetic isotope effects

    PubMed Central

    Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki

    2015-01-01

    Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle’s ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1–1.5) despite the large intrinsic H/D KIE of tunneling (≳100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system. PMID:26034285

  8. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  9. Ratio of 18o Versus 13c As Indicator of Ecological and Physiological Adaptability In The Coral Genus Madracis

    NASA Astrophysics Data System (ADS)

    Maier, C.; Bak, R. P. M.

    Scleractinian corals hosting endosymbiotic algae (zooxanthellae) occur over a wide depth range within the photic zone of coral reefs. While some corals occur within a very narrow range others can be found over the whole reef slope. Within the genus Madracis we compared the skeletal 13C and 18O of three species that are very distinct in their distributional depth range. The species M. pharensis occurs over a wide range between 5 and > 60 m depth, while M. mirabilis and M. formosa are restricted to a narrow range growing shallow (<20 m) or deep (> 40 m), respectively. We hypothesize, that the distinct distributional depth range of the three species is due to physiological adaptation to the respective light regimes, and that this species specific adaptation must be reflected in the skeletal 18O and 13C signals. Skeletal isotope fractionation is controlled by kinetic (both 13C and 18O ) and metabolic (13C only) isotope effects. Apart from environmental factors (temperature and salinity), the calcification rate and P:R ratio control isotope fractionation. This means, that (1) the efficiency with which corals under various light regimes photosynthesize and calcify and (2) the linkage between photosynthesis and calcification become apparent when applying skeletal 13C versus 18O of the 3 Madracis species according to the model of McConnaughey (Geochim. Cosmochim. Acta, 53: 151-162, 1989). Comparing e.g. 13C vs. 18O ratios of M. pharensis (broad depth range) and M. formosa (narrow range, deep) sampled at 50 m depth, stable isotopes of M. pharensis plot on the kinetic line, while the isotopes of the deep adapted M. formosa are offset from the kinetic line. This indicates, that M. pharensis is hardly growing and is hence at its distributional depth limit, while M. formosa has even in 50 m depth a positive P:R ratio and skeletal growth. Therefore, the ratio of 13C and 18O might be useful as `proxy' in coral physiology and ecology. Vice versa an ecological approach in questions

  10. Kinetic theory of oxygen isotopic exchange between minerals and water

    USGS Publications Warehouse

    Criss, R.E.; Gregory, R.T.; Taylor, H.P.

    1987-01-01

    Kinetic and mass conservation equations are used to describe oxygen isotopic exchange between minerals and water in "closed" and open hydrothermal systems. In cases where n coexisting mineral phases having different reaction rates are present, the exchange process is described by a system of n + 1 simultaneous differential equations consisting of n pseudo first-order rate equations and a conservation of mass equation. The simultaneous solutions to these equations generate curved exchange trajectories on ??-?? plots. Families of such trajectories generated under conditions allowing for different fluid mole fractions, different fluid isotopic compositions, or different fluid flow rates are connected by positive-sloped isochronous lines. These isochrons reproduce the effects observed in hydrothermally exchanged mineral pairs including 1) steep positive slopes, 2) common reversals in the measured fractionation factors (??), and 3) measured fractionations that are highly variable over short distances where no thermal gradient can be geologically demonstrated. ?? 1987.

  11. Application of {sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O and {delta}{sup 13}C isotopes to diagenesis correlation and connectivity of a fractured chalk reservoir, the Sidi El Kilani field, Tunisia

    SciTech Connect

    Mearns, E.W.; McBride, J.J.; Bramwell, M.

    1996-12-31

    Oil is produced primarily from open fracture porosity in Upper Cretaceous chalk in the Sidi El Kilani oil field. Strontium Stratigraphy analyses of primary, unaltered matrix chalk has confirmed a Campanian to Maastrichtian age and has allowed dating of the reservoir with a resolution of {+-}1 Ma. This has facilitated reservoir correlation and has indicated where section is missing in certain wells due to faulting. {sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O and {delta}{sup 13}C analyses suggest an early generation of fracture fill calcite cement may have formed by redistribution of CaCO{sub 3} from underlying carbonate sequences at temperatures in the region 35-55{degrees}C. Calcite cemented fractures tend to be healed and are not productive. Strontium Isotope Residual Salt Analyses (SrRSA) conducted on core, provide information on the formation water chemistry and reservoir connectivity at the time of oil filling. These data suggest that the NW-SE trending fault system that bisects the field is sealed across much of the fault plane. The main oil pool lies SW of the fault. A later generation of dolomite and barite cements, associated with productive open fractures, have Sr-O-C composition consistent with precipitation from fluids circulating at the time of hydrocarbon charge at temperatures close to current reservoir conditions of 70-75{degrees}C. Predicting the distribution of dolomite cemented open fractures has thus helped guide the development strategy of the field.

  12. Application of [sup 87]Sr/[sup 86]Sr, [delta][sup 18]O and [delta][sup 13]C isotopes to diagenesis correlation and connectivity of a fractured chalk reservoir, the Sidi El Kilani field, Tunisia

    SciTech Connect

    Mearns, E.W.; McBride, J.J. ); Bramwell, M.

    1996-01-01

    Oil is produced primarily from open fracture porosity in Upper Cretaceous chalk in the Sidi El Kilani oil field. Strontium Stratigraphy analyses of primary, unaltered matrix chalk has confirmed a Campanian to Maastrichtian age and has allowed dating of the reservoir with a resolution of [+-]1 Ma. This has facilitated reservoir correlation and has indicated where section is missing in certain wells due to faulting. [sup 87]Sr/[sup 86]Sr, [delta][sup 18]O and [delta][sup 13]C analyses suggest an early generation of fracture fill calcite cement may have formed by redistribution of CaCO[sub 3] from underlying carbonate sequences at temperatures in the region 35-55[degrees]C. Calcite cemented fractures tend to be healed and are not productive. Strontium Isotope Residual Salt Analyses (SrRSA) conducted on core, provide information on the formation water chemistry and reservoir connectivity at the time of oil filling. These data suggest that the NW-SE trending fault system that bisects the field is sealed across much of the fault plane. The main oil pool lies SW of the fault. A later generation of dolomite and barite cements, associated with productive open fractures, have Sr-O-C composition consistent with precipitation from fluids circulating at the time of hydrocarbon charge at temperatures close to current reservoir conditions of 70-75[degrees]C. Predicting the distribution of dolomite cemented open fractures has thus helped guide the development strategy of the field.

  13. Topological Constraints on Chain-Folding Structure of Semicrystalline Polymer as Studied by 13C-13C Double Quantum NMR

    NASA Astrophysics Data System (ADS)

    Hong, Youlee; Miyoshi, Toshikazu

    Chain-folding process is a prominent feature of long polymer chains during crystallization. Over the last half century, much effort has been paid to reveal the chain trajectory. Even though various chain-folding models as well as theories of crystallization at molecule levels have been proposed, they could be not reconciled due to the limited experimental evidences. Recent development of double quantum NMR with selective isotope labeling identified the chain-trajectory of 13C labeled isotactic poly(1-butene). The systematic experiments covered a wide range of parameters, i.e. kinetics, concentration, and molecular weight (Mw) . It was demonstrated that i) adjacent re-entry site was invariant as a function of crystallization temperature (Tc) , concentration, andMw, ii) long-range order of adjacent re-entry sequence is independence of kinetics at a given concentration while it decreased with increasing the polymer concentration at a given Tc due to the increased interruption between the chains, and iii) high Mw chains led to the multilayer folded structures in single crystals, but the melt state induced the identical short adjacent sequences of long and short polymer over a wide range of Tc due to the entanglements. The behaviors indicated that the topological restriction plays significant roles in the chain-folding process rather than the kinetics. The proposed framework to control the chain-folding structure presents a new perspective into the chain organization by either the intra- or inter-chain interaction. National Science Foundation Grants DMR-1105829 and 1408855.

  14. Anaerobic Methane Oxidation in Soils - revealed using 13C-labelled methane tracers

    NASA Astrophysics Data System (ADS)

    Riekie, G. J.; Baggs, E. M.; Killham, K. S.; Smith, J. U.

    2008-12-01

    In marine sediments, anaerobic methane oxidation is a significant biogeochemical process limiting methane flux from ocean to atmosphere. To date, evidence for anaerobic methane oxidation in terrestrial environments has proved elusive, and its significance is uncertain. In this study, an isotope dilution method specifically designed to detect the process of anaerobic methane oxidation in methanogenic wetland soils is applied. Methane emissions of soils from three contrasting permanently waterlogged sites in Scotland are investigated in strictly anoxic microcosms to which 13C- labelled methane is added, and changes in the concentration and 12C/13C isotope ratios of methane and carbon dioxide are subsequently measured and used to calculate separate the separate components of the methane flux. The method used takes into account the 13C-methane associated with methanogenesis, and the amount of methane dissolved in the soil. The calculations make no prior assumptions about the kinetics of methane production or oxidation. The results indicate that methane oxidation can take place in anoxic soil environments. The clearest evidence for anaerobic methane oxidation is provided by soils from a minerotrophic fen site (pH 6.0) in Bin Forest underlain by ultra-basic and serpentine till. In the fresh soil anoxic microcosms, net consumption methane was observed, and the amount of headspace 13C-CO2 increased at a greater rate than the 12+13C-CO2, further proof of methane oxidation. A net increase in methane was measured in microcosms of soil from Murder Moss, an alkaline site, pH 6.5, with a strong calcareous influence. However, the 13C-CH4 data provided evidence of methane oxidation, both in the disappearance of C- CH4 and appearance of smaller quantities of 13C-CO2. The least alkaline (pH 5.5) microcosms, of Gateside Farm soil - a granitic till - exhibited net methanogenesis and the changes in 13C-CH4 and 13C-CO2 here followed the pattern expected if no methane is consumed

  15. Labeling strategies for 13C-detected aligned-sample solid-state NMR of proteins

    NASA Astrophysics Data System (ADS)

    Filipp, Fabian V.; Sinha, Neeraj; Jairam, Lena; Bradley, Joel; Opella, Stanley J.

    2009-12-01

    13C-detected solid-state NMR experiments have substantially higher sensitivity than the corresponding 15N-detected experiments on stationary, aligned samples of isotopically labeled proteins. Several methods for tailoring the isotopic labeling are described that result in spatially isolated 13C sites so that dipole-dipole couplings among the 13C are minimized, thus eliminating the need for homonuclear 13C- 13C decoupling in either indirect or direct dimensions of one- or multi-dimensional NMR experiments that employ 13C detection. The optimal percentage for random fractional 13C labeling is between 25% and 35%. Specifically labeled glycerol and glucose can be used at the carbon sources to tailor the isotopic labeling, and the choice depends on the resonances of interest for a particular study. For investigations of the protein backbone, growth of the bacteria on [2- 13C]-glucose-containing media was found to be most effective.

  16. δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH-11 calcite

    USGS Publications Warehouse

    Revesz, Kinga M.; Landwehr, Jurate M.

    2002-01-01

    A new method was developed to analyze the stable carbon and oxygen isotope ratios of small samples (400 ± 20 µg) of calcium carbonate. This new method streamlines the classical phosphoric acid/calcium carbonate (H3PO4/CaCO3) reaction method by making use of a recently available Thermoquest-Finnigan GasBench II preparation device and a Delta Plus XL continuous flow isotope ratio mass spectrometer. Conditions for which the H3PO4/CaCO3 reaction produced reproducible and accurate results with minimal error had to be determined. When the acid/carbonate reaction temperature was kept at 26 °C and the reaction time was between 24 and 54 h, the precision of the carbon and oxygen isotope ratios for pooled samples from three reference standard materials was ≤0.1 and ≤0.2 per mill or ‰, respectively, although later analysis showed that materials from one specific standard required reaction time between 34 and 54 h for δ18O to achieve this level of precision. Aliquot screening methods were shown to further minimize the total error. The accuracy and precision of the new method were analyzed and confirmed by statistical analysis. The utility of the method was verified by analyzing calcite from Devils Hole, Nevada, for which isotope-ratio values had previously been obtained by the classical method. Devils Hole core DH-11 recently had been re-cut and re-sampled, and isotope-ratio values were obtained using the new method. The results were comparable with those obtained by the classical method with correlation = +0.96 for both isotope ratios. The consistency of the isotopic results is such that an alignment offset could be identified in the re-sampled core material, and two cutting errors that occurred during re-sampling then were confirmed independently. This result indicates that the new method is a viable alternative to the classical reaction method. In particular, the new method requires less sample material permitting finer resolution and allows

  17. Conifers, Angiosperm Trees, and Lianas: Growth, Whole-Plant Water and Nitrogen Use Efficiency, and Stable Isotope Composition (δ13C and δ18O) of Seedlings Grown in a Tropical Environment1[W][OA

    PubMed Central

    Cernusak, Lucas A.; Winter, Klaus; Aranda, Jorge; Turner, Benjamin L.

    2008-01-01

    Seedlings of several species of gymnosperm trees, angiosperm trees, and angiosperm lianas were grown under tropical field conditions in the Republic of Panama; physiological processes controlling plant C and water fluxes were assessed across this functionally diverse range of species. Relative growth rate, r, was primarily controlled by the ratio of leaf area to plant mass, of which specific leaf area was a key component. Instantaneous photosynthesis, when expressed on a leaf-mass basis, explained 69% of variation in r (P < 0.0001, n = 94). Mean r of angiosperms was significantly higher than that of the gymnosperms; within angiosperms, mean r of lianas was higher than that of trees. Whole-plant nitrogen use efficiency was also significantly higher in angiosperm than in gymnosperm species, and was primarily controlled by the rate of photosynthesis for a given amount of leaf nitrogen. Whole-plant water use efficiency, TEc, varied significantly among species, and was primarily controlled by ci/ca, the ratio of intercellular to ambient CO2 partial pressures during photosynthesis. Instantaneous measurements of ci/ca explained 51% of variation in TEc (P < 0.0001, n = 94). Whole-plant 13C discrimination also varied significantly as a function of ci/ca (R2 = 0.57, P < 0.0001, n = 94), and was, accordingly, a good predictor of TEc. The 18O enrichment of stem dry matter was primarily controlled by the predicted 18O enrichment of evaporative sites within leaves (R2 = 0.61, P < 0.0001, n = 94), with some residual variation explained by mean transpiration rate. Measurements of carbon and oxygen stable isotope ratios could provide a useful means of parameterizing physiological models of tropical forest trees. PMID:18599645

  18. Forward Modeling of Fluctuating Dietary 13C Signals to Validate 13C Turnover Models of Milk and Milk Components from a Diet-Switch Experiment

    PubMed Central

    Braun, Alexander; Schneider, Stephan; Auerswald, Karl; Bellof, Gerhard; Schnyder, Hans

    2013-01-01

    Isotopic variation of food stuffs propagates through trophic systems. But, this variation is dampened in each trophic step, due to buffering effects of metabolic and storage pools. Thus, understanding of isotopic variation in trophic systems requires knowledge of isotopic turnover. In animals, turnover is usually quantified in diet-switch experiments in controlled conditions. Such experiments usually involve changes in diet chemical composition, which may affect turnover. Furthermore, it is uncertain if diet-switch based turnover models are applicable under conditions with randomly fluctuating dietary input signals. Here, we investigate if turnover information derived from diet-switch experiments with dairy cows can predict the isotopic composition of metabolic products (milk, milk components and feces) under natural fluctuations of dietary isotope and chemical composition. First, a diet-switch from a C3-grass/maize diet to a pure C3-grass diet was used to quantify carbon turnover in whole milk, lactose, casein, milk fat and feces. Data were analyzed with a compartmental mixed effects model, which allowed for multiple pools and intra-population variability, and included a delay between feed ingestion and first tracer appearance in outputs. The delay for milk components and whole milk was ∼12 h, and that of feces ∼20 h. The half-life (t½) for carbon in the feces was 9 h, while lactose, casein and milk fat had a t½ of 10, 18 and 19 h. The 13C kinetics of whole milk revealed two pools, a fast pool with a t½ of 10 h (likely representing lactose), and a slower pool with a t½ of 21 h (likely including casein and milk fat). The diet-switch based turnover information provided a precise prediction (RMSE ∼0.2 ‰) of the natural 13C fluctuations in outputs during a 30 days-long period when cows ingested a pure C3 grass with naturally fluctuating isotope composition. PMID:24392000

  19. Nonstatistical 13C distribution during carbon transfer from glucose to ethanol during fermentation is determined by the catabolic pathway exploited.

    PubMed

    Bayle, Kevin; Akoka, Serge; Remaud, Gérald S; Robins, Richard J

    2015-02-13

    During the anaerobic fermentation of glucose to ethanol, the three micro-organisms Saccharomyces cerevisiae, Zymomonas mobilis, and Leuconostoc mesenteroides exploit, respectively, the Embden-Meyerhof-Parnas, the Entner-Doudoroff, and the reductive pentose phosphate pathways. Thus, the atoms incorporated into ethanol do not have the same affiliation to the atomic positions in glucose. The isotopic fractionation occurring in each pathway at both the methylene and methyl positions of ethanol has been investigated by isotopic quantitative (13)C NMR spectrometry with the aim of observing whether an isotope redistribution characteristic of the enzymes active in each pathway can be measured. First, it is found that each pathway has a unique isotope redistribution signature. Second, for the methylene group, a significant apparent kinetic isotope effect is only found in the reductive pentose phosphate pathway. Third, the apparent kinetic isotope effects related to the methyl group are more pronounced than for the methylene group. These findings can (i) be related to known kinetic isotope effects of some of the enzymes concerned and (ii) give indicators as to which steps in the pathways are likely to be influencing the final isotopic composition in the ethanol.

  20. Nonstatistical 13C Distribution during Carbon Transfer from Glucose to Ethanol during Fermentation Is Determined by the Catabolic Pathway Exploited*

    PubMed Central

    Bayle, Kevin; Akoka, Serge; Remaud, Gérald S.; Robins, Richard J.

    2015-01-01

    During the anaerobic fermentation of glucose to ethanol, the three micro-organisms Saccharomyces cerevisiae, Zymomonas mobilis, and Leuconostoc mesenteroides exploit, respectively, the Embden-Meyerhof-Parnas, the Entner-Doudoroff, and the reductive pentose phosphate pathways. Thus, the atoms incorporated into ethanol do not have the same affiliation to the atomic positions in glucose. The isotopic fractionation occurring in each pathway at both the methylene and methyl positions of ethanol has been investigated by isotopic quantitative 13C NMR spectrometry with the aim of observing whether an isotope redistribution characteristic of the enzymes active in each pathway can be measured. First, it is found that each pathway has a unique isotope redistribution signature. Second, for the methylene group, a significant apparent kinetic isotope effect is only found in the reductive pentose phosphate pathway. Third, the apparent kinetic isotope effects related to the methyl group are more pronounced than for the methylene group. These findings can (i) be related to known kinetic isotope effects of some of the enzymes concerned and (ii) give indicators as to which steps in the pathways are likely to be influencing the final isotopic composition in the ethanol. PMID:25538251

  1. Kinetic isotope effects for Cl + CH4 ⇌ HCl + CH3 calculated using ab initio semiclassical transition state theory.

    PubMed

    Barker, John R; Nguyen, Thanh Lam; Stanton, John F

    2012-06-21

    Calculations were carried out for 25 isotopologues of the title reaction for various combinations of (35)Cl, (37)Cl, (12)C, (13)C, (14)C, H, and D. The computed rate constants are based on harmonic vibrational frequencies calculated at the CCSD(T)/aug-cc-pVTZ level of theory and X(ij) vibrational anharmonicity coefficients calculated at the CCSD(T) /aug-cc-pVDZ level of theory. For some reactions, anharmonicity coefficients were also computed at the CCSD(T)/aug-cc-pVTZ level of theory. The classical reaction barrier was taken from Eskola et al. [J. Phys. Chem. A 2008, 112, 7391-7401], who extrapolated CCSD(T) calculations to the complete basis set limit. Rate constants were calculated for temperatures from ∼100 to ∼2000 K. The computed ab initio rate constant for the normal isotopologue is in good agreement with experiments over the entire temperature range (∼10% lower than the recommended experimental value at 298 K). The ab initio H/D kinetic isotope effects (KIEs) for CH(3)D, CH(2)D(2), CHD(3), and CD(4) are in very good agreement with literature experimental data. The ab initio (12)C/(13)C KIE is in error by ∼2% at 298 K for calculations using X(ij) coefficients computed with the aug-cc-pVDZ basis set, but the error is reduced to ∼1% when X(ij) coefficients computed with the larger aug-cc-pVTZ basis set are used. Systematic improvements appear to be possible. The present SCTST results are found to be more accurate than those from other theoretical calculations. Overall, this is a very promising method for computing ab initio kinetic isotope effects.

  2. Carbon kinetic isotope effects at natural abundances during iron-catalyzed photolytic cleavage of Csbnd C bonds in aqueous phase α,ω-dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Irei, Satoshi

    2016-09-01

    Carbon kinetic isotope effects (KIEs) at natural abundances during photolysis of Fe3+-oxalato, malonato, and succinato complexes in aqueous solution were studied to identify the Csbnd C bond cleaving mechanism of Fe3+-oxalato complexes under sunlight irradiation. Observed overall KIEs were 5.9‰, 11.5‰, and 8.4‰, respectively. This variation is inconsistent with secondary carbon KIEs for the Fesbnd O bond cleavage, but consistent with primary carbon KIEs for sequential cleavage of Fesbnd O and Csbnd C bonds. Position-specific probability of 13C content estimated KIEs of 5.9‰, 17.2‰, and 17‰ for 12Csbnd 13C bond cleavage, respectively, indicating the different KIEs for carboxyl-carboxyl and methyl-carboxyl cleavage.

  3. Kinetic isotope effects calculated with the instanton method.

    PubMed

    Meisner, Jan; Rommel, Judith B; Kästner, Johannes

    2011-12-01

    The ring-opening reaction of the cyclopropylcarbinyl radical proceeds via heavy-atom tunneling at low temperature. We used instanton theory to calculate tunneling rates and kinetic isotope effects with on-the-fly calculation of energies by density functional theory (B3LYP). The accuracy was verified by explicitly correlated coupled-cluster calculations (UCCSD(T)-F12). At cryogenic temperatures, we found protium/deuterium KIEs up to 13 and inverse KIEs down to 0.2. We also studied an intramolecular tautomerization reaction. A simple and computationally efficient method is proposed to calculate KIEs with the instanton method: the instanton path is assumed to be independent of the atomic masses. This results in surprisingly good estimates of the KIEs for the cyclopropylcarbinyl radical and for the secondary KIEs of the tautomerization. Challenges and capabilities of the instanton method for calculating KIEs are discussed.

  4. Structural and Kinetic Isotope Effect Studies of Nicotinamidase (Pnc1) from Saccharomyces cerevisiae

    SciTech Connect

    Smith, Brian C.; Anderson, Mark A.; Hoadley, Kelly A.; Keck, James L.; Cleland, W. Wallace; Denu, John M.

    2012-05-08

    Nicotinamidases catalyze the hydrolysis of nicotinamide to nicotinic acid and ammonia. Nicotinamidases are absent in mammals but function in NAD{sup +} salvage in many bacteria, yeast, plants, protozoa, and metazoans. We have performed structural and kinetic investigations of the nicotinamidase from Saccharomyces cerevisiae (Pnc1). Steady-state product inhibitor analysis revealed an irreversible reaction in which ammonia is the first product released, followed by nicotinic acid. A series of nicotinamide analogues acting as inhibitors or substrates were examined, revealing that the nicotinamide carbonyl oxygen and ring nitrogen are critical for binding and reactivity. X-ray structural analysis revealed a covalent adduct between nicotinaldehyde and Cys167 of Pnc1 and coordination of the nicotinamide ring nitrogen to the active-site zinc ion. Using this structure as a guide, the function of several residues was probed via mutagenesis and primary {sup 15}N and {sup 13}C kinetic isotope effects (KIEs) on V/K for amide bond hydrolysis. The KIE values of almost all variants were increased, indicating that C-N bond cleavage is at least partially rate limiting; however, a decreased KIE for D51N was indicative of a stronger commitment to catalysis. In addition, KIE values using slower alternate substrates indicated that C-N bond cleavage is at least partially rate limiting with nicotinamide to highly rate limiting with thionicotinamide. A detailed mechanism involving nucleophilic attack of Cys167, followed by elimination of ammonia and then hydrolysis to liberate nicotinic acid, is discussed. These results will aid in the design of mechanism-based inhibitors to target pathogens that rely on nicotinamidase activity.

  5. Nuclear quantum effects and kinetic isotope effects in enzyme reactions.

    PubMed

    Vardi-Kilshtain, Alexandra; Nitoker, Neta; Major, Dan Thomas

    2015-09-15

    Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology. Theoretically, the prediction of KIEs in condensed phase environments such as enzymes is challenging due to the need to include nuclear quantum effects (NQEs). Herein we describe recent progress in our group in the development of multi-scale simulation methods for the calculation of NQEs and accurate computation of KIEs. We also describe their application to several enzyme systems. In particular we describe the use of combined quantum mechanics/molecular mechanics (QM/MM) methods in classical and quantum simulations. The development of various novel path-integral methods is reviewed. These methods are tailor suited to enzyme systems, where only a few degrees of freedom involved in the chemistry need to be quantized. The application of the hybrid QM/MM quantum-classical simulation approach to three case studies is presented. The first case involves the proton transfer in alanine racemase. The second case presented involves orotidine 5'-monophosphate decarboxylase where multidimensional free energy simulations together with kinetic isotope effects are combined in the study of the reaction mechanism. Finally, we discuss the proton transfer in nitroalkane oxidase, where the enzyme employs tunneling as a catalytic fine-tuning tool. PMID:25769515

  6. Nuclear quantum effects and kinetic isotope effects in enzyme reactions.

    PubMed

    Vardi-Kilshtain, Alexandra; Nitoker, Neta; Major, Dan Thomas

    2015-09-15

    Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology. Theoretically, the prediction of KIEs in condensed phase environments such as enzymes is challenging due to the need to include nuclear quantum effects (NQEs). Herein we describe recent progress in our group in the development of multi-scale simulation methods for the calculation of NQEs and accurate computation of KIEs. We also describe their application to several enzyme systems. In particular we describe the use of combined quantum mechanics/molecular mechanics (QM/MM) methods in classical and quantum simulations. The development of various novel path-integral methods is reviewed. These methods are tailor suited to enzyme systems, where only a few degrees of freedom involved in the chemistry need to be quantized. The application of the hybrid QM/MM quantum-classical simulation approach to three case studies is presented. The first case involves the proton transfer in alanine racemase. The second case presented involves orotidine 5'-monophosphate decarboxylase where multidimensional free energy simulations together with kinetic isotope effects are combined in the study of the reaction mechanism. Finally, we discuss the proton transfer in nitroalkane oxidase, where the enzyme employs tunneling as a catalytic fine-tuning tool.

  7. Stable isotope studies of nicotine kinetics and bioavailability

    SciTech Connect

    Benowitz, N.L.; Jacob, P. 3d.; Denaro, C.; Jenkins, R. )

    1991-03-01

    The stable isotope-labeled compound 3',3'-dideuteronicotine was used to investigate the disposition kinetics of nicotine in smokers, the systemic absorption of nicotine from cigarette smoke, and the bioavailability of nicotine ingested as oral capsules. Blood levels of labeled nicotine could be measured for 9 hours after a 30-minute intravenous infusion. Analysis of disposition kinetics in 10 healthy men revealed a multiexponential decline after the end of an infusion, with an elimination half-life averaging 203 minutes. This half-life was longer than that previously reported, indicating the presence of a shallow elimination phase. Plasma clearance averaged 14.6 ml/min/kg. The average intake of nicotine per cigarette was 2.29 mg. A cigarette smoke-monitoring system that directly measured particulate matter in smoke was evaluated in these subjects. Total particulate matter, number of puffs on the cigarette, total puff volume, and time of puffing correlated with the intake of nicotine from smoking. The oral bioavailability of nicotine averaged 44%. This bioavailability is higher than expected based on the systemic clearance of nicotine and suggests that there may be significant extrahepatic metabolism of nicotine.

  8. Determination of 13C/ 12C ratios with (d, p) nuclear reactions

    NASA Astrophysics Data System (ADS)

    Wang, Y. Q.; Zhang, J.; Tesmer, J. R.; Li, Y. H.; Greco, R.; Grim, G. P.; Obst, A. W.; Rundberg, R. S.; Wilhelmy, J. B.

    2010-06-01

    Stable isotope ratios such as 13C/ 12C play an important role in many applications including environment and energy research. Since many surface analysis techniques are plagued with unavoidable hydrocarbon contamination issues during analysis, it is highly desirable that 13C and 12C isotopes be measured simultaneously especially in specimens with a minute amount of 13C, in order to reliably determine 13C/ 12C ratios. In this paper, we report that deuterium induced proton particle reactions, 13C(d, p) 14C and 12C(d, p) 13C, provide a convenient and reliable approach for 13C/ 12C ratio determination. Optimizations on experimental considerations and potential interferences from other common light isotopes are discussed as well as results from the application of this technique to diagnose the performance of a target debris collection in an inertial confinement fusion (ICF) experiment.

  9. An improved pyrite pretreatment protocol for kinetic and isotopic studies

    NASA Astrophysics Data System (ADS)

    Mirzoyan, Natella; Kamyshny, Alexey; Halevy, Itay

    2014-05-01

    An improved pyrite pretreatment protocol for kinetic and isotopic studies Natella Mirzoyan1, Alexey Kamyshny Jr.2, Itay Halevy1 1Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel 2Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel Pyrite is one of the most abundant and widespread of the sulfide minerals with a central role in biogeochemical cycles of iron and sulfur. Due to its diverse roles in the natural and anthropogenic sulfur cycle, pyrite has been extensively studied in various experimental investigations of the kinetics of its dissolution and oxidation, the isotopic fractionations associated with these reactions, and the microbiological processes involved. Pretreatment of pyrite for removal of oxidation impurities to prevent experimental artifacts and inaccuracies is often practiced. While numerous pyrite-cleaning methods have been used in experiments, a common pyrite pretreatment method, often used to investigate pyrite chemistry by the isotopic fractionations associated with it, includes several rinses by HCl, acetone and deionized water. Elemental sulfur (S0) is a common product of incomplete pyrite oxidation. Removal of S0 is desirable to avoid experimental biases associated with its participation in pyrite transformations, but is more complicated than the removal of sulfate. Although rinsing with an organic solvent is in part aimed at removing S0, to the best of our knowledge, the extraction efficiency of S0 in existing protocols has not been assessed. We have developed and tested a new protocol for elemental sulfur removal from the surface of pyrite by ultrasonication with warm acetone. Our data demonstrate the presence of large fractions of S0 on untreated pyrite particle surfaces, of which only approximately 60% was removed by the commonly used pretreatment method. The new protocol described here was found to be more efficient at S0 removal than the commonly used method

  10. Effect of photosynthetic light dosage on carbon isotope composition in the coral skeleton: Long-term culture of Porites spp.

    NASA Astrophysics Data System (ADS)

    Omata, Tamano; Suzuki, Atsushi; Sato, Takanori; Minoshima, Kayo; Nomaru, Eriko; Murakami, Akio; Murayama, Shohei; Kawahata, Hodaka; Maruyama, Tadashi

    2008-06-01

    Whereas the oxygen isotope ratio of the coral skeleton is used for reconstruction of past information on seawater, the carbon isotope ratio is considered a proxy for physiological processes, principally photosynthesis and respiration. However, the fractionation of carbon isotopes in biogenic carbonate such as coral skeleton is still unclear. We conducted a long-term culture experiment of Porites spp. corals at different light dosages (light intensity, 100, 300, or 500 μmol m-2 s-1; daily light period, 10 or 12 h) at 25 ± 0.6°C to examine the contribution of photosynthetic activity to skeletal carbon isotope composition. Corals were grown in sand-filtered seawater and not fed; thus, they subsisted from photosynthesis of symbiotic algae. As the daily dose of photosynthetically active radiation increased, the rate of annual extension also increased. Mean isotope compositions shifted; the carbon isotope compositions (δ13C) became heavier and the oxygen isotope compositions (δ18O) became lighter at higher radiation dose. Skeletal δ18O decrease coincided with increasing skeletal growth rate, indicating the influence of so-called kinetic isotope effects. The observed δ13C increase should be subject to both kinetic and metabolic isotope effects, with the latter reflecting skeletal δ13C enrichment due to photosynthesis by symbiotic algae. Using a vector approach in the δ13C-δ18O plane, we discriminated between kinetic and metabolic isotope effects on δ13C. The calculated δ13C changes from metabolic isotope effects were light dose dependent. The δ13C fractionation curve related to metabolic isotope effects is very similar to the photosynthesis-irradiance curve, indicating the direct contribution of photosynthetic activity to metabolic isotope effects. In contrast, δ13C fractionation related to kinetic isotope effects gradually increased as the growth rate increased. Our experiment demonstrated that the kinetic and metabolic isotope effects in coral skeleton

  11. Abundance anomaly of the 13C species of CCH

    NASA Astrophysics Data System (ADS)

    Sakai, N.; Saruwatari, O.; Sakai, T.; Takano, S.; Yamamoto, S.

    2010-03-01

    Aims: We have observed the N = 1-0 lines of CCH and its 13C isotopic species toward a cold dark cloud, TMC-1 and a star-forming region, L1527, to investigate the 13C abundances and formation pathways of CCH. Methods: The observations have been carried out with the IRAM 30 m telescope. Results: We have successfully detected the lines of 13CCH and C13CH toward the both sources and found a significant intensity difference between the two 13C isotopic species. The [C13CH] /[13CCH] abundance ratios are 1.6 ± 0.4 (3σ) and 1.6 ± 0.1 (3σ) for TMC-1 and L1527, respectively. The abundance difference between C13CH and 13CCH means that the two carbon atoms of CCH are not equivalent in the formation pathway. On the other hand, the [CCH]/[C13CH] and [CCH]/[13CCH] ratios are evaluated to be larger than 170 and 250 toward TMC-1, and to be larger than 80 and 135 toward L1527, respectively. Therefore, both of the 13C species are significantly diluted in comparison with the interstellar 12C/13C ratio of 60. The dilution is discussed in terms of a behavior of 13C in molecular clouds.

  12. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO : CO2, N2O : CO2, CH4 : CO2, O2 : CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NASA Astrophysics Data System (ADS)

    Popa, M. E.; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-02-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2 / N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in previous studies, pointing to a reduction in CO emissions from traffic. The 13C in CO2 reflects the isotopic composition of the fuel. 18O in CO2 is slightly depleted compared to the 18O in atmospheric O2, and shows significant variability. In contrast, the δ13C values of CO show that significant fractionation takes place during CO destruction in the catalytic converter. 13C in CO is enriched by 3‰ compared to the 13C in the fuel burnt, while the 18O content is similar to that of atmospheric O2. We compute a fractionation constant of (-2.7 ± 0.7)‰ for 13C during CO destruction. The N2O : CO2 average ratio of (1.8 ± 0.2) × 10-2 ppb:ppm is significantly lower than in past studies, showing a reduction in N2O emissions likely related to improvements in the catalytic converter technology. We also observed small CH4 emissions, with an average CH4 : CO2 ratio of (4.6 ± 0.2) × 10-2 ppb:ppm. The O2 : CO2 ratios of (-1.47 ± 0.01) ppm:ppm are very close to the expected, theoretically calculated values of O2 depletion per CO2 enhancement.

  13. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    PubMed

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  14. Kinetic oxygen isotope effects during dissimilatory sulfate reduction: A combined theoretical and experimental approach

    NASA Astrophysics Data System (ADS)

    Turchyn, Alexandra V.; Brüchert, Volker; Lyons, Timothy W.; Engel, Gregory S.; Balci, Nurgul; Schrag, Daniel P.; Brunner, Benjamin

    2010-04-01

    Kinetic isotope effects related to the breaking of chemical bonds drive sulfur isotope fractionation during dissimilatory sulfate reduction (DSR), whereas oxygen isotope fractionation during DSR is dominated by exchange between intercellular sulfur intermediates and water. We use a simplified biochemical model for DSR to explore how a kinetic oxygen isotope effect may be expressed. We then explore these relationships in light of evolving sulfur and oxygen isotope compositions (δ 34S SO4 and δ 18O SO4) during batch culture growth of twelve strains of sulfate-reducing bacteria. Cultured under conditions to optimize growth and with identical δ 18O H2O and initial δ 18O SO4, all strains show 34S enrichment, whereas only six strains show significant 18O enrichment. The remaining six show no (or minimal) change in δ 18O SO4 over the growth of the bacteria. We use these experimental and theoretical results to address three questions: (i) which sulfur intermediates exchange oxygen isotopes with water, (ii) what is the kinetic oxygen isotope effect related to the reduction of adenosine phosphosulfate (APS) to sulfite (SO 32-), (iii) does a kinetic oxygen isotope effect impact the apparent oxygen isotope equilibrium values? We conclude that oxygen isotope exchange between water and a sulfur intermediate likely occurs downstream of APS and that our data constrain the kinetic oxygen isotope fractionation for the reduction of APS to sulfite to be smaller than 4‰. This small oxygen isotope effect impacts the apparent oxygen isotope equilibrium as controlled by the extent to which APS reduction is rate-limiting.

  15. Two Techniques for Estimating Deglacial Mean-Ocean δ13 C Change from the Same Set of 493 Benthic δ13C Records

    NASA Astrophysics Data System (ADS)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.

    2013-12-01

    The crux of carbon redistribution over the deglaciation centers on the ocean, where the isotopic signature of terrestrial carbon (δ13C terrestrial carbon = -25‰) is observed as a 0.3-0.7‰ shift in benthic foraminiferal δ13C. Deglacial mean-ocean δ13C estimates vary due to different subsets of benthic δ13C data and different methods of weighting the mean δ13C by volume. Here, we present a detailed 1-to-1 comparison of two methods of calculating mean δ13C change and uncertainty estimates using the same set of 493 benthic Cibicidoides spp. δ13C measurements for the LGM and Late Holocene. The first method divides the ocean into 8 regions, and uses simple line fits to describe the distribution of δ13C data for each timeslice over 0.5-5 km depth. With these line fits, we estimate the δ13C value at 100-meter intervals and weight those estimates by the regional volume at each depth slice. The mean-ocean δ13C is the sum of these volume-weighted regional δ13C estimates and the uncertainty of these mean-ocean δ13C estimates is computed using Monte Carlo simulations. The whole-ocean δ13C change is estimated using extrapolated surface- and deep-ocean δ13C estimates, and an assumed δ13C value for the Southern Ocean. This method yields an estimated LGM-to-Holocene change of 0.38×0.07‰ for 0.5-5km and 0.35×0.16‰ for the whole ocean (Peterson et al., 2013, submitted to Paleoceanography). The second method reconstructs glacial and modern δ13C by combining the same data compilation as above with a steady-state ocean circulation model (Gebbie, 2013, submitted to Paleoceanography). The result is a tracer distribution on a 4-by-4 degree horizontal resolution grid with 23 vertical levels, and an estimate of the distribution's uncertainty that accounts for the distinct modern and glacial water-mass geometries. From both methods, we compare the regional δ13C estimates (0.5-5 km), surface δ13C estimates (0-0.5 km), deep δ13C estimates (>5 km), Southern Ocean

  16. Residue-Specific Structural Kinetics of Proteins through the Union of Isotope Labeling, Mid-IR Pulse Shaping, and Coherent 2D IR Spectroscopy

    PubMed Central

    Middleton, Chris T.; Woys, Ann Marie; Mukherjee, Sudipta S.; Zanni, Martin T.

    2010-01-01

    We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for 13C=18O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide form type 2 diabetes. PMID:20472067

  17. Localized in vivo13C NMR spectroscopy of the brain

    PubMed Central

    Gruetter, Rolf; Adriany, Gregor; Choi, In-Young; Henry, Pierre-Gilles; Lei, Hongxia; Öz, Gülin

    2006-01-01

    Localized 13C NMR spectroscopy provides a new investigative tool for studying cerebral metabolism. The application of 13C NMR spectroscopy to living intact humans and animals presents the investigator with a number of unique challenges. This review provides in the first part a tutorial insight into the ingredients required for achieving a successful implementation of localized 13C NMR spectroscopy. The difficulties in establishing 13C NMR are the need for decoupling of the one-bond 13C–1H heteronuclear J coupling, the large chemical shift range, the low sensitivity and the need for localization of the signals. The methodological consequences of these technical problems are discussed, particularly with respect to (a) RF front-end considerations, (b) localization methods, (c) the low sensitivity, and (d) quantification methods. Lastly, some achievements of in vivo localized 13C NMR spectroscopy of the brain are reviewed, such as: (a) the measurement of brain glutamine synthesis and the feasibility of quantifying glutamatergic action in the brain; (b) the demonstration of significant anaplerotic fluxes in the brain; (c) the demonstration of a highly regulated malate-aspartate shuttle in brain energy metabolism and isotope flux; (d) quantification of neuronal and glial energy metabolism; and (e) brain glycogen metabolism in hypoglycemia in rats and humans. We conclude that the unique and novel insights provided by 13C NMR spectroscopy have opened many new research areas that are likely to improve the understanding of brain carbohydrate metabolism in health and disease. PMID:14679498

  18. Kinetic isotope effects in the oxidation of arachidonic acid by soybean lipoxygenase-1.

    PubMed

    Jacquot, Cyril; Peng, Sheng; van der Donk, Wilfred A

    2008-11-15

    The reaction of soybean lipoxygenase-1 with linoleic acid has been extensively studied and displays very large kinetic isotope effects. In this work, substrate and solvent kinetic isotope effects as well as the viscosity dependence of the oxidation of arachidonic acid were investigated. The hydrogen atom abstraction step was rate-determining at all temperatures, but was partially masked by a viscosity-dependent step at ambient temperatures. The observed KIEs on k(cat) were large ( approximately 100 at 25 degrees C).

  19. Enzymatic Kinetic Isotope Effects from First-Principles Path Sampling Calculations.

    PubMed

    Varga, Matthew J; Schwartz, Steven D

    2016-04-12

    In this study, we develop and test a method to determine the rate of particle transfer and kinetic isotope effects in enzymatic reactions, specifically yeast alcohol dehydrogenase (YADH), from first-principles. Transition path sampling (TPS) and normal mode centroid dynamics (CMD) are used to simulate these enzymatic reactions without knowledge of their reaction coordinates and with the inclusion of quantum effects, such as zero-point energy and tunneling, on the transferring particle. Though previous studies have used TPS to calculate reaction rate constants in various model and real systems, it has not been applied to a system as large as YADH. The calculated primary H/D kinetic isotope effect agrees with previously reported experimental results, within experimental error. The kinetic isotope effects calculated with this method correspond to the kinetic isotope effect of the transfer event itself. The results reported here show that the kinetic isotope effects calculated from first-principles, purely for barrier passage, can be used to predict experimental kinetic isotope effects in enzymatic systems.

  20. 13C-18O bonding (Δ47) in deep-sea corals: a calibration study

    NASA Astrophysics Data System (ADS)

    Kimball, J. B.; Tripati, A.; Dunbar, R. B.; Eagle, R.

    2013-12-01

    Deep-sea corals are a potentially valuable archive of temperature in intermediate and deep waters, regions for which a paucity of temperature data exists. These archives could give valuable insight into the natural variability of areas of the ocean that play an active role in large-scale climate dynamics. Due to significant 'vital effects' (i.e., non-equilibrium mineral compositions) in δ18O, however, deep-sea coral have been challenging to develop as a paleotemperature proxy. Clumped-isotope paleothermometry is a new method that may circumvent some of the known complications with δ18O paleotemperature analysis in deep-sea coral. This geothermometer is based on the ordering of heavy 13C-18O ';clumps' in carbonate minerals. Initial calibration studies have shown that the method is independent from the solution chemistry of the precipitating fluids as well as 'vital effects' in deep-sea corals and other types of carbonates. Some kinetic effects have been observed in tropical corals and speleothems. Here we report new data in order to further develop clumped isotopes as a paleothermometer in deep-sea corals as well as to investigate taxon-specific effects. 13C-18O bond ordering was analyzed in live-collected scleractinian (Enallopsammia sp.) and gorgonian (Isididae and Coralliidae) deep-sea corals. We determined mass 47 anomalies in samples (Δ47), which refers to the parts per thousand excess of 13C-18O-16O in CO2 produced on acid digestion of a sample, relative to the amount predicted to be present if isotopes were randomly distributed amongst all CO2 isotopologues. Measured Δ47 values were compared to in situ temperatures and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects.

  1. Carbon kinetic isotope effect in the reaction of CH{sub 4} with Cl atoms

    SciTech Connect

    Saueressig, G.; Bergamaschi, P.; Crowley, J.N.

    1995-05-15

    The authors report laser absorption spectroscopy measurements of the carbon kinetic isotope effect involving chlorine reacting with methane under stratospheric type conditions. The authors find a slight isotope effect of 1.066 {+-} 0.002 at 297 K for the ratio of {sup 13}CH{sub 4}/{sup 12}CH{sub 4}. There was also a slight temperature dependence observed.

  2. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    SciTech Connect

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.

  3. Integration of kinetic isotope effect analyses to elucidate ribonuclease mechanism.

    PubMed

    Harris, Michael E; Piccirilli, Joseph A; York, Darrin M

    2015-11-01

    The well-studied mechanism of ribonuclease A is believed to involve concerted general acid-base catalysis by two histidine residues, His12 and His119. The basic features of this mechanism are often cited to explain rate enhancement by both protein and RNA enzymes that catalyze RNA 2'-O-transphosphorylation. Recent kinetic isotope effect analyses and computational studies are providing a more chemically detailed description of the mechanism of RNase A and the rate limiting transition state. Overall, the results support an asynchronous mechanism for both solution and ribonuclease catalyzed reactions in which breakdown of a transient dianoinic phosphorane intermediate by 5'OP bond cleavage is rate limiting. Relative to non-enzymatic reactions catalyzed by specific base, a smaller KIE on the 5'O leaving group and a less negative βLG are observed for RNase A catalysis. Quantum mechanical calculations consistent with these data support a model in which electrostatic and H-bonding interactions with the non-bridging oxygens and proton transfer from His119 render departure of the 5'O less advanced and stabilize charge buildup in the transition state. Both experiment and computation indicate advanced 2'OP bond formation in the rate limiting transition state. However, this feature makes it difficult to resolve the chemical steps involved in 2'O activation. Thus, modeling the transition state for RNase A catalysis underscores those elements of its chemical mechanism that are well resolved, as well as highlighting those where ambiguity remains. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.

  4. Magnetic isotope effect on kinetic parameters and quantum beats of radical pairs in micellar solution studied by optically detected esr using pulsed microwave.

    PubMed

    Kitahama, Yasutaka; Sakaguchi, Yoshio

    2008-01-17

    We investigated the quantum beats, the oscillation between singlet and triplet states of radical pairs induced by the microwave field resonant to one of the component radicals. They were observed as the alternation of the yields of the component radicals by a nanosecond time-resolved optical absorption with the X-band (9.15 GHz) resonant microwave pulse. This technique was applied to the photochemical reaction of benzophenone, benzophenone-d(10), and benzophenone-carbonyl-(13)C in a sodium dodecylsulfate micellar solution with a step-by-step increase of the resonant microwave pulse width. The yields of the component radicals showed alternation with an increase of the microwave pulse width. This indicates that the radical pair retains spin coherence in the micellar solution. The magnetic isotope effect on the amplitude of the quantum beat was observed. The MW effect on the quantum beat of BP-(13)C decreases from 80% to 60% of that of BP by irradiation of the pi-pulse MW due to spin-locking. The kinetic parameters were also determined using the X- or Ku-band (17.44 GHz) region. They are almost similar to each other except for the intersystem recombination rate in the system of BP-(13)C, which may be slightly higher than those in other systems.

  5. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  6. 13C-1H dipolar-driven 13C-13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids

    NASA Astrophysics Data System (ADS)

    Takegoshi, K.; Nakamura, Shinji; Terao, Takehiko

    2003-02-01

    Two recently proposed 13C-13C recoupling methods under magic angle spinning (MAS), resonant interference recoupling (RIR), and 13C-1H dipolar-assisted rotational resonance (DARR), are examined on a common theoretical foundation using the average Hamiltonian theory. In both methods, a rf field is applied on not 13C but 1H to recouple the 13C-1H dipolar interactions, and spectral overlap necessary to conserve energy for 13C-13C polarization transfer is achieved by the 13C-1H dipolar line broadening. While DARR employs time-independent 13C-1H interactions recoupled by suitable rf irradiation to 1H spins, RIR uses time-dependent 13C-1H interactions modulated appropriately by 1H rf irradiation. There are two distinct cases where 13C-1H line broadening realizes 13C-13C spectral overlap. For a pair of a carbonyl or aromatic carbon and an aliphatic carbon, spectral overlap can be achieved between one of the spinning sidebands of the former 13C resonance and the 13C-1H dipolar powder pattern of the latter. On the other hand for a pair of spins with a small chemical shift difference, the two center bands are overlapped with each other due to 13C-1H dipolar broadening. For the former, we show that both RIR and DARR occur in the first order, while for the latter, DARR recoupling is appreciable for time-independent 13C-1H interactions. We refer to the former DARR as the first-order DARR recoupling and the latter as the second-order DARR. Experimentally, we examined the following 13C-1H recoupling methods for DARR: 1H CW irradiation fulfilling a rotary-resonance condition or a modulatory-resonance condition, and 1H π pulses applied synchronously to MAS. For RIR, the FSLG-m2m¯m sequence is applied to 1H. Several one-dimensional DARR and RIR experiments were done for N-acetyl[1,2-13C, 15N] DL-valine, and [2,3-13C] L-alanine. It was found that the polarization transfer rate for RIR is larger than that for DARR except for fast spinning, while the rate for DARR is less sensitive to

  7. Isotope exchange kinetics in metal hydrides I : TPLUG model.

    SciTech Connect

    Larson, Rich; James, Scott Carlton; Nilson, Robert H.

    2011-05-01

    A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show

  8. 13C-based metabolic flux analysis: fundamentals and practice.

    PubMed

    Yang, Tae Hoon

    2013-01-01

    Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo.

  9. Synthesis and applications of {sup 13}C glycerol

    SciTech Connect

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  10. Measuring doubly 13C-substituted ethane by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Clog, M.; Ling, C.; Eiler, J. M.

    2012-12-01

    Ethane (C2H6) is present in non-negligible amounts in most natural gas reservoirs and is used to produce ethylene for petrochemical industries. It is one of the by-products of lipid metabolism and is the arguably simplest molecule that can manifest multiple 13C substitutions. There are several plausible controls on the relative abundances of 13C2H6 in natural gases: thermodynamically controlled homogeneous isotope exchange reactions analogous to those behind carbonate clumped isotope thermometry; inheritance from larger biomolecules that under thermal degradation to produce natural gas; mixing of natural gases that differ markedly in bulk isotopic composition; or combinations of these and/or other, less expected fractionations. There is little basis for predicting which of these will dominate in natural samples. Here, we focus on an analytical techniques that will provide the avenue for exploring these phenomena. The method is based on high-resolution gas source isotope ratio mass spectrometry, using the Thermo 253-Ultra (a new prototype mass spectrometer). This instrument achieves the mass resolution (M/Δ M) up to 27,000, permitting separation of the isobaric interferences of potential contaminants and isotopologues of an analtye or its fragments which share a cardinal mass. We present techniques to analyze several isotopologues of molecular and fragment ions of C2H6. The critical isobaric separations for our purposes include: discrimination of 13C2H6 from 13C12CDH5 at mass 32 and separation of the 13CH3 fragment from 12CH4 at mass 16, both requiring at least a mass resolution of 20000 to make an adequate measurement. Other obvious interferences are either cleanly separated (e.g., O2, O) or accounted for by peak-stripping (CH3OH on mass 32 and NH2 on mass 16). We focus on a set of measurements which constrain: the doubly-substituted isotopologue, 13C2H6, and the 13CH3/12CH3 ratio of the methyl fragment, which constrains the bulk δ 13C. Similar methods can be

  11. Guiding Empirical and Theoretical Explorations of Organic Matter Decay By Synthesizing Temperature Responses of Enzyme Kinetics, Microbes, and Isotope Fluxes

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Ballantyne, F.; Lehmeier, C.; Min, K.

    2014-12-01

    Soil organic matter (SOM) transformation rates generally increase with temperature, but whether this is realized depends on soil-specific features. To develop predictive models applicable to all soils, we must understand two key, ubiquitous features of SOM transformation: the temperature sensitivity of myriad enzyme-substrate combinations and temperature responses of microbial physiology and metabolism, in isolation from soil-specific conditions. Predicting temperature responses of production of CO2 vs. biomass is also difficult due to soil-specific features: we cannot know the identity of active microbes nor the substrates they employ. We highlight how recent empirical advances describing SOM decay can help develop theoretical tools relevant across diverse spatial and temporal scales. At a molecular level, temperature effects on purified enzyme kinetics reveal distinct temperature sensitivities of decay of diverse SOM substrates. Such data help quantify the influence of microbial adaptations and edaphic conditions on decay, have permitted computation of the relative availability of carbon (C) and nitrogen (N) liberated upon decay, and can be used with recent theoretical advances to predict changes in mass specific respiration rates as microbes maintain biomass C:N with changing temperature. Enhancing system complexity, we can subject microbes to temperature changes while controlling growth rate and without altering substrate availability or identity of the active population, permitting calculation of variables typically inferred in soils: microbial C use efficiency (CUE) and isotopic discrimination during C transformations. Quantified declines in CUE with rising temperature are critical for constraining model CUE estimates, and known changes in δ13C of respired CO2 with temperature is useful for interpreting δ13C-CO2 at diverse scales. We suggest empirical studies important for advancing knowledge of how microbes respond to temperature, and ideas for theoretical

  12. Stable isotope-labelled feed nutrients to assess nutrient-specific feed passage kinetics in ruminants.

    PubMed

    Warner, Daniel; Dijkstra, Jan; Hendriks, Wouter H; Pellikaan, Wilbert F

    2014-03-30

    Knowledge of digesta passage kinetics in ruminants is essential to predict nutrient supply to the animal in relation to optimal animal performance, environmental pollution and animal health. Fractional passage rates (FPR) of feed are widely used in modern feed evaluation systems and mechanistic rumen models, but data on nutrient-specific FPR are scarce. Such models generally rely on conventional external marker techniques, which do not always describe digesta passage kinetics in a satisfactory manner. Here the use of stable isotope-labelled dietary nutrients as a promising novel tool to assess nutrient-specific passage kinetics is discussed. Some major limitations of this technique include a potential marker migration, a poor isotope distribution in the labelled feed and a differential disappearance rate of isotopes upon microbial fermentation in non-steady state conditions. Such limitations can often be circumvented by using intrinsically stable isotope-labelled plant material. Data are limited but indicate that external particulate markers overestimate rumen FPR of plant fibre compared with the internal stable isotope markers. Stable isotopes undergo the same digestive mechanism as the labelled feed components and are thus of particular interest to specifically measure passage kinetics of digestible dietary nutrients.

  13. Compartmentation of glycogen metabolism revealed from 13C isotopologue distributions

    PubMed Central

    2011-01-01

    Background Stable isotope tracers are used to assess metabolic flux profiles in living cells. The existing methods of measurement average out the isotopic isomer distribution in metabolites throughout the cell, whereas the knowledge of compartmental organization of analyzed pathways is crucial for the evaluation of true fluxes. That is why we accepted a challenge to create a software tool that allows deciphering the compartmentation of metabolites based on the analysis of average isotopic isomer distribution. Results The software Isodyn, which simulates the dynamics of isotopic isomer distribution in central metabolic pathways, was supplemented by algorithms facilitating the transition between various analyzed metabolic schemes, and by the tools for model discrimination. It simulated 13C isotope distributions in glucose, lactate, glutamate and glycogen, measured by mass spectrometry after incubation of hepatocytes in the presence of only labeled glucose or glucose and lactate together (with label either in glucose or lactate). The simulations assumed either a single intracellular hexose phosphate pool, or also channeling of hexose phosphates resulting in a different isotopic composition of glycogen. Model discrimination test was applied to check the consistency of both models with experimental data. Metabolic flux profiles, evaluated with the accepted model that assumes channeling, revealed the range of changes in metabolic fluxes in liver cells. Conclusions The analysis of compartmentation of metabolic networks based on the measured 13C distribution was included in Isodyn as a routine procedure. The advantage of this implementation is that, being a part of evaluation of metabolic fluxes, it does not require additional experiments to study metabolic compartmentation. The analysis of experimental data revealed that the distribution of measured 13C-labeled glucose metabolites is inconsistent with the idea of perfect mixing of hexose phosphates in cytosol. In contrast

  14. Electron transfer within xanthine oxidase: A solvent kinetic isotope effect study

    SciTech Connect

    Hille, R. )

    1991-09-03

    Solvent kinetic isotope effect studies of electron transfer within xanthine oxidase have been performed, using a stopped-flow pH-jump technique to perturb the distribution of reducing equivalents within partially reduced enzyme and follow the kinetics of reequilibration spectrophotometrically. It is found that the rate constant for electron transfer between the flavin and one of the iron-sulfur centers of the enzyme observed when the pH is jumped from 10 to 6 decreases from 173 to 25 s{sup {minus}1} on going from HJ{sub 2}O to D{sub 2}O, giving an observed solvent kinetic isotope effect of 6.9. An effect of comparable magnitude is observed for the pH jump in the opposite direction, the rate constant decreasing form 395 to 56 s{sup {minus}1}. The solvent kinetic isotope effect on k{sub obs} is found to be directly proportional to the mole fraction of D{sub 2}O in the reaction mix for the pH jump in each direction, consistent with the effect arising from a single exchangeable proton. Calculations of the microscopic rate constants for electron transfer between the flavin and the iron-sulfur center indicate that the intrinsic solvent kinetic isotope effect for electron transfer from the neutral flavin semiquinone to the iron-sulfur center designated Fe/S I is substantially greater than for electron transfer in the opposite direction and that the observed solvent kinetic isotope effect is a weighted average of the intrinsic isotope effects for the forward and reverse microscopic electron-transfer steps. The results emphasize the importance of prototropic equilibria in the kinetic as well as thermodynamic behavior of xanthine oxidase and indicate that protonation/deprotonation of the isoalloxazine ring is concomitant with electron transfer in the xanthine oxidase system.

  15. Does the Shuram δ13C excursion record Ediacaran oxygenation?

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Maloof, A. C.; Schoene, B.; Higgins, J. A.

    2013-12-01

    The most negative carbon isotope excursion in Earth history is found in carbonate rocks of the Ediacaran Period (635-542 Ma). Known colloquially as the the 'Shuram' excursion, workers have long noted its tantalizing, broad concordance with the rise of abundant macro-scale fossils in the rock record, variously interpreted as animals, giant protists, macro-algae and lichen, and known as the 'Ediacaran Biota.' Thus, the Shuram excursion has been interpreted by many in the context of a dramatically changing redox state of the Ediacaran oceans - e.g., a result of methane cycling in a low O2 atmosphere, the final destruction of a large pool of recalcitrant dissolved organic carbon (DOC), and the step-wise oxidation of the Ediacaran oceans. More recently, diagenetic interpretations of the Shuram excursion - e.g. sedimentary in-growth of very δ13C depleted authigenic carbonates, meteoric alteration of Ediacaran carbonates, late-stage burial diagenesis - have challenged the various Ediacaran redox models. A rigorous geologic context is required to discriminate between these explanatory models, and determine whether the Shuram excursion can be used to evaluate terminal Neoproterozoic oxygenation. Here, we present chemo-stratigraphic data (δ13C, δ18O, δ44/42Ca and redox sensitive trace element abundances) from 12 measured sections of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia that require a syn-depositional age for the extraordinary range of δ13C values (-12 to +4‰) observed in the formation. In some locations, the Wonoka Fm. is ~700 meters (m) of mixed shelf limestones and siliclastics that record the full 16 ‰ δ13C excursion in a remarkably consistent fashion across 100s of square kilometers of basin area. Fabric-altering diagenesis, where present, occurs at the sub-meter vertical scale, only results in sub-permil offsets in δ13C and cannot be used to explain the full δ13C excursion. In other places, the Wonoka Fm. is host to deep (1 km

  16. Hyperpolarized (13)C Magnetic Resonance and Its Use in Metabolic Assessment of Cultured Cells and Perfused Organs.

    PubMed

    Lumata, Lloyd; Yang, Chendong; Ragavan, Mukundan; Carpenter, Nicholas; DeBerardinis, Ralph J; Merritt, Matthew E

    2015-01-01

    Diseased tissue is often characterized by abnormalities in intermediary metabolism. Observing these alterations in situ may lead to an improved understanding of pathological processes and novel ways to monitor these processes noninvasively in human patients. Although (13)C is a stable isotope safe for use in animal models of disease as well as human subjects, its utility as a metabolic tracer has largely been limited to ex vivo analyses employing analytical techniques like mass spectrometry or nuclear magnetic resonance spectroscopy. Neither of these techniques is suitable for noninvasive metabolic monitoring, and the low abundance and poor gyromagnetic ratio of conventional (13)C make it a poor nucleus for imaging. However, the recent advent of hyperpolarization methods, particularly dynamic nuclear polarization (DNP), makes it possible to enhance the spin polarization state of (13)C by many orders of magnitude, resulting in a temporary amplification of the signal sufficient for monitoring kinetics of enzyme-catalyzed reactions in living tissue through magnetic resonance spectroscopy or magnetic resonance imaging. Here, we review DNP techniques to monitor metabolism in cultured cells, perfused hearts, and perfused livers, focusing on our experiences with hyperpolarized [1-(13)C]pyruvate. We present detailed approaches to optimize the DNP procedure, streamline biological sample preparation, and maximize detection of specific metabolic activities. We also discuss practical aspects in the choice of metabolic substrates for hyperpolarization studies and outline some of the current technical and conceptual challenges in the field, including efforts to use hyperpolarization to quantify metabolic rates in vivo.

  17. δ13C and δD Measurement using Cavity Ring-down and Isotope Ratio Mass Spectrometry by Gas Chromatography/Combustion/Pyrolysis and Off-line Processing of Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Culp, R.; Pan, H.; Saad, N.

    2015-12-01

    A comparison was made between various stable isotope measurement techniques for the purpose of quantifying each methods capability for use in hydrocarbon analyses applicable to fields such as geochemistry, agriculture, forensics and authenticity testing. Measurement techniques include: (1) Cavity Ring-down spectrometry (CRDS) using a Picarro 2120-A interfaced with a combustion module (CM) to facilitate conversion of hydrocarbons to carbon dioxide and water (2) Isotope Ratio Mass Spectrometry (IRMS) using a Thermo 253 IRMS with gas chromatographic separation prior to combustion to carbon dioxide or high temperature pyrolysis to hydrogen for isotope ratio measurement. Also, off line combustion to carbon dioxide and water with further reduction to hydrogen and dual-inlet measurement by IRMS. IRMS techniques have proven track records for measurement accuracy and precision but require independent analyses of carbon and hydrogen since one needs to oxidize carbon but reduce water to hydrogen prior to measurement or pyrolyze hydrocarbons directly into hydrogen after gas chromatographic separation. Cavity ring-down spectrometry can measure carbon dioxide and water simultaneously eliminating the need for two separate measurements of carbon and hydrogen isotopes. Although the CRDS suffers from memory effects following combustion and transfer of gases early on, new technology has reduced this to acceptable levels for accurate determinations of carbon and hydrogen isotope ratios. In this study, various hydrocarbon materials were used over an extended period of time to determine the best combination of sample size, replicate analyses and combustion column composition and life. The data presented here indicates isotopic measurements by CM-CRDS, for both solid and volatile liquid samples, compare well with GC/IRMS and off-line dual inlet methods of analysis.

  18. Hydride Transfer in DHFR by Transition Path Sampling, Kinetic Isotope Effects, and Heavy Enzyme Studies.

    PubMed

    Wang, Zhen; Antoniou, Dimitri; Schwartz, Steven D; Schramm, Vern L

    2016-01-12

    Escherichia coli dihydrofolate reductase (ecDHFR) is used to study fundamental principles of enzyme catalysis. It remains controversial whether fast protein motions are coupled to the hydride transfer catalyzed by ecDHFR. Previous studies with heavy ecDHFR proteins labeled with (13)C, (15)N, and nonexchangeable (2)H reported enzyme mass-dependent hydride transfer kinetics for ecDHFR. Here, we report refined experimental and computational studies to establish that hydride transfer is independent of protein mass. Instead, we found the rate constant for substrate dissociation to be faster for heavy DHFR. Previously reported kinetic differences between light and heavy DHFRs likely arise from kinetic steps other than the chemical step. This study confirms that fast (femtosecond to picosecond) protein motions in ecDHFR are not coupled to hydride transfer and provides an integrative computational and experimental approach to resolve fast dynamics coupled to chemical steps in enzyme catalysis.

  19. Quantitative amino acid profiling and stable isotopically labeled amino acid tracer enrichment used for in vivo human systemic and tissue kinetics measurements.

    PubMed

    Bornø, Andreas; van Hall, Gerrit

    2014-03-01

    An important area within clinical functional metabolomics is in vivo amino acid metabolism and protein turnover measurements for which accurate amino acid concentrations and stable isotopically labeled amino acid enrichments are mandatory not the least when tissue metabolomics is determined. The present study describes a new sensitive liquid chromatography tandem mass-spectrometry method quantifying 20 amino acids and their tracer(s) ([ring-(13)C6]/D5Phenylalanine) in human plasma and skeletal muscle specimens. Before analysis amino acids were extracted and purified via deprotonization/ion exchange, derivatized using a phenylisothiocyanate reagent and each amino acid was quantitated with its own stable isotopically labeled internal standard (uniformly labeled-(13)C/(15)N). The method was validated according to general recommendations for chromatographic analytical methods. The calibration curve correlations for amino acids were on average; r(2)=0.998. Interday accuracy for amino acids determined in spiked plasma was on average 97.3% and the coefficient of variation (CV) was 2.6%. The ([ring-(13)C6]/D5Phenylalanine) enrichment CV's for machine reproducibility in muscle tissue fluid and plasma were 4.4 and 0.8%, and the interday variability was 3.4% and the recovery was 90.5%, respectively. In conclusion, we have developed and validated a method for quantitative amino acid profiling that meets the requirements for systemic and tissue human in vivo amino acid and protein turnover kinetics measurements. Moreover, citrulline, ornithine, π-methyl-histidine, τ-methyl-l-histidine, hydroxy-proline and carnitine were analysed but when similar precision and accuray are required an additional stable istopically labeled internal standard for these meatablites should be be added.

  20. 13C-DEPLETED MICROBIAL LIPIDS INDICATE SEASONAL METHANOTROPHIC ACTIVITY IN SHALLOW ESTUARINE SEDIMENTS

    EPA Science Inventory

    Compound specific isotope analysis was combined with phospholipid fatty acid (PLFA) analysis to identify methanotrophic activity in members of the sedimentary microbial community in the Altamaha and Savannah River estuaries in Georgia. 13C-depleted PLFAs indicate methane utilizat...

  1. Equilibrium and kinetic Si isotope fractionation factors and their implications on Si isotope distributions in the Earth's surface environments

    NASA Astrophysics Data System (ADS)

    Tang, M.; Zhang, S.; Liu, Y.

    2015-12-01

    Several important equilibrium Si isotope fractionation factors among minerals, organic molecules and the H4SiO4 solution are complemented to facilitate explanation of distributions of Si isotope in the Earth's surface environments. The results reveal that heavy Si isotopes will be significantly enriched in the secondary silicate minerals in comparison to aqueous H4SiO4. On the contrary, quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution. The extent of 28Si-enrichment in hyper-coordinated organosilicon complexes is found the largest. In addition, the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer is calculated and the result supports previous statement that highly 28Si-enrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations. With equilibrium Si isotope fractionation factors provided here, Si isotope distributions in many surface systems of the Earth can be explained. For example, the change of bulk soil δ30Si can be predicted as a concave pattern with respect to weathering degree, with the minimum value where allophane completely dissolves and the total amount of sesqui-oxides and poorly crystalline minerals reaches its maximum. When well-crystallized clays start to precipitate from pore solutions under equilibrium conditions, the bulk soil δ30Si will increase again and reach a constant value. Similarly, the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain δ30Si variations in the ground water profile. Equilibrium Si isotope fractionations among quadra-coordinated organosilicon complexes and the H4SiO4 solution may also shed the light on the Si isotope distributions in Si-accumulating plants.

  2. Kinetic Isotopic Fractionation During Diffusion of Ionic Speciesin Water

    SciTech Connect

    Richter, Frank M.; Mendybaev, Ruslan A.; Christensen, John; Hutcheon, Ian D.; Williams, Ross W.; Sturchio, Neil C.; Beloso Jr.,Abelardo D.

    2005-06-09

    Experiments specifically designed to measure the ratio of the diffusivities of ions dissolved in water were used to determine D{sub Li}/D{sub K}, D{sub 7{sub Li}}/D{sub 6{sub Li}}, D{sub 25{sub Mg}}/D{sub 24{sub Mg}}, D{sub 26{sub Mg}}/D{sub 25{sub Mg}}, and D{sub 37{sub Cl}}/D{sub 35{sub Cl}}. The measured ratio of the diffusion coefficients for Li and K in water (D{sub Li}/D{sub K} = 0.6) is in good agreement with published data, providing evidence that the experimental design being used resolves the relative mobility of ions with adequate precision to also be used for determining the fractionation of isotopes by diffusion in water. In the case of Li we found measurable isotopic fractionation associated with the diffusion of dissolved LiCl (D{sub 7{sub Li}}/D{sub 6{sub Li}} = 0.99772 {+-} 0.00026). This difference in the diffusion coefficient of {sup 7}Li compared to {sup 6}Li is significantly less than reported in an earlier study, a difference we attribute to the fact that in the earlier study Li diffused through a membrane separating the water reservoirs. Our experiments involving Mg diffusing in water found no measurable isotopic fractionation (D{sub 25{sub Mg}}/D{sub 24{sub Mg}} = 1.00003 {+-} 0.00006). Cl isotopes were fractionated during diffusion in water (D{sub 37{sub Cl}}/D{sub 35{sub Cl}} = 0.99857 {+-} 0.00080) whether or not the co-diffuser (Li or Mg) was isotopically fractionated. The isotopic fractionation associated with the diffusion of ions in water is much smaller than values we found previously for the isotopic fractionation of Li and Ca isotopes by diffusion in molten silicate liquids. A major distinction between water and silicate liquids is that water, being a polar liquid, surrounds dissolved ions with hydration shells, which very likely play an important but still poorly understood role in reducing isotopic fractionation associated with diffusion.

  3. Predictive Framework and Experimental Tests of the Kinetic Isotope Effect at Redox-Active Interfaces

    NASA Astrophysics Data System (ADS)

    Kavner, A.; John, S.; Black, J. R.

    2013-12-01

    Electrochemical reactions provide a compelling framework to study kinetic isotope effects because redox-related processes are important for a wide variety of geological and environmental processes. In the laboratory, electrochemical reaction rates can be electronically controlled and measured in the laboratory using a potentiostat. This enables variation of redox reactions rates independent of changes in chemistry and, and the resulting isotope compositions of reactants and products can be separated and analyzed. In the past years, a series of experimental studies have demonstrated a large, light, and tunable kinetic isotope effect during electrodeposition of metal Fe, Zn, Li, Cu, and Mo from a variety of solutions (e.g. Black et al., 2009, 2010, 2011). A theoretical framework based on Marcus kinetic theory predicts a voltage-dependent kinetic isotope effect (Kavner et al., 2005, 2008), however while this framework was able to predict the tunable nature of the effect, it was not able to simultaneously predict absolute reaction rates and relative isotope rates. Here we present a more complete development of a statistical mechanical framework for simple interfacial redox reactions, which includes isotopic behavior. The framework is able to predict a kinetic isotope effect as a function of temperature and reaction rate, starting with three input parameters: a single reorganization energy which describes the overall kinetics of the electron transfer reaction, and the equilibrium reduced partition function ratios for heavy and light isotopes in the product and reactant phases. We show the framework, elucidate some of the predictions, and show direct comparisons against isotope fractionation data obtained during laboratory and natural environment redox processes. A. Kavner, A. Shahar, F. Bonet, J. Simon and E. Young (2005) Geochim. Cosmochim. Acta, 69(12), 2971-2979. A. Kavner, S. G. John, S. Sass, and E. A. Boyle (2008), Geochim. Cosmochim. Acta, vol 72, pp. 1731

  4. Application of {sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O and {delta}{sup 13}C Isotopes to diagenesis, correlation and connectivity of a fractured chalk reservoir, the Sidi El Kilani Field Tunisia

    SciTech Connect

    Mearns, E.W.; Mcbride, J.J.; Bramwell, M.

    1995-08-01

    Strontium Stratigraphy Analysis of the primary matrix chalk of the Abiod Formation reservoir in the Sidi El Kilani Field indicate a Campanian to Maastrichtian age (Upper Cretaceous). A resolution of {+-}1Ma has been achieved and results suggest that there are no major stratigraphic breaks in the studied sequences. Sr-O-C isotope data from early fracture-filling calcite cements suggest they may have formed by the redistribution of CaCO{sub 3} from underlying carbonate sequences and may have precipitated at temperatures in the region of 35-55{degrees}C. The {sup 87}Sr/{sup 86}Sr isotope ratios of formation waters determined by residual salt analysis (SrRSA) suggest that the chemical evolution of waters during reservoir filling was controlled by the influx of basinal waters as opposed to in situ water-rock interaction. Late, fracture-filling dolomite and barite cements have Sr-O-C isotope characteristics consistent with precipitation from these migrating basinal fluids at temperatures similar to current reservoir conditions (70-75{degrees}C). Sr RSA results suggest that the reservoir section in two of the wells may have been in direct lateral communication at the time of oil emplacement. These wells however are separated by a strike-slip fault. The SrRSA results therefore suggest that the fault is a partial barrier which has restricted pressure equilibration in the relatively short timescale of oil production, but which may have allowed homogenization of Sr isotope ratios in formation water.

  5. Peak metamorphic temperatures from Raman Spectroscopy on Carbonaceous Matter (RSCM) and δ18O and δ13C (carb) isotope composition of a major mélange zone in the South Norwegian Caledonides

    NASA Astrophysics Data System (ADS)

    Jakob, Johannes; Beyssac, Olivier; Boulvais, Philippe; Andersen, Torgeir B.

    2016-04-01

    A mélange in southern Norway comprises a matrix of garnet, mica- and black carbonaceous schists and phyllites of abyssal origin, interlayered with originally coarser grained siliciclastic metasediments, serpentinite conglomerates and sandstones, solitary metaperidotites and thin slivers of gneisses. Several models for the formation of the mélange have been suggested, including formation as a) an ophiolitic mélange formed during ophiolite obduction, b) an unconformable post-obduction transgressive sequence or c) a mélange formed during hyperextension along the pre-Caledonian margin of Baltica. In the past, the mélange has therefore not been treated as one single tectonic unit, but has been assigned to various tectonic positions with both outboard Iapetus and inboard Baltican origins. In this study we argue that the mélange occupies a tectonostratigraphic position below major Baltican basement nappe-complexes previously assigned to the Middle Allochthon. Furthermore, we present new consistent results on the peak metamorphic temperatures (T ˜ 500° C), based on RSCM, and a characteristic δ18Ocarb isotope composition (11-15.5 ‰ SMOW), both consistent for more than 250 km along strike of the mélange. δ13Ccarb values fall within three clusters around 1, - 2 , and - 7 ‰ (PDB), respectively. The stable isotope investigation presented here was carried out in order to explore if pre-Caledonian isotope signatures in various generations of carbonate veins and the early Ordovician fossils at Otta, could have been preserved through a later Caledonian metamorphic overprint. The results presented here however, suggest that re-equilibration of the carbonates took place in the Silurian, most likely coeval with peak metamorphism of ˜ 500° C at ˜ 420 Ma, and the main fabric development close to the base of the nappe-stack. Re-equilibration of the carbonates was assisted by the presence a pervasive static fluid, allowing for oxygen isotope exchange with the surrounding

  6. An alternative and robust synthesis of [(13) C4 ]Baraclude® (entecavir).

    PubMed

    Easter, John A; Burrell, Richard C; Bonacorsi, Samuel J

    2013-10-01

    Stable isotope-labeled [(13) C4 ]entecavir (1) was prepared in 11 steps. Commercially available [(13) C]guanidine hydrochloride and diethyl[1,2,3-(13) C3 ]malonate were condensed to yield 2-amino[2,4,5,6-(13) C4 ]pyrimidine-4,6-diol (8). This was converted to the desired purine (7) in five steps. Introduction of the chiral epoxide was followed by subsequent deprotection to give [(13) C4 ]entecavir (1), in an overall yield of 5.7% from labeled precursors. The chemical purity of the title compound was determined to be >99% by HPLC. The isotopic distribution was determined by mass spectrometry to be 282[M + 4], 98.4%; 281[M + 3], 1.6%; and 278[M + 0], <0.1%.

  7. Whole body glucose kinetics in type I diabetes studied with (6,6-/sup 2/H) and (U-/sup 13/C)-glucose and the artificial B-cell

    SciTech Connect

    Darmaun, D.; Cirillo, D.; Koziet, J.; Chauvet, D.; Young, V.R.; Robert, J.J.

    1988-05-01

    Dynamic aspects of whole body glucose metabolism were assessed in ten young adult insulin-dependent (type I) diabetic men. Using a primed, continuous intravenous infusion of (6,6-/sup 2/H)glucose and (U-/sup 13/C)glucose, endogenous production, tissue uptake, carbon recycling, and oxidation of glucose were measured in the postabsorptive state. These studies were undertaken after blood glucose had been maintained overnight at 5.9 +/- 0.4 mmol/L (n = 10), and on another night at 10.5 +/- 0.4 mmol/L (n = 4) or 15.2 +/- 0.6 mmol/L (n = 6). In the normoglycemic state, endogenous glucose production averaged 2.15 +/- 0.13 mg x kg-1 x min-1. This value, as well as the rate of glucose carbon recycling (0.16 +/- 0.04 mg x kg-1 x min-1) and glucose oxidation (1.52 +/- 0.16 mg x kg-1 x min-1) are comparable to those found in nondiabetic controls. In the hyperglycemic states at 10 or 15 mmol/L, endogenous glucose production was increased by 11% (P less than .01) and 60% (P less than .01) compared to the normoglycemic states, respectively. Glucose carbon recycling contributed only a small percentage to this variation in glucose production (15% at the 15 mmol/L glucose level). This suggests that if gluconeogenesis participates in the increased glucose output, it is not dependent on a greater systemic supply of three-carbon precursors. The increased rate of glucose production in the hyperglycemic state was quantitatively offset by a rise in urinary glucose excretion. Glucose tissue uptake, as well as glucose oxidation, did not vary between normoglycemic and hyperglycemic states.

  8. Determination of Kinetic Isotope Effects in Yeast Alcohol Dehydrogenase Using Transition Path Sampling

    NASA Astrophysics Data System (ADS)

    Varga, Matthew; Schwartz, Steven

    2015-03-01

    The experimental determination of kinetic isotope effects in enzymatic systems can be a difficult, time-consuming, and expensive process. In this study, we use the Chandler-Bolhius method for the determination of reaction rates within transition path sampling (rTPS) to determine the primary kinetic isotope effect in yeast alcohol dehydrogenase (YADH). In this study, normal mode centroid molecular dynamics (CMD) was applied to the transferring hydride/deuteride in order to correctly incorporate quantum effects into the molecular simulations. Though previous studies have used rTPS to calculate reaction rate constants in various model and real systems, it has not been applied to a system as large as YADH. Due to the fact that particle transfer is not wholly indicative of the chemical step, this method cannot be used to determine reaction rate constants in YADH. However, it is possible to determine the transition rate constant of the particle transfer, and the kinetic isotope effect of that step. This method provides a set of tools to determine kinetic isotope effects with the atomistic detail of molecular simulations.

  9. In vivo13C spectroscopy in the rat brain using hyperpolarized [1- 13C]pyruvate and [2- 13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Marjańska, Małgorzata; Iltis, Isabelle; Shestov, Alexander A.; Deelchand, Dinesh K.; Nelson, Christopher; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-10-01

    The low sensitivity of 13C spectroscopy can be enhanced using dynamic nuclear polarization. Detection of hyperpolarized [1- 13C]pyruvate and its metabolic products has been reported in kidney, liver, and muscle. In this work, the feasibility of measuring 13C signals of hyperpolarized 13C metabolic products in the rat brain in vivo following the injection of hyperpolarized [1- 13C]pyruvate and [2- 13C]pyruvate is investigated. Injection of [2- 13C]pyruvate led to the detection of [2- 13C]lactate, but no other downstream metabolites such as TCA cycle intermediates were detected. Injection of [1- 13C]pyruvate enabled the detection of both [1- 13C]lactate and [ 13C]bicarbonate. A metabolic model was used to fit the hyperpolarized 13C time courses obtained during infusion of [1- 13C]pyruvate and to determine the values of VPDH and VLDH.

  10. HepatoDyn: A Dynamic Model of Hepatocyte Metabolism That Integrates 13C Isotopomer Data

    PubMed Central

    Foguet, Carles; Selivanov, Vitaly A.; Fanchon, Eric; Guinovart, Joan J.; de Atauri, Pedro; Cascante, Marta

    2016-01-01

    The liver performs many essential metabolic functions, which can be studied using computational models of hepatocytes. Here we present HepatoDyn, a highly detailed dynamic model of hepatocyte metabolism. HepatoDyn includes a large metabolic network, highly detailed kinetic laws, and is capable of dynamically simulating the redox and energy metabolism of hepatocytes. Furthermore, the model was coupled to the module for isotopic label propagation of the software package IsoDyn, allowing HepatoDyn to integrate data derived from 13C based experiments. As an example of dynamical simulations applied to hepatocytes, we studied the effects of high fructose concentrations on hepatocyte metabolism by integrating data from experiments in which rat hepatocytes were incubated with 20 mM glucose supplemented with either 3 mM or 20 mM fructose. These experiments showed that glycogen accumulation was significantly lower in hepatocytes incubated with medium supplemented with 20 mM fructose than in hepatocytes incubated with medium supplemented with 3 mM fructose. Through the integration of extracellular fluxes and 13C enrichment measurements, HepatoDyn predicted that this phenomenon can be attributed to a depletion of cytosolic ATP and phosphate induced by high fructose concentrations in the medium. PMID:27124774

  11. The kinetics of clumped-isotope reactions in calcite and apatite from natural and experimental samples

    NASA Astrophysics Data System (ADS)

    Stolper, D. A.; Eiler, J. M.

    2014-12-01

    Measurements of clumped isotopes of carbonate-bearing minerals are a powerful tool for reconstructing past surface temperatures and thermal histories of shallow crustal rocks. Because the clumped-isotope thermometer is based on homogenous-phase equilibrium, a sample's clumped-isotope temperature is susceptible to resetting through, for example, intracrystalline diffusion and redistribution of C and O isotopes during (re)heating or slow cooling. Quantitative knowledge of the kinetics of this resetting have received increasing attention (1-3) and is critical for understanding the meaning of clumped-isotope temperatures of samples with complex burial histories. To better constrain these kinetics and complement previous work (1-3) we performed heating experiments (400-700°C) on optical calcites and carbonate-bearing apatites. As previously observed (2-3), calcites exhibit non-first-order kinetics. The data were fit using a model that incorporates both diffusion and isotope-exchange reactions (4). The kinetics derived with this model using the optical-calcite heating experiments of (2) and those measured here are indistinguishable. The model predicts that subtle changes (>10°C) in measured calcite clumped-isotope temperatures can occur at burial temperatures between 60-100°C on million-year timescales. Though small, such changes may have an impact on clumped-isotope-based reconstructions of past surface temperatures and thermal histories. The derived kinetics were compared to clumped-isotope measurements of cogenetic calcites and apatites from slowly cooled carbonatite intrusions. Apparent temperatures are 70-140°C for apatites and 120-190°C for calcites. Measured temperatures for calcites match modeled temperatures using reasonable geological cooling rates. Natural apatite samples yield lower apparent temperatures than predicted based on the model. We propose that this difference is the result of annealment of structural damage in apatites (e.g., generated by

  12. Carbon kinetic isotope effect in the reaction of CH4 with HO

    NASA Technical Reports Server (NTRS)

    Davidson, J. A.; Cantrell, C. A.; Tyler, S. C.; Shetter, R. E.; Cicerone, R. J.

    1987-01-01

    The carbon kinetic isotope effect in the CH4 + HO reaction is measured experimentally and the use of carbon isotope ratios to diagnose atmospheric methane is examined. The chemical, photolysis, and analytical experimental conditions and procedures are described. It is determined that the CH4 + HO reaction has a carbon kinetic isotope effect of 1.010 + or 0.007 for k(12)k(13) (rate constants ratio) at 297 + or - 3 K. This value is compared with the data of Rust and Stevens (1980). Causes for the poor correlation between the data at high methane conversions are discussed. It is supposed that the difference between the k(12) and k(13) values is due to a difference in the activation energy of the two reactions.

  13. Kinetic Isotope Effects for the Reactions of Muonic Helium and Muonium with H2

    SciTech Connect

    Fleming, Donald G.; Arseneau, Donald J.; Sukhorukov, Oleksandr; Brewer, Jess H.; Mielke, Steven L.; Schatz, George C.; Garrett, Bruce C.; Peterson, Kirk A.; Truhlar, Donald G.

    2011-01-28

    The neutral muonic helium atom may be regarded as the heaviest isotope of the hydrogen atom, with a mass of ~4.1 amu (4.1H), because the negative muon screens one proton charge. We report the reaction rate of 4.1H with 1H2 to produce 4.1H1H + 1H at 295 to 500 K. The experimental rate constants are compared with the predictions of accurate quantum mechanical dynamics calculations carried out on an accurate Born-Huang potential energy surface and with previously measured rate constants of 0.11H (where 0.11H is shorthand for muonium). Kinetic isotope effects can be compared for the unprecedentedly large mass ratio of 36. The agreement with accurate quantum dynamics is quantitative at 500 K, and variational transition state theory is used to interpret the extremely low (large inverse) kinetic isotope effects in the 10-4 to 10-2 range.

  14. Evaluation of biodegradability of phenol and bisphenol A during mesophilic and thermophilic municipal solid waste anaerobic digestion using 13C-labeled contaminants.

    PubMed

    Limam, Intissar; Mezni, Mohamed; Guenne, Angéline; Madigou, Céline; Driss, Mohamed Ridha; Bouchez, Théodore; Mazéas, Laurent

    2013-01-01

    In this paper, the isotopic tracing using (13)C-labeled phenol and bisphenol A was used to study their biodegradation during anaerobic digestion of municipal solid waste. Microcosms were incubated anaerobically at 35 °C (mesophilic conditions) and 55 °C (thermophilic conditions) without steering. A continuous follow-up of the production of biogas (CH(4) and CO(2)), was carried out during 130 d until the establishment of stable methanogenesis. Then (13)C(12)-BPA, and (13)C(6)-phenol were injected in microcosms and the follow-up of their degradation was performed simultaneously by gas chromatography isotope-ratio mass spectrometry (GC-IRMS) and gas chromatography mass spectrometry (GC-MS). Moreover, Carbon-13 Nuclear Magnetic Resonance ((13)C-NMR) Spectroscopy is used in the identification of metabolites. This study proves that the mineralization of phenol to CO(2) and CH(4) occurs during anaerobic digestion both in mesophilic and thermophilic conditions with similar kinetics. In mesophilic condition phenol degradation occurs through the benzoic acid pathway. In thermophilic condition it was not possible to identify the complete metabolic pathway as only acetate was identified as metabolite. Our results suggest that mineralization of phenol under thermophilic condition is instantaneous explaining why metabolites are not observed as they do not accumulate. No biodegradation of BPA was observed.

  15. Kinetic and geometric isotope effects originating from different adsorption potential energy surfaces: cyclohexane on Rh(111).

    PubMed

    Koitaya, Takanori; Shimizu, Sumera; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun

    2012-06-01

    Novel isotope effects were observed in desorption kinetics and adsorption geometry of cyclohexane on Rh(111) by the use of infrared reflection absorption spectroscopy, temperature programmed desorption, photoelectron spectroscopy, and spot-profile-analysis low energy electron diffraction. The desorption energy of deuterated cyclohexane (C(6)D(12)) is lower than that of C(6)H(12). In addition, the work function change by adsorbed C(6)D(12) is smaller than that by adsorbed C(6)H(12). These results indicate that C(6)D(12) has a shallower adsorption potential than C(6)H(12) (vertical geometric isotope effect). The lateral geometric isotope effect was also observed in the two-dimensional cyclohexane superstructures as a result of the different repulsive interaction between interfacial dipoles. The observed isotope effects should be ascribed to the quantum nature of hydrogen involved in the C-H···metal interaction.

  16. Excretion of stable isotopes in man: A valuable source of information on trace metal kinetics

    SciTech Connect

    Fennessey, P.V.; Miller, L.V.; Westcott, J.E.; Kindstrand, L.; Hambidge, K.M. )

    1991-03-15

    The analysis of individual fecal samples collected for at least ten days following an oral dose of {sup 70}Zn provides data on transit time, absorption and the excretion of isotope that has been absorbed and then secreted back into the lumen of the intestine. The analysis of data from more than 80 human studies where enriched Zn stable isotopes were given orally has provided a valuable data base on Zn kinetics. A plot of enrichment in the fecal samples as a function of time reveals the average time of maximum appearance as well as the time limit needed for elimination of unabsorbed isotope. A plot of cumulative enrichment as a function of time reveals information on both absorption and secretion rate of absorbed isotope. This data base provides investigators with new information that they can use to optimize their data collection schemes and serves as a model for the study of other trace metals.

  17. Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, δ18O, δD, δ13C and 87Sr/86Sr

    NASA Astrophysics Data System (ADS)

    Pinti, D. L.; Castro, M. C.; Shouakar-Stash, O.; Tremblay, A.; Garduño, V. H.; Hall, C. M.; Hélie, J.-F.; Ghaleb, B.

    2013-01-01

    Isotopes of noble gases, CO2, H2O and Sr were measured in 10 geothermal wells and 8 hot springs, fumaroles and mud volcanoes at Los Azufres, the second most important geothermal field in Mexico. The aim of this study is to provide additional information on fluid circulation in the field and surrounding areas (Araró hot springs), as well as on physical processes such as boiling, steam separation and invasion of re-injected brines following over 25 years of geothermal fluid exploitation. Mantle helium dominates in fluids from the northern production zone of Marítaro, with measured 3He/4He ratios up to 7 Ra (where Ra is the atmospheric ratio of 1.386 × 10- 6). 3He/4He ratios are positively correlated with 87Sr/86Sr ratios and with δD and δ18O. These relationships suggest that Los Azufres fluids represent a mixing between primary magmatic 3He-rich fluids and groundwater currently discharging at Araró hot springs and enriched in radiogenic 4He acquired from Miocene andesites. Unusually high He ratios together with radiogenic Sr isotopic ratios suggest that thermal waters acquired mantle He from deep-seated parent magmas and radiogenic Sr possibly during their uprising through the metamorphic basement. 40Ar/36Ar ratios of 366 to 429 measured in two wells indicate either mantle-derived argon or a radiogenic 40Ar in situ component, suggesting the local presence of an older crustal fluid component in the northern part of the field. Ne, Kr and Xe are entirely of atmospheric origin, but processes of boiling, steam separation and re-injection of used brines have led to fractionation of their elemental abundances. Comparison with previous studies suggests that the boiling zone in the northern production zone is currently extending further north (Marítaro hot springs). In the southwestern productive zone, re-injected brines might account for more than 90% of the exploited fluids.

  18. Investigating Inner Sphere Reorganization via Secondary Kinetic Isotope Effects in the C–H Cleavage Reaction Catalyzed by Soybean Lipoxygenase: Tunneling in the Substrate Backbone as well as the Transferred Hydrogen

    PubMed Central

    Meyer, Matthew P.; Klinman, Judith P.

    2011-01-01

    This work describes the application of NMR to the measurement of secondary deuterium (2° 2H) and carbon-13 (13C) kinetic isotope effects (KIES) at positions 9 to 13 within the substrate linoleic acid (LA) of soybean lipoxygenase-1. The KIEs have been measured using linoleic acid labeled with either protium (11,11-h2-LA) or deuterium (11,11-d2-LA) at the reactive C11 position, which has been previously shown to yield a primary deuterium isotope effect of ca. 80. The conditions of measurement yield the intrinsic 2° 2H and 13C KIEs on kcat/Km directly for 11,11-d2-LA, whereas the values for the 2° 2H KIEs for 11,11-h2-LA are obtained after correction for a kinetic commitment. The pattern of the resulting 2° 2H and 13C isotope effects reveals values that lie far above those predicted from changes in local force constants. Additionally, many of the experimental values cannot be modeled by electronic effects, torsional strain, or the simple inclusion of a tunneling correction to the rate. Although previous studies have shown the importance of extensive tunneling for cleavage of the primary hydrogen at C11 of LA, the present findings can only be interpreted by extending the conclusion of non-classical behavior to the secondary hydrogens and carbons that flank the position undergoing C-H bond cleavage. A quantum mechanical method introduced by Buhks et al. [J. Phys. Chem. 85, 3763 (1981)] to model the inner sphere reorganization that accompanies electron transfer has been shown to be able to reproduce the scale of the 2° 2H KIEs. PMID:21192631

  19. The Late Pleistocene history of surface water δ13C in the Sulu Sea: Possible relationship to Pacific Deepwater δ13C changes

    NASA Astrophysics Data System (ADS)

    Linsley, Braddock K.; Dunbar, Robert B.

    1994-04-01

    A reconstruction of late Pleistocene surface water carbon isotopic13C) variability is presented from Ocean Drilling Program (ODP) site 769 in the Sulu Sea in the western tropical Pacific. The Sulu Sea is a shallowly silled back arc basin with a maximum sill depth of 420 m. Site 769 was drilled on a bathymetric high in 3643 m of water and has average late Pleistocene sedimentation rates of 8.5 cm/kyr. The oxygen isotope record (δ18O) of Globigerinoides ruber at site 769 shows a strong correlation with the SPECMAP stacked δ18O record, attesting to the continuity of sediment archive at the site. Surface δ13C displays consistent glacial-interglacial variability which averages ˜0.9‰ and has varied from 0.75 to 1.1‰ over the last 800 kyr. Comparison to surface water δ13C records in the South China Sea and western tropical Pacific suggests that the glacial-interglacial surface δ13C variability is regional in scale. Planktonic δ13C data from ODP site 677 in the eastern Pacific is also coherent with the site 769. Additionally, we have found that the site 769 surface δ13C record is coherent at periods of 100 and 41 kyr with deepwater δ13C records from the Pacific. The highest correlation occurs with the deep eastern Pacific, where benthic δ13C data from cores RC13-110 and ODP site 677 closely match the Sulu Sea surface water record. We evaluate several possible controls of surface water δ13C in the Sulu Sea that may explain the coherent timing with Pacific deepwater δ13C records. These include variations in terrestrial organic matter flux to the basin, the upwelling of subsurface water and productivity changes, and the influx of western Pacific intermediate water to the Sulu Sea. Our preferred explanation involves a region of upper intermediate water upwelling in the far western Pacific which has been shown to outgas CO2 from subsurface waters into surface waters. Upwelling also occurs in the area of Panama Basin site 677. These equatorial upwelling zones

  20. Kinetic bromine isotope effect: example from the microbial debromination of brominated phenols.

    PubMed

    Bernstein, Anat; Ronen, Zeev; Levin, Elena; Halicz, Ludwik; Gelman, Faina

    2013-03-01

    The increasing use of kinetic isotope effects for environmental studies has motivated the development of new compound-specific isotope analysis techniques for emerging pollutants. Recently, high-precision bromine isotope analysis in individual brominated organic compounds was proposed, by the coupling of gas chromatography to a multi-collector inductively coupled plasma mass spectrometer using strontium as an external spike for instrumental bias correction. The present study, for the first time, demonstrates an application of this technique for determining bromine kinetic isotope effects during biological reaction, focusing on the reductive debromination of brominated phenols under anaerobic conditions. Results show bromine isotope enrichment factors (ε) of -0.76 ± 0.08, -0.46 ± 0.19, and -0.20 ± 0.06 ‰ for the debromination of 4-bromophenol, 2,4-dibromophenol, and 2,4,6-tribromophenol, respectively. These values are rather low, yet still high enough to be obtained with satisfying certainty. This further implies that the analytical method may be also appropriate for future environmental applications.

  1. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation.

    PubMed

    Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten

    2016-06-01

    The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental

  2. Microscopic Observation of Kinetic Molecular Sieving of Hydrogen Isotopes in a Nanoporous Material

    SciTech Connect

    Nguyen, T. X.; Bhatia, S. K.; Jobic, H.

    2010-08-20

    We report quasielastic neutron scattering studies of H{sub 2}-D{sub 2} diffusion in a carbon molecular sieve, demonstrating remarkable quantum effects, with the heavier isotope diffusing faster below 100 K, confirming our recent predictions. Our transition state theory and molecular dynamics calculations show that while it is critical for this effect to have narrow windows of size comparable to the de Broglie wavelength, high flux requires that the energy barrier be reduced through small cages. Such materials will enable novel processes for kinetic molecular sieving of hydrogen isotopes.

  3. Determination of fructose metabolic pathways in normal and fructose-intolerant children: A sup 13 C NMR study using (U- sup 13 C)fructose

    SciTech Connect

    Gopher, A.; Lapidot, A. ); Vaisman, N. ); Mandel, H. )

    1990-07-01

    An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-(U-{sup 13}C)fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of {sup 13}C NMR spectra of plasma glucose. Significantly lower values ({approx}3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitative determination of the metabolic pathways of fructose conversion to glucose was derived from {sup 13}C NMR measurement of plasma ({sup 13}C)glucose isotopomer populations. The finding of isotopomer populations of three adjacent {sup 13}C atoms at glucose C-4 ({sup 13}C{sub 3}-{sup 13}C{sub 4}-{sup 13}C{sub 5}) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only {approx}50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of ({sup 13}C)glucose formation from a trace amount of (U-{sup 13}C)fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism.

  4. Rare-isotope and kinetic studies of Pt/SnO2 catalysts

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Wood, George M.; Schryer, David R.; Hess, Robert V.; Miller, Irvin M.; Kielin, Erik J.

    1990-01-01

    Closed-cycle pulsed CO2 laser operation requires the use of an efficient CO-O2 recombination catalyst for these dissociation products which otherwise would degrade the laser operation. The catalyst must not only operate at low temperatures but also must operate efficiently for long periods. In the case of the Laser Atmospheric Wind Sounder (LAWS) laser, an operational lifetime of 3 years is required. Additionally, in order to minimize atmospheric absorption and enhance aerosol scatter of laser radiation, the LAWS system will operate at 9.1 micrometers with an oxygen-18 isotope CO2 lasing medium. Consequently, the catalyst must not only operate at low temperatures but must also preserve the isotopic integrity of the rare-isotope composition in the recombination mode. Several years ago an investigation of commercially available and newly synthesized recombination catalysts for use in closed-cycle pulsed common and rare-isotope CO2 lasers was implemented at the NASA Langley Research Center. Since that time, mechanistic efforts utilizing both common and rare oxygen isotopes have been implemented and continue. Rare-isotope studies utilizing commercially available platinum-tin oxide catalyst have demonstrated that the catalyst contributes oxygen-16 to the product carbon dioxide thus rendering it unusable for rare-isotope applications. A technique has been developed for modification of the surface of the common-isotope catalyst to render it usable. Results of kinetic and isotope label studies using plug flow, recycle plug flow, and closed internal recycle plug flow reactor configuration modes are discussed.

  5. Feasibility of Multianimal Hyperpolarized 13C MRS

    PubMed Central

    Ramirez, Marc S.; Lee, Jaehyuk; Walker, Christopher M.; Chen, Yunyun; Kingsley, Charles V.; De La Cerda, Jorge; Maldonado, Kiersten L.; Lai, Stephen Y.; Bankson, James A.

    2014-01-01

    Purpose There is great potential for real-time investigation of metabolism with MRS and hyperpolarized (HP) 13C agents. Unfortunately, HP technology has high associated costs and efficiency limitations that may constrain in vivo studies involving many animals. To improve the throughput of preclinical investigations, we evaluate the feasibility of performing HP MRS on multiple animals simultaneously. Methods Simulations helped assess the viability of a dual-coil strategy for spatially-localized multivolume MRS.A dual-mouse system was assembled and characterized based on bench- and scanner-based experiments. Enzyme phantoms mixed with HP [1-13C] pyruvate emulated real-time metabolism and offered a controlled mechanism for evaluating system performance. Finally, a normal mouse and a mouse bearing a subcutaneous xenograft of colon cancer were simultaneously scanned in vivo using an agent containing HP [1-13C] pyruvate. Results Geometric separation/rotation, active decoupling, and use of low input impedance preamplifiers permitted an encode-by-channel approach for spatially-localized MRS. A pre-calibrated shim allowed straightforward metabolite differentiation in enzyme phantom and in vivo experiments at 7 T, with performance similar to conventional acquisitions. Conclusion The initial feasibility of multi-animal HP 13C MRS was established. Throughput scales with the number of simultaneously-scanned animals, demonstrating the potential for significant improvements in study efficiency. PMID:24903532

  6. Characterization of uniformly and atom-specifically 13C-labeled heparin and heparan sulfate polysaccharide precursors using 13C NMR spectroscopy and ESI mass spectrometry

    PubMed Central

    Nguyen, Thao K. N.; Tran, Vy M.; Victor, Xylophone V.; Skalicky, Jack J.; Kuberan, Balagurunathan

    2010-01-01

    The biological actions of heparin and heparan sulfate, two structurally related glycosaminoglycans, depend on the organization of the complex heparanome. Due to the structural complexity of the heparanome, the sequence of variably sulfonated uronic acid and glucosamine residues is usually characterized by the analysis of smaller oligosaccharide and disaccharide fragments. Even characterization of smaller heparin/heparan sulfate oligosaccharide or disaccharide fragments using simple 1D 1H NMR spectroscopy is often complicated by the extensive signal overlap. 13C NMR signals, on the other hand, overlap less and therefore, 13C NMR spectroscopy can greatly facilitate the structural elucidation of the complex heparanome and provide finer insights into the structural basis for biological functions. This is the first report of the preparation of anomeric carbon-specific 13C-labeled heparin/heparan sulfate precursors from the Escherichia coli K5 strain. Uniformly 13C- and 15N-labeled precursors were also produced and characterized by 13C NMR spectroscopy. Mass spectrometric analysis of enzymatically fragmented disaccharides revealed that anomeric carbon-specific labeling efforts resulted in a minor loss/scrambling of 13C in the precursor backbone, whereas uniform labeling efforts resulted in greater than 95% 13C isotope enrichment in the precursor backbone. These labeled precursors provided high-resolution NMR signals with great sensitivity and set the stage for studying the heparanome–proteome interactions. PMID:20832774

  7. Strength and limits using 13C phospholipid fatty acid analysis in soil ecology

    NASA Astrophysics Data System (ADS)

    Watzinger, Andrea

    2016-04-01

    This presentation on microbial phospholipid biomarkers, their isotope analysis and their ability to reveal soil functions summarizes experiences gained by the author for more than 10 years. The amount and composition of phospholipid fatty acids (PLFAs) measured in environmental samples strongly depend on the methodology. To achieve comparable results the extraction, separation and methylation method must be kept constant. PLFAs patterns are sensitive to microbial community shifts even though the taxonomic resolution of PLFAs is low. The possibility to easily link lipid biomarkers with stable isotope techniques is identified as a major advantage when addressing soil functions. Measurement of PLFA isotopic ratios is sensitive and enables detecting isotopic fractionation. The difference between the carbon isotopic ratio of single PLFAs and their substrate (δ13C) can vary between -6 and +11‰. This difference derives from the fractionation during biosynthesis and from substrate inhomogeneity. Consequently, natural abundance studies are restricted to quantifying substrate uptake of the total microbial biomass. In contrast, artificial labelling enables quantifying carbon uptake into single PLFAs, but labelling success depends on homogeneous and undisturbed label application. Current developments in microbial ecology (e.g. 13C and 15N proteomics) and isotope techniques (online monitoring of CO2 isotope ratios) will likely improve soil functional interpretations in the future. 13C PLFA analysis will continue to contribute because it is affordable, sensitive and allows frequent sampling combined with the use of small amounts of 13C label.

  8. The delta 13C record of Devonian to Permian carbonates

    NASA Astrophysics Data System (ADS)

    Buggisch, W.

    2003-04-01

    A δ13Ccarb curve will be presented for samples spanning the time interval from the Silurian/Devonian to the Permian/Triassic boundary. Reliable data are usually based on analyses of brachiopod shells. Because of the huge reservoir of carbon in carbonates, also whole rock samples are suitable for stable carbon isotope analyses if they are not altered by meteoric water or by incorporation of re-oxidized organic carbon during diagenesis. There are several possibilities to test the quality of the data: (1) comparison of the δ13C record of whole rock samples with samples from brachiopod shells, (2) with the organic record, (3) analyses of the same time interval in different sections. If the same pattern of isotope data is observed in separa-ted palaeogeographic settings, it is probably caused by a change in the global carbon reservoir. Reliable δ13C data will be presented for the Devonian, Mississippian and Middle to Late Permian. During Pennsylvanian and Early Permian most carbonates were affected by meteoric diagenesis due to the large glacio-eustatic sea level changes of the Permo-Carboniferous glaciation. Long term variations (mean values for 10 Ma) are known from literature. Devonian δ13C values are about 0 to 2 ppm (V-PDB) they increase up to 5 to 6 ppm during the Mississippian - Pennsylvanian transition and drop sharply at the Permian Triassic boundary. The Devonian - Carboniferous trend is probably at least partly due to the evolution of land plants. Short term variations in the range of 0.1 to 1 Ma modify the long term trend significantly. Large positive excursions of δ13C up to 5 or 6 ppm are known from the Silurian - Devonian boundary and during the Middle Tournaisian of Laurentia and Europe. Many positive excursions of a magnitude of 2 to 3 ppm are observed, some are verified worldwide as for instance at the Frasnian - Famennian boundary which coincides with one of the largest extinction events in earth history. Short time variations in the isotopic

  9. Overexpression of a homogeneous oligosaccharide with 13C labeling by genetically engineered yeast strain.

    PubMed

    Kamiya, Yukiko; Yamamoto, Sayoko; Chiba, Yasunori; Jigami, Yoshifumi; Kato, Koichi

    2011-08-01

    This report describes a novel method for overexpression of (13)C-labeled oligosaccharides using genetically engineered Saccharomyces cerevisiae cells, in which a homogeneous high-mannose-type oligosaccharide accumulates because of deletions of genes encoding three enzymes involved in the processing pathway of asparagine-linked oligosaccharides in the Golgi complex. Using uniformly (13)C-labeled glucose as the sole carbon source in the culture medium of these engineered yeast cells, high yields of the isotopically labeled Man(8)GlcNAc(2) oligosaccharide could be successfully harvested from glycoprotein extracts of the cells. Furthermore, (13)C labeling at selected positions of the sugar residues in the oligosaccharide could be achieved using a site-specific (13)C-enriched glucose as the metabolic precursor, facilitating NMR spectral assignments. The (13)C-labeling method presented provides the technical basis for NMR analyses of structures, dynamics, and interactions of larger, branched oligosaccharides.

  10. A Large Metabolic Carbon Ccontribution to the δ13C Record in Marine Aragonitic Bivalve Shells

    NASA Astrophysics Data System (ADS)

    Gillikin, D. P.; Lorrain, A.; Dehairs, F.

    2006-12-01

    The stable carbon isotopic signature archived in bivalve shells was originally thought to record the δ13C of seawater dissolved inorganic carbon (δ13C-DIC). However, more recent studies have shown that the incorporation of isotopically light metabolic carbon (M) significantly affects the δ13C signal recorded in biogenic carbonates. To assess the M contribution to Mercenaria mercenaria shells collected in North Carolina, USA, we sampled seawater δ13C-DIC, tissue, hemolymph and shell δ13C. We found up to a 4‰ decrease through ontogeny in shell δ13C in a 23 year old individual. There was no correlation between shell height or age and tissue δ13C. Thus, the ontogenic decrease observed in the shell δ13C could not be attributed to changes in food sources as the animal ages leading to more negative metabolic CO2, since this would require a negative relationship between tissue δ13C and shell height. Hemolymph δ13C, on the other hand, did exhibit a negative relationship with height, but the δ13C values were more positive than expected, indicating that hemolymph may not be a good proxy of extrapallial fluid δ13C. Nevertheless, the hemolymph data indicate that respired CO2 does influence the δ13C of internal fluids and that the amount of respired CO2 is related to the age of the bivalve. The percent metabolic C incorporated into the shell (%M) was significantly higher (up to 37%) than has been found in other bivalve shells, which usually contain less than 10 %M. Attempts to use shell biometrics to predict %M could not explain more than ~60% of the observed variability. Moreover, there were large differences in the %M between different sites. Thus, the metabolic effect on shell δ13C cannot easily be accounted for to allow reliable δ13C-DIC reconstructions. However, there does seem to be a common effect of size, as all sites had indistinguishable slopes between the %M and shell height (+0.19% per mm of shell height).

  11. Quantifying Surface Kinetic Fractionations for Isotopes and Trace Elements in Calcite Precipitated from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    DePaolo, D. J.; Nielsen, L. C.; Hofmann, A. E.; DeYoreo, J.; Gagnon, A. C.; Watkins, J. M.; Ryerson, F. J.; Brown, S. T.

    2011-12-01

    The isotopic ratios and trace element concentrations in calcite and other carbonate minerals form the basis for several paleoenvironmental indicators that are relied upon to reconstruct past Earth climates and ocean processes. Most of these carbonate minerals form at low temperatures (0 to 30C) and consequently are unlikely to have precipitated from aqueous solutions at equilibrium. The non-equilibrium nature of the precipitation process is well illustrated by the experimentally demonstrated precipitation rate-dependence of parameters such as the Ca and O isotopic composition, and the Sr, Mg, and Mn concentrations of calcite. We have been focused on understanding how to predict the magnitude and controls on these kinetic effects using a general transition-state theory approach, as well as models of ion-by-ion growth, molecular dynamics simulations of the desolvation step required for addition of cations to a mineral surface, and further experiments that involve carefully controlled solution compositions and crystal growth rates. Although models have been proposed that invoke diffusion as the primary control on the non-equilibrium aspects of calcite precipitation, it is relatively easy to show that diffusion is not likely to be the primary controlling process. We have focused on understanding the kinetic effects operating at and near the mineral surface, which are undeniably present and important, and appear to be of the correct magnitude and direction to account for observations in both laboratory and natural calcites. The approach we are using is also applicable to higher temperature aqueous precipitation. There are indications from Ca isotopes that similar surface kinetic effects occur at temperatures of 300 to 400C. Kinetic isotope and trace element effects are critically dependent on molecular exchange rates between the mineral surface and the aqueous solution, and the ratio of these rates to the net crystal growth rate. The challenge is to predict and

  12. Specific 13C functional pathways as diagnostic targets in gastroenterology breath-tests: tricks for a correct interpretation.

    PubMed

    Pizzoferrato, M; Del Zompo, F; Mangiola, F; Lopetuso, L R; Petito, V; Cammarota, G; Gasbarrini, A; Scaldaferri, F

    2013-01-01

    Breath tests are non-invasive, non-radioactive, safe, simple and effective tests able to determine significant metabolic alterations due to specific diseases or lack of specific enzymes. Carbon isotope (13)C, the stable-non radioactive isotope of carbon, is the most used substrate in breath testing, in which (13)C/(12)C ratio is measured and expressed as a delta value, a differences between readings and a fixed standard. (13)C/(12)C ratio is measured with isotope ratio mass spectrometry or non-dispersive isotope-selective infrared spectrometer and generally there is a good agreement between these techniques in the isotope ratio estimation. (13)C/(12)C ratio can be expressed as static measurement (like delta over baseline in urea breath test) or as dynamic measurement as percent dose recovery, but more dosages are necessary. (13)C Breath-tests are involved in many fields of interest within gastroenterology, such as detection of Helicobacter pylori infection, study of gastric emptying, assessment of liver and exocrine pancreatic functions, determination of oro-caecal transit time, evaluation of absorption and to a lesser extend detection of bacterial overgrowth. The use of every single test in a clinical setting is vary depending on accuracy and substrate costs. This review is meant to present (13)C the meaning of (13)C/(12)C ratio and static and dynamic measure and, finally, the instruments dedicated to its use in gastroenterology. A brief presentation of (13)C breath tests in gastroenterology is also provided. PMID:24443068

  13. (13)C-Breath testing in animals: theory, applications, and future directions.

    PubMed

    McCue, Marshall D; Welch, Kenneth C

    2016-04-01

    The carbon isotope values in the exhaled breath of an animal mirror the carbon isotope values of the metabolic fuels being oxidized. The measurement of stable carbon isotopes in carbon dioxide is called (13)C-breath testing and offers a minimally invasive method to study substrate oxidation in vivo. (13)C-breath testing has been broadly used to study human exercise, nutrition, and pathologies since the 1970s. Owing to reduced use of radioactive isotopes and the increased convenience and affordability of (13)C-analyzers, the past decade has witnessed a sharp increase in the use of breath testing throughout comparative physiology--especially to answer questions about how and when animals oxidize particular nutrients. Here, we review the practical aspects of (13)C-breath testing and identify the strengths and weaknesses of different methodological approaches including the use of natural abundance versus artificially-enriched (13)C tracers. We critically compare the information that can be obtained using different experimental protocols such as diet-switching versus fuel-switching. We also discuss several factors that should be considered when designing breath testing experiments including extrinsic versus intrinsic (13)C-labelling and different approaches to model nutrient oxidation. We use case studies to highlight the myriad applications of (13)C-breath testing in basic and clinical human studies as well as comparative studies of fuel use, energetics, and carbon turnover in multiple vertebrate and invertebrate groups. Lastly, we call for increased and rigorous use of (13)C-breath testing to explore a variety of new research areas and potentially answer long standing questions related to thermobiology, locomotion, and nutrition. PMID:26660654

  14. (13)C-Breath testing in animals: theory, applications, and future directions.

    PubMed

    McCue, Marshall D; Welch, Kenneth C

    2016-04-01

    The carbon isotope values in the exhaled breath of an animal mirror the carbon isotope values of the metabolic fuels being oxidized. The measurement of stable carbon isotopes in carbon dioxide is called (13)C-breath testing and offers a minimally invasive method to study substrate oxidation in vivo. (13)C-breath testing has been broadly used to study human exercise, nutrition, and pathologies since the 1970s. Owing to reduced use of radioactive isotopes and the increased convenience and affordability of (13)C-analyzers, the past decade has witnessed a sharp increase in the use of breath testing throughout comparative physiology--especially to answer questions about how and when animals oxidize particular nutrients. Here, we review the practical aspects of (13)C-breath testing and identify the strengths and weaknesses of different methodological approaches including the use of natural abundance versus artificially-enriched (13)C tracers. We critically compare the information that can be obtained using different experimental protocols such as diet-switching versus fuel-switching. We also discuss several factors that should be considered when designing breath testing experiments including extrinsic versus intrinsic (13)C-labelling and different approaches to model nutrient oxidation. We use case studies to highlight the myriad applications of (